WO2019100408A1 - 一种液晶阻燃发泡材料及其制备方法 - Google Patents

一种液晶阻燃发泡材料及其制备方法 Download PDF

Info

Publication number
WO2019100408A1
WO2019100408A1 PCT/CN2017/113218 CN2017113218W WO2019100408A1 WO 2019100408 A1 WO2019100408 A1 WO 2019100408A1 CN 2017113218 W CN2017113218 W CN 2017113218W WO 2019100408 A1 WO2019100408 A1 WO 2019100408A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
flame
foaming material
flame retardant
acid
Prior art date
Application number
PCT/CN2017/113218
Other languages
English (en)
French (fr)
Inventor
管清宝
顾嫒娟
汤彦甫
梁国正
袁莉
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to PCT/CN2017/113218 priority Critical patent/WO2019100408A1/zh
Publication of WO2019100408A1 publication Critical patent/WO2019100408A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers

Definitions

  • Liquid crystal flame retardant foaming material and preparation method thereof Liquid crystal flame retardant foaming material and preparation method thereof
  • the present invention relates to a liquid crystal flame retardant foaming material and a preparation method thereof, and belongs to the field of high performance polymers.
  • Polymer foam materials such as polystyrene foam insulation boards and polyurethane foam products are widely used in construction, high-speed rail and aviation fields due to their excellent mechanical, acoustic, electrical and thermal insulation properties.
  • the heat-resisting and flame-retardant properties of polymer foam materials are poor.
  • the annual fire damage caused by flammability is enormous.
  • the contradiction between market demand and application safety is becoming more and more prominent.
  • the demand for improving the flame retardancy of polymer foam materials is sharp. increase.
  • Patent No. 091/19758 discloses a method for improving the flame retardancy of polystyrene foam using hexabromocyclododecane; Patent 1 657 789 119 discloses the use of a phosphoric acid ester of a southern generation and a phosphate ester.
  • a method for improving the flame retardancy of a polyurethane foam product; a method of flame retarding polystyrene foam by expanding graphite and a phosphorus compound is disclosed in Japanese Patent No. 9814260.3.
  • the existing methods for improving the flame retardancy of polymer foaming materials have the following problems: (1) The additive organic flame retardant is easily decomposed, which will seriously corrode the equipment and cause the attenuation of flame retardant properties; (2) Adding High content of flame retardant tends to degrade the structural quality and surface quality of the foam, and reduce the strength of the foam or its insulating properties; (3) The long-term use of organic flame retardants such as halogen or phosphorus and nitrogen is serious to the environment.
  • foaming agents are essential raw materials for the preparation of existing foam materials, and foaming agents (such as azoformamide) used in the preparation of foam materials are mostly harmful compounds. . Therefore, how to prepare foaming materials with both easy foaming and high flame retardant properties without adding a flame retardant is a topic of great application in the field of high performance polymers.
  • the object of the present invention is to provide a liquid crystal flame retardant foaming material which does not require the addition of a flame retardant, has both foaming and excellent flame retardant properties, and a preparation method thereof.
  • a method for preparing a liquid crystal flame retardant foaming material comprising the steps of:
  • the present invention also discloses a method for preparing a liquid crystal flame retardant foaming material precursor, comprising the following steps:
  • the aromatic diphenol monomer is 1,4-hydroquinone, 1,3-isobenzoic, 4,4'-biphenol, 1,1'- Biphenyl-3,4'-dico, 1,1'-biphenyl-3,3'-dico, 1,6-naphthalenediol, 1,7-naphthalenediol, 2,6-naphthalenediol One or more of 2,7-naphthalenediol;
  • the aromatic diacid monomer is 1,4-terephthalic acid, 1,3-isophthalic acid, 4,4'-biphenyl Dicarboxylic acid, 1,1'-biphenyl-3,4'-dicarboxylic acid, 1,1'-biphenyl-3,3'-dicarboxylic acid, 1,6-naphthalene dicarboxylic acid, 1,7-naphthalene One or more of dicarboxylic acid, 2,6-naphthalenedicarboxylic acid,
  • the active end group is 3-aminophenylacetylene, ⁇ (4-carboxyphenyl)-4-isophenylethynyl phthalimide, N-(4-acetic acid phenolate) -4 -Phenylethynyl phthalimide, X - (3-carboxyphenyl) -4 -phenylethynyl phthalimide, N-(3-acetoxyphenolate) - One or more of 4-phenylethynyl phthalimide; the catalyst is potassium acetate, sodium acetate, acetic acid ⁇ 0 2019/100408 ⁇ (:17(: ⁇ 2017/113218
  • the acetic acid compound is acetic anhydride.
  • the molar ratio of the aromatic diphenol monomer, the aromatic diacid monomer, the aromatic monomer having a terminal hydroxyl group and a terminal carboxyl group, the active terminal group, the catalyst, and the acetic acid compound is 1: 1: (0.5 to 2): (0.03 to 0.45): (0.5% ⁇ -5% ⁇ ): (1.5 to 4);
  • the present invention defines the reaction starting material molar ratio range to contribute to obtaining a liquid crystal in accordance with the target molecular weight.
  • the flame retardant foaming material precursor is beneficial to the curing reaction of the matrix to form a crosslinked network structure, and a liquid crystal flame retardant foaming material which does not require the addition of a flame retardant is prepared.
  • the solid matter is ground into a powder and then at a vacuum of 10 to 90 kPa, at 320 to 380 ° (: 20 to 601 ⁇ 11 treatment, to obtain a liquid crystal flame retardant Foaming material;
  • the invention defines a vacuum degree of 10 ⁇ 90 kPa to help obtain a liquid crystal flame retardant foaming material with uniform pore size distribution and controlled porosity; the limiting temperature and time are respectively 320 ⁇ 380° (: and 20 ⁇ ) 601 ⁇ 11 helps to obtain a fully foamed and cured liquid crystal flame retardant foaming material, and the inventive use of the liquidus polymer in the process of polycondensation as a by-product acetic acid as a foaming agent, which is decomposed and released at high temperature ( :0 2
  • the microporous structure is formed, and the matrix undergoes a curing reaction to form a crosslinked network structure, opening up a new method for preparing a liquid crystal flame retardant foaming material
  • the present invention discloses a liquid crystal flame retardant foaming material prepared according to the above method for preparing a liquid crystal flame retardant foaming material.
  • the invention discloses a liquid crystal flame retardant foaming material precursor prepared according to the preparation method of the liquid crystal flame retardant foaming material precursor described above, and the application of the liquid crystal flame retardant foaming material precursor described above in preparing a flame retardant foaming material
  • step (3) The fine powder obtained in the step (2) is placed in a vacuum oven of 10 to 90 kPa (100-90011*31) and the temperature is 320 to 380° (: a foaming oven is cured and cured 20 to 60111) ⁇ , that is, a liquid crystal flame retardant ⁇ 0 2019/100408 ⁇ (:17(: ⁇ 2017/113218
  • the invention utilizes the by-product acetic acid remaining in the polycondensation reaction of the liquid crystal polymer as a foaming agent, and decomposes and releases at a high temperature (: ⁇ 2 forms a microporous structure, and at the same time, the matrix solidifies to form a crosslinked network structure, opening up A new method for preparing a liquid crystal flame retardant foaming material.
  • the invention does not require the addition of a flame retardant to achieve a flame retardant effect, but relies on the excellent heat resistance of the wholly aromatic backbone of the liquid crystal polymer, and the microporous structure of the foam itself. And the pore wall polymer continues to foam release during the combustion process (: 0 2 both have the effect of blocking oxygen and heat conduction.
  • the invention discloses the application of the above liquid crystal flame retardant foaming material in preparing the flame retardant foaming material.
  • the present invention utilizes the by-product acetic acid produced during the polycondensation reaction of the liquid crystal polymer as a foaming agent for the first time, which can be decomposed and released at a high temperature (: 0 2 forms micropores) At the same time, the matrix undergoes a curing reaction to form a crosslinked network structure, thereby successfully obtaining a foamed polymer, and opens up a new method for preparing a liquid crystal flame retardant foaming material.
  • the present invention is intrinsic flame retardant, and the flame retarding mechanism is different from the prior art;
  • One-pot polymerization starting material relying on the excellent heat resistance of the wholly aromatic backbone of the liquid crystal polymer, the microporous structure of the foam itself and the pore wall polymer continue to foam release during combustion (: 0 2 both It has the effect of blocking oxygen and heat conduction, and thus obtains a liquid crystal flame retardant foaming material with excellent flame retardant performance, achieving a flame retardant rating of 111 ⁇ 94 0.
  • the one-pot polycondensation reaction method is simple and controllable, and the preparation process of foaming while curing is energy-saving and high-efficiency. Therefore, the preparation method of the invention has the characteristics of environmental protection, simplicity, and wide applicability.
  • Example 1 is a liquid crystal polyester imide provided in Example 2 of the present invention and a liquid crystal polyester powder sample provided in Example 3 at a heating rate of 3° (:/1 ⁇ 11 from 200° (: temperature rise to 370°). (: and a constant viscosity-time curve of constant temperature 601 ⁇ ;
  • Example 2 is a physical digital photograph of a liquid crystal polyester imide provided in Example 2 of the present invention and a liquid crystal polyester flame retardant foaming material provided in Example 3; ⁇ 0 2019/100408 ⁇ (:17(: ⁇ 2017/113218
  • Example 3 is a pre-combustion scanning electron microscope (SEM) photograph of a liquid crystal polyester flame retardant foaming material provided in Example 3 of the present invention
  • Example 4 is a photograph of a three-dimensional tomographic tomography (01) reconstruction of a liquid crystal polyester flame retardant foaming material provided in Example 3 of the present invention
  • Embodiment 5 is a microporous equivalent diameter of a liquid crystal polyester flame-retardant foaming material provided by Embodiment 3 of the present invention.
  • Example 6 is a micropore volume before combustion of a liquid crystal polyester flame-retardant foaming material provided in Example 3 of the present invention
  • Example 7 is a thermal weight loss (10)-temperature curve of a liquid crystal polyester flame retardant foaming material provided in Example 3 of the present invention.
  • Example 8 is a post-combustion scanning electron microscope (SEM) photograph of a liquid crystal polyester flame retardant foaming material provided in Example 3 of the present invention.
  • Example 9 is a photograph of a three-dimensional tomographic tomography (01) reconstruction of a liquid crystal polyester flame-retardant foaming material provided in Example 3 of the present invention.
  • FIG. 10 is a microporous equivalent diameter of a liquid crystal polyester flame retardant foamed material provided in Example 3 of the present invention after combustion. [0036] FIG.
  • Example 11 is a micropore volume after combustion of the liquid crystal polyester flame-retardant foaming material provided in Example 3 of the present invention.
  • the reaction mixture was heated, and the reaction temperature was increased from 130 ° (: to 28 0 ° ( :.
  • the reaction was completed to obtain an opaque melt, cooled to room temperature, the product was removed from the flask, and then ground to a fine powder, which was a liquid crystal polyester powder.
  • the obtained liquid crystal polyester powder is cured at a temperature of 320° ( : and a vacuum oven having a vacuum of 80 kPa, and is cured by a foaming degree of 60111 ⁇ , thereby obtaining a liquid crystal polyester flame retardant foam material.
  • the obtained liquid crystal polyester imide powder is cured at a temperature of 370 ° (: and a vacuum oven of 80 kPa vacuum side curing 60111 ⁇ , that is, a liquid crystal polyester imide resistance is obtained
  • the foamed material has reached a flame retardant rating of 111 ⁇ -94 0.
  • the digital photo of the actual object is shown in Figure 2.
  • the flask is equipped with a sealed glass paddle stirrer, a nitrogen inlet tube and a holding distillation head.
  • a moderate nitrogen flow is passed at a temperature of 140 ° (: acetyl
  • the reaction is 3 011 ⁇ 11.
  • the rate of temperature rise in the quicksand bath The reaction mixture was heated at a reaction temperature of 140 ° (: ascending to 310 ° ( :.
  • the end of the reaction gave an opaque melt, cooled to room temperature, the product was removed from the flask and then ground to a fine powder.
  • the powder sample was heated at a rate of temperature 3° ( : / 1 ⁇ 11 from 200 ° ( : warming to 370 ° ( : and constant temperature 6011 ⁇ 11 composite viscosity - time curve see Figure 1).
  • the obtained liquid crystal polyester powder is cured at a temperature of 370 ° (: and a vacuum oven of 70 kPa vacuum side curing 50111 ⁇ , that is, a liquid crystal polyester flame retardant foam material, Density, porosity, vertical burning (111 ⁇ -94) test results, performance grading, and comparison with reference see Tables 1, 2, 3, and 4, physical digital photographs, pre-combustion scanning electron microscopy (SEM) photographs, 3D X-ray tomography Scan ((:! ⁇ Refactoring photos, micro ⁇ 0 2019/100408 ⁇ (:17(: ⁇ 2017/113218
  • the obtained liquid crystal polyester powder was placed in a vacuum oven at a temperature of 370 ° (: and a vacuum of 60 kPa). Curing edge curing 2 ⁇ 1 ⁇ 11, that is, a liquid crystal polyester flame retardant foaming material is obtained, which achieves a flame retardant rating of -94 ⁇ 0.
  • the reaction mixture was heated at a heating rate of 1.2° (:/1 ⁇ 11) in a quick-sand bath, and the reaction temperature was raised from 125° (: up to 300° (:. End of reaction to obtain opaque)
  • the melt was cooled to room temperature, and the product was removed from the flask and then ground to a fine powder.
  • the obtained liquid crystal polyester powder was cured by foaming at a temperature of 330 ° (: and a vacuum oven of 10 kPa). 5 01111!!, that is, a liquid crystal polyester flame retardant foam material is obtained, which achieves a flame retardant rating of -94 ⁇ 0.
  • the flask was fitted with a sealed glass paddle stirrer, a nitrogen inlet tube and an insulated distillation head. Pass a moderate nitrogen flow at a temperature of 125 ° (: acetylation reaction 351 ⁇ !. in the quicksand bath at the heating rate The reaction mixture was heated, and the reaction temperature was raised from 125 ° (: to 315 ° (:. The end of the reaction gave an opaque melt, cooled to room temperature, the product was removed from the flask, and then ground to a fine powder.
  • the obtained liquid crystal polyester The powder is cured at a temperature of 340 ° (: and a vacuum oven with a vacuum of 40 kPa) while curing, and a liquid crystal polyester flame retardant foam material is obtained, which reaches -94 ⁇ 0 flame retardant grade
  • 2,6-naphthalenedicarboxylic acid 282.27 ⁇ 7-hydroxy-2-naphthoic acid, 36.92 ⁇ ⁇ (4-carboxyphenyl)-4-isophenylethynyl phthalimide, 38.33 ⁇ ⁇ (3 -acetic acid Phenol ester) -4 - phenylethynyl phthalimide, 18 ⁇ 11 ⁇ acetic anhydride and 2 ⁇ 113 ⁇ 4 stannous octoate.
  • the flask was fitted with a sealed glass paddle stirrer, a nitrogen inlet tube and an insulated distillation head.
  • the end of the reaction gave an opaque melt, cooled to room temperature, the product was removed from the flask, and then ground to a fine powder.
  • the obtained liquid crystal polyester powder was placed at a temperature of 340 ° (: and a vacuum of 50 thousand In the vacuum oven of Pa, the foaming edge is cured by 50111 ⁇ , and a liquid crystal polyester flame retardant foaming material is obtained, which achieves a flame retardant rating of 111 ⁇ -94 0.
  • FIG. 1 it is a liquid crystal polyester imide provided in Example 2 of the present invention and a liquid crystal polyester powder sample provided in Example 3 at a heating rate of 3° (:/1 ⁇ 11 from 200° (: The temperature is raised to 370 ° (: and the constant viscosity of the temperature is 6011 ⁇ 11 - time curve. It can be seen that the viscosity of the liquid crystal polymer first decreases and then rises with the increase of temperature, the liquid crystal polyester amide provided in Example 2 The amine is heated to 320° (the lowest melt viscosity is 100 ( ⁇ 8) because the imide group in the main structure of the liquid crystal polyesterimide has a strong interaction; ⁇ 0 2019/100408 ⁇ (:17(: ⁇ 2017/113218
  • Example 10 The liquid crystal polyester provided in Example 3 is heated to 300° (: the lowest melt viscosity occurs) Explain that both have a wide processing window. As the temperature further rises, the active end group begins to undergo chain extension and cross-linking curing reaction, and the liquid crystal polyester imide provided in Example 2 and the liquid crystal polyester provided in Example 3 both rapidly increase in viscosity, eventually at 370°. (: Constant temperature 6 ⁇ ! ⁇ ! 1 viscosity close to the maximum value, indicating that the curing reaction is complete.
  • FIG. 2 it is a physical digital photograph of the liquid crystal polyester imide provided in Example 2 of the present invention and the liquid crystal polyester flame retardant foaming material provided in Example 3. It can be seen that the liquid crystal polyester imide provided in Example 2 and the liquid crystal polyester flame retardant foaming material obtained in Example 3 can be foamed into a foam material, and have a uniformly distributed microporous structure inside. It is sufficient to prove that the present invention overcomes the drawback that the existing foaming material requires a foaming agent, and an unexpected technical effect is obtained.
  • FIG. 3 it is a pre-combustion scanning electron microscope (SEM) photograph of a liquid crystal polyester flame retardant foaming material provided in Example 3 of the present invention. It can be seen that the pore diameter of the microporous structure of the liquid crystal polyester flame-retardant foamed material obtained in Example 3 was several hundred micrometers, and the pore wall was observed as a typical liquid crystal oriented fibrous morphology at a further magnification.
  • SEM scanning electron microscope
  • FIG. 4 it is a pre-combustion three-dimensional X-ray tomography (01) reconstruction photograph of a liquid crystal polyester flame retardant foaming material provided in Example 3 of the present invention.
  • the pore size of the foamed material was defined by different colors using the ⁇ 1 analysis software. It can be seen that the liquid crystal polyester flame retardant foaming material obtained in Example 3 has a pore size of several hundred micrometers, as observed from the SEM photograph. The results are consistent.
  • FIG. 5 it is a microporous equivalent diameter of a liquid crystal polyester flame retardant foaming material provided by Embodiment 3 of the present invention, which is subjected to three-dimensional tomography.
  • the software quantifies the results for Figure 4. It can be seen from the figure that the pore diameter of the liquid crystal polyester flame-retardant foaming material prepared in Example 3 is mainly distributed in the range of 200-2000.
  • liquid crystal polyester flame-retardant foamed material obtained in Example 3 has low density and high porosity.
  • FIG. 6 it is a pre-combustion microporous body of a liquid crystal polyester flame retardant foaming material provided by Embodiment 3 of the present invention. ⁇ 0 2019/100408 ⁇ (:17 ⁇ 17/113218
  • FIG. 7 it is a thermal weight loss of a liquid crystal polyester flame retardant foaming material provided by Embodiment 3 of the present invention.
  • the liquid crystal polyester flame-retardant foaming material prepared in Example 3 has excellent heat resistance, and the initial thermal decomposition temperature (1 ⁇ 5 is higher than 455° (:, 800° (when the carbon residue rate is high). At 43%, this is due to the high heat resistance of the liquid crystal polyester's wholly aromatic backbone structure and the existence of a crosslinked network structure.
  • Tables 2 and 3 which are the vertical combustion (111 ⁇ -94) test results and performance classification of the liquid crystal polyester flame retardant foaming material provided in Example 3 of the present invention, respectively. It can be seen from the data in the table that the liquid crystal polyester flame-retardant foaming material obtained in Example 3 achieved a flame retardancy rating of 111 ⁇ 94 0.
  • Table 3 Liquid crystal polyester imide flame retardant foaming material provided by Example 3 for vertical combustion (111 ⁇ -94) performance classification
  • Table 4 which is a liquid crystal polyester flame retardant foamed material of Example 3 provided in the existing coverage LOI level 111 ⁇ 94 Comparative embodiment of the present invention. It can be seen from the table that the liquid crystal polyester flame retardant foaming material prepared in Example 3 has a higher limiting oxygen index (36.4%), and is even superior to other foaming materials to which a high content of flame retardant is added.
  • FIG. 8 it is a post-combustion scanning electron microscope (SEM) photograph of a liquid crystal polyester flame retardant foamed material provided in Example 3 of the present invention.
  • SEM scanning electron microscope
  • FIG. 9 it is a post-combustion three-dimensional X-ray tomography (01) reconstruction photograph of a liquid crystal polyester flame-retardant foaming material provided in Example 3 of the present invention.
  • the number of micropores after combustion of the liquid crystal polyester flame-retardant foaming material prepared in Example 3 is significantly increased compared with that before combustion, and the pore diameter is remarkably reduced, indicating that the residual acetic acid in the pore wall continues during combustion.
  • Release (: 0 2 ) causes a large number of new micropore structures with smaller pore sizes to form.
  • FIG. 10 it is a post-combustion microporous liquid crystal polyester flame retardant foaming material provided by Embodiment 3 of the present invention. ⁇ 0 2019/100408 ⁇ (:17(: ⁇ 2017/113218
  • the liquid crystal polyester flame retardant foaming material prepared in Example 3 has a significantly increased number of micropores after combustion, and the pore diameter is mainly distributed on the side of 20-300, indicating that the residual acetic acid in the pore wall is in the combustion process.
  • the decomposition continues to be released (: 0 2 , and more microporous structures with smaller pore diameters are formed in the system.
  • FIG. 11 it is a post-combustion micropore volume of a liquid crystal polyester flame-retardant foaming material provided by Embodiment 3 of the present invention.
  • the micropore volume of the liquid crystal polyester flame-retardant foaming material prepared in Example 3 is significantly increased after combustion, and the pore diameter is remarkably reduced, mainly distributed at 10 4 -10 >111.
  • the remaining acetic acid in the pore wall is further decomposed and released (: 0 2 , which promotes the formation of a large number of new microporous structures with smaller pore diameters.
  • the flask is equipped with a sealed glass paddle stirrer, a nitrogen inlet tube and a holding distillation head.
  • a moderate nitrogen flow is passed at a temperature of 140 ° (: acetyl
  • the reaction is 3 011 ⁇ 11.
  • the rate of temperature rise in the quicksand bath The reaction mixture was heated, and the reaction temperature was raised from 140 ° (: to 310 ° (:.)
  • the reaction was completed to obtain an opaque melt, which was cooled to room temperature, and the product was removed from the flask and then ground to a fine powder.
  • the obtained liquid crystal polyester powder is cured at a temperature of 370 ° (: and a vacuum oven with a vacuum of 970 kPa) while being foamed and cured 5 ⁇ ! ⁇ ! 1, because the degree of vacuum is too low, beyond the technical solution
  • the limited range of vacuum results in the inability to successfully prepare liquid crystal flame retardant foamed materials.
  • the inventive invention utilizes the by-product acetic acid remaining in the polycondensation reaction of the liquid crystal polymer as a foaming agent, which is decomposed and released at a high temperature (: 0 2 forms a microporous structure, and at the same time, the matrix undergoes a curing reaction to form a cross-linking).
  • the network structure the successful preparation of the foam material with uniform voids, opens up a new method for preparing the liquid crystal flame retardant foaming material; and the liquid crystal flame retardant foaming material provided by the invention exhibits excellent flame retardant properties.
  • the excellent heat-resistance of the all-aromatic backbone of the material, the microporous structure of the foam itself and the liquid crystalline fibrous dense structure formed on the pore walls help to block the transmission of oxygen and heat at the beginning of combustion; on the other hand, during the combustion process
  • the residual acetic acid in the mesoporous wall continues to be released (: 0 2 , and a large number of new microporous structures with smaller pore diameters are formed, which have the effect of blocking oxygen and heat conduction, and are beneficial for suppressing combustion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本发明公开了一种液晶阻燃发泡材料及其制备方法,以芳香族二酚单体、芳香族二酸单体、含有端羟基和端羧基的芳香族单体为原料,在活性端基、催化剂、醋酸化合物存在下,在氮气保护下,于120~140℃反应30~60min;然后以0.5~1.5℃/min的速率升温至280~325℃,反应1~3h,得到固体物;将固体物真空加热得到液晶阻燃发泡材料。本发明利用液晶聚合物缩聚反应过程中残存的副产物醋酸为发泡剂,在高温时分解释放CO 2形成微孔结构,同时基体发生固化反应形成交联网络结构,开辟了制备液晶阻燃发泡材料的新方法,尤其本发明不需要添加阻燃剂来达到阻燃效果,达到了UL-94 V0阻燃等级;另外本发明的制备方法具有环保、简便、适用性广的特点。

Description

\¥0 2019/100408 卩(:17(:\2017/113218
1
一种液晶阻燃发泡材料及其制备方法 技术领域
[0001] 本发明涉及一种液晶阻燃发泡材料及其制备方法, 属于高性能聚合物领域。
背景技术
[0002] 聚合物发泡材料如聚苯乙烯泡沫保温板、 聚氨酯泡沫制品等以其优异的力学、 声学、 电学、 保温等性能, 广泛应用在建筑、 高铁和航空等领域。 然而聚合物 发泡材料的耐热和阻燃性能较差, 每年因其可燃造成的火灾损失十分巨大, 市 场需求与应用安全的矛盾日益突出, 对改善聚合物发泡材料阻燃性的需求急剧 增加。
[0003] 通过在聚合物发泡材料制备过程中添加各种阻燃剂来获得阻燃性, 其中最普遍 采用的阻燃剂是以含卤素或磷氮等有机化合物。 例如, 专利\¥091/19758公开了 一种采用六溴环十二烷改善聚苯乙烯泡沫阻燃性的方法; 专利 1^6578911公开了 一种采用南代磷酸酯类化合物和磷酸酯类阻燃剂提高聚氨酯泡沫制品阻燃性的 方法; 专利〇 9814260.3公开了以膨胀石墨和磷化合物阻燃聚苯乙烯泡沫的方 法。 但现有提高聚合物发泡材料阻燃性的方法均存在以下几个问题: (1) 添加 型有机阻燃剂容易分解, 会严重腐蚀设备并造成阻燃性能的衰减; (2) 添加较 高含量阻燃剂往往劣化泡沫的结构质量和表面质量, 降低泡沫的强度或其绝缘 性能; (3) 含卤素或磷氮等有机阻燃剂的长期使用对环境污染严重。
[0004] 除此之外, 发泡剂是现有泡沫材料制备必不可少的原料, 而泡沫材料制备过程 中所使用的发泡剂 (如偶氮甲酰胺等) 多为对人体有害的化合物。 因此, 如何 在不添加阻燃剂的前提下, 制备兼具易发泡和高阻燃性能的发泡材料是目前高 性能聚合物领域一个具有重大应用价值的课题。
技术问题
[0005] 为了克服现有技术存在的不足, 本发明的目的在于提供一种无需添加阻燃剂、 兼具易发泡和优异阻燃性能的液晶阻燃发泡材料及其制备方法。
问题的解决方案 \¥0 2019/100408 卩(:17(:\2017/113218
2 技术解决方案
[0006] 实现本发明目的所采用的技术方案是:
[0007] 一种液晶阻燃发泡材料的制备方法, 包括如下步骤:
[0008] (1) 以芳香族二酚单体、 芳香族二酸单体、 含有端羟基和端羧基的芳香族单 体为原料, 在活性端基、 催化剂、 醋酸化合物存在下, 在氮气保护下, 于 120〜 140°(:反应 30〜 6011^11; 然后以 0
Figure imgf000004_0001
的速率升温至 280〜 325°(:, 反应 1〜 311, 得到固体物;
[0009] (2) 将固体物于 10〜 90千帕真空度下, 于 320〜 380°(:处理 20〜 601^11, 得到液 晶阻燃发泡材料。
[0010] 本发明还公开了一种液晶阻燃发泡材料前驱体的制备方法, 包括如下步骤:
[0011] 以芳香族二酚单体、 芳香族二酸单体、 含有端羟基和端羧基的芳香族单体为原 料, 在活性端基、 催化剂、 醋酸化合物存在下, 在氮气保护下, 于 120〜 140°(:反 应 30〜 6011^11; 然后以 0
Figure imgf000004_0002
的速率升温至 280〜 325°(:, 反应 1〜 311, 得 到液晶阻燃发泡材料前驱体; 本发明限定升温速率为 0.5〜
Figure imgf000004_0003
有助于缩聚 反应进行完全, 得到符合目标分子量的液晶阻燃发泡材料前驱体, 从而可以在 高温时分解释放(:0 2形成微孔结构, 同时基体发生固化反应形成交联网络结构, 制备不需要添加阻燃剂的液晶阻燃发泡材料。
[0012] 上述技术方案中, 所述芳香族二酚单体为 1,4 -对苯二酚、 1,3 -间苯二酷、 4,4’-联 苯二酚、 1,1’-联苯 -3,4’-二酷、 1,1’-联苯 -3,3’-二酷、 1,6 -萘二酚、 1,7 -萘二酚、 2,6 -萘二酚、 2, 7 -萘二酚中的一种或几种; 所述芳香族二酸单体为 1,4 -对苯二甲酸、 1,3 -间苯二甲酸、 4,4’-联苯二甲酸、 1,1’-联苯 -3, 4’-二羧酸、 1,1’-联苯 -3, 3’-二羧酸 、 1,6 -萘二甲酸、 1,7 -萘二甲酸、 2, 6 -萘二甲酸、 2, 7 -萘二甲酸中的一种或几种; 所述含端羟基和端羧基的芳香族单体为 3 -羟基苯甲酸、 4’-羟基联苯基 -3 -羧酸、 7 -轻基 -2 -萘甲酸、 (3'-羟苯基) 偏苯三酰亚胺中的一种或几种; 。
[0013] 上述技术方案中, 所述活性端基为 3 -氨基苯乙炔、 ^ (4 -羧基苯基) -4 -苯乙炔 基邻苯二甲酸酰亚胺、 N- (4 -乙酸苯酚酯基) -4 -苯乙炔基邻苯二甲酸酰亚胺、 X - (3 -羧基苯基) -4 -苯乙炔基邻苯二甲酸酰亚胺、 N- (3 -乙酸苯酚酯基) -4 -苯乙 炔基邻苯二甲酸酰亚胺中的一种或几种; 所述催化剂为醋酸钾、 醋酸钠、 醋酸 \¥0 2019/100408 卩(:17(:\2017/113218
3 锌、 二丁基氧化锡、 辛酸亚锡、 月桂酸二丁基锡中的一种; 所述醋酸化合物为 醋酸酐。
[0014] 上述技术方案中, 所述芳香族二酚单体、 芳香族二酸单体、 含有端羟基和端羧 基的芳香族单体、 活性端基、 催化剂、 醋酸化合物的摩尔比为 1: 1: (0.5〜 2) : ( 0.03〜 0.45) : (0.5%〇-5%〇) : ( 1.5〜 4) ; 本发明限定该反应起始物摩尔比范围 有助于得到符合目标分子量的液晶阻燃发泡材料前驱体, 从而有利于基体发生 固化反应形成交联网络结构, 制备不需要添加阻燃剂的液晶阻燃发泡材料。
[0015] 上述技术方案中, 步骤 (2) 中, 将固体物研磨为粉末后再于 10〜 90千帕真空 度下, 于 320〜 380° (:处理 20〜 601^11, 得到液晶阻燃发泡材料; 本发明限定真空 度为 10〜 90千帕有助于得到孔径分布均匀、 孔隙率可控的液晶阻燃发泡材料; 限定温度和时间分别为 320〜 380° (:和 20〜 601^11有助于得到充分发泡和固化的液 晶阻燃发泡材料, 本发明创造性的利用液晶聚合物缩聚反应过程中残存的副产 物醋酸为发泡剂, 在高温时分解释放 (:0 2形成微孔结构, 同时基体发生固化反应 形成交联网络结构, 开辟了制备液晶阻燃发泡材料的新方法。
[0016] 本发明公开了根据上述液晶阻燃发泡材料的制备方法制备的液晶阻燃发泡材料
[0017] 本发明公开了根据上述液晶阻燃发泡材料前驱体的制备方法制备的液晶阻燃发 泡材料前驱体以及上述液晶阻燃发泡材料前驱体在制备阻燃发泡材料中的应用
[0018] 本发明可举例表示如下:
[0019] ( 1) 将 1〇1〇1芳香族二酚单体 (X) 、
Figure imgf000005_0001
芳香族二酸单体 (丫) 、 0.5〜 2111〇1 含有端羟基八和端羧基:8的间位八:8型芳香族单体 ) 、 活性端基、 0.5〜 211111101 催化剂及 1.5〜 4111〇1醋酸酐加入反应器中; 在氮气保护下, 在温度 120〜 140° (:下 乙酰化反应 30〜 60111111;
[0020] (2) 按照 0.5〜
Figure imgf000005_0002
的速率升温至 280〜 325° (:, 进行酯交换反应 1〜 311; 反 应结束后冷却至室温, 将产物研磨为精细粉末;
[0021] (3) 将步骤 ⑵ 得到的精细粉末置于真空度为 10〜 90千帕 ( 100-90011*31) 且温度为 320〜 380° (:的真空烘箱中发泡并固化 20〜 60111^, 即得到一种液晶阻燃 \¥0 2019/100408 卩(:17(:\2017/113218
4 发泡材料。
[0022] 本发明利用液晶聚合物缩聚反应过程中残存的副产物醋酸为发泡剂, 在高温时 分解释放(:〇2形成微孔结构, 同时基体发生固化反应形成交联网络结构, 开辟了 制备液晶阻燃发泡材料的新方法。 本发明不需要添加阻燃剂来达到阻燃效果, 而是依靠液晶聚合物的全芳香族主链优异的耐热特性, 泡沫材料自身的微孔结 构以及孔壁聚合物在燃烧过程中继续发泡释放(:0 2均起到阻隔氧气和热传导的效 果。 本发明公开了上述液晶阻燃发泡材料在制备阻燃发泡材料中的应用。
发明的有益效果
有益效果
[0023] 与现有技术相比, 本发明取得的有益效果是:
[0024] 1、 与现有技术添加发泡剂不同, 本发明首次利用液晶聚合物缩聚反应过程中 产生的副产物醋酸为发泡剂, 其可在高温时分解释放(:0 2形成微孔结构; 与此同 时, 基体发生固化反应形成交联网络结构, 从而成功得到发泡聚合物, 开辟了 一种制备液晶阻燃发泡材料的新方法。
[0025] 2、 与借助添加阻燃剂制备阻燃发泡材料的传统方法不同, 本发明为本征型阻 燃, 且阻燃机理与现有技术不同; 本发明选用全芳香族单体作为一锅法聚合反 应起始物, 依靠液晶聚合物的全芳香族主链优异的耐热特性, 泡沫材料自身的 微孔结构以及孔壁聚合物在燃烧过程中继续发泡释放(:0 2均起到阻隔氧气和热传 导的效果, 从而得到一种具备优异阻燃性能的液晶阻燃发泡材料, 达到了111^94 0阻燃等级。
[0026] 3、 由于无需添加阻燃剂, 一锅缩聚反应法简单可控, 边固化边发泡的制备工 艺节能高效, 因此本发明的制备方法具有环保、 简便、 适用性广的特点。
对附图的简要说明
附图说明
[0027] 图 1是本发明实施例 2提供的液晶聚酯酰亚胺和实施例 3提供的液晶聚酯粉末样 品以升温速率 3°(:/1^11由200°(:升温至 370°(:并恒温 601^的复合粘度 -时间曲线;
[0028] 图 2是本发明实施例 2提供的液晶聚酯酰亚胺和实施例 3提供的液晶聚酯阻燃发 泡材料的实物数码照片; \¥0 2019/100408 卩(:17(:\2017/113218
5
[0029] 图 3是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧前扫描电镜 (SEM) 照片;
[0030] 图 4是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧前三维 -射线断层扫 描 (01) 重构照片;
[0031] 图 5是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧前的微孔等效直径;
[0032] 图 6是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧前的微孔体积;
[0033] 图 7是本发明实施例 3提供的液晶聚酯阻燃发泡材料的热失重 (10) -温度曲线
[0034] 图 8是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧后扫描电镜 (SEM) 照片;
[0035] 图 9是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧后三维 -射线断层扫 描 (01) 重构照片;
[0036] 图 10是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧后的微孔等效直径
[0037] 图 11是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧后的微孔体积。
发明实施例
本发明的实施方式
[0038] 下面结合附图和实施例, 对本发明技术方案作进一步的描述。
[0039] 实施例 1 液晶聚酯阻燃发泡材料的制备
[0040] 在一个 25011^三口圆底烧瓶中加入 16.02§ 1,6 -萘二酚、 21.62§
2, 7 -萘二甲酸、 21.42§ 4’-羟基联苯基 -3 -羧酸、 3.84§ (4 -羧基苯基) -4 -苯乙炔 基邻苯二甲酸酰亚胺、 4.02§ ^ (4 -乙酸苯酚酯基) -4 -苯乙炔基邻苯二甲酸酰亚 胺、 5〇11^醋酸酐和 211^:丁基氧化锡。 烧瓶配以密封玻璃桨式搅拌器, 一个氮 气入口管和一个保温蒸馏头。 通入氮气流, 在温度 130。(:下乙酰化反应 45111^。 在流沙浴中以升温速率
Figure imgf000007_0001
将反应混合物加热, 反应温度由 130° (:上升至 28 0° (:。 反应结束得到不透明的熔体, 冷却至室温, 将产物由烧瓶中移出, 而后研 磨为精细粉末, 为液晶聚酯粉末。 将得到的液晶聚酯粉末置于温度 320° (:和真空 度为 80千帕的真空烘箱中边发泡边固化 60111^, 即得到一种液晶聚酯阻燃发泡材 \¥0 2019/100408 卩(:17(:\2017/113218
6 料, 达到了 \JL-94 0阻燃等级。
[0041] 实施例 2液晶聚酯酰亚胺阻燃发泡材料的制备
[0042] 在一个 50011^三口圆底烧瓶中加入 93.10g 1,3 -间苯二酚、 83.08§ 1,3 -间苯二甲酸 、 39.16§ ^ (3'-羟苯基) 偏苯三酰亚胺、 41.01§ ^ (3 -羧基苯基) -4 -苯乙炔基 邻苯二甲酸酰亚胺、 42.59§ ^ (3 -乙酸苯酚酯基) -4 -苯乙炔基邻苯二甲酸酰亚 胺、 30〇11^醋酸酐和 251^醋酸钠。 烧瓶配以密封玻璃桨式搅拌器, 一个氮气入 口管和一个保温蒸馏头。 通入适中的氮气流, 在温度 120° (:下乙酰化反应 6〇!^!1 。 在流沙浴中以升温速率 0.5°(:/1^11将反应混合物加热, 反应温度由 120° (:上升至 325° (:。 反应结束得到不透明的熔体, 冷却至室温, 将产物由烧瓶中移出, 而后 研磨为精细粉末。 其粉末样品以升温速率 3°(:/1^11由200° (:升温至 370° (:并恒温 60 11^11的复合粘度-时间曲线参见附图 1。
[0043] 将得到的液晶聚酯酰亚胺粉末置于温度 370° (:和真空度为 80千帕的真空烘箱中 边发泡边固化 60111^, 即得到一种液晶聚酯酰亚胺阻燃发泡材料, 达到了 111^-94 0阻燃等级, 其实物数码照片参见附图 2。
[0044] 实施例 3 液晶聚酯阻燃发泡材料的制备
[0045] 在一个 50011^三口圆底烧瓶中加入 37.24§ 1,4 -对苯二酚、 33.23 1,4 -对苯二甲酸 、 69.(¾ 3 -羟基苯甲酸、 18.82 7 -羟基 -2 -萘甲酸、 27.34 (4 -羧基苯基) -4 -苯 乙炔基邻苯二甲酸酰亚胺、 28.39§ ^ (4 -乙酸苯酚酯基) -4 -苯乙炔基邻苯二甲 酸酰亚胺、 15〇11^醋酸酐和 1〇!1¾醋酸钾。 烧瓶配以密封玻璃桨式搅拌器, 一个 氮气入口管和一个保温蒸馏头。 通入适中的氮气流, 在温度 140° (:下乙酰化反应 3 011^11。 在流沙浴中以升温速率
Figure imgf000008_0001
将反应混合物加热, 反应温度由 140° (:上 升至 310° (:。 反应结束得到不透明的熔体, 冷却至室温, 将产物由烧瓶中移出, 而后研磨为精细粉末。 其粉末样品以升温速率 3°(:/1^11由200° (:升温至 370° (:并恒 温 6011^11的复合粘度 -时间曲线参见附图 1。
[0046] 将得到的液晶聚酯粉末置于温度 370° (:和真空度为 70千帕的真空烘箱中边发泡 边固化 50111^, 即得到一种液晶聚酯阻燃发泡材料, 其密度、 孔隙率、 垂直燃烧 (111^-94) 测试结果、 性能分级以及与参考对比参见表 1、 2、 3和 4, 实物数码照 片、 燃烧前扫描电镜 (SEM) 照片、 三维 X-射线断层扫描 ((:!〇 重构照片、 微 \¥0 2019/100408 卩(:17(:\2017/113218
7 孔等效直径和体积分别参见附图 2、 3、 4、 5和 6, 热失重 ⑽ -温度曲线、 燃 烧后扫描电镜 (SEM) 照片、 三维 X-射线断层扫描 ((:!〇 重构照片、 微孔等效 直径和体积分别参见附图 7、 8、 9、 10和 11。
[0047] 实施例 4液晶聚酯阻燃发泡材料的制备
[0048] 在一个 100011^三口圆底烧瓶中加入 80.09 2, 7 -萘二酚、 93.1 ^
4,4’-联苯二酚、 108.10g 1,6 -萘二甲酸、 121.12§ 4,4’-联苯二甲酸、 69.06§ 3 -羟基 苯甲酸、 7·38g N- (3 -羧基苯基) -4 -苯乙炔基邻苯二甲酸酰亚胺、 1.61^ ^ (4 -乙 酸苯酚酯基) -4 -苯乙炔基邻苯二甲酸酰亚胺、 30〇11^醋酸酐和 4511^醋酸锌。 烧 瓶配以密封玻璃桨式搅拌器, 一个氮气入口管和一个保温蒸馏头。 通入适中的 氮气流, 在温度 140°(:下乙酰化反应 3011^。 在流沙浴中以升温速率 1.5°(:/1^!1将 反应混合物加热, 反应温度由 140°(:上升至 315°(:。 反应结束得到不透明的熔体, 冷却至室温, 将产物由烧瓶中移出, 而后研磨为精细粉末。 将得到的液晶聚酯 粉末置于温度 380°(:和真空度为 90千帕的真空烘箱中边发泡边固化 30111^, 即得 到一种液晶聚酯阻燃发泡材料, 达到了 111^-94 0阻燃等级。
[0049] 实施例 5 液晶聚酯酰亚胺阻燃发泡材料的制备
[0050] 在一个
Figure imgf000009_0001
二酚、 129.7:^ 1,7 -萘 二甲酸、 211.20§ ^ (3'-羟苯基) 偏苯三酰亚胺、 69.06 3 -羟基苯甲酸、 14.77g N- (3 -羧基苯基) -4 -苯乙炔基邻苯二甲酸酰亚胺、 15.33§
(3 -乙酸苯酚酯基) -4 -苯乙炔基邻苯二甲酸酰亚胺、 30〇11^醋酸酐和 3511¾醋 酸钠。 烧瓶配以密封玻璃桨式搅拌器, 一个氮气入口管和一个保温蒸馏头。 通 入适中的氮气流, 在温度 130°(:下乙酰化反应 451^!!。 在流沙浴中以升温速率 1.0 将反应混合物加热, 反应温度由 130°(:上升至 280°(:。 反应结束得到不透明 的熔体, 冷却至室温, 将产物由烧瓶中移出, 而后研磨为精细粉末。 将得到的 液晶聚酯粉末置于温度 370°(:和真空度为 60千帕的真空烘箱中边发泡边固化 2〇1^ 11, 即得到一种液晶聚酯阻燃发泡材料, 达到了 -94 ¥0阻燃等级。
[0051] 实施例 6 液晶聚酯阻燃发泡材料的制备
[0052] 在一个 100011^三口圆底烧瓶中加入 160.17§ 2,7 -萘二酚、 108.10g 1,7 -萘二甲酸 、
Figure imgf000009_0002
二羧酸、 69.06§ 3 -羟基苯甲酸、 282.27§ 7 -羟基 -2 -萘甲 \¥0 2019/100408 卩(:17(:\2017/113218
8 酸、 18.46 (4 -羧基苯基) -4 -苯乙炔基邻苯二甲酸酰亚胺、 19.17§ (3 -乙酸 苯酚酯基) -4 -苯乙炔基邻苯二甲酸酰亚胺、 38〇11^醋酸酐、 511¾醋酸钠和 7511^ 辛酸亚锡。 烧瓶配以密封玻璃桨式搅拌器, 一个氮气入口管和一个保温蒸馏头 。 通入适中的氮气流, 在温度 125。(:下乙酰化反应 451^!!。 在流沙浴中以升温速 率 1.2°(:/1^11将反应混合物加热, 反应温度由 125°(:上升至 300°(:。 反应结束得到不 透明的熔体, 冷却至室温, 将产物由烧瓶中移出, 而后研磨为精细粉末。 将得 到的液晶聚酯粉末置于温度 330°(:和真空度为 10千帕的真空烘箱中边发泡边固化 5 01111!!, 即得到一种液晶聚酯阻燃发泡材料, 达到了 -94 ¥0阻燃等级。
[0053] 实施例 7 液晶聚酯阻燃发泡材料的制备
[0054] 在一个 100011^三口圆底烧瓶中加入 80.09§ 1,7 -萘二酚、 121.12§ 1,1’-联苯 -3,4’- 二羧酸、 69.06§ 3 -羟基苯甲酸、 7.38§ ^ (3 -羧基苯基) -4 -苯乙炔基邻苯二甲酸 酰亚胺、 1.61^ ^ (4 -乙酸苯酚酯基) -4 -苯乙炔基邻苯二甲酸酰亚胺、 32〇11^醋 酸酐和 4211¾醋酸锌。 烧瓶配以密封玻璃桨式搅拌器, 一个氮气入口管和一个保 温蒸馏头。 通入适中的氮气流, 在温度 125°(:下乙酰化反应 351^!!。 在流沙浴中 以升温速率
Figure imgf000010_0001
将反应混合物加热, 反应温度由 125°(:上升至 315°(:。 反应结 束得到不透明的熔体, 冷却至室温, 将产物由烧瓶中移出, 而后研磨为精细粉 末。 将得到的液晶聚酯粉末置于温度 340°(:和真空度为 40千帕的真空烘箱中边发 泡边固化 4〇1^, 即得到一种液晶聚酯阻燃发泡材料, 达到了 -94 ¥0阻燃等级
[0055] 实施例 8 液晶聚酯阻燃发泡材料的制备
[0056] 在一个 50011^三口圆底烧瓶中加入 48.05§ 2, 6 -萘二酚、 64.86 ^
2, 6 -萘二甲酸、 282.27§ 7 -羟基 -2 -萘甲酸、 36.92§ ^ (4 -羧基苯基) -4 -苯乙炔基 邻苯二甲酸酰亚胺、 38.33§ ^ (3 -乙酸苯酚酯基) -4 -苯乙炔基邻苯二甲酸酰亚 胺、 18〇11^醋酸酐和 2〇11¾辛酸亚锡。 烧瓶配以密封玻璃桨式搅拌器, 一个氮气 入口管和一个保温蒸馏头。 通入适中的氮气流, 在温度 135°(:下乙酰化反应 351^ 11。 在流沙浴中以升温速率
Figure imgf000010_0002
将反应混合物加热, 反应温度由 135°(:上升 至 320°(:。 反应结束得到不透明的熔体, 冷却至室温, 将产物由烧瓶中移出, 而 后研磨为精细粉末。 将得到的液晶聚酯粉末置于温度 320°(:和真空度为 10千帕的 \¥0 2019/100408 卩(:17(:\2017/113218
9 真空烘箱中边发泡边固化 60111^, 即得到一种液晶聚酯阻燃发泡材料, 达到了 111^ -94 0阻燃等级。
[0057] 实施例 9 液晶聚酯阻燃发泡材料的制备
[0058] 在一个50〇11^三口圆底烧瓶中加入55.86§ 1,1’-联苯-3,4’-二酚、 12.61^
1,1’-联苯 -3,3’-二羧酸、 214.22 4’-羟基联苯基 -3 -羧酸、 \l.l2g
3 -氨基苯乙炔、 10〇11^醋酸酐、 511¾醋酸钠和 2511^月桂酸二丁基锡。 烧瓶配以密 封玻璃桨式搅拌器, 一个氮气入口管和一个保温蒸馏头。 通入适中的氮气流, 在温度 135° (:下乙酰化反应 301^11。 在流沙浴中以升温速率 0.9°(:/1^11将反应混合 物加热, 反应温度由 135° (:上升至 295° (:。 反应结束得到不透明的熔体, 冷却至室 温, 将产物由烧瓶中移出, 而后研磨为精细粉末。 将得到的液晶聚酯粉末置于 温度 340° (:和真空度为 50千帕的真空烘箱中边发泡边固化 50111^, 即得到一种液 晶聚酯阻燃发泡材料, 达到了 111^-94 0阻燃等级。
[0059] 实施例 10液晶聚酯阻燃发泡材料的制备
[0060] 在一个100〇11^三口圆底烧瓶中加入93.14 1,1’-联苯 -3, 3’-二酷、 80.09§ 2,6 -萘二 酚、 242.23§ 4,4’-联苯二甲酸、 138.12§ 7 -羟基 -2 -萘甲酸、 69.(¾
3 -羟基苯甲酸、 12.92§ ^ (4 -羧基苯基) -4 -苯乙炔基邻苯二甲酸酰亚胺、 13.42§ N- (3 -乙酸苯酚酯基) -4 -苯乙炔基邻苯二甲酸酰亚胺、 24〇11^醋酸酐和 3〇11¾辛 酸亚锡。 烧瓶配以密封玻璃桨式搅拌器, 一个氮气入口管和一个保温蒸馏头。 通入适中的氮气流, 在温度 130。(:下乙酰化反应 551^!!。 在流沙浴中以升温速率1. 3°(:/1^11将反应混合物加热, 反应温度由 130° (:上升至 300° (:。 反应结束得到不透 明的熔体, 冷却至室温, 将产物由烧瓶中移出, 而后研磨为精细粉末。 将得到 的液晶聚酯粉末置于温度 330° (:和真空度为 15千帕的真空烘箱中边发泡边固化 55 11^, 即得到一种液晶聚酯阻燃发泡材料, 达到了 -94 ¥0阻燃等级。
[0061] 参见附图 1, 它是本发明实施例 2提供的液晶聚酯酰亚胺和实施例 3提供的液晶 聚酯粉末样品以升温速率 3°(:/1^11由200° (:升温至 370° (:并恒温 6011^11的复合粘度- 时间曲线。 从中可以看出, 液晶聚合物粘度随着温度升高出现先下降后上升的 趋势, 实施例 2提供的液晶聚酯酰亚胺升温至 320° (:出现最低熔融粘度 100(^ 8, 这是由于液晶聚酯酰亚胺主链结构中的酰亚胺基团具有较强的 相互作用; 而 \¥0 2019/100408 卩(:17(:\2017/113218
10 实施例 3提供的液晶聚酯升温至 300° (:出现最低熔融粘度
Figure imgf000012_0001
说明两者均具有 较宽的加工窗口。 随着温度进一步上升, 活性端基开始发生扩链和交联固化反 应, 实施例 2提供的液晶聚酯酰亚胺和实施例 3提供的液晶聚酯的粘度均迅速增 大, 最终在 370° (:恒温 6〇!^!1粘度接近最大值, 表明固化反应进行完全。
[0062] 参见附图 2, 它是本发明中实施例 2提供的液晶聚酯酰亚胺和实施例 3提供的液 晶聚酯阻燃发泡材料的实物数码照片。 从中可以看出, 实施例 2提供的液晶聚酯 酰亚胺和实施例 3制得的液晶聚酯阻燃发泡材料均可发泡成为泡沫材料, 且内部 都具有均匀分布的微孔结构, 足以证明本发明克服了现有发泡材料需要发泡剂 的缺陷, 取得了意想不到的技术效果。
[0063] 参见附图 3 , 它是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧前扫描电 镜 (SEM) 照片。 从中可以看出, 实施例 3制得的液晶聚酯阻燃发泡材料的微孔 结构的孔径为数百微米, 进一步放大倍数观察到孔壁为典型的液晶取向纤维状 形貌。
[0064] 参见附图 4, 它是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧前三维 X- 射线断层扫描 (01) 重构照片。 采用〇1分析软件对发泡材料孔径大小以不同颜 色进行定义, 从中可以看出, 实施例 3制得的液晶聚酯阻燃发泡材料孔径为数百 微米, 与从 SEM照片中观察到的结果相吻合。
[0065] 参见附图 5 , 它是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧前微孔等 效直径, 采用三维 -射线断层扫描
Figure imgf000012_0002
软件针对附图 4进行量化得到的结果。 由图可见实施例 3制得的液晶聚酯阻燃发泡材料的孔径主要分布在 200-2000 。
[0066] 参见表 1, 它是本发明实施例 3提供的液晶聚酯阻燃发泡材料的密度和孔隙率。
从表中可见实施例 3制得的液晶聚酯阻燃发泡材料具有低密度和高孔隙率。
[0067] 表 1实施例 3提供的液晶聚酯阻燃发泡材料的密度和孔隙率
[表 1]
Figure imgf000012_0003
[0068] 参见附图 6 , 它是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧前微孔体 \¥0 2019/100408 卩(:17 謂17/113218
11 积, 釆用三维 -射线断层扫描 ((:!〇 软件针对附图 5统计得到的结果。 由图可见 实施例 3制得的液晶聚酯阻燃发泡材料燃烧前的微孔体积主要分布在 10 7-10>111 3
[0069] 参见附图 7 , 它是本发明实施例 3提供的液晶聚酯阻燃发泡材料的热失重
Figure imgf000013_0001
) -温度曲线。 从中可见, 实施例 3制得的液晶聚酯阻燃发泡材料具有优异的耐热 性, 初始热分解温度 (1^5叫 高于 455°(:, 800°(:时的残炭率高于 43%。 这得益 于液晶聚酯的全芳香族主链结构具有高的耐热性以及交联网络结构的存在。
[0070] 参见表 2和 3 , 它们分别是本发明实施例 3提供的液晶聚酯阻燃发泡材料的垂直 燃烧 (111^-94) 测试结果和性能分级。 由表中数据可知实施例 3制得的液晶聚酯 阻燃发泡材料的达到了111^94 0阻燃等级。
[0071] 表 2实施例 3提供的液晶聚酯酰亚胺阻燃发泡材料垂直燃烧 (111^-94) 测试结果
\¥0 2019/100408 卩(:17(:\2017/113218
12
Figure imgf000014_0001
Figure imgf000014_0002
[0072] 表 3实施例 3提供的液晶聚酯酰亚胺阻燃发泡材料垂直燃烧 (111^-94) 性能分级
\¥0 2019/100408 卩(:17(:\2017/113218
13
[表 2]
Figure imgf000015_0001
[0073] 参见表 4, 它是本发明实施例 3提供的液晶聚酯阻燃发泡材料与现有报道的极限 氧指数与111^94等级对比。 从表中可见实施例 3制得的液晶聚酯阻燃发泡材料具 有较高的极限氧指数 (36.4%) , 甚至优于其它添加高含量阻燃剂的发泡材料。
[0074] 表 4实施例 3提供的液晶聚酯阻燃发泡材料与现有报道的极限氧指数与111^94等 级对比表
\¥0 2019/100408 卩(:17 謂17/113218
14
[表 3]
Figure imgf000016_0001
\¥0 2019/100408 卩(:17(:\2017/113218
15
Figure imgf000017_0001
[0075] 参见附图 8 , 它是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧后扫描电 镜 (SEM) 照片。 与图 3相比可知, 实施例 3制得的液晶聚酯阻燃发泡材料燃烧 后的微孔数量上明显增多, 孔径减小, 纤维状形貌变为平滑的残碳保护层。
[0076] 参见附图 9 , 它是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧后三维 X- 射线断层扫描 (01) 重构照片。 与图 4相比可知, 实施例 3制得的液晶聚酯阻燃 发泡材料燃烧后的微孔数量较燃烧前明显增多, 而孔径显著减小, 说明燃烧过 程中孔壁内残存的醋酸继续释放 (:0 2, 促使大量新的孔径更小的微孔结构形成。
[0077] 参见附图 10, 它是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧后微孔 \¥0 2019/100408 卩(:17(:\2017/113218
16 等效直径。 与图 5相比可知, 实施例 3制得的液晶聚酯阻燃发泡材料燃烧后的微 孔数量上明显增多, 孔径主要分布在 20-300畔, 说明孔壁内残存的醋酸在燃烧 过程中继续分解释放(:0 2, 体系内形成了更多孔径更小的微孔结构。
[0078] 参见附图 11, 它是本发明实施例 3提供的液晶聚酯阻燃发泡材料的燃烧后微孔 体积。 与图 6相比可知, 实施例 3制得的液晶聚酯阻燃发泡材料燃烧后的微孔体 积较燃烧前明显增多, 而孔径显著减小, 主要分布在 10 4-10 >111 说明燃烧过 程中孔壁内残存的醋酸进一步分解释放(:0 2, 促使大量新的孔径更小的微孔结构 形成。
[0079] 对比例 1 液晶聚酯阻燃发泡材料的制备
[0080] 在一个 50011^三口圆底烧瓶中加入 37.24§ 1,4 -对苯二酚、 33.23 1,4 -对苯二甲酸 、 69.(¾ 3 -羟基苯甲酸、 18.82 7 -羟基 -2 -萘甲酸、 27.34 (4 -羧基苯基) -4 -苯 乙炔基邻苯二甲酸酰亚胺、 28.39§ ^ (4 -乙酸苯酚酯基) -4 -苯乙炔基邻苯二甲 酸酰亚胺、 15〇11^醋酸酐和 1〇!1¾醋酸钾。 烧瓶配以密封玻璃桨式搅拌器, 一个 氮气入口管和一个保温蒸馏头。 通入适中的氮气流, 在温度 140°(:下乙酰化反应 3 011^11。 在流沙浴中以升温速率
Figure imgf000018_0001
将反应混合物加热, 反应温度由 140°(:上 升至 310°(:。 反应结束得到不透明的熔体, 冷却至室温, 将产物由烧瓶中移出, 而后研磨为精细粉末。
[0081] 将得到的液晶聚酯粉末置于温度 370°(:和真空度为 970千帕的真空烘箱中边发泡 边固化 5〇!^!1, 由于真空度过低, 超出技术方案中限定的真空度范围, 导致无法 成功制备液晶阻燃发泡材料。
[0082] 综上, 本发明创造性的利用液晶聚合物缩聚反应过程中残存的副产物醋酸为发 泡剂, 在高温时分解释放(:0 2形成微孔结构, 同时基体发生固化反应形成交联网 络结构, 成功制备空隙均匀的发泡材料, 开辟了制备液晶阻燃发泡材料的新方 法; 而且本发明提供的液晶阻燃发泡材料表现出优异的阻燃性能。 这一方面依 靠液晶聚合物的全芳香族主链优异的耐热特性, 泡沫材料自身的微孔结构以及 孔壁上形成的液晶纤维状致密结构有助于阻隔燃烧初期氧气和热量的传递; 另 一方面, 在燃烧过程中孔壁内残存的醋酸继续释放(:0 2, 并形成大量新的孔径更 小的微孔结构, 均起到阻隔氧气和热传导的效果, 有利于抑制燃烧。

Claims

\¥0 2019/100408 卩(:17(:\2017/113218 17 权利要求书
[权利要求 1] 一种液晶阻燃发泡材料的制备方法, 其特征在于, 包括如下步骤:
(1) 以芳香族二酚单体、 芳香族二酸单体、 含有端羟基和端羧基的 芳香族单体为原料, 在活性端基、 催化剂、 醋酸化合物存在下, 在氮 气保护下, 于 120〜 140°(:反应 30〜 6011^11; 然后以 0
Figure imgf000019_0001
率升温至 280〜 325°(:, 反应 1〜 311, 得到固体物;
(2) 将固体物于 10〜 90千帕真空度下, 于 320〜 380°(:处理 20〜 6011^11 , 得到液晶阻燃发泡材料。
[权利要求 2] 按照权利要求 1所述液晶阻燃发泡材料的制备方法, 其特征在于: 所 述芳香族二酚单体为 1,4 -对苯二酚、 1,3 -间苯二酚、 4,4’-联苯二酚、 1, 1’-联苯 -3,4’-二酚、 1,1’-联苯 -3,3’-二酚、 1,6 -萘二酚、 1,7 -萘二酚、 2,6 -萘二酚、 2, 7 -萘二酚中的一种或几种; 所述芳香族二酸单体为 1,4 -对 苯二甲酸、 1,3 -间苯二甲酸、 4,4’-联苯二甲酸、 1,1’-联苯 -3, 4’-二羧酸 、 1,1’-联苯 -3,3’-二羧酸、 1,6 -萘二甲酸、 1,7 -萘二甲酸、 2, 6 -萘二甲酸 、 2, 7 -萘二甲酸中的一种或几种; 所述含端羟基和端羧基的芳香族单 体为 3 -羟基苯甲酸、 4’-羟基联苯基 -3 -羧酸、 7 -羟基 -2 -萘甲酸、 N- (3' -羟苯基) 偏苯三酰亚胺中的一种或几种。
[权利要求 3] 按照权利要求 1所述液晶阻燃发泡材料的制备方法, 其特征在于: 所 述活性端基为 3 -氨基苯乙炔、 N- (4 -羧基苯基) -4 -苯乙炔基邻苯二甲 酸酰亚胺、 N- (4 -乙酸苯酚酯基) -4 -苯乙炔基邻苯二甲酸酰亚胺、 X - (3 -羧基苯基) -4 -苯乙炔基邻苯二甲酸酰亚胺、 N- (3 -乙酸苯酚酯 基) -4 -苯乙炔基邻苯二甲酸酰亚胺中的一种或几种; 所述催化剂为 醋酸钾、 醋酸钠、 醋酸锌、 二丁基氧化锡、 辛酸亚锡、 月桂酸二丁基 锡中的一种; 所述醋酸化合物为醋酸酐。
[权利要求 4] 按照权利要求 1所述液晶阻燃发泡材料的制备方法, 其特征在于: 所 述芳香族二酚单体、 芳香族二酸单体、 含有端羟基和端羧基的芳香族 单体、 活性端基、 催化剂、 醋酸化合物的摩尔比为 1: 1: (0.5〜 2) : (0 ·03〜 0.45) : (0.5%〇〜5%〇) : (1.5〜 4) 。 \¥0 2019/100408 卩(:17(:\2017/113218
18
[权利要求 5] 按照权利要求 1所述液晶阻燃发泡材料的制备方法, 其特征在于: 步 骤 (2) 中, 将固体物研磨为粉末后再于 10〜 90千帕真空度下, 于 320 〜 380° (:处理 20〜 601^, 得到液晶阻燃发泡材料。
[权利要求 6] 按照权利要求 1所述液晶阻燃发泡材料的制备方法制备的液晶阻燃发 泡材料。
[权利要求 7] 一种液晶阻燃发泡材料前驱体的制备方法, 其特征在于, 包括如下步 骤, 以芳香族二酚单体、 芳香族二酸单体、 含有端羟基和端羧基的芳 香族单体为原料, 在活性端基、 催化剂、 醋酸化合物存在下, 在氮气 保护下, 于 120〜 140° (:反应 30〜 6011^11; 然后以 0
Figure imgf000020_0001
的速率 升温至 280〜 325° (:, 反应 1〜 311, 得到液晶阻燃发泡材料前驱体。
[权利要求 8] 按照权利要求 7所述液晶阻燃发泡材料前驱体的制备方法制备的液晶 阻燃发泡材料前驱体。
[权利要求 9] 权利要求 8所述液晶阻燃发泡材料前驱体在制备阻燃发泡材料中的应 用。
[权利要求 10] 权利要求 6所述液晶阻燃发泡材料在制备阻燃发泡材料中的应用。
PCT/CN2017/113218 2017-11-27 2017-11-27 一种液晶阻燃发泡材料及其制备方法 WO2019100408A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/113218 WO2019100408A1 (zh) 2017-11-27 2017-11-27 一种液晶阻燃发泡材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/113218 WO2019100408A1 (zh) 2017-11-27 2017-11-27 一种液晶阻燃发泡材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2019100408A1 true WO2019100408A1 (zh) 2019-05-31

Family

ID=66631202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113218 WO2019100408A1 (zh) 2017-11-27 2017-11-27 一种液晶阻燃发泡材料及其制备方法

Country Status (1)

Country Link
WO (1) WO2019100408A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276868A (zh) * 2011-06-10 2011-12-14 同济大学 一种芳香族共聚酯多孔材料的制备方法
CN104592094A (zh) * 2015-02-10 2015-05-06 四川大学 含苯酰亚胺苯乙炔结构的单体和高温自交联共聚酯及其制备方法
WO2015151814A1 (ja) * 2014-04-02 2015-10-08 株式会社ダイセル 熱硬化性芳香族エステルの製造方法、及び熱硬化性芳香族エステル
CN105837806A (zh) * 2016-02-01 2016-08-10 金发科技股份有限公司 一种液晶聚酯以及由其组成的模塑组合物和其应用
CN106810690A (zh) * 2017-01-12 2017-06-09 苏州大学 一种芳香族聚酯酰胺及其制备方法
CN107793585A (zh) * 2017-10-30 2018-03-13 苏州大学 一种液晶阻燃发泡材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276868A (zh) * 2011-06-10 2011-12-14 同济大学 一种芳香族共聚酯多孔材料的制备方法
WO2015151814A1 (ja) * 2014-04-02 2015-10-08 株式会社ダイセル 熱硬化性芳香族エステルの製造方法、及び熱硬化性芳香族エステル
CN104592094A (zh) * 2015-02-10 2015-05-06 四川大学 含苯酰亚胺苯乙炔结构的单体和高温自交联共聚酯及其制备方法
CN105837806A (zh) * 2016-02-01 2016-08-10 金发科技股份有限公司 一种液晶聚酯以及由其组成的模塑组合物和其应用
CN106810690A (zh) * 2017-01-12 2017-06-09 苏州大学 一种芳香族聚酯酰胺及其制备方法
CN107793585A (zh) * 2017-10-30 2018-03-13 苏州大学 一种液晶阻燃发泡材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VAEZIAN, B. ET AL.: "Processing of Aromatic Thermosetting Copolyesters into Foams and Bulk Parts: Characterization and Mechanical Properties", POLYM. ADV. TECHNOL., vol. 27, 11 February 2016 (2016-02-11), pages 1006 - 1013, XP055613508, DOI: 10.1002/pat.3762 *

Similar Documents

Publication Publication Date Title
CN107793585B (zh) 一种液晶阻燃发泡材料及其制备方法
Liu et al. Synergistic flame retardant effects between hollow glass microspheres and magnesium hydroxide in ethylene-vinyl acetate composites
Meng et al. Effects of expandable graphite and ammonium polyphosphate on the flame‐retardant and mechanical properties of rigid polyurethane foams
CN104974527B (zh) 一种有机硅树脂改性聚合物泡沫复合材料的制备方法及其应用
CN108822340B (zh) 一种二氧化硅-碳-聚磷腈核壳型阻燃剂的制备方法
CN111378285A (zh) 一种高强度高阻燃有机硅泡沫材料及其制备方法
CN113683812B (zh) 一种阻燃隔热的聚酰亚胺纳米纤维气凝胶及其制备方法
JP5002825B2 (ja) 無機質系発泡体の製造方法
TW200909493A (en) Closed-cell foam with large cell size and high filler content
CN110713725A (zh) 陶瓷化硅橡胶复合绝缘电缆材料
WO2019100408A1 (zh) 一种液晶阻燃发泡材料及其制备方法
CN108456411B (zh) 一种交联型聚芳醚酮基介电复合材料及其制备方法和用途
CN109824942B (zh) 有机-无机杂化材料复合阻燃剂的制备及其应用
WO2010150955A1 (en) Method for preparing polyisocyanurate foam by using liquid nucleating agent and polyisocyanurate foam prepared by the same
US6746759B2 (en) Cellular plastic material based on phenolic resin
CN115109298B (zh) 一种阻燃型聚苯乙烯复合材料及其制备方法
CN108409916B (zh) 一种无卤低烟阻燃不饱和聚酯树脂复合材料的制备方法
Wang et al. Influence of aluminum hydroxide and expandable graphite on the flammability of polyisocyanurate-polyurethane foams
CN109867942A (zh) 一种阻燃微发泡聚苯醚复合材料的制备方法及其产品
CN109593363B (zh) 阻燃室温硫化硅橡胶配方及阻燃室温硫化硅橡胶
CN105440528A (zh) 一种保温隔热塑料板材及其制备方法
KR20160109471A (ko) 난연제 조성물과 이를 코팅한 난연 발포성 폴리스티렌 비드 제조 방법
CN115558324B (zh) 一种阻燃剂及其制备方法和防火涂料及其制备方法
JPH02300242A (ja) 難燃性スポンジ用シリコーンゴム組成物
EP1222228B1 (en) Cellular plastic material based on phenolic resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932915

Country of ref document: EP

Kind code of ref document: A1