WO2015151205A1 - 高調波電流補償装置及び空気調和システム - Google Patents

高調波電流補償装置及び空気調和システム Download PDF

Info

Publication number
WO2015151205A1
WO2015151205A1 PCT/JP2014/059573 JP2014059573W WO2015151205A1 WO 2015151205 A1 WO2015151205 A1 WO 2015151205A1 JP 2014059573 W JP2014059573 W JP 2014059573W WO 2015151205 A1 WO2015151205 A1 WO 2015151205A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
harmonic
compensation
load
compensation current
Prior art date
Application number
PCT/JP2014/059573
Other languages
English (en)
French (fr)
Inventor
暁範 橋本
真作 楠部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54239574&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015151205(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480073438.0A priority Critical patent/CN105940585B/zh
Priority to JP2016511225A priority patent/JP6095849B2/ja
Priority to US15/111,039 priority patent/US10250037B2/en
Priority to PCT/JP2014/059573 priority patent/WO2015151205A1/ja
Priority to EP14888041.2A priority patent/EP3128636B1/en
Publication of WO2015151205A1 publication Critical patent/WO2015151205A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/15Hunting, i.e. oscillation of controlled refrigeration variables reaching undesirable values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • the present invention relates to a harmonic current compensator and an air conditioning system.
  • the conventional harmonic current compensator is connected in parallel with the harmonic generation load connected to the system power supply.
  • a conventional harmonic current compensator detects a load current input to a harmonic generation load and extracts a harmonic component contained in the detected load current.
  • the conventional harmonic current compensator generates a compensation current that cancels out the extracted harmonic components by controlling the ON state and the OFF state of the switching element.
  • the conventional harmonic current compensator has a function of determining that the current is excessively large (hereinafter referred to as overcurrent) when the instantaneous value of the compensation current is equal to or greater than a predetermined value, and is in a stop state. is doing.
  • the conventional harmonic current compensator may stop the operation of the air conditioner by causing the compensation current to instantaneously reach the overcurrent level.
  • the conventional harmonic current compensator stops the operation of the air conditioner by causing the compensation current to instantaneously reach the overcurrent level, the frequency of the air conditioner start / stop increases as a result. . Therefore, in this case, since the air conditioner repeatedly starts and stops air conditioning operations such as cooling or heating, there is a possibility that the air conditioner may fall in capacity as a whole.
  • the conventional harmonic current compensator operates the air conditioner in order to instantaneously reach the overcurrent level when the change in the instantaneous value of the load current increases due to the influence of the system power supply. There was a problem of stopping.
  • the present invention has been made to solve the above problems, and even if the change in the instantaneous value of the load current increases due to the influence of the system power supply, the compensation current instantaneously reaches the overcurrent level. It is an object of the present invention to provide a harmonic current compensator and an air conditioning system that can continue the operation of the air conditioning apparatus without causing the air conditioning apparatus to operate.
  • a harmonic current compensator is connected in parallel to a load connected to a system power supply, and supplies a compensation current so that a harmonic component contained in a load current input from the system power supply to the load.
  • a harmonic current compensator for suppressing load current detecting means for detecting the load current, compensation current detecting means for detecting the supplied compensation current, and the load detected by the load current detecting means
  • Control amount calculation means for calculating a control amount of the compensation current based on the harmonic component included in the current and the compensation current detected by the compensation current detection means, and suppressing the upper limit of the compensation current And a limiter.
  • the present invention suppresses the upper limit of the compensation current, so that even if the change in the instantaneous value of the load current increases due to the influence of the system power supply, the compensation current does not instantaneously reach the overcurrent level, and the air conditioning The operation of the device can be continued. Therefore, this invention has the effect that the capability of an air conditioning apparatus can be maintained.
  • step of describing the program for performing the operation of the embodiment of the present invention is a process performed in time series in the order described, but it is not always necessary to process in time series.
  • the processing executed may be included.
  • each block diagram described in this embodiment may be considered as a hardware block diagram or a software functional block diagram.
  • each block diagram may be realized by hardware such as a circuit device, or may be realized by software executed on an arithmetic device such as a processor (not shown).
  • each block in the block diagram described in the present embodiment is only required to perform its function, and may be composed of a superset, a subset, or a subset of each block.
  • items not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • items that are not particularly described are the same as those in the first and second embodiments, and the same functions and configurations are described using the same reference numerals.
  • items that are not particularly described are the same as those in the first to third embodiments, and the same functions and configurations are described using the same reference numerals.
  • Embodiments 1 to 4 may be implemented independently or in combination. In either case, the advantageous effects described later can be obtained. Further, various specific setting examples described in the first to fourth embodiments are merely examples, and are not particularly limited thereto.
  • the system represents the entire apparatus composed of a plurality of apparatuses.
  • the network refers to a mechanism in which at least two devices are connected and information can be transmitted from one device to another.
  • Devices that communicate via a network may be independent devices, or may be internal blocks that constitute one device.
  • the communication may be communication in which wireless communication and wired communication are mixed as well as wireless communication and wired communication. For example, wireless communication may be performed in a certain section, and wired communication may be performed in another space. Further, communication from one device to another device may be performed by wired communication, and communication from another device to one device may be performed by wireless communication.
  • FIG. 1 is a diagram showing a schematic configuration of an air-conditioning system 1 including a harmonic current compensator 15 according to Embodiment 1 of the present invention.
  • the harmonic current compensator 15 compensates the load current IL with the harmonic current compensator 15 by suppressing the harmonic component of the current flowing from the system power supply 11 such as an AC power supply.
  • the air conditioning system 1 includes a system power supply 11, a harmonic generation load 13, a harmonic current compensator 15, a refrigerant circuit 17, and the like.
  • the system power supply 11 is, for example, a three-phase AC power supply and supplies power.
  • the harmonic generation load 13 is connected to the system power supply 11. Therefore, the system power supply 11 supplies a current to the harmonic generation load 13.
  • the harmonic generation load 13 is, for example, a power converter, and includes a rectifier, a DC reactor, a smoothing capacitor, etc. (all not shown), converts alternating current into direct current, and converts the converted direct current with a PWM signal.
  • the power conversion device Into the refrigerant circuit 17.
  • the power conversion device generates harmonics when converting alternating current into direct current.
  • the refrigerant circuit 17 is configured, for example, by connecting a compressor, a heat source side heat exchanger, an expansion device, a four-way valve, a load side heat exchanger, and the like (all not shown) via a refrigerant pipe. Compresses and discharges the refrigerant, whereby the refrigerant circulates in the refrigerant pipe and a refrigeration cycle is formed.
  • the harmonic current compensator 15 is connected in parallel to the harmonic generation load 13 between the system power supply 11 and the harmonic generation load 13.
  • the harmonic current compensator 15 suppresses harmonics generated from the harmonic generation load 13.
  • the harmonic current compensator 15 detects the load current IL input to the harmonic generation load 13 with the load current detector 31 provided between the system power supply 11 and the harmonic generation load 13. Based on the detected load current IL, the compensation current Ia is supplied to the power receiving point 21 provided between the system power supply 11 and the harmonic generation load 13, and the load current IL is compensated.
  • the load current detector 31 may be configured by a current sensor such as a CT (Current Transformer), but is not particularly limited thereto.
  • the load current detector 31 may be configured with a shunt resistor.
  • the generation factor of the harmonic is not limited to the harmonic generation load 13.
  • a harmonic component of the lightning surge is superimposed on the load current IL.
  • the harmonic current compensator 15 compensates the load current IL by the operation described below even when a lightning surge or the like enters the system power supply 11 or the like.
  • FIG. 2 is a diagram showing an example of operation waveforms for explaining harmonic compensation control in the first embodiment of the present invention.
  • the phase shift of the current waveform is an example, and ideally there is no shift.
  • the harmonic current compensator 15 includes, for example, a compensation current detector 33, a phase detection unit 41, a compensation output command calculation unit 43, an error amount calculation unit 45, a control amount calculation unit 47, a limiter 49, Control signal generating means 51, main circuit 53, and the like are provided.
  • the compensation current detector 33 is provided on the output side of the main circuit 53, detects the compensation current Ia that is the compensation output output from the main circuit 53, and supplies the detection result to the error amount calculation means 45.
  • the compensation current detector 33 may be configured with a current sensor such as a CT (Current Transformer), but is not particularly limited thereto.
  • CT Current Transformer
  • illustration is abbreviate
  • the compensation current detector 33 may be configured with a shunt resistor.
  • the phase detector 41 detects the phase of the power supply voltage of the system power supply 11.
  • the phase detection means 41 includes, for example, a zero cross detection circuit, which detects the zero point of the power supply voltage of the system power supply 11 and calculates the phase ⁇ of the power supply voltage from the zero point of the power supply voltage of the system power supply 11. Ask. For example, as shown in FIG. 2, one of the phases corresponding to the zero point of the power supply voltage is assumed to be ⁇ 0, and thereafter, ⁇ 1 , ⁇ 2 ,..., ⁇ N ⁇ 1 is assumed for each control cycle. Then, N control points are provided within one power supply cycle.
  • the phase detection means 41 obtains each value of the phases ⁇ 0 to ⁇ N ⁇ 1 for each control period, thereby obtaining the phase ⁇ corresponding to the control point, and the obtained phase ⁇ is the compensation output command computation means 43.
  • the control period is assumed to be the same as the carrier period, but may be a period different from the carrier period.
  • the carrier period is assumed to be a period for controlling the ON state and the OFF state of the switching element provided in the main circuit 53.
  • the carrier here is a carrier signal, which is a reference carrier used when generating a PWM signal.
  • the carrier signal is composed of, for example, a triangular wave, but is not particularly limited thereto, and may be a sawtooth wave having a positive or negative slope.
  • the compensation output command calculation means 43 obtains, for example, a harmonic component included in the load current IL supplied from the load current detector 31 for each control period, and uses a signal corresponding to the obtained harmonic component as a compensation output command.
  • the error amount calculation means 45 is supplied.
  • the compensation output command calculation means 43 is composed of, for example, a bandpass filter and extracts a harmonic component in a preset frequency range, but is not particularly limited thereto.
  • the compensation output command calculation means 43 may be composed of a high-pass filter, and may extract harmonic components having a frequency higher than a preset frequency. Further, for example, the compensation output command calculation means 43 performs a Fourier transform on the load current IL supplied from the load current detector 31, extracts a preset frequency component, and performs an inverse Fourier transform on the signal including the extracted frequency component. May be.
  • the compensation output command calculation means 43 removes the fundamental wave component from the load current IL supplied from the load current detector 31 and extracts the harmonic component contained in the load current IL supplied from the load current detector 31.
  • the mounting form is not particularly limited.
  • the error amount calculation means 45 is based on the compensation output command supplied from the compensation output command calculation means 43 and the compensation current Ia supplied from the compensation current detector 33, and the error between the compensation output command and the compensation current Ia. The amount is obtained, and the obtained error amount is supplied to the control amount calculation means 47.
  • the control amount calculation unit 47 calculates a control amount based on the error amount supplied from the error amount calculation unit 45 and supplies the calculated control amount to the limiter 49.
  • the limiter 49 suppresses the control amount supplied from the control amount calculation unit 47 and supplies the suppression result to the control signal generation unit 51.
  • the limiter 49 suppresses the control amount so that the compensation current Ia does not exceed the overcurrent level of the compensation current Ia.
  • the overcurrent level is, for example, an upper limit and a lower limit of the compensation current Ia as shown in FIG. That is, the upper limit of the absolute value of the amplitude of the compensation current Ia is set as the overcurrent level. If the compensation current Ia exceeds the overcurrent level, the harmonic generation load 13 stops operation in order to avoid damage to the electric circuit such as dielectric breakdown. Since the compensation current Ia is an alternating current, the limiter 49 suppresses both the positive and negative sides of the compensation current Ia.
  • the limiter 49 applies suppression only to the positive side when the compensation current Ia, which is the detection result of the compensation current detector 33, is positive.
  • the limiter 49 applies suppression only to the negative side when the compensation current Ia, which is the detection result of the compensation current detector 33, is negative.
  • the compensation current Ia is larger than the compensation output command.
  • the control itself for suppressing the compensation current Ia is not suppressed. Therefore, a situation in which the compensation current Ia cannot be suppressed and an overcurrent is avoided is avoided.
  • the limiter 49 performs the operation as described above, and sets the control amount so that the compensation current Ia does not exceed the overcurrent level of the compensation current Ia. This is supplied to the control signal generating means 51.
  • the control signal generator 51 generates a control signal based on the control amount supplied from the limiter 49. Note that the control amount output from the control amount calculation unit 47 is supplied to the control signal generation unit 51 via the limiter 49. As a result, the period corresponding to the ON state of the switching element can be changed short. Thus, an operation of changing the period corresponding to the OFF state of the switching element for a long time is performed.
  • the limiter 49 suppresses the control amount to a preset setting value, for example, the limit value described above.
  • the preset value is a current value at which the compensation current Ia does not reach the overcurrent level even when the interphase voltage becomes unbalanced or voltage distortion occurs under overload operation conditions. It may be a value determined experimentally so that The preset set value does not affect the ability to suppress the harmonic component of the load current IL even if the phase-phase voltage unbalanced state or the voltage distortion is within the assumed assumption.
  • the current value of the compensation current Ia is determined.
  • the control amount of the compensation current Ia is equal to or less than a preset value, the compensation current Ia generated based on the control amount of the compensation current Ia is not more than the overcurrent level, but the load current IL The amplitude value that suppresses the harmonic component is satisfied.
  • control signal generation unit 51 generates a control signal based on the control amount supplied from the limiter 49 and the carrier cycle, and supplies the generated control signal to the main circuit 53.
  • the control signal generation unit 51 calculates a duty ratio based on the control amount supplied from the limiter 49, and generates a control signal, for example, a PWM signal, based on the calculated duty ratio and the carrier period.
  • the main circuit 53 has a general circuit configuration.
  • the main circuit 53 includes a gate drive circuit, a bridge circuit including six arms including a switching element and a commutation diode, and six arms of the bridge circuit.
  • a gate drive circuit for example, the main circuit 53 includes a gate drive circuit, a bridge circuit including six arms including a switching element and a commutation diode, and six arms of the bridge circuit.
  • three reactors connected to the midpoints between the three upper arms and the three lower arms, respectively, and an energy storage capacitor provided in the DC section of the bridge circuit (any (Not shown).
  • the main circuit 53 generates the compensation current Ia based on the control signal supplied from the control signal generation means 51 and supplies the generated compensation current Ia to the power receiving point 21.
  • the compensated system current at this time has a current waveform as shown in FIG. 2, for example. That is, by supplying the compensation current Ia that does not exceed the overcurrent level as shown in FIG. 2 to the power receiving point 21, the distortion component due to the harmonic component contained in the load current IL is suppressed, and as a result The system current in which the distortion component is suppressed is supplied to the harmonic generation load 13.
  • the harmonic current compensator 15 suppresses the control amount of the next compensation current Ia by comparing the control amount of the compensation current Ia supplied last time with the preset set value, so that the past compensation
  • This is an operation configuration for controlling the future compensation current Ia based on the current Ia. That is, the harmonic current compensator 15 delays the compensation operation of the load current IL by one control period, but sets the carrier frequency to a high value and uses the high-speed switching element to quickly switch the switching element. If the ON state and the OFF state are controlled, the harmonic component of the load current IL can be suppressed to the extent that there is no problem in actual use.
  • the harmonic current compensator 15 can perform a feed-forward control of the control system even if there is a delay component for one cycle of the control cycle. Further, the compensation operation can be improved.
  • the compensation output command calculation unit 43 supplies a signal including information of 5A, for example, to the error amount calculation unit 45 as a compensation output command.
  • the compensation current detector 33 supplies a signal including information of 4A, for example, to the error amount calculation means 45 as the compensation current Ia.
  • the error amount calculation unit 45 calculates 1A as the error amount, and supplies a signal including information of 1A to the control amount calculation unit 47.
  • the control amount calculation means 47 calculates a control amount corresponding to 1A.
  • the control amount calculation unit 47 performs calculations such as P control, I control, and PI control, for example.
  • the compensation output command calculation unit 43 supplies a signal including information of 15A to the error amount calculation unit 45 as a compensation output command.
  • the compensation current detector 33 supplies a signal including 5A to the error amount calculation means 45 as the compensation current Ia.
  • the error amount calculation unit 45 calculates 10A as the error amount, and supplies a signal including information of 10A to the control amount calculation unit 47.
  • the control amount calculation means 47 calculates a control amount corresponding to 10A in order to eliminate this error 10A, that is, to increase the compensation current Ia by 10A.
  • the harmonic current compensator 15 performs an operation that does not respond to an error greater than a certain level by suppressing the control amount.
  • FIG. 3 is a flowchart for explaining a control example of the harmonic current compensator 15 according to the first embodiment of the present invention.
  • the harmonic current compensator 15 does not determine whether the compensation current Ia exceeds the overcurrent level as control.
  • the harmonic current compensator 15 determines whether or not the controlled variable exceeds the certain fixed value in the control.
  • the harmonic current compensator 15 suppresses the controlled variable to the certain fixed value.
  • the certain value is assumed to be a limit value will be described below.
  • Step S11 The harmonic current compensator 15 determines whether or not the zero point of the power supply voltage has been detected. When the harmonic current compensator 15 detects the zero point of the power supply voltage, the process proceeds to step S12. On the other hand, when the harmonic current compensator 15 does not detect the zero point of the power supply voltage, the process proceeds to step S13.
  • Step S12 The harmonic current compensator 15 sets an initial value for the compensation current Ia.
  • Step S13 The harmonic current compensator 15 detects the phase ⁇ .
  • Step S14 The harmonic current compensator 15 determines whether or not the control period has arrived. When the control period has arrived, the harmonic current compensator 15 proceeds to step S15. On the other hand, the harmonic current compensation apparatus 15 returns to step S13, when a control period does not arrive.
  • Step S15 The harmonic current compensator 15 extracts a harmonic component of the load current IL.
  • Step S16 The harmonic current compensator 15 obtains an error amount based on the harmonic component of the load current IL and the compensation current Ia.
  • Step S17 The harmonic current compensator 15 determines the control amount based on the error amount.
  • Step S18 When the controlled variable exceeds the limit value, the harmonic current compensator 15 proceeds to step S19. On the other hand, if the controlled variable does not exceed the limit value, the harmonic current compensator 15 proceeds to step S20.
  • Step S20 The harmonic current compensator 15 generates a control signal based on the control amount.
  • Step S21 The harmonic current compensator 15 controls the switching element based on the control signal.
  • the harmonic current compensator 15 supplies the compensation current Ia to the power receiving point 21 according to the operation of the switching element.
  • Step S23 The harmonic current compensator 15 determines whether an end command has arrived.
  • the harmonic current compensator 15 ends the process when the end command arrives.
  • the harmonic current compensation apparatus 15 returns to step S11, when an end command does not arrive.
  • the harmonic current compensator 15 prevents the amount of control by the limiter 49 from exceeding a certain value. Therefore, the harmonic current compensator 15 is not affected by the influence of the system power supply 11 or the like even when the amount of error between the compensation output command output from the compensation output command calculating means 43 and the compensation current Ia is large. Even when the amount of change in the compensation output command increases as the change in the current IL increases, the compensation current Ia does not increase as the load current IL changes. Therefore, the harmonic current compensation device 15 can continue the operation of the harmonic generation load 13 without causing the compensation current Ia to reach the overcurrent level.
  • the harmonic current compensation device 15 suppresses the control amount of the compensation current Ia and generates the compensation current Ia based on the suppressed control amount. Therefore, the harmonic current compensator 15 suppresses the upper limit of the compensation current Ia, so that even if the change in the instantaneous value of the load current IL increases due to the influence of the system power supply 11, the compensation current Ia instantaneously exceeds the compensation current Ia.
  • the operation of the harmonic generation load 13 can be continued without reaching the current level. Therefore, for example, when it is assumed that the harmonic generation load 13 is a power converter and the power converter supplies power to the refrigerant circuit 17, the operation of the air conditioner including the refrigerant circuit 17 can be continued.
  • the compensation current Ia is used to compensate for the harmonic component included in the load current IL input to the harmonic generation load 13.
  • the present invention is not particularly limited thereto.
  • a compensation voltage may be used to compensate for a harmonic component included in the voltage input to the harmonic generation load 13.
  • the load input in parallel to the harmonic generation load 13 connected to the system power supply 11 and supplied from the system power supply 11 to the harmonic generation load 13 by supplying the compensation current Ia.
  • a harmonic current compensator 15 for suppressing harmonic components contained in the current IL a load current detector 31 for detecting the load current IL, a compensation current detector 33 for detecting the supplied compensation current Ia, Control amount calculation for calculating the control amount of the compensation current Ia based on the harmonic component included in the load current IL detected by the load current detector 31 and the compensation current Ia detected by the compensation current detector 33
  • a harmonic current compensator 15 including means 47 and a limiter 49 that suppresses the upper limit of the compensation current Ia is configured.
  • the harmonic current compensator 15 suppresses the upper limit of the compensation current Ia so that even if the change in the instantaneous value of the load current IL becomes large due to the influence of the system power supply 11, the compensation current Ia is instantaneously exceeded.
  • the operation of the air conditioner can be continued without reaching the current level. Therefore, the harmonic current compensator 15 can maintain the capability of the air conditioner.
  • the upper limit of the compensation current Ia is set to be equal to or lower than the overcurrent level at which it is determined whether or not the operation of the harmonic generation load 13 is stopped.
  • the upper limit of the control amount of the compensation current Ia may be suppressed.
  • the harmonic current compensator 15 turns on the switching element included in the main circuit 53 with a control signal generated based on the suppressed control amount in order to suppress the upper limit of the control amount of the compensation current Ia. Even when the state and the OFF state are controlled, the compensation current Ia output from the main circuit 53 does not exceed the overcurrent level. Therefore, the harmonic current compensator 15 does not generate the compensation current Ia having a large amplitude value that causes the operation of the air conditioner to stop, so that the operation of the air conditioner can be continued. Therefore, the harmonic current compensator 15 can maintain the capability of the air conditioner particularly remarkably.
  • FIG. Differences from the first embodiment
  • the harmonic current compensator 15 according to the second embodiment limits the period during which the limiter 49 is operated.
  • the harmonic current compensator 15 according to the second embodiment will be described.
  • FIG. 4 is a diagram illustrating a schematic configuration of the air-conditioning system 1 including the harmonic current compensator 15 according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram showing an example of operation waveforms for explaining harmonic compensation control in Embodiment 2 of the present invention.
  • the harmonic current compensation device 15 according to the second embodiment further includes a storage unit 61 and a prediction unit 63 as compared with the harmonic current compensation device 15 according to the first embodiment.
  • the storage unit 61 stores, for example, the phase ⁇ detected for each control cycle, the error amount obtained for each control cycle, the control amount obtained for each control cycle, and the like.
  • the prediction unit 63 predicts a future control amount based on various past data and specifies a period during which the limiter 49 is operated.
  • the predicting means 63 preliminarily determines a period in which the amount of change in the compensation output command is assumed to be large in one cycle of the system power supply 11, that is, the phase, and the limiter 49 only determines the determined period. Control the control amount.
  • the period in which the amount of change in the compensation output command is assumed to be large is specifically focused on the periodicity of the compensation current Ia, and during one cycle of the power supply voltage of the system power supply 11, This is the timing at which the past control amount is larger than the preset set value, that is, the period corresponding to the phase within the preset range with reference to the reference phase.
  • the harmonic current compensator 15 suppresses the control amount of the compensation current Ia in the period of the phase 55 ° to 65 °.
  • the prediction means 63 uses the phase when the control amount of the compensation current Ia exceeds the preset set value out of the control amount of the compensation current Ia for one cycle of the system power supply 11 as the reference phase.
  • the determination of the timing may be predicted by the compensation output command calculation means 43 based on the fluctuation amount of the load current IL. Further, the phase determination may be predicted based on the fluctuation amount of the power supply voltage waveform of the system power supply 11. Further, the phase may be determined for a certain period determined experimentally. It is good also as what changes dynamically based on the value detected in the past for every control period. For example, when the harmonic generation load 13 is a three-phase bridge rectifier circuit with a built-in DC reactor, the load current IL flows through 120-degree sections, each of which is obtained by sequentially dividing a DC pulsating current into three phases. The current is a rectangular wave with state distortion.
  • the phase of the power supply voltage corresponding to the line voltage changes sharply at 0 °, 60 °, 180 °, and 240 ° as shown in FIG.
  • the limiter 49 may be operated in accordance with the phase that changes sharply.
  • FIG. 6 is a flowchart for explaining a control example of the harmonic current compensator 15 according to the second embodiment of the present invention.
  • Step S41 The harmonic current compensator 15 determines whether or not the zero point of the power supply voltage has been detected. When the harmonic current compensator 15 detects the zero point of the power supply voltage, the process proceeds to step S42. On the other hand, when the harmonic current compensator 15 does not detect the zero point of the power supply voltage, the process proceeds to step S44.
  • Step S42 The harmonic current compensator 15 determines whether or not the system power supply 11 has passed one cycle.
  • the harmonic current compensator 15 proceeds to step S54 when one cycle of the system power supply 11 has elapsed.
  • the harmonic current compensator 15 proceeds to step S43 when the system power supply 11 does not elapse for one cycle.
  • Step S43 The harmonic current compensator 15 sets an initial value for the compensation current Ia.
  • Step S44 The harmonic current compensator 15 detects the phase ⁇ .
  • Step S45 The harmonic current compensator 15 determines whether or not the control period has arrived. When the control period has arrived, the harmonic current compensator 15 proceeds to step S46. On the other hand, the harmonic current compensation apparatus 15 returns to step S44, when a control period does not arrive.
  • Step S46 The harmonic current compensator 15 extracts a harmonic component of the load current IL.
  • Step S47 The harmonic current compensator 15 obtains an error amount based on the harmonic component of the load current IL and the compensation current Ia.
  • Step S48 The harmonic current compensator 15 determines the control amount based on the error amount.
  • Step S49 The harmonic current compensator 15 determines whether or not the controlled variable exceeds the set value. If the controlled variable exceeds the set value, the harmonic current compensator 15 proceeds to step S50. On the other hand, when the controlled variable does not exceed the set value, the harmonic current compensator 15 proceeds to step S51.
  • the set value here may be the limit value of the control amount described in the first embodiment, and is different for each control amount corresponding to the phase included in the range set in advance with reference to the reference phase. It may be a limit value.
  • Step S50 The harmonic current compensator 15 sets a suppression flag corresponding to each of the reference phase corresponding to the control amount exceeding the set value and the phase included in the range set in advance with reference to the reference phase.
  • the harmonic current compensator 15 suppresses the control amount of the compensation current Ia in the period of 55 ° to 65 ° and the control cycle is 1 °.
  • the phase of the compensation current Ia corresponds to 55 °, 56 °, 57 °, 58 °, 59 °, 60 °, 61 °, 62 °, 63 °, 64 °, and 65 °, respectively.
  • Set suppression flag to 1 in data may include, for example, the phase ⁇ , the amplitude value, and the suppression flag for the compensation current Ia.
  • Step S51 The harmonic current compensator 15 suppresses the control amount.
  • Step S52 The harmonic current compensator 15 generates a control signal based on the control amount.
  • Step S53 The harmonic current compensator 15 controls the switching element based on the control signal.
  • Step S54 The harmonic current compensator 15 supplies the compensation current Ia to the power receiving point 21 according to the operation of the switching element.
  • Step S55 The harmonic current compensator 15 determines whether or not the zero point of the power supply voltage has been detected. When the harmonic current compensator 15 detects the zero point of the power supply voltage, the process proceeds to step S56. On the other hand, if the harmonic current compensator 15 does not detect the zero point of the power supply voltage, the process proceeds to step S57.
  • Step S56 The harmonic current compensator 15 sets an initial value for the compensation current Ia. For example, when the harmonic current compensator 15 detects the zero point of the power supply voltage, the harmonic current compensator 15 shifts to a new power supply voltage period in the next control period, and thus the compensation current Ia corresponding to one new power supply voltage period An initial value is set for the compensation current Ia on the assumption that no past data exists.
  • Step S57 The harmonic current compensator 15 detects the phase ⁇ .
  • Step S58 The harmonic current compensator 15 determines whether or not the control period has arrived. When the control period has arrived, the harmonic current compensator 15 proceeds to step S59. On the other hand, the harmonic current compensator 15 returns to step S57 when the control period does not arrive.
  • Step S59 The harmonic current compensator 15 extracts a harmonic component of the load current IL.
  • Step S60 The harmonic current compensator 15 obtains an error amount based on the harmonic component of the load current IL and the compensation current Ia.
  • Step S61 The harmonic current compensator 15 determines the control amount based on the error amount.
  • Step S62 The harmonic current compensator 15 determines whether or not a suppression flag corresponding to the control amount is set. When the suppression flag corresponding to the control amount is set, the harmonic current compensator 15 proceeds to step S63. On the other hand, when the suppression flag corresponding to the control amount is not set, the harmonic current compensator 15 proceeds to step S64.
  • Step S63 The harmonic current compensator 15 suppresses the control amount. That is, the harmonic current compensator 15 performs an operation of suppressing the control amount during the period in which the suppression flag corresponding to the control amount is set.
  • Step S64 The harmonic current compensator 15 generates a control signal based on the control amount.
  • Step S65 The harmonic current compensator 15 controls the switching element based on the control signal.
  • Step S66 The harmonic current compensator 15 supplies the compensation current Ia to the power receiving point 21 according to the operation of the switching element.
  • Step S67 The harmonic current compensator 15 determines whether an end command has arrived. The harmonic current compensator 15 ends the process when the end command arrives. On the other hand, the harmonic current compensator 15 returns to step S55 when the end command does not arrive.
  • the harmonic current compensator 15 limits the period for suppressing the control amount of the compensation current Ia, that is, the phase for suppressing the control amount of the compensation current Ia. Therefore, in the case of the phase in which the harmonic current compensator 15 does not suppress the control amount of the compensation current Ia, the harmonic current component of the load current IL is canceled by the compensation current Ia and the control amount of the compensation current Ia is suppressed. The load current IL is suppressed by the compensation current Ia. Therefore, the harmonic current compensator 15 does not perform the suppression operation of the control amount of the compensation current Ia except during the period of suppressing the control amount of the compensation current Ia.
  • the harmonic current compensator 15 avoids the stop of the operation of the harmonic generation load 13 due to the compensation current Ia exceeding the overcurrent level while suppressing the harmonic component of the load current IL to some extent. Can do.
  • the storage unit 61 that stores the compensation current Ia and the phase corresponding to the compensation current Ia, and the compensation current Ia based on the compensation current Ia stored in the storage unit 61.
  • the harmonic current compensator 15 limits the period for suppressing the control amount of the compensation current Ia, that is, the phase for suppressing the control amount of the compensation current Ia. Therefore, in the case of the phase in which the harmonic current compensator 15 does not suppress the control amount of the compensation current Ia, the harmonic current component of the load current IL is canceled by the compensation current Ia and the control amount of the compensation current Ia is suppressed. The load current IL is suppressed by the compensation current Ia. Therefore, the harmonic current compensator 15 avoids stopping the operation of the harmonic generation load 13 due to the compensation current Ia exceeding the overcurrent level while suppressing the harmonic component of the load current IL to some extent. Can do.
  • the predicting means 63 is based on the control amount of the compensation current Ia for one cycle of the system power supply 11 and the phase when the control amount of the compensation current Ia exceeds a preset set value. May be predicted.
  • the harmonic current compensator 15 predicts the phase when the control amount of the compensation current Ia exceeds a preset value based on the control amount of the past compensation current Ia. Future driving conditions can be improved based on driving conditions.
  • the harmonic current compensator 15 suppresses the upper limit of the compensation current Ia so that the compensation current Ia is particularly noticeable even if the change in the instantaneous value of the load current IL increases due to the influence of the system power supply 11.
  • the operation of the air conditioner can be continued without instantaneously reaching the overcurrent level. Therefore, the harmonic current compensator 15 can maintain the capability of the air conditioner.
  • Embodiment 3 (Differences from Embodiments 1 and 2)
  • the harmonic current compensator 15 according to the third embodiment suppresses the compensation output command of the compensation output command calculation means 43.
  • FIG. 7 is a diagram illustrating a schematic configuration of the air-conditioning system 1 including the harmonic current compensator 15 according to Embodiment 3 of the present invention.
  • the harmonic current compensator 15 further includes a compensation output command suppression determination unit 65 and a compensation output command suppression calculation unit 67 as compared with the first embodiment.
  • the compensation output command suppression determination means 65 compares the compensation current Ia with a preset suppression determination value to determine whether to suppress the compensation output command.
  • the suppression determination value is, for example, a current value, and is set to a smaller value than the overcurrent level. Specifically, the compensation output command suppression determination means 65 determines that the compensation current Ia can be excessive when one of the three-phase compensation currents Ia reaches a preset suppression determination value.
  • the output command suppression calculation means 67 is made to suppress the compensation output command. Compensation output command suppression calculation means 67 suppresses the command value of the harmonic component of load current IL.
  • the suppression determination value may be set by paying attention to the periodicity of the compensation current Ia. For example, the timing at which the previous or past compensation current Ia is larger than a preset value in one cycle of the power supply voltage, that is, a period in which a margin is given before and after the reference phase with the phase as the reference phase. May be set based on Further, the suppression determination value may be determined experimentally. Moreover, it may change dynamically based on the value detected in the past for every control period.
  • FIG. 8 is a flowchart for explaining a control example of the harmonic current compensator 15 according to the third embodiment of the present invention.
  • Step S81 The harmonic current compensator 15 determines whether or not the zero point of the power supply voltage has been detected. When the harmonic current compensator 15 detects the zero point of the power supply voltage, the process proceeds to step S82. On the other hand, when the harmonic current compensator 15 does not detect the zero point of the power supply voltage, the process proceeds to step S83.
  • Step S82 The harmonic current compensator 15 sets an initial value for the compensation current Ia.
  • Step S83 The harmonic current compensator 15 detects the phase ⁇ .
  • Step S84 The harmonic current compensator 15 determines whether or not the control period has arrived. When the control period has arrived, the harmonic current compensator 15 proceeds to step S85. On the other hand, the harmonic current compensation apparatus 15 returns to step S83, when a control period does not arrive.
  • Step S85 The harmonic current compensator 15 extracts a harmonic component of the load current IL.
  • Step S86 The harmonic current compensator 15 determines whether or not to perform suppression determination of the command value of the harmonic component of the load current IL.
  • the process proceeds to step S96.
  • the harmonic current compensator 15 does not perform the suppression determination of the command value of the harmonic component of the load current IL, the process proceeds to step S87.
  • Step S87 The harmonic current compensator 15 obtains an error amount based on the harmonic component of the load current IL and the compensation current Ia.
  • Step S88 The harmonic current compensator 15 determines the control amount based on the error amount.
  • Step S89 The harmonic current compensator 15 determines whether or not the suppression determination of the harmonic component of the load current IL has been performed. When the harmonic current compensator 15 determines to suppress the harmonic component of the load current IL, the harmonic current compensator 15 proceeds to step S92. On the other hand, the harmonic current compensator 15 proceeds to step S90 when the suppression determination of the harmonic component of the load current IL is not performed.
  • Step S90 The harmonic current compensator 15 determines whether or not the controlled variable exceeds the set value. If the controlled variable exceeds the set value, the harmonic current compensator 15 proceeds to step S91. On the other hand, when the controlled variable does not exceed the set value, the harmonic current compensator 15 proceeds to step S92.
  • Step S92 The harmonic current compensator 15 generates a control signal based on the control amount.
  • Step S93 The harmonic current compensator 15 controls the switching element based on the control signal.
  • Step S94 The harmonic current compensator 15 supplies the compensation current Ia to the power receiving point 21 according to the operation of the switching element.
  • Step S95 The harmonic current compensator 15 determines whether an end command has arrived.
  • the harmonic current compensator 15 ends the process when the end command arrives.
  • the harmonic current compensator 15 returns to step S81 when the end command does not arrive.
  • Step S96 The harmonic current compensator 15 determines whether or not one of the three-phase compensation currents Ia has reached the suppression determination value. When the harmonic current compensator 15 has reached the suppression determination value even in one of the three-phase compensation currents Ia, the harmonic current compensator 15 proceeds to step S97. On the other hand, when none of the three-phase compensation currents Ia has reached the suppression determination value, the harmonic current compensator 15 proceeds to step S89.
  • Step S97 The harmonic current compensator 15 suppresses the command value of the harmonic component of the load current IL.
  • the harmonic current compensator 15 determines whether the harmonic current compensator 15 suppresses the compensation current Ia based on the suppression determination value that is smaller than the overcurrent level. In order to suppress the command value of the harmonic component of the load current IL, the command value of the harmonic component of the load current IL is suppressed before the compensation current Ia reaches the overcurrent level. Therefore, the harmonic current compensator 15 can continue the operation of the harmonic generation load 13 without causing the compensation current Ia to reach the overcurrent level while suppressing the harmonic component of the load current IL.
  • the suppression determination value for determining whether or not to suppress the compensation current Ia is further provided with the compensation output command suppression calculation means 67 that suppresses the amplitude of the harmonic component included in the load current IL.
  • the system power supply 11 is a three-phase AC power supply, and the compensation output command suppression calculation means 67. Suppresses the command value of the harmonic component of the load current IL when at least one phase of the compensation current Ia detected by the compensation current detector 33 has reached a preset suppression determination value. You may make it do.
  • the harmonic current compensator 15 determines whether to suppress the compensation current Ia based on a suppression determination value that is smaller than the overcurrent level, and determines the harmonic component command value of the load current IL. Therefore, the command value of the harmonic component of the load current IL is suppressed before the compensation current Ia reaches the overcurrent level. Therefore, the harmonic current compensator 15 can continue the operation of the harmonic generation load 13 without suppressing the harmonic component of the load current IL and without reaching the overcurrent level of the compensation current Ia.
  • the power supply cycle of the system power supply 11 and the control cycle for calculating the control amount of the compensation current Ia included in the power supply cycle of the system power supply 11 are provided. May suppress the command value of the harmonic component of the load current IL based on the compensation current Ia and the suppression determination value for each control period.
  • the harmonic current compensator 15 can repeatedly suppress the command value of the harmonic component of the load current IL during one power cycle.
  • the harmonic current compensator 15 suppresses the upper limit of the compensation current Ia so that the compensation current Ia is particularly noticeable even if the change in the instantaneous value of the load current IL increases due to the influence of the system power supply 11.
  • the operation of the air conditioner can be continued without instantaneously reaching the overcurrent level. Therefore, the harmonic current compensator 15 can maintain the capability of the air conditioner.
  • Embodiment 4 FIG. (Differences from Embodiments 1 to 3)
  • the harmonic current compensator 15 according to Embodiment 4 is configured to be able to arbitrarily set the suppression determination value.
  • FIG. 9 is a diagram illustrating a schematic configuration of the air conditioning system 1 including the harmonic current compensator 15 according to the fourth embodiment of the present invention. As shown in FIG. 9, the harmonic current compensator 15 further includes a compensation output command suppression determination level setting unit 69 as compared with the configuration of the third embodiment.
  • Compensation output command suppression determination level setting means 69 determines the suppression determination value arbitrarily settable. Such suppression determination value is set according to the unbalanced phase voltage of the system power supply 11 or the magnitude of voltage distortion, and as the phase voltage of the system power supply 11 is unbalanced, or As the voltage distortion increases, the control amount of the compensation current Ia increases, so that the possibility that the compensation current Ia reaches the overcurrent level increases.
  • the harmonic current compensator 15 lowers the suppression determination value in advance and suppresses the compensation output command, which is the output of the compensation output command calculation unit 43, in a large amount. As a result, the peak value of the compensation current Ia is obtained. The operation is further suppressed to a low level.
  • the suppression determination value may be set after product installation.
  • the initial setting value of the suppression determination value may be the lowest suppression determination value assuming an ideal power supply voltage of the system power supply 11.
  • the suppression determination value may be a value that takes into account the state of the power supply voltage of the average system power supply 11 from past experience. That is, the suppression determination value is not fixed to one value, and may be changed as appropriate according to installation conditions and the like.
  • FIG. 10 is a flowchart for explaining a control example of the harmonic current compensator 15 according to the fourth embodiment of the present invention. Note that the processing from step S112 to step S128 is the same as the operation of the third embodiment, and thus the description thereof is omitted here.
  • Step S111 The harmonic current compensator 15 determines whether or not a suppression determination value is set. When the suppression determination value is set, the harmonic current compensator 15 proceeds to step S112. On the other hand, the harmonic current compensation apparatus 15 returns to step S111, when a suppression determination value is not set.
  • the harmonic current compensator 15 can arbitrarily set the suppression determination value, so that the interphase voltage imbalance of the system power supply 11 or the voltage distortion of the system power supply 11 etc. A suppression determination value can be set according to the influence. Therefore, the harmonic current compensator 15 can avoid excessively suppressing the compensation current Ia. In addition, since the harmonic current compensator 15 can arbitrarily set a suppression determination value that serves as a suppression trigger for the compensation current Ia, the insufficient suppression of the compensation current Ia can be resolved.
  • the fourth embodiment further includes the compensation output command suppression determination level setting means 69 for setting the suppression determination value, and the compensation output command suppression calculation means 67 is set by the compensation output command suppression determination level setting means 69. Based on the suppression determination value, the command value of the harmonic component of the load current IL may be suppressed.
  • the harmonic current compensator 15 can arbitrarily set the suppression determination value, so that the suppression determination value depends on the influence of the interphase voltage imbalance of the system power supply 11 or the voltage distortion of the system power supply 11. Can be set. Therefore, the harmonic current compensator 15 can avoid excessively suppressing the compensation current Ia. In addition, since the harmonic current compensator 15 can arbitrarily set a suppression determination value that serves as a suppression trigger for the compensation current Ia, the insufficient suppression of the compensation current Ia can be resolved.
  • the harmonic current compensator 15 suppresses the upper limit of the compensation current Ia so that the compensation current Ia is particularly noticeable even if the change in the instantaneous value of the load current IL increases due to the influence of the system power supply 11.
  • the operation of the air conditioner can be continued without instantaneously reaching the overcurrent level. Therefore, the harmonic current compensator 15 can maintain the capability of the air conditioner.
  • the power conversion device includes a rectifier circuit with a reactor as common to the first to fourth embodiments.
  • the output of the power conversion device is relatively small in fluctuation, and an equivalent load current IL repeatedly flows to the power conversion device, so that the power conversion device supplies power to the air conditioner.
  • the harmonic current compensator 15 is particularly effective.

Abstract

 系統電源11に接続された高調波発生負荷13に並列に接続され、補償電流Iaを供給することで、系統電源11から高調波発生負荷13に入力される負荷電流ILに含まれる高調波成分を抑制する高調波電流補償装置15であって、負荷電流ILを検出する負荷電流検出器31と、供給された補償電流Iaを検出する補償電流検出器33と、負荷電流検出器31で検出された負荷電流ILに含まれる高調波成分と、補償電流検出器33で検出された補償電流Iaと、に基づいて、補償電流Iaの制御量を演算する制御量演算手段47と、補償電流Iaの上限を抑制するリミッタ49と、を備えた。

Description

高調波電流補償装置及び空気調和システム
 本発明は、高調波電流補償装置及び空気調和システムに関する。
 従来の高調波電流補償装置は、系統電源に接続された高調波発生負荷と並列に接続されている。従来の高調波電流補償装置は、高調波発生負荷に入力される負荷電流を検出し、検出した負荷電流に含まれる高調波成分を抽出する。従来の高調波電流補償装置は、スイッチング素子のON状態及びOFF状態を制御することで、抽出した高調波成分を相殺する補償電流を発生する。
 ところで、従来の高調波電流補償装置は、補償電流の瞬時値が予め設定された一定値以上となった場合、電流過大(以下、過電流と称する)と判断し、停止状態となる機能を有している。
 例えば、従来の高調波電流補償装置のうち、補償電流の瞬時値が予め設定された一定値以上となった場合、基本波の無効電力の補償指令を抑制することで、高調波補償を損なうことなく高調波対策を行うものがある(例えば、特許文献1参照)。
特開平6-113460号公報(段落[0011])
 しかし、系統電源で、相間電圧が不平衡であったり、電圧の歪みが大きかったりした場合、相間電圧の不平衡又は電圧歪み等に起因して、系統電源1周期のうち、高調波発生負荷に入力される負荷電流の瞬時値の変化が大きくなる位相がある。この場合、従来の高調波電流補償装置は、変化量の大きい負荷電流に応じるため、特に、負荷電流の瞬時値の変化が大きくなるそれぞれの位相を基準として予め設定された範囲で定まる期間で、補償電流を瞬時的に増加させる。よって、従来の高調波電流補償装置は、補償電流を瞬時的に過電流レベルに到達させることで、空気調和装置の運転を停止させる恐れがあった。
 また、従来の高調波電流補償装置は、補償電流を瞬時的に過電流レベルに到達させることで、空気調和装置の運転を停止させる場合、結果として、空気調和装置の発停の頻度が高くなる。よって、この場合、空気調和装置は、冷房又は暖房等の空気調和の動作の起動と停止とを繰り返す状態が生ずるため、全体として能力不足に陥る恐れがあった。
 換言すれば、従来の高調波電流補償装置は、系統電源の影響で負荷電流の瞬時値の変化が大きくなった場合、補償電流を瞬時的に過電流レベルに到達させるため、空気調和装置の運転を停止させるという問題点があった。
 本発明は、上記のような問題点を解決するためになされたもので、系統電源の影響で負荷電流の瞬時値の変化が大きくなったとしても、補償電流を瞬時的に過電流レベルに到達させることなく、空気調和装置の運転を継続させることができる高調波電流補償装置及び空気調和システムを提供することを目的とするものである。
 本発明に係る高調波電流補償装置は、系統電源に接続された負荷に並列に接続され、補償電流を供給することで、前記系統電源から前記負荷に入力される負荷電流に含まれる高調波成分を抑制する高調波電流補償装置であって、前記負荷電流を検出する負荷電流検出手段と、供給された前記補償電流を検出する補償電流検出手段と、前記負荷電流検出手段で検出された前記負荷電流に含まれる前記高調波成分と、前記補償電流検出手段で検出された前記補償電流と、に基づいて、前記補償電流の制御量を演算する制御量演算手段と、前記補償電流の上限を抑制するリミッタと、を備えたものである。
 本発明は、補償電流の上限を抑制することで、系統電源の影響で負荷電流の瞬時値の変化が大きくなったとしても、補償電流を瞬時的に過電流レベルに到達させることなく、空気調和装置の運転を継続させることができる。よって、本発明は、空気調和装置の能力を維持させることができるという効果を有する。
本発明の実施の形態1における高調波電流補償装置15を備えた空気調和システム1の概略構成を示す図である。 本発明の実施の形態1における高調波補償制御を説明する動作波形の一例を示す図である。 本発明の実施の形態1における高調波電流補償装置15の制御例を説明するフローチャートである。 本発明の実施の形態2における高調波電流補償装置15を備えた空気調和システム1の概略構成を示す図である。 本発明の実施の形態2における高調波補償制御を説明する動作波形の一例を示す図である。 本発明の実施の形態2における高調波電流補償装置15の制御例を説明するフローチャートである。 本発明の実施の形態3における高調波電流補償装置15を備えた空気調和システム1の概略構成を示す図である。 本発明の実施の形態3における高調波電流補償装置15の制御例を説明するフローチャートである。 本発明の実施の形態4における高調波電流補償装置15を備えた空気調和システム1の概略構成を示す図である。 本発明の実施の形態4における高調波電流補償装置15の制御例を説明するフローチャートである。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、本発明の実施の形態の動作を行うプログラムを記述するステップは、記載された順序に沿って時系列に行われる処理であるが、必ずしも時系列に処理されなくても、並列的又は個別に実行される処理を含んでもよい。
 また、本実施の形態で説明される各機能をハードウェアで実現するか、ソフトウェアで実現するかは問わない。つまり、本実施の形態で説明される各ブロック図は、ハードウェアのブロック図と考えても、ソフトウェアの機能ブロック図と考えてもよい。例えば、各ブロック図は、回路デバイス等のハードウェアで実現されてもよく、図示しないプロセッサ等の演算装置上で実行されるソフトウェアで実現されてもよい。
 また、本実施の形態で説明されるブロック図の各ブロックは、その機能が実施されればよく、それらの各ブロックの上位集合、下位集合、又は部分集合で構成されてもよい。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。また、本実施の形態3において、特に記述しない項目については実施の形態1、2と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。また、本実施の形態4において、特に記述しない項目については本実施の形態1~3と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
また、本実施の形態1~4のそれぞれは、単独で実施されてもよく、組み合わされて実施されてもよい。いずれの場合においても、後述する有利な効果を奏することとなる。また、本実施の形態1~4で説明する各種具体的な設定例は一例を示すだけであり、特にこれらに限定されない。
 また、本実施の形態1~4において、システムとは、複数の装置で構成される装置全体を表すものである。また、本実施の形態1~4において、ネットワークとは、少なくとも2つの装置が接続され、ある装置から他の装置へ情報の伝達ができるようにした仕組みをいう。ネットワークを介して通信する装置は、独立した装置同士であってもよく、1つの装置を構成している内部ブロック同士であってもよい。また、本実施の形態1~4において、通信とは、無線通信及び有線通信は勿論、無線通信と有線通信とが混在した通信であってもよい。例えば、ある区間では無線通信が行われ、他の空間では有線通信が行われるようなものであってもよい。また、ある装置から他の装置への通信が有線通信で行われ、他の装置からある装置への通信が無線通信で行われるようなものであってもよい。
実施の形態1.
(実施の形態1の構成)
 図1は、本発明の実施の形態1における高調波電流補償装置15を備えた空気調和システム1の概略構成を示す図である。空気調和システム1は、例えば、高調波電流補償装置15が、交流電源等の系統電源11から流れる電流の高調波成分を抑制することで、高調波電流補償装置15で負荷電流ILを補償する。
 図1に示すように、空気調和システム1は、系統電源11、高調波発生負荷13、高調波電流補償装置15、及び冷媒回路17等を備えている。系統電源11は、例えば、三相交流電源であり、電力を供給する。高調波発生負荷13は、系統電源11に接続されている。よって、系統電源11は、高調波発生負荷13に電流を供給する。
 高調波発生負荷13は、例えば、電力変換装置であって、整流器、直流リアクタ、及び平滑コンデンサ等(いずれも図示せず)を備え、交流を直流に変換し、変換した直流をPWM信号で交流に変換して冷媒回路17に供給する。電力変換装置は、例えば、交流を直流に変換する際、高調波を発生する。冷媒回路17は、例えば、圧縮機、熱源側熱交換器、膨張装置、四方弁、及び負荷側熱交換器等(いずれも図示せず)が冷媒配管を介して接続されて構成され、圧縮機が冷媒を圧縮して吐出することで、冷媒配管内を冷媒が循環し、冷凍サイクルが形成される。
 高調波電流補償装置15は、系統電源11と、高調波発生負荷13との間で、高調波発生負荷13に並列に接続されている。高調波電流補償装置15は、高調波発生負荷13から発生する高調波を抑制する。例えば、高調波電流補償装置15は、系統電源11と、高調波発生負荷13との間に設けられている負荷電流検出器31で、高調波発生負荷13に入力される負荷電流ILを検出させ、検出させた負荷電流ILに基づいて、系統電源11と、高調波発生負荷13との間に設けられている受電点21に補償電流Iaを供給し、負荷電流ILを補償する。ここで、負荷電流検出器31は、例えば、CT(Current Transformer)等のような電流センサで構成されればよいが、特にこれに限定されない。例えば、負荷電流検出器31は、シャント抵抗で構成されてもよい。なお、高調波電流補償装置15の処理の前提として、図示は省略するが、負荷電流検出器31は、各相ごとに設けられていると想定する。つまり、以降の処理の説明では、代表する1つの相、例えば、R相の場合について説明するが、S相及びT相についても同様な処理が実行されると想定する。
 なお、高調波の発生要因は、高調波発生負荷13に限定されない。例えば、雷サージ等が系統電源11等に侵入した場合、雷サージの高調波成分が負荷電流ILに重畳される。高調波電流補償装置15は、雷サージが等が系統電源11等に侵入した場合であっても、下記で説明する動作で負荷電流ILを補償する。
 次に、高調波電流補償装置15の詳細について図1及び図2を用いて説明する。図2は、本発明の実施の形態1における高調波補償制御を説明する動作波形の一例を示す図である。なお、本明細書内において、電流波形の位相のずれは一例であり、理想的にはずれがないものである。
 図1に示すように、高調波電流補償装置15は、例えば、補償電流検出器33、位相検出手段41、補償出力指令演算手段43、誤差量演算手段45、制御量演算手段47、リミッタ49、制御信号生成手段51、主回路53等を備えている。
 補償電流検出器33は、主回路53の出力側に設けられ、主回路53が出力する補償出力である補償電流Iaを検出し、検出結果を誤差量演算手段45に供給する。補償電流検出器33は、例えば、CT(Current Transformer)等のような電流センサで構成されればよいが、特にこれに限定されない。なお、高調波電流補償装置15の処理の前提として、図示は省略するが、補償電流検出器33は、各相ごとに設けられていると想定する。
 例えば、補償電流検出器33は、シャント抵抗で構成されてもよい。位相検出手段41は、系統電源11の電源電圧の位相を検出する。位相検出手段41は、例えば、ゼロクロス検出回路を備え、ゼロクロス検出回路は、系統電源11の電源電圧のゼロ点を検出し、系統電源11の電源電圧のゼロ点から電源電圧の位相θを演算で求める。例えば、図2に示すように、電源電圧のゼロ点に対応する位相の1つをθと想定し、その後、制御周期ごとにθ、θ、・・・、θN-1と想定すると、電源1周期内でN個の制御点が設けられていることとなる。
 つまり、位相検出手段41は、制御周期ごとに位相θ~θN-1のそれぞれの値を求めることで、制御点に対応する位相θを求め、求めた位相θを補償出力指令演算手段43に供給する。なお、制御周期は、キャリア周期と同周期と想定するが、キャリア周期と異なる周期であってもよい。ここで、キャリア周期は、主回路53に設けられているスイッチング素子のON状態とOFF状態とを制御する周期と想定する。つまり、ここでいうキャリアとは、キャリア信号のことであり、PWM信号を生成するときに用いられる基準搬送波である。キャリア信号は、例えば、三角波で構成されるが、特にこれに限定されず、傾きが正又は負の鋸波状波であってもよい。
 補償出力指令演算手段43は、例えば、制御周期ごとに、負荷電流検出器31から供給された負荷電流ILに含まれる高調波成分を求め、求めた高調波成分に対応する信号を補償出力指令として誤差量演算手段45に供給する。補償出力指令演算手段43は、例えば、バンドパスフィルタで構成され、予め設定された周波数範囲の高調波成分を抽出するが、特にこれに限定されない。
 例えば、補償出力指令演算手段43は、ハイパスフィルタで構成され、予め設定された周波数以上の高調波成分を抽出してもよい。また、例えば、補償出力指令演算手段43は、負荷電流検出器31から供給された負荷電流ILをフーリエ変換し、予め設定された周波数成分を抽出し、抽出した周波数成分を含む信号を逆フーリエ変換してもよい。
 つまり、補償出力指令演算手段43は、負荷電流検出器31から供給された負荷電流ILから基本波成分を取り除き、負荷電流検出器31から供給された負荷電流ILに含まれる高調波成分を抽出する機能を有するものであれば、その実装形態は特に限定されない。
 誤差量演算手段45は、補償出力指令演算手段43から供給された補償出力指令と、補償電流検出器33から供給された補償電流Iaとに基づいて、補償出力指令と、補償電流Iaとの誤差量を求め、求めた誤差量を制御量演算手段47に供給する。制御量演算手段47は、誤差量演算手段45から供給された誤差量に基づいて、制御量を求め、求めた制御量をリミッタ49に供給する。
 リミッタ49は、制御量演算手段47から供給された制御量を抑制し、抑制結果を制御信号生成手段51に供給する。リミッタ49は、補償電流Iaが補償電流Iaの過電流レベルを超えないように制御量を抑制する。ここで、過電流レベルとは、例えば、図2に示すように、補償電流Iaの上限及び下限である。つまり、過電流レベルとは、補償電流Iaの振幅の絶対値の上限が設定される。仮に、補償電流Iaが過電流レベルを超えた場合、絶縁破壊等の電気回路の損傷を回避するため、高調波発生負荷13は運転を停止する。補償電流Iaは交流のため、リミッタ49は、補償電流Iaの正負両側に抑制をかける。ただし、リミッタ49は、補償電流検出器33の検出結果である補償電流Iaが正の場合、正側にのみ抑制をかける。リミッタ49は、補償電流検出器33の検出結果である補償電流Iaが負の場合、負側にのみ抑制をかける。
 例えば、補償出力指令と比べて補償電流Iaが大きい場合を想定する。このような想定の場合、上記で説明したように、補償電流Iaが正の場合に正側にのみ抑制をかけるようにすれば、補償電流Iaを抑制する制御そのものに抑制をかけることにはならないため、補償電流Iaを抑制できずに過電流となる事態は回避される。
 リミッタ49は、例えば、誤差量演算手段45から制御量が供給された場合、上記で説明したような動作を行い、補償電流Iaが補償電流Iaの過電流レベルを超えないようにした制御量を制御信号生成手段51に供給する。制御信号生成手段51は、リミッタ49から供給された制御量に基づいて制御信号を生成する。なお、制御量演算手段47から出力された制御量が、リミッタ49を介して、制御信号生成手段51に供給されることで、結果として、スイッチング素子のON状態に相当する期間を短く変更したり、スイッチング素子のOFF状態に相当する期間を長く変更したりする動作が行われることとなる。
 なお、リミッタ49は、制御量を予め設定された設定値、例えば、上記で説明したリミット値に抑制する。ここで、予め設定された設定値とは、過負荷運転条件で相間電圧が不平衡となったり、電圧歪みが生じたりした場合であっても、補償電流Iaが過電流レベルに達しない電流値となるように試験的に決めた値であってもよい。そして、予め設定された設定値は、仮に、相間電圧の不平衡状態又は電圧歪みが予め想定した想定内の場合であっても、負荷電流ILの高調波成分を抑制する能力に影響が出ない程度の補償電流Iaの電流値が決められている。つまり、補償電流Iaの制御量が予め設定された設定値以下であれば、補償電流Iaの制御量に基づいて生成される補償電流Iaは、過電流レベル以下でありつつも、負荷電流ILの高調波成分を抑制する振幅値は満たされている。
 制御信号生成手段51は、具体的には、リミッタ49から供給された制御量と、キャリア周期とに基づいて、制御信号を生成し、生成した制御信号を主回路53に供給する。制御信号生成手段51は、例えば、リミッタ49から供給された制御量に基づいてデューティ比を算出し、算出したデューティ比と、キャリア周期とに基づいて、制御信号、例えば、PWM信号を生成する。
 主回路53は、一般的な回路構成であって、例えば、ゲート駆動回路と、スイッチング素子及び転流ダイオードを1組とした6つのアームで構成されたブリッジ回路と、ブリッジ回路の6つのアームのうち、3つの上アームと3つの下アームとの間のそれぞれの中点に接続された3つのリアクトルと、ブリッジ回路の直流部に設けられたエネルギー蓄積用のコンデンサと、を備えている(何れも図示せず)。
 主回路53は、制御信号生成手段51から供給された制御信号に基づいて、補償電流Iaを生成し、生成した補償電流Iaを受電点21に供給する。この結果、負荷電流ILの高調波成分は抑制されるため、系統電源11に高調波成分を含む電流が流入しないように補償される。このときの補償後の系統電流は、例えば、図2に示されるような電流波形となる。つまり、図2に示すような過電流レベルを超えない補償電流Iaが受電点21に供給されることで、負荷電流ILに含まれている高調波成分に起因した歪み成分が抑制され、結果として、歪み成分の抑制された系統電流が高調波発生負荷13に供給される。
 よって、高調波電流補償装置15は、前回供給された補償電流Iaの制御量と、予め設定された設定値とを比較することで次回の補償電流Iaの制御量を抑制するため、過去の補償電流Iaに基づいて、未来の補償電流Iaを制御する動作構成である。つまり、高調波電流補償装置15は、制御周期が1周期分だけ負荷電流ILの補償動作が遅延するが、キャリア周波数を高速な値に設定し、高速なスイッチング素子を用いて高速にスイッチング素子のON状態とOFF状態とを制御すれば、実使用上問題ない程度まで負荷電流ILの高調波成分の抑制をすることができる。
 また、制御周期の1周期分の遅れ成分があったとしても、高調波発生負荷13等に急激な変化がなく、負荷電流ILに周期性があれば、次の負荷電流ILを予測することができる。したがって、このように負荷電流ILを予測することができる場合では、高調波電流補償装置15は、制御系のフィードフォワード制御を実施すれば、制御周期の1周期分の遅れ成分があったとしても、さらに補償動作の改善を実施することができる。
 具体例について説明する。補償出力指令演算手段43は、補償出力指令として、例えば、5Aという情報を含む信号を誤差量演算手段45に供給する。補償電流検出器33は、補償電流Iaとして、例えば、4Aという情報を含む信号を誤差量演算手段45に供給する。この場合、誤差量演算手段45は、誤差量として1Aを演算し、1Aという情報を含む信号を制御量演算手段47に供給する。制御量演算手段47は、この誤差1Aをなくすため、つまり、補償電流Iaを1A増やすため、1Aに応じた制御量を演算する。制御量演算手段47は、例えば、P制御、I制御、及びPI制御等の演算を実施する。
 ここで、誤差量について具体例を説明する。負荷電流ILが急峻な変化をした場合、誤差量が大きくなる。例えば、補償出力指令が5Aから15Aに急に変化した場合、つまり、補償電流Iaが補償出力指令5Aに近づくように制御され、実際に補償電流Iaが5Aになった直後に急な変化をした場合を想定する。この想定の場合、補償出力指令演算手段43は、補償出力指令として、15Aという情報を含む信号を誤差量演算手段45に供給する。補償電流検出器33は、補償電流Iaとして、5Aを含む信号を誤差量演算手段45に供給する。この場合、誤差量演算手段45は、誤差量として10Aを演算し、10Aという情報を含む信号を制御量演算手段47に供給する。制御量演算手段47は、この誤差10Aをなくすため、つまり、補償電流Iaを10A増やすため、10Aに応じた制御量を演算する。
 上記で説明したように、誤差量が大きければ大きくなるにつれ、主回路53からの出力は大きくなり、主回路53からの出力が大きくなり過ぎると、補償電流Iaが過電流レベルに到達する。つまり、補償電流Iaが急峻な変化をした場合、誤差量が大きくなるため、大きな誤差量を0にするために、主回路53からの出力が過大となる。例えば、上記で説明したように、補償出力指令を15Aとし、補償電流検出器33の検出結果である検出値を5Aとした場合、主回路53は、誤差10A分の出力を出そうとする。そこで、高調波電流補償装置15は、制御量に抑制をかけ、一定以上の誤差には応じない動作をする。
 換言すれば、誤差量が大きいと、制御量も大きくなり、これが一定値以上になると、そのときの補償電流検出器33の検出結果である補償電流Iaが過大となる。そこで、上記で説明したように、リミッタ49には、補償電流Iaが過大とならないレベルにリミット値が設定される。この結果、リミッタ49は、制御量がリミット値を超える場合、制御量をリミット値に抑制する。次に、具体的な動作例について図3を用いて説明する。
(実施の形態1の動作)
 図3は、本発明の実施の形態1における高調波電流補償装置15の制御例を説明するフローチャートである。なお、高調波電流補償装置15は、制御としては補償電流Iaが過電流レベルを超えるか否かを判定しない。ここでは、制御量がある一定値を超えると補償電流Iaが過電流レベルに達することを試験的に確認しておいてあると想定する。そして、高調波電流補償装置15は、制御においては制御量がそのある一定値を超えるか否かを判定する。高調波電流補償装置15は、制御量がそのある一定値を超える場合、制御量をそのある一定値に抑制する。なお、そのある一定値をリミット値と想定した場合について以降で説明する。
(ステップS11)
 高調波電流補償装置15は、電源電圧のゼロ点を検出したか否かを判定する。高調波電流補償装置15は、電源電圧のゼロ点を検出した場合、ステップS12に進む。一方、高調波電流補償装置15は、電源電圧のゼロ点を検出しない場合、ステップS13に進む。
(ステップS12)
 高調波電流補償装置15は、補償電流Iaに初期値を設定する。
(ステップS13)
 高調波電流補償装置15は、位相θを検出する。
(ステップS14)
 高調波電流補償装置15は、制御周期が到来したか否かを判定する。高調波電流補償装置15は、制御周期が到来した場合、ステップS15に進む。一方、高調波電流補償装置15は、制御周期が到来しない場合、ステップS13に戻る。
(ステップS15)
 高調波電流補償装置15は、負荷電流ILの高調波成分を抽出する。
(ステップS16)
 高調波電流補償装置15は、負荷電流ILの高調波成分と、補償電流Iaとに基づいて、誤差量を求める。
(ステップS17)
 高調波電流補償装置15は、誤差量に基づいて制御量を求める。
(ステップS18)
 高調波電流補償装置15は、制御量がリミット値を超える場合、ステップS19に進む。一方、高調波電流補償装置15は、制御量がリミット値を超えない場合、ステップS20に進む。
(ステップS19)
 高調波電流補償装置15は、制御量をリミット値に抑制する。
(ステップS20)
 高調波電流補償装置15は、制御量に基づいて制御信号を生成する。
(ステップS21)
 高調波電流補償装置15は、制御信号に基づいてスイッチング素子を制御する。
(ステップS22)
 高調波電流補償装置15は、スイッチング素子の動作に応じて受電点21に補償電流Iaを供給する。
(ステップS23)
 高調波電流補償装置15は、終了指令が到来したか否かを判定する。高調波電流補償装置15は、終了指令が到来した場合、処理を終了する。一方、高調波電流補償装置15は、終了指令が到来しない場合、ステップS11に戻る。
(実施の形態1の効果)
 以上の説明から、高調波電流補償装置15は、リミッタ49で制御量が一定値以上にはならないようにしている。よって、高調波電流補償装置15は、補償出力指令演算手段43から出力される補償出力指令と、補償電流Iaとの誤差量が大きいときであっても、つまり、系統電源11等の影響で負荷電流ILの変化が大きくなることに伴って補償出力指令の変化量が大きくなるときであっても、負荷電流ILの変化に伴って補償電流Iaが大きくなることがない。したがって、高調波電流補償装置15は、補償電流Iaを過電流レベルに到達させることなく、高調波発生負荷13の運転を継続することができる。
 つまり、高調波電流補償装置15は、制御量が一定値を超えた場合、補償電流Iaの制御量を抑制し、抑制した制御量に基づいて補償電流Iaを生成する。よって、高調波電流補償装置15は、補償電流Iaの上限を抑制することで、系統電源11の影響で負荷電流ILの瞬時値の変化が大きくなったとしても、補償電流Iaを瞬時的に過電流レベルに到達させることなく、高調波発生負荷13の運転を継続させることができる。したがって、例えば、高調波発生負荷13が電力変換装置であり、電力変換装置が冷媒回路17に電力を供給すると想定した場合、冷媒回路17を含む空気調和装置の運転を継続させることができる。
 なお、上記の説明では、高調波発生負荷13に入力される負荷電流ILに含まれる高調波成分を補償するために補償電流Iaを用いる一例について説明したが、特にこれに限定されない。例えば、高調波発生負荷13に入力される電圧に含まれる高調波成分を補償するために補償電圧を用いてもよい。
 以上、本実施の形態1において、系統電源11に接続された高調波発生負荷13に並列に接続され、補償電流Iaを供給することで、系統電源11から高調波発生負荷13に入力される負荷電流ILに含まれる高調波成分を抑制する高調波電流補償装置15であって、負荷電流ILを検出する負荷電流検出器31と、供給された補償電流Iaを検出する補償電流検出器33と、負荷電流検出器31で検出された負荷電流ILに含まれる高調波成分と、補償電流検出器33で検出された補償電流Iaと、に基づいて、補償電流Iaの制御量を演算する制御量演算手段47と、補償電流Iaの上限を抑制するリミッタ49と、を備えた高調波電流補償装置15が構成される。
 したがって、高調波電流補償装置15は、補償電流Iaの上限を抑制することで、系統電源11の影響で負荷電流ILの瞬時値の変化が大きくなったとしても、補償電流Iaを瞬時的に過電流レベルに到達させることなく、空気調和装置の運転を継続させることができる。よって、高調波電流補償装置15は、空気調和装置の能力を維持させることができる。
 また、本実施の形態1において、補償電流Iaの上限が、高調波発生負荷13の運転を停止させるか否かが判定される過電流レベル以下に設定されてあって、リミッタ49は、補償電流Iaの上限が、過電流レベルを超える場合、補償電流Iaの制御量の上限を抑制するようにしてもよい。
 上記の構成から、高調波電流補償装置15は、補償電流Iaの制御量の上限を抑制するため、抑制された制御量に基づいて生成された制御信号で主回路53に含まれるスイッチング素子のON状態とOFF状態とを制御したとしても、主回路53が出力する補償電流Iaが過電流レベルを超える事態は生じない。よって、高調波電流補償装置15は、空気調和装置の運転を止める要因となる振幅値の大きい補償電流Iaを生成しないため、空気調和装置の運転を継続させることができる。したがって、高調波電流補償装置15は、特に顕著に、空気調和装置の能力を維持させることができる。
実施の形態2.
(実施例の形態1との相違点)
 実施の形態2に係る高調波電流補償装置15は、リミッタ49を動作させる期間を限定する。以下、実施の形態2に係る高調波電流補償装置15について説明する。
(実施の形態2の構成)
 図4は、本発明の実施の形態2における高調波電流補償装置15を備えた空気調和システム1の概略構成を示す図である。図5は、本発明の実施の形態2における高調波補償制御を説明する動作波形の一例を示す図である。
 図4に示すように、実施の形態2に係る高調波電流補償装置15は、実施の形態1に係る高調波電流補償装置15と比べ、記憶手段61と、予測手段63とをさらに備えている。記憶手段61は、例えば、制御周期ごとに検出した位相θ、制御周期ごとに求めた誤差量、及び制御周期ごとに求めた制御量等を記憶する。予測手段63は、過去の各種データに基づいて、未来の制御量を予測し、リミッタ49を動作させる期間を特定する。
 具体的には、予測手段63は、系統電源11の1周期のうち、補償出力指令の変化量が大きいと想定される期間、すなわち、位相を予め決定しておき、決定した期間のみリミッタ49で制御量に抑制をかける。ここで、補償出力指令の変化量が大きいと想定される期間とは、具体的には、補償電流Iaの周期性に着目したものであり、系統電源11の電源電圧の1周期の間で、過去の制御量が予め設定された設定値と比べて大きかったタイミング、すなわち、基準位相を基準として、予め設定された範囲内にある位相に対応する期間である。例えば、位相60°を基準位相として、予め設定された範囲を基準位相の前後に5°ずつとしたと想定すると、対応する期間は、位相55°~65°となる。この場合、高調波電流補償装置15は、位相55°~65°の期間で、補償電流Iaの制御量に抑制をかける。
 つまり、予測手段63は、系統電源11の1周期分の補償電流Iaの制御量のうち、補償電流Iaの制御量が予め設定された設定値を超えるときの位相を基準位相として、基準位相の前後に余裕を見た期間も含めた期間を、補償出力指令の変化量が大きいと想定される期間と予測する。
 なお、タイミング、すなわち、位相の判定は、補償出力指令演算手段43が負荷電流ILの変動量に基づいて予測してもよい。また、位相の判定は、系統電源11の電源電圧波形の変動量に基づいて予測してもよい。また、位相の判定は、試験的に決めた一定期間であってもよい。制御周期ごとに、過去に検知した値に基づいて、動的に変動するものとしてもよい。例えば、高調波発生負荷13が直流リアクトルを内蔵する三相ブリッジ整流回路の場合、負荷電流ILは、直流の脈流電流を三相に順次切り分けたようなそれぞれ120°区間だけ流れる、いわゆる相瘤状態の歪みを伴った矩形波状の電流となる。よって、この場合、電源電圧の線間電圧に対応する位相は、図5に示すように、0°、60°、180°、及び240°で急峻な変化をするため、高調波電流補償装置15は、急峻な変化をする位相に応じてリミッタ49を動作させればよい。
(実施の形態2の動作)
 図6は、本発明の実施の形態2における高調波電流補償装置15の制御例を説明するフローチャートである。
(ステップS41)
 高調波電流補償装置15は、電源電圧のゼロ点を検出したか否かを判定する。高調波電流補償装置15は、電源電圧のゼロ点を検出した場合、ステップS42に進む。一方、高調波電流補償装置15は、電源電圧のゼロ点を検出しない場合、ステップS44に進む。
(ステップS42)
 高調波電流補償装置15は、系統電源11が1周期経過したか否かを判定する。高調波電流補償装置15は、系統電源11が1周期経過した場合、ステップS54に進む。一方、高調波電流補償装置15は、系統電源11が1周期経過しない場合、ステップS43に進む。
(ステップS43)
 高調波電流補償装置15は、補償電流Iaに初期値を設定する。
(ステップS44)
 高調波電流補償装置15は、位相θを検出する。
(ステップS45)
 高調波電流補償装置15は、制御周期が到来したか否かを判定する。高調波電流補償装置15は、制御周期が到来した場合、ステップS46に進む。一方、高調波電流補償装置15は、制御周期が到来しない場合、ステップS44に戻る。
(ステップS46)
 高調波電流補償装置15は、負荷電流ILの高調波成分を抽出する。
(ステップS47)
 高調波電流補償装置15は、負荷電流ILの高調波成分と、補償電流Iaとに基づいて、誤差量を求める。
(ステップS48)
 高調波電流補償装置15は、誤差量に基づいて制御量を求める。
(ステップS49)
 高調波電流補償装置15は、制御量が設定値を超えるか否かを判定する。高調波電流補償装置15は、制御量が設定値を超える場合、ステップS50に進む。一方、高調波電流補償装置15は、制御量が設定値を超えない場合、ステップS51に進む。なお、ここでいう設定値は、実施の形態1で説明した制御量のリミット値であってもよく、基準位相を基準として予め設定された範囲内に含まれる位相に対応する制御量ごとに異なるリミット値であってよい。
(ステップS50)
 高調波電流補償装置15は、設定値を超えた制御量に対応する基準位相と、基準位相を基準として予め設定された範囲内に含まれる位相とのそれぞれに対応する抑制フラグを設定する。
 例えば、高調波電流補償装置15は、位相55°~65°の期間で、補償電流Iaの制御量に抑制をかけ、制御周期が位相1°であると想定する。このような想定の場合、補償電流Iaの位相55°、56°、57°、58°、59°、60°、61°、62°、63°、64°、及び65°のそれぞれに対応するデータに抑制フラグを1に設定する。このようなデータは、例えば、補償電流Iaに関して、位相θと、振幅値と、抑制フラグとを含んでいてもよい。
(ステップS51)
 高調波電流補償装置15は、制御量を抑制する。
(ステップS52)
 高調波電流補償装置15は、制御量に基づいて制御信号を生成する。
(ステップS53)
 高調波電流補償装置15は、制御信号に基づいてスイッチング素子を制御する。
(ステップS54)
 高調波電流補償装置15は、スイッチング素子の動作に応じて受電点21に補償電流Iaを供給する。
(ステップS55)
 高調波電流補償装置15は、電源電圧のゼロ点を検出したか否かを判定する。高調波電流補償装置15は、電源電圧のゼロ点を検出した場合、ステップS56に進む。一方、高調波電流補償装置15は、電源電圧のゼロ点を検出しない場合、ステップS57に進む。
(ステップS56)
 高調波電流補償装置15は、補償電流Iaに初期値を設定する。例えば、高調波電流補償装置15は、電源電圧のゼロ点を検出すると、次の制御周期では、新たな電源電圧の周期に移行するため、新たな電源電圧1周期分に対応する補償電流Iaの過去データは存在しないという想定で、補償電流Iaに初期値を設定する。
(ステップS57)
 高調波電流補償装置15は、位相θを検出する。
(ステップS58)
 高調波電流補償装置15は、制御周期が到来したか否かを判定する。高調波電流補償装置15は、制御周期が到来した場合、ステップS59に進む。一方、高調波電流補償装置15は、制御周期が到来しない場合、ステップS57に戻る。
(ステップS59)
 高調波電流補償装置15は、負荷電流ILの高調波成分を抽出する。
(ステップS60)
 高調波電流補償装置15は、負荷電流ILの高調波成分と、補償電流Iaとに基づいて、誤差量を求める。
(ステップS61)
 高調波電流補償装置15は、誤差量に基づいて制御量を求める。
(ステップS62)
 高調波電流補償装置15は、制御量に対応する抑制フラグが設定されているか否かを判定する。高調波電流補償装置15は、制御量に対応する抑制フラグが設定されている場合、ステップS63に進む。一方、高調波電流補償装置15は、制御量に対応する抑制フラグが設定されていない場合、ステップS64に進む。
(ステップS63)
 高調波電流補償装置15は、制御量を抑制する。つまり、高調波電流補償装置15は、制御量に対応する抑制フラグが設定されている期間では、制御量を抑制する動作を行う。
(ステップS64)
 高調波電流補償装置15は、制御量に基づいて制御信号を生成する。
(ステップS65)
 高調波電流補償装置15は、制御信号に基づいてスイッチング素子を制御する。
(ステップS66)
 高調波電流補償装置15は、スイッチング素子の動作に応じて受電点21に補償電流Iaを供給する。
(ステップS67)
 高調波電流補償装置15は、終了指令が到来したか否かを判定する。高調波電流補償装置15は、終了指令が到来した場合、処理を終了する。一方、高調波電流補償装置15は、終了指令が到来しない場合、ステップS55に戻る。
(実施の形態2の効果)
 以上の説明から、本実施の形態2に係る高調波電流補償装置15は、補償電流Iaの制御量を抑制する期間、すなわち、補償電流Iaの制御量を抑制する位相を限定する。よって、高調波電流補償装置15は、補償電流Iaの制御量を抑制しない位相の場合、補償電流Iaで負荷電流ILの高調波成分を相殺し、補償電流Iaの制御量を抑制する位相の場合、補償電流Iaで負荷電流ILを抑制する。よって、高調波電流補償装置15は、補償電流Iaの制御量を抑制する期間以外では、補償電流Iaの制御量の抑制動作を行わないため、従来と同等の負荷電流ILの補償量を得ると共に、補償電流Iaの制御量を抑制する期間では、ある程度は負荷電流ILの高調波成分を抑制することができる。したがって、高調波電流補償装置15は、ある程度は負荷電流ILの高調波成分を抑制しつつ、補償電流Iaが過電流レベルを超えることに起因する高調波発生負荷13の運転の停止を回避することができる。
 以上、本実施の形態2において、補償電流Iaと、当該補償電流Iaに対応する位相と、を記憶する記憶手段61と、記憶手段61に記憶されている補償電流Iaに基づいて、補償電流Iaが予め設定された設定値を超えるときの位相を予測する予測手段63と、をさらに備え、リミッタ49は、予測手段63で予測された位相を基準として予め設定された範囲内にある位相に対応する補償電流Iaの制御量を抑制するようにしてもよい。
 上記の構成から、高調波電流補償装置15は、補償電流Iaの制御量を抑制する期間、すなわち、補償電流Iaの制御量を抑制する位相を限定する。よって、高調波電流補償装置15は、補償電流Iaの制御量を抑制しない位相の場合、補償電流Iaで負荷電流ILの高調波成分を相殺し、補償電流Iaの制御量を抑制する位相の場合、補償電流Iaで負荷電流ILを抑制する。よって、高調波電流補償装置15は、ある程度は負荷電流ILの高調波成分を抑制しつつ、補償電流Iaが過電流レベルを超えることに起因する高調波発生負荷13の運転の停止を回避することができる。
 また、本実施の形態2において、予測手段63は、系統電源11の1周期分の補償電流Iaの制御量に基づいて、補償電流Iaの制御量が予め設定された設定値を超えるときの位相を予測するようにしてもよい。
 上記の構成から、高調波電流補償装置15は、過去の補償電流Iaの制御量に基づいて、補償電流Iaの制御量が予め設定された設定値を超えるときの位相を予測するため、過去の運転状態に基づいて未来の運転状態を改善することができる。
 したがって、高調波電流補償装置15は、補償電流Iaの上限を抑制することで、系統電源11の影響で負荷電流ILの瞬時値の変化が大きくなったとしても、特に顕著に、補償電流Iaを瞬時的に過電流レベルに到達させることなく、空気調和装置の運転を継続させることができる。よって、高調波電流補償装置15は、空気調和装置の能力を維持させることができる。
実施の形態3.
(実施の形態1、2との相違点)
 実施の形態3に係る高調波電流補償装置15は、補償出力指令演算手段43の補償出力指令を抑制する。
(実施の形態3の構成)
 図7は、本発明の実施の形態3における高調波電流補償装置15を備えた空気調和システム1の概略構成を示す図である。図7に示すように、高調波電流補償装置15は、実施の形態1と比べ、補償出力指令抑制判定手段65と、補償出力指令抑制演算手段67とをさらに備えている。
 補償出力指令抑制判定手段65は、補償電流Iaと、予め設定された抑制判定値とを比較し、補償出力指令を抑制するか否かを判定する。抑制判定値は、例えば、電流値であって、過電流レベルと比べて小さい値が設定されている。具体的には、補償出力指令抑制判定手段65は、三相の補償電流Iaのうち、一相でも予め設定された抑制判定値に達したら、補償電流Iaが過大になり得ると判定し、補償出力指令抑制演算手段67に補償出力指令を抑制させる。補償出力指令抑制演算手段67は、負荷電流ILの高調波成分の指令値を抑制する。
 なお、抑制判定値は、補償電流Iaの周期性に着目して設定されてもよい。例えば、電源電圧の1周期の間で、前回又は過去の補償電流Iaが予め設定された設定値と比べて大きかったタイミング、すなわち、位相を基準位相として、基準位相の前後で予め余裕をみた期間に基づいて設定されてもよい。また、抑制判定値は、試験的に決めたものであってもよい。また、制御周期ごとに、過去に検知した値に基づいて動的に変動するものであってもよい。
(実施の形態3の動作)
 図8は、本発明の実施の形態3における高調波電流補償装置15の制御例を説明するフローチャートである。
(ステップS81)
 高調波電流補償装置15は、電源電圧のゼロ点を検出したか否かを判定する。高調波電流補償装置15は、電源電圧のゼロ点を検出した場合、ステップS82に進む。一方、高調波電流補償装置15は、電源電圧のゼロ点を検出しない場合、ステップS83に進む。
(ステップS82)
 高調波電流補償装置15は、補償電流Iaに初期値を設定する。
(ステップS83)
 高調波電流補償装置15は、位相θを検出する。
(ステップS84)
 高調波電流補償装置15は、制御周期が到来したか否かを判定する。高調波電流補償装置15は、制御周期が到来した場合、ステップS85に進む。一方、高調波電流補償装置15は、制御周期が到来しない場合、ステップS83に戻る。
(ステップS85)
 高調波電流補償装置15は、負荷電流ILの高調波成分を抽出する。
(ステップS86)
 高調波電流補償装置15は、負荷電流ILの高調波成分の指令値の抑制判定を行うか否かを判定する。高調波電流補償装置15は、負荷電流ILの高調波成分の指令値の抑制判定を行う場合、ステップS96に進む。一方、高調波電流補償装置15は、負荷電流ILの高調波成分の指令値の抑制判定を行わない場合、ステップS87に進む。
(ステップS87)
 高調波電流補償装置15は、負荷電流ILの高調波成分と、補償電流Iaとに基づいて、誤差量を求める。
(ステップS88)
 高調波電流補償装置15は、誤差量に基づいて制御量を求める。
(ステップS89)
 高調波電流補償装置15は、負荷電流ILの高調波成分の抑制判定を行ったか否かを判定する。高調波電流補償装置15は、負荷電流ILの高調波成分の抑制判定を行った場合、ステップS92に進む。一方、高調波電流補償装置15は、負荷電流ILの高調波成分の抑制判定を行っていない場合、ステップS90に進む。
(ステップS90)
 高調波電流補償装置15は、制御量が設定値を超えるか否かを判定する。高調波電流補償装置15は、制御量が設定値を超える場合、ステップS91に進む。一方、高調波電流補償装置15は、制御量が設定値を超えない場合、ステップS92に進む。
(ステップS91)
 高調波電流補償装置15は、制御量を抑制する。
(ステップS92)
 高調波電流補償装置15は、制御量に基づいて制御信号を生成する。
(ステップS93)
 高調波電流補償装置15は、制御信号に基づいてスイッチング素子を制御する。
(ステップS94)
 高調波電流補償装置15は、スイッチング素子の動作に応じて受電点21に補償電流Iaを供給する。
(ステップS95)
 高調波電流補償装置15は、終了指令が到来したか否かを判定する。高調波電流補償装置15は、終了指令が到来した場合、処理を終了する。一方、高調波電流補償装置15は、終了指令が到来しない場合、ステップS81に戻る。
(ステップS96)
 高調波電流補償装置15は、三相の補償電流Iaのうち、一相でも抑制判定値に達しているか否かを判定する。高調波電流補償装置15は、三相の補償電流Iaのうち、一相でも抑制判定値に達している場合、ステップS97に進む。一方、高調波電流補償装置15は、三相の補償電流Iaのうち、何れの相も抑制判定値に達していない場合、ステップS89に進む。
(ステップS97)
 高調波電流補償装置15は、負荷電流ILの高調波成分の指令値を抑制する。
(実施の形態3の効果)
 以上の説明から、本実施の形態3に係る高調波電流補償装置15は、高調波電流補償装置15は、過電流レベルと比べて小さい抑制判定値に基づいて、補償電流Iaを抑制させるか否かを判定し、負荷電流ILの高調波成分の指令値を抑制するため、補償電流Iaが過電流レベルに達する前に、負荷電流ILの高調波成分の指令値を抑制する。よって、高調波電流補償装置15は、負荷電流ILの高調波成分を抑制しつつ、補償電流Iaを過電流レベルに到達させることなく、高調波発生負荷13の運転を継続させることができる。
 以上、本実施の形態3において、負荷電流ILに含まれる高調波成分の振幅を抑制する補償出力指令抑制演算手段67をさらに備え、補償電流Iaを抑制させるか否かが判定される抑制判定値が、高調波発生負荷13の運転を停止させるか否かが判定される過電流レベル未満に設定されてあって、系統電源11は、三相交流電源であって、補償出力指令抑制演算手段67は、補償電流検出器33で検出された補償電流Iaのうち、少なくとも一相の補償電流Iaが予め設定された抑制判定値に達している場合、負荷電流ILの高調波成分の指令値を抑制するようにしてもよい。
 上記の構成から、高調波電流補償装置15は、過電流レベルと比べて小さい抑制判定値に基づいて、補償電流Iaを抑制させるか否かを判定し、負荷電流ILの高調波成分の指令値を抑制するため、補償電流Iaが過電流レベルに達する前に、負荷電流ILの高調波成分の指令値を抑制する。よって、高調波電流補償装置15は、負荷電流ILの高調波成分を抑制しつつ、補償電流Iaを過電流レベルに達することなく、高調波発生負荷13の運転を継続させることができる。
 また、本実施の形態3において、系統電源11の電源周期と、系統電源11の電源周期に含まれる補償電流Iaの制御量を演算する制御周期と、を有し、補償出力指令抑制演算手段67は、制御周期ごとに、補償電流Iaと、抑制判定値と、に基づいて、負荷電流ILの高調波成分の指令値を抑制するようにしてもよい。
 上記の構成から、高調波電流補償装置15は、1つの電源周期の間に、負荷電流ILの高調波成分の指令値を繰り返し抑制することができる。
 したがって、高調波電流補償装置15は、補償電流Iaの上限を抑制することで、系統電源11の影響で負荷電流ILの瞬時値の変化が大きくなったとしても、特に顕著に、補償電流Iaを瞬時的に過電流レベルに到達させることなく、空気調和装置の運転を継続させることができる。よって、高調波電流補償装置15は、空気調和装置の能力を維持させることができる。
実施の形態4.
(実施の形態1~3との相違点)
 実施の形態4に係る高調波電流補償装置15は、抑制判定値を任意に設定自在に構成されている。
(実施の形態4の構成)
 図9は、本発明の実施の形態4における高調波電流補償装置15を備えた空気調和システム1の概略構成を示す図である。図9に示すように、高調波電流補償装置15は、実施の形態3の構成に比べ、補償出力指令抑制判定レベル設定手段69をさらに備えている。
 補償出力指令抑制判定レベル設定手段69は、抑制判定値を任意に設定自在に決定する。このような抑制判定値は、系統電源11の相間電圧が不平衡であったり、電圧歪みの大きさに応じて設定されるものであり、系統電源11の相間電圧が不平衡であるにつれ、又は、電圧歪みが大きくなるにつれ、補償電流Iaの制御量は大きくなるため、補償電流Iaが過電流レベルに至る可能性が高くなる。
 そこで、高調波電流補償装置15は、予め抑制判定値を下げておき、補償出力指令演算手段43の出力である補償出力指令を多めに抑制することで、結果として、補償電流Iaのピーク値をさらに低く抑える動作を行う。また、補償電流Iaは、系統電源11の影響の大きさに応じて変動するため、抑制判定値の設定は、製品据付後になされてもよい。また、抑制判定値の設定初期値は、理想的な系統電源11の電源電圧を想定した最低の抑制判定値であってもよい。また、抑制判定値は、過去の経験からの平均的な系統電源11の電源電圧の状況が考慮された値であってもよい。つまり、抑制判定値は、1つの値に固定されるものではなく、設置条件等に応じて適宜変更自在であってもよい。
(実施の形態4の動作)
 図10は、本発明の実施の形態4における高調波電流補償装置15の制御例を説明するフローチャートである。なお、ステップS112~ステップS128の処理は、実施の形態3の動作と同様であるため、ここではその説明を省略する。
(ステップS111)
 高調波電流補償装置15は、抑制判定値が設定されたか否かを判定する。高調波電流補償装置15は、抑制判定値が設定された場合、ステップS112に進む。一方、高調波電流補償装置15は、抑制判定値が設定されない場合、ステップS111に戻る。
(実施の形態4の効果)
 以上の説明から、本実施の形態4に係る高調波電流補償装置15は、任意に抑制判定値を設定することができるので、系統電源11の相間電圧不平衡又は系統電源11の電圧歪み等の影響に応じて抑制判定値を設定することができる。よって、高調波電流補償装置15は、補償電流Iaを過度に抑制することを回避することができる。また、高調波電流補償装置15は、補償電流Iaの抑制トリガとなる抑制判定値を任意に設定することができるので、補償電流Iaの抑制不足を解消することができる。
 以上、本実施の形態4において、抑制判定値を設定する補償出力指令抑制判定レベル設定手段69をさらに備え、補償出力指令抑制演算手段67は、補償出力指令抑制判定レベル設定手段69で設定された抑制判定値に基づいて、負荷電流ILの高調波成分の指令値を抑制するようにしてもよい。
 上記の構成から、高調波電流補償装置15は、任意に抑制判定値を設定することができるので、系統電源11の相間電圧不平衡又は系統電源11の電圧歪み等の影響に応じて抑制判定値を設定することができる。よって、高調波電流補償装置15は、補償電流Iaを過度に抑制することを回避することができる。また、高調波電流補償装置15は、補償電流Iaの抑制トリガとなる抑制判定値を任意に設定することができるので、補償電流Iaの抑制不足を解消することができる。
 したがって、高調波電流補償装置15は、補償電流Iaの上限を抑制することで、系統電源11の影響で負荷電流ILの瞬時値の変化が大きくなったとしても、特に顕著に、補償電流Iaを瞬時的に過電流レベルに到達させることなく、空気調和装置の運転を継続させることができる。よって、高調波電流補償装置15は、空気調和装置の能力を維持させることができる。
 なお、実施の形態1~4に共通することとして、電力変換装置として、リアクトル付きの整流回路を備えていると想定する。このような想定で、電力変換装置の出力が急激に変動することが比較的小さく、繰り返して同等の負荷電流ILが電力変換装置に流れ、電力変換装置が空気調和装置に電力を供給するような場合、高調波電流補償装置15は特に有効である。
 1 空気調和システム、11 系統電源、13 高調波発生負荷、15 高調波電流補償装置、17 冷媒回路、21 受電点、31 負荷電流検出器、33 補償電流検出器、41 位相検出手段、43 補償出力指令演算手段、45 誤差量演算手段、47 制御量演算手段、49 リミッタ、51 制御信号生成手段、53 主回路、61 記憶手段、63 予測手段、65 補償出力指令抑制判定手段、67 補償出力指令抑制演算手段、69 補償出力指令抑制判定レベル設定手段。

Claims (8)

  1.  系統電源に接続された負荷に並列に接続され、補償電流を供給することで、前記系統電源から前記負荷に入力される負荷電流に含まれる高調波成分を抑制する高調波電流補償装置であって、
     前記負荷電流を検出する負荷電流検出手段と、
     供給された前記補償電流を検出する補償電流検出手段と、
     前記負荷電流検出手段で検出された前記負荷電流に含まれる前記高調波成分と、前記補償電流検出手段で検出された前記補償電流と、に基づいて、前記補償電流の制御量を演算する制御量演算手段と、
     前記補償電流の上限を抑制するリミッタと、
    を備えた高調波電流補償装置。
  2.  前記補償電流の制御量の上限が、前記負荷の運転を停止させるか否かが判定される電流閾値以下に設定されてあって、
     前記リミッタは、
     前記補償電流の上限が、前記電流閾値を超える場合、前記補償電流の制御量の上限を抑制する
    請求項1に記載の高調波電流補償装置。
  3.  前記補償電流と、当該補償電流に対応する位相と、を記憶する記憶手段と、
     前記記憶手段に記憶されている前記補償電流に基づいて、前記補償電流が予め設定された設定値を超えるときの位相を予測する予測手段と、
    をさらに備え、
     前記リミッタは、
     前記予測手段で予測された位相を基準として予め設定された範囲内にある位相に対応する前記補償電流の制御量を抑制する
    請求項2に記載の高調波電流補償装置。
  4.  前記予測手段は、
     前記系統電源の1周期分の前記補償電流の制御量に基づいて、前記補償電流の制御量が予め設定された設定値を超えるときの位相を予測する
    請求項3に記載の高調波電流補償装置。
  5.  前記負荷電流に含まれる前記高調波成分の振幅を抑制する抑制演算手段をさらに備え、
     前記補償電流を抑制させるか否かが判定される抑制判定値が、前記負荷の運転を停止させるか否かが判定される電流閾値未満に設定されてあって、
     前記系統電源は、
     三相交流電源であって、
     前記抑制演算手段は、
     前記補償電流検出手段で検出された前記補償電流のうち、少なくとも一相の前記補償電流が予め設定された抑制判定値に達している場合、前記負荷電流の前記高調波成分の指令値を抑制する
    請求項1又は2に記載の高調波電流補償装置。
  6.  前記系統電源の電源周期と、
     前記系統電源の電源周期に含まれる前記補償電流の制御量を演算する制御周期と、を有し、
     前記抑制演算手段は、
     前記制御周期ごとに、前記補償電流と、前記抑制判定値と、に基づいて、前記負荷電流の前記高調波成分の指令値を抑制する
    請求項5に記載の高調波電流補償装置。
  7.  前記抑制判定値を設定する抑制判定レベル設定手段をさらに備え、
     前記抑制演算手段は、
     前記抑制判定レベル設定手段で設定された前記抑制判定値に基づいて、前記負荷電流の前記高調波成分の指令値を抑制する
    請求項5又は6に記載の高調波電流補償装置。
  8.  請求項1~7の何れか一項に記載の高調波電流補償装置と、
     前記系統電源と、
     前記系統電源に接続され、前記系統電源から供給される電流で駆動する冷媒回路と、
    を備えた空気調和システム。
PCT/JP2014/059573 2014-03-31 2014-03-31 高調波電流補償装置及び空気調和システム WO2015151205A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480073438.0A CN105940585B (zh) 2014-03-31 2014-03-31 高次谐波电流补偿装置以及空气调节系统
JP2016511225A JP6095849B2 (ja) 2014-03-31 2014-03-31 高調波電流補償装置及び空気調和システム
US15/111,039 US10250037B2 (en) 2014-03-31 2014-03-31 Harmonic current compensator and air-conditioning system
PCT/JP2014/059573 WO2015151205A1 (ja) 2014-03-31 2014-03-31 高調波電流補償装置及び空気調和システム
EP14888041.2A EP3128636B1 (en) 2014-03-31 2014-03-31 Harmonic current compensation apparatus and air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059573 WO2015151205A1 (ja) 2014-03-31 2014-03-31 高調波電流補償装置及び空気調和システム

Publications (1)

Publication Number Publication Date
WO2015151205A1 true WO2015151205A1 (ja) 2015-10-08

Family

ID=54239574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059573 WO2015151205A1 (ja) 2014-03-31 2014-03-31 高調波電流補償装置及び空気調和システム

Country Status (5)

Country Link
US (1) US10250037B2 (ja)
EP (1) EP3128636B1 (ja)
JP (1) JP6095849B2 (ja)
CN (1) CN105940585B (ja)
WO (1) WO2015151205A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109805A1 (ja) * 2016-12-12 2018-06-21 三菱電機株式会社 高調波電流補償装置および空気調和システム
JP2019092287A (ja) * 2017-11-14 2019-06-13 三菱重工サーマルシステムズ株式会社 アクティブフィルタ、制御方法及びプログラム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201606104YA (en) * 2014-01-30 2016-08-30 Meidensha Electric Mfg Co Ltd Periodic external disturbance suppression control device
CN111245304B (zh) * 2018-11-29 2021-08-20 安徽美芝精密制造有限公司 补偿方法、补偿装置、电机和存储介质
CN110768257A (zh) * 2019-11-04 2020-02-07 四川英杰电气股份有限公司 网侧谐波电流的抑制方法、装置、设备和可读存储介质
CN114156891B (zh) * 2021-12-14 2024-04-09 海南电网有限责任公司 一种超高次谐波补偿控制方法
CN114400642B (zh) * 2022-01-25 2023-11-10 帝森克罗德集团有限公司 一种有源电力滤波器的谐波提取及限流方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239153U (ja) * 1988-09-06 1990-03-15
JPH06113460A (ja) * 1992-09-25 1994-04-22 Toyo Electric Mfg Co Ltd アクティブフィルタの過電流制限法
JPH08503117A (ja) * 1992-10-30 1996-04-02 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド 同期変換制御式の能動的な電力ライン調整装置
JPH0965588A (ja) * 1995-08-24 1997-03-07 Hitachi Ltd 電力貯蔵システム
JP2001186752A (ja) * 1999-12-27 2001-07-06 Mitsubishi Electric Corp 電源高調波抑制装置および空気調和機
JP2008104258A (ja) * 2006-10-17 2008-05-01 Central Japan Railway Co 電力変換装置あるいは無効電力補償装置による交流電圧制御方法
JP2011035986A (ja) * 2009-07-30 2011-02-17 Sanyo Electric Co Ltd アクティブフィルター

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3708468A1 (de) * 1986-03-17 1987-09-24 Siemens Ag Verfahren und vorrichtung zum kompensieren von oberschwingungsbelastungen und/oder blindlast in einem versorgungsnetz
JPH02129142U (ja) 1989-03-31 1990-10-24
JP2760646B2 (ja) * 1990-09-18 1998-06-04 株式会社東芝 電力変換装置の電流指令値演算装置
JP2701663B2 (ja) 1992-07-09 1998-01-21 三菱電機株式会社 リミッタ装置
JP3457454B2 (ja) 1996-01-12 2003-10-20 株式会社東芝 交直変換装置の高調波抑制協調制御装置
US5977660A (en) 1996-08-09 1999-11-02 Mesta Electronics, Inc. Active harmonic filter and power factor corrector
CN100561824C (zh) * 2007-12-19 2009-11-18 湖南大学 Svc特定次数谐波预测消除控制方法及其实现装置
CN102110984B (zh) * 2011-03-08 2013-01-09 武汉大学 一种复合型的四桥臂并联有源电力滤波器控制方法
CN103138594B (zh) * 2011-11-22 2016-03-02 通用电气公司 中点箝位式变流器的控制系统及控制方法及补偿控制单元
JP5713044B2 (ja) * 2013-04-15 2015-05-07 ダイキン工業株式会社 制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239153U (ja) * 1988-09-06 1990-03-15
JPH06113460A (ja) * 1992-09-25 1994-04-22 Toyo Electric Mfg Co Ltd アクティブフィルタの過電流制限法
JPH08503117A (ja) * 1992-10-30 1996-04-02 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド 同期変換制御式の能動的な電力ライン調整装置
JPH0965588A (ja) * 1995-08-24 1997-03-07 Hitachi Ltd 電力貯蔵システム
JP2001186752A (ja) * 1999-12-27 2001-07-06 Mitsubishi Electric Corp 電源高調波抑制装置および空気調和機
JP2008104258A (ja) * 2006-10-17 2008-05-01 Central Japan Railway Co 電力変換装置あるいは無効電力補償装置による交流電圧制御方法
JP2011035986A (ja) * 2009-07-30 2011-02-17 Sanyo Electric Co Ltd アクティブフィルター

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109805A1 (ja) * 2016-12-12 2018-06-21 三菱電機株式会社 高調波電流補償装置および空気調和システム
JP2019092287A (ja) * 2017-11-14 2019-06-13 三菱重工サーマルシステムズ株式会社 アクティブフィルタ、制御方法及びプログラム
JP7014567B2 (ja) 2017-11-14 2022-02-01 三菱重工サーマルシステムズ株式会社 アクティブフィルタ、制御方法及びプログラム

Also Published As

Publication number Publication date
JPWO2015151205A1 (ja) 2017-04-13
CN105940585A (zh) 2016-09-14
JP6095849B2 (ja) 2017-03-15
CN105940585B (zh) 2018-10-02
EP3128636A1 (en) 2017-02-08
US10250037B2 (en) 2019-04-02
US20160344185A1 (en) 2016-11-24
EP3128636B1 (en) 2019-04-24
EP3128636A4 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6095849B2 (ja) 高調波電流補償装置及び空気調和システム
EP3443656B1 (en) Power factor correction circuits and methods including partial power factor correction operation for boost and buck power converters
EP2309635B1 (en) Ac-dc converter, ac-dc converter control method, motor driving device, compressor driving device, air conditioner, and heat pump-type hot-water supply device
JP5769764B2 (ja) 交流直流変換装置、電動機駆動装置、圧縮機駆動装置、空気調和機、ヒートポンプ式給湯機
JP4706349B2 (ja) 直流電源装置および圧縮機駆動装置
JP2018007327A (ja) 直流電源装置および空気調和機
WO2019049299A1 (ja) 電力変換装置、圧縮機、送風機、および空気調和装置
KR20100033655A (ko) 3상 역률 보상 장치 및 그 제어방법
KR101738796B1 (ko) 전압-적응형 전자식 모듈의 제어
JP6710291B2 (ja) 高調波電流補償装置および空気調和システム
JP6559352B2 (ja) 電力変換装置、モータ駆動制御装置、送風機、圧縮機および空気調和機
JP6258806B2 (ja) 系統連系用電力変換装置
JP6146316B2 (ja) 空気調和機
JP2001314085A (ja) 電源装置と、インバータ装置および空気調和機
JP6935015B2 (ja) 高調波電流補償装置および空気調和システム
JP2018007320A (ja) 系統連系制御装置
JP2011024394A (ja) 電力変換装置
CN111819781B (zh) 整流电路装置
JP5050485B2 (ja) 電動機制御装置およびそれを備えた空気調和機
JP5994334B2 (ja) 3相スイッチ整流器
JP2006149021A (ja) 直流電源装置およびこれを用いた圧縮機駆動装置
JP2011160558A (ja) 直流電源装置
JP2006180700A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511225

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014888041

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15111039

Country of ref document: US

Ref document number: 2014888041

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE