WO2015147239A1 - 表面溶融炉及び表面溶融炉の運転方法 - Google Patents

表面溶融炉及び表面溶融炉の運転方法 Download PDF

Info

Publication number
WO2015147239A1
WO2015147239A1 PCT/JP2015/059547 JP2015059547W WO2015147239A1 WO 2015147239 A1 WO2015147239 A1 WO 2015147239A1 JP 2015059547 W JP2015059547 W JP 2015059547W WO 2015147239 A1 WO2015147239 A1 WO 2015147239A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
supply mechanism
air
workpiece
processed
Prior art date
Application number
PCT/JP2015/059547
Other languages
English (en)
French (fr)
Inventor
上林 史朗
吉岡 洋仁
史樹 寳正
正治 岡田
健一郎 篠原
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to EP15770414.9A priority Critical patent/EP3124864B1/en
Publication of WO2015147239A1 publication Critical patent/WO2015147239A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • F23J1/08Liquid slag removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/12Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating using gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • F23G5/26Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber having rotating bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/104Combustion in two or more stages with ash melting stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/30Oxidant supply

Definitions

  • the present invention relates to a surface melting furnace and a method for operating the surface melting furnace for melting a workpiece containing phosphorus and a combustible material.
  • the surface melting furnace includes a furnace chamber in which a combustion burner and an air supply mechanism are installed at a substantially central portion of the furnace ceiling, and an outlet is formed at the bottom of the furnace, and a workpiece storage section provided around the furnace chamber And a workpiece supply mechanism for supplying the workpiece to the furnace chamber.
  • Patent Document 1 is filled with a processed material between an inner cylinder and an outer cylinder for the purpose of providing a surface melting furnace that can improve the melting processing speed of dry distillation residue containing unburned carbon and having self-combustibility.
  • An annular supply path for dropping itself in the state is formed, the lower end of the annular supply path is configured to communicate with the combustion chamber, and an air supply mechanism is provided for supplying combustion air to the annular accumulation portion of the dry distillation residue facing the combustion chamber
  • Surface melting furnaces have been proposed.
  • the combustion residue can be efficiently burned and melted by supplying combustion air to the dry distillation residue heated to a high temperature by a combustion burner. It becomes like this.
  • a combustion burner is mainly used as a heat source for melting flammable waste, and by supplying combustion air to a dry distillation residue heated to a high temperature by the combustion burner, The residue was configured to be efficiently burned and melted.
  • the air supplied from the air supply mechanism so as to follow the inclined direction of the surface of the object to be processed or spirally descend along the surface of the object to be processed.
  • the combustion air supplied from the air supply mechanism is combustible as the combustible gas generated by pyrolyzing the combustible waste supplied to the furnace chamber rises toward the furnace ceiling. Consumed for the combustion of sex gases. For this reason, there is a problem that the combustion air is insufficient in the vicinity of the surface of the combustible waste.
  • the volatilized phosphorus flows through the flue along with the exhaust gas, cools and condenses as it is processed in the exhaust gas treatment facility, and precipitates as phosphoric acid dust, leading to blockage of the exhaust gas flow paths of boilers, air preheaters, etc. .
  • the object of the present invention is to provide a surface melting furnace capable of suppressing the volatilization of phosphorus and improving the melting processing efficiency even when a processing object containing phosphorus and a combustible material is melt-processed.
  • the point is to provide a method of operating the surface melting furnace.
  • the first characteristic configuration of the surface melting furnace according to the present invention is that, as described in claim 1, a burner and an air supply mechanism are installed and a spout is formed. And a workpiece supply mechanism for supplying the workpiece to the furnace chamber from a workpiece storage section provided in communication with the furnace chamber, and melting the workpiece A surface melting furnace, wherein the object to be treated contains phosphorus and a combustible material, and air is directed to the surface of the object to be treated in the vicinity of the furnace chamber and the object accommodating portion communicating with each other. Is provided with an edge air supply mechanism.
  • the object to be processed is heated in the furnace by the air supplied from the burner and the air supply mechanism, the surface is melted and falls from the outlet.
  • the combustible in the material to be processed supplied to the furnace chamber is pyrolyzed according to the temperature in the furnace chamber, and combustible gas is generated and burned while rising.
  • the fixed carbon remaining in the vicinity of the surface of the object to be processed by thermal decomposition of the combustible material is combusted by the air supplied from the edge air supply mechanism toward the surface of the object to be processed. Furthermore, the volatilization of phosphorus is suppressed by suppressing the reduction reaction of the phosphorus compound and the phosphorus oxide by excess oxygen. Therefore, air is efficiently supplied to the combustible gas and the fixed carbon content, and the melting processing efficiency is remarkably increased. If the processing amount is the same, the furnace can be configured to be small. Increased melt throughput.
  • the second feature configuration is the melting region in which the surface of the workpiece is melted in the furnace chamber in addition to the first feature configuration described above. It is in the point which supplies air to the surface of the thermal decomposition area
  • the edge air supply mechanism in addition to the second feature configuration described above, has an oxygen concentration of 1 Vol% or more on the surface of the thermal decomposition region. The point is to supply air.
  • the edge air supply mechanism supplies air to the surface of the workpiece. It is in the point provided with the equalization mechanism which supplies uniformly.
  • the fifth feature configuration is that, in addition to the fourth feature configuration described above, the uniformizing mechanism is a swirler attached to the edge air supply mechanism.
  • the air Since the air is diffused and supplied by the swirler, the air can be supplied uniformly to the surface of the object to be processed without setting the air supply nozzles constituting the edge air supply mechanism closely, for example.
  • the edge air supply mechanism is lower than the scattering speed of the object to be processed. It is the point comprised so that air may be supplied with the flow rate.
  • the flow rate of air supplied toward the surface of the object to be processed is adjusted so that the object to be processed including the combustible material is melted without being scattered in the furnace. As a result, the volatilization of phosphorus is effectively suppressed without affecting the melting process.
  • the edge air supply mechanism is configured so that an object to be processed is disposed in the furnace chamber. It is in the point provided with the some nozzle arranged along the thermal decomposition area
  • air is supplied from a plurality of nozzles arranged along the pyrolysis zone, air is evenly supplied evenly to the surface of the workpiece in the pyrolysis zone, which is effective in a wide range and suppresses volatilization of phosphorus. Is done.
  • the edge air supply mechanism includes a refractory layer forming a furnace ceiling. And a plurality of nozzles installed so as to extend from the cavity to the furnace chamber.
  • the tubular cavity functions as an air supply header pipe. Therefore, it is not necessary to install additional equipment such as a large air supply header pipe in the space above the furnace ceiling. Furthermore, since the nozzle does not penetrate the furnace ceiling, the furnace strength can be sufficiently secured.
  • the amount of air supplied from the edge air supply mechanism is a melting treatment. Is set in the range of 10% to 50% of the total air amount required for the operation.
  • the air supplied to the furnace chamber is supplied from an air supply mechanism and an edge air supply mechanism provided in the furnace ceiling.
  • Pyrolysis gas that pyrolyzes on the surface of the workpiece and rises in the furnace chamber burns with the air supplied from the edge air supply mechanism and the air supply mechanism, and the fixed carbon content on the surface of the workpiece is mainly edge air. Volatilization of phosphorus is suppressed by burning with air supplied from the supply mechanism and suppressing the reduction reaction of the phosphorus compound or phosphorus oxide by the excess oxygen.
  • the amount of air supplied from the edge air supply mechanism is set in the range of 10% to 50% of the total amount of air required for the melting process, the air consumption balance is improved and the melting process efficiency is improved. As the temperature rises, the volatilization of phosphorus is effectively suppressed.
  • the inner cylinder and the bottom portion of the furnace bottom integrally formed around the furnace ceiling are provided.
  • An outer cylinder formed integrally with the periphery is arranged concentrically, the workpiece receiving portion is configured in a gap between the inner cylinder and the outer cylinder, and the object is processed by relative rotation between the inner cylinder and the outer cylinder.
  • a workpiece supply mechanism for annularly supplying an object to the furnace chamber, and the edge air supply mechanism is configured to supply air toward the surface of the annular workpiece. .
  • the characteristic configuration of the operation method of the surface melting furnace according to the present invention is as described in claim 11, in which a burner and an air supply mechanism are installed and an outlet is formed, and around the furnace chamber
  • a method for operating a surface melting furnace comprising a workpiece supply mechanism for supplying a workpiece to a furnace chamber from a workpiece storage section provided, the workpiece containing phosphorus and a combustible material
  • the object is stored in the object storage part, and a part of the total air amount necessary for the melting process is supplied to the surface of the object to be processed immediately after being supplied to the furnace chamber by the object supply mechanism. This is to maintain the surface of the workpiece in an oxidizing atmosphere.
  • a part of the total amount of air necessary for the melting process is supplied so as to maintain an oxidizing atmosphere on the surface of the object to be processed. Therefore, the fixed carbon remaining after the pyrolysis burns, and the remaining oxygen suppresses the reduction reaction of the phosphorus compound and phosphorus oxide, thereby suppressing the volatilization of phosphorus.
  • the surface melting furnace and the surface melting that can suppress the volatilization of phosphorus and improve the melting processing efficiency even when the processing object containing phosphorus and the combustible material is melt-processed. It has become possible to provide a method for operating the furnace.
  • FIG. 1 is an explanatory view of a rotary surface melting furnace according to the present invention.
  • 2 (a) and 2 (b) are explanatory views of the main part of the rotary surface melting furnace.
  • FIG. 3A, FIG. 3B, and FIG. 3C are explanatory diagrams of the edge air supply mechanism.
  • FIG. 4 is an explanatory view of a main part of the rotary surface melting furnace.
  • FIG. 5 is an explanatory diagram of a main part of the edge air supply mechanism.
  • 6 (a) and 6 (b) show another embodiment and are explanatory views of the main part of the surface melting furnace.
  • FIG. 1 shows a rotary surface melting furnace 1 which is an example of a surface melting furnace.
  • the surface melting furnace 1 is a furnace for melting an object to be processed containing phosphorus and a combustible material.
  • the surface melting furnace 1 includes a furnace chamber 4 in which two auxiliary combustion burners 10 provided with an air supply mechanism 11 are installed in a substantially central part of the furnace ceiling 2 and an outlet 3a is formed in the furnace bottom 3;
  • a workpiece storage unit 7 that is provided around the chamber 4 and communicates with the furnace chamber 4, and a workpiece supply mechanism 8 that supplies the workpiece to the furnace chamber 4 that communicates with the workpiece storage unit 7. Yes.
  • an inner cylinder 5 formed integrally with the furnace ceiling 2 around the furnace ceiling 2 and an outer cylinder 6 formed integrally with the furnace bottom 3 around the furnace bottom 3 are arranged concentrically.
  • the space formed between the outer cylinder 6 and the outer cylinder 6 is configured to be the workpiece storage portion 7.
  • connection part with the drive mechanism 13 is provided in the lower part of the outer cylinder 6, and when the outer cylinder 6 rotates by the drive mechanism 13, the inner cylinder 5 and the outer cylinder 6 are comprised so that it may rotate relatively.
  • a plurality of cutting blades 8 constituting a workpiece supply mechanism are provided in the lower part of the inner cylinder 5 along the circumferential direction.
  • the cutting blade 8 is composed of a plate-like inclined blade that guides to the furnace chamber 4 an object to be processed that moves in a tangential direction below the inner cylinder 5 by the rotation of the outer cylinder 6.
  • the inner cylinder 5, and the outer cylinder 6 By the relative rotation of the cutting blade 8, the inner cylinder 5, and the outer cylinder 6, the object to be processed accommodated in the object to be processed container 7 is supplied to the furnace chamber 4 in an annular shape, and the object to be processed in the furnace chamber 4 is It becomes a mortar shape.
  • the fluidity of the workpiece is high, the workpiece is supplied to the furnace chamber 4 in an annular shape by the relative rotation of the inner cylinder 5 and the outer cylinder 6 without the cutting blade 8.
  • the edge air supply mechanism 20 that supplies air toward the surface of the thermal decomposition region R1 is disposed.
  • the boundary between the edge of the cover body 5 a extending from the upper part of the inner cylinder 5 in the direction of the outer cylinder 6 and the outer cylinder 6 is sealed with the water sealing mechanism 14.
  • a hopper 15 having a double damper mechanism 15 a is disposed on the upper part of the cover body 5 a, and the object to be processed is thrown into the object to be processed container 7 by the screw conveyor mechanism 16.
  • the furnace ceiling 2, the furnace bottom part 3, the inner cylinder 5 and the outer cylinder 6 are configured by fire walls laminated with fire bricks and the like, and the fire resistance in the furnace chamber 4 is provided around the outlets of the furnace ceiling 2 and the furnace bottom part 3.
  • a water cooling jacket is arranged to cover the wall from the outside.
  • a water tank for receiving the molten slag in which the object to be processed is melted is disposed below the tap outlet 3a.
  • a flue extends in the horizontal direction, along the flue, a secondary combustion device, a heat recovery device such as an exhaust heat boiler and an air preheater, a temperature reducing tower, a bag filter, Exhaust gas treatment facilities such as a smoke cleaning device and a white smoke prevention device are arranged, and the purified exhaust gas is exhausted from the chimney.
  • To-be-treated materials containing phosphorus and combustible materials are mainly sewage sludge, and in addition, livestock manure, animal and vegetable residues such as food waste, ground municipal waste, etc. are included.
  • the auxiliary combustion burner 10 When the rotary surface melting furnace 1 is started up, the auxiliary combustion burner 10 is ignited and the furnace chamber 4 is preheated to 1000 ° C. or higher, and then the outer cylinder 6 is rotated via the drive mechanism 13 to supply the object to be processed. When the workpiece starts melting, the auxiliary burner 10 is stopped. Thereafter, the object to be processed continues to melt by self-combustion. In addition, when the calorie
  • An object to be processed put into the furnace chamber 4 is a pyrolysis region R1 which is an annular region of about 500 mm from the inner cylinder 5 which is a supply position to the furnace chamber toward the tap outlet 3a which is the center of the furnace.
  • the combustible material is pyrolyzed by the furnace temperature (see FIG. 2A), and the generated pyrolysis gas is heated to high temperature by the air supplied from the edge air supply mechanism 20 and the air supply mechanism 11 provided in the furnace ceiling 2. Combustion (see FIG. 2B).
  • Fixed carbon and inorganic substances which are residues resulting from pyrolysis of combustible materials, are heated to about 1300 ° C. by radiant heat reflected from the furnace ceiling 2, and the fixed carbon components are pyrolyzed by the air supplied from the edge air supply mechanism 20. Solid combustion occurs in the region R1 (see FIG. 2B). Further, the inorganic substance melts in the melting region R2 and flows down while flowing toward the brewing port 3a and flows out from the brewing port 3a.
  • Combustion gas is attracted toward the chimney by an induction blower provided on the downstream side of the flue, and is reduced in temperature and purified by the above-described exhaust gas treatment facility and exhausted from the chimney.
  • the air supplied from the air supply mechanism 11 into the furnace is preheated to about 200 ° C. by boiler steam, an air preheater or a separate hot air generator.
  • the edge air supply mechanism 20 functions to supply the air toward the surface of the workpiece immediately after being introduced into the furnace chamber 4 to suppress the volatilization of phosphorus contained in the workpiece.
  • the amount of air supplied from the edge air supply mechanism 20 is preferably set in the range of 10% to 50% of the total amount of air required for the melting process.
  • the air supplied by the edge air supply mechanism 20 is supplied straight toward the surface of the workpiece, not in the direction of swirling in the furnace. Therefore, since it is difficult for a swirling flow to occur in the furnace chamber 4, the swirling force hardly acts on the slag falling from the tap hole, and the possibility of adhering to the wall surface of the secondary chamber is reduced.
  • Air supplied to the furnace chamber 4 is supplied from an air supply mechanism 11 and an edge air supply mechanism 20 provided in the furnace ceiling 2.
  • the pyrolysis gas generated by the pyrolysis of the combustible material on the surface of the workpiece and rising in the furnace chamber is combusted by the air supplied from the edge air supply mechanism 20 and the air supply mechanism 11.
  • the fixed carbon content on the surface of the workpiece is mainly burned by the air supplied from the edge air supply mechanism 20 and used for suppressing phosphorus volatilization.
  • the fixed carbon remaining in the vicinity of the surface of the object to be processed by thermal decomposition is combusted by the air supplied from the edge air supply mechanism 20 toward the surface of the object to be processed. Furthermore, the volatilization of phosphorus is suppressed by suppressing the reduction reaction of the phosphorus compound and the phosphorus oxide by excess oxygen.
  • the total amount of air required for the melting treatment is a value of about 1.0 to 1.2 times the theoretical amount of air required for combustion of the workpiece and the burner, and is set as appropriate depending on the properties of the workpiece. It is. If it exceeds 50% of the total air amount, the air acts in the direction of lowering the ambient temperature in the thermal decomposition region R1, so that the processing efficiency is lowered.
  • the edge air supply mechanism 20 including a plurality of nozzles arranged along the thermal decomposition region R1 upstream of the melting region R2 in which the surface of the workpiece is melted in the furnace chamber 4 is provided.
  • the edge air supply mechanism 20 including a plurality of nozzles arranged along the thermal decomposition region R1 upstream of the melting region R2 in which the surface of the workpiece is melted in the furnace chamber 4 is provided.
  • volatilization of phosphorus is suppressed, the combustion rate in the thermal decomposition region R1 is increased, and the temperature is increased due to heat generated by the combustion. This temperature increase further increases the speed of drying of the object to be processed, pyrolysis of the combustible material, combustion, and melting.
  • the efficiency of the melting process increases, and the furnace can be made smaller if the processing amount is the same, and the melting processing amount increases if the furnace is the same size.
  • the edge air supply mechanism 20 is preferably configured to supply air so that the oxygen concentration is 1 Vol% or more on the surface of the thermal decomposition region R1, and at a flow rate lower than the scattering speed of the workpiece, More preferably, the air is supplied at a flow rate lower than the scattering rate of the combustible material.
  • the edge air supply mechanism 20 When the air supplied from the edge air supply mechanism 20 is supplied so that the oxygen concentration is 1 vol% or more on the surface of the thermal decomposition region R1 upstream from the melting region R2, the phosphorus compound or the phosphorus oxide The reduction reaction is effectively suppressed, and as a result, the volatilization of phosphorus is suppressed.
  • the flow rate of the air supplied toward the surface of the object to be processed is adjusted so that the object to be processed including the combustible material is melted without being scattered in the furnace.
  • the reduction reaction of the phosphorus oxide is suppressed, and the volatilization of phosphorus is suppressed.
  • the flow rate of the air that does not cause the workpiece to scatter in the furnace is not a numerical value that is fixed to a constant value, but a value that varies depending on the average particle size, average density, moisture content, etc. of the workpiece, It is a value set appropriately according to the object to be processed.
  • the object to be treated is a dried sludge having a moisture content of about 20 to 30% obtained by drying sewage sludge
  • the flow rate of air along the surface of the dried sludge is in the range of about 5 m / second to 6 m / second. , Scattering is suppressed.
  • the edge air supply mechanism 20 includes a plurality of cylindrical nozzles arranged on the circumference that is equidistant from the center of the furnace in a plan view and positioned at the outer peripheral edge of the furnace ceiling 2. 20a, an annular air header pipe 21 for supplying air to each nozzle 20a, and an air supply pipe 22 for supplying air preheated to about 200 ° C. by an air preheater or the like to the air header pipe 21. ing. Note that the air supplied to the air supply mechanism 11 is also supplied from the air supply pipe 22 through the flow rate adjusting mechanism.
  • the flow velocity of air on the surface of the workpiece using the cylindrical nozzle 20a is supplied at a rate of 0.6 in the radial direction with respect to the axial distance 1 of the cylindrical nozzle, so that the tip of the cylindrical nozzle 20a has a height of about 420 mm. What is necessary is just to arrange
  • the diameter of the air expands while swirling and is uniformly supplied to the surface of the object to be processed. Therefore, when blowing the same amount of air, the number can be reduced as compared with the case where the cylindrical nozzle 20a is used.
  • the swirler nozzle 20b is an example of a uniformizing mechanism that uniformly supplies air to the surface of the workpiece.
  • FIG. 4 shows a state in which a plurality of nozzles 20 a constituting the edge air supply mechanism 20 are arranged on the peripheral edge of the furnace ceiling 2.
  • Each nozzle 20a is connected to an air header pipe disposed in the upper space.
  • Each nozzle 20a may be installed in a vertical posture, or a cut-out portion where the inner cylinder 5 and the thermal decomposition region R1 intersect, that is, a portion where the furnace chamber 4 and the object-to-be-processed container 7 communicate with each other. You may install in the attitude
  • FIG. 1
  • an annular cavity 2 b may be formed in the fireproof wall 2 a constituting the furnace ceiling 2, and the cavity 2 b may be configured in the air header pipe 21. And you may comprise so that the opening 2c which faces a furnace chamber may be formed in the lower surface of the cavity 2b at a predetermined pitch, and the path
  • the surface melting furnace is the rotary surface melting furnace 1
  • the surface melting furnace according to the present invention is not limited to the rotary surface melting furnace 1, but other types. Needless to say, the present invention can also be applied to other surface melting furnaces.
  • a surface in which a tap outlet 3 a is formed at the center of the furnace bottom portion 3 and a plurality of pushing-in mechanisms 30 for charging the workpieces are arranged around the furnace bottom portion 3. It is also possible to apply to the melting furnace 1.
  • both the outer cylinder 6 configured integrally with the furnace bottom portion 3 and the inner cylinder 5 configured integrally with the furnace ceiling 2 are fixed, and an object to be processed is placed in the furnace chamber by the push-in mechanism 30. Supplied type.
  • a surface melting furnace 1 in which an outlet 3a is formed at the end of the furnace bottom 3 and a plurality of push-in mechanisms 30 for injecting workpieces are arranged on the opposite side. It is also possible to apply to.
  • the push-in mechanism 30 is a workpiece supply mechanism.
  • the present invention reduces the phosphorus compound or phosphorus oxide contained in the object to be processed toward the surface of the object to be processed containing phosphorus and combustible material immediately after being introduced into the furnace chamber by the object supply mechanism.
  • a surface melting furnace provided with an edge air supply mechanism for supplying air for gasifying combustible materials.
  • the method for operating a surface melting furnace includes a furnace chamber in which a burner and an air supply mechanism are installed and an outlet is formed, and a workpiece storage section provided around the furnace chamber.
  • a surface melting furnace operating method comprising a workpiece supply mechanism for supplying a workpiece to a furnace chamber, and containing a workpiece containing phosphorus and a combustible material in a workpiece storage section Then, a part of the total amount of air necessary for the melting process is supplied to the surface of the workpiece immediately after being supplied to the furnace chamber by the workpiece supply mechanism, and the surface of the workpiece is maintained in an oxidizing atmosphere.
  • This is a method of operating a surface melting furnace.
  • air is used as the gas containing oxygen
  • the air may be used as it is as long as it contains oxygen, or oxygen may be enriched or nitrogen may be used.
  • the processed air may be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

リンの揮散の抑制と溶融処理効率の向上を目指す表面溶融炉1で、炉天井2の略中央部に助燃バーナ及び空気供給機構11が設置されるとともに炉底部3に出滓口3aが形成された炉室4と、前記炉室4の周囲に設けられた被処理物収容部7から被処理物を前記炉室4に供給する被処理物供給機構8と、前記被処理物供給機構8によって炉室4に投入された直後の被処理物の表面に向けて空気を供給して可燃性廃棄物に含有するリン酸化物の還元反応を抑制する縁部空気供給機構20を備えている。

Description

表面溶融炉及び表面溶融炉の運転方法
 本発明は、リン及び可燃物を含有する被処理物を溶融処理する表面溶融炉及び表面溶融炉の運転方法に関する。
 表面溶融炉は、炉天井の略中央部に燃焼バーナ及び空気供給機構が設置されるとともに炉底部に出滓口が形成された炉室と、炉室の周囲に設けられた被処理物収容部から被処理物を炉室に供給する被処理物供給機構とを備えて構成されている。
 このような表面溶融炉でリン及び可燃物を含有する被処理物を溶融処理する場合、燃焼及び溶融に必要な空気が炉天井の略中央部に配置された空気供給機構から供給され、可燃分を効率的に燃焼させるために必要な領域に空気が十分に供給されない等の理由で、炉床の単位面積当たりの処理量が少なく、同量の被処理物を処理する場合に大型の炉になるという問題があった。
 特許文献1には、未燃焼の炭素を含み、自燃性を有する乾留残渣の溶融処理速度を向上できる表面溶融炉を提供することを目的として、内筒と外筒との間に処理物を充填状態で自重落下させる環状供給路を形成し、環状供給路の下端が燃焼室に連通するように構成され、燃焼室に臨む乾留残渣の環状堆積部分に燃焼用空気を供給する給気機構を備えた表面溶融炉が提案されている。
 廃棄物が乾留残渣のような自燃性を有するものである場合に、燃焼バーナで高温化された乾留残渣に燃焼用空気を供給することにより、乾留残渣を効率的に燃焼溶融処理することができるようになる。
特開平10-122523号公報
 特許文献1に開示された表面溶融炉は、主に燃焼バーナが可燃性廃棄物を溶融するための熱源として利用され、燃焼バーナで高温化された乾留残渣に燃焼用空気を供給することにより乾留残渣が効率的に燃焼溶融されるように構成されていた。
 そのため、燃焼バーナを熱源に用いることなく可燃性廃棄物の燃焼熱を溶融熱源とする場合に、給気機構から多量の燃焼用空気が供給されると、可燃性廃棄物の表面が冷却されて熱分解及び溶融処理が滞る虞がある。また可燃性廃棄物が炉内に飛散して未溶融の状態で出滓口から排出されるという問題もあった。
 結果として、乾留残渣に燃焼用空気を積極的に供給することが困難であり、炉床の単位面積当たりの処理量が少ないという問題が解消されることはなかった。
 また、被処理物の表面に沿って螺旋状に降下するように空気が給気機構によって供給されると、炉内での旋回流れが強くなり、出滓口から落下するスラグに旋回力が作用して、二次室の壁面へスラグが付着して堆積するという問題があった。
 さらに、可燃性廃棄物の飛散を回避するために、被処理物の表面の傾斜方向に沿うように、或いは被処理物の表面に沿って螺旋降下するように給気機構から供給される空気の供給量を制限すると、炉室に供給された可燃性廃棄物が熱分解されて発生した可燃性ガスが炉天井に向けて上昇するのに伴って給気機構から供給される燃焼用空気が可燃性ガスの燃焼に消費される。そのため、可燃性廃棄物の表面近傍で燃焼用空気が不足するという問題もあった。
 特に被処理物としてリン及び可燃物を含有する被処理物を溶融処理する場合に、熱分解後の被処理物の表面に残存する固定炭素分に十分な空気が供給できないために酸素が不足し、リンの排ガス中への揮散を効果的に抑制することができなかった。
 そして、揮散したリンは排ガスとともに煙道を流れて排ガス処理設備で処理される過程で冷却・凝縮し、リン酸ダストとして析出し、ボイラや空気予熱器等の排ガス流路の閉塞を招いていた。
 本発明の目的は、上述した問題点に鑑み、リン及び可燃物を含有する被処理物を溶融処理する場合でも、リンの揮散を抑制するとともに溶融処理効率を向上させることができる表面溶融炉及び表面溶融炉の運転方法を提供する点にある。
 上述の目的を達成するため、本発明による表面溶融炉の第一の特徴構成は、特許請求の範囲の請求項1に記載した通り、バーナ及び空気供給機構が設置されるとともに出滓口が形成された炉室と、前記炉室に連通して設けられた被処理物収容部から被処理物を前記炉室に供給する被処理物供給機構とを備えて構成され、被処理物を溶融処理する表面溶融炉であって、被処理物はリンと可燃物を含有し、前記炉室と前記被処理物収容部が連通する近傍であって前記炉室内の被処理物の表面に向けて空気を供給する縁部空気供給機構を備えている点にある。
 バーナ及び空気供給機構から供給される空気によって被処理物が炉内で加熱し、表面が溶融して出滓口から落下する。炉室に供給された被処理物中の可燃物は炉室内の温度によって熱分解して可燃性ガスが発生し上昇しながら燃焼する。
 可燃物の熱分解により被処理物の表面近傍に残存する固定炭素分は、縁部空気供給機構から被処理物の表面に向けて供給される空気によって燃焼する。さらに余った酸素によってリン化合物やリン酸化物の還元反応が抑制されることでリンの揮散が抑制される。従って、可燃性ガス及び固定炭素分に効率的に空気が供給されるようになり、溶融処理効率が著しく上昇し、同じ処理量であれば炉を小型に構成でき、同じサイズの炉であれば溶融処理量が増加する。
 同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記縁部空気供給機構は、前記炉室内で被処理物の表面が溶融する溶融領域より上流側の熱分解領域の表面に空気を供給する点にある。
 縁部空気供給機構から供給された空気が、溶融領域より上流側の熱分解領域の表面に供給されることにより、被処理物に含有するリンの揮散が効果的に抑制されるようになる。
 同第三の特徴構成は、同請求項3に記載した通り、上述の第二の特徴構成に加えて、前記縁部空気供給機構は、前記熱分解領域の表面で酸素濃度が1Vol%以上となるように空気を供給する点にある。
 熱分解領域の表面で酸素濃度が1Vol%以上となるように縁部空気供給機構から空気が供給されると、リン化合物やリン酸化物の還元反応が効果的に抑制され、リンの揮散が抑制される。
 同第四の特徴構成は、同請求項4に記載した通り、上述の第一から第三の何れかの特徴構成に加えて、前記縁部空気供給機構は、被処理物の表面に空気を均一に供給する均一化機構を備えている点にある。
 均一化機構によって被処理物の表面にむらなく空気が供給されるので、全域で効果的にリンの揮散が抑制されるようになる。
 同第五の特徴構成は、同請求項5に記載した通り、上述の第四の特徴構成に加えて、前記均一化機構は前記縁部空気供給機構に取り付けられたスワラーである点にある。
 スワラーによって空気が拡散供給されるので、縁部空気供給機構を構成する例えば空気供給ノズルの設置間隔を密に設定しなくても、被処理物の表面にむらなく空気が供給できるようになる。
 同第六の特徴構成は、同請求項6に記載した通り、上述の第一から第五の何れかの特徴構成に加えて、前記縁部空気供給機構は、被処理物の飛散速度より低い流速で空気を供給するように構成されている点にある。
 可燃物を含む被処理物が炉内で飛散することなく溶融処理されるように、被処理物の表面に向けて供給される空気の流速が調整される。その結果、溶融処理に影響を与えることなく効果的にリンの揮散が抑制される。
 同第七の特徴構成は、同請求項7に記載した通り、上述の第一から第六の何れかの特徴構成に加えて、前記縁部空気供給機構は、前記炉室内で被処理物の表面が溶融する溶融領域より上流側の熱分解領域に沿って配列された複数のノズルを備えて構成されている点にある。
 熱分解領域に沿って配列された複数のノズルから空気が供給されるので、熱分解領域での被処理物の表面にむらなく均一に空気が供給され、広範囲で効果的でリンの揮散が抑制される。
 同第八の特徴構成は、同請求項8に記載した通り、上述の第一から第七の何れかの特徴構成に加えて、前記縁部空気供給機構は、炉天井を形成する耐火物層に形成された管状の空洞と、前記空洞から前記炉室に延出するように設置された複数のノズルで構成されている点にある。
 炉天井に複数のノズルを配置する場合には、炉天井の耐火壁を貫通する複数のノズルを設置する作業に加えて、空気供給ヘッダー管等の付属設備の設置作業も必要になり、さらには炉天井の強度が低下する虞もある。
 しかし、耐火物層に管状の空洞を形成し、空洞から炉室に延出するように複数のノズルを設置すると、管状の空洞が空気供給ヘッダー管として機能する。そのため、炉天井の上方空間に大きな空気供給ヘッダー管等の付属設備を設置する必要が無くなる。さらに、ノズルが炉天井を貫通することが無いので、炉の強度も十分に確保できる。
 同第九の特徴構成は、同請求項9に記載した通り、上述の第一から第八の何れかの特徴構成に加えて、前記縁部空気供給機構から供給される空気量は、溶融処理に必要な全空気量の10%から50%の範囲に設定されている点にある。
 炉室に供給される空気は、炉天井に備えた空気供給機構及び縁部空気供給機構から供給される。被処理物表面で熱分解して炉室を上昇する熱分解ガスは縁部空気供給機構及び空気供給機構から供給される空気で燃焼し、被処理物表面の固定炭素分は主に縁部空気供給機構から供給される空気で燃焼し、余った酸素によってリン化合物やリン酸化物の還元反応が抑制されることでリンの揮散が抑制される。
 この場合に、縁部空気供給機構から供給される空気量が溶融処理に必要な全空気量の10%から50%の範囲に設定されていると、空気の消費バランスがよくなり、溶融処理効率が上昇するとともにリンの揮散が効果的に抑制される。
 同第十の特徴構成は、同請求項10に記載した通り、上述の第一から第九の何れかの特徴構成に加えて、炉天井の周囲に一体に形成された内筒と炉底部の周囲に一体に形成された外筒とが同心円状に配置され、前記内筒と外筒との間隙に前記被処理物収容部が構成され、前記内筒と外筒との相対回転により被処理物を前記炉室に円環状に供給する被処理物供給機構を備え、前記縁部空気供給機構が円環状の被処理物の表面に向けて空気を供給するように構成されている点にある。
 内筒と外筒との相対回転により被処理物が炉室に円環状に供給される回転式表面溶融炉に対して、円環状の被処理物の表面に向けて空気を供給する縁部空気供給機構が配置されていると、均質な溶融処理が可能になる。
 本発明による表面溶融炉の運転方法の特徴構成は、同請求項11に記載した通り、バーナ及び空気供給機構が設置されるとともに出滓口が形成された炉室と、前記炉室の周囲に設けられた被処理物収容部から被処理物を前記炉室に供給する被処理物供給機構とを備えて構成される表面溶融炉の運転方法であって、リンと可燃物を含有する被処理物を被処理物収容部に収容し、前記被処理物供給機構により前記炉室に供給された直後の被処理物の表面に、溶融処理に必要な全空気量の一部を供給して、被処理物の表面を酸化雰囲気に維持する点にある。
 溶融処理に必要な全空気量の一部が被処理物の表面に酸化雰囲気を維持するように供給される。そのため、熱分解の後に残存する固定炭素分が燃焼し、さらに余った酸素によってリン化合物やリン酸化物の還元反応が抑制されることでリンの揮散が抑制される。
 以上説明した通り、本発明によれば、リン及び可燃物を含有する被処理物を溶融処理する場合でも、リンの揮散を抑制するとともに溶融処理効率を向上させることができる表面溶融炉及び表面溶融炉の運転方法を提供することができるようになった。
図1は本発明による回転式表面溶融炉の説明図である。 図2(a),図2(b)は回転式表面溶融炉の要部の説明図である。 図3(a),図3(b),図3(c)は縁部空気供給機構の説明図である。 図4は回転式表面溶融炉の要部の説明図である。 図5は縁部空気供給機構の要部の説明図である。 図6(a),図6(b)は別実施形態を示し、表面溶融炉の要部の説明図である。
 以下、本発明による表面溶融炉及び表面溶融炉の運転方法の実施形態を説明する。
 図1には、表面溶融炉の一例である回転式表面溶融炉1が示されている。当該表面溶融炉1はリン及び可燃物を含有する被処理物を溶融処理するための炉である。表面溶融炉1は、炉天井2の略中央部に空気供給機構11を備えた2本の助燃バーナ10が設置されるとともに炉底部3に出滓口3aが形成された炉室4と、炉室4の周囲に設けられ炉室4と連通する被処理物収容部7と、被処理物収容部7と連通する炉室4に被処理物を供給する被処理物供給機構8等を備えている。
 また、炉天井2の周囲に炉天井2と一体に形成された内筒5と炉底部3の周囲に炉底部3と一体に形成された外筒6とが同心円状に配置され、内筒5と外筒6との間に形成された空間が被処理物収容部7となるように構成されている。
 外筒6の下部に駆動機構13との連結部が設けられ、駆動機構13によって外筒6が回転することで内筒5と外筒6とが相対回転するように構成されている。被処理物供給機構を構成する切出し羽根8が内筒5の下部に、周方向に沿って複数設けられている。
 切出し羽根8は、外筒6の回転によって被処理物が内筒5の下部で接線方向に移動する被処理物を炉室4に案内する板状の傾斜羽根で構成されている。切出し羽根8と内筒5と外筒6との相対回転によって、被処理物収容部7に収容された被処理物が炉室4に円環状に供給され、炉室4内で被処理物はすり鉢状となる。尚、被処理物の流動性が高い場合は、切出し羽根8がなくても、内筒5と外筒6との相対回転によって被処理物は炉室4に円環状に供給される。
 さらに、回転式表面溶融炉1には、炉室4に被処理物が供給された直後、言い換えれば炉室4と被処理物収容部7とが連通する近傍の円環状の被処理物の表面、つまり熱分解領域R1の表面に向けて空気を供給する縁部空気供給機構20が配置されている。
 内筒5上部から外筒6方向に延出したカバー体5aの縁部と外筒6との境界部が水封機構14で水封される。カバー体5aの上部に二重ダンパ機構15aを備えたホッパー15が配置され、スクリュウコンベア機構16によって、被処理物が被処理物収容部7に投入される。炉天井2、炉底部3、内筒5及び外筒6は耐火レンガ等が積層された耐火壁で構成され、炉天井2及び炉底部3の出滓口周辺には炉室4の中の耐火壁を外から覆うように水冷ジャケットが配置されている。
 出滓口3aの下方には被処理物が溶融した溶融スラグを受け止める水槽が配置されている。出滓口3aの直下には、横方向に煙道が延出形成され、煙道に沿って二次燃焼装置、排熱ボイラや空気予熱器等の熱回収装置、減温塔、バグフィルタ、洗煙装置、白煙防止装置等の排ガス処理設備が配置され、浄化された排ガスが煙突から排気される。
 リン及び可燃物を含有する被処理物とは、主に下水汚泥であり、他に家畜糞尿、食品廃棄物等の動植物性残渣、粉砕処理された都市ごみ等が含まれる。
 回転式表面溶融炉1の立上時には、助燃バーナ10を点火して炉室4を1000℃以上に予熱した後に、駆動機構13を介して外筒6を回転させて被処理物を供給し、被処理物が溶融開始すると助燃バーナ10を停止する。その後、被処理物は自燃により溶融を継続する。尚、自然による熱量では溶融に必要な熱量が不足する場合は、助燃バーナ10を継続して利用する。
 炉室4に投入された被処理物は、炉室への供給位置である内筒5から炉中心である出滓口3aに向かって500mm程度の円環状の領域である熱分解領域R1で、可燃物が炉内温度により熱分解し(図2(a)参照)、発生した熱分解ガスが縁部空気供給機構20及び炉天井2に備えた空気供給機構11から供給される空気で高温に燃焼する(図2(b)参照)。
 可燃物の熱分解による残渣である固定炭素及び無機物は、炉天井2で反射する輻射熱等で約1300℃程度に加熱され、縁部空気供給機構20から供給される空気によって固定炭素成分が熱分解領域R1で固体燃焼する(図2(b)参照)。さらに溶融領域R2で無機物が溶融して出滓口3aに向けて溶融しながら流下して出滓口3aから流出する。
 燃焼ガスは煙道の下流側に備えた誘引送風機で煙突に向けて誘引され、上述した排ガス処理設備で減温、浄化処理されて煙突から排煙される。空気供給機構11から炉内に供給される空気はボイラ蒸気や空気予熱器もしくは別途の熱風発生機によって約200℃程度に予熱されている。
 縁部空気供給機構20は、炉室4に投入された直後の被処理物の表面に向けて空気を供給して被処理物に含まれるリンの揮散を抑制するように機能する。縁部空気供給機構20から供給される空気量は、溶融処理に必要な全空気量の10%から50%の範囲に設定されていることが好ましい。
 縁部空気供給機構20により供給される空気は、炉内で旋回する方向ではなく被処理物の表面に向けて真直ぐに供給される。そのため、炉室4で旋回流れが生じ難いため出滓口から落下するスラグに旋回力が作用することがほとんどなく、二次室の壁面へ付着する虞が減少する。
 炉室4に供給される空気は、炉天井2に備えた空気供給機構11及び縁部空気供給機構20から供給される。被処理物の表面で可燃物の熱分解により生じて炉室を上昇する熱分解ガスは縁部空気供給機構20及び空気供給機構11から供給される空気で燃焼する。被処理物表面の固定炭素分は主に縁部空気供給機構20から供給される空気で燃焼するとともに、リンの揮散の抑制に用いられる。
 つまり、熱分解して被処理物の表面近傍に残存する固定炭素分が、縁部空気供給機構20から被処理物の表面に向けて供給される空気によって燃焼する。さらに余った酸素によってリン化合物やリン酸化物の還元反応が抑制されることでリンの揮散が抑制される。
 縁部空気供給機構20から供給される空気量が溶融処理に必要な全空気量の10%から50%の範囲に設定されていると、空気の消費バランスがよくなり、溶融処理効率が上昇するとともにリンの揮散が効果的に抑制される。溶融処理に必要な全空気量とは、被処理物及びバーナの燃焼に必要な理論空気量の1.0倍から1.2倍程度の値で、被処理物の性状によって適宜設定される値である。尚、全空気量の50%を超えると、空気は熱分解領域R1での雰囲気温度を下げる方向に作用するので処理効率は低下する。
 このように、炉室4内で被処理物の表面が溶融する溶融領域R2より上流側の熱分解領域R1に沿って配列された複数のノズルで構成される縁部空気供給機構20を備えることによって、熱分解領域R1に均一に空気が供給され、固定炭素分に効率的に空気が供給されるようになる。
 そのため、リンの揮散が抑制されるとともに、熱分解領域R1における燃焼速度が上昇し、燃焼による発熱で温度が上昇する。この温度上昇によりさらに被処理物の乾燥、可燃物の熱分解、燃焼、溶融のそれぞれの速度が上がる。
 結果として、溶融処理効率が上昇し、同じ処理量であれば炉を小型に構成でき、同じサイズの炉であれば溶融処理量が増加する。
 縁部空気供給機構20は、熱分解領域R1の表面で酸素濃度が1Vol%以上となるように空気を供給するように構成されていることが好ましく、被処理物の飛散速度より低い流速で、より好ましくは可燃物の飛散速度より低い流速で空気を供給するように構成されていることが好ましい。
 縁部空気供給機構20から供給された空気が、溶融領域R2より上流側の熱分解領域R1の表面で酸素濃度が1Vol%%以上となるように供給されると、リン化合物やリン酸化物の還元反応が効果的に抑制され、その結果リンの揮散が抑制される。
 また、可燃物を含む被処理物が炉内で飛散することなく溶融処理されるように、被処理物の表面に向けて供給される空気の流速が調整される結果、効果的にリン化合物やリン酸化物の還元反応が抑制され、リンの揮散が抑制される。
 つまり、揮散したリンの付着で排ガス処理設備や煙道等が閉塞に到るのを防止し、或いは閉塞に到るまでの期間を延ばすことによって、溶融設備を清掃等することなく長期な運転することが可能となり、メンテナンス費用も低減するようになる。また、熱交換器へのリンの付着が減少すると、熱回収量が減ることなく安定した熱回収もでき、ファンの負荷も低下して省エネルギー化にも寄与するようになる。
 被処理物が炉内で飛散することがない空気の流速とは、一定の値に固定される数値ではなく、被処理物の平均粒径、平均密度、含水率等によって様々に異なる値で、被処理物に応じて適宜設定される値である。例えば、被処理物が下水汚泥を乾燥処理した含水率20~30%程度の乾燥汚泥である場合、乾燥汚泥の表面に沿った空気の流速が約5m/秒から6m/秒の範囲であれば、飛散が抑制される。
 具体的に、縁部空気供給機構20は、平面視で炉中心から等距離となる円周上であって、炉天井2の外周縁部に位置するように配列された複数本の筒状ノズル20aと、各ノズル20aに空気を供給する円環状の空気ヘッダー管21と、空気予熱器等で約200℃に予熱された空気を空気ヘッダー管21に供給する空気供給管22を備えて構成されている。尚、空気供給機構11に供給する空気も空気供給管22から流量調整機構を介して供給されている。
 図3(a)に示すように、筒状ノズル20aを用いて熱分解領域R1に均一に空気を供給するためには、例えば、円筒状ノズル20aを用いて被処理物表面での空気の流速が約5m/秒となるように供給すると、円筒状ノズルの軸心方向距離1に対してその径方向に0.6の比率で拡散するので約420mmの高さに円筒状ノズル20aの先端が位置するように配置すればよい。炉底部3の直径が4mの表面溶融炉であれば、約25本の円筒状ノズル20aを配置すればよい。
 図3(b)に示すように、筒状ノズルの内部に旋回羽根20cが内挿されたスワラーノズル20bを用いれば、空気が旋回しながら拡径して被処理物表面に均一に供給されるので、同じ量の空気を吹き込む際には筒状ノズル20aを用いる場合よりも数を少なくすることができる。当該スワラーノズル20bが、被処理物の表面に空気を均一に供給する均一化機構の一例となる。尚、均一化機構として、筒状ノズルの数を増やして配置した構成を採用することも可能である。
 さらに、図3(c)に示すように、均一化機構の他の例であるノズル先端がスリット状に形成される扁平ノズル20dを用いると、環状の熱分解領域R1により均一に空気を供給しながら、ノズルの本数を削減することができる。
 図4には、縁部空気供給機構20を構成する複数のノズル20aが炉天井2の周縁部に配列された状態が示されている。各ノズル20aがその上方空間に配置された空気ヘッダー管に接続される。
 各ノズル20aは、鉛直姿勢に設置されていてもよいし、内筒5と熱分解領域R1とが交差する切出し部、つまり炉室4と被処理物収容部7が連通する部位で、被処理物が炉室4に切出されて供給される切出し部に向けた姿勢で設置されていてもよい。
 上述した実施形態では、各ノズル20aに空気を供給するために、炉天井2の上方空間に円環状の空気ヘッダー管21を配置した例を説明したが、この場合炉天井2を貫通するように各ノズル20aを配置する必要があり、炉天井2の強度が低下する虞もある。
 そこで、図5に示すように、炉天井2を構成する耐火壁2aに環状の空洞2bを形成し、その空洞2bを空気ヘッダー管21に構成してもよい。そして、空洞2bの下面に所定ピッチで炉室を臨む開口2cを形成し、開口2cに到る耐火壁の経路2dをノズル20aとして機能するように構成してもよい。
 このように構成すると、炉天井2の上面側の一か所に形成した貫通孔を経由して空洞2bに空気を供給することができ、炉天井2の強度の低下を回避することができる。
 上述した実施形態では、表面溶融炉が回転式表面溶融炉1である場合を例に説明したが、本発明による表面溶融炉は、回転式表面溶融炉1に限定するものではなく、他のタイプの表面溶融炉にも適用できることは言うまでもない。
 例えば、図6(a)に示すように、炉底部3の中央部に出滓口3aが形成され、被処理物を投入する複数の押込み投入機構30を炉底部3の周囲に配置された表面溶融炉1に適用することも可能である。当該表面溶融炉は、炉底部3と一体に構成された外筒6と、炉天井2と一体に構成された内筒5の双方が固定され、押込み投入機構30によって炉室内に被処理物が供給されるタイプである。
 また、図6(b)に示すように、炉底部3の端部に出滓口3aが形成され、対向側に被処理物を投入する複数の押込み投入機構30が配置された表面溶融炉1に適用することも可能である。何れの例も押込み投入機構30が被処理物供給機構となる。
 つまり、本発明は、被処理物供給機構によって炉室に投入された直後のリン及び可燃物を含有する被処理物の表面に向けて、被処理物に含まれるリン化合物やリン酸化物の還元を抑制するとともに可燃物をガス化する空気を供給する縁部空気供給機構を備えている表面溶融炉であればよい。
 以上説明した通り、本発明による表面溶融炉の運転方法は、バーナ及び空気供給機構が設置されるとともに出滓口が形成された炉室と、炉室の周囲に設けられた被処理物収容部から被処理物を炉室に供給する被処理物供給機構とを備えて構成される表面溶融炉の運転方法であって、リンと可燃物を含有する被処理物を被処理物収容部に収容し、被処理物供給機構により炉室に供給された直後の被処理物の表面に、溶融処理に必要な全空気量の一部を供給して、被処理物の表面を酸化雰囲気に維持する表面溶融炉の運転方法である。
 尚、上述した実施形態では、酸素を含むガスとして空気を用いる例を説明したが、空気として酸素を含んでいればよく大気をそのまま利用してもよいし、酸素を富化させたり、窒素を減らしたりするような加工された空気であってもよい。
 上述した各実施形態は、本発明の一例に過ぎず、各部の具体的構成は、本発明の作用効果が奏される範囲で適宜変更設計することが可能である。
1: 表面溶融炉
2:炉天井
3:炉底部
3a:出滓口
4:炉室
5:内筒
6:外筒
8:被処理物供給機構
20:縁部空気供給機構

Claims (11)

  1.  バーナ及び空気供給機構が設置されるとともに出滓口が形成された炉室と、前記炉室に連通して設けられた被処理物収容部から被処理物を前記炉室に供給する被処理物供給機構とを備えて構成され、被処理物を溶融処理する表面溶融炉であって、
     被処理物はリンと可燃物を含有し、前記炉室と前記被処理物収容部が連通する近傍であって前記炉室内の被処理物の表面に向けて空気を供給する縁部空気供給機構を備えている表面溶融炉。
  2.  前記縁部空気供給機構は、前記炉室内で被処理物の表面が溶融する溶融領域より上流側の熱分解領域の表面に空気を供給する請求項1記載の表面溶融炉。
  3.  前記縁部空気供給機構は、前記熱分解領域の表面で酸素濃度が1Vol%以上となるように空気を供給する請求項2記載の表面溶融炉。
  4.  前記縁部空気供給機構は、被処理物の表面に空気を均一に供給する均一化機構を備えている請求項1から3の何れかに記載の表面溶融炉。
  5.  前記均一化機構は前記縁部空気供給機構に取り付けられたスワラーである請求項4に記載の表面溶融炉。
  6.  前記縁部空気供給機構は、被処理物の飛散速度より低い流速で空気を供給するように構成されている請求項1から5の何れかに記載の表面溶融炉。
  7.  前記縁部空気供給機構は、前記炉室内で被処理物の表面が溶融する溶融領域より上流側の熱分解領域に沿って配列された複数のノズルを備えて構成されている請求項1から6の何れかに記載の表面溶融炉。
  8.  前記縁部空気供給機構は、炉天井を形成する耐火物層に形成された管状の空洞と、前記空洞から前記炉室に延出するように設置された複数のノズルで構成されている請求項1から7の何れかに記載の表面溶融炉。
  9.  前記縁部空気供給機構から供給される空気量は、溶融処理に必要な全空気量の10%から50%の範囲に設定されている請求項1から8の何れかに記載の表面溶融炉。
  10.  炉天井の周囲に一体に形成された内筒と炉底部の周囲に一体に形成された外筒とが同心円状に配置され、前記内筒と外筒との間隙に前記被処理物収容部が構成され、前記内筒と外筒との相対回転により被処理物を前記炉室に円環状に供給する被処理物供給機構を備え、前記縁部空気供給機構が円環状の被処理物の表面に向けて空気を供給するように構成されている請求項1から9の何れかに記載の表面溶融炉。
  11.  バーナ及び空気供給機構が設置されるとともに出滓口が形成された炉室と、前記炉室の周囲に設けられた被処理物収容部から被処理物を前記炉室に供給する被処理物供給機構とを備えて構成される表面溶融炉の運転方法であって、
     リンと可燃物を含有する被処理物を被処理物収容部に収容し、
     前記被処理物供給機構により前記炉室に供給された直後の被処理物の表面に、溶融処理に必要な全空気量の一部を供給して、被処理物の表面を酸化雰囲気に維持する表面溶融炉の運転方法。
PCT/JP2015/059547 2014-03-28 2015-03-27 表面溶融炉及び表面溶融炉の運転方法 WO2015147239A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15770414.9A EP3124864B1 (en) 2014-03-28 2015-03-27 Surface melting furnace and method for operating a surface melting furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014068666A JP6305805B2 (ja) 2014-03-28 2014-03-28 表面溶融炉及び表面溶融炉の運転方法
JP2014-068666 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015147239A1 true WO2015147239A1 (ja) 2015-10-01

Family

ID=54195743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059547 WO2015147239A1 (ja) 2014-03-28 2015-03-27 表面溶融炉及び表面溶融炉の運転方法

Country Status (3)

Country Link
EP (1) EP3124864B1 (ja)
JP (1) JP6305805B2 (ja)
WO (1) WO2015147239A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023050953A (ja) 2021-09-30 2023-04-11 株式会社クボタ 溶融炉及び溶融炉の運転方法
JP2023050954A (ja) 2021-09-30 2023-04-11 株式会社クボタ 溶融炉
JP2023050952A (ja) 2021-09-30 2023-04-11 株式会社クボタ 溶融炉の運転方法及び溶融炉

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182951A (ja) * 1997-09-05 1999-03-26 Kubota Corp 廃棄物溶融炉における高効率溶融法
JPH11237019A (ja) * 1998-02-23 1999-08-31 Kubota Corp 廃棄物溶融炉
JP2004044907A (ja) * 2002-07-11 2004-02-12 Kubota Corp 溶融処理設備
JP2010032134A (ja) * 2008-07-29 2010-02-12 Kubota Corp 表面溶融炉

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122523A (ja) * 1996-09-02 1998-05-15 Kubota Corp 表面溶融炉
JPH10279301A (ja) * 1997-03-31 1998-10-20 Tsukishima Kikai Co Ltd りん成分の分離方法
JP2000337616A (ja) * 1999-05-28 2000-12-08 Kubota Corp 可燃性廃棄物の溶融処理方法及び溶融処理炉
JP5888720B2 (ja) * 2011-04-28 2016-03-22 株式会社クボタ 肥料の製造方法、及び肥料の製造方法に用いられる回転式表面溶融炉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182951A (ja) * 1997-09-05 1999-03-26 Kubota Corp 廃棄物溶融炉における高効率溶融法
JPH11237019A (ja) * 1998-02-23 1999-08-31 Kubota Corp 廃棄物溶融炉
JP2004044907A (ja) * 2002-07-11 2004-02-12 Kubota Corp 溶融処理設備
JP2010032134A (ja) * 2008-07-29 2010-02-12 Kubota Corp 表面溶融炉

Also Published As

Publication number Publication date
JP6305805B2 (ja) 2018-04-04
EP3124864A4 (en) 2017-11-15
EP3124864A1 (en) 2017-02-01
EP3124864B1 (en) 2019-08-28
JP2015190701A (ja) 2015-11-02

Similar Documents

Publication Publication Date Title
JP4548785B2 (ja) 廃棄物ガス化溶融装置の溶融炉、並びに該溶融炉における制御方法及び装置
CN210532392U (zh) 一种回转窑热解等离子体熔融一体式固体废物处理装置
JP2002081624A (ja) 廃棄物ガス化溶融炉と同溶融炉の操業方法
CN206094112U (zh) 一种污泥焚烧系统
WO2015147239A1 (ja) 表面溶融炉及び表面溶融炉の運転方法
CN104919248A (zh) 利用燃烧空气流的按区域的离心分离燃烧装置
JP4685671B2 (ja) 廃棄物溶融処理装置
KR100348746B1 (ko) 폐기물처리장치
JP3460605B2 (ja) 廃棄物焼却・熱処理炉
JP4589832B2 (ja) 焼却装置
CN102506433A (zh) L形组合式电子垃圾高温焚烧炉
EP3106529B1 (en) Method and plant of treating and smelting metals
JP2009058216A (ja) ガス化溶融システムの燃焼制御方法及び該システム
JP3850088B2 (ja) 産業廃棄物焼却炉の粉体燃焼用バ−ナ
JP2007078197A (ja) 焼却炉及び廃棄物の焼却方法
JP3742441B2 (ja) シャフト炉方式の廃棄物の溶融炉における燃焼温度調整方法
JP2006052931A (ja) 塵芥と汚泥とを合わせて処理する廃棄物処理炉および廃棄物処理装置
JP2011089672A (ja) 廃棄物溶融処理方法
JP3764634B2 (ja) 酸素バーナ式溶融炉
CN205710615U (zh) 一种预热空气以旋流进入的煤粉气化炉
JP2006153408A (ja) 誘導加熱溶融炉
JPS6370014A (ja) サイクロン型下水汚泥焼却溶融炉
JP3977995B2 (ja) サイクロン溶融装置
WO2023054552A1 (ja) 溶融炉及び溶融炉の運転方法
JP6331149B2 (ja) 廃棄物ガス化溶融装置及び廃棄物ガス化溶融方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770414

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015770414

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015770414

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE