WO2015146890A1 - 光学フィルムとその製造方法、偏光板および液晶表示装置 - Google Patents

光学フィルムとその製造方法、偏光板および液晶表示装置 Download PDF

Info

Publication number
WO2015146890A1
WO2015146890A1 PCT/JP2015/058689 JP2015058689W WO2015146890A1 WO 2015146890 A1 WO2015146890 A1 WO 2015146890A1 JP 2015058689 W JP2015058689 W JP 2015058689W WO 2015146890 A1 WO2015146890 A1 WO 2015146890A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
compound
general formula
liquid crystal
Prior art date
Application number
PCT/JP2015/058689
Other languages
English (en)
French (fr)
Inventor
真一郎 鈴木
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201580014979.0A priority Critical patent/CN106104330A/zh
Priority to JP2016510326A priority patent/JPWO2015146890A1/ja
Priority to KR1020167025978A priority patent/KR20160122262A/ko
Publication of WO2015146890A1 publication Critical patent/WO2015146890A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements

Definitions

  • the present invention relates to an optical film, a manufacturing method thereof, a polarizing plate, and a liquid crystal display device.
  • a liquid crystal display device usually includes a liquid crystal cell and a pair of polarizing plates sandwiching the liquid crystal cell.
  • the polarizing plate includes a polarizer and a pair of protective films that sandwich the polarizer.
  • a liquid crystal display device used for portable devices and the like is required to be thin, and a protective film constituting the liquid crystal display device is also required to be thin.
  • the protective film for example, a cellulose ester film is used. Moreover, it is desired that the protective film can suppress the deterioration of the polarizer due to the transmitted water even under high temperature and high humidity.
  • a film containing cellulose acylate and a polarizer deterioration inhibitor such as a specific phenol compound has been proposed (for example, Patent Document 1).
  • Protective film with a thin film thickness is particularly easy to transmit moisture, so the polarizer is likely to deteriorate. That is, since the protective film having a small film thickness easily transmits moisture, moisture easily enters the polarizer.
  • the PVA polymer and the dichroic dye form a stabilized complex by boric acid crosslinking. When moisture enters the polarizer, not only is the boric acid bridge broken, but boric acid is easily dissipated and the polarizer tends to deteriorate.
  • Deterioration of the polarizer can be reduced by adding a polarizer deterioration inhibitor containing an aromatic ring as shown in Patent Document 1 to the protective film.
  • the protective film containing the polarizer deterioration inhibitor tends to have low toughness.
  • the protective film with a thin film thickness is low in strength, and thus the toughness is likely to be further lowered.
  • the roll body is likely to be deformed.
  • non-uniform tension is applied to the wound film, which may deteriorate the optical characteristics of the film.
  • the deterioration of the polarizer and the deterioration of the optical properties of the protective film may reduce the contrast and visibility of the display device.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an optical film having high toughness as well as suppressing deterioration of a polarizer even when the film thickness is thin.
  • An optical film comprising one or more compounds A selected from the group consisting of compounds represented by (4), wherein the film thickness is 15 to 45 ⁇ m, and the optical film is at 23 ° C.
  • the stress at break when pulled in the long-side direction ⁇ of the optical film or the short-side direction ⁇ orthogonal to the long-side direction ⁇ is T (MPa or N / mm 2 ), the elongation at break is E (%),
  • the cross-sectional area of the optical film in the direction orthogonal to the tensile direction is A (mm 2 )
  • the toughness G represented by the following formula is the long-side direction ⁇ and the short-side direction ⁇ of the optical film. 7-20 in each of Optical film.
  • R 1 represents a hydrogen atom or an aliphatic group having 1 to 4 carbon atoms
  • R 2 represents a substituent
  • A forms a 5- or 6-membered ring. Represents an atomic group
  • n represents an integer of 0 to 4
  • R 26 represents an aryl group having 6 to 12 carbon atoms
  • R 27 and R 28 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a carbon atom.
  • R 1 represents a hydrogen atom or a substituent
  • R 2 represents a substituent represented by the following general formula (3-1)
  • n1 represents an integer of 0 to 4; represents, when n1 is 2 or more, plural R 1 may be the being the same or different
  • n2 represents an integer of 1 to 5, when n2 is 2 or more, plural R 2 is each independently Or it may be different
  • A represents a substituted or unsubstituted aromatic ring
  • R 3 and R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a general formula
  • It represents a substituent represented by (3-2)
  • R 5 represents a single bond or an alkylene group having a carbon number of 1 ⁇ 5
  • X represents a substituted or unsubstituted aromatic ring
  • n3 is 0 Represents an integer of ⁇ 10
  • the optical film is defined by the following formula (I) and in-plane retardation measured at a measurement wavelength of 590 nm is defined as Ro (590), and is defined by the following formula (II), and the measurement wavelength.
  • ⁇ 5 nm When the thickness direction retardation measured at 590 nm is Rth (590),
  • nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the in-plane direction of the film; ny is the slow axis in the in-plane direction of the film) The refractive index in the direction y perpendicular to the direction x; nz represents the refractive index in the thickness direction z of the film; t (nm) represents the thickness of the film)
  • a core layer dope containing cellulose ester and a skin layer dope containing cellulose ester and the compound A are prepared, and in the second step, the core layer dope is prepared. And the skin layer dope are co-cast on a support, and dried to obtain a film-like material, thereby obtaining the optical film including a core layer and a pair of skin layers sandwiching the core layer.
  • a polarizing plate comprising a polarizer and the optical film according to any one of [1] to [7] or the optical film obtained by the production method according to [8] or [9].
  • the polarizing plate according to [10] wherein the polarizer and the optical film are bonded via a cured product layer of an active energy ray-curable adhesive.
  • a liquid crystal display device comprising the optical film according to any one of [1] to [7] or the optical film obtained by the production method according to [8] or [9].
  • a first polarizing plate, a liquid crystal cell, a second polarizing plate, and a backlight are included in this order, and the first polarizing plate includes the first polarizer and the first polarizer.
  • the liquid crystal display device including a protective film F1 disposed on the surface opposite to the liquid crystal cell and a protective film F2 disposed on the liquid crystal cell side surface of the first polarizer, The second polarizer, the protective film F3 disposed on the surface of the second polarizer on the liquid crystal cell side, and the surface of the second polarizer on the surface opposite to the liquid crystal cell.
  • the liquid crystal display device including a protective film F4, wherein at least one of the protective films F2 and F3 includes the optical film.
  • the liquid crystal display device is an IPS mode or FFS mode liquid crystal cell.
  • the liquid crystal display device according to any one of [12] to [14], wherein the diagonal length of the display area is 10 inches or less.
  • the present invention even if the film thickness is thin, not only can the deterioration of the polarizer be suppressed, but also an optical film with high toughness can be provided.
  • the inventors of the present invention provide the optical film with at least one selected from the group consisting of a polymer containing a repeating unit represented by the following general formula (1) and a compound represented by the general formulas (2) to (4). It was found that the deterioration of the polarizer can be sufficiently suppressed even when the film thickness is reduced by containing the compound A. This is probably because the optical film containing Compound A has a high density and can not only reduce the amount of moisture permeation, but also reduce the dissipation of boric acid from the polarizer.
  • the protective film containing Compound A although capable of imparting a polarizer deterioration suppressing function, tends to be hard and fragile. Therefore, it was found that the film was harder and easier to tear than before, and the toughness expressed as a function of the stress at break, the cross-sectional area of the film, and the elongation at break was more likely to be lower than before. This is considered to be because a portion in which the dispersion state of Compound A is uneven at a fine level occurs in the optical film, and breaks easily starting from that portion; as a result, the elongation at break is lowered. . Furthermore, since the optical film with a thin film thickness has a low strength, the toughness is likely to be further lowered.
  • the inventors adjust the drying conditions in the drying step after stretching; that is, the number of rolls that transport the film in the drying step in which the film after stretching is dried while being rolled, It has been found that the toughness of the optical film can be increased by increasing the tension, drying temperature or drying time. Although the reason is not necessarily clear, it is considered that the orientation of the polymer constituting the optical film is enhanced by adjusting the drying conditions after stretching as described above.
  • the toughness of the optical film can be improved by controlling the dispersion state of the cellulose ester and the compound A at the molecular level in the drying step (solvent removal step) after stretching when the optical film is produced. It is conceivable that. That is, by applying a proper tension and drying through a number of rolls at a certain drying time or temperature, not only in the transport direction (MD direction) of the optical film but also in the width direction (TD direction). However, a certain temperature and pressure are applied, and it is considered that Compound A can be dispersed extremely uniformly in the cellulose ester resin in a film containing a small amount of a solvent. As a result, it is considered that the toughness of the optical film is improved in both the MD direction and the TD direction.
  • the cellulose ester and the compound A are considered to be uniformly mixed, and it is considered that the dispersion state thereof is likely to be non-uniform particularly when the dope is dried.
  • the drying temperature is low, it is considered that the compound A is gradually dried and difficult to uniformly disperse, so that the drying temperature is preferably increased in order to improve the toughness of the film.
  • the drying temperature is higher than a certain level and the drying time is increased to some extent.
  • the transport tension is considered to sufficiently extend the molecular chain of the cellulose ester (to facilitate orientation) and make it difficult for additives such as Compound A to move within the film. Is preferably raised to some extent.
  • the optical film of the present invention obtained by drying under specific drying conditions containing the compounds represented by the general formulas (1) to (4) has a thin film thickness. Deterioration can be suppressed and high toughness can be achieved.
  • optical film of the present invention is a group comprising a cellulose ester, a polymer containing a repeating unit represented by the general formula (1), and a compound represented by the general formulas (2) to (4) as described above. And one or more selected compounds A.
  • the cellulose ester is a compound obtained by esterifying cellulose and at least one of an aliphatic carboxylic acid having 2 to 22 carbon atoms and an aromatic carboxylic acid.
  • cellulose ester examples include cellulose triacetate, cellulose diacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose benzoate, and cellulose acetate benzoate. Among them, those having low retardation are preferable, and cellulose triacetate is preferable.
  • the total degree of substitution of acyl groups in the cellulose ester is about 2.0 to 3.0, preferably 2.5 to 3.0, more preferably 2.7 to 3.0, and even more preferably 2.8 to 3.0. 2.95. In order to reduce the retardation development property, it is preferable to increase the total substitution degree of the acyl group.
  • the number of carbon atoms of the acyl group contained in the cellulose ester is preferably 2 to 7, and more preferably 2 to 4.
  • the acyl group contained in the cellulose ester preferably contains an acetyl group.
  • the substitution degree of the acyl group having 3 or more carbon atoms is preferably 0.9 or less, and more preferably 0.
  • the degree of substitution of the acyl group of the cellulose ester can be measured by the method prescribed in ASTM-D817-96.
  • the weight average molecular weight of the cellulose ester is preferably 5.0 ⁇ 10 4 to 5.0 ⁇ 10 5 in order to obtain a certain level of mechanical strength, and 1.0 ⁇ 10 5 to 3.0 ⁇ . 10 5 is more preferable, and 1.5 ⁇ 10 5 to 2.9 ⁇ 10 5 is even more preferable.
  • the molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of the cellulose ester is preferably 1.0 to 4.5.
  • the weight average molecular weight and molecular weight distribution of the cellulose ester can be measured by gel permeation chromatography (GPC).
  • the measurement conditions are as follows. Solvent: Methylene chloride Column: Three Shodex K806, K805, K803G (manufactured by Showa Denko KK) are connected and used.
  • the viscosity average degree of polymerization of the cellulose ester is preferably from 150 to 450, more preferably from 250 to 350, in order to make the mechanical strength of the film a certain level or more.
  • the viscosity of a 6% by mass solution obtained by dissolving cellulose ester in dichloromethane is preferably 50 to 900, more preferably 100 to 600, in order to make the mechanical strength of the film a certain level or more. 200 to 450 is most preferable.
  • the compound A may be one or more selected from the group consisting of a polymer containing a repeating unit derived from a monomer represented by the general formula (1) and a compound represented by the general formulas (2) to (4). Since these compounds have an aromatic ring and have a rigid structure, an optical film containing these compounds can have a high density. As a result, not only can the amount of moisture transmitted through the optical film be reduced, but also the number of diffusion paths of boric acid from the polarizer can be reduced, and deterioration of the polarizer can be suppressed.
  • R 1 in the general formula (1) represents a hydrogen atom or an aliphatic group having 1 to 4 carbon atoms.
  • Examples of the aliphatic group represented by R 1 include a methyl group and an ethyl group.
  • R 2 represents an aliphatic group or an aromatic group.
  • Examples of the aliphatic group represented by R 2 include an alkyl group, an alkenyl group, an alkynyl group and a cycloalkyl group, preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group, t- It is a butyl group.
  • aromatic group examples include a phenyl group, a naphthyl group, and a biphenyl group, preferably a phenyl group.
  • A represents an atomic group necessary for forming a 5- or 6-membered ring, and is preferably a 5- or 6-membered aromatic ring.
  • the aromatic ring includes an aromatic ring containing no hetero atom and a saturated / unsaturated hetero ring containing a hetero atom.
  • n represents an integer of 0 to 4, preferably 0 to 2, and more preferably 0 to 1.
  • the polymer containing a repeating unit derived from the monomer represented by the general formula (1) may preferably be a copolymer represented by the following general formula (1-1).
  • R 21 , R 22 , R 23 and R 24 in the general formula (1-1) each independently represent a substituent.
  • x, y and z represent molar ratios with respect to all repeating units contained in the polymer, x represents 1 to 40%, y represents 5 to 95%, and z represents 1 to 70%.
  • m1 and m2 each independently represents an integer of 0 to 4.
  • m3 represents an integer of 0-2.
  • m4 represents an integer of 0 to 5.
  • R 101 , R 102 and R 103 each independently represents a hydrogen atom or an aliphatic group having 1 to 4 carbon atoms.
  • polymer containing the repeating unit derived from the monomer represented by the general formula (1) include the following.
  • the polymer preferably has a weight average molecular weight of 200 to 10,000, more preferably 300 to 8,000, and still more preferably 400 to 4000.
  • the weight average molecular weight is not less than a certain value, the density of the optical film can be improved satisfactorily. Thereby, the diffusion of boric acid from the polarizer can be suppressed, and the polarizer deterioration can be suppressed.
  • the weight average molecular weight is below a certain level, the compatibility with the cellulose ester is difficult to be impaired.
  • R 26 in the general formula (2) represents an aryl group; preferably an aryl group having 6 to 12 carbon atoms, and more preferably a phenyl group.
  • R 27 and R 28 each independently represent a hydrogen atom, an alkyl group or an aryl group; preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms (including a cycloalkyl group) or an aryl having 6 to 12 carbon atoms More preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms (including a cycloalkyl group) or a phenyl group.
  • R 26 and R 27 may each have a substituent. Examples of the substituent that R 26 may have include a halogen atom or an alkyl group having 1 to 6 carbon atoms. Examples of the substituent that R 27 may have include an aryl group having 6 to 12 carbon atoms.
  • the weight average molecular weight of the compound represented by the general formula (2) is preferably 200 to 1000, and more preferably 250 to 800.
  • R 1 in the general formula (3) represents a hydrogen atom or a substituent.
  • R 2 represents a substituent represented by the following general formula (3-1).
  • n1 represents an integer of 0 to 4, and when n1 is 2 or more, the plurality of R 1 may be the same or different from each other.
  • n2 represents an integer of 1 to 5, when n2 is 2 or more, plural R 2 may being the same or different.
  • a in the general formula (3-1) represents a substituted or unsubstituted aromatic ring.
  • the aromatic ring is preferably a benzene ring.
  • R 3 and R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a substituent represented by the general formula (3-2).
  • R 5 represents a single bond or an alkylene group having 1 to 5 carbon atoms.
  • X represents a substituted or unsubstituted aromatic ring.
  • the aromatic ring is preferably a benzene ring.
  • n3 represents an integer of 0 to 10, and when n3 is 2 or more, the plurality of R 5 and X may be the same or different from each other.
  • X in the general formula (3-2) represents a substituted or unsubstituted aromatic ring.
  • the aromatic ring is preferably a benzene ring.
  • R 6 to R 9 each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • n5 represents an integer of 1 to 11, and when n5 is 2 or more, the plurality of R 6 to R 9 and X may be the same as or different from each other.
  • R 1 in the general formula (4) represents a nitrogen atom or an oxygen atom.
  • R 2 represents —COOH or —OH group.
  • R 3 represents an alkyl group having 1 to 10 carbon atoms, examples of which include a methyl group and an ethyl group.
  • R 4 represents a substituent such as an alkyl group having 1 to 10 carbon atoms.
  • the content of the polymer containing the monomer unit represented by the general formula (1) and the compounds represented by the general formulas (2) to (4) is 0.1 to 15 parts by mass with respect to 100 parts by mass of the cellulose ester.
  • the amount may be preferably 0.5 to 10 parts by mass, and more preferably 0.5 to 3 parts by mass. If content of the said compound is more than fixed, the density of an optical film can fully be raised and it will be easy to obtain sufficient polarizer deterioration inhibitory effect. If the content of the above compound is below a certain level, the film is excessively hard and brittle, and the dispersion state of compound A in the film is not likely to be non-uniform (not easily damped), so the toughness of the film is remarkable. There is also no risk of decline.
  • the optical film of the present invention preferably further contains a polyester compound (Compound B) for easy adjustment of the plasticity and retardation of the film.
  • Compound B a polyester compound
  • the polyester compound may be a compound obtained by polycondensation of a dicarboxylic acid and a diol.
  • the dicarboxylic acid may be one or more selected from the group consisting of aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, and aromatic dicarboxylic acids.
  • the diol may be one or more selected from the group consisting of aliphatic diols, alkyl ether diols, alicyclic diols, and aromatic diols.
  • a polyester compound obtained by polycondensation with a more selected diol is preferred; a polyester compound (aliphatic polyester compound) obtained by polycondensation of an aliphatic dicarboxylic acid and an aliphatic diol is more preferred.
  • the hydroxyl group at the molecular end may be sealed with a monocarboxylic acid, or the carboxyl group at the molecular end may be sealed with a monoalcohol.
  • the polyester compound is preferably represented by the general formula (5) or (6).
  • G in the general formula (5) represents a group derived from an aliphatic diol or an alkyl ether diol.
  • the aliphatic diol preferably has 2 to 12 carbon atoms.
  • Examples of aliphatic diols include ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1, 5-pentanediol, 1,6-hexanediol, 1,5-pentylene glycol and the like, preferably ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, and 1,6-hexanediol.
  • the alkyl ether diol preferably has 4 to 12 carbon atoms.
  • Examples of the alkyl ether diol include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol and the like.
  • One type of aliphatic diol or alkyl ether diol may be used, or two or more types may be combined.
  • a in the general formula (5) represents a group derived from an aliphatic dicarboxylic acid or an alicyclic dicarboxylic acid.
  • the aliphatic dicarboxylic acid preferably has 4 to 12 carbon atoms.
  • Examples of the aliphatic dicarboxylic acid include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid and the like.
  • One type of aliphatic dicarboxylic acid or alicyclic dicarboxylic acid may be used, or two or more types may be combined.
  • B 1 in the general formula (5) represents a group derived from an aliphatic monocarboxylic acid or an alicyclic monocarboxylic acid.
  • the aliphatic monocarboxylic acid preferably has 1 to 12 carbon atoms.
  • Examples of aliphatic monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melic
  • B 1 , G and A in the general formula (5) do not contain an aromatic ring in order to make it difficult to develop a phase difference.
  • m represents the number of repetitions, and is preferably 1 or more and 170 or less.
  • polyester compound represented by the general formula (5) examples include those shown in Table 1.
  • G and A in the general formula (6) are defined similarly to G and A in the general formula (5), respectively.
  • B 2 in the general formula (3) represents a group derived from an aliphatic monoalcohol or an alicyclic monoalcohol.
  • the aliphatic monoalcohol preferably has 1 to 12 carbon atoms. Examples of aliphatic monoalcohol include methanol, ethanol, propanol, isopropanol, etc .; examples of alicyclic monoalcohol include cyclohexyl alcohol and the like.
  • n represents the number of repetitions and is preferably 1 or more and 170 or less.
  • polyester compound represented by the general formula (6) examples include those shown in Table 2.
  • the weight average molecular weight Mw of the polyester compound is preferably 20000 or less, more preferably 5000 or less, and still more preferably 3000 or less from the viewpoint of improving the compatibility with the cellulose ester.
  • the weight average molecular weight Mw of the polyester compound may be 400 or more, preferably 700 or more, more preferably 1000 or more.
  • the content of the polyester compound is preferably 1 to 45 parts by mass and more preferably 2 to 30 parts by mass with respect to 100 parts by mass of the cellulose ester from the viewpoint of easy adjustment of the plasticity and retardation of the film. It is preferably 5 to 25 parts by mass, more preferably 10 to 20 parts by mass. That is, when the content of the polyester compound (preferably an aliphatic polyester compound) is a certain amount or more, retardation in the thickness direction can be particularly preferably reduced. When the content of the polyester compound is not more than a certain level, the film strength is not significantly impaired, and there is no possibility that the toughness is remarkably lowered.
  • the optical film of the present invention may further contain various additives such as a plasticizer, an ultraviolet absorber, a peeling aid, a lubricant, a matting agent (fine particles), and an impact reinforcing material as necessary.
  • various additives such as a plasticizer, an ultraviolet absorber, a peeling aid, a lubricant, a matting agent (fine particles), and an impact reinforcing material as necessary.
  • plasticizer examples include sugar derivatives and phosphate ester compounds.
  • the sugar derivative may be a compound in which at least a part of the hydrogen atoms of the hydroxyl group of the sugar is substituted with a substituent.
  • the sugar constituting the sugar derivative preferably has a structure in which 1 to 12 of one or both of the furanose structure and the pyranose structure are bonded; one to both of the furanose structure and the pyranose structure is 1 to 3, preferably 2 It preferably has a bonded structure. Especially, what contains both a pyranose structure and a furanose structure is preferable.
  • sugars constituting sugar derivatives include monosaccharides such as glucose, galactose, mannose, fructose, xylose and arabinose; disaccharides such as lactose, sucrose, maltitol, cellobiose and maltose; trisaccharides such as cellotriose and raffinose The structure derived from is included.
  • the substituent constituting the sugar derivative is an alkyl group (preferably an alkyl group having 1 to 22 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, such as a methyl group, an ethyl group, a propyl group).
  • aryl group preferably an aryl group having 6 to 24 carbon atoms, more preferably 6 to 18 carbon atoms, particularly preferably 6 to 12 carbon atoms, for example, Phenyl group, naphthyl group
  • acyl group preferably having 1 to 22 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, for example, acetyl group, propionyl group, butyryl group, pentanoyl group
  • Group hexanoyl group, octanoyl group, benzoyl group, toluyl group, phthalyl group, naphthal group, and the like.
  • an unreacted hydroxyl group that is not substituted with a substituent may generally remain as it is as a hydroxyl group.
  • the sugar derivative can be a mixture of a plurality of sugar derivatives having different degrees of substitution. Such a mixture may contain an unsubstituted form.
  • the average substitution rate in the mixture is preferably 62 to 94%.
  • sugar derivative examples include the following.
  • Examples of the phosphoric acid ester compound include triphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, and tributyl phosphate.
  • the content of the plasticizer can be 1 to 40 parts by mass with respect to 100 parts by mass of the cellulose ester.
  • the ultraviolet absorber may be a benzotriazole compound, a 2-hydroxybenzophenone compound, a salicylic acid phenyl ester compound, or the like.
  • 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2- Triazoles such as (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4 -Benzophenones such as methoxybenzophenone.
  • the UV absorber may be a commercially available product.
  • examples thereof include Tinuvin 109, Tinuvin 171, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, and Tinuvin 928 manufactured by BASF Japan, or 2, 2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercially available products are manufactured by ADEKA Corporation LA31) and the like.
  • an ultraviolet inhibitor is not essential, and the content of the ultraviolet absorber is cellulose ester.
  • the amount may be about 0 to 0.5% by mass.
  • the content of the ultraviolet light inhibitor is from 1 ppm to 1% by mass relative to the cellulose ester. It may be about 5.0%, preferably about 0.5 to 3.0%.
  • the matting agent can impart further slipperiness to the optical film.
  • the matting agent may be fine particles made of an inorganic compound or an organic compound having heat resistance in the film forming process without impairing the transparency of the resulting film.
  • inorganic compounds constituting the matting agent include silicon dioxide (silica), titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and hydrated calcium silicate. , Aluminum silicate, magnesium silicate and calcium phosphate. Of these, silicon dioxide and zirconium oxide are preferable, and silicon dioxide is more preferable in order to reduce an increase in haze of the obtained film.
  • silicon dioxide examples include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (above, Nippon Aerosil Co., Ltd.), Sea Hoster KEP-10, Sea Hoster KEP -30, Seahoster KEP-50 (manufactured by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (manufactured by Fuji Silysia), nip seal E220A (manufactured by Nippon Silica Kogyo), Admafine SO (manufactured by Admatechs) and the like.
  • the particle shape of the matting agent is indefinite, needle-like, flat or spherical, and may preferably be spherical in view of easy transparency of the resulting film.
  • the matting agent may be used alone or in combination of two or more. Further, by using particles having different particle diameters and shapes (for example, needle shape and spherical shape, for example), both transparency and slipperiness may be made highly compatible.
  • the size of the particles of the matting agent is preferably smaller than the wavelength of visible light. / 2 or less is preferable. However, if the size of the particles is too small, the effect of improving slipperiness may not be manifested. Therefore, the size of the particles is preferably in the range of 80 to 180 nm.
  • the particle size means the size of an aggregate when the particle is an aggregate of primary particles. When the particles are not spherical, the size of the particles means the diameter of a circle corresponding to the projected area.
  • the content of the matting agent can be about 0.05 to 1.0% by mass, preferably 0.1 to 0.8% by mass with respect to the cellulose ester.
  • the optical film of the present invention may be a single layer film or a laminated film having a plurality of layers.
  • an optical film having high toughness can be obtained by adjusting the drying conditions of the film in the film production process to a specific range.
  • both a polymer containing a repeating unit represented by the general formula (1) or a compound represented by the general formulas (2) to (4) as a polarizer deterioration inhibitor and a polyester compound as a retardation reducing agent When the film containing is dried under the above-mentioned drying conditions, there is a tendency that the effect of suppressing the deterioration of the polarizer of the obtained optical film cannot be sufficiently obtained or the retardation is not sufficiently reduced.
  • the oxygen-containing substituent contained in the polymer containing the repeating unit represented by the general formula (1) and the compounds represented by the general formulas (2) to (4), and the ester moiety contained in the polyester compound are the above. It is believed that unintended interactions occur under dry conditions. As a result, it is considered that the polarizer deterioration suppressing function of the compounds represented by the general formulas (1) to (4) and the retardation reducing function of the polyester compound are mutually inhibited.
  • the oxygen-containing substituent include an oxygen atom part constituting the ring represented by (A) in the general formula (1), a carbonyl group in the general formulas (2) and (4), and a hydroxyl group in the general formula (3). And so on.
  • the present inventors made the optical film a laminated film of a plurality of layers, a polyester compound that can function as a retardation reducing agent, and general formulas (1) to (4) that can function as a polarizer deterioration inhibitor. ) Are unevenly distributed in different layers, thereby suppressing the interaction between the compounds represented by the general formulas (1) to (4) and the polyester compound, and fully expressing the functions of the respective compounds. I found out that I could make it.
  • the optical film of the present invention is preferably a laminated film of two or more layers including at least a core layer and a skin layer.
  • Each of the core layer and the skin layer included in the optical film may be a single layer or two or more layers.
  • the optical film preferably has a symmetric laminated structure.
  • Preferred examples of the laminated structure of the optical film include a two-layer structure of core layer / skin layer, and a three-layer structure of skin layer / core layer / skin layer, preferably skin layer / core layer / skin layer. It can be a three-layer structure.
  • the core layer mainly has a function of adjusting the phase difference, it is preferable that the core layer includes the cellulose ester described above and the polyester compound described above.
  • the core layer may further contain the above-described various additives such as the compounds represented by the general formulas (1) to (4) and the matting agent as necessary.
  • the general formula (1) to The content ratio of the compound (compound A) represented by (4) is preferably relatively small with respect to the content ratio of the polyester compound (compound B).
  • the content ratio A / B of the compound represented by the general formulas (1) to (4) (compound A) to the polyester compound (compound B) in the core layer is 0 to 0.1. Is preferable, and 0 to 0.08 is more preferable.
  • the matting agent is preferably unevenly distributed in the skin layer.
  • the content of the matting agent in the core layer can be 5% or less of the content of the matting agent in the skin layer.
  • the composition of the plurality of core layers may be the same or different.
  • the total thickness of the core layer may be 50% or more, preferably 70% or more of the total thickness of the optical film. Further, the thickness of the core layer is preferably 10 to 50 ⁇ m, preferably 10 to 28 ⁇ m, more preferably 10 to 20 ⁇ m in order to sufficiently suppress the transmission of moisture to the polarizer.
  • the skin layer mainly has a function of protecting the core layer, and may further have a function of suppressing deterioration of the polarizer as necessary. Therefore, the skin layer preferably contains the cellulose ester described above and the compounds represented by the general formulas (1) to (4). The skin layer may further contain the above-described various additives such as the above-described polyester compound and matting agent as necessary.
  • the polyester compound (compound B) in the skin layer is preferably relatively small with respect to the content ratio of the compound represented by the general formulas (1) to (4) (compound A).
  • the content ratio B / A of the polyester compound (Compound B) to the compounds (Compound A) represented by the general formulas (1) to (4) in the skin layer is 0 to 0.5. Is preferable, and 0 to 0.15 is more preferable.
  • the total thickness of the skin layer may be 50% or less, preferably 30% or less of the total thickness of the optical film. Further, the thickness of the skin layer is not limited as long as sufficient adhesion with the polarizer is obtained, preferably about 1 to 20 ⁇ m, preferably 1 to 10 ⁇ m, and preferably 1 to 5 ⁇ m. Is more preferable.
  • composition of the plurality of skin layers may be the same or different.
  • FIG. 1 is a schematic diagram showing an example of the configuration of the optical film of the present invention.
  • the optical film 10 of the present invention can have a core layer 11 and a pair of skin layers 13 and 15 sandwiching the core layer 11.
  • the composition and thickness of the skin layers 13 and 15 may be the same or different from each other.
  • the film thickness of the optical film is preferably 15 to 45 ⁇ m and more preferably 15 to 30 ⁇ m in order to make the polarizing plate thinner.
  • the optical film of the present invention can have a certain level of toughness even when the film thickness is thin by setting the drying conditions of the film in the production process to a specific range.
  • the breaking stress when the optical film of the present invention is pulled in the long side direction ⁇ or the short side direction ⁇ at 23 ° C. and 55% RH is T (N / mm 2 or MPa), the breaking point.
  • the toughness of the optical film represented by the following formula is shorter than the long side direction ⁇ . It is preferably 7 to 20 in each of the side directions ⁇ , more preferably 10 to 20, and still more preferably 15 to 20.
  • the long side direction ⁇ of the optical film indicates the long direction (MD direction) in the roll body of the long optical film; the short side direction ⁇ is a direction orthogonal to the long side direction ⁇ , and is long
  • the width direction (TD direction) in the roll body of a shaped optical film is shown.
  • the sheet-like optical film is square, one of two orthogonal sides can be the long side direction and the other can be the short side direction.
  • the long side direction ⁇ of the optical film may coincide with or be orthogonal to the absorption axis direction of the polarizer, but it is particularly preferable to coincide with the absorption axis direction of the polarizer.
  • the toughness of the long side direction ⁇ (preferably MD direction) and the short side direction ⁇ (preferably TD direction) of the optical film can be measured using a test piece.
  • the toughness of the optical film in the MD direction can be measured by the following procedure. 1) Cut out five optical films into 120 mm (MD direction) ⁇ 10 mm (TD direction) to obtain test pieces for MD direction measurement. The obtained test piece is conditioned for 24 hours in an environment of 23 ° C. and 55% RH. 2) Next, the tensile modulus of the test piece is measured by the method described in JIS K7127. Tensilon RTC-1225 manufactured by Orientec Co., Ltd.
  • test piece is used as the tensile tester, and the upper end and the lower end in the longitudinal direction (MD direction) of the test piece are sandwiched by 100 mm between the chucks.
  • the test piece is pulled in the longitudinal direction (MD direction) at a speed of 100 mm / min at a rate of 100 mm / min at the center and the lower end, and stress (breaking point stress T) and elongation (breaking point elongation E) when the test piece breaks. ) are measured for a total of 5 times (for a total of 5 sheets). The measurement is performed in an environment of 23 ° C. and 55% RH.
  • TD direction toughness of the optical film five optical films are cut into a size of 120 mm (TD direction) ⁇ 10 mm (MD direction) to prepare a test piece for TD direction measurement. The same measurement as described above is performed except that the test pieces are pulled in the longitudinal direction (TD direction) of the test pieces, and the toughness in the TD direction is calculated.
  • the toughness of the optical film can be adjusted by the drying conditions in the drying step of the film after stretching; specifically, 1) the number of rolls, 2) the tension of the film, 3) the drying temperature, and 4) the drying time. .
  • the toughness of the optical film for example, 1) increase the number of rolls in the drying process, 2) increase the tension of the film, and 3) increase the drying temperature or 4) increase the drying time.
  • the toughness in both MD and TD directions can be preferably increased. it can.
  • the toughness of the optical film can also be adjusted by the content of additives such as Compound A and Compound B.
  • the optical film of the present invention can have a tear strength of a certain level or more, even though the film thickness is thin, by setting the drying conditions of the film in the production process within a specific range.
  • the tear load (mN) in the Elmendorf method of the optical film is preferably 20 mN or more, more preferably 30 mN or more, and further preferably 35 mN or more.
  • the upper limit of the tear strength can be, for example, about 50 mN.
  • the tear strength of the optical film can be measured in accordance with JIS K 7128-1991 using a light load tear device manufactured by Toyo Seiki Co., Ltd. The measurement can be performed for each of the film transport direction (MD direction) and the width direction (TD direction) under the condition of 23 ° C. and 55% RH, and can be obtained as an average value thereof.
  • the tear strength of the optical film is determined by the drying conditions in the drying process of the film after stretching; specifically, 1) the number of rolls in the drying process, 2) the tension of the film, 3) the drying temperature, and 4 ) Can be adjusted by drying time. Specifically, in order to make the tear strength of the optical film above a certain level, 1) increase the number of rolls, 2) increase the tension of the film, and 3) increase the drying temperature or 4) the drying time. It is preferable to lengthen the length; it is more preferable to carry out all of the above 1) to 4). Further, as described above, the tear strength of the optical film can be adjusted by the content of additives such as Compound A and Compound B.
  • the retardation Ro in the in-plane direction measured under the conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH of the optical film is preferably ⁇ 10 nm to 10 nm, more preferably ⁇ 5 nm to 5 nm. preferable.
  • the retardation Rth in the thickness direction measured under conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH of the optical film is preferably from ⁇ 10 nm to 10 nm, and more preferably from ⁇ 5 nm to 5 nm. .
  • An optical film having such a retardation value is suitable as, for example, a retardation film (F2 or F3) of an IPS mode liquid crystal display device.
  • the contrast and the viewing angle of the IPS mode liquid crystal display device can be improved by setting the above optical values.
  • Retardation Ro and Rth are defined by the following equations, respectively.
  • Formula (I): Ro (nx ⁇ ny) ⁇ t (nm)
  • Formula (II): Rth ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ t (nm)
  • nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the in-plane direction of the film
  • ny represents the refractive index in the direction y perpendicular to the slow axis direction x in the in-plane direction of the film
  • nz represents the refractive index in the thickness direction z of the film
  • t (nm) represents the thickness of the film)
  • the retardations Ro and Rth can be determined by the following method, for example. 1) The optical film is conditioned at 23 ° C. and 55% RH. The average refractive index of the optical film after humidity adjustment is measured with an Abbe refractometer or the like. 2) Ro is measured by KOBRA21ADH, Oji Scientific Co., Ltd., when light having a measurement wavelength of 590 nm is incident on the optical film after humidity adjustment in parallel to the normal line of the film surface.
  • the slow axis in the plane of the optical film is set as the tilt axis (rotation axis), and light having a measurement wavelength of 590 nm from the angle normal to the surface of the film (incident angle ( ⁇ ))
  • the retardation value R ( ⁇ ) when incident is measured.
  • the retardation value R ( ⁇ ) can be measured at 6 points every 10 °, with ⁇ ranging from 0 ° to 50 °.
  • the in-plane slow axis is an axis having the maximum refractive index in the film plane, and can be confirmed by KOBRA21ADH.
  • nx, ny, and nz are calculated by KOBRA21ADH from the measured Ro and R ( ⁇ ) and the above-described average refractive index and film thickness, and Rth at a measurement wavelength of 590 nm is calculated.
  • the measurement of retardation can be performed under conditions of 23 ° C. and 55% RH.
  • the retardation of the optical film can be adjusted by stretching conditions and the addition of the above-described polyester compound having a retardation adjusting function.
  • the draw ratio is preferably kept below a certain value; in order to keep Rth below a certain value, for example, the content of the polyester compound is preferably kept above a certain value.
  • the haze of the optical film of the present invention is preferably 1% or less, more preferably 0.5% or less, and further preferably 0.3% or less. When the haze of the optical film is in the above range, good contrast can be easily obtained in the display device.
  • the haze of the optical film can be measured with a haze meter (turbidimeter) (model: NDH 2000, manufactured by Nippon Denshoku Co., Ltd.) in accordance with JIS K-7136.
  • the optical film of the present invention can be produced by a solution casting method or a melt casting method. It is preferable that the optical film of the present invention is produced by a solution casting film forming method because melting at high temperature is unnecessary and a resin having a relatively large molecular weight is easily formed.
  • the manufacturing process of the optical film of the present invention includes a first step of preparing a dope containing the above cellulose ester and the above compound A; and casting and drying the dope on a metal support.
  • the optical film of the present invention is a laminated film of two or more layers
  • a core layer dope and a skin layer dope are prepared; in the second step, a core layer dope and a skin layer dope
  • the dope is preferably co-cast on a metal support and then dried to obtain a film.
  • ⁇ About the first step (dope preparation step)> It is preferable to prepare the dope for the core layer and the dope for the skin layer, respectively, by adding the above-mentioned components to the organic solvent while stirring and dissolving.
  • the organic solvent used for preparing the dope solution can be used without limitation as long as it sufficiently dissolves each of the above components such as cellulose ester.
  • the chlorinated organic solvent include methylene chloride.
  • the non-chlorine organic solvent include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate and the like. Of these, methylene chloride is preferred.
  • the dope preferably further contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms in addition to the organic solvent.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol and the like. Of these, methanol and ethanol are preferable because the stability of the dope, the boiling point is relatively low, and the drying property is good.
  • the total concentration of the resin components in the dope can be in the range of 15 to 45% by mass with respect to the total mass of the dope.
  • the resin component in the dope indicates a cellulose ester in the core layer dope and the skin layer dope.
  • Dissolution of cellulose ester and the like includes a method performed at normal pressure, a method performed below the boiling point of the main solvent, a method performed under pressure above the boiling point of the main solvent, and a method performed under pressure above the boiling point of the main solvent. Is preferred. In order to remove aggregates and the like in the obtained dope, it is preferable to further filter the dope with a filter medium.
  • FIG. 2 is a schematic view showing an example of the production process of the optical film of the present invention.
  • the core layer dope 21a and the skin layer dope 21b are discharged from the die 23 and co-cast on the metal support 25 (see FIG. 2).
  • the co-casting may be a sequential co-casting in which the core layer dope 21a and the skin layer dope 21b are sequentially cast and laminated; the core layer dope and the skin layer dope are cast simultaneously. And simultaneous lamination and co-casting.
  • Examples of sequential lamination co-casting include the methods described in JP-A-61-158414, JP-A-1-122419, and JP-A-11-198285.
  • Examples of simultaneous laminating co-casting include JP-B-60-27562, JP-A-61-94724, JP-A-61-94725, JP-A-61-104413, JP-A-61-158413, JP-A-61-158413, There is a method described in Kaihei 6-134933.
  • the metal support 25 may be a metal belt such as a stainless steel belt, or may be a rotating metal drum.
  • the co-cast dope is heated on the metal support 25 to evaporate the solvent to obtain the film-like material 27.
  • a method for evaporating the solvent there are a method of blowing air on the surface of the dope, a method of transferring heat from the back surface of the metal support 25 with a liquid, a method of transferring heat from the front and back of the dope by radiant heat, and the like. Especially, since the drying efficiency is high, the method of transferring heat with liquid from the back surface of the metal support 25 is preferable.
  • the drying of the dope on the metal support 25 is preferably performed in an atmosphere of 40 to 100 ° C. In order to obtain an atmosphere of 40 to 100 ° C., it is preferable to heat the dope by applying warm air of this temperature to the surface of the dope film or applying infrared rays.
  • the film-like material 27 obtained by evaporating the solvent on the metal support 25 is peeled off by a peeling roll 29 or the like (see FIG. 2). From the viewpoint of improving the surface quality and peelability of the obtained film-like material 27, it is preferable to peel the film-like material 27 from the metal support 25 within 30 to 120 seconds after casting.
  • the amount of residual solvent of the film-like material 27 when peeling from the metal support 25 is preferably about 50 to 120% by mass, although it depends on the strength of drying conditions and the length of the metal support 25. .
  • the residual solvent amount at the time of peeling can be determined within a range that does not impair the flatness.
  • the peeling tension when peeling the film-like material 27 from the metal support 25 is usually preferably 196 to 245 N / m. In the case where wrinkles easily occur during peeling, the peeling tension is preferably 190 N / m or less.
  • the temperature at the peeling position on the metal support 25 is preferably in the range of 10 to 40 ° C., more preferably in the range of 11 to 30 ° C. during film formation using a stainless steel belt. Further, at the time of film formation using a metal drum, the temperature at the peeling position of the metal drum is preferably ⁇ 20 to 10 ° C.
  • the peeled film 27 is dried while being conveyed in the tenter stretching device 31, or is dried while being conveyed by a plurality of rolls arranged in the drying device.
  • the drying method is not particularly limited, but a method of blowing hot air on both surfaces of the film-like material 27 is common.
  • drying at a high temperature is preferably performed under conditions where the residual solvent is 8% by mass or less.
  • the drying temperature is preferably in the range of 40-190 ° C, more preferably in the range of 40-170 ° C.
  • the stretching may be performed in at least one direction and may be performed in two directions. Stretching in two directions (biaxial stretching) is preferably performed in the casting direction (MD direction) and the width direction (TD direction), respectively.
  • the biaxial stretching may be simultaneous biaxial stretching or stepwise biaxial stretching (sequential biaxial stretching).
  • the draw ratio may be about 1.01 to 1.5 times, preferably about 1.01 to 1.3 times in each direction.
  • the stretching temperature is preferably Tg to (Tg + 50) ° C., more preferably Tg to (Tg + 40) ° C.
  • the specific stretching temperature can be about 100 to 200 ° C., for example.
  • the residual solvent amount of the film-like material at the start of the tenter stretching is preferably 2 to 30% by mass. Furthermore, it is preferable to dry until the amount of residual solvent in the film-like material is 10% by mass or less, preferably 5% by mass or less.
  • the drying temperature is preferably in the range of 30 to 160 ° C, more preferably in the range of 50 to 150 ° C.
  • the tenter method includes a clip tenter and a pin tenter, and the pin tenter is preferable from the viewpoint of productivity.
  • ⁇ About the fourth step (drying step)> it is preferable to further dry the film from the viewpoint of not only sufficiently removing the solvent in the film but also obtaining a film having high toughness. It is preferable to dry the film while transporting the film with a plurality of rolls 33 a arranged in the drying device 33.
  • the tension of the film in the drying process, the number of rolls 33a for transporting the film, the drying temperature, and the drying time are set to a certain level or more.
  • the number of rolls 33a for transporting the film is preferably 200 to 300, and more preferably 250 to 300.
  • the film tension is preferably from 100 to 150 N / m, more preferably from 120 to 150 N / m.
  • the drying temperature is preferably 125 to 150 ° C, more preferably 135 to 150 ° C.
  • the drying time is preferably 10 to 15 minutes, more preferably 13 to 15 minutes.
  • optical film 10 having a certain level of toughness and tear strength despite the thin film thickness.
  • the method for forming the embossed part is not particularly limited, and examples thereof include a method for forming an embossed part by pressing a roller such as an embossing ring on the film, and a method for forming the embossed part in a non-contact manner.
  • the obtained long optical film 10 can be wound into a roll body 39 around a core 37 by a winding device 35 to form a roll body 39.
  • the winding method may be a method of winding without applying normal vibration (straight winding); or a method of winding while oscillating at least one of the film and the core in the film width direction (oscillating winding). Or they may be combined.
  • the optical film 10 of the present invention has high toughness despite being very thin. Therefore, even if it winds by a normal method (straight winding), the deformation
  • the optical film 10 having the embossed portions at both ends in the width direction is wound up by a normal method (straight winding), the embossed portions are overlapped with each other.
  • the roll diameter becomes significantly larger than the winding diameter at the center, and the roll body 39 may be deformed accordingly.
  • the optical film 10 is wound up by a method of oscillating at least one of the optical film 10 and the core 37 in the width direction of the film (oscillate). It is preferable to employ winding).
  • the roll body 39 wound up by oscillating winding has a wavy shape on the side surfaces at both ends in the axial direction.
  • the width of the long optical film 10 in the roll body 39 may be, for example, 1000 to 6000 mm, preferably 1400 to 4000 mm.
  • the winding length of the optical film 10 can be set to 100 to 10,000 m, for example.
  • Polarizing plate The polarizing plate of the present invention includes a polarizer and two protective films sandwiching the polarizer.
  • a polarizer is an element that passes only light having a plane of polarization in a certain direction
  • a typical polarizer known at present is a polyvinyl alcohol polarizing film.
  • the polyvinyl alcohol polarizing film includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
  • the polyvinyl alcohol polarizing film may be a film (preferably a film further subjected to durability treatment with a boron compound) dyed with iodine or a dichroic dye after uniaxially stretching the polyvinyl alcohol film; A film obtained by dying an alcohol film with iodine or a dichroic dye and then uniaxially stretching (preferably a film further subjected to a durability treatment with a boron compound) may be used.
  • the thickness of the polarizer is preferably 2 to 30 ⁇ m, and more preferably 5 to 15 ⁇ m in order to reduce the thickness of the polarizing plate.
  • At least one of the two protective films sandwiching the polarizer is preferably the optical film of the present invention.
  • the other of the two protective films may be another protective film.
  • Examples of other protective films include (meth) acrylic resin films, polyester films, cellulose ester films, and the like, preferably cellulose ester films.
  • the cellulose ester contained in the cellulose ester film is defined in the same manner as the cellulose ester contained in the optical film described above, and may preferably be cellulose triacetate.
  • the in-plane retardation Ro measured under the conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH is preferably 0 to 20 nm, and more preferably 0 to 10 nm.
  • the retardation Rth in the thickness direction measured under the conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH of the protective film is preferably 0 to 80 nm, and more preferably 0 to 50 nm.
  • the thickness of the other protective film can be about 10 to 100 ⁇ m, preferably 10 to 80 ⁇ m.
  • the polarizing plate of the present invention can be obtained, for example, through a process of bonding the optical film of the present invention to at least one surface of a polarizer with an adhesive.
  • the adhesive used for the bonding may be a completely saponified polyvinyl alcohol aqueous solution (water glue) or an active energy ray-curable adhesive. It is preferable to use an active energy ray-curable adhesive because the resulting adhesive layer has a high elastic modulus and can easily suppress dimensional changes of the polarizing plate.
  • the active energy ray-curable adhesive composition is a photo radical polymerization composition using photo radical polymerization, a photo cation polymerization composition using photo cation polymerization, or a hybrid type using both photo radical polymerization and photo cation polymerization. It can be a composition or the like.
  • a radical photopolymerizable composition is a composition comprising a radically polymerizable compound containing a polar group such as a hydroxy group or a carboxy group and a radically polymerizable compound not containing a polar group described in JP-A-2008-009329 in a specific ratio. It can be a thing.
  • the radical polymerizable compound is preferably a compound having an ethylenically unsaturated bond capable of radical polymerization.
  • Preferable examples of the compound having an ethylenically unsaturated bond capable of radical polymerization include a compound having a (meth) acryloyl group.
  • Examples of the compound having a (meth) acryloyl group include an N-substituted (meth) acrylamide compound and a (meth) acrylate compound.
  • (Meth) acrylamide means acrylamide or methacrylamide.
  • the cationic photopolymerization type composition comprises ( ⁇ ) a cationic polymerizable compound, ( ⁇ ) a cationic photopolymerization initiator, and ( ⁇ ) light having a wavelength longer than 380 nm, as disclosed in Japanese Patent Application Laid-Open No. 2011-028234. It may be a composition containing each component of a photosensitizer exhibiting maximum absorption and ( ⁇ ) naphthalene photosensitizer.
  • Such a polarizing plate is, for example, a step of subjecting the surface of the optical film to easy adhesion (corona treatment, plasma treatment, etc.); a step of applying an active energy ray-curable adhesive to at least one of the polarizer and the optical film; It can be manufactured through a step of bonding the polarizer and the optical film through the obtained adhesive layer; a step of curing the adhesive layer in a state where the polarizer and the optical film are bonded.
  • the polarizing plate of the present invention including the optical film of the present invention can suppress the deterioration of the polarizer and can suppress the decrease in the degree of polarization.
  • the optical film of the present invention is a laminated film including a core layer and a skin layer, the polyester compound B is unevenly distributed in the core layer, and the skin layer includes a repeating unit derived from the monomer represented by the general formula (1). It is preferable that one or more compounds A selected from the group consisting of the union and the compounds represented by the general formulas (2) to (4) are unevenly distributed.
  • the optical film of the present invention since the unintended interaction between the compound A and the polyester compound B is suppressed, the retardation reducing function by the compound B and the polarizer deterioration suppressing function by the compound A are mutually inhibited. There is little fear. As a result, deterioration of the polarizer in the polarizing plate is suppressed, and a decrease in the degree of polarization can be suppressed.
  • the liquid crystal display device of the present invention includes a first polarizing plate, a liquid crystal cell, a second polarizing plate, and a backlight in this order. At least one of the first and second polarizing plates may be the polarizing plate of the present invention.
  • the polarizing plate of the present invention is preferably arranged so that the optical film of the present invention is on the liquid crystal cell side.
  • the first polarizing plate includes a first polarizer, a protective film F1 disposed on a surface opposite to the liquid crystal cell of the first polarizer, and a liquid crystal cell of the first polarizer. And a protective film F2 disposed on the side surface.
  • the second polarizing plate is disposed on the surface opposite to the liquid crystal cell of the second polarizer, the protective film F3 disposed on the liquid crystal cell side of the second polarizer, and the second polarizer.
  • a protective film F4 At least one of the protective films F1, F2, F3 and F4; preferably at least one of F2 and F3 is the optical film of the present invention.
  • the liquid crystal display device of the present invention may be a medium or large-sized liquid crystal display device such as a television or a notebook computer; it may be a small liquid crystal display device such as a smartphone. Especially, since the effect of the present invention is easily obtained, the liquid crystal display device is a small-sized liquid crystal display device having a display area (not shown) having a diagonal length of 10 inches or less, preferably 5 inches or less. Is preferred.
  • FIG. 3 is a schematic diagram showing an example of a small liquid crystal display device.
  • the small liquid crystal display device 50 includes a liquid crystal cell 70, a first polarizing plate 90 and a second polarizing plate 110 that sandwich the liquid crystal cell 70, and a backlight 130; Cover glass 150 disposed on the viewing side surface of plate 90, touch panel unit 170 disposed between first polarizing plate 90 and liquid crystal cell 70, and rechargeable battery disposed on the back side of backlight 130 190.
  • the display mode of the liquid crystal cell 70 may be various display modes such as STN, TN, OCB, HAN, VA (MVA, PVA), IPS, FFS (Fringe Field Switching), and has a wide viewing angle.
  • the IPS mode or the FFS mode is preferable.
  • the IPS liquid crystal cell 70 normally includes a pair of transparent substrates and a liquid crystal layer disposed between them.
  • One of the pair of transparent substrates is provided with a pixel electrode and a counter electrode for applying a voltage to the liquid crystal.
  • the liquid crystal layer includes liquid crystal molecules having positive dielectric anisotropy ( ⁇ > 0) or negative dielectric anisotropy ( ⁇ > 0).
  • the liquid crystal molecules are aligned horizontally with respect to the substrate surface when no voltage is applied.
  • the product ⁇ n ⁇ d of the thickness d ( ⁇ m) of the liquid crystal layer and the refractive index anisotropy ⁇ n is 0.2 to 0.00 in the transmission mode from the viewpoint of obtaining a high contrast and in the IPS mode having no twisted structure. It can be in the range of 4 ⁇ m.
  • liquid crystal cell thus configured, an electric field in the horizontal direction is generated between the pixel electrode provided on one substrate and the counter electrode, with respect to the substrate surface. Thereby, the liquid crystal molecules horizontally aligned with respect to the substrate surface are rotated in a plane parallel to the substrate surface. Thereby, the liquid crystal molecules are driven, and the image display is performed by changing the transmittance and reflectance of each sub-pixel.
  • FIG. 4 is a diagram schematically showing an example of the alignment of liquid crystal molecules in one pixel region of the IPS mode liquid crystal cell 70.
  • liquid crystal molecules are shown in 205a and 205b in a state where no voltage is applied between electrodes 202 and 203.
  • the alignment film (not shown) is oriented in the direction defined by the rubbing direction 204.
  • black display is obtained.
  • the liquid crystal molecules are aligned as shown in 206a and 206b according to the voltage. At this time, a bright display is obtained.
  • the first polarizing plate 90 is disposed on the surface of the liquid crystal cell 70 on the viewing side; the first polarizer 91 and the protective film disposed on the surface of the first polarizer 91 opposite to the liquid crystal cell 70.
  • 93 (F1) and the optical film 10 (F2) as a protective film disposed on the surface of the first polarizer 91 on the liquid crystal cell 70 side.
  • the second polarizing plate 110 is disposed on the surface of the liquid crystal cell 70 on the backlight side; the second polarizer 111 and a protective film disposed on the surface of the second polarizer 111 on the liquid crystal cell 70 side.
  • the touch panel unit 170 is disposed between the liquid crystal cell 70 and the first polarizing plate 90 (on-cell type).
  • the arrangement of the touch panel unit 170 is not limited to the mode shown in FIG. 3, and the touch panel unit 170 may be provided integrally with the cover glass 150 (cover glass integrated type); (In-cell type).
  • the rechargeable battery 190 can be, for example, a lithium ion secondary battery.
  • the protective films F2 and F3 can include the optical film 10 of the present invention.
  • the optical film 10 of the present invention has a very thin film thickness, the deterioration of the polarizer can be sufficiently suppressed. Thereby, the contrast of a display apparatus and the fall of visibility can be suppressed.
  • the optical film of the present invention can have high toughness despite its very thin film thickness. Thereby, deformation of the roll body of the optical film can be suppressed.
  • An optical film obtained from such a roll body is difficult to apply non-uniform tension to the optical film due to deformation of the roll body, thereby causing non-uniform retardation or non-uniform film thickness on the optical film. There is no fear of becoming. Accordingly, it is possible to suppress a decrease in display performance accompanying deformation of the roll body.
  • Aerosil R972 manufactured by Nippon Aerosil Co., Ltd., silicon dioxide fine particles (average particle size 15 nm, Mohs hardness about 7)
  • Example 1 Production of Optical Film ⁇ Example 1> 1) Preparation of dope for core layer The following components were put into a mixing tank and stirred to dissolve each component. The obtained solution was filtered through a filter paper having an average pore size of 34 ⁇ m and a sintered metal filter having an average pore size of 10 ⁇ m to prepare a core layer dope.
  • composition of dope for core layer Cellulose triacetate (acetyl group substitution degree: 2.85, weight average molecular weight Mw: 285000, viscosity average polymerization degree: 306, viscosity of 6% by mass of dichloromethane solution: 315 mPa ⁇ s): 100 parts by mass Compound B-1 (polyester compound) : 15 parts by mass Dichloromethane: 320 parts by mass Methanol: 83 parts by mass 1-butanol: 3 parts by mass
  • composition of dope for skin layer Cellulose triacetate (acetyl group substitution degree: 2.85, weight average molecular weight Mw: 285000, viscosity average polymerization degree: 306, viscosity of 6% by mass of dichloromethane solution: 315 mPa ⁇ s): 100 parts by mass Compound A-1 (general formula ( Compound represented by 1)): 3 parts by mass Dichloromethane: 320 parts by mass Methanol: 83 parts by mass 1-butanol: 3 parts by mass Aerosil R972 (matting agent): 0.05 parts by mass (solid content)
  • the obtained core layer dope and skin layer dope were co-cast from a casting die on a traveling casting band (simultaneous multilayer casting).
  • the cast dope was dried on the casting band and then peeled off to obtain a film.
  • the residual solvent amount of the film-like material immediately after peeling off was about 30% by mass.
  • the obtained film was further dried with a tenter. After stretching the film-like material in the width direction (TD direction) at 120 ° C. and a draw ratio of 5% with a tenter, 120 ° C. and the draw ratio in the transport direction (MD direction) of the film-like material with a roll stretching device Stretched at 5%.
  • the obtained film was dried under the conditions of Process A in Table 4 below. Specifically, the film was dried while being conveyed by a plurality of rolls 33a arranged in the drying apparatus 33 as shown in FIG.
  • the drying temperature was 140 ° C.
  • the drying time was 13 minutes
  • the number of rolls in the drying apparatus was 250
  • the film transport tension was 120 N / m.
  • Example 2 A core layer dope was obtained in the same manner as in Example 1 except that 3 parts by mass of Compound A-1 was further added to 100 parts by mass of cellulose triacetate. An optical film 102 was obtained in the same manner as in Example 1 except that a single layer film was obtained using only the obtained core layer dope.
  • Examples 6 to 8, Comparative Example 7 and Reference Example> The optical films 112 to 100 were formed in the same manner as in Example 1 except that the casting amounts of the core layer dope and the skin layer dope were adjusted and the thicknesses of the core layer and skin layer were changed as shown in Table 6. 116 was obtained.
  • Optical films 117 to 130 were obtained in the same manner as in Example 1 except that the composition of the dope for the skin layer was adjusted and the type of compound A contained in the skin layer was changed as shown in Table 7.
  • Example 23 The composition of the core layer dope and the skin layer dope was adjusted, and the types and contents of Compound A and Compound B contained in the core layer and skin layer were changed as shown in Table 8, respectively, and for the core layer An optical film 131 was obtained in the same manner as in Example 1 except that the casting amount of the dope was adjusted and the thickness of each layer was changed as shown in Table 8.
  • Examples 24 to 26> The optical film 132 to the optical film 132 were prepared in the same manner as in Example 23 except that the composition of the core layer dope was adjusted and the content ratio (A / B) of compound A and compound B in the core layer was changed as shown in Table 8. 134 was obtained.
  • Examples 27 to 30> The optical film 135 ⁇ was prepared in the same manner as in Example 23 except that the composition of the skin layer dope was adjusted and the content ratio (B / A) of Compound A to Compound B in the skin layer was changed as shown in Table 8. 138 was obtained.
  • Optical films 139 to 142 were obtained in the same manner as in Example 1 except that the composition of the core layer dope was adjusted and the content of Compound B in the core layer was changed as shown in Table 9.
  • Example 35 The composition of the core layer dope was adjusted, the content of Compound B in the core layer was changed as shown in Table 9, and the stretching conditions were changed as shown in Table 9, and the same as Example 1 Thus, an optical film 143 was obtained.
  • Optical films 144 to 147 were obtained in the same manner as in Example 1 except that the composition of the core layer dope was adjusted and the type of compound B in the core layer was changed as shown in Table 9.
  • the production conditions of the optical films of Examples 1-2 and Comparative Examples 1-2 are shown in Table 5; the production conditions of the optical films of Examples 3-8, Comparative Examples 3-7 and Reference Example are shown in Table 6; The production conditions of the optical films of Examples 9 to 22 are shown in Table 7; the production conditions of the optical films of Examples 23 to 30 are shown in Table 8. The production conditions of the optical films of Examples 31 to 39 are shown in Table 9.
  • the toughness and tear strength of the produced optical film were evaluated by the following methods, respectively.
  • the retardation was further evaluated.
  • the test piece was pulled in the longitudinal direction (MD direction) at a speed of 100 mm / min and the test piece was broken (stress at break point T (N / mm 2 or MPa)). And elongation (elongation at break E (%)) were measured, respectively, for a total of 5 times (for a total of 5 sheets). The measurement was performed in an environment of 23 ° C. and 55% RH. 3) The maximum value of five measured values of the stress at break T (N / mm 2 or MPa) obtained, the maximum value of five measured values of the elongation at break E (%), and the film of the test piece The thickness t (mm) was applied to the following formula to calculate the toughness in the MD direction.
  • Toughness stress at break T (N / mm 2 or MPa) ⁇ cross-sectional area A (mm 2 ) of specimen in a direction perpendicular to the tensile direction ⁇ (elongation at break E (%) / 100) 1/2
  • Cross-sectional area A (mm 2 ) of the test piece width 10 (mm) of the test piece ⁇ film thickness t (mm) of the test piece
  • TD toughness In the same manner as described above, five of the obtained films were cut into a size of 120 mm (TD direction) ⁇ 10 mm (MD direction), and used as test pieces for measuring the TD direction. The same measurement as described above was performed except that the obtained test piece for measuring the TD direction was pulled in the longitudinal direction (TD direction) of the test piece, and the toughness in the TD direction was calculated.
  • the tear load (mN) of the obtained film in the Elmendorf method was measured according to JIS K 7128-1991 using a light load tear device manufactured by Toyo Seiki Co., Ltd. The measurement was performed for each of the film conveyance direction (MD direction) and the width direction (TD direction) under the condition of 23 ° C. and 55% RH.
  • Tear strength is 35 mN or more ⁇ : Tear strength is 30 mN or more and less than 35 mN ⁇ : Tear strength is 20 mN or more and less than 30 mN ⁇ : Tear strength is less than 20 mN
  • Phase difference Ro, Rth 1) The obtained film was conditioned at 23 ° C. and 55% RH. The average refractive index of the film after humidity control was measured with an Abbe refractometer. 2) Ro was measured by KOBRA21ADH, Oji Scientific Co., Ltd., when light having a measurement wavelength of 590 nm was incident on the film after humidity adjustment in parallel to the normal line of the film surface. 3) With KOBRA21ADH, light with a measurement wavelength of 590 nm was incident from the angle of ⁇ (incident angle ( ⁇ )) with respect to the normal of the film surface with the slow axis in the plane of the film as the tilt axis (rotation axis). The retardation value R ( ⁇ ) was measured.
  • the retardation value R ( ⁇ ) was measured at 6 points every 10 °, with ⁇ ranging from 0 ° to 50 °.
  • the in-plane slow axis of the film was confirmed by KOBRA21ADH.
  • nx, ny and nz were calculated by KOBRA21ADH, and Rth at a measurement wavelength of 590 nm was calculated.
  • the retardation was measured under the conditions of 23 ° C. and 55% RH.
  • a polarizing plate using the optical film prepared above was prepared by the following method, and the presence or absence of deterioration of the polarizer was evaluated.
  • the produced polarizer is sandwiched between the two treated optical films, and a laminate of optical film / active energy ray curable adhesive layer / polarizer / active energy ray curable adhesive layer / optical film.
  • ultraviolet light gallium-filled metal halide lamp
  • an ultraviolet irradiation device with a belt conveyor
  • Light HAMMER10 bulb V bulb
  • peak illuminance 1600 mW / cm 2
  • the active energy ray-curable adhesive layer was cured by irradiating with ultraviolet rays so that the integrated irradiation amount was 1000 / mJ / cm 2 (wavelength 380 to 440 nm) to obtain a polarizing plate.
  • Polarization degree P ((H0 ⁇ H90) / (H0 + H90)) 0.5 ⁇ 100 (H0: parallel transmittance, H90: orthogonal transmittance) 2) Thereafter, the polarizing plate sample was stored for 1000 hours at 60 ° C. and 90% RH, and then the parallel transmittance and the direct transmittance of the polarizing plate sample were measured in the same manner as described above. The obtained measured values were applied to the above-described formulas, respectively, and the degree of polarization P1000 after storage was calculated. 3) The polarization degree P0 obtained in the above 1) and the polarization degree P1000 obtained in the above 2) were applied to the following formula to calculate the degree of polarization change.
  • Polarization degree change P0-P1000 (P0: degree of polarization before forced deterioration, P1000: degree of polarization after 1000 hours of forced deterioration)
  • the deterioration of the polarizer in the polarizing plate sample was evaluated based on the following criteria.
  • a liquid crystal display device was produced by the following method using the optical films of Examples 1 and 23 to 39, and the contrast was evaluated.
  • the front contrast of the obtained liquid crystal display device was evaluated by the following method. That is, on the Schaukasten set in the bright room, the manufactured liquid crystal display device was disposed so that the substrate provided with the electrode among the substrates constituting the liquid crystal cell was on the Schaukasten side.
  • the luminance meter (spectral radiance meter CS-1000: manufactured by Minolta Co., Ltd.) installed at a distance of 1 m in the normal direction of the liquid crystal cell is used, the luminance when white is displayed and when the black is displayed. The brightness of each was measured. Thereby, a luminance ratio (brightness during white display / brightness during black display) was calculated and used as the contrast ratio.
  • Contrast ratio is 400 or more O: Contrast ratio is 360 or more and less than 400 ⁇ : Contrast ratio is 320 or more and less than 360 ⁇ : Contrast ratio is less than 320
  • the evaluation results of the optical films of Examples 1-2 and Comparative Examples 1-2 are shown in Table 10; the evaluation results of the optical films of Examples 3-8, Comparative Examples 3-7 and Reference Example are shown in Table 11; The evaluation results of the optical films of Examples 9 to 22 are shown in Table 12, the evaluation results of the optical films of Examples 23 to 30 are shown in Table 13, and the evaluation results of the optical films of Examples 31 to 39 are shown in Table 14.
  • the optical films of Examples 1 to 39 in which the drying conditions were A to D were thinner than the optical films of Comparative Examples 1 to 5 in which the drying conditions were E to G. It can be seen that the optical film of Comparative Example 6 has higher toughness and tear strength.
  • the toughness and tear strength of the films of Comparative Examples 1 to 3 are low because the number of rolls in the drying process is small and sufficient tension cannot be applied to the film (Condition E).
  • the film of Comparative Example 4 has low toughness and tear strength because the drying temperature in the drying process is low and the drying time is short (Condition F), so that the molecular chains of the cellulose ester constituting the film are sufficiently oriented. This is thought to be because it was not possible to make it happen.
  • the film of Comparative Example 5 has low toughness and tear strength because the tension applied to the film in the drying process is low, the drying temperature is low, and the drying time is short (Condition G), so that the molecular chain of the cellulose ester constituting the film It is suggested that this is because the film could not be sufficiently oriented.
  • the film of Comparative Example 6 in which the number of rolls is large and the tension in the drying process is too large is hard and brittle, has low toughness, and lowers the tear strength.
  • the optical films of Examples 1 to 39 can reduce the deterioration of the polarizer as compared with the optical films of Comparative Examples 2 and 6.
  • the optical film of Comparative Example 2 does not contain Compound A having a polarizer deterioration function; the optical film of Comparative Example 6 has a sufficient film thickness because the total film thickness is too thin even if Compound A is contained. This is probably because the deterioration of the polarizer could not be suppressed. Since the optical film of the reference example is too thick in the first place, it is not suitable for a small display device.
  • Example 1 in Table 10 or Example 9 in Table 12 and Example 2 in Table 10 Compound A (polarizer deterioration inhibitor) and Compound B (phase difference reducing agent) It can be seen that the phase difference is sufficiently lower and the deterioration of the polarizer can be reduced when each is contained in different layers than in the same layer. This suppresses the interaction between compound A (polarizer deterioration inhibitor) and compound B (retardation reducing agent) when contained in the same layer, and suppresses polarizer deterioration of compound A (polarizer deterioration inhibitor). This is considered to be because the function and the phase difference reducing function of Compound B (phase difference reducing agent) are hardly inhibited from each other.
  • the absolute value of the retardation of the optical film satisfies 5 nm or less. It can be seen that the front contrast is higher than the display devices of Examples 31, 34 to 35 and 38 to 39. Further, in the optical films of Examples 33 to 35 and 38, the deterioration of the polarizer cannot be sufficiently suppressed because the content of Compound B contained in the core layer is too large, and a part of Compound B is contained in the core layer. This is considered to be due to some unintentional interaction with Compound A contained in the skin layer.
  • the present invention even if the film thickness is thin, not only can the deterioration of the polarizer be suppressed, but also an optical film with high toughness can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明の目的は、膜厚が薄くても、偏光子の劣化を抑制できるだけでなく、タフネスが高い光学フィルムを提供することである。本発明の光学フィルムは、セルロースエステルと、一般式(1)で表されるモノマー由来の繰り返し単位を含む重合体、一般式(2)で表される化合物、一般式(3)で表される化合物および一般式(4)で表される化合物からなる群より選ばれる一以上の化合物Aとを含む光学フィルムであって、膜厚が15~45μmであり、かつ前記光学フィルムを、23℃55%RH下において前記光学フィルムの長辺方向αまたは短辺方向βに引っ張ったときの破断点応力をT(MPaまたはN/mm)、破断点伸度をE(%)、引張方向に対して直交する方向の前記光学フィルムの断面積をA(mm)としたとき、下記式で表されるタフネスGが、長辺方向αと短辺方向βのそれぞれにおいて7~20である。

Description

光学フィルムとその製造方法、偏光板および液晶表示装置
 本発明は、光学フィルムとその製造方法、偏光板および液晶表示装置に関する。
 近年、液晶表示装置は、スマートフォンやタブレット端末などの携帯機器の液晶ディスプレイとしての需要が増している。液晶表示装置は、通常、液晶セルと、それを挟持する一対の偏光板とを含む。偏光板は、偏光子と、それを挟持する一対の保護フィルムとを含む。携帯機器などに用いられる液晶表示装置には薄型化が求められており、それを構成する保護フィルムにも薄型化が求められている。
 保護フィルムとしては、例えばセルロースエステルフィルムが用いられている。また、保護フィルムは、高温多湿下においても透過水分による偏光子の劣化を抑制できることが望まれている。そのような保護フィルムとして、セルロースアシレートと、特定のフェノール系化合物などの偏光子劣化抑制剤とを含むフィルムが提案されている(例えば特許文献1)。
特開2013-174851号公報
 膜厚が薄い保護フィルムは特に水分を透過しやすいことから、偏光子が劣化しやすい。即ち、膜厚が薄い保護フィルムは水分を透過しやすいことから、偏光子に水分が侵入しやすい。偏光子では、PVA高分子と二色性色素がホウ酸架橋によって安定化錯体を形成している。偏光子に水分が侵入すると、ホウ酸架橋が破壊されるだけでなく、ホウ酸が散逸しやすく、偏光子の劣化を生じやすい。
 偏光子の劣化は、特許文献1に示されるような芳香環を含む偏光子劣化抑制剤を保護フィルムに含有させることで低減できる。しかしながら、偏光子劣化抑制剤を含む保護フィルムは、タフネスが低い傾向があった。
 また、膜厚が薄い保護フィルムは強度が低いことから、タフネスがさらに低下しやすい。このように、タフネスが低いフィルムをロール状に巻き取ると、ロール体の変形が生じやすい。ロール体の変形が生じると、巻き取られたフィルムに不均一な張力が加わり、フィルムの光学特性を低下させるおそれがある。
 このように、偏光子の劣化や保護フィルムの光学特性の低下は、表示装置のコントラストや視認性を低下させるおそれがある。
 本発明は上記事情に鑑みてなされたものであり、膜厚が薄くても、偏光子の劣化を抑制できるだけでなく、タフネスが高い光学フィルムを提供することを目的とする。
 [1] セルロースエステルと、一般式(1)で表されるモノマー由来の繰り返し単位を含む重合体、一般式(2)で表される化合物、一般式(3)で表される化合物および一般式(4)で表される化合物からなる群より選ばれる一以上の化合物Aとを含む光学フィルムであって、膜厚が15~45μmであり、かつ前記光学フィルムを、23℃55%RH下において前記光学フィルムの長辺方向αまたは該長辺方向αと直交する短辺方向βに引っ張ったときの破断点応力をT(MPaまたはN/mm)、破断点伸度をE(%)、引張方向に対して直交する方向の前記光学フィルムの断面積をA(mm)としたとき、下記式で表されるタフネスGが、前記光学フィルムの前記長辺方向αと前記短辺方向βのそれぞれにおいて7~20である、光学フィルム。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-C000009
(一般式(1)中、Rは、水素原子または炭素原子数1~4の脂肪族基を表し;Rは、置換基を表し;(A)は、5または6員環を形成する原子群を表し;nは、0~4の整数を表す)
Figure JPOXMLDOC01-appb-C000010
(一般式(2)中、R26は、炭素原子数6~12のアリール基を表し;R27およびR28は、それぞれ独立して水素原子、炭素原子数1~12のアルキル基または炭素原子数6~12のアリール基を表し;R26およびR27は、それぞれ置換基を有していてもよい)
Figure JPOXMLDOC01-appb-C000011
(一般式(3)中、Rは、水素原子または置換基を表し;Rは、下記一般式(3-1)で表される置換基を表し;n1は、0~4の整数を表し、n1が2以上のとき、複数のRは互いに同一であっても異なっていてもよく、n2は1~5の整数を表し、n2が2以上のとき、複数のRは互いに同一であっても異なっていてもよい)
Figure JPOXMLDOC01-appb-C000012
(一般式(3-1)中、Aは、置換または無置換の芳香族環を表し;RおよびRは、それぞれ独立に、水素原子、炭素原子数1~5のアルキル基または一般式(3-2)で表される置換基を表し;Rは、単結合または炭素原子数1~5のアルキレン基を表し;Xは、置換または無置換の芳香族環を表し;n3は0~10の整数を表し、n3が2以上のとき、複数のRおよびXは互いに同一であっても異なっていてもよい)
Figure JPOXMLDOC01-appb-C000013
(一般式(3-2)中、Xは、置換または無置換の芳香族環を表し;R、R、R、およびRは、それぞれ独立に水素原子または炭素原子数1~5のアルキル基を表し;n5は1~11の整数を表し、n5が2以上のとき、複数のR、R、RおよびXは互いに同一であっても異なっていてもよい)
Figure JPOXMLDOC01-appb-C000014
(一般式(4)中、Rは、窒素原子または酸素原子を表し;Rは、-COOHまたは-OH基を表し;Rは、炭素数1~10のアルキル基を表し;Rは、置換基を表す)
 [2] 前記光学フィルムは、コア層と、前記コア層上を挟持する一対のスキン層とを含み、少なくとも前記スキン層が前記化合物Aを含む、[1]に記載の光学フィルム。
 [3] 膜厚が15~30μmである、[1]または[2]に記載の光学フィルム。
 [4] 前記コア層が、ジオールとジカルボン酸とを重縮合させて得られるポリエステル化合物からなる化合物Bを含む、[2]に記載の光学フィルム。
 [5] 前記コア層における、前記化合物Aの前記化合物Bに対する含有比率A/Bが0~0.1である、[2]に記載の光学フィルム。
 [6] 前記スキン層における、前記化合物Bの前記化合物Aに対する含有比率B/Aが0~0.5である、[2]に記載の光学フィルム。
 [7] 前記光学フィルムの、下記式(I)で定義され、かつ測定波長590nmで測定される面内方向のリターデーションをRo(590)とし、下記式(II)で定義され、かつ測定波長590nmで測定される厚み方向のリターデーションをRth(590)としたとき、|Ro(590)|≦5nm、|Rth(590)|≦5nmを満たす、[1]~[6]のいずれかに記載の光学フィルム。
 式(I) Ro=(nx-ny)×t(nm)
 式(II) Rth={(nx+ny)/2-nz}×t(nm)
(式(I)および(II)において、nxは、フィルムの面内方向において屈折率が最大になる遅相軸方向xにおける屈折率を表し;nyは、フィルムの面内方向において前記遅相軸方向xと直交する方向yにおける屈折率を表し;nzは、フィルムの厚み方向zにおける屈折率を表し;t(nm)は、フィルムの厚みを表す)
 [8] [1]~[7]のいずれかに記載の光学フィルムの製造方法であって、前記セルロースエステルと、前記一般式(1)で表されるモノマー由来の繰り返し単位を含む重合体、前記一般式(2)で表される化合物、前記一般式(3)で表される化合物および前記一般式(4)で表される化合物からなる群より選ばれる一以上の化合物Aとを含むドープを準備する第1の工程と、前記ドープを、支持体上に流延した後、乾燥させて膜状物を得る第2の工程と、前記膜状物を延伸する第3の工程と、前記延伸された膜状物を乾燥させて前記光学フィルムを得る第4の工程とを含み、前記第4の工程において、前記膜状物を200本以上300本以下のロールで、100~150N/mの張力で搬送しながら、125~150℃で10~15分間乾燥させる、光学フィルムの製造方法。
 [9] 前記第1の工程では、セルロースエステルを含むコア層用ドープと、セルロースエステルと前記化合物Aとを含むスキン層用ドープとを準備し、前記第2の工程では、前記コア層用ドープと前記スキン層用ドープを支持体上に共流延した後、乾燥させて膜状物を得て、コア層と、前記コア層上を挟持する一対のスキン層とを含む前記光学フィルムを得る、[8]に記載の光学フィルムの製造方法。
 [10] 偏光子と、[1]~[7]のいずれかに記載の光学フィルムまたは[8]または[9]に記載の製造方法で得られる光学フィルムとを含む、偏光板。
 [11] 前記偏光子と前記光学フィルムとは、活性エネルギー線硬化型接着剤の硬化物層を介して接着されている、[10]に記載の偏光板。
 [12] [1]~[7]のいずれかに記載の光学フィルムまたは[8]または[9]に記載の製造方法で得られる光学フィルムを含む、液晶表示装置。
 [13] 第一の偏光板と、液晶セルと、第二の偏光板と、バックライトとをこの順に含み、前記第一の偏光板は、第一の偏光子と、前記第一の偏光子の前記液晶セルとは反対側の面に配置される保護フィルムF1と、前記第一の偏光子の前記液晶セル側の面に配置される保護フィルムF2とを含み、前記第二の偏光板は、第二の偏光子と、前記第二の偏光子の前記液晶セル側の面に配置される保護フィルムF3と、前記第二の偏光子の前記液晶セルとは反対側の面に配置される保護フィルムF4とを含み、前記保護フィルムF2およびF3の少なくとも一方が前記光学フィルムを含む、[12]に記載の液晶表示装置。
 [14] 前記液晶セルがIPSモードまたはFFSモードの液晶セルである、[13]に記載の液晶表示装置。
 [15] 表示領域の対角方向の長さが10インチ以下である、[12]~[14]のいずれかに記載の液晶表示装置。
 本発明によれば、膜厚が薄くても、偏光子の劣化を抑制できるだけでなく、タフネスが高い光学フィルムを提供することができる。
本発明の光学フィルムの構成の一例を示す模式図である。 本発明の光学フィルムの製造工程の一例を示す模式図である。 小型液晶表示装置の一例を示す模式図である。 実施例で用いる液晶セルの1画素領域中の液晶分子の配向を模式的に示す図である。
 本発明者らは、光学フィルムに、後述する一般式(1)で表される繰り返し単位を含む重合体および一般式(2)~(4)で表される化合物からなる群より選ばれる一以上の化合物Aを含有させることで、膜厚を薄くしても、偏光子の劣化を十分に抑制できることを見出した。化合物Aを含有する光学フィルムは密度が高く、水分の透過量を低減できるだけでなく、偏光子からのホウ酸の散逸も低減できるからであると考えられる。
 一方で、化合物Aを含有する保護フィルムは、偏光子劣化抑制機能は付与できるものの、硬くて脆くなりやすい傾向があった。そのため、従来よりも硬くて裂けやすいフィルムとなり、破断点応力とフィルム断面積と破断点伸度の関数で表されるタフネスが従来よりも低下しやすいことがわかった。これは、光学フィルムにおいて化合物Aの分散状態が微細なレベルで不均一となる部分が生じ、その部分を起点として破断しやすくなり;その結果、破断点伸度が低くなるためであると考えられる。さらに、膜厚の薄い光学フィルムは、フィルムの強度が低いため、タフネスがさらに低くなりやすい。
 これに対して本発明者らは、延伸後の乾燥工程における乾燥条件を調整すること;即ち、延伸後のフィルムをロール搬送しながら乾燥させる乾燥工程における、フィルムを搬送するロールの数、フィルムの張力、乾燥温度または乾燥時間を高くすることで、光学フィルムのタフネスを高めうることを見出した。その理由は必ずしも明らかではないが、延伸後の乾燥条件を上記のように調整することで、光学フィルムを構成する高分子の配向性が高まるからであると考えられる。
 具体的には、光学フィルムのタフネスは、光学フィルムを製造する際の、延伸後の乾燥工程(溶媒除去工程)において、セルロースエステルと化合物Aの分子レベルでの分散状態を制御することで改善できると考えられる。即ち、適度な張力をかけながら、多数のロールを介して一定以上の乾燥時間または乾燥温度で乾燥させることで、光学フィルムの搬送方向(MD方向)のみならず、幅方向(TD方向)に対しても一定の温度、圧力がかかり、溶媒を少量含んだフィルム中で化合物Aがセルロースエステルの樹脂中に極めて均一に分散させうると考えられる。その結果、光学フィルムのタフネスが、MD方向、TD方向の両方向で改善すると考えられる。
 乾燥前のドープの状態では、セルロースエステルと化合物Aは均一に混ざっていると考えられ、特にドープの乾燥時にこれらの分散状態が不均一になりやすいと考えられる。乾燥温度が低いと、じわじわと乾燥して化合物Aが均一に分散しにくいと考えられるため、フィルムのタフネスを向上させるためには乾燥温度を高くすることが好ましい。また、フィルムのタフネスを向上させるためには、フィルム中の残留溶媒量を少なくすることが好ましいことから、乾燥温度は一定以上高く、乾燥時間もある程度長くすることが好ましい。搬送張力は、セルロースエステルの分子鎖を十分に伸ばし(配向させやすくし)、化合物Aなどの添加剤がフィルム内で移動しにくくしうると考えられることから、タフネスを向上させるためには搬送張力をある程度高くすることが好ましい。ロールは、フィルムに搬送方向および幅方向に張力が均一に伝わるようにしうることから、フィルムのタフネスを向上させるためにはロール本数を一定以上とすることが好ましい。
 それにより、膜厚が薄くても、強度が高く、裂けにくい光学フィルムを得ることができることを見出した。
 即ち、一般式(1)~(4)で表される化合物を含み、かつ特定の乾燥条件で乾燥させて得られた本発明の光学フィルムは、膜厚が薄いにも係わらず、偏光子の劣化を抑制でき、かつ高いタフネスを有しうる。
 1.光学フィルム
 本発明の光学フィルムは、前述の通り、セルロースエステルと、一般式(1)で表される繰り返し単位を含む重合体および一般式(2)~(4)で表される化合物からなる群より選ばれる一以上の化合物Aとを含む。
 <セルロースエステルについて>
 セルロースエステルは、セルロースと、炭素原子数2~22の脂肪族カルボン酸および芳香族カルボン酸の少なくとも一方とをエステル化反応させて得られる化合物である。
 セルロースエステルの例には、セルローストリアセテート、セルロースジアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースベンゾエート、セルロースアセテートベンゾエートなどが含まれる。なかでも、位相差発現性の低いものが好ましく、セルローストリアセテートが好ましい。
 セルロースエステルのアシル基の総置換度は、2.0~3.0程度であり、好ましくは2.5~3.0、より好ましくは2.7~3.0、さらに好ましくは2.8~2.95である。位相差発現性を低くするためには、アシル基の総置換度は高くすることが好ましい。
 セルロースエステルに含まれるアシル基の炭素原子数は、2~7であることが好ましく、2~4であることがより好ましい。良好な耐熱性を得るためなどから、セルロースエステルに含まれるアシル基は、アセチル基を含むことが好ましい。炭素原子数3以上のアシル基の置換度は、0.9以下であることが好ましく、0であることがより好ましい。
 セルロースエステルのアシル基の置換度は、ASTM-D817-96に規定の方法で測定することができる。
 セルロースエステルの重量平均分子量は、一定以上の機械的強度を得るためには、5.0×10~5.0×10であることが好ましく、1.0×10~3.0×10であることがより好ましく、1.5×10~2.9×10であることがさらに好ましい。セルロースエステルの分子量分布(重量平均分子量Mw/数平均分子量Mn)は、1.0~4.5であることが好ましい。
 セルロースエステルの重量平均分子量および分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されうる。測定条件は、以下の通りである。
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G(昭和電工(株)製)を3本接続して使用する。
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standardポリスチレン(東ソー(株)製)Mw=1.0×10~5.0×10までの13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に選択することが好ましい。
 セルロースエステルの粘度平均重合度は、フィルムの機械的強度を一定以上とするためなどから、150~450であることが好ましく、250~350であることがより好ましい。
 セルロースエステルをジクロロメタンに溶解させて得られる6質量%溶液の粘度は、フィルムの機械的強度を一定以上とするためなどから、50~900であることが好ましく、100~600であることがより好ましく、200~450であることが最も好ましい。
 <化合物A>
 化合物Aは、一般式(1)で表されるモノマー由来の繰り返し単位を含む重合体、および一般式(2)~(4)で表される化合物からなる群より選ばれる一以上でありうる。これらの化合物は芳香環を有し、剛直な構造を有することから、これらの化合物を含む光学フィルムは高い密度を有しうる。その結果、光学フィルムの水分の透過量を低減できるだけでなく、偏光子からのホウ酸の拡散経路を少なくすることができ、偏光子の劣化を抑制しうる。
Figure JPOXMLDOC01-appb-C000015
 一般式(1)のRは、水素原子または炭素数1~4の脂肪族基を表す。Rで示される脂肪族基の例には、メチル基、エチル基などが含まれる。Rは、脂肪族基または芳香族基を表す。Rで示される脂肪族基の例には、アルキル基、アルケニル基、アルキニル基、シクロアルキル基が含まれ、好ましくは炭素数1~6のアルキル基であり、より好ましくはメチル基、t-ブチル基である。芳香族基の例には、フェニル基、ナフチル基、ビフェニル基が含まれ、好ましくはフェニル基である。(A)は、5または6員環を形成するのに必要な原子群を表し、5または6員の芳香環であることが好ましい。芳香環とは、ヘテロ原子を含まない芳香族環とヘテロ原子を含む飽和・不飽和の複素環とを含む。nは、0~4の整数を表し、好ましくは0~2、より好ましくは0~1である。
 一般式(1)で表されるモノマーに由来する繰り返し単位を含む重合体は、好ましくは下記一般式(1-1)で表される共重合体でありうる。
 一般式(1-1)
Figure JPOXMLDOC01-appb-C000016
 一般式(1-1)のR21、R22、R23、およびR24は、それぞれ独立して置換基を表す。x、y、zは、重合体に含まれる全繰り返し単位に対するモル比率を表し、xは1~40%、yは5~95%、zは1~70%を表す。m1、m2は、それぞれ独立して0~4の整数を表す。m3は、0~2の整数を表す。m4は、0~5の整数を表す。R101、R102、R103は、それぞれ独立して水素原子または炭素数1~4の脂肪族基を表す。
 一般式(1)で表されるモノマー由来の繰り返し単位を含む重合体の具体例には、以下のものが含まれる。
Figure JPOXMLDOC01-appb-C000017
 上記重合体の重量平均分子量は、200~10000であることが好ましく、300~8000であることがより好ましく、400~4000であることがさらに好ましい。上記重量平均分子量が一定以上であると、光学フィルムの密度を良好に高めうる。それにより、偏光子からのホウ酸の拡散を抑制し、偏光子劣化を抑制しうる。上記重量平均分子量が一定以下であると、セルロースエステルとの相溶性が損なわれにくい。
Figure JPOXMLDOC01-appb-C000018
 一般式(2)のR26は、アリール基を表し;好ましくは炭素数6~12のアリール基、さらに好ましくはフェニル基である。R27およびR28は、それぞれ独立して水素原子、アルキル基またはアリール基を表し;好ましくは水素原子、炭素数1~12のアルキル基(シクロアルキル基も含む)または炭素数6~12のアリール基であり;より好ましくは水素原子、炭素数1~6のアルキル基(シクロアルキル基も含む)またはフェニル基である。R26およびR27は、それぞれ置換基を有していてもよい。R26が有しうる置換基の例には、ハロゲン原子または炭素数1~6のアルキル基が含まれる。R27が有しうる置換基の例には、炭素数6~12のアリール基が含まれる。
 一般式(2)で表される化合物の具体例には、以下のものが含まれる。
Figure JPOXMLDOC01-appb-C000019
 一般式(2)で表される化合物の重量平均分子量は、200~1000であることが好ましく、250~800であることがより好ましい。
Figure JPOXMLDOC01-appb-C000020
 一般式(3)のRは、水素原子または置換基を表す。Rは、下記一般式(3-1)で表される置換基を表す。n1は、0~4の整数を表し、n1が2以上のとき、複数のRは互いに同一であっても異なっていてもよい。n2は、1~5の整数を表し、n2が2以上のとき、複数のRは互いに同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000021
 一般式(3-1)のAは、置換または無置換の芳香族環を表す。芳香族環は、好ましくはベンゼン環である。RおよびRは、それぞれ独立に、水素原子、炭素原子数1~5のアルキル基または一般式(3-2)で表される置換基を表す。Rは、単結合または炭素原子数1~5のアルキレン基を表す。Xは、置換または無置換の芳香族環を表す。芳香族環は、好ましくはベンゼン環である。n3は0~10の整数を表し、n3が2以上のとき、複数のRおよびXは互いに同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000022
 一般式(3-2)のXは、置換または無置換の芳香族環を表す。芳香族環は、好ましくはベンゼン環である。R~Rは、それぞれ独立に水素原子または炭素原子数1~5のアルキル基を表す。n5は、1~11の整数を表し、n5が2以上のとき、複数のR~RおよびXは互いに同一であっても異なっていてもよい。
 一般式(3)で表される化合物の具体例には、以下のものが含まれる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 一般式(4)のRは、窒素原子または酸素原子を表す。Rは、-COOHまたは-OH基を表す。Rは、炭素数1~10のアルキル基を表し、その例には、メチル基、エチル基などが含まれる。Rは、炭素数1~10のアルキル基などの置換基を表す。
 一般式(4)で表される化合物の具体例には、以下のものが含まれる。
Figure JPOXMLDOC01-appb-C000025
 一般式(1)で表されるモノマー単位を含む重合体および一般式(2)~(4)で表される化合物の含有量は、セルロースエステル100質量部に対して0.1~15質量部、好ましくは0.5~10質量部、さらに好ましくは0.5~3質量部としうる。上記化合物の含有量が一定以上であれば、光学フィルムの密度を十分に高めることができ、十分な偏光子劣化抑制効果が得られやすい。上記化合物の含有量が一定以下であれば、フィルムが過剰には硬く脆くなりにくく、かつフィルム中の化合物Aの分散状態も不均一になりにくい(ダマになりにくい)ので、フィルムのタフネスが顕著に低下するおそれもない。
 本発明の光学フィルムは、フィルムの可塑性や位相差を調整しやすくするためなどから、ポリエステル化合物(化合物B)をさらに含むことが好ましい。
 <ポリエステル化合物(化合物B)について>
 ポリエステル化合物は、ジカルボン酸とジオールとを重縮合させて得られる化合物でありうる。ジカルボン酸は、脂肪族ジカルボン酸、脂環式ジカルボン酸、および芳香族ジカルボン酸からなる群より選ばれる一以上でありうる。ジオールは、脂肪族ジオール、アルキルエーテルジオール、脂環式ジオール、および芳香族ジオールからなる群より選ばれる一以上でありうる。なかでも、位相差を発現しにくくしうることなどから、脂肪族ジカルボン酸および脂環式ジカルボン酸からなる群より選ばれるジカルボン酸と、脂肪族ジオール、アルキルエーテルジオールおよび脂環式ジオールからなる群より選ばれるジオールとを重縮合させて得られるポリエステル化合物が好ましく;脂肪族ジカルボン酸と脂肪族ジオールとを重縮合させて得られるポリエステル化合物(脂肪族ポリエステル化合物)がより好ましい。これらのポリエステル化合物は、分子末端の水酸基がモノカルボン酸で封止されていてもよいし、分子末端のカルボキシル基がモノアルコールで封止されていてもよい。
 即ち、ポリエステル化合物は、一般式(5)または(6)で表されることが好ましい。
 一般式(5):
Figure JPOXMLDOC01-appb-C000026
 一般式(5)のGは、脂肪族ジオールまたはアルキルエーテルジオール由来の基を表す。脂肪族ジオールの炭素原子数は2~12であることが好ましい。脂肪族ジオールの例には、エチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,5-ペンチレングリコールなどが含まれ、好ましくはエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、1,6-ヘキサンジオールである。
 アルキルエーテルジオールの炭素原子数は4~12であることが好ましい。アルキルエーテルジオールの例には、ジエチレングルコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコールなどが含まれる。脂肪族ジオールまたはアルキルエーテルジオールは、それぞれ一種類であってもよいし、二種類以上を組み合わせてもよい。
 一般式(5)のAは、脂肪族ジカルボン酸または脂環式ジカルボン酸由来の基を表す。脂肪族ジカルボン酸の炭素原子数は4~12であることが好ましい。脂肪族ジカルボン酸の例には、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸などが含まれる。脂肪族ジカルボン酸または脂環式ジカルボン酸は、それぞれ一種類であってもよいし、二種類以上を組み合わせてもよい。
 一般式(5)のBは、脂肪族モノカルボン酸または脂環式モノカルボン酸由来の基を表す。脂肪族モノカルボン酸の炭素原子数は1~12であることが好ましい。脂肪族モノカルボン酸の例には、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等が含まれ、セルロースエステルとの相溶性が良好であることなどから、好ましくは酢酸である。
 一般式(5)のB、GおよびAは、位相差を発現させにくくするためなどから、いずれも芳香環を含まないことが好ましい。mは、繰り返し数を表し、1以上170以下であることが好ましい。
 一般式(5)で表されるポリエステル化合物の例には、表1に示されるものが含まれる。
Figure JPOXMLDOC01-appb-T000027
 一般式(6):
Figure JPOXMLDOC01-appb-C000028
 一般式(6)のGおよびAは、一般式(5)のGおよびAとそれぞれ同様に定義される。一般式(3)のBは、脂肪族モノアルコールまたは脂環式モノアルコール由来の基を表す。脂肪族モノアルコールの炭素原子数は1~12であることが好ましい。脂肪族モノアルコールの例には、メタノール、エタノール、プロパノール、イソプロパノールなどが含まれ;脂環式モノアルコールの例には、シクロヘキシルアルコールなどが含まれる。
 一般式(6)のB、GおよびAは、位相差を発現させにくくするためなどから、いずれも芳香環を含まないことが好ましい。nは、繰り返し数を表し、1以上170以下であることが好ましい。
 一般式(6)で表されるポリエステル化合物の例には、表2に示されるものが含まれる。
Figure JPOXMLDOC01-appb-T000029
 ポリエステル化合物の重量平均分子量Mwは、セルロースエステルとの相溶性を良好にする観点からは、好ましくは20000以下、より好ましくは5000以下、さらに好ましくは3000以下でありうる。一方、製膜中におけるポリエステル化合物の揮発などを抑制する観点から、ポリエステル化合物の重量平均分子量Mwは400以上、好ましくは700以上、より好ましくは1000以上でありうる。
 ポリエステル化合物の含有量は、フィルムの可塑性や位相差を調整しやすい観点から、セルロ-スエステル100質量部に対して1~45質量部であることが好ましく、2~30質量部であることがより好ましく、5~25質量部であることがさらに好ましく、10~20質量部が最も好ましい。即ち、ポリエステル化合物(好ましくは脂肪族ポリエステル化合物)の含有量が一定量以上であると、特に厚み方向のリターデーションを好ましく低下させうる。ポリエステル化合物の含有量が一定以下であると、フィルム強度を著しく損なうことがなく、それによりタフネスが顕著に低下するおそれもない。
 本発明の光学フィルムは、必要に応じて可塑剤、紫外線吸収剤、剥離助剤、滑剤、マット剤(微粒子)、衝撃補強材などの各種添加剤をさらに含みうる。
 <可塑剤について>
 可塑剤の例には、糖誘導体やリン酸エステル化合物などが含まれる。
 糖誘導体は、糖が有する水酸基の水素原子の少なくとも一部が、置換基で置換された化合物でありうる。糖誘導体を構成する糖は、フラノース構造とピラノース構造の一方または両方が1~12個結合した構造を有することが好ましく;フラノース構造とピラノース構造の一方または両方が1~3個、好ましくは2個結合した構造を有することが好ましい。なかでも、ピラノース構造とフラノース構造の両方を含むものが好ましい。
 糖誘導体を構成する糖の例には、グルコース、ガラクトース、マンノース、フルクトース、キシロースおよびアラビノースなどの単糖;ラクトース、スクロース、マルチトール、セロビオース、マルトースなどの二糖;セロトリオース、ラフィノースなどの三糖などに由来する構造が含まれる。
 糖誘導体を構成する置換基は、アルキル基(好ましくは炭素数1~22、より好ましくは炭素数1~12、特に好ましくは炭素数1~8のアルキル基、例えば、メチル基、エチル基、プロピル基、ヒドロキシエチル基、ヒドロキシプロピル基、2-シアノエチル基、ベンジル基など);アリール基(好ましくは炭素数6~24、より好ましくは6~18、特に好ましくは6~12のアリール基、例えば、フェニル基、ナフチル基);アシル基(好ましくは炭素数1~22、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアシル基、例えばアセチル基、プロピオニル基、ブチリル基、ペンタノイル基、ヘキサノイル基、オクタノイル基、ベンゾイル基、トルイル基、フタリル基、ナフタル基など)などであり、好ましくはアシル基である。
 糖誘導体において、置換基で置換されていない未反応の水酸基は、通常、そのまま水酸基として残っていてもよい。
 糖誘導体は、置換度が異なる複数の糖誘導体の混合物でありうる。そのような混合物は、無置換体が含まれていてもよい。上記混合物における平均置換率は、62~94%であることが好ましい。平均置換率は、下記式で定義されうる。
 平均置換率=100%×(混合物中の各糖誘導体の含有率)×(混合物中の各糖誘導体1分子中の置換されたOHの数)/(無置換糖の一分子中のOHの総数)
 糖誘導体の具体例には、以下のものが含まれる。
Figure JPOXMLDOC01-appb-C000030
 リン酸エステル化合物の例には、トリフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、およびトリブチルホスフェートなどが含まれる。
 可塑剤の含有量は、セルロースエステル100質量部に対して1~40質量部としうる。
 <紫外線吸収剤について>
 紫外線吸収剤は、ベンゾトリアゾール系化合物、2-ヒドロキシベンゾフェノン系化合物またはサリチル酸フェニルエステル系化合物などでありうる。具体的には、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類が挙げられる。
 紫外線吸収剤は、市販品であってもよく、その例にはBASFジャパン社製のチヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビンシリーズ、あるいは2,2′-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール](分子量659;市販品の例としては、株式会社ADEKA製のLA31)などが含まれる。
 光学フィルムが、偏光子の液晶セル側の面に配置される場合(後述の保護フィルムF2またはF3として用いられる場合)は、紫外線防止剤は必須ではなく、紫外線吸収剤の含有量は、セルロースエステルに対して0~0.5質量%程度としうる。一方、偏光子の液晶セルとは反対側の面に配置される場合(後述の保護フィルムF1またはF4として用いられる場合)、紫外線防止剤の含有量は、セルロースエステルに対して質量割合で1ppm~5.0%程度、好ましくは0.5~3.0%程度としうる。
 <マット剤について>
 マット剤は、光学フィルムにさらなる滑り性を付与しうる。マット剤は、得られるフィルムの透明性を損なうことがなく、製膜工程においての耐熱性を有する無機化合物または有機化合物からなる微粒子でありうる。
 マット剤を構成する無機化合物の例には、二酸化珪素(シリカ)、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムなどが含まれる。なかでも、二酸化珪素や酸化ジルコニウムが好ましく、得られるフィルムのヘイズの増大を少なくするためには、より好ましくは二酸化珪素である。
 二酸化ケイ素の具体例には、アエロジル200V、アエロジルR972V、アエロジルR972、R974、R812、200、300、R202、OX50、TT600、NAX50(以上、日本アエロジル(株)製)、シーホスターKEP-10、シーホスターKEP-30、シーホスターKEP-50(以上、株式会社日本触媒製)、サイロホービック100(富士シリシア製)、ニップシールE220A(日本シリカ工業製)、アドマファインSO(アドマテックス製)などが含まれる。
 マット剤の粒子形状は、不定形、針状、扁平または球状であり、得られるフィルムの透明性が良好にしやすい点などから、好ましくは球状でありうる。
 マット剤は、一種類で用いてもよいし、二種以上を併用して用いてもよい。また、粒径や形状(例えば針状と球状など)の異なる粒子を併用することで、高度に透明性と滑り性を両立させてもよい。
 マット剤の粒子の大きさは、当該大きさが可視光の波長に近いと、光が散乱して透明性が低下するので、可視光の波長より小さいことが好ましく、更に可視光の波長の1/2以下であることが好ましい。ただし、粒子の大きさが小さすぎると、滑り性の改善効果が発現しない場合があるので、粒子の大きさは、80~180nmの範囲であることが好ましい。粒子の大きさとは、粒子が一次粒子の凝集体の場合は凝集体の大きさを意味する。粒子が球状でない場合、粒子の大きさは、その投影面積に相当する円の直径を意味する。
 マット剤の含有量は、セルロースエステルに対して0.05~1.0質量%程度とすることができ、好ましくは0.1~0.8質量%としうる。
 本発明の光学フィルムは、単層フィルムであってもよいし、複数の層の積層フィルムであってもよい。
 前述の通り、本発明では、フィルム製造工程におけるフィルムの乾燥条件を特定の範囲に調整することで、タフネスの高い光学フィルムを得ることができる。一方で、偏光子劣化抑制剤として一般式(1)で表される繰り返し単位を含む重合体または一般式(2)~(4)で表される化合物と、位相差低減剤としてポリエステル化合物の両方を含むフィルムを上記の乾燥条件で乾燥させると、得られる光学フィルムの偏光子の劣化抑制効果が十分には得られなかったり、位相差が十分に低減されなかったりする傾向があった。
 その理由は必ずしも明らかではないが、以下のように考えられる。一般式(1)で表される繰り返し単位を含む重合体および一般式(2)~(4)で表される化合物に含まれる酸素含有置換基と、ポリエステル化合物に含まれるエステル部位とが、上記乾燥条件下において意図しない相互作用を生じると考えられる。その結果、一般式(1)~(4)で表される化合物の偏光子劣化抑制機能と、ポリエステル化合物の位相差低減機能とが互いに阻害されると考えられる。酸素含有置換基とは、例えば一般式(1)の(A)で表される環を構成する酸素原子部分や、一般式(2)および(4)におけるカルボニル基、一般式(3)における水酸基などでありうる。
 これに対して本発明者らは、光学フィルムを複数の層の積層フィルムとし、位相差低減剤として機能しうるポリエステル化合物と、偏光子劣化抑制剤として機能しうる一般式(1)~(4)で表される化合物とを互いに異なる層に偏在させることで、一般式(1)~(4)で表される化合物とポリエステル化合物の相互作用を抑制し、それぞれの化合物の機能を十分に発現させうることをさらに見出した。
 即ち、本発明の光学フィルムは、少なくともコア層とスキン層とを含む二層以上の積層フィルムであることが好ましい。光学フィルムに含まれるコア層とスキン層は、それぞれ一層であっても、二層以上であってもよい。
 環境温度や湿度の変化による光学フィルムの変形などを抑制するためなどから、光学フィルムは対称な積層構造を有することが好ましい。光学フィルムの積層構造の好ましい例には、コア層/スキン層の2層構造や、スキン層/コア層/スキン層の3層構造などが含まれ、好ましくはスキン層/コア層/スキン層の3層構造でありうる。
 コア層は、主に位相差を調整する機能を有することから、前述のセルロースエステルと、前述のポリエステル化合物とを含むことが好ましい。コア層は、必要に応じて前述の一般式(1)~(4)で表される化合物やマット剤などの前述した各種添加剤をさらに含んでもよい。
 コア層における一般式(1)~(4)で表される化合物(化合物A)とポリエステル化合物(化合物B)の意図しない相互作用を抑制するためには、コア層における、一般式(1)~(4)で表される化合物(化合物A)の含有割合は、ポリエステル化合物(化合物B)の含有割合に対して相対的に少ないことが好ましい。具体的には、コア層における、一般式(1)~(4)で表される化合物(化合物A)のポリエステル化合物(化合物B)に対する含有比率A/Bは、0~0.1であることが好ましく、0~0.08であることがより好ましい。
 光学フィルムの表面に良好な滑り性を付与し、かつ位相差を調製しやすくする観点からは、マット剤は、スキン層に偏在させることが好ましい。具体的には、コア層におけるマット剤の含有量は、スキン層におけるマット剤の含有量の5%以下としうる。
 コア層が複数ある場合、複数のコア層の組成は互いに同じであってもよいし、異なってもよい。
 コア層の合計厚みは、光学フィルムの総厚みの50%以上、好ましくは70%以上でありうる。また、コア層の厚みは、偏光子への水分の透過を十分に抑制するためなどから、10~50μmであることが好ましく、好ましくは10~28μm、より好ましくは10~20μmとしうる。
 スキン層は、主にコア層を保護する機能を有し、必要に応じて偏光子の劣化を抑制する機能をさらに有しうる。そのため、スキン層は、前述のセルロースエステルと、前述の一般式(1)~(4)で表される化合物とを含むことが好ましい。スキン層は、必要に応じて前述のポリエステル化合物やマット剤などの前述した各種添加剤をさらに含んでもよい。
 スキン層における一般式(1)~(4)で表される化合物(化合物A)とポリエステル化合物(化合物B)の意図しない相互作用を抑制するためには、スキン層におけるポリエステル化合物(化合物B)の含有割合は、一般式(1)~(4)で表される化合物(化合物A)の含有割合に対して相対的に少ないことが好ましい。具体的には、スキン層における、ポリエステル化合物(化合物B)の一般式(1)~(4)で表される化合物(化合物A)に対する含有比率B/Aが、0~0.5であることが好ましく、0~0.15であることがより好ましい。
 スキン層の合計厚みは、光学フィルムの総厚みの50%以下、好ましくは30%以下でありうる。また、スキン層の厚みは、偏光子との十分な接着性が得られる程度であればよく、1~20μm程度であることが好ましく、1~10μmであることが好ましく、1~5μmであることがより好ましい。
 スキン層が複数ある場合、複数のスキン層の組成は互いに同じであってもよいし、異なってもよい。
 図1は、本発明の光学フィルムの構成の一例を示す模式図である。図1に示されるように、本発明の光学フィルム10は、コア層11と、それを挟持する一対のスキン層13および15とを有しうる。スキン層13と15の組成や厚みは、互いに同一であってもよいし、異なっていてもよい。
 <光学フィルムの物性について>
 (膜厚)
 光学フィルムの膜厚は、偏光板を薄型化するためなどから、15~45μmであることが好ましく、15~30μmであることがより好ましい。
 (タフネス)
 本発明の光学フィルムは、製造工程におけるフィルムの乾燥条件を特定の範囲とすることで、膜厚が薄いにも係わらず、一定以上のタフネスを有しうる。具体的には、本発明の光学フィルムを、23℃55%RH下でその長辺方向αまたは短辺方向βに引っ張ったときの破断点応力をT(N/mmまたはMPa)、破断点伸度をE(%)、引張方向に対して直交する方向の光学フィルムの断面積をA(mm)としたとき、下記式で表される光学フィルムのタフネスが、長辺方向αと短辺方向βのそれぞれにおいて7~20であることが好ましく、10~20であることがより好ましく、15~20であることがさらに好ましい。
Figure JPOXMLDOC01-appb-M000031
 光学フィルムの長辺方向αとは、長尺状の光学フィルムのロール体における長尺方向(MD方向)を示し;短辺方向βとは、長辺方向αと直交する方向であり、長尺状の光学フィルムのロール体における幅方向(TD方向)を示す。枚葉状の光学フィルムが正方形である場合、直交する二辺のいずれか一方を長辺方向とし、他方を短辺方向としうる。光学フィルムの長辺方向αは、偏光子の吸収軸方向と一致または直交しうるが、偏光子の吸収軸方向と一致することが特に好ましい。
 光学フィルムの長辺方向α(好ましくはMD方向)と短辺方向β(好ましくはTD方向)のタフネスは、それぞれ試験片を用いて測定することができる。具体的には、光学フィルムのMD方向のタフネスは、以下の手順で測定することができる。
 1)光学フィルムを120mm(MD方向)×10mm(TD方向)に5枚切り出して、MD方向測定用の試験片とする。得られた試験片を、23℃55%RHの環境下で24時間調湿する。
 2)次いで、試験片の引張弾性率をJIS K7127に記載の方法で測定する。引張り試験器は、オリエンテック(株)社製テンシロンRTC-1225を使用し、チャック間100mmで試験片の長手方向(MD方向)の上端部と下端部を挟み(挟みしろは、試験片の上端部と下端部でそれぞれ10mmずつ)、100mm/分の速度で試験片を長手方向(MD方向)に引っ張り、試験片が破断するときの応力(破断点応力T)と伸び(破断点伸度E)をそれぞれ測定し、合計5回(合計5枚分)測定する。測定は、23℃55%RHの環境下で行う。
 3)得られた破断点応力T(N/mmまたはMPa)の5回の測定値の最大値、破断点伸度E(%)の5回の測定値の最大値、および試験片の膜厚t(mm)をそれぞれ下記式に当てはめて、MD方向のタフネスを算出する。
 タフネス=破断点応力T(N/mmまたはMPa)×引張方向に対して直交する方向の試験片の断面積A(mm)×(破断点伸度E(%)/100)1/2
 試験片の断面積A(mm)=試験片の幅10(mm)×試験片の膜厚t(mm)
 同様に、光学フィルムのTD方向のタフネスは、光学フィルムを120mm(TD方向)×10mm(MD方向)の大きさに5枚切り出して、TD方向測定用の試験片を準備する。それらの試験片を用いて試験片の長手方向(TD方向)に引っ張る以外は前述と同様の測定を行い、TD方向のタフネスを算出する。
 光学フィルムのタフネスは、延伸後のフィルムの乾燥工程における乾燥条件;具体的には、乾燥工程における1)ロールの数、2)フィルムの張力、3)乾燥温度および4)乾燥時間によって調整されうる。光学フィルムのタフネスを高くするためには、例えば乾燥工程における1)ロールの数を多くし、2)フィルムの張力を高くし、かつ3)乾燥温度を高くまたは4)乾燥時間を長くすることが好ましく;前記1)~4)の全てを実施することがより好ましい。それにより、乾燥前からの、セルロースエステルと化合物Aとの高い分散状態を維持でき、かつセルロースエステルの分子鎖の配向性をより高めることができるので、MD・TD両方向のタフネスを好ましく高めることができる。また、前述した通り、光学フィルムのタフネスは、化合物Aや化合物Bなどの添加剤の含有量によっても調整されうる。
 (引き裂き強度)
 本発明の光学フィルムは、製造工程におけるフィルムの乾燥条件を特定の範囲とすることで、膜厚が薄いにも係わらず、一定以上の引き裂き強度を有しうる。光学フィルムのエレメンドルフ法の引き裂き荷重(mN)は、20mN以上であることが好ましく、30mN以上であることがより好ましく、35mN以上であることがさらに好ましい。引き裂き強度の上限は、例えば50mN程度としうる。
 光学フィルムの引き裂き強度は、東洋精機(株)製の軽荷重引き裂き装置を用いてJIS K 7128-1991に準拠して測定することができる。測定は、23℃55%RHの条件下、フィルムの搬送方向(MD方向)と幅方向(TD方向)のそれぞれについて行い、それらの平均値として求めることができる。
 光学フィルムの引き裂き強度は、タフネスと同様に、延伸後のフィルムの乾燥工程における乾燥条件;具体的には、乾燥工程における1)ロールの数、2)フィルムの張力、3)乾燥温度、および4)乾燥時間によって調整されうる。具体的には、光学フィルムの引き裂き強度を一定以上とするためには、1)ロールの数を多くし、2)フィルムの張力を高くし、かつ3)乾燥温度を高くするまたは4)乾燥時間を長くすることが好ましく;前記1)~4)を全て実施することがより好ましい。また、前述した通り、光学フィルムの引き裂き強度は、化合物Aや化合物Bなどの添加剤の含有量によっても調整されうる。
 (リターデーション)
 光学フィルムの、測定波長590nm、23℃55%RHの条件下で測定される面内方向のリターデーションRoは、-10nm以上10nm以下であることが好ましく、-5nm以上5nm以下であることがより好ましい。光学フィルムの、測定波長590nm、23℃55%RHの条件下で測定される厚み方向のリターデーションRthは、-10nm以上10nm以下であることが好ましく、-5nm以上5nm以下であることがより好ましい。このようなリターデーション値を有する光学フィルムは、例えばIPSモードの液晶表示装置の位相差フィルム(F2またはF3)などとして好適である。特に上記光学値とすることでIPSモードの液晶表示装置のコントラスト、視野角を向上させることができる。
 リターデーションRoおよびRthは、それぞれ以下の式で定義される。
 式(I):Ro=(nx-ny)×t(nm)
 式(II):Rth={(nx+ny)/2-nz}×t(nm)
 (式(I)および(II)において、
 nxは、フィルムの面内方向において屈折率が最大になる遅相軸方向xにおける屈折率を表し;
 nyは、フィルムの面内方向において前記遅相軸方向xと直交する方向yにおける屈折率を表し;
 nzは、フィルムの厚み方向zにおける屈折率を表し;
 t(nm)は、フィルムの厚みを表す)
 リターデーションRoおよびRthは、例えば以下の方法によって求めることができる。
 1)光学フィルムを、23℃55%RHで調湿する。調湿後の光学フィルムの平均屈折率をアッベ屈折計などで測定する。
 2)調湿後の光学フィルムに、当該フィルム表面の法線に平行に測定波長590nmの光を入射させたときのRoを、KOBRA21ADH、王子計測(株)にて測定する。
 3)KOBRA21ADHにより、光学フィルムの面内の遅相軸を傾斜軸(回転軸)として、当該フィルムの表面の法線に対してθの角度(入射角(θ))から測定波長590nmの光を入射させたときのリターデーション値R(θ)を測定する。リターデーション値R(θ)の測定は、θが0°~50°の範囲で、10°毎に6点行うことができる。面内遅相軸とは、フィルム面内のうち屈折率が最大となる軸をいい、KOBRA21ADHにより確認することができる。
 4)測定されたRoおよびR(θ)と、前述の平均屈折率と膜厚とから、KOBRA21ADHにより、nx、nyおよびnzを算出して、測定波長590nmでのRthを算出する。リターデーションの測定は、23℃55%RH条件下で行うことができる。
 光学フィルムのリターデーションは、延伸条件や、位相差調整機能を有する前述のポリエステル化合物の添加などによって調整されうる。光学フィルムのRoを一定以下とするためには、延伸倍率を一定以下とすることが好ましく;Rthを一定以下とするためには、例えばポリエステル化合物の含有量を一定以上とすることが好ましい。
 (ヘイズ)
 本発明の光学フィルムのヘイズは、1%以下であることが好ましく、0.5%以下であることがより好ましく、0.3%以下であることがさらに好ましい。光学フィルムのヘイズが上記範囲であると、表示装置において良好なコントラストを得られやすい。光学フィルムのヘイズは、JIS K-7136に準拠してヘイズメーター(濁度計)(型式:NDH 2000、日本電色(株)製)にて測定されうる。
 2.光学フィルムの製造方法
 本発明の光学フィルムは、溶液流延製膜法または溶融流延製膜法で製造されうる。高温での溶融が不要であり、比較的分子量の大きな樹脂でも製膜しやすいことから、本発明の光学フィルムは、溶液流延製膜法で製造されることが好ましい。
 即ち、本発明の光学フィルムの製造工程は、前述のセルロースエステルと前述の化合物Aとを含むドープを準備する第1の工程と;ドープを、金属支持体上に流延した後、乾燥および剥離して膜状物を得る第2の工程と;膜状物を延伸する第3の工程と;膜状物を乾燥させて光学フィルムを得る第4の工程と;得られたフィルムを巻き取る第5の工程とを含みうる。
 本発明の光学フィルムが二層以上の積層フィルムである場合、第1の工程では、コア層用ドープとスキン層用ドープとを準備し;第2の工程では、コア層用ドープとスキン層用ドープを金属支持体上に共流延した後、乾燥させて膜状物を得ることが好ましい。
 <第1の工程(ドープ準備工程)について>
 有機溶媒に、前述の各成分を添加しながら攪拌および溶解させて、コア層用ドープとスキン層用ドープとをそれぞれ調製することが好ましい。
 ドープ液の調製に用いられる有機溶媒は、セルロースエステルなどの上記各成分を十分に溶解するものであれば、制限なく用いることができる。塩素系有機溶媒の例には、塩化メチレンが含まれる。非塩素系有機溶媒の例には、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル等が含まれる。なかでも、塩化メチレンが好ましい。
 ドープは、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールをさらに含むことが好ましい。脂肪族アルコールを含有させることで、膜状物がゲル化し、金属支持体からの剥離が容易になる。炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールなどが含まれる。なかでも、ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からメタノール、エタノールが好ましい。
 ドープ中の樹脂成分の合計濃度は、ドープ全質量に対し15~45質量%の範囲としうる。ドープ中の樹脂成分とは、コア層用ドープおよびスキン層用ドープにおいては、セルロースエステルを示す。
 セルロースエステル等の溶解は、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法などがあるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。得られたドープ中の凝集物などを除去するために、ドープを濾材でさらに濾過することが好ましい。
 <第2の工程(流延工程)について>
 図2は、本発明の光学フィルムの製造工程の一例を示す模式図である。図2に示されるように、コア層用ドープ21aとスキン層用ドープ21bを、ダイ23から吐出させて金属支持体25上に共流延させる(図2参照)。共流延は、コア層用ドープ21aとスキン層用ドープ21bを逐次的に流延して積層する逐次共流延であってもよいし;コア層用ドープとスキン層用ドープを同時に流延して積層する同時積層共流延であってもよい。
 逐次積層共流延の例には、特開昭61-158414号、特開平1-122419号、特開平11-198285号に記載の方法がある。同時積層共流延の例には、特公昭60-27562号、特開昭61-94724号、特開昭61-94725号、特開昭61-104813号、特開昭61-158413号、特開平6-134933号に記載の方法などがある。
 金属支持体25は、例えばステンレスベルトなどの金属ベルトであってもよいし;回転する金属ドラムなどであってもよい。
 次いで、共流延されたドープを金属支持体25上で加熱し、溶媒を蒸発させて膜状物27を得る。
 溶媒を蒸発させる方法は、ドープの表面に風を吹かせる方法、金属支持体25の裏面から液体により伝熱させる方法、輻射熱によりドープの表裏から伝熱する方法等がある。なかでも、乾燥効率が高いことから、金属支持体25の裏面から液体により伝熱する方法が好ましい。
 金属支持体25上でのドープの乾燥は、40~100℃の雰囲気下で行うことが好ましい。40~100℃の雰囲気とするには、この温度の温風を、ドープ膜の表面に当てるか、赤外線を当てるなどによりドープを加熱することが好ましい。
 次いで、金属支持体25上で溶媒を蒸発させて得られた膜状物27を、剥離ロール29などにより剥離する(図2参照)。得られる膜状物27の面品質や剥離性を高める観点などから、流延後30~120秒以内で膜状物27を金属支持体25から剥離することが好ましい。
 金属支持体25上から剥離する際の膜状物27の残留溶媒量は、乾燥の条件の強弱、金属支持体25の長さなどにもよるが、概ね50~120質量%であることが好ましい。残留溶媒量がより多い時点で剥離する場合、膜状物27が柔らか過ぎると、剥離時に不均一に伸びるなどして平面性を損ないやすく、剥離張力によるツレや縦スジが発生し易い。従って、平面性を損なわない範囲で剥離時の残留溶媒量が決められうる。
 膜状物27の残留溶媒量は、下式で定義される。
  残留溶媒量(%)=(膜状物の加熱処理前質量-膜状物の加熱処理後質量)/(膜状物の加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、140℃で1時間の加熱処理を行うことを表す。
 金属支持体25から膜状物27を剥離する際の剥離張力は、通常、196~245N/mであることが好ましい。剥離の際に皺が入り易い場合、剥離張力は、190N/m以下とすることが好ましい。
 金属支持体25上の剥離位置における温度は、ステンレスベルトを用いた製膜時では好ましくは10~40℃の範囲であり、さらに好ましくは11~30℃の範囲である。また、金属ドラムを用いた製膜時では、金属ドラムの剥離位置における温度は-20~10℃であることが好ましい。
 <第3の工程(乾燥・延伸工程)について>
 剥離された膜状物27を、テンター延伸装置31内を搬送させながら乾燥させるか、あるいは乾燥装置内に複数配置したロールで搬送させながら乾燥させる。乾燥方法は、特に制限されないが、膜状物27の両面に熱風を吹かせる方法が一般的である。
 急激な乾燥は、得られるフィルムの平面性を損ない易いことから、高温による乾燥は、残留溶媒が8質量%以下となった条件で行うのが好ましい。乾燥工程全体を通して、乾燥温度は、好ましくは40~190℃の範囲、より好ましくは40~170℃の範囲である。
 乾燥後に得られた膜状物27をさらに延伸することが好ましい。延伸は、少なくとも一方向に行えばよく、二方向に行ってもよい。二方向への延伸(二軸延伸)は、流延方向(MD方向)と幅手方向(TD方向)にそれぞれ行うことが好ましい。二軸延伸は、同時二軸延伸であってもよいし、段階的な二軸延伸(逐次二軸延伸)であってもよい。
 延伸倍率は、各方向に例えば1.01~1.5倍、好ましくは1.01~1.3倍程度としうる。延伸温度は、フィルムのTg~(Tg+50)℃であることが好ましく、Tg~(Tg+40)℃であることがより好ましい。具体的な延伸温度は、例えば100~200℃程度としうる。
 テンター延伸装置31で延伸を行う場合、テンター延伸開始時の膜状物の残留溶媒量は、2~30質量%であることが好ましい。さらに、膜状物の残留溶媒量が10質量%以下になるまで、好ましくは5質量%以下になるまで乾燥を行うことが好ましい。乾燥温度は、30~160℃の範囲が好ましく、50~150℃の範囲がより好ましい。テンター方式はクリップテンター、ピンテンターなどがあるが、生産性の観点では、ピンテンターが好ましい。
 <第4の工程(乾燥工程)について>
 本発明では、フィルム中の溶媒を十分に除去するだけでなく、タフネスの高いフィルムを得る観点から、当該フィルムをさらに乾燥させることが好ましい。フィルムの乾燥は、乾燥装置33内に複数配置した複数のロール33aでフィルムを搬送させながら行うことが好ましい。
 前述の通り、タフネスの高いフィルムを得るためには、乾燥工程におけるフィルムの張力、フィルムを搬送するロール33aの数、乾燥温度、および乾燥時間をそれぞれ一定以上とすることが好ましい。具体的には、フィルムを搬送するロール33aの数は、200~300本であることが好ましく、250~300本であることがより好ましい。フィルムの張力は、100~150N/mであることが好ましく、120~150N/mであることがより好ましい。
 乾燥温度は、125~150℃であることが好ましく、135~150℃であることがより好ましい。乾燥時間は、乾燥温度にもよるが、10~15分であることが好ましく、13~15分であることがより好ましい。
 それにより、膜厚が薄いにも係わらず、一定以上のタフネスや引き裂き強度を有する光学フィルム10を得ることができる。
 得られた光学フィルム10の巻き取りを行いやすくするためなどから、光学フィルム10の幅方向両端部にエンボス部を形成することが好ましい。エンボス部の形成方法は、特に制限されず、フィルムにエンボスリング等のローラを押し付けてエンボス部を形成する方法や、非接触方式でエンボス部を形成する方法などが挙げられる。
 <第5の工程(巻き取り工程)について>
 得られた長尺状の光学フィルム10を、巻き取り装置35にて、巻芯37にロール状に巻き取ってロール体39としうる。巻き取り方法は、通常の振動を付与しないで巻き取る方法(ストレート巻き)であってもよいし;フィルムと巻芯の少なくとも一方をフィルム幅方向に振動させながら巻き取る方法(オシレート巻き)であってもよいし;それらを組み合わせてもよい。
 本発明の光学フィルム10は、膜厚が非常に薄いにも係わらず、高いタフネスを有する。そのため、通常の方法(ストレート巻き)で巻き取っても、得られるロール体の変形を少なくすることができる。
 一方で、幅方向両端部にエンボス部を有する光学フィルム10を、通常の方法(ストレート巻き)で巻き取ると、エンボス部同士が重なることから、光学フィルムの幅方向両端部の巻き径が幅方向中央部の巻き径よりも顕著に大きくなり、それによるロール体39の変形が生じることがある。そのようなロール体39の変形を高度に抑制するためには、光学フィルム10の巻き取りは、当該光学フィルム10と巻芯37の少なくとも一方をフィルムの幅方向に振動させながら巻き取る方法(オシレート巻き)を採用することが好ましい。オシレート巻きで巻き取ったロール体39は、軸方向両端部の側面形状が波状となっている。
 ロール体39における長尺状の光学フィルム10の幅は、例えば1000~6000mm、好ましくは1400~4000mmでありうる。光学フィルム10の巻き取り長さは、例えば100~10000mとしうる。
 3.偏光板
 本発明の偏光板は、偏光子と、それを挟持する二つの保護フィルムとを含む。
 <偏光子について>
 偏光子は、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
 ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素または二色性染料で染色したフィルム(好ましくはさらにホウ素化合物で耐久性処理を施したフィルム)であってもよいし;ポリビニルアルコール系フィルムをヨウ素または二色性染料で染色した後、一軸延伸したフィルム(好ましくは、さらにホウ素化合物で耐久性処理を施したフィルム)であってもよい。
 偏光子の厚みは、2~30μmであることが好ましく、偏光板を薄型化するためなどから、5~15μmであることがより好ましい。
 <保護フィルムについて>
 偏光子を挟持する二つの保護フィルムのうち少なくとも一方は、本発明の光学フィルムであることが好ましい。二つの保護フィルムのうち他方は、他の保護フィルムであってもよい。
 他の保護フィルムの例には、(メタ)アクリル樹脂フィルム、ポリエステルフィルム、セルロースエステルフィルムなどが含まれ、好ましくはセルロースエステルフィルムである。セルロースエステルフィルムに含まれるセルロースエステルは、前述の光学フィルムに含まれるセルロースエステルと同様に定義され、好ましくはセルローストリアセテートでありうる。
 保護フィルムは、測定波長590nm、23℃55%RHの条件下で測定される面内方向のリターデーションRoは、0~20nmであることが好ましく、0~10nmであることがより好ましい。保護フィルムの、測定波長590nm、23℃55%RHの条件下で測定される厚み方向のリターデーションRthは、0~80nmであることが好ましく、0~50nmであることがより好ましい。
 他の保護フィルムの厚みは、10~100μm程度とすることができ、好ましくは10~80μmでありうる。
 本発明の偏光板は、例えば偏光子の少なくとも一方の面に、本発明の光学フィルムを接着剤で貼り合わる工程を経て得ることができる。貼り合わせに用いられる接着剤は、完全ケン化型ポリビニルアルコール水溶液(水糊)であってもよいし、活性エネルギー線硬化性接着剤を用いて行ってもよい。得られる接着剤層の弾性率が高く、偏光板の寸法変化を抑制しやすいことなどから、活性エネルギー線硬化性接着剤を用いることが好ましい。
 活性エネルギー線硬化性接着剤組成物は、光ラジカル重合を利用した光ラジカル重合型組成物、光カチオン重合を利用した光カチオン重合型組成物、または光ラジカル重合及び光カチオン重合を併用したハイブリッド型組成物などでありうる。
 光ラジカル重合型組成物は、特開2008-009329号公報に記載のヒドロキシ基やカルボキシ基等の極性基を含有するラジカル重合性化合物および極性基を含有しないラジカル重合性化合物を特定割合で含む組成物などでありうる。ラジカル重合性化合物は、ラジカル重合可能なエチレン性不飽和結合を有する化合物であることが好ましい。ラジカル重合可能なエチレン性不飽和結合を有する化合物の好ましい例には、(メタ)アクリロイル基を有する化合物が含まれる。(メタ)アクリロイル基を有する化合物の例には、N置換(メタ)アクリルアミド系化合物、(メタ)アクリレート系化合物などが含まれる。(メタ)アクリルアミドは、アクリアミド又はメタクリアミドを意味する。
 光カチオン重合型組成物は、特開2011-028234号公報に開示されているような、(α)カチオン重合性化合物、(β)光カチオン重合開始剤、(γ)380nmより長い波長の光に極大吸収を示す光増感剤、および(δ)ナフタレン系光増感助剤の各成分を含有する組成物などでありうる。
 そのような偏光板は、例えば光学フィルムの表面に易接着処理(コロナ処理やプラズマ処理など)を施す工程;偏光子と光学フィルムの少なくとも一方に、活性エネルギー線硬化性接着剤を塗布する工程;得られた接着剤層を介して偏光子と光学フィルムとを貼り合せる工程;偏光子と光学フィルムとを貼り合わせた状態で接着剤層を硬化させる工程を経て製造されうる。
 前述の通り、一般式(1)で表されるモノマー由来の繰り返し単位を含む重合体および一般式(2)~(4)で表される化合物からなる群より選ばれる一以上の化合物Aを含む本発明の光学フィルムは、密度が高められている。それにより、水分の透過量が低減され、かつ偏光子に含まれるホウ酸の拡散も低減できる。その結果、本発明の光学フィルムを含む本発明の偏光板は、偏光子の劣化が抑制され、偏光度の低下を抑制できる。
 さらに、本発明の光学フィルムをコア層とスキン層を含む積層フィルムとし、かつコア層にポリエステル化合物Bを偏在させ、スキン層に一般式(1)で表されるモノマー由来の繰り返し単位を含む重合体および一般式(2)~(4)で表される化合物からなる群より選ばれる一以上の化合物Aを偏在させることが好ましい。それにより、本発明の光学フィルムにおける、化合物Aとポリエステル化合物Bの意図しない相互作用が抑制されているので、化合物Bによる位相差低減機能と化合物Aによる偏光子の劣化抑制機能が互いに阻害されるおそれが少ない。その結果、偏光板における偏光子の劣化が抑制され、偏光度の低下を抑制できる。
 4.液晶表示装置
 本発明の液晶表示装置は、第一の偏光板と、液晶セルと、第二の偏光板と、バックライトとをこの順に含む。第一および第二の偏光板の少なくとも一方を本発明の偏光板としうる。本発明の偏光板は、本発明の光学フィルムが液晶セル側となるように配置されることが好ましい。
 具体的には、第一の偏光板は、第一の偏光子と、第一の偏光子の液晶セルとは反対側の面に配置される保護フィルムF1と、第一の偏光子の液晶セル側の面に配置される保護フィルムF2とを含む。第二の偏光板は、第二の偏光子と、第二の偏光子の液晶セル側の面に配置される保護フィルムF3と、第二の偏光子の液晶セルとは反対側の面に配置される保護フィルムF4とを含む。保護フィルムF1、F2、F3およびF4のうち少なくとも一つ;好ましくはF2およびF3の少なくとも一方が、本発明の光学フィルムであることが好ましい。
 本発明の液晶表示装置は、テレビやノートパソコンなどの中・大型液晶表示装置であっても;スマートフォンなどの小型液晶表示装置であってもよい。なかでも、本発明の効果が得られやすいことから、液晶表示装置は、表示領域(不図示)の対角方向の長さが10インチ以下、好ましくは5インチ以下の小型液晶表示装置であることが好ましい。
 図3は、小型液晶表示装置の一例を示す模式図である。図3に示されるように、小型液晶表示装置50は、液晶セル70と、それを挟持する第一の偏光板90および第二の偏光板110と、バックライト130とを含み;第一の偏光板90の視認側の面に配置されたカバーガラス150と、第一の偏光板90と液晶セル70との間に配置されたタッチパネル部170と、バックライト130の背面側に配置された充電池190とをさらに含む。
 液晶セル70の表示モードは、例えばSTN、TN、OCB、HAN、VA(MVA、PVA)、IPS、FFS(Fringe Field Switching)等の種々の表示モードであってよく、視野角が広いことなどから、IPSモードまたはFFSモードであることが好ましい。
 IPS方式の液晶セル70は、通常、一対の透明基板と、それらの間に配置される液晶層とを含む。一対の透明基板のうち一方の透明基板には、液晶に電圧を印加するための画素電極と対向電極が配置されている。
 液晶層は、正の誘電率異方性(Δε>0)または負の誘電率異方性(Δε>0)を有する液晶分子を含む。液晶分子は、電圧無印加時には基板面に対して水平に配向している。液晶層の厚さd(μm)と屈折率異方性Δnとの積Δn・dは、高いコントラストを得る観点では、透過モードで、ねじれ構造を持たないIPSモードでは、0.2~0.4μmの範囲としうる。
 このように構成された液晶セルでは、一方の基板に設けられた画素電極と対向電極との間に、基板面に対して水平方向の電界を生じさせる。それにより、基板面に対して水平配向している液晶分子を、基板面と水平な面内で回転させる。それにより、液晶分子を駆動し、各副画素の透過率および反射率を変化させて画像表示を行う。
 図4は、IPSモードの液晶セル70の1画素領域中の液晶分子の配向の一例を模式的に示す図である。例えば、電界効果型液晶として正の誘電異方性を有するネマチック液晶を用いてアクティブ駆動を行った場合、電極202と203の間に電圧を印加しない状態では、液晶分子は、205aおよび205bに示されるように配向膜(不図示)のラビング方向204で規定される方向に配向する。このときに黒表示が得られる。一方、電極202と203の間に電圧を印加した状態では、電圧に応じて、液晶分子が206aおよび206bに示されるように配向する。このとき、明表示が得られる。
 第一の偏光板90は、液晶セル70の視認側の面に配置され;第一の偏光子91と、第一の偏光子91の液晶セル70とは反対側の面に配置された保護フィルム93(F1)と、第一の偏光子91の液晶セル70側の面に配置された保護フィルムとしての光学フィルム10(F2)とを含む。第二の偏光板110は、液晶セル70のバックライト側の面に配置されており;第二の偏光子111と、第二の偏光子111の液晶セル70側の面に配置された保護フィルムとしての光学フィルム10(F3)と、第二の偏光子111の液晶セル70とは反対側の面に配置された保護フィルム113(F4)とを含む。
 タッチパネル部170は、液晶セル70と第一の偏光板90との間に配置されている(オン-セル型)。ただし、タッチパネル部170の配置は、図3に示される態様に限定されず、タッチパネル部170は、カバーガラス150に一体的に設けられてもよいし(カバーガラス一体型);液晶セル70の内部に設けられてもよい(イン-セル型)。
 充電池190は、例えばリチウムイオン二次電池などでありうる。
 前述の通り、少なくとも保護フィルムF2およびF3の両方が、本発明の光学フィルム10を含みうる。本発明の光学フィルム10は、膜厚が非常に薄いにも係わらず、偏光子の劣化を十分に抑制しうる。それにより、表示装置のコントラストや視認性の低下を抑制することができる。
 さらに、本発明の光学フィルムは、膜厚が非常に薄いにも係わらず、高いタフネスを有しうる。それにより、光学フィルムのロール体の変形を抑制しうる。そのようなロール体から得られる光学フィルムは、ロール体の変形によって光学フィルムに不均一な張力が加わりにくいため、それにより光学フィルムに不均一な位相差が発現したり、膜厚が不均一になったりするおそれもない。従って、ロール体の変形に伴う表示性能の低下も抑制できる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 1.光学フィルムの材料
 <セルロースエステル>
 セルローストリアセテート(アセチル基置換度:2.85、重量平均分子量Mw:285000、粘度平均重合度:306、ジクロロメタン溶液6質量%の粘度:315mPa・s)
 <化合物A>
 1)一般式(1)で表される化合物:
Figure JPOXMLDOC01-appb-C000032
 2)一般式(2)で表される化合物:
Figure JPOXMLDOC01-appb-C000033
 3)一般式(3)で表される化合物
Figure JPOXMLDOC01-appb-C000034
 4)一般式(4)で表される化合物
Figure JPOXMLDOC01-appb-C000035
 <化合物B(ポリエステル化合物)>
Figure JPOXMLDOC01-appb-T000036
 <その他化合物>
 化合物C-1:TPP(トリフェニルホスフェート)/BDP(ビフェニルジフェニルホスフェート)=50/50(質量比)
 化合物C-2:ベンジルサッカロース(ベンジル基の置換度7.5)
 <マット剤>
 アエロジルR972(日本エアロジル(株)社製、二酸化ケイ素微粒子(平均粒径15nm、モース硬度 約7))
 2.光学フィルムの作製
 <実施例1>
 1)コア層用ドープの調製
 下記成分をミキシングタンクに投入し、攪拌して各成分を溶解させた。得られた溶液を、平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過し、コア層用ドープを調製した。
 (コア層用ドープの組成)
  セルローストリアセテート(アセチル基置換度:2.85、重量平均分子量Mw:285000、粘度平均重合度:306、ジクロロメタン溶液6質量%の粘度:315mPa・s):100質量部
  化合物B-1(ポリエステル化合物):15質量部
  ジクロロメタン:320質量部
  メタノール:83質量部
  1-ブタノール:3質量部
 2)スキン層用ドープの調製
 ドープの組成を以下のように変更した以外は前述と同様にしてスキン層用ドープを調製した。
 (スキン層用ドープの組成)
  セルローストリアセテート(アセチル基置換度:2.85、重量平均分子量Mw:285000、粘度平均重合度:306、ジクロロメタン溶液6質量%の粘度:315mPa・s):100質量部
  化合物A-1(一般式(1)で表される化合物):3質量部
  ジクロロメタン:320質量部
  メタノール:83質量部
  1-ブタノール:3質量部
  アエロジルR972(マット剤):0.05質量部(固形分)
 3)光学フィルムの作製
 得られたコア層用ドープおよびスキン層用ドープを、走行する流延バンド上に流延ダイから共流延(同時多層流延)した。流延されたドープを、流延バンド上で乾燥させた後、剥ぎ取って膜状物を得た。剥ぎ取った直後の膜状物の残留溶剤量は約30質量%であった。得られた膜状物を、テンターでさらに乾燥させた。膜状物を、テンターにて120℃、延伸倍率5%で幅方向(TD方向)に延伸した後、ロール延伸装置にて、膜状物の搬送方向(MD方向)に、120℃、延伸倍率5%で延伸した。
 次いで、得られたフィルムを、下記表4のプロセスAの条件で乾燥させた。具体的には、前述の図2に示されるような乾燥装置33内に配置された複数のロール33aで搬送しながら、フィルムを乾燥させた。乾燥温度は140℃、乾燥時間は13分、乾燥装置内のロール本数を250本とし、フィルムの搬送張力は120N/mとした。それにより、スキン層/コア層/スキン層(3μm/14μm/3μm)の3層構造を有する総膜厚20μmの光学フィルム101を得た。
Figure JPOXMLDOC01-appb-T000037
 <実施例2>
 セルローストリアセテート100質量部に対して3質量部の化合物A-1をさらに添加した以外は実施例1と同様にしてコア層用ドープを得た。得られたコア層用ドープのみを用いて単層フィルムを得た以外は実施例1と同様にして光学フィルム102を得た。
 <比較例1>
 乾燥条件を、表5に示されるように変更して単層フィルムを得た以外は実施例2と同様にして光学フィルム103を得た。
 <比較例2>
 実施例1のコア層用ドープを用い、かつ乾燥条件を表5に示されるように変更して単層フィルムを得た以外は実施例2と同様にして光学フィルム104を得た。
 <実施例3~5、比較例3~6>
 乾燥条件を、表6に示されるように変更した以外は実施例1と同様にして光学フィルム105~111を得た。
 <実施例6~8、比較例7と参考例>
 コア層用ドープおよびスキン層用ドープの流延量を調整して、コア層とスキン層の膜厚を表6に示されるようにそれぞれ変更した以外は実施例1と同様にして光学フィルム112~116を得た。
 <実施例9~22>
 スキン層用ドープの組成を調整して、スキン層に含まれる化合物Aの種類を表7に示されるように変更した以外は実施例1と同様にして光学フィルム117~130を得た。
 <実施例23>
 コア層用ドープとスキン層用ドープの組成を調整して、コア層とスキン層に含まれる化合物Aと化合物Bの種類と含有量をそれぞれ表8に示されるように変更し、かつコア層用ドープの流延量を調整して、各層の厚みを表8に示されるように変更した以外は実施例1と同様にして光学フィルム131を得た。
 <実施例24~26>
 コア層用ドープの組成を調整して、コア層における化合物Aと化合物Bの含有比率(A/B)を表8に示されるように変更した以外は実施例23と同様にして光学フィルム132~134を得た。
 <実施例27~30>
 スキン層用ドープの組成を調整して、スキン層における化合物Aと化合物Bの含有比率(B/A)を表8に示されるように変更した以外は実施例23と同様にして光学フィルム135~138を得た。
 <実施例31~34>
 コア層用ドープの組成を調整して、コア層における化合物Bの含有量を表9に示されるように変更した以外は実施例1と同様にして光学フィルム139~142を得た。
 <実施例35>
 コア層用ドープの組成を調整して、コア層における化合物Bの含有量を表9に示されるように変更し、かつ延伸条件を表9に示されるように変更した以外は実施例1と同様にして光学フィルム143を得た。
 <実施例36~39>
 コア層用ドープの組成を調整して、コア層における化合物Bの種類を表9に示されるように変更した以外は実施例1と同様にして光学フィルム144~147を得た。
 実施例1~2および比較例1~2の光学フィルムの製造条件を表5に示し;実施例3~8、比較例3~7および参考例の光学フィルムの製造条件を表6に示し;実施例9~22の光学フィルムの製造条件を表7に示し;実施例23~30の光学フィルムの製造条件を表8に示し;実施例31~39の光学フィルムの製造条件を表9に示す。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 上記作製した光学フィルムのタフネスと引き裂き強度を、それぞれ以下の方法で評価した。実施例1および23~39の光学フィルムについては、さらに位相差を評価した。
 (タフネス)
 MD方向のタフネスの測定:
 1)得られたフィルムを120mm(MD方向)×10mm(TD方向)に5枚切り出して、MD方向測定用の試験片とした。得られた試験片を、23℃55%RHの環境下で24時間調湿した。
 2)次いで、試験片の引張弾性率をJIS K7127に記載の方法で測定した。引張り試験器は、オリエンテック(株)社製テンシロンRTC-1225を使用し、チャック間100mmで試験片の長手方向(MD方向)の上端部と下端部を挟み(挟みしろは、試験片の上端部と下端部でそれぞれ10mmずつ)、100mm/分の速度で長手方向(MD方向)に試験片を引っ張り、試験片が破断したときの応力(破断点応力T(N/mmまたはMPa))と伸び(破断点伸度E(%))をそれぞれ測定し、合計5回(合計5枚分)測定した。測定は、23℃55%RHの環境下で行った。
 3)得られた破断点応力T(N/mmまたはMPa)の5回の測定値の最大値、破断点伸度E(%)の5回の測定値の最大値、および試験片の膜厚t(mm)をそれぞれ下記式に当てはめて、MD方向のタフネスを算出した。
  タフネス=破断点応力T(N/mmまたはMPa)×引張方向と直交する方向の試験片の断面積A(mm)×(破断点伸度E(%)/100)1/2
  試験片の断面積A(mm)=試験片の幅10(mm)×試験片の膜厚t(mm)
 TD方向のタフネスの測定:
 前述と同様に、得られたフィルムを120mm(TD方向)×10mm(MD方向)の大きさに5枚切り出して、TD方向測定用の試験片とした。得られたTD方向測定用の試験片を用いて試験片の長手方向(TD方向)に引っ張った以外は前述と同様の測定を行い、TD方向のタフネスを算出した。
 (引き裂き強度)
 得られたフィルムのエレメンドルフ法の引き裂き荷重(mN)を、東洋精機(株)製の軽荷重引き裂き装置を用いてJIS K 7128-1991に準拠して測定した。測定は、23℃55%RHの条件下、フィルムの搬送方向(MD方向)と幅方向(TD方向)のそれぞれについて行った。
 引き裂き強度を、以下の基準にて評価した。
 ◎:引き裂き強度が35mN以上
 〇:引き裂き強度が30mN以上35mN未満
 △:引き裂き強度が20mN以上30mN未満
 ×:引き裂き強度が20mN未満
 (位相差Ro、Rth)
 1)得られたフィルムを、23℃55%RHで調湿した。調湿後のフィルムの平均屈折率をアッベ屈折計などで測定した。
 2)調湿後のフィルムに、当該フィルム表面の法線に平行に測定波長590nmの光を入射させたときのRoを、KOBRA21ADH、王子計測(株)にて測定した。
 3)KOBRA21ADHにより、フィルムの面内の遅相軸を傾斜軸(回転軸)として、フィルム表面の法線に対してθの角度(入射角(θ))から測定波長590nmの光を入射させたときのリターデーション値R(θ)を測定した。リターデーション値R(θ)の測定は、θが0°~50°の範囲で、10°毎に6点行った。フィルムの面内の遅相軸は、KOBRA21ADHにより確認した。
 4)測定されたRoおよびR(θ)と、前述の平均屈折率と膜厚とから、KOBRA21ADHにより、nx、nyおよびnzを算出して、測定波長590nmでのRthを算出した。リターデーションの測定は、23℃55%RH条件下で行った。
 また、上記作製した光学フィルムを用いた偏光板を以下の方法で作製し、偏光子の劣化の有無を評価した。
 (偏光子劣化)
 1)偏光子の作製
 厚さ30μmのポリビニルアルコールフィルムを、35℃の水で膨潤させた。得られたフィルムを、ヨウ素0.075g、ヨウ化カリウム5gおよび水100gからなる水溶液に60秒間浸漬し、更にヨウ化カリウム3g、ホウ酸7.5gおよび水100gからなる45℃の水溶液に浸漬した。得られたフィルムを、延伸温度55℃、延伸倍率3倍の条件で一軸延伸した。この一軸延伸フィルムを、水洗した後、乾燥させて、厚み5μmの偏光子を得た。
 2)活性エネルギー線硬化型接着剤液の調製
 下記の各成分を混合した後、脱泡して、ラジカル重合型の活性エネルギー線硬化型接着剤液を調製した。
 (活性エネルギー線硬化型接着剤液の組成)
 ラジカル重合性化合物1:ヒドロキシエチルアクリルアミド(HEAA、ホモポリマーのTg123℃、興人社製):39.1質量%
 ラジカル重合性化合物2:トリプロピレングリコールジアクリレート(アロニックスM-220、ホモポリマーのTg69℃、東亞合成社製):19.0質量%
 ラジカル重合性化合物3:アクリロイルモルホリン(ACMO、ホモポリマーのTg150℃、興人社製):39.1質量%
 ラジカル重合開始剤1:ジエチルチオキサントン(KAYACURE DETX-S、日本化薬社製):1.4質量%
 ラジカル重合開始剤2:2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン(IRGACURE907、BASF社製):1.4質量%
 3)偏光板の作製
 上記作製した同じ番号の光学フィルムを2枚準備し、それぞれの表面にコロナ放電処理を施した。コロナ放電処理の条件は、コロナ出力強度2.0kW、ライン速度18m/分とした。次いで、当該フィルムのコロナ放電処理面に、上記調製した活性エネルギー線硬化型接着剤液を、硬化後の膜厚が約3μmとなるように、バーコーターでそれぞれ塗工し、活性エネルギー線硬化型接着剤層を形成した。
 次いで、上記作製した偏光子を、上記処理した2枚の光学フィルムで挟んで、光学フィルム/活性エネルギー線硬化型接着剤層/偏光子/活性エネルギー線硬化型接着剤層/光学フィルムの積層物を得た。
 この積層物の一方の面に、紫外線(ガリウム封入メタルハライドランプ)を、ベルトコンベア付き紫外線照射装置(Fusion UV Systems,Inc社製のLight HAMMER10 バルブ:Vバルブ ピーク照度:1600mW/cm)を用いて、積算照射量1000/mJ/cm(波長380~440nm)となるように紫外線を照射して、活性エネルギー線硬化型接着剤層を硬化させ、偏光板を得た。
 4)評価
 得られた偏光板における偏光度の劣化を、以下の方法で評価した。
 1)得られた偏光板を4cm×4cmの大きさに切り出して、偏光板試料とした。この偏光板試料を、23℃55%RHの雰囲気下で24時間調湿した後、23℃55%RHで平行透過率と直交透過率を測定した。得られた測定値を、それぞれ下記式に当てはめて、保存前の偏光度P0を算出した。
 偏光度P=((H0-H90)/(H0+H90))0.5×100
 (H0 :平行透過率、H90 :直交透過率) 
 2)その後、偏光板試料を、60℃90%RHの条件下で1000時間保存した後、前述と同様にして偏光板試料の平行透過率と直行透過率を測定した。得られた測定値を、それぞれ前述の式に当てはめて、保存後の偏光度P1000を算出した。
 3)前記1)で得られた偏光度P0と、前記2)で得られた偏光度P1000の値を下記式に当てはめて、偏光度変化量を算出した。
 偏光度変化量=P0-P1000(P0 :強制劣化前の偏光度、P1000:強制劣化1000時間後の偏光度)
 偏光板試料における偏光子の劣化を、以下の基準に基づいて評価した。
 ◎:偏光度変化率10%未満
 ○:偏光度変化率10%以上20%未満
 △:偏光度変化率20%以上30%未満
 ×:偏光度変化率30%以上
 さらに、実施例1および23~39の光学フィルムを用いて液晶表示装置を以下の方法で作製し、そのコントラストを評価した。
 (コントラスト)
 1)IPSモードの液晶セルの作製
 一枚のガラス基板上に、図4に示されるように、隣接する電極202と203との間の距離が20μmとなるように電極202および203を設けた。次いで、電極202および203の上に、ポリイミド膜を形成し、さらにラビング処理を行なって配向膜とした。ラビング処理は、図4の204に示される方向に行なった。別に用意した一枚のガラス基板の一方の表面にポリイミド膜を形成し、ラビング処理を行なって配向膜とした。二枚のガラス基板を、配向膜同士を対向させて、基板の間隔(ギャップ;d)を3.9μmとし、二枚のガラス基板のラビング方向が平行となるようにして重ねて貼り合わせた。これに、屈折率異方性(Δn)が0.0769および誘電率異方性(Δε)が正の4.5であるネマチック液晶組成物を封入し、液晶層のd・Δnの値が300nmである液晶セルを得た。
 2)液晶表示装置の作製
 得られたIPSモードの液晶セルの両面に、それぞれ上記作製した偏光板を貼り付けた。二つの偏光板は、互いにクロスニコルの配置となるように貼り付けて、液晶表示装置を得た。また、二つの偏光板の光学フィルムは、互いに同じ番号のものを用いた。
 3)評価
 得られた液晶表示装置の正面コントラストを、以下の方法で評価した。
 即ち、明室内に設定されたシャーカステン上に、上記作製した液晶表示装置を、液晶セルを構成する基板のうち電極が設けられた基板がシャーカステン側となるように配置した。そして、液晶セルの法線方向に1m離れたところに設置された輝度計(分光放射輝度計CS-1000:ミノルタ(株)製)で、白表示させたときの輝度と、黒表示させたときの輝度とをそれぞれ測定した。それにより、輝度の比(白表示時の輝度/黒表示時の輝度)を算出し、コントラスト比とした。
 そして、正面コントラストを、以下の基準に基づいて評価した。
 ◎:コントラスト比が400以上
 〇:コントラスト比が360以上400未満
 △:コントラスト比が320以上360未満
 ×:コントラスト比が320未満
 実施例1~2および比較例1~2の光学フィルムの評価結果を表10に示し;実施例3~8、比較例3~7および参考例の光学フィルムの評価結果を表11に示し;実施例9~22の光学フィルムの評価結果を表12に示し;実施例23~30の光学フィルムの評価結果を表13に示し;実施例31~39の光学フィルムの評価結果を表14に示す。
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
 表10~14に示されるように、乾燥条件をA~Dとした実施例1~39の光学フィルムは、乾燥条件をE~Gとした比較例1~5の光学フィルムや、膜厚が薄い比較例6の光学フィルムよりも、高いタフネスおよび引き裂き強度を有することがわかる。
 具体的には、比較例1~3のフィルムのタフネスと引き裂き強度が低いのは、乾燥工程でのロール本数が少なく、フィルムに十分な張力を付与できなかったためであると考えられる(条件E)。比較例4のフィルムのタフネスと引き裂き強度が低いのは、乾燥工程での乾燥温度が低く、かつ乾燥時間も短いことから(条件F)、フィルムを構成するセルロースエステルの分子鎖を十分には配向させることができなかったためであると考えられる。比較例5のフィルムのタフネスと引き裂き強度が低いのは、乾燥工程でフィルムにかかる張力が低く、乾燥温度も低く、乾燥時間も短いことから(条件G)、フィルムを構成するセルロースエステルの分子鎖を十分には配向させることができなかったためであることが示唆される。一方、ロールの本数が多く、乾燥工程での張力が大きすぎた比較例6のフィルムは、フィルムが硬く脆くなっており、タフネスが低く、引き裂き強度が低下することがわかる。
 また、実施例1および3~5との対比からも示されるように、乾燥工程におけるロールの数、フィルムの張力、乾燥温度および乾燥時間の全てが一定以上であると、フィルムのタフネスや引き裂き強度が一層高まることがわかる。
 また、実施例1~39の光学フィルムは、比較例2および6の光学フィルムよりも、偏光子の劣化も低減できることがわかる。比較例2の光学フィルムは、偏光子劣化機能を有する化合物Aを含んでおらず;比較例6の光学フィルムは、化合物Aを含んでいても総膜厚が薄すぎるため、透過水分を十分には低減できず、いずれも偏光子の劣化を抑制しきれなかったためと考えられる。参考例の光学フィルムはそもそも膜厚が厚すぎるため、小型の表示装置には不向きである。
 また、表10の実施例1または表12の実施例9と表10の実施例2との対比にも示されるように、化合物A(偏光子劣化抑制剤)と化合物B(位相差低減剤)とをそれぞれ別の層に含有させるほうが、同じ層に含有させるよりも位相差が十分に低く、かつ偏光子の劣化を少なくしうることがわかる。これは、同じ層に含有させたときの化合物A(偏光子劣化抑制剤)と化合物B(位相差低減剤)の相互作用を抑制し、化合物A(偏光子劣化抑制剤)の偏光子劣化抑制機能と化合物B(位相差低減剤)の位相差低減機能とが互いに阻害されにくいためであると考えられる。
 表13の実施例23~26の対比から示されるように、光学フィルムのコア層における化合物Aの化合物Bに対する含有比率(A/B)が多いと、位相差値が十分に低下せず、表示装置の正面コントラストが低下する傾向が示される。これは、光学フィルムのコア層中に化合物Aと化合物Bが共存するため、これらが互いに相互作用し、化合物Bの位相差低減機能が損なわれたためであると考えられる。
 また、表13の実施例27~30の対比からも示されるように、光学フィルムのスキン層における化合物Bの化合物Aに対する含有比率(B/A)が高すぎると、偏光子の劣化が生じやすいことが示唆される。これは、化合物Aと化合物Bとが相互作用し、化合物Aの偏光子劣化抑制機能が阻害されやすいためであると考えられる。
 また、表14に示されるように、光学フィルムの位相差の絶対値が5nm以下を満たす実施例32~33および36~37の表示装置は、光学フィルムの位相差の絶対値が5nm以下を満たさない実施例31、34~35および38~39の表示装置よりも、正面コントラストが高いことがわかる。また、実施例33~35および38の光学フィルムにおいて、偏光子劣化が十分には抑制できないのは、コア層に含まれる化合物Bの含有量が多すぎて、コア層から化合物Bの一部が染み出し、スキン層に含まれる化合物Aと意図しない相互作用を若干生じたことによると考えられる。
 本出願は、2014年3月24日出願の特願2014-060474に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明によれば、膜厚が薄くても、偏光子の劣化を抑制できるだけでなく、タフネスが高い光学フィルムを提供することができる。
 10 光学フィルム
 11 コア層
 13、15 スキン層
 21a コア層用ドープ
 21b スキン層用ドープ
 23 ダイ
 25 金属支持体
 27 膜状物
 29 剥離ロール
 31 テンター延伸装置
 33 乾燥装置
 33a ロール
 35 巻き取り装置
 37 巻芯
 39 ロール体
 50 小型液晶表示装置
 70 液晶セル
 90 第一の偏光板
 91 第一の偏光子
 93、113 保護フィルム
 110 第二の偏光板
 111 第二の偏光子
 130 バックライト
 150 カバーガラス
 170 タッチパネル部
 190 充電池

Claims (15)

  1.  セルロースエステルと、一般式(1)で表されるモノマー由来の繰り返し単位を含む重合体、一般式(2)で表される化合物、一般式(3)で表される化合物および一般式(4)で表される化合物からなる群より選ばれる一以上の化合物Aとを含む光学フィルムであって、
     膜厚が15~45μmであり、かつ
     前記光学フィルムを、23℃55%RH下において前記光学フィルムの長辺方向αまたは該長辺方向αと直交する短辺方向βに引っ張ったときの破断点応力をT(MPaまたはN/mm)、破断点伸度をE(%)、引張方向に対して直交する方向の前記光学フィルムの断面積をA(mm)としたとき、下記式で表されるタフネスGが、前記光学フィルムの前記長辺方向αと前記短辺方向βのそれぞれにおいて7~20である、光学フィルム。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1)中、
     Rは、水素原子または炭素原子数1~4の脂肪族基を表し;
     Rは、置換基を表し;
     (A)は、5または6員環を形成する原子群を表し;
     nは、0~4の整数を表す)
    Figure JPOXMLDOC01-appb-C000003
    (一般式(2)中、
     R26は、炭素原子数6~12のアリール基を表し;
     R27およびR28は、それぞれ独立して水素原子、炭素原子数1~12のアルキル基または炭素原子数6~12のアリール基を表し;
     R26およびR27は、それぞれ置換基を有していてもよい)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(3)中、
     Rは、水素原子または置換基を表し;
     Rは、下記一般式(3-1)で表される置換基を表し;
     n1は、0~4の整数を表し、n1が2以上のとき、複数のRは互いに同一であっても異なっていてもよく、
     n2は1~5の整数を表し、n2が2以上のとき、複数のRは互いに同一であっても異なっていてもよい)
    Figure JPOXMLDOC01-appb-C000005
    (一般式(3-1)中、
     Aは、置換または無置換の芳香族環を表し;
     RおよびRは、それぞれ独立に、水素原子、炭素原子数1~5のアルキル基または一般式(3-2)で表される置換基を表し;
     Rは、単結合または炭素原子数1~5のアルキレン基を表し;
     Xは、置換または無置換の芳香族環を表し;
     n3は0~10の整数を表し、n3が2以上のとき、複数のRおよびXは互いに同一であっても異なっていてもよい)
    Figure JPOXMLDOC01-appb-C000006
     (一般式(3-2)中、
     Xは、置換または無置換の芳香族環を表し;
     R、R、R、およびRは、それぞれ独立に水素原子または炭素原子数1~5のアルキル基を表し;
     n5は1~11の整数を表し、n5が2以上のとき、複数のR、R、RおよびXは互いに同一であっても異なっていてもよい)
    Figure JPOXMLDOC01-appb-C000007
    (一般式(4)中、
     Rは、窒素原子または酸素原子を表し;
     Rは、-COOHまたは-OH基を表し;
     Rは、炭素数1~10のアルキル基を表し;
     Rは、置換基を表す)
  2.  前記光学フィルムは、コア層と、前記コア層上を挟持する一対のスキン層とを含み、
     少なくとも前記スキン層が前記化合物Aを含む、請求項1に記載の光学フィルム。
  3.  膜厚が15~30μmである、請求項1に記載の光学フィルム。
  4.  前記コア層が、ジオールとジカルボン酸とを重縮合させて得られるポリエステル化合物からなる化合物Bを含む、請求項2に記載の光学フィルム。
  5.  前記コア層における、前記化合物Aの前記化合物Bに対する含有比率A/Bが0~0.1である、請求項2に記載の光学フィルム。
  6.  前記スキン層における、前記化合物Bの前記化合物Aに対する含有比率B/Aが0~0.5である、請求項2に記載の光学フィルム。
  7.  前記光学フィルムの、下記式(I)で定義され、かつ測定波長590nmで測定される面内方向のリターデーションをRo(590)とし、下記式(II)で定義され、かつ測定波長590nmで測定される厚み方向のリターデーションをRth(590)としたとき、|Ro(590)|≦5nm、|Rth(590)|≦5nmを満たす、請求項1に記載の光学フィルム。
     式(I) Ro=(nx-ny)×t(nm)
     式(II) Rth={(nx+ny)/2-nz}×t(nm)
    (式(I)および(II)において、
     nxは、フィルムの面内方向において屈折率が最大になる遅相軸方向xにおける屈折率を表し;nyは、フィルムの面内方向において前記遅相軸方向xと直交する方向yにおける屈折率を表し;nzは、フィルムの厚み方向zにおける屈折率を表し;t(nm)は、フィルムの厚みを表す)
  8.  請求項1に記載の光学フィルムの製造方法であって、
     前記セルロースエステルと、前記一般式(1)で表されるモノマー由来の繰り返し単位を含む重合体、前記一般式(2)で表される化合物、前記一般式(3)で表される化合物および前記一般式(4)で表される化合物からなる群より選ばれる一以上の化合物Aとを含むドープを準備する第1の工程と、
     前記ドープを、支持体上に流延した後、乾燥させて膜状物を得る第2の工程と、
     前記膜状物を延伸する第3の工程と、
     前記延伸された膜状物を乾燥させて前記光学フィルムを得る第4の工程とを含み、
     前記第4の工程において、前記膜状物を200本以上300本以下のロールで、100~150N/mの張力で搬送しながら、125~150℃で10~15分間乾燥させる、光学フィルムの製造方法。
  9.  前記第1の工程では、セルロースエステルを含むコア層用ドープと、セルロースエステルと前記化合物Aとを含むスキン層用ドープとを準備し、
     前記第2の工程では、前記コア層用ドープと前記スキン層用ドープを支持体上に共流延した後、乾燥させて膜状物を得て、
     コア層と、前記コア層上を挟持する一対のスキン層とを含む光学フィルムを得る、請求項8に記載の光学フィルムの製造方法。
  10.  偏光子と、請求項1に記載の光学フィルムとを含む、偏光板。
  11.  前記偏光子と前記光学フィルムとは、活性エネルギー線硬化型接着剤の硬化物層を介して接着されている、請求項10に記載の偏光板。
  12.  請求項1に記載の光学フィルムを含む、液晶表示装置。
  13.  第一の偏光板と、液晶セルと、第二の偏光板と、バックライトとをこの順に含み、
     前記第一の偏光板は、第一の偏光子と、前記第一の偏光子の前記液晶セルとは反対側の面に配置される保護フィルムF1と、前記第一の偏光子の前記液晶セル側の面に配置される保護フィルムF2とを含み、
     前記第二の偏光板は、第二の偏光子と、前記第二の偏光子の前記液晶セル側の面に配置される保護フィルムF3と、前記第二の偏光子の前記液晶セルとは反対側の面に配置される保護フィルムF4とを含み、
     前記保護フィルムF2およびF3の少なくとも一方が前記光学フィルムを含む、請求項12に記載の液晶表示装置。
  14.  前記液晶セルがIPSモードまたはFFSモードの液晶セルである、請求項13に記載の液晶表示装置。
  15.  表示領域の対角方向の長さが10インチ以下である、請求項13に記載の液晶表示装置。
     
PCT/JP2015/058689 2014-03-24 2015-03-23 光学フィルムとその製造方法、偏光板および液晶表示装置 WO2015146890A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580014979.0A CN106104330A (zh) 2014-03-24 2015-03-23 光学膜和其制造方法、偏振片及液晶显示装置
JP2016510326A JPWO2015146890A1 (ja) 2014-03-24 2015-03-23 光学フィルムとその製造方法、偏光板および液晶表示装置
KR1020167025978A KR20160122262A (ko) 2014-03-24 2015-03-23 광학 필름과 그 제조 방법, 편광판 및 액정 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014060474 2014-03-24
JP2014-060474 2014-03-24

Publications (1)

Publication Number Publication Date
WO2015146890A1 true WO2015146890A1 (ja) 2015-10-01

Family

ID=54195403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058689 WO2015146890A1 (ja) 2014-03-24 2015-03-23 光学フィルムとその製造方法、偏光板および液晶表示装置

Country Status (4)

Country Link
JP (1) JPWO2015146890A1 (ja)
KR (1) KR20160122262A (ja)
CN (1) CN106104330A (ja)
WO (1) WO2015146890A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122857A (ja) * 2016-01-08 2017-07-13 コニカミノルタ株式会社 光学フィルム、光学フィルムの製造方法、ロールフィルム、偏光板及び画像表示装置
WO2020175372A1 (ja) * 2019-02-26 2020-09-03 日東電工株式会社 偏光子の製造方法、偏光フィルムの製造方法、積層偏光フィルムの製造方法、画像表示パネルの製造方法、および画像表示装置の製造方法
WO2021149359A1 (ja) * 2020-01-24 2021-07-29 住友化学株式会社 光学積層体及び表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020526797A (ja) * 2017-07-25 2020-08-31 エルジー・ケム・リミテッド 偏光板およびこれを含む液晶表示素子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062064A (ja) * 2005-08-30 2007-03-15 Konica Minolta Opto Inc 光学フィルム、及びその製造方法
JP2008287118A (ja) * 2007-05-18 2008-11-27 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその駆動方法
JP2011256323A (ja) * 2010-06-11 2011-12-22 Konica Minolta Opto Inc 光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP2013028782A (ja) * 2011-06-24 2013-02-07 Fujifilm Corp セルロースアシレートフィルム、これを用いた偏光板および液晶表示装置
JP2013174851A (ja) * 2011-04-21 2013-09-05 Fujifilm Corp 偏光板および液晶表示装置
JP2013177547A (ja) * 2012-02-06 2013-09-09 Kohjin Holdings Co Ltd 活性エネルギー線硬化性接着剤
JP2013182154A (ja) * 2012-03-02 2013-09-12 Nippon Shokubai Co Ltd 位相差フィルムとこれを用いた画像表示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749668B (zh) * 2011-04-21 2016-02-24 富士胶片株式会社 偏振片及液晶显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062064A (ja) * 2005-08-30 2007-03-15 Konica Minolta Opto Inc 光学フィルム、及びその製造方法
JP2008287118A (ja) * 2007-05-18 2008-11-27 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその駆動方法
JP2011256323A (ja) * 2010-06-11 2011-12-22 Konica Minolta Opto Inc 光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP2013174851A (ja) * 2011-04-21 2013-09-05 Fujifilm Corp 偏光板および液晶表示装置
JP2013028782A (ja) * 2011-06-24 2013-02-07 Fujifilm Corp セルロースアシレートフィルム、これを用いた偏光板および液晶表示装置
JP2013177547A (ja) * 2012-02-06 2013-09-09 Kohjin Holdings Co Ltd 活性エネルギー線硬化性接着剤
JP2013182154A (ja) * 2012-03-02 2013-09-12 Nippon Shokubai Co Ltd 位相差フィルムとこれを用いた画像表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122857A (ja) * 2016-01-08 2017-07-13 コニカミノルタ株式会社 光学フィルム、光学フィルムの製造方法、ロールフィルム、偏光板及び画像表示装置
WO2020175372A1 (ja) * 2019-02-26 2020-09-03 日東電工株式会社 偏光子の製造方法、偏光フィルムの製造方法、積層偏光フィルムの製造方法、画像表示パネルの製造方法、および画像表示装置の製造方法
JP6772402B1 (ja) * 2019-02-26 2020-10-21 日東電工株式会社 偏光子の製造方法、偏光フィルムの製造方法、積層偏光フィルムの製造方法、画像表示パネルの製造方法、および画像表示装置の製造方法
WO2021149359A1 (ja) * 2020-01-24 2021-07-29 住友化学株式会社 光学積層体及び表示装置

Also Published As

Publication number Publication date
CN106104330A (zh) 2016-11-09
JPWO2015146890A1 (ja) 2017-04-13
KR20160122262A (ko) 2016-10-21

Similar Documents

Publication Publication Date Title
WO2015190190A1 (ja) 液晶表示装置
JP4622698B2 (ja) 位相差板、偏光板及び液晶表示装置
US20130027634A1 (en) Liquid crystal display device
WO2015076250A1 (ja) 光学フィルム、偏光板および液晶表示装置
WO2007052478A1 (ja) セルロース系樹脂フィルム、セルロース系樹脂フィルムの製造方法、反射防止フィルム、偏光板及び液晶表示装置
WO2014203637A1 (ja) 偏光板及び液晶表示装置
US9151870B2 (en) Optical film, and polarizing plate and liquid crystal display device using same
US9523794B2 (en) Optical film of cellulose ester and cellulose ether for vertical alignment liquid crystal displays
WO2016111316A1 (ja) 偏光板保護フィルムとその製造方法、偏光板及び液晶表示装置
WO2015166941A1 (ja) 液晶表示装置
WO2015146890A1 (ja) 光学フィルムとその製造方法、偏光板および液晶表示装置
JPWO2018070132A1 (ja) 偏光板および液晶表示装置
KR20160114695A (ko) 편광판, 편광판의 제조 방법 및 액정 표시 장치
JP6007874B2 (ja) 偏光板保護フィルムとその製造方法、偏光板および液晶表示装置
KR101709419B1 (ko) 광학 필름 및 광학 필름의 제조 방법, 편광판 및 액정 표시 장치
WO2008050603A1 (fr) Dispositif d'affichage à cristaux liquides en mode ips et procédé de fabrication dudit dispositif
JP6710967B2 (ja) 光学フィルム、光学フィルムの製造方法及び偏光板
WO2014002130A1 (ja) 偏光板
WO2015137367A1 (ja) 光学フィルムのロール体とその製造方法、偏光板および液晶表示装置
JPWO2011114764A1 (ja) 位相差フィルム及びそれが備えられた偏光板
JP2017122886A (ja) 光学フィルム、偏光板及び液晶表示装置
WO2014178178A1 (ja) 偏光板および液晶表示装置
JP6728656B2 (ja) 偏光板保護フィルム及びそれを具備した偏光板
JP2014228760A (ja) 偏光板保護フィルム、偏光板及び液晶表示装置
JP5772680B2 (ja) セルロースアシレート積層フィルムおよびその製造方法、並びにそれを用いた偏光板および液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510326

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167025978

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769609

Country of ref document: EP

Kind code of ref document: A1