WO2015146872A1 - 酸素高炉の操業方法 - Google Patents

酸素高炉の操業方法 Download PDF

Info

Publication number
WO2015146872A1
WO2015146872A1 PCT/JP2015/058656 JP2015058656W WO2015146872A1 WO 2015146872 A1 WO2015146872 A1 WO 2015146872A1 JP 2015058656 W JP2015058656 W JP 2015058656W WO 2015146872 A1 WO2015146872 A1 WO 2015146872A1
Authority
WO
WIPO (PCT)
Prior art keywords
tuyere
gas
blast furnace
blowing
oxygen
Prior art date
Application number
PCT/JP2015/058656
Other languages
English (en)
French (fr)
Inventor
泰平 野内
高橋 功一
光輝 照井
佐藤 道貴
絢 吉岡
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016510317A priority Critical patent/JP6229863B2/ja
Priority to EP15768555.3A priority patent/EP3124626B1/en
Priority to CN201580015653.XA priority patent/CN106103746B/zh
Priority to KR1020167025284A priority patent/KR20160120334A/ko
Publication of WO2015146872A1 publication Critical patent/WO2015146872A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B2005/005Selection or treatment of the reducing gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0075Regulation of the charge quantity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method of operating an oxygen blast furnace in which pure oxygen is supplied from the tuyere and blast furnace gas with less nitrogen is generated from the top of the furnace.
  • a general blast furnace blows hot air from the tuyere, and a mixed gas (M gas) made by mixing gases generated from a blast furnace, coke oven, converter, etc. is used as the heat source for obtaining the hot air. Is done.
  • M gas mixed gas
  • the reducing material ratio in the blast furnace is reduced by the amount of heat of the hot air. Since reducing materials used in conventional blast furnaces are mainly made of fossil fuel mainly composed of carbon, it can be said that hot air blowing suppresses the amount of fossil fuel used and the amount of CO 2 generated. .
  • an oxygen blast furnace for producing hot metal by blowing pure oxygen at room temperature from the tuyere instead of the hot stove has been proposed (see Patent Document 1).
  • the purpose of this oxygen blast furnace was to generate and recover a blast furnace gas substantially free of nitrogen and use it as a gas for the synthetic chemical industry.
  • this oxygen blast furnace since pure oxygen was blown from the tuyere and reacted with coke, there was a technical problem that the temperature at the tuyere tip was abnormally high.
  • Patent Document 1 describes a method of controlling the temperature within a predetermined temperature range by blowing CO 2 -containing furnace top gas from the tuyere. Patent Document 1 also proposes a method of blowing H 2 O or CO 2 from the tuyere. Furthermore, as another method, a technique of blowing heavy oil from the tuyere has been proposed (see Patent Document 2).
  • Patent Document 3 proposes a coal dry distillation gasification method in which C gas generated from a coke oven is blown into a tuyere to be desulfurized and reformed.
  • these are technologies unrelated to the tuyere tip temperature control.
  • the oxygen blast furnace of the type in which pure oxygen is blown from the tuyere instead of hot air has a characteristic that the tuyere tip temperature becomes extremely high, and the tuyere tip temperature is lowered well. It is essential to operate.
  • the tuyere tip does not become abnormally hot, which is a technical problem peculiar to an oxygen blast furnace.
  • H 2 O or CO 2 is blown together with normal temperature pure oxygen from the tuyere and the following endothermic reaction is induced to lower the tuyere tip temperature.
  • the reaction at this time is an endothermic reaction of combustion (oxidation) and reverse reaction (reduction), and the temperature of the tuyere at an abnormally high temperature can be lowered.
  • the reactions of the following formulas (1) and (2) consume solid carbon at the tuyere (raceway), the amount of coke used increases.
  • the oxygen blast furnace there is a problem that an increase in the amount of fossil fuel used and an increase in the amount of generated CO 2 occur.
  • the object of the present invention is to propose an operating method of an oxygen blast furnace capable of solving the above-mentioned problems of the prior art and lowering the temperature in the combustion region of the tuyere by reducing CO 2 emissions compared to the conventional technique. There is to do.
  • Another object of the present invention is to propose a method for operating an oxygen blast furnace capable of avoiding the occurrence of soot that becomes a problem with the use of heavy oil and realizing stable injection of pure oxygen from the tuyere.
  • the present invention which was developed to achieve the above object, is a method of operating an oxygen blast furnace in which at least pure oxygen is blown from the tuyere and blast furnace gas with less nitrogen is generated from the top of the furnace, together with the blowing of pure oxygen from the tuyere.
  • a method of operating an oxygen blast furnace characterized by lowering the temperature in the combustion region at the tip of the tuyere by blowing from the tuyere the tuyere injecting gas in which the sum of the volume fractions of hydrocarbon and hydrogen is 50% or more It is.
  • the operation method of the oxygen blast furnace of the present invention pure oxygen is blown from the tuyere, and tuyere blown gas in which the sum of the volume fractions of hydrocarbon and hydrogen is 50% or more is blown from the tuyere.
  • the abnormal high temperature in the tuyere tip combustion region which is a problem specific to the oxygen blast furnace, can be prevented and the temperature can be lowered.
  • the present invention has an effect of reducing CO 2 emission compared with the tuyere tip temperature reduction method used in the conventional oxygen blast furnace operating method.
  • FIG. 1 is a diagram showing an example of an oxygen blast furnace and peripheral equipment that are targets of an operation method according to the present invention.
  • 1 is an oxygen blast furnace
  • 2 is a mixer for mixing gas
  • 3 is a burner that preheats the gas to obtain preheated gas (SGI)
  • 4 is a generator that generates electricity using blast furnace exhaust gas
  • 5 is an oxygen plant for producing pure oxygen
  • 6 is a tuyere used for injecting oxygen into the oxygen blast furnace 1.
  • ore and coke are introduced from the top in the oxygen blast furnace 1 as in the conventional blast furnace.
  • pure oxygen at room temperature is blown from the lower tuyere 6.
  • Pure oxygen is produced from the air using a separation technique such as cryogenic separation in the oxygen plant 5 and consumes electric power. Therefore, a method is used in which a coke oven gas, a blast furnace gas, or a mixture of these, which is a combustion gas containing a large amount of CO, is used to generate power with the power generator 4 and produce pure oxygen with the power.
  • tuyeres blowing gas such as pulverized coal, natural gas and coke oven gas is also blown from the lower tuyere 6.
  • the tuyere 6 uses a tuyere containing an oxygen-pulverized coal burner such as the tuyere described in JP-A-63-171811, and the pulverized coal and tuyere blowing gas from the internal burner, Pure oxygen can be blown from the outside tuyere.
  • an oxygen-pulverized coal burner such as the tuyere described in JP-A-63-171811
  • Pure oxygen can be blown from the outside tuyere.
  • one burner is arranged in the tuyere and either pulverized coal and tuyere blowing gas are mixed and blown from the burner, or two burners are arranged in the tuyere, one from the pulverized coal, and the other from the tuyere It is advisable to blow in gas.
  • the oxygen blast furnace 1 has a problem that the temperature at the top of the furnace is lowered because the gas flow rate is small.
  • the temperature of the furnace top gas becomes 100 ° C. or lower, condensation occurs at the top of the furnace, causing operational troubles. Therefore, in order to keep the temperature at the top of the furnace at 100 ° C. or higher, as shown in FIG. 1, a part of the blast furnace exhaust gas (B gas) that is a combustion gas containing a large amount of CO is circulated and flows into the burner 3. It is good to use the method of making it burn and making high temperature preheating gas (SGI), and blowing from a blast furnace shaft part.
  • SGI high temperature preheating gas
  • the tuyere tip temperature is preferably about 2000 ° C. to 2600 ° C. If the tuyere temperature is less than 2000 ° C., as described in Japanese Patent Application Laid-Open No. 2003-247008, combustion of pulverized coal becomes insufficient, resulting in an increase in unburned char, There is a concern that the pressure loss will increase. On the other hand, in an oxygen blast furnace, pure oxygen at room temperature is blown from the tuyere at a high flow rate (100 m / s or more) instead of hot air (1000 ° C. or more), so that the tuyere cooling effect by oxygen at room temperature can be obtained.
  • the tuyere tip temperature is lowered when a gas blowing material containing hydrocarbon or hydrogen is blown, it is preferable to adjust the blowing amount of the gas blowing material in order to set the tuyere tip temperature to an appropriate temperature.
  • Even pulverized coal can be expected to have a tuyere tip temperature reduction effect similar to that of a gas blowing material containing hydrocarbons or hydrogen, but if it is blown too much, pressure loss in the furnace increases and operation becomes unstable. Therefore, the tuyere temperature cannot be lowered to an appropriate temperature only with pulverized coal. Therefore, for controlling the tuyere temperature (lowering the temperature), it is preferable to use a gas blowing material containing hydrocarbon or hydrogen.
  • the tuyere temperature can be reduced even by blowing heavy oil, as mentioned above, since there is a risk of wrinkles, it is not possible to blow a large amount. In this sense, it is difficult to sufficiently reduce the tuyere temperature of the oxygen blast furnace by blowing heavy oil.
  • the total content of hydrogen and hydrocarbon in the tuyere blowing gas needs to be 50% or more in terms of volume fraction. The reason is that if the total ratio of hydrogen and hydrocarbons in the tuyere blowing gas is less than 50%, the tuyere cooling capacity is lowered, and the tuyere tip temperature cannot be lowered sufficiently. If the content of hydrogen and hydrocarbons is less than 50% and the tip temperature is to be lowered to an appropriate temperature, an oxide-based tuyere coolant such as CO 2 or H 2 O together with hydrogen or hydrocarbons Need to blow. Since it would consume the coke solution loss reaction, CO 2 generation amount increases as a result.
  • an oxide-based tuyere coolant such as CO 2 or H 2 O together with hydrogen or hydrocarbons Need to blow. Since it would consume the coke solution loss reaction, CO 2 generation amount increases as a result.
  • an oxygen blast furnace having an output ratio of 5, a furnace internal volume of 2515 mm 3 and an output amount of 12573 t / day is assumed, and the configuration of the oxygen blast furnace and peripheral equipment is the configuration shown in FIG.
  • the tuyere used the form as shown in FIG. 2 in which the burner tube 7 was built in the tuyere. Then, pulverized coal and tuyere blowing gas were blown through the burner tube 7, and pure oxygen at 25 ° C. was blown from between the tuyere and the burner tube 7.
  • the burner tube 7 had an outer diameter of 89 mm, and the tuyere had an inner diameter of 140 mm.
  • Example suitable for the present invention, conditions for injecting natural gas, coke oven gas (C gas), and propane gas as the tuyere blowing gas were considered. Moreover, as a comparative example, it was set as the method of blowing in blast furnace gas, heavy oil, and water vapor
  • Table 1 shows examples of the conditions under which the tuyere temperature was controlled to 2600 ° C. or less, the blowing amount of the tuyere blowing material, the ratio of hydrogen to hydrocarbon in the tuyere blowing gas, and the tuyere tip temperature in the comparative example.
  • FIG. 3 shows the evaluation results of the CO 2 emission amount. It can be seen from FIG. 3 that the conventional method of blowing blast furnace gas and steam blows CO 2 emissions larger than that of the conventional blast furnace. This is because the blowing material itself is an oxide such as CO 2 and H 2 O, and coke is consumed when these are once thermally decomposed into CO and H 2 . In addition, the conventional method of heavy oil injection and pulverized coal injection resulted in less CO 2 emissions than the conventional blast furnace, but these were difficult to implement because of the restrictions on the generation of soot and the upper limit of the pulverized coal combustion rate. It was.
  • FIG. 4 shows the relationship between the sum of the volume fractions of hydrogen and hydrocarbons in the tuyere blowing gas and CO 2 emissions.
  • the biogas conditions are also shown. It can be seen that as the ratio of the coke oven gas increases, the sum of the volume fractions of hydrogen and hydrocarbons increases and the CO 2 emission decreases. When this is compared with the CO 2 emission amount of the conventional blast furnace, if the ratio of hydrogen and hydrocarbons in the tuyere blowing gas is 50% or more, the CO 2 emission amount is smaller than that of the conventional blast furnace. From the above, it was confirmed that the ratio of hydrogen to hydrocarbon should be 50% or less.
  • the operation method of the oxygen blast furnace according to the present invention described above can lower the temperature of the tuyere tip combustion region by reducing CO 2 emission compared to the conventional one, and avoid the occurrence of soot that becomes a problem when using heavy oil. Furthermore, since stable pure oxygen can be blown from the tuyere, it can be suitably applied to the operation of the oxygen blast furnace.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

【課題】羽口先燃焼領域の低温化を、従来よりもCO排出量を削減して実行することのできる酸素高炉の操業方法を提案する。 【解決手段】羽口から少なくとも純酸素を吹き込み、炉頂から窒素の少ない高炉ガスを発生せしめる酸素高炉の操業方法において、前記羽口からの純酸素の吹き込みとともに、その羽口から炭化水素と水素の体積分率の和が50%以上となる羽口吹き込みガスを吹き込むことにより、羽口先の燃焼領域の温度を低下させる。

Description

酸素高炉の操業方法
 本発明は、羽口から純酸素を供給し、炉頂から窒素の少ない高炉ガスを発生せしめる酸素高炉の操業方法に関する。
 近年、地球環境問題を背景として、製鉄所においても、省エネ、省資源、炭酸ガス(CO)発生抑制が強く求められている。これを受け、最近の高炉操業では低還元材比(低RAR)操業が強力に推進されている。
 一般的な高炉は、羽口から熱風を吹き込んでおり、その熱風を得るための熱源としては、高炉やコークス炉、転炉などから発生するガスを混合してなる混合ガス(Mガス)が使用される。この場合、熱風のもつ熱量分だけ、高炉内での還元材比は低減される。従来の高炉で使用されている還元材は、主として炭素を主成分とする化石燃料が用いられていることから、熱風送風はその化石燃料の使用量やCO発生量を抑制しているともいえる。
 従来、前記熱風炉ではなく羽口から常温の純酸素を吹き込むことで溶銑を製造する酸素高炉が提案されている(特許文献1参照)。この酸素高炉では、実質的に窒素を含まない高炉ガスを発生させて回収し、これを合成化学工業用ガスとして使用することを目的にしていた。ただし、この酸素高炉では、羽口から純酸素を吹き込んでコークスと反応させているため、羽口先の温度が異常に高温になってしまうという技術的な課題があった。
 従って、酸素高炉の操業では、羽口先の燃焼領域(レースウェイ)での温度(羽口先温度)を適正な温度に制御する必要がある。この点に関し、特許文献1では、COを含む炉頂ガスを羽口から吹き込むことにより、所定の温度範囲に制御する方法が述べている。また、この特許文献1は、HOまたはCOを羽口から吹き込む方法も提案している。さらに、他の方法として、重質油を羽口から吹き込む技術も提案されている(特許文献2参照)。
 さらに、特許文献3には、コークス炉から発生するCガスを羽口に吹き込んで脱硫し、改質を行う石炭の乾留ガス化法についての提案がなされている。ただし、これらは、羽口先温度の制御とは無関係の技術である。
特開昭60-159104号公報 特開昭63-171807号公報 特開昭61-14290号公報 特開昭61-124510号公報
 特許文献1の技術に開示されているように、羽口から熱風に代えて純酸素を吹き込むタイプの酸素高炉では、羽口先温度が極めて高温になる特徴があり、羽口先の温度をうまく低下させて操業することが必須となる。この点、従来の羽口から熱風を吹き込む一般的な高炉では、羽口先が異常高温化することはなく、これは酸素高炉に特有の技術課題である。
 特許文献1に開示された技術では、羽口から常温純酸素とともにHOやCOを吹き込み、下記の吸熱反応を導いて羽口先の温度を低下させる手段がとられる。このときの反応は、燃焼(酸化)と逆反応(還元)の吸熱反応であり、異常高温化した羽口先の温度を下げることが可能である。一方で、下記(1)式および(2)式の反応は羽口先(レースウェイ)において固体炭素を消費してしまうので、コークス使用量が増加する。その結果として、酸素高炉では、化石燃料使用量の増加およびCO発生量の増加がおこるという課題がある。
       HO+C→H+CO    (1)
       CO+C→2CO      (2)
 特許文献2に開示された技術では、羽口から重油を吹き込み重油の熱分解によって羽口冷却を行うので、コークス消費量を増やすことなく酸素高炉の羽口先温度を低下させることができる。その一方で、重油による羽口冷却方法は、特許文献4に開示されているように、液滴にして吹き込むため、微粉炭の多量吹き込み操業時には煤が発生し、未燃焼による効果の低下や炉内充填層に煤が詰まって吹き抜けたりする現象が発生しやすくなる。
 本発明の目的は、従来技術が抱えている上述した問題を解消して、羽口先の燃焼領域における低温化を、従来よりもCO排出量を削減して実現できる酸素高炉の操業方法を提案することにある。
また、本発明の他の目的は、重油の使用で問題となる煤の発生を回避し、羽口から純酸素の安定した吹き込みを実現できる酸素高炉の操業方法を提案することにある。
 上記目的の実現に向けて開発した本発明は、羽口から少なくとも純酸素を吹き込み、炉頂から窒素の少ない高炉ガスを発生せしめる酸素高炉の操業方法において、前記羽口からの純酸素の吹き込みとともに、その羽口から炭化水素と水素の体積分率の和が50%以上となる羽口吹き込みガスを吹き込むことにより、羽口先の燃焼領域の温度を低下させることを特徴とする酸素高炉の操業方法である。
 なお、前記のように構成される本発明に係る酸素高炉の操業方法においては、
(1)前記羽口吹き込みガスとして、天然ガス、プロパンガス、コークス炉ガス(Cガス)またはバイオガスを用いること、
(2)前記羽口吹き込みガスとして、高炉ガスとコークス炉ガスとの混合ガスを用いること、
がより好ましい解決手段となるものと考えられる。
 本発明の酸素高炉の操業方法によれば、羽口からの純酸素の吹き込みとともに、その羽口からはまた炭化水素と水素の体積分率の和が50%以上となる羽口吹き込みガスを吹き込むことで、酸素高炉特有の課題である羽口先燃焼領域における異常高温を阻止して低温化させることができる。しかも、本発明では、従来の酸素高炉操業方法で用いられている羽口先の低温化方法と比べ、CO排出量を削減できる効果もある。さらに、本発明によれば、重油の様な液体燃料を使用する際に問題となる煤の発生をも回避することが可能となり、羽口先温度の調整に適切な純酸素の吹き込みを安定して行うことができる。
本発明に係る操業方法の対象となる酸素高炉および周辺設備の構成の一例を示す図である。 本発明の酸素高炉の操業方法で用いる羽口の構成の一例を示す図である。 本発明の実施例および比較例における高炉でのCO排出量を示すグラフである。 本発明で使用する羽口吹き込みガス中の水素+炭化水素の比率とCO排出量との関係を示すグラフである。
 図1は、本発明に係る操業方法の対象となる酸素高炉および周辺設備の一例を示す図である。図1に示す構成例において、1は酸素高炉、2はガスを混合する混合機、3はガスを予熱して予熱ガス(SGI)を得るバーナー、4は高炉排ガスを用いて発電する発電機、5は純酸素を製造する酸素プラント、6は酸素高炉1内に酸素などを吹き込むために使用する羽口、である。
 図1に示す構成においては、従来高炉と同じく酸素高炉1では上部から鉱石とコークスが投入される。また、下部の羽口6からは常温の純酸素が吹き込まれる。純酸素は酸素プラント5にて深冷分離等の分離技術を用いて空気から製造されるが、その際電力を消費する。そこで、COを多く含んだ燃焼ガスであるコークス炉ガス、高炉ガス、あるいはこれらを混合したガスを用いて発電機4で発電し、その電力で純酸素を製造する方法を用いる。また、下部の羽口6からは純酸素とともに、微粉炭や、天然ガス、コークス炉ガスなどの羽口吹き込みガスも吹き込まれる。
 このとき、羽口6は、特開昭63-171811号公報に記載された羽口のような酸素-微粉炭バーナーを内包した羽口を用い、内部のバーナーから微粉炭と羽口吹き込みガス、外部の羽口から純酸素を吹き込めばよい。このとき、羽口内にバーナーを1本配置し、バーナーから微粉炭と羽口吹き込みガスを混合して吹き込む方法、もしくは羽口内にバーナーを2本配置し、一方から微粉炭、もう一方から羽口吹き込みガスを吹き込むようにするとよい。
 一方で、酸素高炉1ではガス流量が小さいため、炉頂部の温度が低下する問題が起こる。例えば、その炉頂ガスの温度が100℃以下になると、炉頂部で結露が発生して操業トラブルを引き起こす。そこで、炉頂の温度を100℃以上に保つため、図1に示すように、COを多く含んだ燃焼ガスである高炉排ガス(Bガス)の一部を循環し、バーナー3に流入させて部分燃焼させ、高温の予熱ガス(SGI)にして、高炉シャフト部から吹き込む方法を用いるとよい。
 なお、羽口先温度に関しては、2000℃~2600℃の程度にすることが好ましい。羽口先温度が2000℃未満になってしまうと、特開2003-247008号公報で述べられているように、微粉炭の燃焼が不十分となってしまうため、未燃チャーが増大し、高炉内の圧損が増大してしまう懸念がある。一方で、酸素高炉では、羽口から熱風(1000℃以上)ではなく、常温の純酸素を高流速(100m/s以上)で吹き込むため、常温の酸素自身による羽口冷却効果が得られる。つまり、特開2003-247008号公報で述べられているような羽口耐火物損傷の懸念は小さく、羽口先温度を2300℃以下にする必要はない。一方で、特開昭58-58207号公報によると、羽口先温度が2600℃を超えると直接還元比率が急増し、炉内の吸熱反応増加により操炉が困難になることが指摘されている。以上を鑑みると、羽口先温度は2000℃~2600℃に制御することが好ましい。
 前記羽口先温度は、炭化水素もしくは水素を含有する気体吹き込み材を吹き込めば低温化することから、羽口先温度を適正温度にするには、気体吹き込み材の吹き込み量を調整することが好ましい。なお、微粉炭でも炭化水素もしくは水素を含む気体吹き込み材と類似の羽口先温度低減作用が見込めるが、あまり多量に吹き込みすぎると炉内の圧損が増大し、操業不安定になる。従って、微粉炭のみで羽口先温度を適正な温度にまで低温化できない。そこで、羽口先温度のコントロール(低温化)には、炭化水素もしくは水素を含む気体吹き込み材を用いるのがよい。また、重油吹き込みでも羽口先温度を低減できるが、前述したように、煤発生のおそれがあるため、多量に吹き込むことはできない。この意味で、重油の吹き込みによって、酸素高炉の羽口先温度を十分に低温化することは困難である。
 また、本発明では、羽口吹き込みガス中の水素および炭化水素の合計の含有量を体積分率換算で50%以上とする必要がある。その理由は、羽口吹き込みガス中の水素および炭化水素の合計の比率が50%未満の場合、羽口冷却能力が低くなってしまい、羽口先温度を十分に低下させられなくなってしまう。もし、水素および炭化水素の含有量が50%未満で羽口先温度を適正温度に低下させようとするならば、水素または炭化水素とともにCOやHOなどの酸化物系の羽口冷却材を吹き込む必要がある。これらは、ソリューションロス反応でコークスを消費してしまうので、結果としてCO発生量が増大する。
 この実施例では、高炉内の熱物質収支を計算するシミュレーションにより、本発明の効果を確認した。
 この実施例は、出銑比5、炉内容積2515mm、出銑量が12573t/dayの酸素高炉を想定した例であり、酸素高炉および周辺設備の構成は、図1の構成とした。羽口は、羽口にバーナー管7を内蔵した図2に示すような形式を用いた。そして、そのバーナー管7内を通して微粉炭と羽口吹込みガスとを吹き込み、そして、羽口とバーナー管7の間から25℃の純酸素を吹き込んだ。バーナー管7は、外径89mmとし、羽口は内径140mmとした。高炉炉頂の結露を防止するため、高炉排ガス(Bガス)のうち200Nm/tを再循環させ、1000℃となるまでバーナー3で部分燃焼させたうえで、予熱ガス(SGI)としてシャフト部より吹き込んだ。炉頂から装入する鉱石は、焼結鉱80mass%、塊鉱石20mass%の混合物とし、シャフト効率は94%を仮定した。羽口から微粉炭を300kg/t吹き込む条件を本検討のベース条件とした。
 本発明に適合する例(実施例)として、羽口吹き込みガスとして天然ガス、コークス炉ガス(Cガス)、プロパンガスを吹き込む条件を考えた。また、比較例としては、羽口から羽口吹き込み材として高炉ガス、重油、水蒸気を吹き込む方法とした。さらに、酸素高炉の羽口に対して微粉炭のみを吹き込む条件および、従来の熱風高炉の条件も比較例とした。これら羽口吹き込み材のCO排出削減効果を比較するため、羽口吹き込みガスによって羽口先の温度を2600℃以下となるように吹き込み量を制御した条件で統一して、実施例と比較例のCO排出量(kg-CO/t)を比較した。以下の表1に羽口先温度を2600℃以下に制御した条件の実施例、比較例における羽口吹き込み材の吹き込み量、羽口吹き込みガス中の水素と炭化水素の比率および羽口先温度を示す。
Figure JPOXMLDOC01-appb-T000001
 注)Cガス:コークス炉ガス
 図3にCO排出量の評価結果を示す。図3から従来法の高炉ガス吹き込みと水蒸気吹き込みではCO排出量が従来高炉よりも大きくなることが分かる。これは、吹き込み材自体がCOやHOという酸化物であり、これらを一度COとHに熱分解する際にコークスを消費してしまうためである。また、従来法の重油吹き込み、微粉炭吹き込みは従来高炉よりもCO排出量が少なくなったが、これらは前述したとおり煤の発生や微粉炭燃焼率上限の制約があるため、実施困難であった。一方、天然ガス吹き込み、コークス炉ガス吹き込み、プロパン吹込みをした実施例(発明例)は、羽口吹き込みガス中の水素と炭化水素の体積分率が50%以上となるガスを羽口から吹き込んでいるため、羽口先温度を低減させつつもCO排出量を抑制できることが確認できた。また、バイオガス吹込みをした実施例(発明例)は、バイオガスに30%程度含まれるCOがCOとHに熱分解する際にコークスを消費してしまうためその分のCO発生量は増加するが、バイオガスはカーボンニュートラルであるためバイオガスから発生したCOは考慮に入れる必要がない。そのため、羽口先温度を減少させつつ、CO発生量を抑制できている。
 高炉ガスとコークス炉ガスを異なる比率で混合した条件を想定し、羽口吹き込みガス中の水素と炭化水素の体積分率の和とCO排出量の関係を図4に示す。バイオガス条件についても合わせて示した。コークス炉ガスの比率が大きくなるほど水素と炭化水素の体積分率の和が増大し、CO排出量が低減することが分かる。これを従来型高炉のCO排出量と比較すると、羽口吹き込みガス中の水素と炭化水素の比率が50%以上とすれば、従来型高炉よりもCO排出量が少なくなる。以上より、水素と炭化水素の比率を50%以下とするとよいことが確認できた。
 以上説明した本発明に従う酸素高炉の操業方法は、羽口先燃焼領域の低温化を従来よりもCO排出量を削減して実現でき、また、重油の使用で問題となる煤の発生を回避することができ、さらに羽口からの安定した純酸素の吹き込みを達成できるため、酸素高炉の操業にあたり好適に適用することができる。
 1 酸素高炉
 2 混合機
 3 バーナー
 4 発電機
 5 酸素プラント
 6 羽口
 7 バーナー管
 

Claims (3)

  1.  羽口から少なくとも純酸素を吹き込み、炉頂から窒素の少ない高炉ガスを発生せしめる酸素高炉の操業方法において、前記羽口からの純酸素の吹き込みとともに、その羽口から炭化水素と水素の体積分率の和が50%以上となる羽口吹き込みガスを吹き込むことにより、羽口先の燃焼領域の温度を低下させることを特徴とする酸素高炉の操業方法。
  2.  前記羽口吹き込みガスとして、天然ガス、プロパンガスコークス炉ガス(Cガス)またはバイオガスを用いることを特徴とする請求項1に記載の酸素高炉の操業方法。
  3.  前記羽口吹き込みガスとして、高炉ガスとコークス炉ガスとの混合ガスを用いることを特徴とする請求項1に記載の酸素高炉の操業方法。
PCT/JP2015/058656 2014-03-26 2015-03-23 酸素高炉の操業方法 WO2015146872A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016510317A JP6229863B2 (ja) 2014-03-26 2015-03-23 酸素高炉の操業方法
EP15768555.3A EP3124626B1 (en) 2014-03-26 2015-03-23 Method of operating oxygen blast furnace
CN201580015653.XA CN106103746B (zh) 2014-03-26 2015-03-23 氧气高炉的操作方法
KR1020167025284A KR20160120334A (ko) 2014-03-26 2015-03-23 산소 고로의 조업 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014063802 2014-03-26
JP2014-063802 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015146872A1 true WO2015146872A1 (ja) 2015-10-01

Family

ID=54195386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058656 WO2015146872A1 (ja) 2014-03-26 2015-03-23 酸素高炉の操業方法

Country Status (5)

Country Link
EP (1) EP3124626B1 (ja)
JP (1) JP6229863B2 (ja)
KR (1) KR20160120334A (ja)
CN (1) CN106103746B (ja)
WO (1) WO2015146872A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020011A (ja) * 2018-08-02 2020-02-06 Jfeスチール株式会社 銑鉄製造設備およびそれを用いた銑鉄製造方法
CN111485044A (zh) * 2019-01-29 2020-08-04 北京北大先锋科技有限公司 一种拟纯氧炼铁及高炉气循环利用方法及装置
JP2021152210A (ja) * 2020-03-23 2021-09-30 Jfeスチール株式会社 高炉の操業方法および高炉附帯設備
JP2021152211A (ja) * 2020-03-23 2021-09-30 Jfeスチール株式会社 高炉の操業方法および高炉附帯設備
JP2021152212A (ja) * 2020-03-23 2021-09-30 Jfeスチール株式会社 高炉の操業方法および高炉附帯設備
JP2021175821A (ja) * 2020-04-24 2021-11-04 Jfeスチール株式会社 高炉の操業方法および高炉附帯設備

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3425070T3 (pl) 2017-07-03 2022-05-23 L'air Liquide, Société Anonyme pour l'Étude et l'Exploitation des Procédés Georges Claude Sposób eksploatacji zakładu wytwarzającego żelazo lub stal
CN108103254B (zh) * 2017-12-19 2019-07-09 武汉钢铁有限公司 基于低品质氧及大加湿的富氢高炉控制系统及方法
DE102018209042A1 (de) * 2018-06-07 2019-12-12 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung sowie ein Verfahren zum Betreiben des Anlagenverbundes.
CN114787391B (zh) * 2019-11-29 2023-09-12 日本制铁株式会社 高炉的操作方法
JP7028364B2 (ja) * 2019-11-29 2022-03-02 Jfeスチール株式会社 高炉の操業方法および高炉附帯設備
EP4083234A4 (en) * 2019-12-26 2023-07-05 JFE Steel Corporation BLAST FURNACE OPERATION METHOD AND AUXILIARY BLAST FURNACE EQUIPMENT
KR20220082037A (ko) * 2020-01-23 2022-06-16 제이에프이 스틸 가부시키가이샤 고로의 조업 방법 및 고로 부대 설비
KR20220129625A (ko) * 2020-04-24 2022-09-23 제이에프이 스틸 가부시키가이샤 고로의 조업 방법 및 고로 부대 설비
WO2024047010A1 (en) * 2022-08-29 2024-03-07 Paul Wurth S.A. Iron ore reducing and melting apparatus and method
LU502718B1 (en) * 2022-08-29 2024-02-29 Wurth Paul Sa Method for operating a smelting furnace installation
WO2024047061A1 (en) * 2022-08-29 2024-03-07 Paul Wurth S.A. Method for operating a smelting furnace installation
LU502719B1 (en) * 2022-08-29 2024-02-29 Wurth Paul Sa Method for operating a smelting furnace installation
WO2024047062A1 (en) * 2022-08-29 2024-03-07 Paul Wurth S.A. Method for operating a smelting furnace installation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213591A (ja) * 2004-01-29 2005-08-11 Jfe Steel Kk 高炉への固体燃料吹き込み方法及び吹き込みランス
JP2011202271A (ja) * 2010-03-02 2011-10-13 Jfe Steel Corp 酸化炭素含有ガスの利用方法
JP2013010697A (ja) * 2011-06-28 2013-01-17 Jfe Steel Corp 製鉄所発生ガスからのメタノールの製造方法及び高炉操業方法
JP2013019008A (ja) * 2011-07-08 2013-01-31 Jfe Steel Corp 高炉操業方法
JP2013040402A (ja) * 2011-07-15 2013-02-28 Jfe Steel Corp 高炉操業方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159104A (ja) 1984-01-27 1985-08-20 Nippon Kokan Kk <Nkk> 高炉操業方法
JPS6114290A (ja) 1984-06-30 1986-01-22 Nippon Kokan Kk <Nkk> 石炭の乾留ガス化方法
JPS61124510A (ja) 1984-11-21 1986-06-12 Sumitomo Metal Ind Ltd 高炉への燃料吹込み方法
JPS6227509A (ja) * 1985-07-26 1987-02-05 Nippon Kokan Kk <Nkk> 高炉操業方法
JPS63171807A (ja) 1987-01-09 1988-07-15 Nkk Corp 酸素高炉の操業方法
CN1216154C (zh) * 2003-06-23 2005-08-24 安徽工业大学 一种高效低co2排放富氢燃气纯氧高炉炼铁工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213591A (ja) * 2004-01-29 2005-08-11 Jfe Steel Kk 高炉への固体燃料吹き込み方法及び吹き込みランス
JP2011202271A (ja) * 2010-03-02 2011-10-13 Jfe Steel Corp 酸化炭素含有ガスの利用方法
JP2013010697A (ja) * 2011-06-28 2013-01-17 Jfe Steel Corp 製鉄所発生ガスからのメタノールの製造方法及び高炉操業方法
JP2013019008A (ja) * 2011-07-08 2013-01-31 Jfe Steel Corp 高炉操業方法
JP2013040402A (ja) * 2011-07-15 2013-02-28 Jfe Steel Corp 高炉操業方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020011A (ja) * 2018-08-02 2020-02-06 Jfeスチール株式会社 銑鉄製造設備およびそれを用いた銑鉄製造方法
CN111485044A (zh) * 2019-01-29 2020-08-04 北京北大先锋科技有限公司 一种拟纯氧炼铁及高炉气循环利用方法及装置
CN111485044B (zh) * 2019-01-29 2023-10-10 北京北大先锋科技股份有限公司 一种拟纯氧炼铁及高炉气循环利用方法及装置
JP2021152210A (ja) * 2020-03-23 2021-09-30 Jfeスチール株式会社 高炉の操業方法および高炉附帯設備
JP2021152211A (ja) * 2020-03-23 2021-09-30 Jfeスチール株式会社 高炉の操業方法および高炉附帯設備
JP2021152212A (ja) * 2020-03-23 2021-09-30 Jfeスチール株式会社 高炉の操業方法および高炉附帯設備
JP7192899B2 (ja) 2020-03-23 2022-12-20 Jfeスチール株式会社 高炉の操業方法および高炉附帯設備
JP7192900B2 (ja) 2020-03-23 2022-12-20 Jfeスチール株式会社 高炉の操業方法および高炉附帯設備
JP7192901B2 (ja) 2020-03-23 2022-12-20 Jfeスチール株式会社 高炉の操業方法および高炉附帯設備
JP2021175821A (ja) * 2020-04-24 2021-11-04 Jfeスチール株式会社 高炉の操業方法および高炉附帯設備
JP7192845B2 (ja) 2020-04-24 2022-12-20 Jfeスチール株式会社 高炉の操業方法および高炉附帯設備

Also Published As

Publication number Publication date
JPWO2015146872A1 (ja) 2017-04-13
EP3124626A1 (en) 2017-02-01
CN106103746A (zh) 2016-11-09
KR20160120334A (ko) 2016-10-17
JP6229863B2 (ja) 2017-11-15
EP3124626A4 (en) 2017-04-19
CN106103746B (zh) 2018-07-31
EP3124626B1 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6229863B2 (ja) 酸素高炉の操業方法
CN105899686A (zh) 高炉的操作方法
WO2017134829A1 (ja) 高炉シャフト部への水素含有還元ガス供給方法
JP6717629B2 (ja) 高炉シャフト部への水素含有還元ガス供給方法
JP6256710B2 (ja) 酸素高炉の操業方法
JP6354962B2 (ja) 酸素高炉の操業方法
KR101879895B1 (ko) 용광로 스토브를 가열하기 위한 장치 및 방법
WO2014189109A1 (ja) 直接還元鉄の製造装置、及び直接還元鉄の製造方法
JP6777894B2 (ja) 酸素高炉設備およびその酸素高炉設備を用いた銑鉄の製造方法
JP6098765B2 (ja) 酸素高炉への微粉炭吹き込み方法
JP2007138207A (ja) 溶融還元方法
KR20100082696A (ko) 용광로에서의 철 제조방법 및 이 제조방법으로부터 얻어지는 상부 가스의 사용방법
JP6922864B2 (ja) 銑鉄製造設備およびそれを用いた銑鉄製造方法
JP7055082B2 (ja) 高炉の操業方法
JP2015193927A (ja) 酸素高炉の操業方法
KR101751069B1 (ko) 저등급 연료의 연소 방법
JP6919632B2 (ja) 銑鉄製造設備およびそれを用いた銑鉄製造方法
EP4095268A1 (en) Blast furnace operation method and auxiliary equipment for blast furnace
TWI758025B (zh) 高爐之操作方法及高爐附帶設備
CN103547863A (zh) 用于处理含二氧化碳的废气的方法
US20220380860A1 (en) Method of operating blast furnace and blast furnace ancillary facility
JP2006328489A (ja) 還元金属の製造方法
JP2010150937A (ja) ガスタービンコンバインド発電設備の運転方法及び製鉄所でのエネルギー運用方法
TW202129015A (zh) 高爐之操作方法及高爐附帶設備
CN112944923A (zh) 一种钢厂烧结烟气低成本协同处理超净排放工艺及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510317

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167025284

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015768555

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768555

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE