WO2015146769A1 - 媒体に含有されるハロゲン化芳香族化合物の低温選択固着方法 - Google Patents

媒体に含有されるハロゲン化芳香族化合物の低温選択固着方法 Download PDF

Info

Publication number
WO2015146769A1
WO2015146769A1 PCT/JP2015/058209 JP2015058209W WO2015146769A1 WO 2015146769 A1 WO2015146769 A1 WO 2015146769A1 JP 2015058209 W JP2015058209 W JP 2015058209W WO 2015146769 A1 WO2015146769 A1 WO 2015146769A1
Authority
WO
WIPO (PCT)
Prior art keywords
halogenated aromatic
aromatic compound
acid
organic medium
organic
Prior art date
Application number
PCT/JP2015/058209
Other languages
English (en)
French (fr)
Inventor
和博 宮脇
加藤 栄一
明石 満
敏之 木田
Original Assignee
株式会社ネオス
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ネオス, 国立大学法人大阪大学 filed Critical 株式会社ネオス
Priority to JP2016510283A priority Critical patent/JPWO2015146769A1/ja
Publication of WO2015146769A1 publication Critical patent/WO2015146769A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • C02F2101/363PCB's; PCP's

Definitions

  • the present invention can collect a halogenated aromatic compound contained in an organic medium typified by insulating oil, machine oil, heat medium, lubricating oil, plasticizer, paint and ink, and mixtures thereof.
  • the present invention relates to a selective fixing agent and a method for obtaining an organic medium containing almost no halogenated aromatic compound using the selective fixing agent. More specifically, a porous cyclodextrin which can be obtained by condensing cyclodextrin with an organic dibasic acid and esterifying alcohols, aryl alcohols or phenols at the end of the resulting condensation polymer.
  • the present invention relates to a method for selectively and efficiently fixing a halogenated aromatic compound contained in an organic medium using a dextrin polymer.
  • Halogenated aromatic compounds are compounds that are highly toxic to humans, animals and plants, and many of them are designated by the Law on Waste Disposal and Cleaning as hazardous substances, especially because of the potential for teratogenicity. . When these compounds are present in soil, groundwater, incineration ash, washing water, machine oil, etc., it is strictly determined that some treatment must be applied to reduce their concentration below the reference value.
  • an organic medium such as an insulating oil containing a halogenated aromatic compound has been chemically treated as it is, but in recent years, in Japan, polychlorinated biphenyls (hereinafter referred to as “PCB”) Not only reclaimed oil without a written opinion or PCB-free certificate, but also insulation oil (new oil, reclaimed oil) with a PCB-free written opinion or PCB-free certificate, a trace amount (about 0.5-100 ppm, Organic media containing halogenated aromatic compounds (particularly about 0.5 to 10 ppm) have been confirmed one after another.
  • PCB polychlorinated biphenyls
  • PCB concentration is as low as several tens of ppm. It was discovered around 2002 that there were many things. There is an estimate that the number of contaminated devices will be about 1.2 million, and this is a problem that must be solved immediately. Even after draining contaminated oil from PCB-contaminated waste heavy electrical equipment, the components of waste heavy electrical equipment are still impregnated and adhered with PCB-contaminated insulating oil. Currently, highly lipophilic hydrocarbon solvents are used. Technology development for effectively cleaning the PCB remaining inside the heavy electrical equipment has been actively conducted.
  • hydrocarbon solvents are expensive, and a large amount of hydrocarbon waste solvents (hereinafter simply referred to as “waste solvents”) discharged by the washing operation must be stored. There are problems. Therefore, there is a demand for hydrocarbon solvent recycling technology that can greatly reduce the amount of hydrocarbon solvent used for cleaning and the amount of waste solvent itself.
  • terephthalic acid- ⁇ - a polymer in which the terminal of a polymer obtained by condensing ⁇ -cyclodextrin (hereinafter referred to as “ ⁇ -CD”) and terephthaloyl dichloride is treated with a methyl group.
  • ⁇ -CD ⁇ -cyclodextrin
  • TPGCDM polymer TPGCDM polymer
  • Patent Document 1 shows that various cyclodextrin polymers have the ability to adsorb halogenated aromatic compounds, and these cyclodextrin polymers can be used to treat organic media containing halogenated aromatic compounds. all right.
  • a hydrocarbon solvent containing a large amount of insulating oil for example, 10% by weight or more, etc.
  • the present invention provides a more effective condition for selectively fixing a halogenated aromatic compound contained in an organic medium using a cyclodextrin polymer and removing or concentrating the halogenated aromatic compound from the organic medium.
  • the purpose is to search.
  • the present inventors selectively use halogenated aromatic compounds contained in an organic medium using a water-insoluble porous cyclodextrin polymer formed from a water-soluble cyclodextrin as a selective fixing agent.
  • the conditions for collecting and obtaining an organic medium containing no halogenated aromatic compound at a high recovery rate were found.
  • the organic dibasic acid or organic dibasic acid halide is selected from terephthalic acid, isophthalic acid, maleic acid, malic acid, malonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, phthalic acid or their halides
  • the alcohol is selected from an alcohol having an alkyl group having 1 to 10 carbon atoms
  • the aryl alcohol is selected from benzyl alcohol, or benzyl alcohol substituted with an alkyl, aryl, or acyl group
  • the phenol is phenol, or 3.
  • a process according to claim 1 or 2 selected from phenol substituted with an alkyl, aryl, or acyl group. 4).
  • Method. 5 The method according to any one of 1 to 4 above, wherein the halogenated aromatic compound is dioxins, polychlorobiphenyls, or polychlorobenzenes. 6). 6. The method according to any one of 1 to 5 above, wherein the organic medium is selected from the group consisting of hydrocarbon solvents, insulating oils, machine oils, heat media, lubricating oils, plasticizers, paints and inks, and mixtures thereof. .
  • the method according to one aspect of the present invention includes a halogenated aromatic obtained by reacting an alcohol, an aryl alcohol, or a phenol with a terminal of a polymer obtained by condensing a cyclodextrin and an organic dibasic acid or an organic dibasic acid halide.
  • a selective fixing agent for a halogenated aromatic compound containing a porous cyclodextrin polymer that interacts with the compound in an aspiration manner is brought into contact with an organic medium containing the halogenated aromatic compound at 5 ° C.
  • a halogenated aromatic compound contained in a medium is fixed to a porous cyclodextrin polymer that interacts with the halogenated aromatic compound in an attractive manner to obtain an organic medium that does not contain the halogenated aromatic compound.
  • halogenated aromatic compound refers to all compounds in which an aromatic compound is substituted with one or more of fluorine, chlorine, bromine and iodine.
  • PCB polychlorobiphenyls
  • dioxins dioxins
  • chlorofluorocarbons polychloronaphthalenes
  • polychlorobenzenes polychlorobenzenes
  • Dioxins refer to specific compounds specified by the Special Measures for Countermeasures against Dioxins in a narrow sense, but in this specification, all halogenated compounds suspected as so-called endocrine disrupting substances (environmental hormones) are included.
  • the “organic medium” containing a halogenated aromatic compound generally refers to an organic solvent.
  • a hydrocarbon solvent that dissolves a halogenated aromatic compound well, a halogenated aromatic compound, and the like. It means an insulating oil, a machine oil, a heat medium, a lubricating oil, a plasticizer, a paint and an ink, and a mixture thereof, which are highly likely to contain a group compound.
  • the “organic medium” may be the majority of the organic medium (for example, 60% or more) as long as it contains the halogenated aromatic compound, although it may contain water in some cases. The nature of the organic medium as a whole is not that of an aqueous solution but that of an organic solution.
  • halogenated aromatic compounds attached to or contained in solid substances are transferred to organic media through washing operations, This is an “organic medium containing a halogenated aromatic compound” to be treated with the selective fixing agent used in this embodiment.
  • “attractively interact with a halogenated aromatic compound” means to interact with the above-mentioned halogenated aromatic compound so as to attract (that is, not repulsive).
  • the compounds having such properties are collectively referred to as “compounds that interact with a halogenated aromatic compound in an attractive manner”.
  • Such compounds have cyclic moieties, substituents, sequences, etc. that interact with the halogenated aromatic compounds in an attractive manner.
  • the “compound that interacts with a halogenated aromatic compound in an attractive manner” is sometimes simply abbreviated as “attractive interactive compound”, “interactive compound” or “interacting compound”. May be described.
  • halogenated aromatic compound in this specification, “selectively fixing” a halogenated aromatic compound means that only a halogenated aromatic compound contained in an organic medium by dissolution, dispersion, or the like, or an organic containing the halogenated aromatic compound therein. Interacting with an association of medium molecules to take in or fix it.
  • adheresion includes all chemical bonding and adhesion, and physical adsorption, suction, or just being caught, and does not necessarily mean that it is always adhered. .
  • the “selective sticking agent” used in one embodiment of the present invention means that the active ingredient contained in the selective sticking agent interacts strongly with the halogenated aromatic compound contained in the organic medium in an attractive manner.
  • active ingredients are at least temporarily in contact with, or located in close proximity to, the halogenated aromatic compound.
  • the selective fixing agent used in the method according to one embodiment of the present invention includes a composition capable of fixing them by interacting with a halogenated aromatic compound by suction.
  • composition will be described later.
  • a porous cyclodextrin polymer in which alcohols, aryl alcohols or phenols are reacted at the terminal of a polymer obtained by condensing cyclodextrin and organic dibasic acid can be mentioned.
  • the compound that interacts with the halogenated aromatic compound exemplified here is a compound having in its molecule a cyclic part of cyclodextrin capable of interacting with the halogenated aromatic compound in the molecular structure.
  • This attractive interaction compound can be at least dispersed in an organic medium.
  • the selective fixing agent used in the method according to one embodiment of the present invention includes a compound that interacts with the halogenated aromatic compound as an active ingredient as an active ingredient, and, if necessary, a carrier, a substrate, a diluent, and the like. In such a state, it can be referred to as a “composition”.
  • the compound that interacts with the halogenated aromatic compound that is an active ingredient in an attractive manner may be optionally immobilized on a carrier or a base material. It will be referred to as "thing".
  • compounds that interact with halogenated aromatic compounds in aspiration on solid supports such as silica gel, polymer beads, ion exchange resins, glass, filters, membranes, various network or lattice structures, foams, porous materials, etc.
  • Immobilization of a compound that interacts with a halogenated aromatic compound to a carrier or a substrate can be carried out by using a relatively strong chemical bond represented by, for example, covalent bond or ionic bond, as well as hydrophobic interaction, van der It can also be performed by physical interaction with a relatively weak force such as a Waals force.
  • Examples of the compound that interacts with the halogenated aromatic compound in an attractive manner include a polymer obtained by reacting an alcohol, an aryl alcohol, or a phenol with a terminal of a polymer obtained by condensing a cyclodextrin and an organic dibasic acid.
  • Cyclodextrins are cyclic oligosaccharides in which 6, 7 or 8 glucoses are cyclically linked, and are called ⁇ -, ⁇ - or ⁇ -cyclodextrin, respectively.
  • Organic dibasic acids include, for example, aliphatic dicarboxylic acids, aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and fatty acids, and in the present invention, they react with the —CH 2 OH group in the cyclodextrin molecule to sequentially condense. It is a compound that can form a polymer.
  • organic dibasic acids include terephthalic acid, isophthalic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, and phthalic acid.
  • the organic dibasic acid halide refers to an acid halide of the above organic dibasic acid.
  • terephthalic acid which is an organic dibasic acid or terephthalic acid dichloride (terephthaloyl dichloride) which is an organic dibasic acid halide.
  • Reacting alcohols, aryl alcohols or phenols at the polymer end means end-capping the carboxyl group derived from the organic dibasic acid remaining at the end of the condensation polymer with a specific substituent.
  • carboxyl group derived from the organic dibasic acid remaining at the end of the condensation polymer with a specific substituent.
  • alcohols, aryl alcohols or phenols can be reacted and esterified.
  • the terminal is reacted with alcohols, aryl alcohols or phenols, for example, alcohols selected from alcohols having 1 to 10 carbon atoms, aryl alcohols selected from benzyl alcohol or substituted benzyl alcohols Or a phenol selected from phenol or substituted phenols is reacted with carboxyl end groups to alkyl esters, aryl esters or phenyl esters.
  • alcohols selected from alcohols having 1 to 10 carbon atoms
  • a phenol selected from phenol or substituted phenols is reacted with carboxyl end groups to alkyl esters, aryl esters or phenyl esters.
  • the end group is methyl ester (—COOMe)
  • —COOEt ethyl ester
  • benzyl alcohol is benzyl ester
  • porous cyclodextrin polymer used in one embodiment of the present invention may be a composition in which polymers having different molecular weights are mixed.
  • the chemical structural formula of the cyclodextrin polymer which is the active ingredient of the selective fixing agent used in the method according to one embodiment of the present invention, can be represented by the following formula, for example:
  • the cyclodextrin part is represented by a truncated cone, and terephthalic acid is used as the organic dibasic acid. Hydroxyl groups and organic dibasic acids in cyclodextrin are alternately bonded by ester bonds to form a network structure. The polymer ends are capped with methyl groups as a result of reaction with methanol.
  • One acid chloride group (—COCl) of terephthaloyl dichloride reacts with the —CH 2 OH group of ⁇ -cyclodextrin to form an ester bond.
  • the other acid chloride group then reacts with the —CH 2 OH group of another ⁇ -cyclodextrin. This is repeated to obtain a condensation polymer.
  • the substituent involved in the condensation is a moiety of —CH 2 OH, and such groups are 6 for ⁇ -cyclodextrin and 7 for ⁇ -cyclodextrin. In the case of ⁇ -cyclodextrin, there are 8 molecules in the molecule.
  • the obtained condensate may have a crosslinked structure or a three-dimensional network structure in addition to the one in which cyclodextrin and organic dibasic acid are alternately condensed.
  • the terminal acid chloride group becomes —COOCH 3 .
  • the method according to one aspect of the present invention is to contact a selective fixing agent for a halogenated aromatic compound containing the above cyclodextrin polymer and an organic medium containing the halogenated aromatic compound at 5 ° C. or lower.
  • 5 ° C. or lower means a temperature range of ⁇ 20 ° C. to 5 ° C., ⁇ 10 ° C. to 1 ° C., ⁇ 5 ° C. to 0 ° C., etc., and is at least lower than room temperature.
  • PCB is contained in a mixed organic medium of insulating oil and hydrocarbon solvent, it is possible to separate and remove PCB by the selective fixing agent used in the method of the present invention.
  • the use of an organic medium with a high value limits the amount of organic medium that can be recovered.
  • the PCB can be efficiently fixed when the selective fixing agent and the organic medium are brought into contact with each other at least at a temperature lower than room temperature, for example, a low temperature of ⁇ 2 ° C. to 0 ° C.
  • the halogenated aromatic compound contained in the organic medium is fixed to the porous cyclodextrin polymer that interacts with the halogenated aromatic compound in an attractive manner by the method according to one embodiment of the present invention.
  • An organic medium not containing a group compound can be obtained with a high recovery rate.
  • FIG. 1 is a graph showing the relationship between the solution recovery time and the solution recovery rate in Reference Example and Comparative Example 1.
  • FIG. 2 is a graph showing the relationship between the solution recovery rate and the PCB concentration in the recovered solution in Reference Example and Comparative Example 1.
  • FIG. 3 is a graph showing the relationship between the solution recovery time and the solution recovery rate in Comparative Example 1 and Comparative Example 2.
  • FIG. 4 is a graph showing the relationship between the solution recovery rate and the PCB concentration in the recovered solution in Comparative Example 1 and Comparative Example 2.
  • FIG. 5 is a graph showing the relationship between the solution recovery time and the solution recovery rate in Examples 1 to 4.
  • FIG. 6 is a graph showing the relationship between the solution recovery rate and the PCB concentration in the recovered solution in Examples 1 to 4.
  • a method for selectively removing a halogenated aromatic compound from an organic medium which is an embodiment of the present invention, will be specifically described.
  • the organic medium containing the halogenated aromatic compound used in the present embodiment contains at least one of the above-described halogenated aromatic compounds.
  • the halogenated aromatic compound may be dissolved at any concentration in the organic medium, but when the content of the halogenated aromatic compound is about 0.5 to 1%, It is said to contain "at a low concentration".
  • an organic medium containing a low concentration of a halogenated aromatic compound has a very small volume of the halogenated aromatic compound to be treated, but the volume of the organic medium itself becomes very large, thus making storage difficult. Chemical treatment takes a lot of time.
  • a halogenated aromatic compound dissolved in an extremely small amount can be concentrated and separated from an organic medium and separated into a halogenated aromatic compound to be treated and a reusable organic medium, the halogenated aromatic compound While the processing efficiency of the compound is increased, the problem of storage of the organic medium can be solved.
  • Organic media that are particularly likely to contain halogenated aromatic compounds are various hydrocarbon solvents, insulating oils, machine oils, heat media, lubricating oils, plasticizers, paints, inks, and mixtures thereof.
  • hydrocarbon solvents include normal hexane, normal octane, isooctane, normal decane, normal undecane, normal dodecane, normal tridecane, cyclohexane, and methylcyclohexane, which are liquids at room temperature and normal pressure, and mixtures thereof. All of these are good solvents for halogenated aromatic compounds.
  • Such hydrocarbon solvents are used for cleaning waste heavy electrical equipment and insulating oils containing halogenated aromatic compounds remaining in these members.
  • An organic medium containing a halogenated aromatic compound is placed in a reaction vessel. You may use the storage container which stores these organic media as a reaction container as it is.
  • the above-mentioned compounds containing 10 to 50 times, more preferably 50 to 200 times (molar basis) of the halogenated aromatic compound contained in the above-described halogenated aromatic compound are described.
  • a compound that interacts with a halogenated aromatic compound that is an active ingredient in the selective fixing agent described above or a composition containing such a compound is dispersed in an organic medium, and the halogenated aroma contained in the organic medium. Contact with group compounds.
  • the halogenated aromatic compound is fixed to or near the attractive interaction portion by the interaction with the attractive interaction portion in the compound that interacts with the halogenated aromatic compound.
  • the contact can be generally made by a method such as stirring for 5 hours to several days.
  • the fixing reaction can be suitably performed at a low temperature of 5 ° C. or less, for example, ⁇ 10 ° C. to 5 ° C., preferably ⁇ 5 ° C. to 1 ° C., more preferably ⁇ 2 ° C. to 0 ° C.
  • various methods such as cooling the system with various coolants or implementing it in a cooling device including a refrigerator.
  • the attractive interaction in which the halogenated aromatic compound is fixed Only the compound (or composition containing the compound) is isolated. Separation may be performed using an existing solid-liquid separation technique, for example, a method using a centrifugal separator or a pressure filter.
  • the filter for separation can be performed using a commercially available filter, glass filter, membrane, absorbent cotton, metal, resin or the like. Any filter or membrane may be used as long as it has a pore size capable of separating the inclusion compounds contained in the selective fixing agent of the present invention, but in consideration of the particle size of a general interaction compound. It is preferable to use those having a pore diameter of about 0.1 to 100 ⁇ m.
  • the aspiration interaction compound to which the halogenated aromatic compound obtained by separation is fixed is separated from the halogenated aromatic compound, which is fixed, if necessary, and the halogenated aromatic compound to which the suction interaction compound is fixed or After the halogenated aromatic compound obtained by the desorption operation is diluted as necessary, it can be decomposed by a chemical processing method such as a chemical extraction decomposition method.
  • active compounds which are compounds that interact with the halogenated aromatic compounds in an attractive manner, such as silica gel, polymer beads, ion exchange resins, foams, films, membranes, various lattice structures and network structures Those immobilized on a carrier such as a porous substance can be preferably used.
  • a solid carrier such as silica gel, polymer beads, or ion exchange resin, on which the attractive interaction compound of the present invention is supported, is laminated in a column, and an organic medium containing a halogenated aromatic compound is placed under normal pressure or By flowing under pressure and interacting with the attractive interaction compound, it becomes possible to effectively remove the halogenated aromatic compound contained in the organic medium.
  • the organic medium containing a halogenated aromatic compound is contained in an organic medium by filtering the organic medium containing the halogenated aromatic compound using a solid support such as a filter or a membrane supported on a solid carrier. The halogenated aromatic compound can be fixed to the membrane or the filter, and the halogenated aromatic compound can be removed.
  • a solid carrier such as a foam, a net-like structure, a lattice-like structure, or a porous material that is loaded with the attractive interaction compound of the present invention is put into an organic medium containing a halogenated aromatic compound.
  • the organic carrier is absorbed in the net-like portion, lattice-like portion or pore portion of the solid support, the contained halogenated aromatic compound is fixed, and then the solid support is pressurized (for example, squeezed, if necessary) Etc.) to obtain an organic medium from which the halogenated aromatic compound has been removed.
  • a porous polymer itself that interacts with a halogenated aromatic compound, which is an active ingredient, is sucked into a column or the like, and the halogenated aromatic compound is packed. It is also possible to remove the halogenated aromatic compound from the organic medium by flowing the organic medium containing the organic medium under normal pressure or under pressure at a low temperature such as 5 ° C. or lower.
  • a compound that interacts with a halogenated aromatic compound in an attractive manner, or a composition in which the compound is immobilized on a solid support is obtained by batch treatment from an organic medium containing a halogenated aromatic compound.
  • a method for removing a group compound it is also very suitably used in a method for continuous treatment.
  • the halogenated aromatic compound contained in the organic medium can be selectively fixed and removed from the organic medium.
  • a halogenated aromatic compound that requires strict decomposition treatment is removed and concentrated from an organic medium that must be stored because a trace amount of the halogenated aromatic compound is dissolved.
  • the efficiency of decomposition of halogenated aromatic compounds can be dramatically increased.
  • a safe organic medium that has been efficiently recovered can be processed by a normal method or subjected to a purification process such as distillation. It can be used.
  • the method for removing the halogenated aromatic compound contained in the organic medium by using the selective fixing agent used in one embodiment of the present invention is a method in which the selective fixing agent is charged and dispersed in the organic medium, and the halogen is obtained by stirring or the like. This is a safe method in which the halogenated aromatic compound is not likely to diffuse into the atmosphere because it is a relatively easy method of fixing and separating the halogenated aromatic compound.
  • terephthaloyl dichloride (78.3 g, 0.39 mol, Tokyo Chemical Industry) dissolved in special grade tetrahydrofuran (220 mL, Wako Pure Chemical Industries) was added dropwise over 1 hour. After the dropwise addition, the ice bath was removed, and the mixture was stirred for 3 hours at 70 ° C. with a hot water bath (70 ° C.). After completion of the reaction, the internal temperature was lowered to 65 ° C., primary methanol (100 mL, Pure Chemical Industries) was added, and the mixture was stirred for 2 hours.
  • the regulator pressure was maintained at 0.2 MPa and the recovery rate was maintained at 115 g / h.
  • the concentration of 2,2 ′, 3,3 ′, 5,5′-HECBP in the collected solution was measured by gas chromatography. As a result, the recovered amount was 1.3 kg (corresponding to a recovery rate of 88%). 3,3 ', 5,5'-HECBP was not detected. 2,2 ', 3,3', 5,5'-HECBP concentration was measured by SIM (selective ion monitoring) method using QCMS-QP5050 (SHIMADZU) and M / Z 360. .
  • Example 1 Column experiment at a low temperature with an insulating oil content of 10% A stainless steel column (inner diameter 40 mm x length 250 mm) packed with TPGCDM polymer (72 g) was prepared. This column was installed in a thermostat.
  • the concentration of 2,2 ′, 3,3 ′, 5,5′-HECBP in the collected solution was measured by gas chromatography. As a result, the recovered amount was 1.3 kg (corresponding to a recovery rate of 88%). 3,3 ', 5,5'-HECBP was not detected.
  • Example 2 Column experiment at 10% insulating oil content and low temperature The same experiment as in Example 1 was performed except that the regulator pressure was maintained at 0.2 MPa and the solution recovery rate was maintained at 70 g / h. No 2,2 ′, 3,3 ′, 5,5′-HECBP was detected up to 1.3 kg of solution recovered (corresponding to a recovery rate of 88%).
  • Example 3 Column experiment at a low temperature with an insulating oil content of 15% Using an NS-200 solution with an insulating oil content of 15%, the regulator pressure was maintained at 0.2 MPa, and the solution recovery rate was maintained at 53 g / h. Except that, the same experiment as in Example 1 was performed. No 2,2 ′, 3,3 ′, 5,5′-HECBP was detected up to 1.3 kg of solution recovered (corresponding to a recovery rate of 88%).
  • Example 4 Column experiment at a low temperature with an insulating oil content of 20% Using an NS-200 solution with an insulating oil content of 20%, the regulator pressure was maintained at 0.2 MPa, and the solution recovery rate was maintained at 41 g / h. Except that, the same experiment as in Example 1 was performed. No 2,2 ′, 3,3 ′, 5,5′-HECBP was detected up to 1.3 kg of solution recovered (corresponding to a recovery rate of 88%).
  • FIG. 1 is a graph showing the relationship between the solution recovery time and the solution recovery rate in the reference example and comparative example 1.
  • FIG. 2 is a graph showing the relationship between the solution recovery rate and the 2,2 ′, 3,3 ′, 5,5′-HECBP (PCB) concentration in the recovered solution in Reference Example and Comparative Example 1. It is.
  • Comparative Example 1 an organic medium having an insulating oil content of 10% was used, but 2,2 ', 3,3', 5,5'-HECBP leaked out when the solution recovery rate was about 80%. I can see it coming.
  • FIG. 3 is a graph showing the relationship between the solution recovery time and the solution recovery rate in Comparative Example 1 and Comparative Example 2.
  • FIG. 4 is a graph showing the relationship between the solution recovery rate and the 2,2 ′, 3,3 ′, 5,5′-HECBP (PCB) concentration in the recovered solution in Comparative Example 1 and Comparative Example 2.
  • PCB 5,5′-HECBP
  • Both Comparative Examples 1 and 2 used an organic medium with an insulating oil content of 10%, but 2,2 ', 3,3', 5,5'-HECBP leaked out when the solution recovery rate was about 80%. You can see that From this result, even when the organic medium was passed through the column relatively slowly as in Comparative Example 2 (see FIG. 3), 2,2 ′, 3,3 ′, 5,5′ ⁇ It turns out that leakage of HECBP cannot be avoided.
  • FIG. 5 is a graph showing the relationship between the solution recovery time and the solution recovery rate in Examples 1 to 4.
  • FIG. 6 is a graph showing the relationship between the solution recovery rate and the 2,2 ′, 3,3 ′, 5,5′-HECBP (PCB) concentration in the recovered solution in Examples 1 to 4.
  • Examples 1 and 2 each use an organic medium with an insulating oil content of 10%
  • Example 3 uses an organic medium with an insulating oil content of 15%
  • Example 4 has an insulating oil content of 20%.
  • an organic medium was used, it can be seen that 2,2 ′, 3,3 ′, 5,5′-HECBP does not leak even when the solution recovery rate exceeds 80%.
  • the organic medium having a high insulating oil content is passed through the selective fixing agent column and the PCB is recovered, it can be said that the PCB can be efficiently captured by operating at a low temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Insulating Materials (AREA)

Abstract

 シクロデキストリンと有機二塩基酸または有機二塩基酸ハロゲン化物とを縮合したポリマーの末端にアルコール類、アリールアルコール類またはフェノール類を反応させた、ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーを含有する、ハロゲン化芳香族化合物の選択固着剤と、ハロゲン化芳香族化合物を含有する有機媒体とを5℃以下で接触させ、該有機媒体に含有されたハロゲン化芳香族化合物を該ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーに固着させて、ハロゲン化芳香族化合物を含有しない有機媒体を得る方法を提供する。

Description

媒体に含有されるハロゲン化芳香族化合物の低温選択固着方法
 本発明は、絶縁油、機械油、熱媒体、潤滑油、可塑剤、塗料及びインキ及びこれらの混合物等に代表される有機媒体中に含有されたハロゲン化芳香族化合物を捕集することのできる選択固着剤、及び、これを用いてハロゲン化芳香族化合物をほとんど含有しない有機媒体を得る方法に関する。より詳細には、シクロデキストリンと有機二塩基酸とを縮合させ、得られた縮合ポリマーの末端にアルコール類、アリールアルコール類、またはフェノール類をエステル化させることにより得ることができる、多孔質のシクロデキストリンポリマーを用いて、有機媒体に含有されたハロゲン化芳香族化合物を選択的にかつ効率的に固着する方法に関する。
 ハロゲン化芳香族化合物は、人体、動植物に対して強い毒性を示す化合物であり、特に催奇形性などのおそれから、有害物質として廃棄物の処理及び清掃に関する法律により指定されているものが多数ある。これら化合物が土壌、地下水、焼却灰、洗浄水、機械油等に存在する場合は、何らかの処理を施してこれらの濃度を基準値以下に減少させなければならないことが厳密に定められている。
 従来、ハロゲン化芳香族化合物が含有された絶縁油等の有機媒体は、原姿のまま化学処理されていたが、近年、日本国内において、ポリクロロビフェニル類(以下、「PCB」と称する)の不含見解書又はPCB不含証明書のない再生油はもとより、PCB不含見解書又はPCB不含証明書のある絶縁油(新油、再生油)からも、極微量(0.5―100ppm程度、特に0.5~10ppm程度)のハロゲン化芳香族化合物を含有する有機媒体が次々と確認されている。このような大量の有機媒体を従来方法にて化学的に処理するには多大な時間と有用なエネルギーを要することから効率的そして経済的にも問題が残る。
 一方、PCBを使用していないとされる変圧器等の重電機器類に、微量のPCB(PCB濃度は数十ppm程度と極めて低濃度のものである。)に汚染された絶縁油を含むものが多数存在することが平成14年頃に判明した。その汚染機器類の台数は約120万台に上るという推計もあり、早急に解決しなければならない問題である。PCB汚染廃重電機器内から汚染油を抜油した後も、廃重電機器類の部材には依然としてPCB汚染絶縁油が含浸、付着等しており、現在、親油性の高い炭化水素系溶剤を用いて重電機器内部に残ったPCBを効果的に洗浄するための技術開発が盛んに行われている。ところが、このような炭化水素系溶剤は高価であること、及び洗浄操作により排出される炭化水素系の廃溶剤(以下、単に「廃溶剤」と称する。)を大量に保管しておかなければならないこと等の問題がある。そこで洗浄に使用する炭化水素系溶剤の使用量や、廃溶剤自体の量を大幅に削減できる炭化水素系溶剤リサイクル技術が求められている。
 そこで、重電機器内部に残ったPCB含有絶縁油の炭化水素系溶剤による洗浄により発生した大量の廃溶剤からPCBを迅速かつ低コストで分離回収できるシステムの提案が早急に望まれる。トランス等を含む廃重電機器の洗浄後に排出されるPCB含有廃溶剤から、再利用可能な炭化水素系溶剤とPCBとを分離できるリサイクルシステムの実現が可能となれば、PCB汚染廃重電機器の廃棄に大いに貢献できると考えられる。
 本発明者らは、γ-シクロデキストリン(以下、「γ-CD」と称する。)と二塩化テレフタロイルとを縮合させたポリマーの末端をメチル基で処理したポリマー(以下、「テレフタル酸-γ-CD-メチル高分子」あるいは「TPGCDM高分子」と称する。)等の種々のシクロデキストリンポリマーを合成し、これらを用いてハロゲン化芳香族化合物を含有する有機媒体からハロゲン化芳香族化合物を選択的に固着させ、ハロゲン化芳香族化合物を含まない有機媒体を得ることを提案した(特許文献1)。特許文献1では、種々のシクロデキストリンポリマーにハロゲン化芳香族化合物吸着能があることが示され、これらのシクロデキストリンポリマーを用いてハロゲン化芳香族化合物を含有する有機媒体を処理することができることがわかった。ここで、かかるシクロデキストリンポリマーをカラムに充填し、ここに絶縁油を多量に(例えば10重量%以上等)含む炭化水素系溶剤を流してPCBを吸着させることを試みたところ、炭化水素系溶剤の回収率78%程度の時点でPCBが漏出してくることがわかった。これは絶縁油の極性や粘度等に関連して、絶縁油含量が高くなるほどシクロデキストリンポリマーに吸着されるPCBの量が減少するためであると考えているが、いずれにしても、絶縁油含量が高い廃溶剤でも、シクロデキストリンポリマーを用いて効果的にPCBを固着分離できる条件を探索する必要がある。
WO2011/102346号
 本発明は、有機媒体に含有されるハロゲン化芳香族化合物をシクロデキストリンポリマーを用いて選択的に固着し、有機媒体からハロゲン化芳香族化合物を除去するあるいは濃縮する際に、より効果的な条件を探索することを目的とする。
 本発明者らは、水溶性であるシクロデキストリンから生成した、水不溶性の多孔質のシクロデキストリンポリマーを選択固着剤として使用して、有機媒体中に含有されるハロゲン化芳香族化合物を選択的に捕集し、ハロゲン化芳香族化合物を含有しない有機媒体を高い回収率で得ることができる条件を見いだした。
 本発明の態様は、以下の通りである:
1.シクロデキストリンと有機二塩基酸または有機二塩基酸ハロゲン化物とを縮合したポリマーの末端にアルコール類、アリールアルコール類またはフェノール類を反応させた、ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーを含有する、ハロゲン化芳香族化合物の選択固着剤と、ハロゲン化芳香族化合物を含有する有機媒体とを5℃以下で接触させ、該有機媒体に含有されたハロゲン化芳香族化合物を該ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーに固着させて、ハロゲン化芳香族化合物を含有しない有機媒体を得る方法。
2.有機二塩基酸または有機二塩基酸ハロゲン化物が、テレフタル酸、イソフタル酸、マレイン酸、リンゴ酸、マロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、フタル酸またはこれらのハロゲン化物から選択される、上記1に記載の方法。
3.アルコール類が炭素数1~10のアルキル基を有するアルコールから選択され、アリールアルコール類がベンジルアルコール、またはアルキル、アリール、またはアシル基で置換されたベンジルアルコール類から選択され、フェノール類がフェノール、またはアルキル、アリール、またはアシル基で置換されたフェノールから選択される、上記1または2に記載の方法。
4.ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーが、固体担体に固定化されていることを特徴とする選択固着剤を使用する、上記1~3のいずれかに記載の方法。
5.ハロゲン化芳香族化合物が、ダイオキシン類、ポリクロロビフェニル類、またはポリクロロベンゼン類である、上記1~4のいずれかに記載の方法。
6.有機媒体が、炭化水素系溶剤、絶縁油、機械油、熱媒体、潤滑油、可塑剤、塗料及びインキ及びこれらの混合物からなる群から選択される、上記1~5のいずれかに記載の方法。
 以下、本発明の態様を詳細に説明する。
 本発明の一態様に係る方法は、シクロデキストリンと有機二塩基酸または有機二塩基酸ハロゲン化物とを縮合したポリマーの末端にアルコール類、アリールアルコール類またはフェノール類を反応させた、ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーを含有する、ハロゲン化芳香族化合物の選択固着剤と、ハロゲン化芳香族化合物を含有する有機媒体とを5℃以下で接触させ、該有機媒体に含有されたハロゲン化芳香族化合物を該ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーに固着させて、ハロゲン化芳香族化合物を含有しない有機媒体を得る方法である。
 本明細書において「ハロゲン化芳香族化合物」とは、芳香族化合物にフッ素、塩素、臭素及びヨウ素が1以上置換した化合物全般を指す。本明細書では、例えばポリクロロビフェニル類(PCB)、ダイオキシン類、フロン類、ポリクロロナフタレン類およびポリクロロベンゼン類等を指す。PCBとは、ビフェニル骨格に塩素原子が数個置換した化合物の総称であり、塩素原子の置換位置、置換数により多数の異性体が存在する。またダイオキシン類とは、狭義の意味ではダイオキシン類対策特別措置法で指定される特定の化合物を指すが、本明細書では、いわゆる内分泌撹乱物質(環境ホルモン)として疑われるハロゲン化化合物を全て含む。
 本明細書においてハロゲン化芳香族化合物を含有する「有機媒体」とは、広く一般的に有機溶剤のことであり、特にハロゲン化芳香族化合物を良好に溶解する炭化水素系溶剤や、ハロゲン化芳香族化合物を含有する可能性の高い絶縁油、機械油、熱媒体、潤滑油、可塑剤、塗料及びインキ及びこれらの混合物等を意味する。本明細書において「有機媒体」とは、その大部分(例えば6割以上)が前記の有機媒体であればよく、場合によっては水を含むこともあるが、当該ハロゲン化芳香族化合物を含有する有機媒体全体としての性質は、水溶液でなく、あくまで有機溶液のそれである。
 また、固体物質(例えば紙、木材、焼却灰、岩石、土壌、あるいは廃重電機器およびその部材)に付着または含有されたハロゲン化芳香族化合物を洗浄操作を通じて有機媒体に移行させたものも、本態様で使用する選択固着剤の処理対象となる「ハロゲン化芳香族化合物を含有する有機媒体」となる。
 本明細書において「ハロゲン化芳香族化合物と吸引的に相互作用する」とは、上述のハロゲン化芳香族化合物と引き合うように(すなわち、斥力ではないことを意味する。)相互作用することを意味し、このような特性を有する化合物を「ハロゲン化芳香族化合物と吸引的に相互作用する化合物」と総称する。このような化合物は、ハロゲン化芳香族化合物と吸引的に相互作用する環状部分、置換基、シーケンスなどを有する。本明細書において「ハロゲン化芳香族化合物と吸引的に相互作用する化合物」のことを、場合により、単に「吸引的相互作用化合物」「相互作用化合物」あるいは「相互作用する化合物」などと省略して記載することがある。
 本明細書において、ハロゲン化芳香族化合物を「選択的に固着」するとは、有機媒体に溶解、分散等により含有されたハロゲン化芳香族化合物のみ、あるいは当該ハロゲン化芳香族化合物を内部に含む有機媒体分子の会合体と相互作用して、これを取り込むあるいは定着させることをいう。本明細書において「固着」とは、化学的結合や接着、ならびに物理的吸着や吸引、あるいは単に引っかかった状態であるものなどを全て含み、必ずしも定常的に接着されていることを意味するものでない。たとえば、ハロゲン化芳香族化合物と吸引的に相互作用し、所定の時間ごく近距離に位置した状態となる場合や、吸引的な相互作用により所定の時間接触した状態であれば、広い意味で本明細書にいう「固着」した状態に該当するものとする。すなわち本発明の一態様で使用する「選択固着剤」とは、選択固着剤に含有される活性成分が、有機媒体中に含有されるハロゲン化芳香族化合物と吸引的に強く相互作用し、ハロゲン化芳香族化合物を活性成分分子構造内にしっかりと取り込むあるいは定着させるような薬剤のほか、かかる活性成分が、ハロゲン化芳香族化合物と少なくとも一時的に接触した状態にあるか、至近距離に位置した状態を維持することができる薬剤全般を意味する。
 したがって本発明の一態様に係る方法に使用する選択固着剤は、ハロゲン化芳香族化合物と吸引的に相互作用することによりこれらを固着することができる組成物を含む。「組成物」の意味するところは後ほど説明する。かかる組成物の活性成分として、シクロデキストリンと有機二塩基酸とを縮合させたポリマーの末端にアルコール類、アリールアルコール類またはフェノール類を反応させた多孔質のシクロデキストリンポリマーが挙げられる。ここに例示するハロゲン化芳香族化合物と吸引的に相互作用する化合物は、分子構造内にハロゲン化芳香族化合物と吸引的に相互作用することが可能なシクロデキストリンの環状部分を分子内に有する化合物であり、この吸引的相互作用化合物は、有機媒体に少なくとも分散させることができる。吸引的相互作用化合物分子内に存在する、ハロゲン化芳香族化合物と吸引的に相互作用する部分、すなわちシクロデキストリンの環状部分とハロゲン化芳香族化合物とが相互作用することにより、ハロゲン化芳香族化合物を当該吸引的相互作用部分またはその近傍に固着させる。
 本発明の一態様に係る方法に使用する選択固着剤は、前記のハロゲン化芳香族化合物と吸引的に相互作用する化合物を活性成分として含むほか、必要に応じて担体、基材、希釈剤等の助剤を含むことができ、このような状態のときには「組成物」と称することができる。また、活性成分であるハロゲン化芳香族化合物と吸引的に相互作用する化合物は、場合により担体または基材に固定化されていても良く、本明細書ではこのような場合も広い意味で「組成物」と称することとする。たとえばシリカゲル、ポリマービーズ、イオン交換樹脂、ガラス、フィルタ、メンブレン、各種網状構造物又は格子状構造物、発泡体、多孔質物質などの固体担体にハロゲン化芳香族化合物と吸引的に相互作用する化合物を固定化させることができる。ハロゲン化芳香族化合物と吸引的に相互作用する化合物の担体又は基材への固定化は、たとえば共有結合あるいはイオン結合などに代表される比較的強い化学結合の他、疎水性相互作用、ファンデルワールス力などの比較的弱い力での物理的相互作用によっても行うことができる。
 ハロゲン化芳香族化合物と吸引的に相互作用する化合物として、シクロデキストリンと有機二塩基酸類とを縮合させたポリマーの末端にアルコール類、アリールアルコール類またはフェノール類を反応させたポリマーが挙げられる。シクロデキストリンとは、6個、7個または8個のグルコースが環状に結合した環状オリゴ糖のことであり、それぞれα-、β-またはγ-シクロデキストリンと称される。有機二塩基酸類とは、例えば、脂肪族ジカルボン酸、芳香族ジカルボン酸、脂環族ジカルボン酸、脂肪酸を含み、本発明においては、シクロデキストリン分子中の-CHOH基と反応して逐次縮合し、ポリマーを形成しうる化合物のことである。このような有機二塩基酸類として、例えばテレフタル酸、イソフタル酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、フタル酸が挙げられる。有機二塩基酸ハロゲン化物とは、上記の有機二塩基酸類の酸ハロゲン化物を指す。本発明では特に有機二塩基酸であるテレフタル酸、又は有機二塩基酸ハロゲン化物であるテレフタル酸ジクロライド(二塩化テレフタロイル)を用いることが好適である。
 アルコール類、アリールアルコール類またはフェノール類をポリマー末端に反応させる、とは、縮合ポリマーの末端に残る有機二塩基酸由来のカルボキシル基を、特定の置換基でエンドキャップすることを意味する。カルボキシル基をエンドキャップするために、アルコール類、アリールアルコール類またはフェノール類を反応させ、エステル化することができる。本発明において末端にアルコール類、アリールアルコール類またはフェノール類を反応させる、とは、例えば炭素数1~10のアルコールから選択されるアルコール類、ベンジルアルコールまたは置換ベンジルアルコール類から選択されるアリールアルコール類、またはフェノールまたは置換フェノール類から選択されるフェノール類をカルボキシル末端基に反応させて、アルキルエステル、アリールエステルまたはフェニルエステルにすることを意味する。例えば縮合ポリマーをメタノールと反応させれば末端基はメチルエステル(-COOMe)となり、エタノールと反応させればエチルエステル(-COOEt)となり、ベンジルアルコールと反応させればベンジルエステル(-COOBz)となる。
 ここで、複数のシクロデキストリンと有機二塩基酸類とが逐次縮合し、この末端をアルコール類、アリールアルコール類またはフェノール類で処理したものであれば、例えばシクロデキストリンと有機二塩基酸類とが合計で数個~10個程度縮合した、いわゆる一般的には「オリゴマー」と呼ばれるような化合物であっても、本明細書では全て「ポリマー」と総称するものとする。本発明の一態様で使用する多孔質のシクロデキストリンポリマーは、分子量の異なる重合体が混合した組成物であってもよい。
 本発明の一態様に係る方法で使用する選択固着剤の活性成分であるシクロデキストリンポリマーの化学構造式は、例えば以下の式で表すことができる:
Figure JPOXMLDOC01-appb-C000001
 
 この式において、シクロデキストリンの部分は、円錐台形で表されており、有機二塩基酸としてテレフタル酸が用いられている。シクロデキストリン中の水酸基と有機二塩基酸とがエステル結合により交互に結合し、網目状の構造を形成している。そしてポリマーの末端は、メタノールと反応させた結果として、メチル基でキャップされている。
 例えば、γ-シクロデキストリンと、有機二塩基酸ハロゲン化物として二塩化テレフタロイルとを縮合させ、次いで末端にメタノールを反応させた場合、以下のようなスキームで反応が進行し、ポリマーを得ることができる:
Figure JPOXMLDOC01-appb-C000002
 
 二塩化テレフタロイルの一方の酸クロライド基(-COCl)は、γ-シクロデキストリンの-CHOH基と反応し、エステル結合する。そしてもう一方の酸クロライド基は、別のγ-シクロデキストリンの-CHOH基と反応する。これを繰り返し、縮合ポリマーが得られる。シクロデキストリンには多数の水酸基が存在するが、縮合に関与する置換基は-CHOHの部分であり、このような基はα-シクロデキストリンの場合6個、β-シクロデキストリンの場合7個、そしてγ-シクロデキストリンの場合8個分子内に存在する。得られる縮合体は、シクロデキストリンと有機二塩基酸とが交互に縮合したもののほか、架橋構造や3次元網目構造となる場合もある。縮合反応の終了時にメタノールを反応させると、末端の酸クロライド基は-COOCHとなる。
 本発明の一態様に係る方法は、上述のシクロデキストリンポリマーを含有する、ハロゲン化芳香族化合物の選択固着剤と、ハロゲン化芳香族化合物を含有する有機媒体とを5℃以下で接触させることに特徴がある。ここで5℃以下とは、-20℃~5℃、-10℃~1℃、-5℃~0℃等の温度範囲であって、少なくとも室温より低い温度であることを意味する。絶縁油と炭化水素系溶剤との混合有機媒体にPCBが含有されている場合には、本発明の方法に使用する選択固着剤によりPCBを分離除去することが可能であるが、絶縁油の含量が高い有機媒体を用いると、回収できる有機媒体の量に限りがあることが判明している。ところが、少なくとも室温よりも低い温度、例えば-2℃~0℃の低温で選択固着剤と有機媒体とを接触させると、効率的にPCBを固着させることができることがわかった。このように本発明の一態様に係る方法により有機媒体に含有されたハロゲン化芳香族化合物をハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーに固着させて、ハロゲン化芳香族化合物を含有しない有機媒体を高い回収率で得ることができる。
図1は、参考例及び比較実施例1の溶液回収時間と溶液回収率との関係をグラフにしたものである。 図2は、参考例と比較実施例1の、溶液回収率と回収溶液中のPCB濃度との関係をグラフにしたものである。 図3は、比較実施例1及び比較実施例2の、溶液回収時間と溶液回収率との関係をグラフにしたものである。 図4は、比較実施例1と比較実施例2の、溶液回収率と回収溶液中のPCB濃度との関係をグラフにしたものである。 図5は、実施例1~4の、溶液回収時間と溶液回収率との関係をグラフにしたものである。 図6は、実施例1~4の、溶液回収率と回収溶液中のPCB濃度との関係をグラフにしたものである。
 本発明の一実施形態である、有機媒体中からハロゲン化芳香族化合物を選択的に除去する方法を具体的に説明する。
 本実施形態に使用するハロゲン化芳香族化合物を含有する有機媒体は、上述のハロゲン化芳香族化合物を少なくとも1種含有している。ハロゲン化芳香族化合物は、有機媒体中にいかなる濃度で溶解していても良いが、特にハロゲン化芳香族化合物の含有量が0.5~1%程度の場合に「極微量」「微量」あるいは「低濃度で」含有していると称される。特にハロゲン化芳香族化合物を低濃度で含有する有機媒体は、処理すべきハロゲン化芳香族化合物は極少量であるのに、有機媒体自体の体積が非常に大きくなり、したがって貯蔵に困難をきたすとともに化学的に処理するには多大な時間を要する。よって、極微量に溶解しているハロゲン化芳香族化合物を有機媒体から濃縮分離して、処理すべきハロゲン化芳香族化合物と、再利用可能な有機媒体とに分けることができれば、ハロゲン化芳香族化合物の処理効率が上がる一方、かかる有機媒体の貯蔵の問題を解決することができる。
 ハロゲン化芳香族化合物を特に含有しやすい有機媒体は、各種炭化水素系溶剤のほか、絶縁油、機械油、熱媒体、潤滑油、可塑剤、塗料、インク及びこれらの混合物である。このうち、炭化水素系溶剤としては、常温・常圧で液体であるノルマルヘキサン、ノルマルオクタン、イソオクタン、ノルマルデカン、ノルマルウンデカン、ノルマルドデカン、ノルマルトリデカン、シクロヘキサン、およびメチルシクロヘキサン、およびこれらの混合物等が挙げられ、いずれもハロゲン化芳香族化合物の良溶媒である。このような炭化水素系溶剤は、廃重電機器類およびこれらの部材に残存するハロゲン化芳香族化合物含有絶縁油の洗浄に用いられている。
 本発明の方法を実施するための一の実施形態を説明する。ハロゲン化芳香族化合物を含有する有機媒体を反応容器に入れる。これら有機媒体を貯蔵する貯蔵容器をそのまま反応容器として使用しても良い。ここに、含有されているハロゲン化芳香族化合物に対して10倍~50倍、より好ましくは50~200倍(モル基準)のハロゲン化芳香族化合物と吸引的に相互作用する化合物を含む上述の選択固着剤を投入し、よく攪拌する。上述の選択固着剤中の活性成分であるハロゲン化芳香族化合物と吸引的に相互作用する化合物またはかかる化合物を含む組成物は、有機媒体中に分散し、有機媒体中に含有されるハロゲン化芳香族化合物と接触する。ハロゲン化芳香族化合物と吸引的に相互作用する化合物中の吸引的相互作用部分との相互作用によりハロゲン化芳香族化合物が当該吸引的相互作用部分またはその近傍に固着される。処理する有機媒体の量やハロゲン化芳香族化合物の濃度、及び本発明の選択固着剤の量にもよるが、一般的には5時間~数日間にわたり攪拌等による方法で接触させることができる。固着反応は5℃以下、例えば-10℃~5℃、好ましくは-5℃~1℃、さらに好ましくは-2℃~0℃の低温下で好適に行うことができる。系を低温に維持するためには、各種冷却剤により系を冷却したり、冷蔵庫を含む冷却装置内で実施したりする等、種々の方法を採用することが可能である。
 このようにしてハロゲン化芳香族化合物と吸引的に相互作用する化合物に有機媒体中に含有されるハロゲン化芳香族化合物が固着された後、ハロゲン化芳香族化合物が固着された当該吸引的相互作用化合物(または当該化合物を含む組成物)のみを分離する。分離は既存の固液分離技術を用いて行えばよく、例えば、遠心分離機、加圧濾過機を使用する方法があげられる。分離する際のフィルタは、市販のフィルタ、ガラスフィルタ、メンブレン、脱脂綿、金属、樹脂等を用いて行うことができる。本発明の選択固着剤に含まれる包接化合物類を分離することができる孔径のものであれば、いかなるフィルタ、メンブレンを用いても良いが、一般的な相互作用化合物の粒径を考慮して、孔径約0.1~100μmのものを使用することが好ましい。
 分離により得たハロゲン化芳香族化合物を固着した吸引的相互作用化合物は、必要に応じて固着したハロゲン化芳香族化合物のみを脱離し、吸引的相互作用化合物に固着されたハロゲン化芳香族化合物又は前記脱離操作により得たハロゲン化芳香族化合物を、必要に応じて希釈した後、例えば化学抽出分解法などの化学的処理方法により分解処理を行うことができる。
 ハロゲン化芳香族化合物を固着した吸引的相互作用化合物を分離した後に得られた有機媒体は、ハロゲン化芳香族化合物が実質的に完全に除去されている。したがって、ハロゲン化芳香族化合物が含まれているが故に従来は保管せざるをえなかった有機媒体を、再利用可能なものは再利用し、あるいは通常の方法、例えば焼却処分等により廃棄することができる。
 次に本発明の方法の実施の別の実施形態を説明する。選択固着剤として、活性成分である、ハロゲン化芳香族化合物と吸引的に相互作用する化合物をたとえばシリカゲル、ポリマービーズ、イオン交換樹脂、発泡体、フィルム、メンブレン、各種格子状構造物及び網状構造物、多孔質物質などの担体に固定化させたものを好適に使用することができる。たとえばシリカゲル、ポリマービーズ又はイオン交換樹脂等の固体担体に本発明の吸引的相互作用化合物を担持させたものをカラム内に積層し、ここにハロゲン化芳香族化合物を含有する有機媒体を常圧下または加圧下にて流し、当該吸引的相互作用化合物と相互作用させ、有機媒体中に含有されたハロゲン化芳香族化合物を効果的に除去することが可能となる。あるいはフィルタ、メンブレンなどの固体担体に吸引的相互作用化合物を担持させたものを用いて、ハロゲン化芳香族化合物を含有する有機媒体を常圧または減圧濾過することにより、有機媒体中に含有されるハロゲン化芳香族化合物をメンブレン又はフィルタに固着させて、ハロゲン化芳香族化合物を除去することが可能となる。あるいは発泡体、網状構造物、格子状構造物、多孔質物質などの固体担体に本発明の吸引的相互作用化合物を担持させたものをハロゲン化芳香族化合物を含有する有機媒体中に投入して、当該固体担体の網状部分、格子状部分、あるいは孔部分に有機媒体を吸収させ、含有されたハロゲン化芳香族化合物を固着させ、ついで必要に応じて当該固体担体に圧力をかけて(たとえば搾る等の操作を行って)、ハロゲン化芳香族化合物が除かれた有機媒体を得ることができる。本発明の一形態に係る方法に使用する選択固着剤として、活性成分である、ハロゲン化芳香族化合物と吸引的に相互作用する多孔質ポリマー自体を、カラムなどに充填し、ハロゲン化芳香族化合物を含有する有機媒体を常圧下または加圧下、5℃以下等の低温下で流すことによって、有機媒体からハロゲン化芳香族化合物を除去することもまた可能である。
 このようにハロゲン化芳香族化合物と吸引的に相互作用する化合物、あるいは該化合物を固体担体に固定化させた組成物は、ハロゲン化芳香族化合物を含有する有機媒体からバッチ処理にてハロゲン化芳香族化合物を除去する方法に用いられる他、連続的に処理する方法にも非常に好適に用いられる。
 このように本発明の一態様に係る方法を用いて、有機媒体中に含有されたハロゲン化芳香族化合物を選択的に固着し、これを有機媒体中から除去することができる。本発明の方法の実施により、微量のハロゲン化芳香族化合物が溶解しているが故に保管せざるを得なかった有機媒体から、厳密な分解処理が必要なハロゲン化芳香族化合物のみを除去、濃縮することができるので、ハロゲン化芳香族化合物の分解処理効率が飛躍的に高まる一方、効率よく回収された安全な有機媒体は通常の方法で処理するか、蒸留等の精製処理を施した後に再利用することが可能となる。本発明の一態様に使用する選択固着剤を使用して、有機媒体に含有されたハロゲン化芳香族化合物を除去する方法は、有機媒体中に選択固着剤を投入・分散させ、攪拌などによりハロゲン化芳香族化合物を固着させ、これを分離するという比較的容易な方法であるため、ハロゲン化芳香族化合物が大気中に拡散するおそれのない、安全な方法である。また、ハロゲン化芳香族化合物と吸引的に相互作用する化合物自体あるいは該化合物を各種固体担体に固定化させた物質を用いて作成したカラムを使用して、有機媒体に含有されたハロゲン化芳香族化合物を連続的に除去することが可能となる。
[実施例]
 [合成例1]γ-シクロデキストリン(以下、「γ-CD」と称する。)と二塩化テレフタロイルとを縮合させたポリマーの末端をメチル基で処理したポリマー(以下、「テレフタル酸-γ-CD-メチル高分子」あるいは「TPGCDM高分子」と称する。)の合成
 滴下ロート、風船付き三方コック、活栓及び攪拌棒(攪拌機によって攪拌)の付いた1lの4つ口セパラブルフラスコに、乾燥γ-CD(50g,0.039mol、含水量1%以下、純正化学工業)と特級ピリジン(660ml、和光純薬工業)を入れて室温で1時間攪拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(220mL、和光純薬工業)に溶解した二塩化テレフタロイル(78.3g、0.39mol、東京化成工業)を1時間かけて滴下した。滴下後、氷浴を外し、湯浴(70℃)により内温70℃で3時間攪拌した。反応終了後、内温を65℃まで下げて、1級メタノール(100mL 、純正化学工業)を加え、2時間攪拌した。結晶を吸引濾過した後、得られた結晶を水(400mL×3)、1級アセトン(400mL×1、純正化学工業)の順で洗浄し、得られた固体を120℃で終夜真空乾燥した。105gのTPGCDM高分子が得られた。
 赤外スペクトルIR (KBr)による同定:3448, 1719, 1277, 1105, 1018, 732 cm-1
 [参考例]絶縁油含有率5%、常温下でのカラム実験
 TPGCDM高分子(72g)を充填したステンレスカラム(内径40mm×長さ250mm)を作製した。このカラムを恒温槽内に取り付けた。次に2,2’,3,3’,5,5’-ヘキサクロロビフェニル(以下、2,2’,3,3’,5,5’-HECBPと称する。)を含有するNS-200(約20%のノルマルドデカンを含みノルマルウンデカンを主成分とする炭化水素系溶剤、JX日鉱日石エネルギー社製)の溶液1.44kg(2,2’,3,3’,5,5’-HECBP濃度:5ppm、絶縁油含有率:5%)を、窒素ガスで該カラム内に流し込み、25℃で抽出し、約100gずつ分画した。このとき、レギュレーター圧を0.2MPa、回収速度を115g/hに維持した。回収した溶液中の2,2’,3,3’,5,5’-HECBP濃度をガスクロマトグラフィーで測定したところ、回収量1.3kg(回収率88%に相当)まで2,2’,3,3’,5,5’-HECBPは未検出であった。なお、2,2’,3,3’,5,5’-HECBP濃度の測定は、QCMS-QP5050(SHIMADZU)を使用し、M/Z 360を用いてSIM(selective ion monitoring)法により行った。
 [比較実施例1]絶縁油含有率10%、常温下でのカラム実験
 絶縁油含有率10%のNS-200溶液を用い、溶液の回収速度を107g/hに維持したこと以外は参考例と同様の実験を行った。溶液の回収量1.0kg(回収率71%に相当)までは2,2’,3,3’,5,5’-HECBPは未検出であったが、溶液の回収量1.1kg(回収率78%に相当)では濃度0.07ppmの2,2’,3,3’,5,5’-HECBPが検出された。
 [比較実施例2]絶縁油含有率10%、常温下でのカラム実験
 絶縁油含有率10%のNS-200溶液を用い、溶液の回収速度を54g/hに維持したこと以外は参考例と同様の実験を行った。溶液の回収量0.95kgまでは2,2’,3,3’,5,5’-HECBPは未検出であったが、溶液の回収量1.1kg(回収率78%に相当)では濃度0.15ppmの2,2’,3,3’,5,5’-HECBPが検出された。
 [実施例1]絶縁油含有率10%、低温下でのカラム実験
 TPGCDM高分子(72g)を充填したステンレスカラム(内径40mm×長さ250mm)を作製した。このカラムを恒温槽内に取り付けた。次に2,2’,3,3’,5,5’-ヘキサクロロビフェニル(以下、2,2’,3,3’,5,5’-HECBPと称する。)を含有するNS-200(約20%のノルマルドデカンを含みノルマルウンデカンを主成分とする炭化水素系溶剤、JX日鉱日石エネルギー社製)の溶液1.44kg(2,2’,3,3’,5,5’-HECBP濃度:5ppm、絶縁油含有率:10%)を、窒素ガスで該カラム内に流し込み、-1℃で抽出し、約100gずつ分画した。このとき、レギュレーター圧を0.3MPa、回収速度を106g/hに維持した。回収した溶液中の2,2’,3,3’,5,5’-HECBP濃度をガスクロマトグラフィーで測定したところ、回収量1.3kg(回収率88%に相当)まで2,2’,3,3’,5,5’-HECBPは未検出であった。
 [実施例2]絶縁油含有率10%、低温下でのカラム実験
 レギュレーター圧を0.2MPa、溶液の回収速度を70g/hに維持したこと以外は実施例1と同様の実験を行った。溶液の回収量1.3kg(回収率88%に相当)まで2,2’,3,3’,5,5’-HECBPは未検出であった。
 [実施例3]絶縁油含有率15%、低温下でのカラム実験
 絶縁油含有率15%のNS-200溶液を用い、レギュレーター圧を0.2MPa、溶液の回収速度を53g/hに維持したこと以外は実施例1と同様の実験を行った。溶液の回収量1.3kg(回収率88%に相当)まで2,2’,3,3’,5,5’-HECBPは未検出であった。
 [実施例4]絶縁油含有率20%、低温下でのカラム実験
 絶縁油含有率20%のNS-200溶液を用い、レギュレーター圧を0.2MPa、溶液の回収速度を41g/hに維持したこと以外は実施例1と同様の実験を行った。溶液の回収量1.3kg(回収率88%に相当)まで2,2’,3,3’,5,5’-HECBPは未検出であった。
 図1は、参考例と比較実施例1の、溶液回収時間と溶液回収率との関係をグラフにしたものである。そして図2は、参考例と比較実施例1の、溶液回収率と回収溶液中の2,2’,3,3’,5,5’-HECBP(PCB)濃度との関係をグラフにしたものである。比較実施例1は、絶縁油含有率が10%の有機媒体を用いたが、溶液回収率80%程度の時点で2,2’,3,3’,5,5’-HECBPが漏出してくることがわかる。
 図3は、比較実施例1と比較実施例2の、溶液回収時間と溶液回収率との関係をグラフにしたものである。そして図4は、比較実施例1と比較実施例2の、溶液回収率と回収溶液中の2,2’,3,3’,5,5’-HECBP(PCB)濃度との関係をグラフにしたものである。比較実施例1および2とも絶縁油含有率が10%の有機媒体を用いたが、ともに溶液回収率80%程度の時点で2,2’,3,3’,5,5’-HECBPが漏出してくることがわかる。この結果から、比較実施例2のように、有機媒体を比較的ゆっくりカラムに通したとしても(図3参照)、回収溶液中への2,2’,3,3’,5,5’-HECBPの漏出を回避できないことがわかる。
 図5は、実施例1~4の、溶液回収時間と溶液回収率との関係をグラフにしたものである。そして図6は、実施例1~4の、溶液回収率と回収溶液中の2,2’,3,3’,5,5’-HECBP(PCB)濃度との関係をグラフにしたものである。実施例1及び2は、それぞれ絶縁油含有率が10%の有機媒体を用い、実施例3は絶縁油含有率が15%の有機媒体を用い、そして実施例4は絶縁油含有率20%の有機媒体を用いたが、溶液回収率80%を超えても2,2’,3,3’,5,5’-HECBPが漏出してこないことがわかる。絶縁油含有率の高い有機媒体を選択固着剤カラムに通してPCBを回収する際には、低温下で操作を行うと効率的にPCBを捕捉することができるといえる。

Claims (6)

  1.  シクロデキストリンと有機二塩基酸または有機二塩基酸ハロゲン化物とを縮合したポリマーの末端にアルコール類、アリールアルコール類またはフェノール類を反応させた、ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーを含有する、ハロゲン化芳香族化合物の選択固着剤と、ハロゲン化芳香族化合物を含有する有機媒体とを5℃以下で接触させ、該有機媒体に含有されたハロゲン化芳香族化合物を該ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーに固着させて、ハロゲン化芳香族化合物を含有しない有機媒体を得る方法。
  2.  有機二塩基酸または有機二塩基酸ハロゲン化物が、テレフタル酸、イソフタル酸、マレイン酸、リンゴ酸、マロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、フタル酸またはこれらのハロゲン化物から選択される、請求項1に記載の方法。
  3.  アルコール類が炭素数1~10のアルキル基を有するアルコールから選択され、アリールアルコール類がベンジルアルコール、またはアルキル、アリール、またはアシル基で置換されたベンジルアルコール類から選択され、フェノール類がフェノール、またはアルキル、アリール、またはアシル基で置換されたフェノールから選択される、請求項1または2に記載の方法。
  4.  ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーが、固体担体に固定化されていることを特徴とする選択固着剤を使用する、請求項1~3のいずれかに記載の方法。
  5.  ハロゲン化芳香族化合物が、ダイオキシン類、ポリクロロビフェニル類、またはポリクロロベンゼン類である、請求項1~4のいずれかに記載の方法。
  6.  有機媒体が、炭化水素系溶剤、絶縁油、機械油、熱媒体、潤滑油、可塑剤、塗料及びインキ及びこれらの混合物からなる群から選択される、請求項1~5のいずれかに記載の方法。
PCT/JP2015/058209 2014-03-26 2015-03-19 媒体に含有されるハロゲン化芳香族化合物の低温選択固着方法 WO2015146769A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016510283A JPWO2015146769A1 (ja) 2014-03-26 2015-03-19 媒体に含有されるハロゲン化芳香族化合物の低温選択固着方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-063252 2014-03-26
JP2014063252 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015146769A1 true WO2015146769A1 (ja) 2015-10-01

Family

ID=54195290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058209 WO2015146769A1 (ja) 2014-03-26 2015-03-19 媒体に含有されるハロゲン化芳香族化合物の低温選択固着方法

Country Status (2)

Country Link
JP (1) JPWO2015146769A1 (ja)
WO (1) WO2015146769A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319403A (ja) * 1998-05-15 1999-11-24 Ishikawajima Harima Heavy Ind Co Ltd Pcbの分解処理方法
JP2001120902A (ja) * 1999-10-25 2001-05-08 Ebara Corp 廃油の精製・再生方法
JP2002035159A (ja) * 2000-07-28 2002-02-05 Shinko Pantec Co Ltd 有機ハロゲン化合物汚染油の処理方法及びその処理装置
JP2003225507A (ja) * 2002-02-05 2003-08-12 Toshiba Corp 油脂類の処理方法
WO2011102346A1 (ja) * 2010-02-16 2011-08-25 株式会社ネオス 媒体に含有されるハロゲン化芳香族化合物の選択固着剤及び選択固着方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319403A (ja) * 1998-05-15 1999-11-24 Ishikawajima Harima Heavy Ind Co Ltd Pcbの分解処理方法
JP2001120902A (ja) * 1999-10-25 2001-05-08 Ebara Corp 廃油の精製・再生方法
JP2002035159A (ja) * 2000-07-28 2002-02-05 Shinko Pantec Co Ltd 有機ハロゲン化合物汚染油の処理方法及びその処理装置
JP2003225507A (ja) * 2002-02-05 2003-08-12 Toshiba Corp 油脂類の処理方法
WO2011102346A1 (ja) * 2010-02-16 2011-08-25 株式会社ネオス 媒体に含有されるハロゲン化芳香族化合物の選択固着剤及び選択固着方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHINTARO KAWANO ET AL.: "Cyclodextrin Kakyo Polymer o Mochiita Yuchu no Poly Enka Biphenyl no Kyuchaku Jokyo", POLYMER PREPRINTS, vol. 62, no. 1, 14 May 2013 (2013-05-14), Japan, pages 1245 *

Also Published As

Publication number Publication date
JPWO2015146769A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP5532359B2 (ja) 媒体に含有されるハロゲン化芳香族化合物の選択固着剤及び選択固着方法
Kawano et al. Cyclodextrin polymers as highly effective adsorbents for removal and recovery of polychlorobiphenyl (PCB) contaminants in insulating oil
JP5747379B2 (ja) シクロデキストリンポリマーの製造方法ならびにこれを利用して媒体に含有されるハロゲン化芳香族化合物を選択的に吸着除去する方法
JP4836087B2 (ja) 媒体に含有されるハロゲン化芳香族化合物の選択固着剤及び選択固着方法
Jung et al. Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review
CN107709441B (zh) 多孔环糊精聚合材料及其制备和使用方法
Yilmaz et al. Removal of direct azo dyes and aromatic amines from aqueous solutions using two β-cyclodextrin-based polymers
Alves et al. Development of Spirulina/chitosan foam adsorbent for phenol adsorption
JP2005524724A (ja) 汚染物質除去用のシクロデキストリンをベースとする架橋ポリマー
Aslam et al. A review on covalent organic frameworks as adsorbents for organic pollutants
JP5130454B2 (ja) ヨウ素の吸着および回収方法
Wei et al. Lignin immobilized cyclodextrin composite microspheres with multifunctionalized surface chemistry for non-competitive adsorption of co-existing endocrine disruptors in water
JP5147070B2 (ja) 媒体に含有されるハロゲン化芳香族化合物の選択固着剤及び選択固着方法
JP5569914B2 (ja) シクロデキストリンポリマーを用いた残留性有機汚染物質の選択固着方法
JP2013233473A (ja) シクロデキストリンポリマーを利用して媒体に含有されるハロゲン化芳香族化合物を選択的に吸着除去する方法
JP5725502B2 (ja) シリカ含有シクロデキストリンポリマーを利用して媒体に含有されるハロゲン化芳香族化合物を選択的に吸着除去する方法
JP2010247083A (ja) 媒体に含有されるハロゲン化芳香族化合物の選択固着剤及び選択固着方法
Kawano et al. Adsorption capability of urethane-crosslinked heptakis (2, 6-di-O-methyl)-β-cyclodextrin polymers toward polychlorobiphenyls in nonpolar organic media
JP5983615B2 (ja) アニオン性含フッ素乳化剤の回収方法
WO2015146769A1 (ja) 媒体に含有されるハロゲン化芳香族化合物の低温選択固着方法
JP2016168580A (ja) ハロゲン化芳香族化合物の吸着処理方法
JP2016068014A (ja) 連続的、若しくは逐次的な加圧方法によるハロゲン化芳香族化合物の吸着処理方法
JP2003080225A (ja) シクロデキストリン類固定化吸着剤による土壌浄化方法
JP2015211936A (ja) 媒体に含有されるハロゲン化芳香族化合物の選択固着方法
JP2016137433A (ja) シクロデキストリンポリマー充填量の算出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510283

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15770037

Country of ref document: EP

Kind code of ref document: A1