WO2015146631A1 - 凍結保存細胞からの生細胞の回収方法およびシステム - Google Patents

凍結保存細胞からの生細胞の回収方法およびシステム Download PDF

Info

Publication number
WO2015146631A1
WO2015146631A1 PCT/JP2015/057473 JP2015057473W WO2015146631A1 WO 2015146631 A1 WO2015146631 A1 WO 2015146631A1 JP 2015057473 W JP2015057473 W JP 2015057473W WO 2015146631 A1 WO2015146631 A1 WO 2015146631A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
culture
osmotic pressure
diluent
Prior art date
Application number
PCT/JP2015/057473
Other languages
English (en)
French (fr)
Inventor
頼紘一郎
竹内涼平
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to EP15770397.6A priority Critical patent/EP3101119B1/en
Priority to CN201580015743.9A priority patent/CN106164253A/zh
Priority to SG11201607324XA priority patent/SG11201607324XA/en
Publication of WO2015146631A1 publication Critical patent/WO2015146631A1/ja
Priority to US15/274,678 priority patent/US10806139B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0236Mechanical aspects
    • A01N1/0242Apparatuses, i.e. devices used in the process of preservation of living parts, such as pumps, refrigeration devices or any other devices featuring moving parts and/or temperature controlling components
    • A01N1/0247Apparatuses, i.e. devices used in the process of preservation of living parts, such as pumps, refrigeration devices or any other devices featuring moving parts and/or temperature controlling components for perfusion, i.e. for circulating fluid through organs, blood vessels or other living parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0658Skeletal muscle cells, e.g. myocytes, myotubes, myoblasts

Definitions

  • the present invention relates to a method for recovering living cells with high efficiency when lysing and recovering cryopreserved cells, and a system therefor.
  • autologous cells can be frozen and stored to form three-dimensional structures such as artificial tissues and sheet-like cell cultures, or directly transplanted cells In such a case, the opportunity for thawing such cryopreserved cells to recover autologous cells and using them to perform treatment has increased in recent years.
  • Cells can be stored semi-permanently by freezing in liquid nitrogen, etc., but the cells are damaged by latent heat generated during freezing and ice crystals generated in the cells.
  • cryopreserved cells all cannot be recovered as living cells.
  • After thawing cryopreserved cells it is necessary to culture and proliferate the thawed cells in order to secure a necessary amount of cells.
  • culturing for a long time is laborious, it is desirable to collect as many living cells as possible in order to reduce the labor. For this reason, attempts are generally made to increase the number of living cells by devising freezing and thawing methods to reduce physical damage to cells.
  • an object of the present invention is a method for recovering viable cells with high efficiency by reducing physicochemical damage given to cryopreserved cells when thawing and recovering cryopreserved cells, and therefore, Is to provide a system.
  • a frost damage protective agent When freezing cells, it is usually performed to add a frost damage protective agent to prevent the cells from being physically damaged by ice crystals.
  • An example of what is generally used as a frost damage protective agent is dimethyl sulfoxide (DMSO).
  • DMSO dimethyl sulfoxide
  • DMSO is known to have cytotoxicity at around 37 ° C. and exhibits cytotoxicity at the time when cryopreserved cells are thawed.
  • DMSO reduces this cytotoxicity as much as possible by, for example, rapid dilution. It is common to do so.
  • the present inventors can recover the more rapidly the cell suspension after thawing in order to reduce the cytotoxicity of DMSO.
  • rapid dilution will cause significant damage to cells due to sudden changes in osmotic pressure, and by reducing osmotic load during dilution, the damage to such cells will be reduced.
  • the present invention has been completed.
  • a method for recovering viable cells from cryopreserved cells comprising thawing cryopreserved cells and diluting the thawed cell suspension with a diluent, wherein the maximum osmotic pressure load upon dilution is The method according to claim 1, wherein the method is diluted to 250 mOsm / second or less.
  • the diluent is added so that the maximum osmotic pressure load at the time of dilution is 50 mOsm / second or less.
  • a cryopreserved cell thawing system including: (i) an operation unit that injects a diluent, and (ii) an arithmetic control unit that determines and controls a diluent injection speed of the operation unit. [7] The system according to [6], further including (iii) a measurement unit that measures the osmotic pressure of the liquid. [8] A cell for use in a method for producing a sheet-shaped cell culture without undergoing growth culture, comprising a step of seeding at a density capable of forming the sheet-shaped cell culture without substantially growing the cell, And a culture substrate, wherein the cells are cells collected by the methods [1] to [5].
  • the present invention by controlling the osmotic pressure load, the number of cells dying due to an abrupt osmotic pressure change that has not been noticed in the past is reduced, thereby improving the number of viable cells that can be collected. According to the present invention, since cells can be recovered while maintaining high viability even after freezing and thawing, it is possible to ensure a sufficient number of viable cells even when used without proliferation culture after thawing. It becomes possible.
  • the present invention relates to a method and system for recovering viable cells with high efficiency from cryopreserved cells.
  • the present invention will be described based on preferred embodiments of the present invention.
  • (1) Method for recovering live cells In one aspect, the present invention recovers live cells from cryopreserved cells, comprising thawing cryopreserved cells and diluting the thawed cell suspension with a diluent.
  • the “cryopreserved cell” usually means the cryopreserved cell itself, but may also mean one cryopreserved unit of the cryopreserved cell.
  • the cryopreservation unit means a group of cells that are cryopreserved together as a group, such as one tube. Therefore, in this case, when the “cryopreserved cells” are thawed, a frozen “cell suspension” is obtained.
  • the osmotic pressure load at the time of dilution means the rate of change per unit time of the osmotic pressure that changes by adding a diluent.
  • the osmotic pressure load varies depending on factors such as the addition rate of the diluted solution (added amount per unit time) and the difference in osmotic pressure between the diluted solution and the solution to be diluted (for example, a thawed cell suspension).
  • the “maximum osmotic pressure load” means the maximum value among the osmotic pressure loads that change due to the addition of the diluent between the start of dilution and the end of dilution.
  • the method of the present invention is characterized by diluting a cell suspension obtained by thawing cryopreserved cells and sufficiently slowing the osmotic pressure change at the time of dilution.
  • a cell suspension obtained by thawing cryopreserved cells obtained by thawing cryopreserved cells and sufficiently slowing the osmotic pressure change at the time of dilution.
  • culture medium or the like is added to the thawed cell suspension to reduce the effects of cytotoxic components in the thawed cell suspension.
  • the inventors of the present invention have found that the viability of living cells decreases due to the damage given to the cells due to a sudden change in the osmotic pressure of the suspension when the dilution is rapidly performed in the dilution step.
  • the damage given to the cells is reduced, and the amount of living cells recovered increases.
  • a method for slowing the osmotic pressure change for example, any method known in the art may be used, such as slowing the rate of addition of the diluent, or using a diluent having a small osmotic pressure difference from the cell suspension.
  • it is preferable not to cause damage other than osmotic pressure load such as not using a diluent having cytotoxicity.
  • the diluent that can be used in the present invention is not particularly limited, but a diluent that does not cause physicochemical damage to cells is preferable.
  • the diluent include, but are not limited to, a liquid medium such as DMEM medium, a Hanks balanced salt solution, a buffer solution such as PBS, an isotonic solution such as physiological saline, and distilled water. .
  • other components such as albumin may be added to these.
  • the unit Osm is used as a unit of osmotic pressure
  • 1 Osm means an osmotic pressure equivalent to the osmotic pressure of an ideal solution of 1 mol / L.
  • the osmotic pressure load at the time of dilution is expressed as a change in osmotic pressure per second at room temperature (unit: Osm / second), but any unit can express the magnitude of the osmotic pressure change.
  • Osm / second room temperature
  • any unit can express the magnitude of the osmotic pressure change.
  • the addition rate of a diluent, the increase rate of a volume or a weight, etc. are mentioned.
  • the osmotic pressure load may be obtained by measuring an osmotic pressure change in real time, or by obtaining an osmotic pressure at a certain two time points and calculating an average change per unit time therebetween.
  • a diluent is added at a constant rate in a certain time width, generally, as long as the same diluent is added, the osmotic pressure load at the start of the diluent addition is generally It is considered that the osmotic pressure load decreases as the pressure load reaches its maximum value and the amount of diluent added increases.
  • the osmotic pressure at the start of the diluent addition and the osmotic pressure after a unit time (for example, 1 second in the above example of the present invention) And the difference in osmotic pressure at both time points is taken as the maximum osmotic load at that dilution.
  • any conditions known in the art may be used as conditions for thawing cryopreserved cells.
  • slow thawing tends to cause physical damage to cells due to ice crystals and the like.
  • a water bath set at about 37 ° C. is used to warm and melt at once.
  • any method known in the art as improving the amount of living cells recovered can be used.
  • the cell that can be used in the present method is not particularly limited as long as it can be cryopreserved, and any cell known in the art can be used.
  • cells used for regenerative medicine such as embryonic stem cells, neural stem cells, hematopoietic stem cells, somatic stem cells such as mesenchymal stem cells, blast cells such as fibroblasts, skeletal myoblasts, osteoblasts, etc. Somatic stem cells and blast cells that can be collected and proliferated as autologous cells are preferred, and skeletal myoblasts are most preferred from the viewpoints of usefulness and ease of handling. It is preferable to use cells in the logarithmic growth phase from the viewpoint of the amount of recovered living cells.
  • the amount of cryopreserved cells can vary depending on the dose of the cryopreserved container, but the cell suspension for cryopreservation is usually adjusted to a cell density of about 1 ⁇ 10 5 to 5 ⁇ 10 7 cells / ml. Use one that has been dispensed into a container for frozen cells. Ideally, since all the cryopreserved cells are collected as living cells, the number of cells in the cell suspension before cryopreservation can serve as a population parameter when calculating the number of living cells to be collected.
  • cryopreservation solution any one that is known to be used for cryopreservation of cells in the technical field can be used, and it is sold by many manufacturers.
  • Ordinary cell culture medium may be used, and a medium to which a frost protection agent such as dimethyl sulfoxide (DMSO) or glycerol is added to the medium is usually about 1 to 20%, preferably about 5 to 10%. Also good. Further, 100% serum may be used in place of the medium.
  • DMSO dimethyl sulfoxide
  • glycerol glycerol
  • 100% serum may be used in place of the medium.
  • the container for frozen cells any container usually used in the art may be used. For example, commercially available cryovials, ampoules, cryopreservation bags, and the like are used.
  • ⁇ Dilution of cell suspension> since the cell suspension obtained by thawing can contain a cytotoxic component (such as DMSO), the influence of the cytotoxic component can be reduced by dilution.
  • the method of the present invention is characterized in that the viability of the thawed cells is increased by sufficiently slowing the osmotic pressure change during this dilution, that is, by sufficiently reducing the osmotic pressure load.
  • the threshold value of “sufficiently slow osmotic pressure change” may vary depending on the cells used, the thawing conditions, the temperature, and the like.
  • the maximum osmotic pressure load is about 250 mOsm / second or less. And is preferably about 220 mOsm / sec. More preferably, it is about 100 mOsm / second or less, More preferably, it is about 50 mOsm / second or less.
  • the cells may be damaged due to reasons other than osmotic pressure load.
  • the lower limit value of the maximum osmotic pressure load may not be set, but a normal cryopreservation solution (for example, a DMEM medium containing about 10% DMSO) and a normal dilution solution (for example, When a commercially available DMEM medium or the like is used, it is preferably about 2 mOsm / second or more, more preferably about 20 mOsm / second or more, and further preferably about 40 mOsm / second or more.
  • the maximum osmotic pressure load is 2 mOsm / second to 250 mOsm / second, more preferably 2 mOsm / second to 220 mOsm / second, and further preferably 20 mOsm / second to 100 mOsm / second. From the viewpoint of the amount of viable cells that can be collected, it is most preferably 40 mOsm / second to 50 mOsm / second.
  • dilution may be performed while the thawed cell suspension is kept in a cryopreservation container or may be transferred to another container.
  • the cryopreservation container after transferring the cell suspension is rinsed with a diluent, and this rinse is added to the cell suspension. Addition of such a rinsing solution also corresponds to the dilution of the present invention. Therefore, in one embodiment of the present invention, the diluent includes a rinse that rinses the cryopreservation container after the thawed cell suspension is transferred to another container.
  • the maximum osmotic pressure load is the maximum osmotic pressure load from the start of dilution until it is diluted 3 times, and in another aspect, until it is diluted 2 times. The maximum osmotic load between.
  • the dilution is performed while measuring the osmotic pressure and adjusting the maximum osmotic pressure load.
  • the measurement of osmotic pressure may be performed continuously at all times, or may be performed at specific time intervals such as every second, every 10 seconds, every 30 seconds, and every minute. Any method known in the art can be used as the method for measuring the osmotic pressure, and the method is not limited to this. For example, it can be measured using an osmometer.
  • the present invention relates to a system for thawing cryopreserved cells and recovering living cells with high efficiency.
  • the system of this aspect includes (i) an operation unit that injects a diluent, and (ii) an arithmetic control unit that determines and controls the diluent injection speed of the operation unit.
  • the operating part for injecting the diluent may have any shape as long as it can inject the liquid, but preferably has a shape in which the liquid can be added dropwise.
  • the operation unit can adjust the addition rate of the diluent according to the signal from the calculation control unit.
  • the arithmetic control unit determines and controls the injection rate of the diluent injected from the operation unit.
  • the injection rate may be determined using a numerical value input in advance or may be calculated from the osmotic pressure of the cell suspension at that moment.
  • the present invention is not limited to this. For example, the liquid volume and osmotic pressure of the first cell suspension are input, and the current dilution volume, osmotic pressure and temperature are added. For example, the osmotic pressure and the addition rate are determined, and the change in the addition rate of the diluent is programmed in advance.
  • the system of the present invention may further include a measuring unit for measuring the osmotic pressure of the liquid.
  • the calculation control unit can determine the addition rate based on input information from the measurement unit.
  • the system of the present invention is a system for thawing cryopreserved cells and recovering living cells, and further comprises optional equipment for thawing cryopreserved cells other than the operation unit, the calculation control unit, and the measurement unit. You can do it. Equipment for thawing cryopreserved cells and recovering live cells is known in the art and can be readily understood by those skilled in the art with any equipment.
  • Such equipment include, but are not limited to, for example, a temperature control unit for thawing cryopreserved cells or maintaining a constant temperature in the system, and a cell suspension from a cryopreservation container.
  • a temperature control unit for thawing cryopreserved cells or maintaining a constant temperature in the system
  • a cell suspension from a cryopreservation container.
  • Examples include a pipette section for transferring, a spin section for centrifuging a cell suspension, and a cell count section for counting the number of living cells.
  • the present invention relates to a method for producing a sheet-shaped cell culture using cells recovered by the recovery method of the present invention.
  • sheet-like cell culture refers to a sheet-like culture in which cells are connected to each other.
  • the cells may be linked to each other directly (including those via cell elements such as adhesion molecules) and / or via intervening substances.
  • the intervening substance is not particularly limited as long as it is a substance that can connect cells at least physically (mechanically), and examples thereof include an extracellular matrix.
  • the intervening substance is preferably derived from cells, in particular, derived from the cells constituting the cell culture.
  • the cells are at least physically (mechanically) connected, but may be further functionally, for example, chemically or electrically connected.
  • the sheet-shaped cell culture is composed of one cell layer (single layer) or composed of two or more cell layers (stacked (multilayer), for example, two layers, three layers, four layers) Layer, 5 layers, 6 layers, etc.).
  • the sheet-shaped cell culture preferably does not contain a scaffold (support). Scaffolds may be used in the art to attach cells on and / or within its surface and maintain the physical integrity of sheet-like cell cultures, for example, polyvinylidene difluoride ( PVDF) membranes and the like are known, but the sheet-like cell culture in the present invention may be capable of maintaining its physical integrity without such a scaffold.
  • the sheet-like cell culture is preferably composed only of substances derived from the cells constituting the cell culture and does not contain any other substances.
  • the production method of the present invention includes a step of thawing and collecting cells cryopreserved by the collection method of the present invention, and a step of seeding the collected cells to form a sheet-like cell culture.
  • the production method of the present invention may include a step of washing the cells after the step of thawing and recovering the cryopreserved cells and before the step of forming the sheet-shaped cell culture. Washing of cells can be performed by any known technique. Typically, for example, cells are washed with a washing solution (for example, serum or serum component (serum albumin, etc.), or a culture solution (for example, a medium).
  • the suspension, centrifugation, and recovery cycle may be performed once or a plurality of times (for example, 2, 3, 4, 5 times, etc.). In one aspect of the invention, the step of washing the cells is performed immediately after the step of thawing the frozen cells.
  • the step of forming a sheet-shaped cell culture in the production method of the present invention can be performed by any known method. Such a technique is not limited, and examples thereof include those described in Patent Documents 1 to 3.
  • the step of forming a sheet cell culture can be performed on a culture substrate.
  • the step of forming the sheet-shaped cell culture may include a step of seeding the cells on a culture substrate and a step of forming the seeded cells into a sheet.
  • the production method of the present invention does not include a step of growing cells between the step of thawing and recovering cells and the step of forming a sheet-like cell culture.
  • the culture substrate is not particularly limited as long as cells can form a cell culture thereon, and includes, for example, containers of various materials, solid or semi-solid surfaces in containers, and the like.
  • the container preferably has a structure / material that does not allow permeation of a liquid such as a culture solution. Examples of such materials include, but are not limited to, polyethylene, polypropylene, Teflon (registered trademark), polyethylene terephthalate, polymethyl methacrylate, nylon 6,6, polyvinyl alcohol, cellulose, silicon, polystyrene, glass, polyacrylamide, polydimethyl. Examples include acrylamide and metals (for example, iron, stainless steel, aluminum, copper, brass).
  • the container preferably has at least one flat surface.
  • Examples of such containers include, but are not limited to, cell culture dishes and cell culture bottles. Further, the container may have a solid or semi-solid surface therein. Examples of solid surfaces include plates and containers of various materials as described above, and examples of semi-solid surfaces include gels and soft polymer matrices.
  • the culture substrate may be prepared using the above materials, or commercially available materials may be used. Preferable culture substrates include, but are not limited to, substrates having an adhesive surface suitable for the formation of sheet cell cultures.
  • a substrate having a hydrophilic surface for example, a substrate coated with a hydrophilic compound such as polystyrene subjected to corona discharge treatment, collagen gel or hydrophilic polymer, and further, collagen, fibronectin, laminin , Substrates coated with an extracellular matrix such as vitronectin, proteoglycan and glycosaminoglycan, and cell adhesion factors such as cadherin family, selectin family and integrin family.
  • a hydrophilic compound such as polystyrene subjected to corona discharge treatment, collagen gel or hydrophilic polymer, and further, collagen, fibronectin, laminin , Substrates coated with an extracellular matrix such as vitronectin, proteoglycan and glycosaminoglycan, and cell adhesion factors such as cadherin family, selectin family and integrin family.
  • base materials are commercially available (for example, Corning (R) TC-Treated Culture Dish, Corning,
  • the culture substrate those whose surfaces are coated with various materials may be used in order to give desired properties and characteristics.
  • Various coating materials such as polymers, serum, growth factors, steroids and the like are known, and those skilled in the art can appropriately select them according to the properties and characteristics desired to be given to the culture substrate.
  • a (meth) acrylamide compound for example, N-ethylacrylamide, Nn -Propylacrylamide, Nn-propylmethacrylamide, N-isopropylacrylamide, N-isopropylmethacrylamide, N-cyclopropylacrylamide, N-cyclopropylmethacrylamide, N-ethoxyethylacrylamide, N-ethoxyethylmethacrylamide, N -Tetrahydrofurfuryl acrylamide, N-tetrahydrofurfuryl methacrylamide, etc.), N, N-dialkyl-substituted (meth) acrylamide derivatives (eg, N, N-dimethyl (meth) acrylamide, N, N-ethylmethyl) (Cryl
  • the culture substrate may be coated with serum.
  • “Coated with serum” means a state in which serum components are attached to the surface of the culture substrate, and this state is not limited, for example, by treating the culture substrate with serum. Obtainable. Treatment with serum includes contacting the serum with a culture substrate and, if necessary, incubating for a predetermined period of time.
  • the serum used for coating may be the same kind of serum (same serum) as the seed seeded from the seeded cells or a different kind of serum (heterologous serum), preferably the same kind, more preferably seeded. Serum obtained from a cell-derived individual (autologous serum).
  • the seeding of the cells on the culture substrate can be performed by any known method and condition.
  • the seeding of the cells on the culture substrate may be performed, for example, by injecting a cell suspension obtained by suspending the cells in the culture solution into the culture substrate (culture vessel).
  • a cell suspension obtained by suspending the cells in the culture solution into the culture substrate (culture vessel).
  • an apparatus suitable for the operation of injecting the cell suspension such as a dropper or a pipette, can be used.
  • seeding is performed at a density that allows a sheet-like cell culture to form without substantial growth of the cells.
  • the density at which cells can form a sheet-shaped cell culture without substantial growth means that the sheet-shaped cell culture is expressed when cultured in a non-proliferating medium that does not substantially contain growth factors. It means the cell density that can be formed.
  • cells are seeded on a culture substrate at a density of about 6,500 cells / cm 2 to form a sheet-like cell culture.
  • the seeding density in this embodiment is higher than that in the method using a culture solution containing a growth factor.
  • density is typically about 1.0 ⁇ 10 5 cells / cm 2 or more, for example, for skeletal myoblasts.
  • the upper limit of the seeding density is not particularly limited as long as the formation of the sheet-shaped cell culture is not impaired and the cells do not shift to differentiation, but for skeletal myoblasts, the upper limit of seeding density is less than about 3.4 ⁇ 10 6 cells / cm 2 . is there.
  • the step of forming the seeded cells into a sheet can also be performed by any known method and conditions, but is not limited thereto, and for example, the methods described in Patent Documents 1 to 3 can be used. It is considered that the formation of a cell sheet is achieved when cells adhere to each other via an adhesion molecule or an intercellular adhesion mechanism such as an extracellular matrix. Therefore, the step of forming the seeded cells into a sheet can be achieved, for example, by culturing the cells under conditions that form cell-cell adhesion.
  • the culture solution used in the production method of the present invention is not particularly limited as long as it can maintain the survival of cells, but typically, a culture solution mainly composed of amino acids, vitamins, and electrolytes can be used.
  • the culture solution is based on a basal medium for cell culture.
  • a basal medium is not limited, for example, DMEM, MEM, F12, DMEM / F12, DME, RPMI 1640, MCDB (MCDB102, 104, 107, 120, 131, 153, 199, etc.), L15, SkBM, RITC80 -7 etc. are included.
  • Many of these basal media are commercially available, and their compositions are also known. However, when used in the production method of the present invention, the composition may be appropriately changed according to the cell type and cell conditions.
  • a sheet-like cell culture is formed without substantially growing the cells. This procedure can further enhance the activity of the sheet-like cell culture. “Substantially does not proliferate” means that the cell does not proliferate beyond the range of measurement error, and whether or not the cell has proliferated is, for example, the number of cells at the time of seeding and the sheet-like cell culture. It can be evaluated by comparing the number of cells after formation.
  • the number of cells after the formation of the sheet-shaped cell culture is typically about 300% or less, preferably about 200% or less, more preferably about 150% or less, and still more preferably about the number of cells when seeded 125% or less, particularly preferably about 100% or less.
  • Cell growth depends on various conditions such as the number of seeded cells (seeded cell density), the culture environment (eg, culture time, culture temperature, etc.), the composition of the medium, etc. By adjusting these conditions, The cells can be substantially not proliferated. Among these conditions, by increasing the seeded cell density, a sheet-like cell culture can be obtained in a relatively short time while suppressing cell growth. In the present invention, growth is controlled by the seeded cell density. It is preferable. The density at which cells can form a sheet-shaped cell culture without substantial growth is as described above. Therefore, in a more preferred embodiment, after the step of thawing the cells, the step of forming a sheet is performed under conditions that do not cause the cells to substantially grow without undergoing a further cell growth step.
  • the step of forming a sheet is performed under conditions that do not cause the cells to substantially grow without undergoing a further cell growth step.
  • kits for producing a sheet-like cell culture comprising part or all of the elements used for the production of the above-mentioned sheet-like cell culture, particularly for producing a sheet-like cell culture that does not undergo proliferation culture.
  • the kit of the present invention is not limited, and, for example, cells forming a sheet-like cell culture (for example, cryopreserved cells, cells recovered by the recovery method of the present invention, etc.), culture solutions, culture dishes, instruments, etc.
  • instructions relating to the production method of sheet-like cell culture eg, instructions, instructions, production methods, media that record information on the cryopreserved cell recovery method of the present invention, eg, flexible Disk, CD, DVD, Blu-ray disc, memory card, USB memory, etc.
  • instructions relating to the production method of sheet-like cell culture eg, instructions, instructions, production methods, media that record information on the cryopreserved cell recovery method of the present invention, eg, flexible Disk, CD, DVD, Blu-ray disc, memory card, USB memory, etc.
  • Example 1 Correlation between the rate of addition of diluent and cell viability Thawed cryopreserved cells and recovery of viable cells were performed as follows. The cryotube in which the skeletal myoblasts were cryopreserved was placed in a water bath set at 37 ° C. for 3 to 4 minutes to thaw the cryopreserved cells. The thawed cell suspension was transferred from a 1.8 mL cryotube to a 225 mL conical tube. In order to collect the cells remaining in the cryotube, the cryotube was rinsed with 1 mL of a washing solution (HBSS added with albumin) and added to the cell suspension at a different addition rate.
  • HBSS a washing solution
  • the addition rate of the rinsing liquid is 1.2 mL / min, 4.0 mL / min, 15.0 mL / min, and 360 mL / min or more, respectively.
  • the dripping condition was twice that of the rinse solution.
  • the maximum osmotic pressure load was calculated according to the following formula.
  • the initial osmotic pressure value of the cell suspension was 1400 mOsm, and the osmotic pressure value of the diluted solution was 300 mOsm.
  • the results are shown in the table below. In the table, the volume at the start of dilution represents the amount of the cell suspension at the start of dilution.
  • the average value of the cell viability exceeded 90% in all cases, but only about 87% when not dripping.
  • the maximum osmotic pressure load is about 610 mOsm / sec under the condition where the amount of the cell suspension is reduced (Drip 5).
  • the average value of the cell viability is about 83%. became.
  • the cell viability was the highest in the case of Drop 3 where the maximum osmotic pressure load was about 44 mOsm / sec.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Rheumatology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 凍結保存細胞を融解して回収する際に、生細胞を高効率で回収する方法、およびそのためのシステムを提供する。 凍結保存細胞を融解すること、および融解した細胞懸濁液を希釈液で希釈することを含む凍結保存細胞からの生細胞の回収方法であって、希釈時の最大浸透圧負荷が、250mOsm/秒以下となるように希釈することを特徴とする、前記方法により、上記課題が解決された。

Description

凍結保存細胞からの生細胞の回収方法およびシステム
 本発明は、凍結保存細胞を融解して回収する際に、生細胞を高効率で回収する方法、およびそのためのシステムに関する。
 近年、損傷した組織等の修復のために、種々の細胞を移植する試みが行われている。例えば、狭心症、心筋梗塞などの虚血性心疾患により損傷した心筋組織の修復のために、胎児心筋細胞、骨格筋芽細胞、ES細胞等の利用が試みられている。
 このような試みの一環として、スキャフォールドを利用して形成した細胞構造物や、細胞をシート状に形成したシート状細胞培養物が開発されてきた(例えば、特許文献1~3参照)。
 シート状細胞培養物の治療への応用については、火傷などによる皮膚損傷に対する培養表皮シートの利用、角膜損傷に対する角膜上皮シート状細胞培養物の利用、食道ガン内視鏡的切除に対する口腔粘膜シート状細胞培養物の利用などの検討が進められている。
 このように、再生医療に基づく新たな治療方法の確立とともに、自家細胞を凍結させて保存し、人工組織やシート状細胞培養物などの三次元構造体を形成したり、直接細胞を移植したりする際に、かかる凍結保存細胞を融解して自家細胞を回収し、それを用いて治療を行う機会が近年増加してきている。
 細胞は、液体窒素内などで凍結することにより、半永久的に保存することが可能であるが、凍結する際に発生する潜熱や、細胞内に発生する氷晶などにより細胞がダメージを受けてしまい、凍結保存された細胞を回収する際には全てを生細胞として回収することはできない。通常は凍結保存細胞を融解後、必要な量の細胞を確保するために、融解後の細胞を培養して増殖させる必要がある。しかしながら長時間培養を行うことは手間であるため、かかる手間を削減するためになるべく多くの生細胞を回収することが望まれる。そのため、凍結・融解方法を工夫して細胞への物理的ダメージを減らし、生細胞数を多くする試みが為されるのが一般的である。
特表2007-528755号公報 特開2010-81829号公報 特開2010-226991号公報
 シート状細胞培養物の製造においては、拒否反応の少なさ等の観点から自家細胞を用いることが好ましいが、自家細胞を用いてシート状細胞培養物を製造する場合、細胞の増殖や分化に時間を要するため、製造工程を律速してしまう。そこで、細胞を実質的に増殖させることなくシート状細胞培養物を形成し得る密度で細胞を播種することにより、シート状細胞培養物を形成する方法が提供された(例えば特許文献2など参照)。かかる方法により、従前より高い物理的強度を有するシート状細胞培養物を、従前より短時間で製造することが可能となった。
 この方法でシート状細胞培養物を形成する場合、通常よりも多くの細胞を必要とするため、多くの場合レシピエントから採取した細胞を増殖培養などで増やし、凍結保存させておいたものを用いる。一方、かかる方法を用いてシート状細胞培養物を調製する場合、必要十分な量の細胞を播種しないとシート状細胞培養物が形成されず、増殖培養となったり、細胞が分化したりしてしまう。例えばかかるシート状細胞培養物を移植手術に用いる場合、術式の直前にシート状細胞培養物を調製するが、必要十分な量の細胞が確保できない場合、シート状細胞培養物の調製が間に合わなくなってしまう。したがって通常は、多くの生細胞を回収するため、凍結保存細胞を凍結および/または融解する際に、細胞に物理化学的ダメージを極力与えない工夫がされる。
 したがって本発明の目的は、凍結保存細胞を融解して回収する際に、凍結保存細胞に与えられる物理化学的ダメージを従来よりも低減させることで、生細胞を高効率で回収する方法、およびそのためのシステムを提供することにある。
 細胞を凍結させる際に、細胞が氷晶による物理的ダメージを受けないようにするために通常行われるのが、凍害保護剤の添加である。凍害保護剤として一般的に用いられているものの例としては、ジメチルスルホキシド(DMSO)が挙げられる。しかしながらDMSOは、37℃付近では細胞毒性を有することが知られており、凍結保存細胞を融解した時点で細胞毒性を発揮してしまうことから、例えば手早く希釈するなどにより、この細胞毒性を極力減らすようにするのが一般的である。
 本発明者らは、凍結細胞から高効率に生細胞を回収する方法を検討する中で、DMSOの細胞毒性を低減させるために、融解後の細胞懸濁液を素早く希釈すればするほど回収できる生細胞数が低下するという、従来認識されていたこととは異なる現象に直面した。この現象についてさらに研究するうち、素早く希釈すると急激な浸透圧変化により、細胞に大きなダメージが与えられてしまうこと、希釈の際に浸透圧負荷を抑えることにより、かかる細胞へのダメージを低減し、細胞の生存率を向上できることを見出し、さらに研究を続けた結果、本発明を完成させるに至った。
 すなわち本発明は以下に関する。
[1]凍結保存細胞を融解すること、および融解した細胞懸濁液を希釈液で希釈することを含む凍結保存細胞からの生細胞の回収方法であって、希釈時の最大浸透圧負荷が、250mOsm/秒以下となるように希釈することを特徴とする、前記方法。
[2]希釈時の最大浸透圧負荷が、50mOsm/秒以下となるように希釈液を添加することを特徴とする、[1]の方法。
[3]希釈時の最大浸透圧負荷が、40mOsm/秒~50mOsm/秒となるように希釈液を添加することを特徴とする、[1]または[2]の方法。
[4]細胞が、骨格筋芽細胞である、[1]~[3]の方法。
[5]希釈液が、融解した細胞懸濁液を別の容器に移した後の凍結保存容器をリンスしたリンス液を含む、[1]~[4]の方法。
[6](i)希釈液を注入する動作部、および
(ii)動作部の希釈液注入速度を決定し、制御する演算制御部
を含む、凍結保存細胞融解システム。
[7]さらに
(iii)液体の浸透圧を測定する測定部
を含む、[6]のシステム。
[8]細胞を実質的に増殖させることなくシート状細胞培養物を形成し得る密度で播種する工程を含む、増殖培養を経ずにシート状細胞培養物を製造する方法に用いるための細胞、および培養基材を含むキットであって、細胞が、[1]~[5]の方法により回収された細胞である、前記キット。
 本発明は、浸透圧負荷を制御することにより、従来注目されていなかった急激な浸透圧変化によって死に至る細胞数を減少させ、それにより回収可能な生細胞数を向上させるものである。本発明により、凍結、融解を経ても高いバイアビリティを保ったまま細胞を回収できるため、とくに融解後に増殖培養を経ずに使用する場合であっても、十分な生細胞数を確保することが可能となる。
 本発明は、凍結保存細胞から、高効率で生細胞を回収するための方法およびシステムに関する。
 以下、本発明の好適な実施態様に基づき、本発明を説明する。
(1)生細胞の回収方法
 本発明は、1つの側面において、凍結保存細胞を融解すること、および融解した細胞懸濁液を希釈液で希釈することを含む凍結保存細胞からの生細胞の回収方法であって、希釈時の浸透圧変化を十分緩慢にすることを特徴とする、前記方法に関する。
 本発明において、「凍結保存細胞」とは、通常は凍結保存された細胞そのものを意味するが、凍結保存された細胞の1つの凍結保存単位を意味することもある。この場合、凍結保存単位とは、例えば1つのチューブなど、1群として一緒に凍結保存される細胞群を意味する。したがってこの場合、「凍結保存細胞」を融解した場合、凍結されていた「細胞懸濁液」が得られることとなる。
 本発明において、「希釈時の浸透圧負荷」とは、希釈液を加えたことによって変化する浸透圧の単位時間当たりの変化率を意味する。浸透圧負荷は、希釈液の添加速度(単位時間当たりの添加量)や、希釈液と希釈対象の液(例えば融解した細胞懸濁液など)との浸透圧の差などの因子により変化する。「最大浸透圧負荷」とは、希釈開始から希釈終了までの間に、希釈液の添加により変化する浸透圧負荷のうち、最大の数値を意味する。
 本発明の方法は、凍結保存細胞を融解して得られた細胞懸濁液を希釈し、その希釈時の浸透圧変化を十分緩慢にすることを特徴とするものである。通常凍結保存細胞を融解して生細胞を回収する際、融解した細胞懸濁液中にある細胞毒性成分の影響を低減させるためなどの目的で、融解した細胞懸濁液に培養培地などを加えて希釈する。本発明者らは、かかる希釈の工程において急激に希釈すると、懸濁液の浸透圧の急激な変化により細胞に与えられるダメージにより、生細胞の生存率が低下してしまうことを見出した。
 希釈時の浸透圧変化が十分緩慢であれば、細胞に与えられるダメージが低減され、生細胞の回収量が増大する。浸透圧変化を緩慢にする方法は、例えば希釈液を添加する速度を遅くする、細胞懸濁液と浸透圧差の少ない希釈液を用いるなど、当該技術分野において知られたあらゆる方法を用いてよいが、例えば細胞毒性を有する希釈液を用いないなど、浸透圧負荷以外のダメージを与えないことが好ましい。
 本発明において用い得る希釈液は特に限定されないが、細胞に物理化学的ダメージを与えないものが好ましい。希釈液の例としては、これに限定するものではないが、例えばDMEM培地などの液体培地、ハンクス平衡塩溶液、PBSなどの緩衝液、生理食塩水などの等張液、蒸留水などが挙げられる。また、これらにさらにアルブミンなど他の成分が添加されていてもよい。
 本明細書においては、単位Osmは浸透圧の単位として用いており、1Osmは1mol/Lの理想溶液の有する浸透圧と等価な浸透圧を意味するものである。また、希釈時の浸透圧負荷は、室温条件下における1秒あたりの浸透圧の変化(単位:Osm/秒)として表しているが、浸透圧変化の大きさを表現できる単位であればどんな単位を用いてもよく、これに限定するものではないが、例えば希釈液の添加速度、体積または重量の増加速度などが挙げられる。
 浸透圧負荷は、浸透圧変化をリアルタイムで計測してもよいし、ある2つの時点での浸透圧を求め、その間の単位時間当たりの平均変化として求めてもよい。ある時間幅において一定の速度で希釈液を添加している場合、同一の希釈液を添加している限りにおいては、一般的に、希釈液添加開始時点での浸透圧負荷がその時間幅における浸透圧負荷の最大値となり、希釈液の添加量が増大するにつれて浸透圧負荷は減少していくと考えられる。したがって、ある態様において、一定の速度で同一の希釈液を添加している場合、希釈液添加開始時の浸透圧およびその単位時間後(例えば本発明の上記例においては1秒後)の浸透圧を求め、両時点での浸透圧の差分をその希釈における最大浸透圧負荷とみなす。
 以下本実施態様の方法について、工程ごとに説明する。
<凍結保存細胞の融解>
 本工程において、凍結保存細胞を融解する際の条件としては、当該技術分野において知られたいかなる条件を用いてもよい。一般に、緩慢に融解すると氷晶などにより細胞への物理的ダメージが起こりやすくなるため、通常は例えば約37℃に設定したウォーターバスなどを用いて一気に温めて融解する。本工程においては、当該技術分野において生細胞の回収量を向上させるとして知られた任意の方法を用いることができる。
 本方法に用いることができる細胞は、凍結保存することができる細胞であればとくに限定されず、当該技術分野において知られたあらゆる細胞を用いることができる。好ましくは胚性幹細胞、神経幹細胞、造血幹細胞、間葉系幹細胞などの体性幹細胞、線維芽細胞、骨格筋芽細胞、骨芽細胞などの芽細胞など、再生医療に用いられる細胞が好ましく、中でも自家細胞として採取、増殖が可能な体性幹細胞、芽細胞などが好ましく、有用性や取扱いの簡便さなどの観点から、骨格筋芽細胞が最も好ましい。細胞は、対数増殖期の細胞を用いるのが、生細胞回収量の観点から好ましい。
 凍結保存細胞の量は、凍結保存する容器の用量に応じて変化し得るが、通常凍結保存用の細胞懸濁液は1×10~5×10個/ml程度の細胞密度に調整し、凍結細胞用容器に分注したものを用いる。理想的には凍結保存した全ての細胞が生細胞として回収されるため、凍結保存前の細胞懸濁液中の細胞数が回収される生細胞数を計算する際の母数となり得る。
 凍結保存液としては、当該技術分野において細胞の凍結保存に用いられることが知られた任意のものを用いることができ、多くのメーカーから販売されている。また、通常の細胞培養培地を用いてもよく、培地にジメチルスルホキシド(DMSO)やグリセロールなどの凍害保護剤を、通常は1~20%程度、好ましくは5~10%程度添加したものを用いてもよい。さらに、培地に代えて100%血清を用いてもよい。
 凍結細胞用容器は、当該技術分野において通常使用されている任意のものを用いてよく、例えば市販のクライオバイアル、アンプル、凍結保存バッグ等が用いられる。
<細胞懸濁液の希釈>
 上述のとおり、融解により得られた細胞懸濁液は細胞毒性成分(例えばDMSOなど)を含み得るため、希釈することで該細胞毒性成分の影響を低減することができる。本発明の方法は、この希釈の際に浸透圧変化を十分緩慢にする、すなわち浸透圧負荷を十分小さくすることにより、融解細胞の生存率を増大させることに特徴を有するものである。
 本発明の方法において、「十分緩慢な浸透圧変化」の閾値は、用いる細胞、融解の条件、温度などにより変化し得る。例えば通常の凍結保存液(例えば10%程度のDMSOを含有するDMEM培地など)および通常の希釈液(例えば市販のDMEM培地など)を用いる場合、ある態様において最大浸透圧負荷は約250mOsm/秒以下であり、約220mOsm/秒であることが好ましい。より好ましくは約100mOsm/秒以下であり、さらに好ましくは約50mOsm/秒以下である。
 また、希釈に時間をかけすぎると、例えば細胞懸濁液中の細胞毒性成分の影響で、浸透圧負荷以外の理由によるダメージが細胞に与えられてしまう場合があるため、この観点からは速やかに希釈されることが好ましい。本発明の方法においては、最大浸透圧負荷の下限値は特に設定されなくてもよいが、通常の凍結保存液(例えば10%程度のDMSOを含有するDMEM培地など)および通常の希釈液(例えば市販のDMEM培地など)を用いる場合であれば、約2mOsm/秒以上が好ましく、約20mOsm/秒以上がより好ましく、約40mOsm/秒以上がさらに好ましい。
 したがって本発明の方法の好ましい一態様において、最大浸透圧負荷は、2mOsm/秒~250mOsm/秒であり、より好ましくは2mOsm/秒~220mOsm/秒であり、さらに好ましくは20mOsm/秒~100mOsm/秒であり、回収可能な生細胞量の観点から、最も好ましくは40mOsm/秒~50mOsm/秒である。
 本工程においては、希釈は、融解した細胞懸濁液を凍結保存容器に入れたまま行ってもよいし、別の容器に移して行ってもよい。別の容器に移して行う場合、融解細胞の生存率を上げるため、細胞懸濁液を移した後の凍結保存容器を希釈液でリンスし、このリンス液を細胞懸濁液に添加する。かかるリンス液の添加もまた本発明の希釈に該当する。したがって本発明の一態様において、希釈液は融解した細胞懸濁液を別の容器に移した後の凍結保存容器をリンスしたリンス液を含む。
 上述のとおり、本発明の方法において、融解した細胞懸濁液に最初に添加される希釈液が最大浸透圧負荷に最も影響しやすい。したがって、本発明の一態様において、最大浸透圧負荷は、希釈開始から3倍に希釈されるまでの間の最大浸透圧負荷であり、別の一態様においては、2倍に希釈されるまでの間の最大浸透圧負荷である。
 本発明の好ましい一態様において、希釈は浸透圧を計測して最大浸透圧負荷を調節しながら行われる。浸透圧の計測は常時継続的に行われてもよいし、例えば1秒ごと、10秒ごと、30秒ごと、1分ごとなど、特定の時間間隔で行われてもよい。浸透圧の計測方法は、当該技術分野において知られたあらゆる方法を用いることができ、これに限定するものではないが、例えばオスモメーターなどを用いて計測することができる。
(2)凍結保存細胞融解システム
 本発明は、1つの側面において、凍結保存細胞を融解し、生細胞を高効率で回収するためのシステムに関する。本態様のシステムは、(i)希釈液を注入する動作部、および(ii)動作部の希釈液注入速度を決定し、制御する演算制御部を具備している。
 希釈液を注入する動作部は、液を注入することができる形状であればいかなる形状であってもよいが、好ましくは液を滴下により添加できる形状である。動作部は、演算制御部からの信号にしたがって、希釈液の添加速度を調節することができる。
 演算制御部は、動作部から注入される希釈液の注入速度を決定し、制御するものである。注入速度の決定は、あらかじめ入力された数値を用いてもよいし、その瞬間の細胞懸濁液の浸透圧などから算出してもよい。あらかじめ入力された数値を用いる場合は、これに限定するものではないが、例えば最初の細胞懸濁液の液量および浸透圧を入力し、添加した希釈液の量、浸透圧および温度などから現在の浸透圧や添加速度を決定する、希釈液の添加速度の変化をあらかじめプログラムしておくなどが挙げられる。
 その瞬間の細胞懸濁液の浸透圧から希釈液の添加速度を算出する場合、本発明のシステムはさらに液体の浸透圧を測定する測定部を具備してもよい。測定部を具備する場合、演算制御部は測定部からの入力情報に基づいて添加速度を決定することができる。
 本発明のシステムは凍結保存細胞を融解し、生細胞を回収するためのシステムであり、上記動作部、演算制御部および測定部以外の、凍結保存細胞を融解するための任意の設備をさらに具備していてよい。凍結保存細胞を融解し、生細胞を回収するための設備は当該技術分野において公知であり、当業者であればいかなる設備を具備するかただちに理解できる。かかる設備の例としては、これに限定するものではないが、例えば凍結保存細胞を融解したり、システム内を一定の温度に保ったりするための温度調節部、凍結保存容器から細胞懸濁液を移し替えるためのピペット部、細胞懸濁液を遠心分離するためのスピン部、生細胞数を計数するセルカウント部などが挙げられる。
(3)シート状細胞培養物の製造方法およびキット
 上述のとおり、本発明の回収方法により回収された細胞は、その後増殖培養を経ずに使用する場合において特に好適に用いることができる。したがって本発明は1つの側面において、本発明の回収方法により回収された細胞を用いてシート状細胞培養物を製造する方法に関する。
 本発明において、「シート状細胞培養物」は、細胞が互いに連結してシート状になったものをいう。細胞同士は、直接(接着分子などの細胞要素を介するものを含む)および/または介在物質を介して、互いに連結していてもよい。介在物質としては、細胞同士を少なくとも物理的(機械的)に連結し得る物質であれば特に限定されないが、例えば、細胞外マトリックスなどが挙げられる。介在物質は、好ましくは細胞由来のもの、特に、細胞培養物を構成する細胞に由来するものである。細胞は少なくとも物理的(機械的)に連結されるが、さらに機能的、例えば、化学的、電気的に連結されてもよい。シート状細胞培養物は、1の細胞層から構成されるもの(単層)であっても、2以上の細胞層から構成されるもの(積層(多層)、例えば、2層、3層、4層、5層、6層など)であってもよい。
 シート状細胞培養物は、好ましくはスキャフォールド(支持体)を含まない。スキャフォールドは、その表面上および/またはその内部に細胞を付着させ、シート状細胞培養物の物理的一体性を維持するために当該技術分野において用いられることがあり、例えば、ポリビニリデンジフルオリド(PVDF)製の膜等が知られているが、本発明におけるシート状細胞培養物は、かかるスキャフォールドがなくともその物理的一体性を維持することができるものであってもよい。また、シート状細胞培養物は、好ましくは、細胞培養物を構成する細胞由来の物質のみからなり、それら以外の物質を含まない。
 本発明の製造方法は、本発明の回収方法によって凍結保存した細胞を融解し回収するステップ、および、回収した細胞を播種してシート状細胞培養物を形成するステップを含む。
 本発明の製造方法は、凍結保存した細胞を融解し回収するステップの後、かつ、シート状細胞培養物を形成するステップの前に、細胞を洗浄するステップを含んでいてもよい。細胞の洗浄は、既知の任意の手法により行うことができ、典型的には、例えば、細胞を洗浄液(例えば、血清や血清成分(血清アルブミンなど)を含むもしくは含まない、培養液(例えば、培地等)または生理緩衝液(例えば、PBS、HBSS等)など)に懸濁し、遠心分離し、上清を廃棄し、沈殿した細胞を回収することにより達成されるが、これに限定されない。細胞を洗浄するステップにおいては、かかる懸濁、遠心分離、回収のサイクルを1回または複数回(例えば、2、3、4、5回など)行ってもよい。本発明の一態様において、細胞を洗浄するステップは、凍結した細胞を融解するステップの直後に行われる。
 本発明の製造方法における、シート状細胞培養物を形成するステップは、既知の任意の手法により行うことができる。かかる手法としては、限定されずに、例えば、特許文献1~3などに記載されたものが挙げられる。シート状細胞培養物を形成するステップは、培養基材上で行うことができる。また、シート状細胞培養物を形成するステップは、細胞を培養基材上に播種するステップ、および、播種した細胞をシート化するステップを含んでもよい。一態様において、本発明の製造方法は、細胞を融解・回収するステップとシート状細胞培養物を形成するステップとの間に、細胞を増殖させるステップを含まない。
 培養基材は、細胞がその上で細胞培養物を形成し得るものであれば特に限定されず、例えば、種々の材質の容器、容器中の固形もしくは半固形の表面などを含む。容器は、培養液などの液体を透過させない構造・材料が好ましい。かかる材料としては、限定することなく、例えば、ポリエチレン、ポリプロピレン、テフロン(登録商標)、ポリエチレンテレフタレート、ポリメチルメタクリレート、ナイロン6,6、ポリビニルアルコール、セルロース、シリコン、ポリスチレン、ガラス、ポリアクリルアミド、ポリジメチルアクリルアミド、金属(例えば、鉄、ステンレス、アルミニウム、銅、真鍮)等が挙げられる。また、容器は、少なくとも1つの平坦な面を有することが好ましい。かかる容器の例としては、限定することなく、例えば、細胞培養皿、細胞培養ボトルなどが挙げられる。また、容器は、その内部に固形もしくは半固形の表面を有してもよい。固形の表面としては、上記のごとき種々の材料のプレートや容器などが、半固形の表面としては、ゲル、軟質のポリマーマトリックスなどが挙げられる。培養基材は、上記材料を用いて作製してもよいし、市販のものを利用してもよい。好ましい培養基材としては、限定することなく、例えば、シート状細胞培養物の形成に適した、接着性の表面を有する基材が挙げられる。具体的には、親水性の表面を有する基材、例えば、コロナ放電処理したポリスチレン、コラーゲンゲルや親水性ポリマーなどの親水性化合物を該表面にコーティングした基材、さらには、コラーゲン、フィブロネクチン、ラミニン、ビトロネクチン、プロテオグリカン、グリコサミノグリカンなどの細胞外マトリックスや、カドヘリンファミリー、セレクチンファミリー、インテグリンファミリーなどの細胞接着因子などを表面にコーティングした基材などが挙げられる。また、かかる基材は市販されている(例えば、Corning(R) TC-Treated Culture Dish、Corningなど)。
 培養基材としては、所望の性質・特性などを与えるために、様々な材料で表面をコーティングしたものを用いてもよい。コーティング材料としては、例えばポリマー、血清、成長因子、ステロイド剤など様々なものが知られており、当業者であれば培養基材に与えたい性質・特性に従って適宜選択することが可能である。例えば、温度に依存して基材表面の親水性や疎水性が変化する性質を与えるため、(メタ)アクリルアミド化合物、N-アルキル置換(メタ)アクリルアミド誘導体(例えば、N-エチルアクリルアミド、N-n-プロピルアクリルアミド、N-n-プロピルメタクリルアミド、N-イソプロピルアクリルアミド、N-イソプロピルメタクリルアミド、N-シクロプロピルアクリルアミド、N-シクロプロピルメタクリルアミド、N-エトキシエチルアクリルアミド、N-エトキシエチルメタクリルアミド、N-テトラヒドロフルフリルアクリルアミド、N-テトラヒドロフルフリルメタクリルアミド等)、N,N-ジアルキル置換(メタ)アクリルアミド誘導体(例えば、N,N-ジメチル(メタ)アクリルアミド、N,N-エチルメチルアクリルアミド、N,N-ジエチルアクリルアミド等)、環状基を有する(メタ)アクリルアミド誘導体(例えば、1-(1-オキソ-2-プロペニル)-ピロリジン、1-(1-オキソ-2-プロペニル)-ピペリジン、4-(1-オキソ-2-プロペニル)-モルホリン、1-(1-オキソ-2-メチル-2-プロペニル)-ピロリジン、1-(1-オキソ-2-メチル-2-プロペニル)-ピペリジン、4-(1-オキソ-2-メチル-2-プロペニル)-モルホリン等)、またはビニルエーテル誘導体(例えば、メチルビニルエーテル)のホモポリマーまたはコポリマーからなる温度応答性材料などでコーティングすることができる。温度応答性材料で被覆された培養皿は市販されており(例えば、CellSeed Inc.のUpCell(R))、これらを本発明の製造方法に使用することができる。
 また、より高密度のシート状細胞培養物を形成するため、培養基材は血清でコーティングされていてもよい。「血清でコーティングされている」とは、培養基材の表面に血清成分が付着している状態を意味し、かかる状態は、限定されずに、例えば、培養基材を血清で処理することにより得ることができる。血清による処理は、血清を培養基材に接触させること、および、必要に応じて所定期間インキュベートすることを含む。コーティングに用いる血清は、播種細胞の由来種と同一種の血清(同種血清)であっても異なる種の血清(異種血清)であってもよいが、好ましくは同種血清であり、より好ましくは播種細胞の由来個体から得た血清(自家血清)である。
 培養基材への細胞の播種は、既知の任意の手法および条件で行うことができる。培養基材への細胞の播種は、例えば、細胞を培養液に懸濁した細胞懸濁液を培養基材(培養容器)に注入することにより行ってもよい。細胞懸濁液の注入には、スポイトやピペットなど、細胞懸濁液の注入操作に適した器具を用いることができる。
 本発明の好ましい態様において、播種は、細胞が実質的に増殖することなくシート状細胞培養物を形成し得る密度で行われる。「細胞が実質的に増殖することなくシート状細胞培養物を形成し得る密度」とは、成長因子を実質的に含まない非増殖系の培養液で培養した場合に、シート状細胞培養物を形成することができる細胞密度を意味する。例えば、骨格筋芽細胞の場合、成長因子を含む培養液を用いる方法では、シート状細胞培養物を形成するために、細胞を約6,500個/cmの密度で培養基材に播種するが(例えば、特許文献1参照)、かかる密度の細胞を、成長因子を含まない培養液で培養してもシート状の細胞培養物を形成しない。したがって、本態様における播種密度は、成長因子を含む培養液を用いる手法におけるものよりも高いものである。かかる密度は、具体的には、例えば、骨格筋芽細胞について典型的には約1.0×10個/cm以上である。播種密度の上限は、シート状細胞培養物の形成が損なわれず、細胞が分化に移行しなければ特に制限されないが、骨格筋芽細胞については、約3.4×10個/cm未満である。
 播種した細胞をシート化するステップも、既知の任意の手法および条件で行うことができ、これに限定するものではないが、例えば特許文献1~3に記載の方法などを用いることができる。細胞のシート化は、細胞同士が接着分子や、細胞外マトリックスなどの細胞間接着機構を介して互いに接着することにより達成されると考えられている。したがって、播種した細胞をシート化するステップは、例えば、細胞を、細胞間接着を形成する条件下で培養することにより達成することができる。
 本発明の製造方法に用いる培養液は、細胞の生存を維持できるものであれば特に限定されないが、典型的には、アミノ酸、ビタミン類、電解質を主成分としたものが利用できる。本発明の一態様において、培養液は、細胞培養用の基礎培地をベースにしたものである。かかる基礎培地には、限定されずに、例えば、DMEM、MEM、F12、DMEM/F12、DME、RPMI1640、MCDB(MCDB102、104、107、120、131、153、199など)、L15、SkBM、RITC80-7などが含まれる。これらの基礎培地の多くは市販されており、その組成も公知となっている。しかしながら、本発明の製造方法に用いる場合は、細胞種や細胞条件に応じてその組成を適宜変更してもよい。
 本発明の製造方法の一態様においては、細胞を解凍するステップの後、細胞を実質的に増殖させずに、シート状細胞培養物を形成する。この手順により、シート状細胞培養物の活性をさらに高めることができる。
 細胞を「実質的に増殖させない」とは、細胞を計測誤差の範囲を超えて増殖させないことを意味し、細胞が増殖したか否かは、例えば、播種時の細胞数と、シート状細胞培養物形成後の細胞数とを比較することにより評価することができる。本発明において、シート状細胞培養物形成後の細胞数は、典型的には播種時の細胞数の約300%以下、好ましくは約200%以下、より好ましくは約150%以下、さらに好ましくは約125%以下、特に好ましくは約100%以下である。
 細胞の増殖は、様々な条件、例えば播種細胞数(播種細胞密度)、培養環境(例えば、培養時間、培養温度など)、培地の組成などにより左右されるため、これらの条件を調節することにより、細胞を実質的に増殖させないことができる。これらの条件のうち、播種細胞密度を高めることにより、細胞の増殖を抑えながら、比較的短時間でシート状細胞培養物を得ることができるため、本発明においては播種細胞密度により増殖をコントロールすることが好ましい。細胞が実質的に増殖することなくシート状細胞培養物を形成し得る密度については、すでに上記したとおりである。したがって、より好ましい一態様において、細胞を解凍するステップの後、さらなる細胞増殖ステップを経ることなく、細胞を実質的に増殖させない条件下で、シート化するステップを行う。
 本発明の別の側面において、上記シート状細胞培養物の製造、とくに増殖培養を経ないシート状細胞培養物の製造に用いる一部またはすべての要素を含む、シート状細胞培養物を製造するためのキットに関する。
 本発明のキットは、限定されずに、例えば、シート状細胞培養物を形成する細胞(例えば、凍結保存細胞、本発明の回収方法により回収された細胞等)、培養液、培養皿、器具類(例えば、ピペット、スポイト、ピンセット等)、シート状細胞培養物の製造方法に関する指示(例えば、使用説明書、製造方法や本発明の凍結保存細胞の回収方法に関する情報を記録した媒体、例えば、フレキシブルディスク、CD、DVD、ブルーレイディスク、メモリーカード、USBメモリー等)などを含んでいてもよい。
 以下に本発明の具体的な態様を挙げて本発明をさらに詳細に説明するが、本発明はこれらの具体例に限定されるものではない。
例1.希釈液の添加速度と細胞生存率の相関
 凍結保存細胞の融解および生細胞の回収は次の通りに行った。骨格筋芽細胞を凍結保存したクライオチューブを、37℃に設定したウォーターバスに3~4分間入れ、凍結保存細胞を融解した。融解した細胞懸濁液を、1.8mLクライオチューブから225mLコニカルチューブに移した。またクライオチューブに残存した細胞も回収するために、1mLの洗浄液(HBSSにアルブミンを加えたもの)でクライオチューブをリンスし、それを、添加速度を変えて前記細胞懸濁液に加えた。さらに前記リンス液と同様に添加速度を変えて、コニカルチューブに洗浄液を30mL加え、4℃、240×gで7分間遠心した後上清を廃棄した。再び洗浄液を30mL加えて4℃、240×gで7分間遠心した後上清を廃棄し、洗浄液を5mL加えて細胞懸濁液を得た。
 得られた細胞懸濁液の一部を抜き取り、トリパンブルーに混合した後セルカウントを実施し、セルカウント結果から融解後の生存細胞数を算出し、下記の式にて細胞生存率を算出した。
細胞生存率(%)=融解後の生細胞数/融解後の全細胞数×100
 リンス液の添加速度は、それぞれ1.2mL/分、4.0mL/分、15.0mL/分および360mL/分以上とし、洗浄液の添加速度は滴下条件ではリンス液の添加速度の4倍、非滴下条件ではリンス液の2倍とした。
 最大浸透圧負荷は以下の計算式にしたがって算出した。なお細胞懸濁液の初期浸透圧値としては1400mOsmを、希釈液の浸透圧値として300mOsmを用いた。
Figure JPOXMLDOC01-appb-M000001
 結果を下表に示す。なお表中、希釈開始時容量は、希釈を開始する際の細胞懸濁液の量を表す。
Figure JPOXMLDOC01-appb-T000002
 滴下1~4の4パターンでは、細胞生存率の平均値はいずれの場合も90%を超えたのに対し、滴下しなかった場合は87%程度にとどまった。また滴下して希釈したものでも、細胞懸濁液の量を減らした条件(滴下5)では、最大浸透圧負荷が約610mOsm/秒となり、この場合は細胞生存率の平均値は83%程度となった。また、滴下した中でも最大浸透圧負荷が約44mOsm/秒となった滴下3の場合が最も細胞生存率が高くなった。

Claims (8)

  1.  凍結保存細胞を融解すること、および融解した細胞懸濁液を希釈液で希釈することを含む凍結保存細胞からの生細胞の回収方法であって、希釈時の最大浸透圧負荷が、250mOsm/秒以下となるように希釈することを特徴とする、前記方法。
  2.  希釈時の最大浸透圧負荷が、50mOsm/秒以下となるように希釈液を添加することを特徴とする、請求項1に記載の方法。
  3.  希釈時の最大浸透圧負荷が、40mOsm/秒~50mOsm/秒となるように希釈液を添加することを特徴とする、請求項1または2に記載の方法。
  4.  細胞が、骨格筋芽細胞である、請求項1~3のいずれか一項に記載の方法。
  5.  希釈液が、融解した細胞懸濁液を別の容器に移した後の凍結保存容器をリンスしたリンス液を含む、請求項1~4のいずれか一項に記載の方法。
  6.  (i)希釈液を注入する動作部、および
    (ii)動作部の希釈液注入速度を決定し、制御する演算制御部
    を含む、凍結保存細胞融解システム。
  7.  さらに
    (iii)液体の浸透圧を測定する測定部
    を含む、請求項6に記載のシステム。
  8.  細胞を実質的に増殖させることなくシート状細胞培養物を形成し得る密度で播種する工程を含む、増殖培養を経ずにシート状細胞培養物を製造する方法に用いるための細胞、および培養基材を含むキットであって、細胞が、請求項1~5のいずれか一項に記載の方法により回収された細胞である、前記キット。
PCT/JP2015/057473 2014-03-25 2015-03-13 凍結保存細胞からの生細胞の回収方法およびシステム WO2015146631A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15770397.6A EP3101119B1 (en) 2014-03-25 2015-03-13 Method and system for recovery of living cells from cryopreserved cells
CN201580015743.9A CN106164253A (zh) 2014-03-25 2015-03-13 从冷冻保存细胞中回收活细胞的方法和装置
SG11201607324XA SG11201607324XA (en) 2014-03-25 2015-03-13 Method and system for recovery of living cells from cryopreserved cells
US15/274,678 US10806139B2 (en) 2014-03-25 2016-09-23 Method and system for recovery of living cells from cryopreserved cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-062311 2014-03-25
JP2014062311A JP5802298B2 (ja) 2014-03-25 2014-03-25 凍結保存細胞からの生細胞の回収方法およびシステム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/274,678 Continuation US10806139B2 (en) 2014-03-25 2016-09-23 Method and system for recovery of living cells from cryopreserved cells

Publications (1)

Publication Number Publication Date
WO2015146631A1 true WO2015146631A1 (ja) 2015-10-01

Family

ID=54195154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057473 WO2015146631A1 (ja) 2014-03-25 2015-03-13 凍結保存細胞からの生細胞の回収方法およびシステム

Country Status (6)

Country Link
US (1) US10806139B2 (ja)
EP (1) EP3101119B1 (ja)
JP (1) JP5802298B2 (ja)
CN (1) CN106164253A (ja)
SG (1) SG11201607324XA (ja)
WO (1) WO2015146631A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065971A1 (ja) * 2019-09-30 2021-04-08 テルモ株式会社 凍結保存細胞の希釈用緩衝液
EP3741842A4 (en) * 2018-09-27 2021-04-21 TERUMO Kabushiki Kaisha CELL CRYOPRESERVATION METHOD
JP2023109846A (ja) * 2020-03-31 2023-08-08 Cell Exosome Therapeutics株式会社 細胞の保存方法
US12018280B2 (en) * 2016-03-18 2024-06-25 Kyoto University Method for freezing aggregates of pluripotent stem cell-derived cardiomyocytes

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6486246B2 (ja) * 2015-08-28 2019-03-20 テルモ株式会社 凍結保存細胞からの生細胞の回収方法およびシステム
US20210084893A1 (en) * 2016-04-27 2021-03-25 Hiroshima University Frozen cell cluster and method for producing frozen cell cluster
JP2019146487A (ja) * 2016-06-16 2019-09-05 株式会社ワンビシアーカイブズ クライオボックス運搬および保管用容器
JP7291509B2 (ja) * 2019-03-25 2023-06-15 テルモ株式会社 細胞懸濁液を希釈するためのデバイスおよび方法
EP4046642A4 (en) * 2019-10-17 2022-12-21 TERUMO Kabushiki Kaisha CELL CULTURE FOR THE TREATMENT OF INFLAMMATORY DISEASES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115058A (ja) * 2009-12-01 2011-06-16 Terumo Corp 単離されたシート状細胞培養物の製造方法
WO2012032853A1 (ja) * 2010-09-08 2012-03-15 浜松ホトニクス株式会社 藻類細胞の調製方法及び化学物質の毒性評価用キット

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE109507T1 (de) * 1989-04-28 1994-08-15 Miles Inc Grossfermenter-inokulation mit gefrorenen zellen.
US5789147A (en) * 1994-12-05 1998-08-04 New York Blood Center, Inc. Method for concentrating white cells from whole blood by adding a red cell sedimentation reagent to whole anticoagulated blood
EP0967928A4 (en) * 1997-03-07 2003-05-21 Thermogenesis Corp METHOD AND DEVICE FOR CHANGING THE OSMOTIC PRESSURE OF WHITE STEM CELLS PRESERVED
US6267925B1 (en) 1998-12-07 2001-07-31 Haemonetics Corporation Method for cryopreservation and recovery of red blood cells
JP4943844B2 (ja) 2003-08-01 2012-05-30 株式会社セルシード 三次元組織構造体
JP5378743B2 (ja) * 2008-09-30 2013-12-25 テルモ株式会社 医療用細胞シートの製造方法
JP5436905B2 (ja) 2009-03-26 2014-03-05 テルモ株式会社 シート状細胞培養物の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115058A (ja) * 2009-12-01 2011-06-16 Terumo Corp 単離されたシート状細胞培養物の製造方法
WO2012032853A1 (ja) * 2010-09-08 2012-03-15 浜松ホトニクス株式会社 藻類細胞の調製方法及び化学物質の毒性評価用キット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUJIRO HAYASHI ET AL.: "Saibo no Kaito to Shogai no Kijo", DAI 32 KAI NATIONAL HEAT TRANSFER SYMPOSIUM OF JAPAN KOEN RONBUNSHU, vol. I, 1995, pages 95 - 96, XP008185208 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12018280B2 (en) * 2016-03-18 2024-06-25 Kyoto University Method for freezing aggregates of pluripotent stem cell-derived cardiomyocytes
EP3741842A4 (en) * 2018-09-27 2021-04-21 TERUMO Kabushiki Kaisha CELL CRYOPRESERVATION METHOD
WO2021065971A1 (ja) * 2019-09-30 2021-04-08 テルモ株式会社 凍結保存細胞の希釈用緩衝液
JP2023109846A (ja) * 2020-03-31 2023-08-08 Cell Exosome Therapeutics株式会社 細胞の保存方法
JP7546976B2 (ja) 2020-03-31 2024-09-09 Cell Exosome Therapeutics株式会社 細胞の保存方法
JP7546968B2 (ja) 2020-03-31 2024-09-09 Cell Exosome Therapeutics株式会社 細胞の保存方法

Also Published As

Publication number Publication date
US20170006857A1 (en) 2017-01-12
EP3101119B1 (en) 2021-05-05
SG11201607324XA (en) 2016-10-28
JP5802298B2 (ja) 2015-10-28
JP2015181433A (ja) 2015-10-22
CN106164253A (zh) 2016-11-23
EP3101119A1 (en) 2016-12-07
EP3101119A4 (en) 2017-08-23
US10806139B2 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2015146631A1 (ja) 凍結保存細胞からの生細胞の回収方法およびシステム
JP6451023B2 (ja) 細胞培養基材
WO2017010544A1 (ja) 多能性幹細胞または脂肪組織もしくは骨髄由来の間葉系幹細胞由来の心筋細胞の凍結保存方法
WO2016167332A1 (ja) シート状細胞培養物の凍結保存方法
JP5702060B2 (ja) 単離されたシート状細胞培養物の製造方法
US20200362310A1 (en) Method for producing sheet-shaped cell culture
JP7282232B2 (ja) 接着状態の細胞培養物の改変方法
JP2009254271A (ja) 心筋細胞の誘導方法
JP7256818B2 (ja) 心筋細胞のシート化方法
WO2018116902A1 (ja) 細胞培養基材
JP6670040B2 (ja) シート状細胞培養物の製造方法
WO2018168983A1 (ja) シート状細胞培養物の製造方法
JP6130868B2 (ja) 単離されたシート状細胞培養物の製造方法
JPWO2015129764A1 (ja) 目的細胞の純度が高い細胞集団の製造方法
WO2016152592A1 (ja) シート状細胞培養物の評価方法
JP2021052661A (ja) 多能性幹細胞を含む凍結保存細胞の希釈用緩衝液
WO2020067435A1 (ja) 多能性幹細胞由来細胞のシート化方法
WO2020067436A1 (ja) 多能性幹細胞由来細胞の移植片形成方法
JP2021052663A (ja) 多能性幹細胞由来の分化誘導細胞を含有するシート状物の作製方法
JP6486246B2 (ja) 凍結保存細胞からの生細胞の回収方法およびシステム
JP6272647B2 (ja) シート状細胞培養物の製造方法
JP2015062348A (ja) 細胞からエンドトキシンを除去する方法
WO2021065971A1 (ja) 凍結保存細胞の希釈用緩衝液
WO2021065970A1 (ja) 体細胞を含有するシート状物の作製方法
JP6574274B2 (ja) シート状細胞培養物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770397

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015770397

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015770397

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE