WO2015146286A1 - 湿分分離加熱器 - Google Patents

湿分分離加熱器 Download PDF

Info

Publication number
WO2015146286A1
WO2015146286A1 PCT/JP2015/052861 JP2015052861W WO2015146286A1 WO 2015146286 A1 WO2015146286 A1 WO 2015146286A1 JP 2015052861 W JP2015052861 W JP 2015052861W WO 2015146286 A1 WO2015146286 A1 WO 2015146286A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
separator
moisture
steam
heating tube
Prior art date
Application number
PCT/JP2015/052861
Other languages
English (en)
French (fr)
Inventor
一作 藤田
賢 平岡
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to PL15768270.9T priority Critical patent/PL3109545T3/pl
Priority to CN201580015913.3A priority patent/CN106133442B/zh
Priority to EP15768270.9A priority patent/EP3109545B1/en
Publication of WO2015146286A1 publication Critical patent/WO2015146286A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • F22B37/268Steam-separating arrangements specially adapted for steam generators of nuclear power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/223Inter-stage moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • F22B37/266Separator reheaters
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the present disclosure relates to a moisture separator / heater that removes moisture from steam, and particularly to a moisture separator / heater applied to a nuclear power plant or the like.
  • a moisture separator / heater applied to a conventional nuclear power plant is provided on both sides in the width direction of a cylindrical casing extending in the horizontal direction, as described in Patent Document 1, for example.
  • a pair of manifolds extending in the longitudinal direction, a pair of separators disposed below the manifolds, extending in the longitudinal direction of the casing and standing up and down, and formed between the pair of separators, and passed through the pair of separators A steam collecting part where the steam collects, and a heater that is disposed above the steam collecting part and that heats the steam that has passed through the separator.
  • the heater is provided with a heating tube group configured such that the heating tube extends in the axial direction of the casing and has a plurality of upper and lower stages.
  • This heating tube group has a gap through which steam can flow between adjacent heating tubes.
  • the pressure loss is large when the steam passes through the gap, the cycle efficiency of the nuclear power plant decreases. To do. For this reason, it is necessary to reduce the pressure loss of the heater.
  • the width of the heating tube group is widened, the area passing through the heating tube group is widened and the pressure loss can be reduced.
  • the width of the heating tube group is increased, the manifolds provided on both sides of the heating tube group are narrowed. Since it is necessary to install the separator at a position that protrudes outside the casing beyond the inner surface of the casing, it is difficult to install the separator. For this reason, proposals have been made to enlarge the casing or increase the number of conventional moisture separation heaters, but this proposal causes an increase in cost.
  • Japan is an area where earthquakes occur frequently, the development of a moisture separator / heater with a structure that is difficult to damage when an earthquake occurs is desired.
  • At least some embodiments of the present invention provide a moisture separation heater that suppresses an increase in cost, is less likely to be damaged when an earthquake occurs, and can reduce the pressure loss of the heater.
  • the purpose is to do.
  • a moisture separator heater comprises: A cylindrical casing extending in the horizontal direction and closed at both ends; A manifold chamber provided in the casing and configured to flow steam in an axial direction of the casing; A separator provided in the casing and disposed in the longitudinal direction of the casing along the manifold chamber to remove moisture from the steam; A heating tube group provided in the casing and disposed on the downstream side of the steam flowing out from the separator, and The heating tube group is formed in a polygonal shape in a side view, and the longitudinal piece of the heating tube group extends along the axial direction of the casing, and the short piece of the heating tube group extends in the vertical direction. Configured to be.
  • the longitudinal piece of the heating tube group extends in the axial direction of the casing, and the short piece of the heating tube group extends in the vertical direction.
  • the manifold chamber is configured to allow steam to flow in the axial direction of the casing, and the separator is disposed in the longitudinal direction of the casing along the manifold chamber. It is not necessary to enlarge the casing, and the pressure loss of the heating tube group can be reduced. Further, since the casing extends in the horizontal direction, the position of the center of gravity of the moisture separation heater can be lowered as compared with extending in the vertical direction, and damage to the moisture separation heater when an earthquake occurs can be suppressed. Therefore, it is possible to realize a moisture separation heater that can suppress an increase in cost, is less likely to be damaged when an earthquake occurs, and can reduce the pressure loss of the heater.
  • the separator is formed in a plate shape, extends in the vertical direction, and is arranged to face the side surface of the heating tube group.
  • the separator since the separator is formed in a plate shape and extends in the vertical direction and is disposed to face the side surface of the heating tube group, the separator can be disposed close to the side of the heating tube group. For this reason, it is not necessary to enlarge the casing, and an increase in cost can be suppressed. Moreover, since the vapor
  • the separator is configured to include an inflow adjusting unit that covers a part of the side surface on the side where the steam flows and adjusts the inflow amount of the steam that flows into the separator.
  • the separator includes an inflow adjusting portion that covers a part of the side surface on the steam inflow side and adjusts the inflow amount of the steam inflowing into the separator, so that the steam supplied from the manifold chamber to the separator side When there is a static pressure distribution that increases on the far side in the longitudinal direction of the chamber, it is possible to supply a uniform flow rate of steam to the separator side.
  • the inflow adjusting portion includes a plurality of inflow adjusting members that extend in the vertical direction and cover the side surface of the separator, and a frame body portion that supports the plurality of inflow adjusting members, The plurality of inflow adjusting members are configured to be arranged so that an installation interval of the adjacent inflow adjusting members is narrowed from the upstream side to the downstream side of the steam flowing along the axial direction of the casing. .
  • the plurality of inflow adjusting members of the inflow adjusting portion are arranged so that the installation interval of the adjacent inflow adjusting members from the upstream side to the downstream side of the steam flowing along the axial direction of the casing is narrowed. Therefore, when there is a static pressure distribution in which the steam supplied from the manifold chamber to the separator side becomes larger on the far side in the longitudinal direction of the manifold chamber, a uniform flow rate of steam can be reliably supplied to the separator side. Moreover, since the inflow adjusting part has a simple structure having a frame body part and an inflow adjusting member, an increase in cost can be suppressed.
  • the inflow adjusting member is configured to be provided with moisture removing means capable of removing moisture of steam flowing along the axial direction of the casing.
  • the moisture removing means is disposed on the upstream side of the separator, it is possible to reduce the burden of moisture removal work by the separator.
  • the moisture removal means is configured to include a moisture removal flow path for allowing the vapor flowing out of the manifold chamber to flow in a vortex.
  • a moisture separation heater that suppresses an increase in cost, is less likely to be damaged when an earthquake occurs, and can reduce the pressure loss of the heater.
  • FIG. 4A is an internal structural view in a plan view showing a configuration example of a moisture separation heater
  • FIG. 2B is a moisture separation heater corresponding to the view taken along the line II-II in FIG.
  • FIG. It is an internal structure figure in planar view which shows the structural example of the moisture separation heater which can inhale a wet vapor
  • FIG. 6 is a cross-sectional view of a separator corresponding to the VV arrow of FIG.
  • FIG. 4A is a perspective view of the moisture removing unit according to the embodiment
  • FIG. 4B is an explanatory diagram for explaining the operation of the moisture removing unit.
  • a main steam 3 generated by a steam generator 2 works as a high-pressure turbine 4 and then becomes wet steam 5 to form a high-pressure turbine. 4 and enters the moisture separator 20 as wet steam 5.
  • the wet steam 5 is separated from the moisture contained in the steam by the moisture separator / heater 20 and then heated / heated steam 6 flows from the inlet of the low-pressure turbine 7. After working in the turbine 7, the water is converted into water in the condenser 8, and then supplied to the steam generator 2 through the water heater 10 by the pump 9.
  • the moisture separator / heater 20 installed in the power plant 1 of this nuclear power plant extends in the horizontal direction and is closed at both ends as shown in FIG.
  • a heating tube group 50 provided in the casing 21 and disposed on the downstream side of the steam flowing out from the separator 40.
  • the casing 21 is formed in a cylindrical shape and extends in the horizontal direction, and the axial direction of the main body barrel 22. It has a pair of side plate left 24L and side plate right 24R connected to both ends. The side plate part left 24L and the side plate part right 24R connected to the axially opposite ends of the main body barrel 22 close both ends of the main body barrel 22, and the space 21a in the casing 21 is airtight.
  • a plurality (three in this embodiment) of discharge ports 22b for discharging steam are provided in the upper side wall 22a of the main body barrel 22 with a predetermined interval in the axial direction of the main body barrel 22.
  • the left side plate portion 24L and the right side plate portion 24R are formed in a hollow hemispherical shell shape, and are connected to the main body 22 so that the top side faces the outside in the axial direction of the casing 21.
  • An inlet 24R1 is provided at the top of the right side plate portion 24R to allow steam to flow in.
  • the manifold chamber 30 extends from one end in the axial direction of the casing 21 to the other end in the space 21a on the front side of the main body barrel 22.
  • the manifold chamber 30 includes a side wall 22 a that forms the front side of the main body barrel 22, a partition slope 31 provided in the main body barrel 22, and a pair of end plates provided at both axial ends of the main body barrel 22. It has a left 32L and an end plate right 32R.
  • the partition slope 31 is formed in a rectangular shape in a side view, and is disposed on the front side in the main body barrel 22.
  • the partition slope 31 extends from one end in the longitudinal direction of the main body barrel 22 to the other end, and extends in the vertical direction. Is fixed to the inner surface of the body barrel 22.
  • the end plate left 32 ⁇ / b> L and the end plate right 32 ⁇ / b> R are formed in a semicircular shape when viewed from the side, and are connected to the inner surface of the side wall 22 a at one end and the other end of the main body barrel 22 and extend radially inward of the casing 21.
  • the other end portion of the manifold chamber 30 is closed by the end plate left 32L. Further, an opening is formed in the end plate right 32R, and communicates with the space 21a and the inflow port 24R1 in the side plate right 24R through the opening.
  • the partition slope 31 forming the manifold chamber 30 is provided with a plurality of slits with a predetermined interval in the axial direction of the casing 21. For this reason, the vapor
  • the separator 40 is disposed along the partition slope 31 of the manifold chamber 30 and is disposed over the entire length of the main body barrel 22 in the axial direction (longitudinal direction).
  • the separator 40 separates and removes moisture when the vapor passes.
  • the separator 40 may be one that separates moisture of steam using inertia.
  • the separator 40 has a plate shape and is formed in a polygonal shape extending in the axial direction of the main body barrel 22 in a side view, and in the illustrated embodiment, a rectangular shape.
  • the separator 40 is fixedly held in the body barrel 22 with its longitudinal piece 40a extending along the partition slope 31 of the manifold chamber 30 and the short piece 40b extending in the vertical direction.
  • the steam from which moisture has been removed by the separator 40 flows out of the separator 40.
  • the separated moisture is discharged to the outside through a drain 26 provided at the bottom of the main body barrel 22.
  • the heating tube group 50 includes a heating tube 51.
  • a heating medium serving as a heating source flows through the heating tube 51, and steam to be heated, that is, steam from which moisture has been removed by the separator 40, flows outside the heating tube 51.
  • the steam is heat-exchanged in the heating pipe 51, heated up, and discharged from the discharge port 22b.
  • the heating tube 51 extends in the axial direction of the casing 21, and the heating tube group 50 is arranged with a plurality of stages above and below.
  • the heating tube group 50 is arranged in a staggered manner in a direction orthogonal to the axial direction of the casing 21 (hereinafter referred to as “width direction”).
  • the width B of the heating tube group 50 is 1/5 or less of the axial length L of the casing 21 of the heating tube group 50. For this reason, the width B of the heating tube group 50 is thinner than the axial length L.
  • the heating tube group 50 has a thin width with respect to the axial length of the casing 21 and is thus formed in a plate-like rectangle. Further, the heating tube group 50 has a longitudinal piece 50 a extending along the separator 40 over the entire length of the main body barrel 22, and a short direction piece 50 b extending in the vertical direction within the main body 22. It is held fixed. For this reason, the separator 40 is arrange
  • the steam 5 for example, 350 ° C.
  • the wet steam 5 enters the manifold chamber 30 through the space 21a in the casing 21.
  • the wet steam 5 entering the manifold chamber 30 flows along the axial direction of the casing 21 and flows out to the separator 40 side through the slits of the manifold chamber 30.
  • the heating tube group 50 of the moisture separation heater 20 is formed in a polygonal shape extending along the axial direction of the main body barrel 22 in a side view, in the illustrated embodiment, a rectangular shape, and extends in the horizontal direction.
  • the longitudinal piece 50 a of the heating tube group 50 extends along the axial direction of the casing 21, and the short-side piece 50 b of the heating tube group 50 extends in the vertical direction.
  • the width of the heating tube group 50 is thin with respect to the axial length. For this reason, the pressure loss at the time of a vapor
  • the heating tube group 50 and the separator 40 extend in the axial direction of the casing 21 and stand upright in the vertical direction, and the manifold chamber 30 is arranged on one side in the width direction of the main body body portion 22 of the casing 21, thereby There is no need to increase the body diameter of 21. Therefore, it is possible to realize the moisture separation heater 20 capable of reducing the pressure loss of the steam flowing through the heating tube group 50 without increasing the shape of the main body barrel 22 in a state where the casing 21 is installed sideways.
  • the casing 21 which accommodates the heating tube group 50 and the separator 40 extends in the lateral direction, the gravity center position of the moisture separation heater 20 can be lowered. Therefore, the moisture separation heater 20 can be stabilized in the installed state, and the risk of damage during an earthquake can be suppressed.
  • the inflow port 24R1 for allowing the wet steam to flow into the casing 21 is provided at one end portion in the longitudinal direction of the casing 21 is shown, but the position of the inflow port 24R1 is one end portion in the longitudinal direction of the casing 21. It is not restricted to it, You may provide in a longitudinal direction other end part, a longitudinal direction both sides (refer FIG. 3), and a longitudinal direction center (refer FIG. 4).
  • the inlet is provided on both sides of the casing 21 in the longitudinal direction
  • the inlet 24L1 is provided at the other longitudinal end of the casing 21, as shown in FIG. Since the other structure is the same as that shown in FIG. 2A, description thereof is omitted.
  • the inlet 23 is provided at a position in the center of the casing 21 in the longitudinal direction and communicating with the manifold chamber 30 as shown in FIG. 4. Since the other structure is the same as that shown in FIG. 2A, description thereof is omitted.
  • the inflow adjusting portion 60 is provided on the surface of the separator 40 facing the manifold chamber 30 side.
  • the steam supplied to the separator 40 is supplied from the manifold chamber 30 as shown in FIG. 2A, and the manifold chamber 30 extends in the axial direction (longitudinal direction) of the casing 21.
  • the manifold chamber 30 has a static pressure distribution in the longitudinal direction, and this static pressure distribution is larger on the far side in the longitudinal direction of the manifold chamber 30 than on the near side. Therefore, it is necessary to make the flow rate of the steam supplied to the separator 40 uniform. Therefore, an inflow adjusting portion 60 is provided along the surface of the separator 40 facing the manifold chamber 30 side.
  • the inflow adjusting portion 60 includes a frame body portion 61 formed in a lattice shape, and inflow adjusting members 67a, 67b, 67c attached to the frame body portion 61.
  • the frame body portion 61 is held so as to face the surface 40c of the separator 40 facing the manifold chamber 30 side.
  • the frame body portion 61 is arranged in a step shape in the vertical direction and extends in a horizontal direction so as to connect a plurality of (four in the present embodiment) horizontal members 62 and the plurality of horizontal members 62 in the vertical direction.
  • a plurality of (six in this embodiment) vertical members 63 arranged at a predetermined interval in the width direction.
  • the plurality of transverse members 62 have the same length and are arranged on the same plane.
  • the plurality of vertical members 63 are arranged with a predetermined distance in the longitudinal direction intermediate portion of the horizontal member 62.
  • the plurality of vertical members 63 are disposed on the same plane as the plurality of horizontal members 62 and are integrally connected at a portion intersecting with the horizontal members 62.
  • the horizontal member 62 and the vertical member 63 form a plurality of openings 64a, 64b, and 64c having substantially the same opening area. In the present embodiment, nine openings 64a, 64b, and 64c are formed in a lattice shape.
  • the upper, middle, and lower three openings 64a arranged on the upstream side of the wet steam 5 flowing through the manifold chamber 30 have a plurality of (this embodiment) extending vertically so as to block a part of these openings 64a. 2) inflow adjusting members 67a are provided.
  • the upper, middle, and lower three openings 64b arranged on the center side of the inflow adjusting section 60 have a plurality of (in this embodiment, vertically extending so as to block a part of these openings 64b.
  • Three) inflow adjusting members 67b are provided.
  • the upper, middle, and lower three openings 64c arranged on the downstream side of the wet steam 5 flowing through the manifold chamber 30 are provided with a plurality of (this book) extending in the vertical direction so as to block a part of these openings 64.
  • four inflow adjusting members 67c are provided.
  • the inflow adjusting members 67a, 67b, and 67c are connected at a position that intersects the lateral member 62.
  • moisture removing means 70 is provided on the surface 67 d of the inflow adjusting member 67 opposite to the separator 40 side.
  • the moisture removing means 70 is provided on each of the plurality of inflow adjusting members 67a, 67b, 67c along the longitudinal direction of the inflow adjusting members 67a, 67b, 67c.
  • the moisture removing means 70 has a spiral moisture removing channel 70a formed inside by bending a sheet metal or the like in multiple stages.
  • the moisture removal channel 70 a has an opening 70 b that is opened in a rectangular shape on the surface on one side in the short direction of the moisture removal means 70.
  • the moisture removing means 70 when the wet steam 5 is supplied from the manifold chamber 30 (see FIG. 2A), a part of the wet steam 5 Passes through the moisture removing means 70 and is supplied to the separator 40 (see FIG. 2A). The remaining wet steam 5 flows through the opening 70b of the moisture removing means 70 into the spiral moisture removing channel 70a.
  • the centrifugal force acts particularly on the bent portion of the moisture removal means 70, and the moisture of the wet steam 5 is captured. For this reason, the moisture of the wet steam 5 can be removed, and the burden of the moisture removal work by the separator 40 can be reduced.
  • the steam that has flowed into the moisture removing means 70 and from which moisture has been removed is discharged from the openings at both ends in the longitudinal direction of the moisture removing means 70.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

 湿分分離加熱器は、水平方向に延びて両端部が閉塞された筒状のケーシングと、前記ケーシング内に設けられ、該ケーシングの軸方向に蒸気を通流するマニホールド室と、前記ケーシング内に設けられ、前記マニホールド室に沿って前記ケーシングの長手方向に配置されて蒸気の湿分を除去するセパレータと、前記ケーシング内に設けられ、前記セパレータから流出する蒸気の下流側に配置された加熱管群と、を備え、前記加熱管群は、側面視において多角形状に形成され、該加熱管群の長手方向片が前記ケーシングの軸方向に沿って延びるとともに、前記加熱管群の短手方向片が垂直方向に延びている。

Description

湿分分離加熱器
 本開示は、蒸気から湿分を除去する湿分分離加熱器に関するものであり、特に、原子力発電プラントなどに適用される湿分分離加熱器に係る。
 従来の原子力発電プラントなどに適用される湿分分離加熱器は、例えば、特許文献1に記載されているように、水平方向に延びる円筒状のケーシング内の幅方向両側に設けられて、ケーシングの長手方向に延びる一対のマニホールドと、各マニホールドの下方に配置され、ケーシングの長手方向に延びるとともに上下方向に立設された一対のセパレータと、一対のセパレータ間に形成され、一対のセパレータを通過した蒸気が集まる蒸気集合部と、蒸気集合部の上方に配置され、セパレータを通過した蒸気を加熱する加熱器と、を備えている。
 この従来の湿分分離加熱器は、高圧タービンからの湿り蒸気がケーシングに流入すると、この湿り蒸気は、マニホールド内を流れるとともに、マニホールドに設けられたスリットを介してセパレータ側へ流出する。セパレータ側に流出した湿り蒸気は、セパレータの通過時に湿分を除去して蒸気集合部に合流する。蒸気集合部に合流した蒸気は加熱器の通流時に加熱されて昇温し、ケーシングに設けられた排気口から排出される。
 加熱器には、加熱管がケーシングの軸方向に延びるとともに、上下に複数段を有して構成された加熱管群を備えている。この加熱管群は、隣接する加熱管の間に蒸気が通流可能な隙間が設けられているが、蒸気が隙間を通過する際に、圧力損失が大きいと、原子力発電プラントのサイクル効率が低下する。このため、加熱器の圧力損失を低減する必要が生じる。
特許第3944227号
 そこで、加熱管群の幅を広げると、加熱管群を通過する面積が広がって圧力損失を低減することができる。しかしながら、加熱管群の幅を広げると、加熱管群の両側に設けられたマニホールドが狭くなる。セパレータの設置位置はケーシングの内面を超えたケーシングの外側にはみ出した位置に設置する必要が生じるので、このセパレータの設置が困難になる。このため、ケーシングを大型化したり、従来の湿分分離加熱器の台数を増やしたりする提案が出されたが、この提案では、コストの増大を招く。
 また、我が国は地震の発生が多い地域であるので、地震の発生時に損傷しにくい構造の湿分分離加熱器の開発が望まれている。
 上述の事情に鑑みて、本発明の少なくとも幾つかの実施形態は、コストの増大を抑え、地震の発生時に損傷する虞が少なく、加熱器の圧力損失を低減可能な湿分分離加熱器を提供することを目的とする。
 本発明の幾つかの実施形態に係わる湿分分離加熱器は、
 水平方向に延びて両端部が閉塞された筒状のケーシングと、
 前記ケーシング内に設けられ、該ケーシングの軸方向に蒸気を通流するマニホールド室と、
 前記ケーシング内に設けられ、前記マニホールド室に沿って前記ケーシングの長手方向に配置されて蒸気の湿分を除去するセパレータと、
 前記ケーシング内に設けられ、前記セパレータから流出する蒸気の下流側に配置される加熱管群と、を備え、
 前記加熱管群は、側面視において多角形状に形成され、該加熱管群の長手方向片が前記ケーシングの軸方向に沿って延びるとともに、前記加熱管群の短手方向片が垂直方向に延びているように構成される。
 上記湿分分離加熱器によれば、加熱管群の長手方向片は、ケーシングの軸方向に延びるとともに、加熱管群の短手方向片が垂直方向に延びる。マニホールド室はケーシングの軸方向に蒸気を通流するように構成され、セパレータはマニホールド室に沿ってケーシング側方の長手方向に配置されているので、セパレータから流出する蒸気を加熱管群の横方向から流入させることで、ケーシングを大型化する必要がない、また加熱管群の圧力損失を低減することができる。またケーシングは水平方向に延びるので、垂直方向に延びるのと比べ、湿分分離加熱器の重心位置を低くすることができ、地震発生時の湿分分離加熱器の損傷を抑制することができる。よって、コストの増大を抑え、地震の発生時に損傷する虞が少なく、加熱器の圧力損失を低減可能な湿分分離加熱器を実現できる。
 幾つかの実施形態では、
 前記セパレータは、板状に形成されて上下方向に延び、前記加熱管群の側面に対向して配置されているように構成される。
 この場合、セパレータは、板状に形成されて上下方向に延び、加熱管群の側面に対向配置されるので、セパレータを加熱管群の側方に近接配置することができる。このため、ケーシングを大型化する必要性が無くなり、コストの増大を抑えることができる。また、セパレータから流出する蒸気を加熱管群の側方から流入させることができるので、加熱管群の圧力損失を確実に低減することができる。
 一実施形態において、
 前記セパレータは、蒸気が流入する側の側面の一部を覆って該セパレータに流入する前記蒸気の流入量を調整する流入調整部を含むように構成される。
 この場合、セパレータは、蒸気が流入する側の側面の一部を覆ってセパレータに流入する蒸気の流入量を調整する流入調整部を含むことで、マニホールド室からセパレータ側に供給される蒸気がマニホールド室の長手方向奥側が大きくなる静圧分布があった場合に、セパレータ側に均一流量の蒸気を供給することができる。
 一実施形態において、
 前記流入調整部は、上下方向に延びて前記セパレータの前記側面を覆う複数の流入調整部材と、複数の前記流入調整部材を支持する枠体部と、を含み、
 複数の前記流入調整部材は、前記ケーシングの軸方向に沿って通流する蒸気の上流側から下流側に向かって隣接する流入調整部材の設置間隔が狭くなるように配置されるように構成される。
 この場合、流入調整部の複数の流入調整部材は、ケーシングの軸方向に沿って通流する蒸気の上流側から下流側に向かって隣接する流入調整部材の設置間隔が狭くなるように配置されているので、マニホールド室からセパレータ側に供給される蒸気がマニホールド室の長手方向奥側が大きくなる静圧分布があった場合、セパレータ側に均一流量の蒸気を確実に供給することができる。また、流入調整部は、枠体部と流入調整部材とを有した簡易な構造であるので、コストの増大を抑制することができる。
 一実施形態において、
 前記流入調整部材には、前記ケーシングの軸方向に沿って通流する蒸気の湿分を除去可能な湿分除去手段が設けられているように構成される。
 この場合、湿分除去手段は、セパレータの上流側に配置されるので、セパレータによる湿分除去作業の負担を軽減することができる。
 一実施形態において、
 前記湿分除去手段は、前記マニホールド室から流出した蒸気を渦状に流す湿分除去流路を含むように構成される。
 この場合、湿分除去手段に蒸気が流入すると、蒸気は湿分除去流路内を渦状に流れる。蒸気が渦状に移動すると、遠心力が蒸気中の湿分に作用して湿分を除去することができる。
 本発明の幾つかの実施形態によれば、コストの増大を抑え、地震の発生時に損傷する虞が少なく、加熱器の圧力損失を低減可能な湿分分離加熱器を提供することができる。
湿分分離加熱器を備える原子力発電所の発電プラントの概略構成図である。 同図(a)は湿分分離加熱器の構成例を示す平面視における内部構造図であり、同図(b)は同図(a)のII-II矢視に相当する湿分分離加熱器の断面図である。 長手方向両側から湿り蒸気を吸入可能な湿分分離加熱器の構成例を示す平面視における内部構造図である。 長手方向中央部から湿り蒸気を吸入可能な湿分分離加熱器の構成例を示す平面視における内部構造図である。 図2(a)のA矢視に相当するセパレータの正面図である。 図5のV-V矢視に相当するセパレータの断面図である。 同図(a)は一実施形態に係わる湿分除去手段の斜視図であり、同図(b)は湿分除去手段の作用を説明するための説明図である。
 以下、添付図面に従って本発明の湿分分離加熱器の実施形態について説明する。本実施形態は、原子力発電所の発電プラントに設置される湿分分離加熱器を例にして以下説明する。先ず、湿分分離加熱器を説明する前に、湿分分離加熱器が設置された原子力発電所の発電プラントを概説する。なお、この実施形態に記載されている構成部品の材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 原子力発電所の発電プラント1は、図1(概略構成図)に示すように、蒸気発生器2で発生した主蒸気3は、高圧タービン4で仕事をした後、湿り蒸気5となって高圧タービン4から出て、湿り蒸気5として湿分分離加熱器20に入る。この湿り蒸気5は、蒸気中に含まれている湿分が湿分分離加熱器20で分離除去された後に、加熱・昇温された蒸気6となって低圧タービン7の入口から流入し、低圧タービン7で仕事をした後、復水器8で水となり、その後、ポンプ9により、給水ヒータ10を経て、蒸気発生器2に給水される。
 この原子力発電所の発電プラント1に設置された湿分分離加熱器20は、図2(a)(平面視内部構造図)に示すように、水平方向に延びて両端部が閉塞された筒状のケーシング21と、ケーシング21内に設けられ、ケーシング21の軸方向に蒸気が通流するマニホールド室30と、ケーシング21内に設けられ、マニホールド室30に沿ってケーシングの長手方向に配置されて蒸気の湿分を分離するセパレータ40と、ケーシング21内に設けられ、セパレータ40から流出する蒸気の下流側に配置された加熱管群50と、を備えている。
 幾つかの実施形態では、ケーシング21は、図2(a)及び図2(b)に示すように、円筒状に形成されて水平方向に延びる本体胴部22と、本体胴部22の軸方向両端部に接続された一対の側板部左24L及び側板部右24Rとを有してなる。本体胴部22の軸方向両端部に接続された側板部左24L及び側板部右24Rによって、本体胴部22の両端部が閉塞され、ケーシング21内の空間部21aが気密状態になっている。本体胴部22の上側の側壁22aには、蒸気を排出するための排出口22bが本体胴部22の軸方向に所定間隔を有して複数(本実施形態では3箇所)設けられている。
 側板部左24L及び側板部右24Rは内部が中空な半球殻状に形成され、頂部側がケーシング21の軸方向外側へ向くようにして本体胴部22に接続されている。側板部右24Rの頂部には、蒸気を流入させるための流入口24R1が設けられている。
 幾つかの実施形態では、マニホールド室30は、本体胴部22の手前側の空間部21aにおいてケーシング21の軸方向一端から他端側へ延びている。マニホールド室30は、本体胴部22の手前側を構成する側壁22aと、本体胴部22内に設けられた仕切坂31と、本体胴部22の軸方向両端部に設けられた一対の端板左32L及び端板右32Rとを有して形成されている。
 仕切坂31は、側面視において矩形状に形成され、本体胴部22内の手前側に配置されて、本体胴部22の長手方向一端から他端に延びるとともに、垂直方向に延びて上下両端部が本体胴部22の内面に固着されている。端板左32L及び端板右32Rは、側面視において半円状に形成され、本体胴部22の一端部及び他端部の側壁22aの内面に接続されてケーシング21の径方向内側へ延びる。端板左32Lによってマニホールド室30の他端部が閉塞されている。また、端板右32Rには開口部が形成され、この開口部を介して側板部右24R内の空間部21a及び流入口24R1に連通している。
 マニホールド室30を形成する仕切坂31には、ケーシング21の軸方向に所定間隔を有して複数のスリットが設けられている。このため、マニホールド室30に流入した蒸気はスリットを介してセパレータ40側に流出する。
 幾つかの実施形態では、セパレータ40は、マニホールド室30の仕切坂31に沿って配置されるとともに、本体胴部22の軸方向(長手方向)全長に亘って配置されている。セパレータ40は、蒸気の通過時に、湿分を分離して除去する。例えば、セパレータ40は、慣性を利用して蒸気の湿分を分離するものでもよい。セパレータ40は、板状であって側面視において本体胴部22の軸方向に沿って延在する多角形状、図示した実施形態では長方形状に形成されている。セパレータ40は、その長手方向片40aがマニホールド室30の仕切坂31に沿って延び、短手方向片40bが垂直方向に延びた状態で本体胴部22内に固定保持されている。
 セパレータ40によって湿分が除去された蒸気は、セパレータ40から流出する。分離された湿分は、本体胴部22の底部に設けられたドレン26を介して外部に排出される。
 幾つかの実施形態では、加熱管群50は加熱管51を備えている。この加熱管51に加熱源となる加熱媒体が流れ、加熱管51外に被加熱蒸気、即ち、セパレータ40で湿分が除去された蒸気が流れる。この蒸気は、加熱管51で熱交換されて昇温して排出口22bから排出される。加熱管群50は、加熱管51がケーシング21の軸方向に延びるとともに、上下に複数段を有して配列される。また加熱管群50のケーシング21の軸方向に対して直交する方向(以下、「幅方向」と記す。)に対して千鳥状に配列されている。
 加熱管群50の幅Bは、加熱管群50のケーシング21の軸方向長さLの1/5以下である。このため、加熱管群50の幅Bは軸方向長さLに対して薄くなっている。
 このように、加熱管群50は、ケーシング21の軸方向長さに対して幅が薄いので、板状の長方形に形成されている。また、加熱管群50は、その長手方向片50aがセパレータ40に沿って本体胴部22の長手方向全長に亘って延び、短手方向片50bが垂直方向に延びて、本体胴部22内に固定保持されている。このため、加熱管群50の短手方向一方側の側面50cに沿って、セパレータ40が配置されている。このように、加熱管群50は、長手方向片50aが本体胴部22の長手方向全長に亘って延びているので、加熱管群50を通過する蒸気の接触面積を増加させることができ、加熱管51において蒸気の熱交換を効果的に行うことができる。
 以上説明したように、幾つかの実施形態に係わる湿分分離加熱器20によれば、図1、図2(a)、図2(b)に示すように、高圧タービン4で仕事をした湿り蒸気5(例えば、350℃)が湿分分離加熱器20の流入口24R1に入ると、この湿り蒸気5は、ケーシング21内の空間部21aを通ってマニホールド室30に入る。マニホールド室30に入った湿り蒸気5は、ケーシング21の軸方向に沿って流れるとともに、マニホールド室30のスリットを介してセパレータ40側へ流出する。
 セパレータ40側に流出した湿り蒸気5は、セパレータ40を通過する際に湿分が除去されて、セパレータ40から加熱管群50側へ流出する。湿分が除去された蒸気は、加熱管群50の通過時に加熱されて昇温し、排出口22bから排出される。加熱された蒸気は低圧タービン7に供給される。
 ここで、湿分分離加熱器20の加熱管群50は、側面視において本体胴部22の軸方向に沿って延在する多角形状、図示した実施形態では長方形状に形成され、水平方向に延びるケーシング21内において、加熱管群50の長手方向片50aがケーシング21の軸方向に沿って延びるとともに、加熱管群50の短手方向片50bが垂直方向に延びて配置されている。また、加熱管群50の幅は軸方向長さに対して薄い。このため、蒸気が加熱管群50を通過する際の圧力損失を大幅に低減することができる。
 さらに、加熱管群50及びセパレータ40は、ケーシング21の軸方向に延びるとともに垂直方向に立設され、マニホールド室30をケーシング21の本体胴部22の幅方向の一方側に配置することで、ケーシング21の胴径を大きくする必要がない。よって、ケーシング21を横向きに設置した状態で、本体胴部22の形状を大きくすることなく、加熱管群50を流れる蒸気の圧力損失を低減可能な湿分分離加熱器20を実現できる。
 また、加熱管群50及びセパレータ40を収容するケーシング21は,横方向に延びているので、湿分分離加熱器20の重心位置を低くすることができる。よって、湿分分離加熱器20は設置状態において安定化し、地震時において損傷する虞を抑制することができる。
 なお、前述した実施形態では、湿り蒸気をケーシング21内に流入させる流入口24R1をケーシング21の長手方向一端部に設けた場合を示したが、流入口24R1の位置はケーシング21の長手方向一端部に限るものではなく、長手方向他端部や長手方向両側(図3参照)や長手方向中央(図4参照)に設けてもよい。流入口をケーシング21の長手方向両側に設ける場合には、図3に示すように、流入口24L1をケーシング21の長手方向他端部に設ける。その他の構造については、図2(a)に記載のものと同様であるので、説明は省略する。また、流入口をケーシング21の長手方向中央に設ける場合には、図4に示すように、流入口23をケーシング21の長手方向中央であってマニホールド室30に連通する位置に設ける。その他の構造については、図2(a)に記載のものと同様であるので、説明は省略する。
 次に、例示的な実施形態の個別的内容について図2(a)、図2(b)、図3、図4、図5(a)、図5(b)を参照しながら説明する。図3に示す例示的な実施形態では、セパレータ40のマニホールド室30側に対向する面に、流入調整部60が設けられている。
 セパレータ40に供給される蒸気は、図2(a)に示すように、マニホールド室30から供給されるが、マニホールド室30はケーシング21の軸方向(長手方向)に延びている。このため、マニホールド室30は長手方向に静圧分布があり、この静圧分布はマニホールド室30の長手方向奥側が手前側よりも大きくなる。従って、セパレータ40に供給される蒸気の流量を均一にする必要がある。そこで、セパレータ40のマニホールド室30側に対向する面に沿って流入調整部60が設けられている。
 流入調整部60は、図3(正面図)に示すように、格子状に形成された枠体部61と、枠体部61に取り付けられた流入調整部材67a、67b、67cと、を含む。枠体部61は、セパレータ40のマニホールド室30側に対向する面40cに面するように保持されている。枠体部61は、上下方向に段状に配置されて水平方向に延びる複数(本実施形態では4本)の横部材62と、複数の横部材62間を上下方向に接続するように延びて、幅方向に所定間隔を有して配置された複数(本実施形態では6本)の縦部材63とを含む。
 複数の横部材62は、同一長さを有して同一平面上に配置されている。複数の縦部材63は、横部材62の長手方向中間部に所定距離を有して配置されている。複数の縦部材63は複数の横部材62と同一平面上に配置されるとともに、横部材62と交差する部分において一体的に接続されている。これら横部材62及び縦部材63によって、略同一の開口面積を有した開口部64a、64b、64cが複数形成されている。本実施形態では、9つの開口部64a、64b、64cが格子状に形成されている。
 マニホールド室30を流れる湿り蒸気5の上流側に配置された上中下3個の開口部64aには、これらの開口部64aの一部を塞ぐようにして上下方向に延びた複数(本実施例では2本)の流入調整部材67aが配設されている。また、流入調整部60の中央部側に配置された上中下3個の開口部64bには、これらの開口部64bの一部を塞ぐようにして上下方向に延びた複数(本実施例では3本)の流入調整部材67bが配設されている。さらに、マニホールド室30を流れる湿り蒸気5の下流側に配置された上中下3個の開口部64cには、これらの開口部64の一部を塞ぐようにして上下方向に延びた複数(本実施例では4本)の流入調整部材67cが配設されている。流入調整部材67a、67b、67cは、横部材62と交差する位置において接続されている。
 マニホールド室30を流れる湿り蒸気5の上流側に配置された流入調整部材67aの幅方向の設置間隔に対して、流入調整部60の中央部側に配置された流入調整部材67bの幅方向の設置間隔は狭くなっている。また、流入調整部60の中央部側に配置された流入調整部材67bの設置間隔に対して、マニホールド室30を流れる湿り蒸気5の下流側に配置された流入調整部材67cの設置間隔は狭くなっている。このため、開口部64a、64b、64cの開口面積は、マニホールド室30を流れる蒸気の上流側から下流側に向かって狭くなっている。
 よって、マニホールド室30からセパレータ40側に供給される湿り蒸気5がマニホールド室30の長手方向奥側が大きくなる分布があっても、セパレータ40側に均一流量の蒸気をセパレータ40に供給することができる。
 次に、図4(断面図)、図5(a)(斜視図)、図5(b)(説明図)に示す例示的な実施形態について説明する。図4に示す実施形態では、流入調整部材67のセパレータ40側と反対側の面67dに湿分除去手段70が設けられている。この湿分除去手段70は、複数の流入調整部材67a、67b、67cのそれぞれに、流入調整部材67a、67b、67cの長手方向に沿って設けられている。湿分除去手段70は、図5(a)(斜視図)に示すように、板金等を多段に折り曲げて内部に渦状の湿分除去流路70aが形成されている。この湿分除去流路70aは、湿分除去手段70の短手方向一方側の面において矩形状に開口した開口部70bを有している。
 この湿分除去手段70は、図5(b)(説明図)に示すように、マニホールド室30(図2(a)参照)から湿り蒸気5が供給されると、この湿り蒸気5の一部は湿分除去手段70間を通ってセパレータ40(図2(a)参照)に供給される。また残りの湿り蒸気5は湿分除去手段70の開口部70bを通って渦状の湿分除去流路70a内に流入する。湿り蒸気5が開口部70bから湿分除去流路70aに流入すると、特に、湿分除去手段70の折れ曲がった部分で遠心力が作用して湿り蒸気5の湿分が捕捉される。このため、湿り蒸気5の湿分を除去することができ、セパレータ40による湿分除去作業の負担を軽減することができる。なお、湿分除去手段70に流入して湿分が除去された蒸気は、湿分除去手段70の長手方向両端部の開口から排出される。
 以上、本発明の実施形態について説明したが、本発明は上記の形態に限定されるものではなく、本発明の目的を逸脱しない範囲での種々の変更が可能である。例えば、上述した各種実施形態を適宜組み合わせてもよい。
  1 発電プランント
  2 蒸気発生器
  3 主蒸気
  4 高圧タービン
  5 湿り蒸気
  6 蒸気
  7 低圧タービン
  8 復水器
  9 ポンプ
 10 給水ヒータ
 20 湿分分離加熱器
 21 ケーシング
 21a、70a 空間部
 22 本体胴部
 22a 側壁
 24L 側板部左
 24R 側板部右
 24R1 流入口
 26 ドレン
 30 マニホールド室
 31 仕切板
 32L 端板左
 32R 端板右
 40 セパレータ
 40a、50a 長手方向片
 40b、50b 短手方向片
 40c 対向する面
 50 加熱管群
 51 加熱管
 60 流入調整部
 61 枠体部
 62 横部材
 63 縦部材
 64 開口部
 67a、67b、67c 流入調整部材
 67d 面
 70 湿分除去手段
 70a 湿分除去流路
 70b 開口部

Claims (6)

  1.  水平方向に延びて両端部が閉塞された筒状のケーシングと、
     前記ケーシング内に設けられ、該ケーシングの軸方向に蒸気を通流するマニホールド室と、
     前記ケーシング内に設けられ、前記マニホールド室に沿って前記ケーシングの長手方向に配置されて蒸気の湿分を除去するセパレータと、
     前記ケーシング内に設けられ、前記セパレータから流出する蒸気の下流側に配置される加熱管群と、を備え、
     前記加熱管群は、側面視において多角形状に形成され、該加熱管群の長手方向片が前記ケーシングの軸方向に沿って延びるとともに、前記加熱管群の短手方向片が垂直方向に延びている
     ことを特徴とする湿分分離加熱器。
  2.  前記セパレータは、板状に形成されて上下方向に延び、前記加熱管群の側面に対向して配置されている
     ことを特徴とする請求項1に記載の湿分分離加熱器。
  3.  前記セパレータは、蒸気が流入する側の側面の一部を覆って前記セパレータに流入する前記蒸気の流入量を調整する流入調整部を含む
     ことを特徴とする請求項2に記載の湿分分離加熱器。
  4.  前記流入調整部は、上下方向に延びて前記セパレータの前記側面を覆う複数の流入調整部材と、複数の前記流入調整部材を支持する枠体部と、を含み、
     複数の前記流入調整部材は、前記ケーシングの軸方向に沿って通流する蒸気の上流側から下流側に向かって隣接する流入調整部材の設置間隔が狭くなるように配置されている
     ことを特徴とする請求項3に記載の湿分分離加熱器。
  5.  前記流入調整部材には、前記ケーシングの軸方向に沿って通流する蒸気の湿分を除去可能な湿分除去手段が設けられている
     ことを特徴とする請求項4に記載の湿分分離加熱器。
  6.  前記湿分除去手段は、前記マニホールド室から流出した蒸気を渦状に流す湿分除去流路を含む
     ことを特徴とする請求項5に記載の湿分分離加熱器。
     
PCT/JP2015/052861 2014-03-27 2015-02-02 湿分分離加熱器 WO2015146286A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL15768270.9T PL3109545T3 (pl) 2014-03-27 2015-02-02 Separator wilgoci/podgrzewacz
CN201580015913.3A CN106133442B (zh) 2014-03-27 2015-02-02 湿分分离加热器
EP15768270.9A EP3109545B1 (en) 2014-03-27 2015-02-02 Moisture separator/heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014065477A JP6386243B2 (ja) 2014-03-27 2014-03-27 湿分分離加熱器
JP2014-065477 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015146286A1 true WO2015146286A1 (ja) 2015-10-01

Family

ID=54194826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052861 WO2015146286A1 (ja) 2014-03-27 2015-02-02 湿分分離加熱器

Country Status (5)

Country Link
EP (1) EP3109545B1 (ja)
JP (1) JP6386243B2 (ja)
CN (1) CN106133442B (ja)
PL (1) PL3109545T3 (ja)
WO (1) WO2015146286A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018136689A1 (en) * 2017-01-20 2018-07-26 Bunn-O-Matic Corporation Instant-response on-demand water heater
JP7144265B2 (ja) 2018-10-02 2022-09-29 三菱重工業株式会社 湿分分離器、及び蒸気タービンプラント

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504401A (ja) * 1973-02-12 1975-01-17
JPS5457001A (en) * 1977-09-23 1979-05-08 Westinghouse Electric Corp Moisture separating type reheating instrument
JP2000310401A (ja) * 1999-04-27 2000-11-07 Toshiba Corp 湿分分離加熱器
JP2002122303A (ja) * 2000-10-17 2002-04-26 Mitsubishi Heavy Ind Ltd 湿分分離加熱器
JP2007205170A (ja) * 2006-01-31 2007-08-16 Mitsubishi Heavy Ind Ltd 湿分分離加熱器
JP2009062902A (ja) * 2007-09-07 2009-03-26 Mitsubishi Heavy Ind Ltd 湿分分離加熱器
JP2011127869A (ja) * 2009-12-21 2011-06-30 Toshiba Corp 湿分分離加熱器及び給水加熱器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3593500A (en) * 1968-11-25 1971-07-20 Westinghouse Electric Corp Device for separating moisture-laden vapor
CH500430A (de) * 1968-12-04 1970-12-15 Sulzer Ag Zum Abscheiden von Flüssigkeit aus Nassdampf bestimmte Vorrichtung
US3712272A (en) * 1971-10-19 1973-01-23 Gen Electric Combined moisture separator and reheater
JPS54138906A (en) * 1978-04-19 1979-10-27 Hitachi Ltd Hygroscopic moisture separating and reheating apparatus
KR910002216B1 (ko) * 1985-03-29 1991-04-08 가부시끼가이샤 도시바 습분분리 재열장치
JPS62185306U (ja) * 1986-05-09 1987-11-25
JP2002130609A (ja) * 2000-10-17 2002-05-09 Mitsubishi Heavy Ind Ltd 湿分分離加熱器
JP3746675B2 (ja) * 2000-11-24 2006-02-15 三菱重工業株式会社 湿分分離器
JP2008144716A (ja) * 2006-12-12 2008-06-26 Mitsubishi Heavy Ind Ltd 湿分分離器
JP5615150B2 (ja) * 2010-12-06 2014-10-29 三菱重工業株式会社 原子力発電プラントおよび原子力発電プラントの運転方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504401A (ja) * 1973-02-12 1975-01-17
JPS5457001A (en) * 1977-09-23 1979-05-08 Westinghouse Electric Corp Moisture separating type reheating instrument
JP2000310401A (ja) * 1999-04-27 2000-11-07 Toshiba Corp 湿分分離加熱器
JP2002122303A (ja) * 2000-10-17 2002-04-26 Mitsubishi Heavy Ind Ltd 湿分分離加熱器
JP2007205170A (ja) * 2006-01-31 2007-08-16 Mitsubishi Heavy Ind Ltd 湿分分離加熱器
JP2009062902A (ja) * 2007-09-07 2009-03-26 Mitsubishi Heavy Ind Ltd 湿分分離加熱器
JP2011127869A (ja) * 2009-12-21 2011-06-30 Toshiba Corp 湿分分離加熱器及び給水加熱器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3109545A4 *

Also Published As

Publication number Publication date
JP2015187436A (ja) 2015-10-29
CN106133442A (zh) 2016-11-16
EP3109545A4 (en) 2017-05-10
JP6386243B2 (ja) 2018-09-05
EP3109545B1 (en) 2023-04-05
EP3109545A1 (en) 2016-12-28
CN106133442B (zh) 2018-10-09
PL3109545T3 (pl) 2023-07-31

Similar Documents

Publication Publication Date Title
EP2746709B1 (en) Multistage pressure condenser and steam turbine plant provided with same
EP2241848A3 (en) Heat exchanger
WO2015146286A1 (ja) 湿分分離加熱器
JP5709671B2 (ja) 湿分分離加熱器
JP2015187436A5 (ja)
JP6071298B2 (ja) 伝熱管の隙間拡張治具及び振動抑制部材の追設方法
RU2549277C1 (ru) Пароводяной подогреватель
JP6574501B2 (ja) 復水器
WO2007088858A1 (ja) 湿分分離加熱器
JP6273222B2 (ja) 湿分分離器
EP2789909B1 (en) Steam generator
CN112585399B (zh) 水分分离器和蒸汽涡轮设备
JP6581852B2 (ja) 湿分分離器及び蒸気タービンプラント
KR101485990B1 (ko) 습분 분리 가열기 및 원자력 발전 플랜트
WO2017090557A1 (ja) 湿分分離加熱器
JP2002081612A (ja) 給水加熱器
JP6685809B2 (ja) 復水器
WO2017090558A1 (ja) 湿分分離加熱器
RU2489646C1 (ru) Пароводяной подогреватель
CN102828788A (zh) 一种汽水分离再热器的蒸汽分配结构
JP6161153B2 (ja) シェルアンドチューブ型熱交換器
KR20100094744A (ko) 수관 연관 복합 보일러
JP2009034608A (ja) 凝縮装置
UA13816U (en) Separator superheater
JPH04369306A (ja) 湿分分離加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768270

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015768270

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768270

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE