WO2015146079A1 - 非水電解質二次電池用負極板及び非水電解質二次電池 - Google Patents
非水電解質二次電池用負極板及び非水電解質二次電池 Download PDFInfo
- Publication number
- WO2015146079A1 WO2015146079A1 PCT/JP2015/001508 JP2015001508W WO2015146079A1 WO 2015146079 A1 WO2015146079 A1 WO 2015146079A1 JP 2015001508 W JP2015001508 W JP 2015001508W WO 2015146079 A1 WO2015146079 A1 WO 2015146079A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- secondary battery
- electrolyte secondary
- active material
- aqueous electrolyte
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- silicon oxide SiO x , 0.5 ⁇ x ⁇ 1.6
- a graphite material used as a negative electrode active material, which can achieve a high capacity and an excellent capacity retention rate (cycle characteristics).
- the present invention relates to a negative electrode plate for a water electrolyte secondary battery and a nonaqueous electrolyte secondary battery using the negative electrode plate.
- a negative electrode active material used for a nonaqueous electrolyte secondary battery carbonaceous materials such as graphite and amorphous carbon are widely used.
- a negative electrode active material made of a carbon material lithium can be inserted only up to the composition of LiC 6 , and the theoretical capacity is 372 mAh / g, which is an obstacle to increasing the battery capacity. Yes. Therefore, a nonaqueous electrolyte secondary battery using silicon or silicon alloy or silicon oxide alloyed with lithium as a negative electrode active material having high energy density per mass and volume has been developed. In this case, for example, since silicon can insert lithium up to a composition of Li 4.4 Si, the theoretical capacity is 4200 mAh / g, and a larger capacity than when a carbon material is used as the negative electrode active material can be expected.
- Patent Document 1 discloses a material containing silicon and oxygen as constituent elements as a negative electrode active material (provided that the element ratio x of oxygen to silicon is 0.5 ⁇ x ⁇ 1.5).
- this material is referred to as “silicon oxide”) and a non-aqueous electrolyte secondary battery using a material containing graphite is disclosed.
- a negative electrode active material having a silicon oxide ratio of 3 to 20% by mass, where the total of silicon oxide and graphite is 100% by mass, is used.
- Non-aqueous electrolyte secondary battery disclosed in Patent Document 1 below, it is possible to suppress deterioration in battery characteristics due to the volume change while using silicon oxide having a high capacity and a large volume change accompanying charge / discharge. Therefore, good battery characteristics can be secured without greatly changing the configuration of the conventional nonaqueous electrolyte secondary battery.
- the negative electrode active material is made of a vacuum deposited film of SiO x.
- the capacity per unit volume is increased as compared with the conventional example, and the initial efficiency and capacity retention rate are improved.
- the negative electrode active material is made of a vacuum-deposited film of silicon oxide, so that the negative electrode active material made of a mixture of silicon oxide and graphite is used as it is. When applied, the predetermined function and effect as shown in Patent Document 2 cannot be achieved.
- the lithium secondary battery disclosed in Patent Document 3 since the proof stress and elongation of the copper foil as the negative electrode core are large, Even if the shrinkage is large, the negative electrode core is hardly broken, and a good capacity retention rate can be obtained.
- the lithium secondary battery disclosed in Patent Document 3 is applied when a carbonaceous material is used as the negative electrode active material, and includes a component that has large expansion and contraction, such as silicon oxide. When applied to a lithium secondary battery having a negative electrode active material, the capacity retention rate is not sufficient.
- the surface roughness Rz of the copper foil used as the negative electrode core is in a predetermined range, the contact area with the negative electrode active material is increased, so that a good capacity retention rate can be obtained.
- it is required to reduce the thickness of the copper foil as the negative electrode core This is because it is desired to reduce the thickness of the copper foil as the negative electrode core in order to achieve a higher capacity of the nonaqueous electrolyte secondary battery, and to improve the strength of the negative electrode core, It shows that the surface roughness Rz needs to be reduced.
- a nonaqueous electrolyte secondary battery having a negative electrode core made of a copper foil having a thickness of 8 ⁇ m or less and a surface roughness Rz of 2.0 ⁇ m or more often breaks when compressed for forming a negative electrode mixture layer.
- the reason for this is that if the surface roughness Rz is increased while the thickness of the copper foil as the negative electrode core is kept constant, the area occupied by the uneven portion of the thickness increases, and the partial thickness of the copper foil is reduced. Because.
- Patent Document 4 when a carbonaceous material is used as the negative electrode active material, an invention of a non-aqueous electrolyte secondary battery having a negative electrode plate using a material containing carboxymethyl cellulose (CMC) -ammonium salt as a binder.
- CMC carboxymethyl cellulose
- Patent Document 4 does not include the use of CMC-ammonium salt as a binder or thickener when silicon oxide is contained as a negative electrode active material, or suggesting the effects in that case.
- the negative electrode core is a copper foil having a thickness of 5.9 to 8.1 ⁇ m and a surface roughness Rz of 0.8 to 1.5 ⁇ m.
- the negative electrode mixture layer includes a negative electrode active material composed of a mixture of graphite material and silicon oxide represented by SiO x (0.5 ⁇ x ⁇ 1.6), a binder, a CMC-ammonium salt, Including The content ratio of the silicon oxide is 0.5 to 20% by mass in the entire negative electrode active material.
- a negative electrode plate for a non-aqueous electrolyte secondary battery is provided.
- the negative electrode plate for a nonaqueous electrolyte secondary battery of one embodiment of the present invention includes not only graphite but also silicon oxide represented by SiO x (0.5 ⁇ x ⁇ 1.6) as a negative electrode active material.
- the content ratio of silicon oxide is 0.5 to 20% by mass in the entire negative electrode active material.
- This silicon oxide has a volume change accompanying charge / discharge larger than that of the graphite material, but its theoretical capacity value is larger than that of the graphite material. Therefore, according to the negative electrode plate for a nonaqueous electrolyte secondary battery of the present invention, the battery capacity can be made larger than that of the negative electrode plate for a nonaqueous electrolyte secondary battery using a negative electrode active material made only of a graphite material.
- the CMC-ammonium salt is contained in the negative electrode mixture layer.
- CMC-ammonium salt can stably cover the surface of the negative electrode active material. Therefore, even if the surface roughness Rz of the copper foil as the negative electrode core is as small as 0.8 to 1.5 ⁇ m, strong bonding between the negative electrode active materials and between the negative electrode active material and the negative electrode core can be obtained. .
- the negative electrode core is restrained from breaking even when compressed for forming the negative electrode mixture layer during the production of the negative electrode plate, and the negative electrode active material even if the expansion / contraction of silicon oxide during charge / discharge is large
- the non-aqueous electrolyte secondary battery can be obtained which can suppress the peeling of the resin and can achieve a good capacity retention rate.
- the proportion of the negative electrode mixture layer in the negative electrode plate can be increased by using a thin copper foil with a thickness of 5.9 to 8.1 ⁇ m as the negative electrode core, a high capacity non-aqueous electrolyte secondary A battery can be obtained.
- the negative electrode plate for a non-aqueous electrolyte secondary battery according to the one aspect is applied to a flat wound electrode body, copper as a negative electrode core body is also used when the wound electrode body is compressed into a flat shape. Since the foil is difficult to break, a non-aqueous electrolyte secondary battery having a high capacity and an excellent capacity retention rate can be obtained.
- the content ratio of silicon oxide in the negative electrode active material is less than 0.5% by mass in the total negative electrode active material, the effect of increasing the capacity by using silicon oxide as the negative electrode active material is not achieved.
- the content of silicon oxide represented by SiO x in the negative electrode active material exceeds 20% by mass in the total negative electrode active material, the fine powder of the negative electrode active material based on large expansion / contraction of silicon oxide due to charge / discharge The capacity maintenance rate decreases due to the deterioration of the conductivity and the conductive network.
- the thickness of the copper foil as the negative electrode core is less than 5.9 mm, the strength of the copper foil is weakened, so that the copper foil is easily broken when compressed for forming the negative electrode mixture layer.
- the thickness of the copper foil exceeds 8.1 ⁇ m, the amount of the negative electrode active material decreases as the thickness of the copper foil increases, so the battery capacity decreases.
- the adhesiveness between a negative electrode active material and copper foil will fall if the surface roughness Rz of copper foil which is a negative electrode core is less than 0.8 micrometer, a capacity
- the surface roughness Rz of the copper foil exceeds 1.5 ⁇ m, the area occupied by the uneven portion in the thickness increases, and a portion having a thin partial thickness is formed on the copper foil. It tends to break when compressed for layer formation.
- FIG. 1 is a perspective view of a laminated nonaqueous electrolyte secondary battery common to each experimental example.
- the positive electrode plate was produced as follows. During the synthesis of cobalt carbonate (CoCO 3 ), 0.1 mol% of zirconium and 1 mol% of magnesium and aluminum are co-precipitated with respect to cobalt, respectively, and subjected to a thermal decomposition reaction to obtain zirconium / magnesium / aluminum-containing materials. Tricobalt oxide was obtained. This was mixed with lithium carbonate (Li 2 CO 3 ) as a lithium source and calcined at 850 ° C. for 20 hours, and zirconium-magnesium-aluminum-containing lithium cobalt composite oxide (LiCo 0.979 Zr 0.001 Mg 0.01 Al 0.01 O 2 ) Got.
- Li 2 CO 3 lithium carbonate
- zirconium-magnesium-aluminum-containing lithium cobalt composite oxide LiCo 0.979 Zr 0.001 Mg 0.01 Al 0.01 O 2
- the particle size of the silicon oxide represented by SiO is obtained by using a laser diffraction particle size distribution analyzer (SALD-2000A manufactured by Shimadzu Corporation), using water as a dispersion medium, and a refractive index of 1.70-0.01i. It was.
- the average particle size was the particle size (D 50 ) at which the cumulative particle amount on a volume basis was 50%.
- the negative electrode core has thicknesses of 6 ⁇ m (Experimental Examples 1 to 5, 7 to 10) and 8 ⁇ m (Experimental Example 6), and a surface roughness Rz of 1.4 ⁇ m (Experimental Examples 1 to 6) and 1.7 ⁇ m ( Experimental Examples 7), 1.5 ⁇ m (Experimental Example 8), 0.8 ⁇ m (Experimental Example 9), and 0.7 ⁇ m (Experimental Example 10) were used.
- the surface roughness Rz indicates a 10-point average roughness according to the JIS method.
- the negative electrode mixture slurry thus prepared was applied to both surfaces of a negative electrode core made of each copper foil by a doctor blade method. Subsequently, after drying and removing water
- Ethylene carbonate (EC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC) were mixed at a volume ratio of 30:60:10 at 25 ° C., and then lithium hexafluorophosphate (LIPF 6 ) was dissolved to a concentration of 1 mol / L.
- vinylene carbonate (VC) is added and dissolved so that 2.0 mass% and fluoroethylene carbonate (FEC) are 1.0 mass% with respect to the whole non-aqueous electrolyte, and a non-aqueous electrolyte is prepared. did.
- the positive electrode plate and the negative electrode plate prepared as described above are wound through a separator made of a polyethylene microporous film, and a cylindrical wound electrode body is produced by attaching a polypropylene tape to the outermost periphery. A flat wound electrode body (not shown) was produced by pressing. Next, the positive electrode current collector tab was attached to the positive electrode plate, and the negative electrode current collector tab was attached to the negative electrode plate by welding.
- the laminate exterior body 11 was depressurized to impregnate the separator with a nonaqueous electrolyte, and the opening of the laminate exterior body 11 was sealed with the welded sealing portion 12.
- the laminate outer package 11 between the positive electrode current collection tab 13 and the negative electrode current collection tab 14 and the laminate outer package 11, between the positive electrode current collection tab 13 and the negative electrode current collection tab 14 and the laminate outer package 11.
- a positive electrode current collector tab resin 15 and a negative electrode current collector tab resin 16 respectively. Arranged.
- the obtained laminate type nonaqueous electrolyte secondary battery 10 common to each experimental example has a height of 62 mm, a width of 35 mm, and a thickness of 3.6 mm (excluding the size of the welded sealing portion 12), and the design capacity is the end of charging. It is 800 mAh at a voltage of 4.4V.
- Example 1 the content of silicon oxide represented by SiO with respect to all negative electrode active materials was 0.3 mass% (Experimental Example 1) and 0.5 mass% (experimental).
- Example 2 A negative electrode plate changed to 20.0% by mass (Experimental example 3) and 22.0% by mass (Experimental example 4) was used.
- an ammonium salt was used as CMC, and a copper foil having a thickness of 6 ⁇ m and a surface roughness Rz of 1.4 ⁇ m was used as the negative electrode core.
- Example 5 As the nonaqueous electrolyte secondary battery of Experimental Example 5, a copper foil having a thickness of 6 ⁇ m and a surface roughness Rz of 1.4 ⁇ m was used as the negative electrode core, and silicon oxide represented by SiO with respect to the total negative electrode active material A negative electrode plate prepared using a sodium salt in an amount of 1.0% by mass and CMC was used. As the nonaqueous electrolyte secondary battery of Experimental Example 6, a copper foil having a thickness of 8 ⁇ m and a surface roughness Rz of 1.4 ⁇ m was used as the negative electrode core, and silicon oxide represented by SiO with respect to the entire negative electrode active material A negative electrode plate prepared using an ammonium salt in an amount of 1.0% by mass and CMC was used.
- the peel strength of the negative electrode plate was obtained by applying and drying the negative electrode mixture slurry on both surfaces of the negative electrode core made of copper foil by a doctor blade method to remove moisture, and then compressing the slurry to a predetermined thickness using a compression roller. Then, the adhesive tape was affixed on the surface of the negative mix layer, and predetermined
- the measurement result of Experimental Example 1 shows that the content of silicon oxide in the negative electrode active material is small, so that the effect of increasing the capacity of silicon oxide is not achieved, and the expansion / contraction due to charge / discharge is reduced, so that the capacity is maintained. The rate is considered to have improved.
- the measurement result of the experimental example 4 shows that the discharge capacity at the first cycle is large because the content of silicon oxide in the negative electrode active material is large. Since it becomes large, it is considered that the electrode plate adhesion and the capacity retention rate after 300 cycles were lowered.
- the difference in the configurations of Experimental Examples 7 to 10 is only the surface roughness Rz of the copper foil as the negative electrode core, when CMC-ammonium salt is used as the thickener, the copper foil as the negative electrode core is different. It can be seen that the surface roughness Rz is preferably 0.8 to 1.5 ⁇ m. In this case, the thickness of the copper foil as the negative electrode core can be sufficiently used in the range of 5.9 to 8.1 ⁇ m when the results of Experimental Examples 2, 3, 6, 8, and 9 are extrapolated. Conceivable.
- silicon oxide represented by SiO having an average particle diameter of 5 ⁇ m was used. However, if the average particle diameter of silicon oxide is 4 to 12 ⁇ m, the same good effect is obtained. Play.
- graphite having an average particle diameter of 21 ⁇ m was used. However, if the average particle diameter of graphite is in the range of 16 to 24 ⁇ m, the same effect can be obtained.
- LiMO 2 wherein M is at least one of Co, Ni, and Mn
- nonaqueous solvent in the nonaqueous electrolytic solution examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and fluorine.
- cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and fluorine.
- Cyclic carbonate ester cyclic carboxylic acid ester such as ⁇ -butyrolactone ( ⁇ -BL), ⁇ -valerolactone ( ⁇ -VL); dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) Chain carbonates such as methylpropyl carbonate (MPC) and dibutyl carbonate (DBC); fluorinated chain carbonates; chains such as methyl pivalate, ethyl pivalate, methyl isobutyrate, and methyl propionate Carboxylic acid ester; N, N'-dimethylform Bromide or, N- methyl oxazolidone amide compound, dimethylsulfoxide or the like; may be used tetrafluoroboric acid 1-ethyl-3- ambient temperature molten salt such as methyl imidazolium and the like; sulfur compounds such as sulfolane. Moreover, you may make it use these in mixture of 2 or more types
- a lithium salt generally used as an electrolyte salt in the non-aqueous electrolyte secondary battery can be used.
- lithium salts examples include lithium hexafluorophosphate (LiPF 6 ), LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN ( CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12 or the like can be used singly or as a mixture of plural kinds thereof.
- LiPF 6 is particularly preferable.
- the amount of electrolyte salt dissolved in the non-aqueous solvent is preferably 0.8 to 1.5 mol / L.
- non-aqueous electrolyte solution of the non-aqueous electrolyte secondary battery of the present invention for example, vinylene carbonate (VC), vinyl ethylene carbonate (VEC), succinic anhydride (SUCAH), maleic anhydride as an electrode stabilizing compound.
- Acid MAAH
- glycolic anhydride ethylene sulfite (ES), divinyl sulfone (VS), vinyl acetate (VA), vinyl pivalate (VP), catechol carbonate, biphenyl (BP), etc.
- ES ethylene sulfite
- VA divinyl sulfone
- VA vinyl acetate
- VP vinyl pivalate
- catechol carbonate catechol carbonate
- biphenyl (BP) catechol carbonate
- BP biphenyl
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
負極芯体上に配置されたリチウムイオンの吸蔵・放出が可能な負極活物質を含む負極合剤層を有し、
前記負極芯体は、厚みが5.9~8.1μm、表面粗さRzが0.8~1.5μmの銅箔であり、
前記負極合剤層は、黒鉛材料及びSiOx(0.5≦x<1.6)で表される酸化ケイ素との混合物からなる負極活物質と、結着剤と、CMC-アンモニウム塩と、を含み、
前記酸化ケイ素の含有割合は全負極活物質中の0.5~20質量%である、
非水電解質二次電池用負極板が提供される。
[正極板の作製]
正極板は、以下のようにして作製した。炭酸コバルト(CoCO3)の合成時に、コバルトに対して0.1mol%のジルコニウムと、それぞれ1mol%のマグネシウムとアルミニウムとを共沈させ、これを熱分解反応させて、ジルコニウム・マグネシウム・アルミニウム含有四酸化三コバルトを得た。これにリチウム源としての炭酸リチウム(Li2CO3)を混合し、850℃で20時間焼成して、ジルコニウム・マグネシウム・アルミニウム含有リチウムコバルト複合酸化物(LiCo0.979Zr0.001Mg0.01Al0.01O2)を得た。
(酸化ケイ素負極活物質の調製)
金属ケイ素粉末と二酸化ケイ素粉末とを混合し、減圧熱処理を行い、組成がSiO(SiOxにおいてx=1に対応)の酸化ケイ素を得た。次いで、この酸化ケイ素を粉砕・分級した後、約1000℃に昇温し、アルゴン雰囲気下でCVD法によりこの粒子の表面を炭素材料で被覆した。その際、炭素材料の被覆量は、炭素材料を含めた酸化ケイ素の全量の5質量%となるようにした。そして、これを解砕・分級し、平均粒径が5μmの、表面が炭素材料で被覆された酸化ケイ素からなる負極活物質を調製した。
上述のようにして調製されたSiOで表される酸化ケイ素と平均粒径21μmの黒鉛とを、それぞれ下記表1に示した配合割合となるように秤量・混合して負極活物質として用いた。次いで、この負極活物質と、増粘剤としてのCMC-アンモニウム塩(実験例1~4、6~10)又はナトリウム塩(実験例5)と、結着剤としてのスチレンブタジエンゴム(SBR)とを、質量比で97.0:1.5:1.5となるように水中で混合し、負極合剤スラリーを調製した。負極芯体としては、厚みが6μm(実験例1~5、7~10)及び8μm(実験例6)であり、表面粗さRzが1.4μm(実験例1~6)、1.7μm(実験例7)、1.5μm(実験例8)、0.8μm(実験例9)及び0.7μm(実験例10)のものを用いた。
エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジエチルカーボネート(DEC)とを、25℃において、体積比で30:60:10の割合で混合した後、ヘキサフルオロリン酸リチウム(LIPF6)を濃度が1mol/Lとなるように溶解した。さらに、ビニレンカーボネート(VC)を非水電解液全体に対して2.0質量%、フルオロエチレンカーボネート(FEC)を1.0質量%となるように添加して溶解させ、非水電解液を調製した。
上記のようにして作製した正極板及び負極板を、ポリエチレン製微多孔質膜からなるセパレータを介して巻回し、最外周にポリプロピレン製のテープを張り付けて円筒状の巻回電極体を作製し、プレスして偏平状の巻回電極体(図示省略)を作製した。次いで、正極板に正極集電タブを、負極板に負極集電タブを、それぞれ溶接することにより取り付けた。
[実験例1~4]
実験例1~4の非水電解質二次電池としては、全負極活物質に対するSiOで表される酸化ケイ素の含有量を、0.3質量%(実験例1)、0.5質量%(実験例2)、20.0質量%(実験例3)及び22.0質量%(実験例4)と変化させた負極板を用いた。その際、CMCとしては全てアンモニウム塩を使用し、負極芯体としては厚みが6μmで、表面粗さRzが1.4μmの銅箔を使用した。
実験例5の非水電解質二次電池としては、負極芯体として厚みが6μmで、表面粗さRzが1.4μmの銅箔を用い、全負極活物質に対するSiOで表される酸化ケイ素の含有量を1.0質量%及びCMCとしてナトリウム塩を使用して作製した負極板を用いた。実験例6の非水電解質二次電池としては、負極芯体として厚みが8μmで、表面粗さRzが1.4μmの銅箔を用い、全負極活物質に対するSiOで表される酸化ケイ素の含有量を1.0質量%及びCMCとしてアンモニウム塩を使用して作製した負極板を用いた。
実験例7~10の非水電解質二次電池としては、全負極活物質に対するSiOで表される酸化ケイ素の含有割合が全て1.0質量%一定となるようにし、負極芯体としての銅箔の厚みを6μm(実験例7~10)とするとともに、銅箔の表面粗さRzを1.7μm(実験例7)、1.5μm(実験例8)、0.8μm(実験例9)及び0.7μm(実験例10)として作製した。その際、CMCとしては全てアンモニウム塩を使用した。
負極板の剥離強度は、負極合材スラリーを銅箔からなる負極芯体の両面にドクターブレード法により塗布及び乾燥して水分を除去した後、圧縮ローラーを用いて所定厚みに圧縮した。その後、負極合剤層の表面に粘着テープを貼り付け、この粘着テープに所定の強度を加えて剥がし、負極合剤層が剥離した時の強度を測定した。
実験例1~10のそれぞれの負極板について、負極合材スラリーを銅箔からなる負極芯体の両面にドクターブレード法により塗布及び乾燥して水分を除去した後、圧縮ローラーを用いて所定厚みに圧縮した際の負極板表面状体を目視により観察した。測定は、実験例1~10のそれぞれについて10個ずつ行った。その際、全ての負極芯体に破断が生じなかったものを「○」で表し、一部にでも破断が生じたものを「×」で表した。
実験例1~10のそれぞれの非水電解質二次電池を、25℃において、1It=800mAの定電流で電池電圧が4.4Vとなるまで充電した後、4.4Vの定電圧で電流が40mAに収束するまで充電した。次いで、1It=800mAの定電流で電池電圧が2.5Vになるまで放電し、その際に流れた電流を1サイクル目の放電容量として求めた。この充放電サイクルを繰り返し、300サイクル目の放電容量を求め、以下の計算式により300サイクル後の容量維持率として求めた。
300サイクル後の容量維持率(%)
=(300サイクル目の放電容量/1サイクル目の放電容量)×100
合物;スルホラン等の硫黄化合物;テトラフルオロ硼酸1-エチル-3-メチルイミダゾリウム等の常温溶融塩等を用いることができる。また、これらを2種以上混合して用いるようにしてもよい。
11…ラミネート外装体
12…溶着封止部
13…正極集電タブ
14…負極集電タブ
15…正極集電タブ樹脂
16…負極集電タブ樹脂
Claims (5)
- 負極芯体上に配置されたリチウムイオンの吸蔵・放出が可能な負極活物質を含む負極合剤層を有し、
前記負極芯体は、厚みが5.9~8.1μm、表面粗さRzが0.8~1.5μmの銅箔であり、
前記負極合剤層は、黒鉛材料及びSiOx(0.5≦x<1.6)で表される酸化ケイ素との混合物からなる負極活物質と、結着剤と、カルボキシメチルセルロース-アンモニウム塩と、を含み、
前記酸化ケイ素の含有割合は全負極活物質中の0.5~20質量%である、
非水電解質二次電池用負極板。 - 前記負極合剤層は、結着剤としてスチレンブタジエンゴムを含む、請求項1に記載の非水電解質二次電池用負極板。
- 前記酸化ケイ素の表面は炭素材料で被覆されている、請求項1又は2に記載の非水電解質二次電池負極板。
- 請求項1~3のいずれかに記載の負極板と、
リチウムイオンの吸蔵・放出が可能な正極活物質を含む正極合剤層を備えた正極板と、
セパレータと、
非水電解質と、
を備えている、非水電解質二次電池。 - 前記負極板及び前記正極板が、前記セパレータを介して互いに絶縁された状態で、偏平状に巻き回された偏平状巻回電極体を備える、請求項4に記載の非水電解質二次電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016509995A JPWO2015146079A1 (ja) | 2014-03-25 | 2015-03-18 | 非水電解質二次電池用負極板及び非水電解質二次電池 |
CN201580009440.6A CN106030862A (zh) | 2014-03-25 | 2015-03-18 | 非水电解质二次电池用负极板及非水电解质二次电池 |
US15/126,532 US20170084910A1 (en) | 2014-03-25 | 2015-03-18 | Negative electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-061354 | 2014-03-25 | ||
JP2014061354 | 2014-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015146079A1 true WO2015146079A1 (ja) | 2015-10-01 |
Family
ID=54194629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/001508 WO2015146079A1 (ja) | 2014-03-25 | 2015-03-18 | 非水電解質二次電池用負極板及び非水電解質二次電池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170084910A1 (ja) |
JP (1) | JPWO2015146079A1 (ja) |
CN (1) | CN106030862A (ja) |
WO (1) | WO2015146079A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200001540A (ko) * | 2018-06-27 | 2020-01-06 | 도요타 지도샤(주) | 부극의 제조 방법, 부극 및 비수 전해액 이차전지 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102439128B1 (ko) | 2018-07-06 | 2022-09-02 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 음극, 이의 전리튬화 방법 및 이를 포함하는 리튬 이차전지 |
CN110783531A (zh) * | 2018-07-31 | 2020-02-11 | 纳米及先进材料研发院有限公司 | 制备电极活性材料和电池电极的方法 |
US20210218014A1 (en) * | 2018-08-29 | 2021-07-15 | Panasonic Intellectual Property Management Co., Ltd. | Non-aqueous electrolyte secondary battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005100773A (ja) * | 2003-09-24 | 2005-04-14 | Toshiba Corp | 非水電解質二次電池 |
WO2013094668A1 (ja) * | 2011-12-22 | 2013-06-27 | 三洋電機株式会社 | 非水電解質二次電池 |
JP2013164939A (ja) * | 2012-02-09 | 2013-08-22 | Japan Capacitor Industrial Co Ltd | 集電体及び電極、これを用いた蓄電素子 |
JP2014067583A (ja) * | 2012-09-26 | 2014-04-17 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2014099262A (ja) * | 2012-11-13 | 2014-05-29 | Sanyo Electric Co Ltd | 円筒形非水電解質二次電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4407211B2 (ja) * | 2003-09-02 | 2010-02-03 | 日産自動車株式会社 | 非水電解質二次電池 |
JP2007273184A (ja) * | 2006-03-30 | 2007-10-18 | Sony Corp | 電池 |
JP4954270B2 (ja) * | 2009-02-13 | 2012-06-13 | 日立マクセルエナジー株式会社 | 非水二次電池 |
KR20140106292A (ko) * | 2013-02-26 | 2014-09-03 | 삼성에스디아이 주식회사 | 리튬 이차전지용 음극 및 이를 채용한 리튬 이차전지 |
-
2015
- 2015-03-18 JP JP2016509995A patent/JPWO2015146079A1/ja active Pending
- 2015-03-18 WO PCT/JP2015/001508 patent/WO2015146079A1/ja active Application Filing
- 2015-03-18 CN CN201580009440.6A patent/CN106030862A/zh active Pending
- 2015-03-18 US US15/126,532 patent/US20170084910A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005100773A (ja) * | 2003-09-24 | 2005-04-14 | Toshiba Corp | 非水電解質二次電池 |
WO2013094668A1 (ja) * | 2011-12-22 | 2013-06-27 | 三洋電機株式会社 | 非水電解質二次電池 |
JP2013164939A (ja) * | 2012-02-09 | 2013-08-22 | Japan Capacitor Industrial Co Ltd | 集電体及び電極、これを用いた蓄電素子 |
JP2014067583A (ja) * | 2012-09-26 | 2014-04-17 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2014099262A (ja) * | 2012-11-13 | 2014-05-29 | Sanyo Electric Co Ltd | 円筒形非水電解質二次電池 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200001540A (ko) * | 2018-06-27 | 2020-01-06 | 도요타 지도샤(주) | 부극의 제조 방법, 부극 및 비수 전해액 이차전지 |
KR102299786B1 (ko) | 2018-06-27 | 2021-09-08 | 도요타 지도샤(주) | 부극의 제조 방법, 부극 및 비수 전해액 이차전지 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015146079A1 (ja) | 2017-04-13 |
US20170084910A1 (en) | 2017-03-23 |
CN106030862A (zh) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10418627B2 (en) | Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for non-aqueous electrolyte secondary battery | |
JP6030070B2 (ja) | 非水電解質二次電池 | |
JP5241124B2 (ja) | 非水電解質二次電池 | |
US7745057B2 (en) | Nonaqueous electrolyte secondary battery | |
US20180040881A1 (en) | Non-aqueous electrolyte secondary battery | |
JP5666287B2 (ja) | 非水電解質二次電池 | |
JP2019016483A (ja) | 非水電解質二次電池 | |
JP6287187B2 (ja) | 非水電解質二次電池 | |
JP5813336B2 (ja) | 非水電解質二次電池 | |
JP6275694B2 (ja) | 非水電解質二次電池 | |
JP2015170542A (ja) | 非水電解質二次電池 | |
JP2009129721A (ja) | 非水電解質二次電池 | |
JP6287185B2 (ja) | 非水電解質二次電池及び非水電解質二次電池の製造方法 | |
JP2015185491A (ja) | 非水電解質二次電池 | |
JP2018092707A (ja) | 正極板の製造方法及び非水電解質二次電池の製造方法、並びに非水電解質二次電池 | |
WO2015146079A1 (ja) | 非水電解質二次電池用負極板及び非水電解質二次電池 | |
JP2011181386A (ja) | 非水電解質二次電池 | |
JP6287186B2 (ja) | 非水電解質二次電池 | |
JPWO2014068931A1 (ja) | 非水電解質二次電池 | |
JP2009081067A (ja) | 非水電解質二次電池 | |
JP7337096B2 (ja) | 非水電解質二次電池 | |
JP6397642B2 (ja) | 非水電解質二次電池 | |
JP2005190690A (ja) | 非水電解質電池 | |
JP6282595B2 (ja) | 非水電解質二次電池 | |
JP2010186716A (ja) | 非水電解質二次電池用負極活物質合剤の製造方法及び非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15769388 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016509995 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15126532 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15769388 Country of ref document: EP Kind code of ref document: A1 |