WO2015145716A1 - 放射線モニタ - Google Patents

放射線モニタ Download PDF

Info

Publication number
WO2015145716A1
WO2015145716A1 PCT/JP2014/059093 JP2014059093W WO2015145716A1 WO 2015145716 A1 WO2015145716 A1 WO 2015145716A1 JP 2014059093 W JP2014059093 W JP 2014059093W WO 2015145716 A1 WO2015145716 A1 WO 2015145716A1
Authority
WO
WIPO (PCT)
Prior art keywords
count rate
radiation
measurement
high energy
alarm
Prior art date
Application number
PCT/JP2014/059093
Other languages
English (en)
French (fr)
Inventor
江口 和宏
茂木 健一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016509815A priority Critical patent/JP6072977B2/ja
Priority to US15/029,311 priority patent/US9494695B2/en
Priority to EP14887516.4A priority patent/EP3125000B1/en
Priority to PCT/JP2014/059093 priority patent/WO2015145716A1/ja
Publication of WO2015145716A1 publication Critical patent/WO2015145716A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/002Detection of leaks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/003Remote inspection of vessels, e.g. pressure vessels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/006Details of nuclear power plant primary side of steam generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/42Applications, arrangements, or dispositions of alarm or automatic safety devices
    • F22B37/421Arrangements for detecting leaks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a radiation monitor, and more particularly to a radiation monitor for confirming the soundness of a steam generator in a pressurized water reactor plant.
  • a radiation monitor that confirms the soundness of the steam generator by monitoring the leakage of the steam generator (SG) at the nuclear power plant from the primary cooling water to the secondary cooling water.
  • SG steam generator
  • This high-sensitivity main steam pipe monitor is placed close to the main steam pipe, detects the radiation and outputs an analog voltage pulse, and inputs the analog voltage pulse to the steam in the main steam pipe.
  • a count rate measuring unit that measures the count rate of the digital pulse, and monitors a change in the count rate.
  • the count rate measurement unit of the high-sensitivity main steam pipe monitor counts the digital pulses that have been discriminated by the pulse height, so that the standard deviation is constant based on the count value.
  • the time constant is processed by software and the count rate is obtained and output. It is also possible to switch the standard deviation according to the counting rate so that a suitable response is obtained according to the purpose. If necessary, a plurality of count rates can be obtained by a plurality of time constant processes, and a plurality of count rates having different standard deviations can be displayed and compared (for example, see Patent Document 1).
  • the steam in the main steam pipe is a secondary system and does not contain the radionuclides of the population during normal times.
  • the background count rate during normal times is dominated by cosmic rays and is as low as several cpm, and the background count rate and the alarm set point are close to each other. If it tries to do so, the standard deviation will be reduced. As a result, the response of alarm transmission will be delayed, and if the standard deviation is increased with priority given to the response of alarm transmission, false alarms will occur frequently. For this reason, the alarm is divided into two stages, a warning alarm and a high alarm are provided at a higher level, a warning alarm is transmitted at the minor leakage stage, and a detailed investigation including the possibility of a false alarm is performed.
  • JP-A-61-128184 ⁇ (Formula (1), Formula (4), FIG. 1, FIG. 5, FIG. 6, FIG. 10 to FIG. 16) ⁇ Japanese Patent Laid-Open No. 4-268396 (FIGS. 1 and 2)
  • the conventional radiation monitor is configured as described above.
  • An analog voltage pulse from the radiation detector is input to the count rate measurement unit, and the peak value that enters the set window is discriminated and counted, and the count value is obtained.
  • time constant processing is performed by software so that the standard deviation is constant, and the count rate is obtained and output with priority on responsiveness. For this reason, since the alarm is close to the background, the alarm may be erroneously transmitted due to statistical fluctuation of the count rate, so-called fluctuation, and even if the count rate returns to the background.
  • the method of obtaining a plurality of count rates with different standard deviations from the same input and comparing their transitions requires about 20 minutes for the normal count rate output giving priority to responsiveness to reach the top of fluctuation.
  • the input is the same pulse train only by the transition of the count rate for diagnosis with slow response.
  • the present invention has been made in order to solve the above-described problems, and is a trust that accurately determines whether or not the fluctuation is caused by online self-diagnosis for the transmission of a caution alarm and provides information on the result.
  • An object of the present invention is to provide a radiation monitor with high performance and good maintainability.
  • the radiation monitor includes a radiation detection means for detecting ⁇ -rays emitted from a measurement target nuclide and outputting an analog voltage pulse, and an analog voltage pulse output from the radiation detection means for inputting a measurement energy range.
  • a radiation measuring unit that measures and outputs the radiation of: a pulse amplifying unit that amplifies the input analog voltage pulse and removes superposed high frequency noise; and the pulse amplification
  • the analog voltage pulses output from the means are discriminated by a high energy window and a low energy window which are set so as not to overlap each other according to the voltage level, and the standard deviation is determined for the pulses entering the high energy window.
  • the high energy count rate measurement means that outputs an alarm when the high energy count rate rises outside the allowable setting value, and the pulse that has entered the low energy window is moving averaged at a constant measurement time.
  • an alarm is output from the low energy count rate measuring means that measures and outputs the low energy count rate and the high energy count rate measuring means, it is determined whether the low energy count rate is within the set allowable range and
  • An alarm diagnosis means for determining that the cause of the alarm is due to fluctuation if it is within the range, and determining that either the increase in ⁇ -rays to be measured or noise intrusion is detected when rising outside the allowable range and outputting the determination result;
  • display and operation means for displaying each output and performing operation and setting of each unit.
  • the radiation monitor according to the present invention automatically displays whether or not the cause of the alarm is a fluctuation or the like and displays it. Therefore, the time required for investigating the cause of the alarm transmission is greatly reduced, and the reliability is high and the maintenance is easy. A radiation monitor is obtained.
  • FIG. 1 is a diagram showing a configuration of a radiation monitor according to Embodiment 1 of the present invention.
  • a radiation detector 1 as a radiation detection means detects ⁇ rays emitted from an N-16 nuclide that is a measurement target nuclide and outputs an analog voltage pulse.
  • the radiation measurement unit 2 as a radiation measurement unit includes a pulse amplifier 21 as a pulse amplification unit, a high energy count rate measurement function unit 22a as a high energy count rate measurement unit, and a low energy count rate measurement as a low energy count rate measurement unit.
  • a function unit 23, an alarm diagnosis function unit 24 as an alarm diagnosis unit, an interface function unit 25, and a display and operation unit 26 as a display and operation unit are provided.
  • the pulse amplifier 21 inputs and amplifies the analog voltage pulse output from the radiation detector 1, and removes the superposed high frequency noise and outputs it.
  • the high energy count rate measuring function unit 22 a includes a high window wave high discriminator 221, a high counter 222, and a high energy count rate calculating function unit 223 a, and the high window wave high discriminator 221 is an analog voltage pulse output from the pulse amplifier 21. Is input, the pulses entering the set high energy window are discriminated and a digital pulse is output, and the high counter 222 counts the digital pulse at a fixed period and outputs a count value.
  • the high energy count rate calculation function unit 223a calculates and outputs the high energy count rate by inputting the count value and processing the time constant so that the standard deviation becomes constant. An alarm is output when the value rises outside the allowable set value.
  • the low energy count rate measurement function unit 23 includes a low window wave height discriminator 231, a low counter 232, and a low energy count rate calculation function unit 233, and the low window wave height discriminator 231 is an analog voltage pulse output from the pulse amplifier 21. , And a digital pulse is output by discriminating the pulses that enter the set low energy window, and the low counter 232 counts the digital pulses at a fixed period and outputs a count value.
  • the low energy count rate calculation function unit 233 calculates and outputs the low energy count rate by inputting the count value and performing a moving average with a constant measurement time.
  • the high counter 222 and the low counter 232 are repeatedly reset / set every set time, that is, every fixed period (calculation period), count the input pulses in the fixed period, and output a coefficient value.
  • the alarm diagnosis function unit 24 inputs an alarm from the high energy count rate measurement function unit 22a and also inputs a low energy count rate from the low energy count rate measurement function unit 23, and the low energy count rate is synchronized with the alarm transmission. Determine whether it is within the set allowable range. If the low energy count rate is within the set allowable range, it is determined that the cause of the alarm is due to fluctuations. If the low energy count rate rises outside the allowable range, the cause of the alarm is either an increase in the measurement target ⁇ -ray or noise intrusion. It is determined that it is based on, and the determination result is output.
  • the interface function unit 25 inputs the high energy count rate and alarm from the high energy count rate measurement function unit 22a and outputs the determination results from the alarm diagnosis function unit 24 and outputs them in the order determined. Each output from the unit 25 is input and displayed, and the radiation measurement unit 2 is operated and set. The interface function unit 25 also receives a low energy count rate from the low energy count rate measurement function unit 23.
  • FIG. 2A to 2C are diagrams showing windows and spectra according to the first embodiment.
  • a temporary multichannel wave height analyzer is connected to the output of the pulse amplifier 21 for observation. It will be explained as a spectrum observed in the case.
  • the energy on the horizontal axis indicates the peak value of the pulse waveform.
  • FIG. 2A is a diagram schematically showing an energy spectrum in a normal state.
  • a symbol a indicates a background spectrum
  • a symbol NL indicates a low window
  • a symbol NH indicates a high window.
  • FIG. 2B schematically shows an energy spectrum at the time of noise intrusion
  • symbol b shows an energy spectrum in which the noise spectrum is superimposed on the background spectrum a when electrostatic discharge light is generated inside the radiation detector 1.
  • FIG. 2C schematically shows the energy spectrum when the cooling water leaks from the steam generator (SG) and the radioactivity increases
  • the symbol c is N-16 nuclide and is counted by the high energy count rate calculation function unit 223.
  • the spectrum when the rate increases is shown.
  • the background is as low as about 5 cpm
  • the alarm setting is about 10 cpm, and the alarm setting level is barely exceeded, the peak in the high energy window NH is not clear.
  • the ratio of the low energy count rate of the low energy window NL and the high energy count rate of the high energy window NH is as large as several hundred times.
  • the low energy count rate of the low energy window NL and the high energy count rate of the high energy window NH increase synchronously, and the increment (net) of each count rate increases.
  • the ratio is as large as several tens of times.
  • the symbol X indicates the noise spectrum superimposed on the normal time spectrum.
  • ⁇ rays (6.13 MeV) from N-16 nuclides are detected.
  • the high energy count rate measurement function unit 22a counts the ⁇ -ray photoelectric peak, single escape peak, and double escape peak of the measurement target nuclide as indicated by the symbol Y in FIG. 2C, and the high energy count rate of the high energy window NH. Will increase.
  • the low energy count rate measurement function unit 23 counts the Compton scattering of ⁇ rays from the N-16 nuclide as indicated by the symbol Z in FIG. 2C, and the low energy count rate of the low energy window NL increases. Each increment ratio is about 9.
  • the count rate m output by the high energy count rate calculation function unit 223a is that the standard deviation is ⁇ , the time constant is ⁇ , the count value is M, the fixed cycle time is ⁇ T, the value of the previous calculation cycle is (previous), this time
  • the value of the calculation cycle is represented by (current)
  • the value of the previous calculation cycle is represented by (previous)
  • the value of the current calculation cycle is represented by (current).
  • N-16 nuclides are measured in the Pressurized Water Reactor (PWR) plant, and the change is monitored to prevent leakage of the primary cooling water from the steam generator (SG) to the secondary cooling water.
  • the high-sensitivity main steam pipe monitor to be detected pays attention to the change from the background count rate.
  • the frequency of alarm occurrence due to fluctuation is calculated and evaluated for the relationship between the moving average integration time T and the time constant ⁇ between 1 ⁇ ⁇ T ⁇ 3 ⁇ due to differences in the high energy count rate m, low energy count rate n, and net increase ratio k. Can be decided.
  • the radiation monitor according to Embodiment 1 is set to include the N-16 nuclide ⁇ -ray 6.13 Mev photoelectric peak, single escape peak, and double escape peak in the high energy count rate measurement function unit 22a.
  • the high energy count rate is measured by counting the pulses entering the high energy window NH and processing the time constant so that the standard deviation is constant.
  • the low energy count rate measurement function unit 23 counts Compton scattering of ⁇ -ray 6.13 Mev of N-16 nuclides entering the low energy window NL, and doubles the time constant in the background state of the high energy count rate.
  • the low energy count rate is measured by moving average with a constant measurement time.
  • the primary sorting can reduce the total time required for investigating the cause of alarm transmission, and provide a radiation monitor that is highly reliable and easy to maintain.
  • Embodiment 2 a radiation monitor according to Embodiment 2 of the present invention will be described.
  • the alarm diagnostic function unit 24 identifies the statistical fluctuation of radiation measurement that occupies most of the causes of alarm transmission and the other causes, and outputs the results.
  • the alarm diagnosis function unit 24 performs the secondary sorting in addition to the primary sorting and outputs the result.
  • FIG. 3 is a diagram showing a determination flow of the radiation monitor according to the second embodiment.
  • FIG. 3 shows a form in which the noise diagnosis as the secondary sorting in the second embodiment is added to the fluctuation diagnosis in the first embodiment as the primary sorting, and “n ⁇ (1 + p ⁇ ⁇ ) ⁇ n (BG)? ”is a judgment of fluctuation diagnosis, n (BG) is the average value of the count rate n measured for a long time, and p indicates the ratio of the spread of the standard deviation.
  • n (BG) is the average value of the count rate n measured for a long time
  • p indicates the ratio of the spread of the standard deviation.
  • the configuration of the radiation monitor is the same as that in FIG. 1, and will be described with reference to FIG.
  • the alarm diagnosis function unit 24 inputs a high energy count rate m and an alarm from the high energy count rate measurement function unit 22a in step S1, and the low energy count rate measurement function unit 23 receives a low energy count rate. Enter n.
  • step S2 it is determined whether an alarm is transmitted. If NO, the process returns to step S1, and if YES, step S3 is performed as a noise diagnosis, and the low energy count rate n is n ⁇ (1 + p ⁇ ⁇ ) ⁇ n ( BG). If the determination in step S3 is YES, it is determined in step S4 that the cause of the alarm is “fluctuation”, and the determination result is output in step S9. If the determination in step S3 is NO, a low energy count rate increase ⁇ n and a high energy count rate increase ⁇ m are determined in step S5, and a ratio ⁇ n / ⁇ m is further determined.
  • step S6 it is determined whether ⁇ n / ⁇ m ⁇ r as a noise diagnosis. If YES, the cause of the alarm is determined as “noise intrusion” in step S7, and the determination result is output in step S9. If NO in step S6, the cause of the alarm is determined as “increase in radiation to be measured” in step S8, and the determination result is output in step S9. When an alarm is output, a determination is output and the diagnosis is held. For example, the diagnosis is resumed by resetting the alarm.
  • ⁇ n / ⁇ m is approximately 12 ⁇ n / ⁇ m.
  • Embodiment 3 a radiation monitor according to Embodiment 3 of the present invention will be described.
  • the high counter 222 counts the digital pulse output from the high window wave height discriminator 221, and the high energy count rate calculation function unit 223a is based on the count value.
  • the high energy count rate is calculated and output by processing time constant so that the standard deviation is constant, but the third embodiment can maintain high accuracy by using an up / down counter instead of the high counter. A radiation monitor is obtained.
  • FIG. 4 is a diagram showing a configuration of the radiation monitor according to the third embodiment.
  • the high energy count rate measurement function unit 22b of the radiation monitor according to the third embodiment includes a high window wave height discriminator 221, a high integration unit 224, and a high energy count rate calculation function unit 223b.
  • the integration unit 224 includes an up / down counter 2241, a negative feedback pulse generation circuit 2242, and an integration control circuit 2243.
  • the high window wave height discriminator 221 receives an analog voltage pulse output from the pulse amplifier 21, discriminates a pulse that enters a set high energy window and outputs a digital pulse, and an up / down counter 2241 has a high window wave height.
  • the digital pulse output from the discriminator 221 is input to the up input, and the negative feedback pulse generation circuit 2242 generates a feedback pulse having a repetition frequency that causes the output of the up / down counter 2241 to respond with a first-order delay of a time constant. And input to the down input of the up / down counter 2241.
  • the up / down counter 2241 has an up input and a down input.
  • the up input advances the count, the down input returns the count, and outputs an addition / subtraction integrated value as a result of addition and subtraction.
  • the signal pulse of the same detector line as that of the high counter of the first embodiment is input to the up input, the negative feedback pulse is input to the down input, and the products are continuously added and subtracted without being reset.
  • the repetition frequency of the feedback pulse responding with the time constant of the first-order lag with respect to the repetition frequency of the input pulse is balanced, and the input is alternately replaced with the addition / subtraction value in that state, so that only the weight of one pulse is obtained. Stable and stable.
  • the integration control circuit 2243 performs weighting when the up / down counter 2241 counts corresponding to the standard deviation of the count rate, and the high energy count rate calculation function unit 223b determines the standard deviation ⁇ based on the addition / subtraction integrated value Q of the up / down counter 2241.
  • the count rate m is calculated by the following equations (7) to (9) so that becomes constant.
  • the negative feedback pulse generation circuit 2242 generates a feedback pulse based on the addition / subtraction integrated value Q.
  • the current calculation cycle is represented by (current).
  • the value Q (current) responds with an increase / decrease of 4 counts for 1 count input.
  • the response time ⁇ (current) depends on the weighting of the count with respect to the input of the up / down counter 2241.
  • Other configurations and operations are the same as those in the first embodiment, and the same reference numerals are used to omit redundant description.
  • the high counter 222 of the radiation monitor according to the first embodiment generates a loss time due to reset, whereas the up / down counter 2241 of the radiation monitor according to the third embodiment does not need to be reset. Since addition / subtraction is continuously performed, good linearity, that is, high accuracy can be maintained up to a high count rate.
  • the radiation measurement unit 2 performs the fluctuation diagnosis based on the low count rate
  • the radiation measurement unit 2 similarly performs the fluctuation diagnosis and the noise intrusion diagnosis based on the low count rate.
  • the radiation measurement unit is composed of a high energy radiation measurement unit 3 as a first radiation measurement unit and a low energy radiation measurement unit 4 as a second radiation measurement unit
  • the analog voltage pulse output from the radiation detector 1 is input to the high energy radiation measurement unit 3 and the low energy radiation measurement unit 4, respectively.
  • the high energy radiation measurement unit 3 is a high energy count rate measurement function unit according to the first embodiment.
  • the low energy radiation measurement unit 4 distinguishes the high window wave height discriminator 221 of the low energy count rate measurement function unit 22a of the first embodiment or the low energy count rate measurement function unit 22b of the third embodiment. It operates in the same manner as the high energy radiation measurement unit 3 with the configuration replaced with the device 231 and outputs a low energy count rate.
  • the transmission of the alarm of the low energy radiation measurement unit 4 is provided with a function as required.
  • the measurement energy range of the low energy radiation measurement unit 4 is set so as to include the peak spectrum and the main Compton scattering spectrum of the radioactive rare gas to be released as shown in FIG.
  • the ratio of the standard deviation of the low energy radiation measurement unit 4 to the high energy radiation measurement unit 3 is 1/4, for example, when the deviation ⁇ is 1/4, when the standard deviation of the high energy count rate is 0.1, the low energy count rate The standard deviation is 0.025.
  • the background of the high energy count rate is 5 cpm and the background of the low energy count rate is 2000 cpm
  • the time constant of the high energy count rate is 10 minutes and the time constant of the low energy count rate is 0.4 minutes from equation (2).
  • the release of radioactive noble gas can be measured in a suitable state in which fluctuation and response are balanced.
  • the 5 includes an alarm diagnosis unit 51 and a display unit 52, and inputs a high energy count rate and alarm from the high energy radiation measurement unit 3 and a low energy count rate from the low energy radiation measurement unit 4.
  • the alarm diagnosis unit 51 operates in the same manner as the alarm diagnosis function unit 24 of the first or second embodiment, and outputs the results of fluctuation diagnosis and noise intrusion diagnosis.
  • the display unit 52 simultaneously displays the diagnosis result of the alarm diagnosis unit 51 and the trends of the high energy count rate and the low energy count rate.
  • the time constant of the background level in the high energy radiation measurement unit 3 is ⁇ 1
  • the time constant of the background level in the low energy radiation measurement unit 4 is ⁇ 2
  • ⁇ 1 >> ⁇ 2
  • the moving average time T2 of the diagnostic device 5 is 1.
  • the horizontal axis shows the time
  • the vertical axis shows the moving average value of the left and right of the screen, for example, the left is the high energy count rate and the right is the low energy count rate
  • the scale can be linear or logarithmic
  • Xe-135, Ar-41, Kr-85, Kr-87, Kr-88 represents a rare gas nuclide
  • Y1, Y2, and Y3 represent a double escape peak, a single escape peak, and a photoelectric peak of the N-16 nuclide, respectively.
  • the low energy count rate is assigned to the low range of the emitted radioactivity concentration in this radiation monitor, and the high range is assigned to another radiation monitor, In order to match the units of the measurement values of the low range and the high range, for example, a dose equivalent rate may be displayed. Moreover, you may integrate the diagnostic apparatus 5 in the computer system of a plant.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

 高エネルギー計数率測定機能部(22a、22b)と、低エネルギー計数率測定機能部(23)と、警報診断機能部(24)を備える。警報診断機能部(24)は、高エネルギー計数率測定機能部(22a、22b)から警報を入力し、低エネルギー計数率測定機能部(23)から低エネルギー計数率を入力し、警報発信に同期させて低エネルギー計数率が設定された許容範囲かどうかを判断し、許容範囲内ならば警報の原因をゆらぎによるものと判定し、許容範囲を逸脱して上昇したら警報の原因を測定対象γ線の増加またはノイズ侵入のいずれかによるものと判定し、判定結果を出力する。

Description

放射線モニタ
 この発明は、放射線モニタに係り、特には加圧水型原子炉プラントにおける蒸気発生器の健全性を確認する放射線モニタに関するものである。
 原子力発電所の蒸気発生器(Steam Generator:SG)の1次系冷却水から2次系冷却水への漏洩を監視することにより、蒸気発生器の健全性を確認する放射線モニタの内で、高感度型主蒸気管モニタの名称で呼ばれる放射線モニタがある。この高感度型主蒸気管モニタは、主蒸気管に近接して配置され、放射線を検出してアナログ電圧パルスを出力する放射線検出器と、そのアナログ電圧パルスを入力して主蒸気管内の蒸気に含まれる放射性核種のN-16のγ線6.13MeVの光電ピーク、シングルエスケープピーク、ダブルエスケープピークを包含するように設定された高エネルギーウィンドウに入るアナログ電圧パルスを弁別してデジタルパルスを出力し、そのデジタルパルスの計数率を測定する計数率測定部と、を備え、その計数率の変化を監視する。
 一般的な放射線モニタの計数率測定部と同様に、高感度型主蒸気管モニタの計数率測定部は、波高弁別したデジタルパルスを計数し、その計数値に基づき標準偏差が一定になるようにソフトウェアで時定数処理して計数率を求めて出力する。計数率に応じて標準偏差を切り換え、目的に応じて好適な応答になるようにすることもできる。必要に応じて複数の時定数処理により複数の計数率を求めて標準偏差の異なる複数の計数率を表示して比較することもできる(例えば、特許文献1参照)。
 また、主蒸気管の上流と下流の2つの検出位置で同期して指示上昇するかどうかで、当該事象が信号によるものかノイズによるものかを判断するという提案もある(例えば、特許文献2参照)。
 主蒸気管内の蒸気は2次系であり平常時は人口の放射性核種を含まない。また、平常時のバックグラウンド計数率は宇宙線が支配的で数cpm程度と低く、かつバックグラウンド計数率と警報設定点が近接しているため、誤警報を抑制して高精度で警報発信させようとすると標準偏差を小さくすることになり、結果として警報発信の応答が遅くなり、警報発信の応答を優先して標準偏差を大きくすると誤警報が頻発することになる。そのため警報を2段化して注意警報とその上のレベルに高警報を設け、軽微漏洩の段階で注意警報を発信させ、誤警報の可能性を含めて細かく調査を行う運用としている。
特開昭61-128184号公報{(式(1)、式(4)、第1図、第5図、第6図、第10図~第16図} 特開平4-268496号公報(図1、図2)
 従来の放射線モニタは以上のように構成されており、放射線検出器からのアナログ電圧パルスを計数率測定部に入力し、設定したウィンドウに入る波高値のものを弁別して計数し、その計数値に基づき標準偏差が一定になるようにソフトウェアで時定数処理し、応答性を優先して計数率を求めて出力するようにしている。このため、また、警報がバックグラウンドに近接しているため、計数率の統計的な変動、所謂、ゆらぎで警報が誤発信することがあり、計数率がバックグラウンドに復帰しても念のために装置のオフライン点検を行って健全性を確認するという作業が必要であった。
 これに対して、同じ入力から標準偏差の異なる複数の計数率を求めてその推移を比較する方法は、応答性を優先した正規の計数率出力がゆらぎの頂点に達するのに20分程度を要し、それを応答の遅い診断用の計数率が追いかける形で推移するだけで、入力が同じパルス列であるがゆえに、原因の識別は困難であるという問題があった
 また、上記特許文献2に開示されているように、主蒸気管の上流と下流の2つの検出位置の計数率の推移を比較するという提案は、バックグラウンド計数率が数cpmと小さいため、上昇傾向が同じになる確率が無視できず、根本的解決策にならないという問題があった。
 この発明は上記のような課題を解決するためになされたものであり、注意警報の発信に対してオンライン自己診断により、ゆらぎが原因かどうかを正確に判定してその結果の情報を提供する信頼性の高い、かつ保守性の良好な放射線モニタを提供することを目的とする。
 この発明に係る放射線モニタは、測定対象核種から放出されるγ線を検出してアナログ電圧パルスを出力する放射線検出手段と、上記放射線検出手段から出力されるアナログ電圧パルスを入力して測定エネルギー範囲の放射線を測定し、出力する放射線測定手段と、を備えた放射線モニタにおいて、上記放射線測定手段は、入力したアナログ電圧パルスを増幅すると共に重畳する高周波ノイズを除去するパルス増幅手段と、上記パルス増幅手段から出力されたアナログ電圧パルスを、電圧レベルに対応して互いに重ならないように設定された高エネルギーのウィンドウ及び低エネルギーのウィンドウによりそれぞれ弁別し、高エネルギーのウィンドウに入ったパルスを標準偏差が一定になるように時定数処理し、高エネルギー計数率を測定して出力すると共に、高エネルギー計数率が許容する設定値を逸脱して上昇したら警報を出力する高エネルギー計数率測定手段と、上記低エネルギーのウィンドウに入ったパルスを測定時間一定で移動平均して低エネルギー計数率を測定して出力する低エネルギー計数率測定手段と、上記高エネルギー計数率測定手段から警報が出力されたら、低エネルギー計数率が設定された許容範囲内かどうかを判断し、許容範囲内ならば警報の原因がゆらぎによるものと判定し、許容範囲を逸脱して上昇したら測定対象γ線の増加またはノイズ侵入のいずれかであると判定して判定結果を出力する警報診断手段と、各出力を表示すると共に各部の操作及び設定を行う表示及び操作手段と、を備えたものである。
 この発明に係る放射線モニタは、警報の原因についてゆらぎかその他かを自動判定して表示するようにしたので、警報発信の原因調査に要する時間を大幅に短縮した信頼性の高いかつ保守の容易な放射線モニタが得られる。
 この発明の上記以外の目的、特徴、観点及び効果は、図面を参照する以下のこの発明の詳細な説明から、さらに明らかになると考える。
この発明の実施の形態1に係る放射線モニタの構成を示す図である。 この発明の実施の形態1に係る放射線モニタのウィンドウとスペクトルを示す図である。 この発明の実施の形態1に係る放射線モニタのウィンドウとスペクトルを示す図である。 この発明の実施の形態1に係る放射線モニタのウィンドウとスペクトルを示す図である。 この発明の実施の形態2に係る放射線モニタの判定フローを示す図である。 この発明の実施の形態3に係る放射線モニタの構成を示す図である。 この発明の実施の形態4に係る放射線モニタの構成を示す図である。 この発明の実施の形態4に係る放射線モニタの低エネルギーウィンドウと希ガスエネルギーの関係を示す図である。
 以下、この発明に係る放射線モニタの好適な実施の形態について図面を参照して説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係る放射線モニタの構成を示す図である。図1において、放射線検出手段である放射線検出器1は、測定対象核種であるN-16核種から放出されるγ線を検出してアナログ電圧パルスを出力する。放射線測定手段である放射線測定部2は、パルス増幅手段であるパルス増幅器21、高エネルギー計数率測定手段である高エネルギー計数率測定機能部22a、低エネルギー計数率測定手段である低エネルギー計数率測定機能部23、警報診断手段である警報診断機能部24、インターフェース機能部25、表示及び操作手段である表示及び操作部26を備えている。パルス増幅器21は、放射線検出器1から出力されるアナログ電圧パルスを入力して増幅すると共に、重畳する高周波ノイズを除去して出力する。
 高エネルギー計数率測定機能部22aは、高ウィンドウ波高弁別器221、高カウンタ222、高エネルギー計数率演算機能部223aを備え、高ウィンドウ波高弁別器221は、パルス増幅器21から出力されたアナログ電圧パルスを入力し、設定された高エネルギーのウィンドウに入るパルスを弁別してデジタルパルスを出力し、高カウンタ222は、そのデジタルパルスを定周期で計数して計数値を出力する。また、高エネルギー計数率演算機能部223aは、その計数値を入力して標準偏差が一定になるように時定数処理することにより高エネルギー計数率を演算して出力すると共に、高エネルギー計数率が許容する設定値を逸脱して上昇したら警報を出力する。
 低エネルギー計数率測定機能部23は、低ウィンドウ波高弁別器231、低カウンタ232、低エネルギー計数率演算機能部233を備え、低ウィンドウ波高弁別器231は、パルス増幅器21から出力されたアナログ電圧パルスを入力し、設定された低エネルギーのウィンドウに入るパルスを弁別してデジタルパルスを出力し、低カウンタ232は、そのデジタルパルスを定周期で計数して計数値を出力する。また、低エネルギー計数率演算機能部233は、その計数値を入力し測定時間一定で移動平均することにより低エネルギー計数率を演算して出力する。
 なお、上記高カウンタ222及び低カウンタ232は、設定された時間、即ち定周期(演算周期)毎にリセット/セットが繰り返され、定周期の期間の入力パルスを計数して係数値を出力する。
 警報診断機能部24は、高エネルギー計数率測定機能部22aから警報を入力すると共に、低エネルギー計数率測定機能部23から低エネルギー計数率を入力し、警報発信に同期させて低エネルギー計数率が設定された許容範囲かどうかを判断する。そして、低エネルギー計数率が設定された許容範囲内ならば警報の原因をゆらぎによるものと判定し、許容範囲を逸脱して上昇したら警報の原因を測定対象γ線の増加またはノイズ侵入のいずれかによるものと判定し、判定結果を出力する。インターフェース機能部25は、高エネルギー計数率測定機能部22aから高エネルギー計数率と警報、警報診断機能部24から判定結果を入力して決められた順に出力し、表示及び操作部26は、インターフェース機能部25からの各出力を入力して表示すると共に放射線測定部2の操作及び設定を行う。なお、インターフェース機能部25には、低エネルギー計数率測定機能部23から低エネルギー計数率も入力される。
 図2Aから図2Cは、実施の形態1に係るウィンドウとスペクトルを示す図であり、例えば高感度型主蒸気管モニタにおいて、パルス増幅器21の出力に仮設のマルチチャンネル波高分析器を接続して観測した場合に観測されるスペクトルとして説明する。ここで横軸のエネルギーとはパルス波形の波高値のことを示している。
 図2Aは通常時のエネルギースペクトルを模式的に示す図であり、図2A中の符号aはバックグラウンドスペクトル、符号NLは低ウィンドウ、符号NHは高ウィンドウをそれぞれ示している。図2Bはノイズ侵入時のエネルギースペクトルを模式的に示し、符号bは放射線検出器1の内部で静電気放電光が発生したときにバックグラウンドスペクトルaにノイズスペクトルが重畳されたエネルギースペクトルを示している。また、図2Cは蒸気発生器(SG)から冷却水が漏洩して放射能が増加したときのエネルギースペクトルを模式的示し、符号cはN-16核種で高エネルギー計数率演算機能部223の計数率が上昇したときのスペクトルを示している。ただし、例えばバックグラウンドが5cpm程度と低く、警報設定が10cpm程度で、警報設定レベルをかろうじて超えた状態では高エネルギーウィンドウNH内のピークは鮮明でない。
 図2Aに示すように、バックグラウンド状態において低エネルギーウィンドウNLの低エネルギー計数率と高エネルギーウィンドウNHの高エネルギー計数率の比は数百倍と大きい。また、ノイズ侵入時は図2Bに示すように、低エネルギーウィンドウNLの低エネルギー計数率と高エネルギーウィンドウNHの高エネルギー計数率は同期して増加し、それぞれの計数率の増加分(正味)の比は数十倍と大きい。なお、図2Bにおいて、符号Xは通常時スペクトルにノイズスペクトルが重畳した分を示している。
 一方、蒸気発生器(SG)のリークにより1次系冷却水から2次系冷却水への漏洩が発生した場合は、N-16核種からのγ線(6.13MeV)が検出されるため、高エネルギー計数率測定機能部22aは、図2C中の符号Yで示すように測定対象核種のγ線の光電ピーク、シングルエスケープピーク、ダブルエスケープピークを計数し、高エネルギーウィンドウNHの高エネルギー計数率が増加する。また、低エネルギー計数率測定機能部23は、図2C中の符号Z示すようにN-16核種からのγ線のコンプトン散乱を計数し、低エネルギーウィンドウNLの低エネルギー計数率が増加するが、それぞれの増分比は9程度である。
 高エネルギー計数率演算機能部223aの出力する計数率mは、その標準偏差をσ、時定数をτ、計数値をM、定周期時間をΔTとし、前回演算周期の値を(前回)、今回演算周期の値を(今回)で表すと、次の(1)~(5)の各式により定周期毎に求められる。なお、以降の説明においても、前回演算周期の値を(前回)、今回演算周期の値を(今回)で表す。
  σ=1/(2mτ)1/2・・・(1)
  τ=1/(2mσ)・・・・・(2)
  m(今回)=m(前回)・(1-α)+{M(今回)/ΔT}・α                            ・・・(3)
  α=1-exp(-ΔT/τ) ・・・(4)
  τ=1/{2・m(前回)・σ}・・・・(5)
 すなわち、高エネルギー計数率演算機能部223aから出力される計数率mは、標準偏差σが一定で、時定数τが計数率mに反比例するように制御される。標準偏差σを一定とすることで所望の精度が確保できる。
 また、低エネルギー計数率演算機能部233から出力される計数率nは、
  N:低エネルギー計数値(定周期測定)
  τ(BG):バックグラウンドの計数率mに対応した時定数で、長時間、例えば平常時24時間の計数率mの平均値m(BG)に基づき(2)式から算出
 ΣN:低エネルギー積算計数値(移動平均積算時間T=2τ(BG)=固定値)
とし、次の(6)式により定周期毎に求められる。
 n=ΣN/{2τ(BG)}・・・・(6)
 なお、2τ(BG)=固定値としたのは、一般的にσ=1/(計数率×積算時間)1/2=1/(計数率×2τ)1/2の関係にあり、積算時間すなわち移動平均積算時間と2τが等価であるためである。また、フィールド経験から、N-16核種を測定対象としたウィンドウの高エネルギー計数率のバックグラウンドのトレンドにおけるゆらぎは、その平均レベルから立ち上がってもとの平均レベルに戻るまでの時間が概ね2τであることが確認されており、移動平均積算時間T=2τは診断時間として妥当であることがわかる。
 加圧水型原子炉(Pressurized Water Reactor:PWR)プラントにおいてN-16核種を測定対象とし、その変化を監視して蒸気発生器(SG)の1次系冷却水の2次系冷却水への漏洩を検知する高感度主蒸気管モニタは、バックグラウンド計数率からの変化に注目しており、移動平均積算時間Tを2τ(BG)とすることにより、バックグラウンド状態において、高エネルギー計数率と低エネルギー計数率の測定時間を合わせて測定することができる。
 例えば、σ=0.1、バックグラウンド状態において計数率mが5cpm、nが2000cpmのとき、τ(BG)は(2)式から10分となるので、2τ(BG)は20分となる。したがって、移動平均積算時間Tは20分となり、積算計数値は40000カウントになり、標準偏差σに対応するゆらぎは400001/2=200カウントであり、それを20分で除すると10cpmである。
 一方、警報設定値を10cpm、蒸気発生器(SG)の漏洩による計数率nの正味増加Δnと計数率mの正味増加Δmの比をΔn/Δm=kとすると、警報が発信したときはΔn=k・Δmとなる。kは例えば9程度と推定されるので、Δn=45cpmになり、45cpm/10cpm=4.5σとなる。
 高エネルギー計数率が上昇して高エネルギー計数率測定機能部22aから警報が発信され、警報診断機能部24が低エネルギー計数率について設定された許容範囲を逸脱して上昇したかどうかを判定し、許容範囲内ならば警報の原因がゆらぎによるものと判定するときに、移動平均積算時間T=20分の条件において4.5σは、計算上の誤警報の確率が約11年に1回という頻度となって判定の信頼度が極めて高いことを意味しており、ゆらぎと放射線の増加は識別可能である。なお、高エネルギー計数率m、低エネルギー計数率n、正味増加比kの違いで移動平均積算時間Tと時定数τの関係を1τ<T<3τの間で、ゆらぎによる警報発生頻度を計算評価して決めることができる。
 過去の経験から、警報発信の原因のほとんどは放射線測定に係る統計的なゆらぎであので、この1次仕分けで警報の原因がゆらぎによるものと判定されたら、念のための装置の健全性確認、すなわちパルス増幅器21の出力に仮設のデジタルオシロ、マルチチャンネル波高分析器の測定器を接続したオンライン調査、チェック線源照射によるオフライン調査が不要となる。
 以上のように実施の形態1に係る放射線モニタは、高エネルギー計数率測定機能部22aでN-16核種のγ線6.13Mevの光電ピーク、シングルエスケープピーク、ダブルエスケープピークを包含して設定された高エネルギーウィンドウNHに入るパルスを計数し、標準偏差が一定になるように時定数処理することにより高エネルギー計数率を測定する。そして、低エネルギー計数率測定機能部23で低エネルギーウィンドウNLに入るN-16核種のγ線6.13Mevのコンプトン散乱を計数し、高エネルギー計数率のバックグラウンド状態での時定数の2倍の測定時間一定で移動平均することにより低エネルギー計数率を測定する。更に、高エネルギー計数率が上昇して高エネルギー計数率測定機能部22aが警報を出力したら、警報診断機能部24が低エネルギー計数率について設定された許容範囲を逸脱して上昇したかどうかを判定し、許容範囲内ならば警報の原因がゆらぎによるものと判定する。従って、この1次仕分けにより警報発信の原因調査に要する年間総時間を軽減できると共に信頼性の高いかつ保守の容易な放射線モニタが得られる。
実施の形態2.
 次に、この発明の実施の形態2に係る放射線モニタについて説明する。
 実施の形態1では、警報診断機能部24において警報発信の原因の殆どを占める放射線測定の統計的なゆらぎと、それ以外の原因を識別してその結果を出力するようにしたが、実施の形態2では、警報診断機能部24がこの1次仕分けに加え、2次仕分けを行ってその結果を出力するものである。
 図3は実施の形態2に係る放射線モニタの判定フローを示す図である。なお、図3は1次仕分けとしての実施の形態1のゆらぎ診断に、実施の形態2の2次仕分けとしてのノイズ診断が追加された形を示しており、ステップS3における「n≦(1+p・σ)・n(BG)?」はゆらぎ診断の判定であり、n(BG)は長時間測定した計数率nの平均値で、pは標準偏差の広がりの比率を示すもので、実施の形態1で示したように、例えば4.5とすることにより誤判定の確立は無視できる程度に十分低くなる。また、放射線モニタの構成については図1と同様であり、図1を用いて説明する。
 警報診断機能部24は、図3に示すように、ステップS1で高エネルギー計数率測定機能部22aから高エネルギー計数率mと警報を入力し、低エネルギー計数率測定機能部23から低エネルギー計数率nを入力する。
 ステップS2で警報が発信されたかどうかを判定し、NOならばステップS1に戻り、YESならばノイズ診断としてのステップS3を実施し、低エネルギー計数率nがn≦(1+p・σ)・n(BG)かどうかを判定する。ステップS3の判定がYESならばステップS4で警報の原因を「ゆらぎ」によるものと判定し、ステップS9で判定結果を出力する。ステップS3の判定がNOならばステップS5で低エネルギー計数率増加分Δn、及び高エネルギー計数率増加分Δmを求め、更にその比Δn/Δmを求める。
 ステップS6でノイズ診断としてΔn/Δm≧rかどうかを判断し、YESならばステップS7で警報の原因を「ノイズ侵入」と判定し、ステップS9で判定結果を出力する。また、ステップS6の判定でNOならばステップS8で警報の原因を「測定対象放射線の増加」と判定し、ステップS9で判定結果を出力する。なお、警報が出力されると判定が出力されて診断はホールドされるが、例えば警報をリセットすることで診断は再開される。
 放射線検出器1の内部で絶縁物の割れや摩擦があると、絶縁物が信号線の芯線の被覆の場合は電荷瞬時移動ノイズになり、絶縁物が光電子増倍管の近傍にある場合は発生した放電光が光電子増倍管に侵入して放電光ノイズになる。また、コネクタ接栓等に接触不良があると接触不良ノイズが発生する。
 これらのノイズに加えて、空間伝播、または接地線から侵入する電磁ノイズによる影響について、過去のデータを整理すると共に実験で確認した結果、Δn/Δmは概ね12<Δn/Δmになるので、実施の形態2に係る放射線モニタのように、低エネルギー計数率増加分Δn=n-n(BG)と高エネルギー計数率増加分Δm=m-m(BG)との比であるΔn/Δmに基づくノイズ診断を加えることにより、高エネルギー計数率mの上昇による警報発信に際し、N-16核種が増加して測定対象放射線が増加した場合と放射線のゆらぎ及びノイズが原因の場合を識別判定することが可能となる。従って、その判定結果を出力することで更に保守が容易になると共に、信頼性の高いかつ保守の容易な放射線モニタが得られる効果を奏する。
実施の形態3.
 次に、この発明の実施の形態3に係る放射線モニタについて説明する。
 実施の形態1では、高エネルギー計数率測定機能部22aにおいて、高ウィンドウ波高弁別器221から出力されたデジタルパルスを高カウンタ222が計数し、その計数値に基づき高エネルギー計数率演算機能部223aは標準偏差が一定になるように時定数処理することにより高エネルギー計数率を演算して出力したが、実施の形態3は、高カウンタに代わってアップダウンカウンタを用いる構成により、高精度を維持できる放射線モニタを得るものである。
 図4は、実施の形態3に係る放射線モニタの構成を示す図である。図4に示すように、実施の形態3に係る放射線モニタの高エネルギー計数率測定機能部22bは、高ウィンドウ波高弁別器221、高積算部224、高エネルギー計数率演算機能部223bを備え、高積算部224は、アップダウンカウンタ2241、負帰還パルス発生回路2242、積算制御回路2243を備えている。
 高ウィンドウ波高弁別器221は、パルス増幅器21から出力されたアナログ電圧パルスを入力し、設定された高エネルギーのウィンドウに入るパルスを弁別してデジタルパルスを出力し、アップダウンカウンタ2241は、高ウィンドウ波高弁別器221から出力されたデジタルパルスをアップ入力に入力し、負帰還パルス発生回路2242はアップダウンカウンタ2241の出力に対して時定数の1次遅れで応答させるような繰り返し周波数のフィードバックパルスを発生してアップダウンカウンタ2241のダウン入力に入力する。
 ここで、アップダウンカウンタ2241には、アップ入力とダウン入力があり、アップ入力は計数を進め、ダウン入力は計数を戻し、加算と減算の結果として加減積算値を出力する。そして、アップ入力に実施の形態1の高カウンタと同じ検出器ラインの信号パルスを入力し、ダウン入力に負帰還パルスを入力し、リセットせずに連続して加減算積させる。これにより、入力パルスの繰り返し周波数び対して1次遅れの時定数で応答するフィードバックパルスの繰り返し周波数が平衡してその状態の加減積算値で、交互に入力が入れ替わって1パルスの重み付け分のみよらいで安定する。
 積算制御回路2243は、計数率の標準偏差に対応してアップダウンカウンタ2241が計数するときに重み付けし、高エネルギー計数率演算機能部223bはアップダウンカウンタ2241の加減積算値Qに基づき標準偏差σが一定になるように次の(7)~(9)式により計数率mを演算する。また、負帰還パルス発生回路2242は加減積算値Qに基づきフィードバックパルスを発生する。なお、今回演算周期を(今回)で表す。
  γ=2σ2=1/{m(今回)・τ(今回)}=2-λln2・・・(7)
  β=11-λ・・・(8)
  m(今回)=exp{γ・Q(今回)}・・・(9)
  但し、γ、λ、βは定数である。
 上記(8)式でβ=0を基準にすると、λ=11で加減積算値Q(今回)は1カウント入力に対して1カウントの増減で応答し、β=2、λ=9で加減積算値Q(今回)は1カウント入力に対して4カウントの増減で応答する。また、β=4、λ=7で加減積算値Q(今回)は1カウント入力に対して16カウントの増減で応答し、β=6、λ=5で加減積算値Q(今回)は1カウント入力に対して64カウントの増減で応答する。
 すなわち、計数率m(今回)が一定とすると、応答時間τ(今回)はアップダウンカウンタ2241の入力に対する計数の重み付けに依存することになる。なお、その他の構成並びに動作は、実施の形態1と同様であり、同一符号を付すことにより重複説明を省略する。
 以上のように、実施の形態1に係る放射線モニタの高カウンタ222は、リセットに伴うロス時間が発生するのに対し、実施の形態3に係る放射線モニタのアップダウンカウンタ2241はリセットが不要であり、連続して加減積算するため、高計数率まで良好な直線性すなわち高精度を維持できる。
実施の形態4.
 次に、この発明の実施の形態4に係る放射線モニタについて図5及び図6を用いて説明する。
 実施の形態1では放射線測定部2において低計数率に基づきゆらぎ診断を行い、実施の形態2では同じく放射線測定部2において低計数率に基づきゆらぎ診断とノイズ侵入診断を行った。実施の形態4では図5に示すように、放射線測定部を第1の放射線測定手段である高エネルギー放射線測定部3と、第2の放射線測定手段である低エネルギー放射線測定部4により構成し、放射線検出器1から出力されたアナログ電圧パルスを高エネルギー放射線測定部3及び低エネルギー放射線測定部4にそれぞれ入力し、高エネルギー放射線測定部3は、実施の形態1の高エネルギー計数率測定機能部22a、あるいは実施の形態3の高エネルギー計数率測定機能部22bと同様に動作して高エネルギー計数率と警報を出力する。また、低エネルギー放射線測定部4は、実施の形態1の低エネルギー計数率測定機能部22a、あるいは実施の形態3の低エネルギー計数率測定機能部22bの高ウィンドウ波高弁別器221を低ウィンドウ波高弁別器231に置き換えた構成で高エネルギー放射線測定部3と同様に動作して低エネルギー計数率を出力する。低エネルギー放射線測定部4の警報の発信は要求に応じてその機能が備えられる。
 低エネルギー放射線測定部4の測定エネルギー範囲は、図6のように放出管理対象の放射性希ガスのピークスペクトル及び主要なコンプトン散乱スペクトルを含むように設定することにより、また、(1)式の標準偏差σにおいて、高エネルギー放射線測定部3に対する低エネルギー放射線測定部4の標準偏差の比を例えば1/4とすると、高エネルギー計数率の標準偏差が0.1の場合は、低エネルギー計数率の標準偏差は0.025となる。高エネルギー計数率のバックグラウンドが5cpm、低エネルギー計数率のバックグラウンドが2000cpmのとき、(2)式から高エネルギー計数率の時定数は10分、低エネルギー計数率の時定数は0.4分となり、ゆらぎと応答のバランスのとれた好適な状態で放射性希ガスの放出を測定できる。
 図5に示す診断装置5は、警報診断部51、表示部52を備え、高エネルギー放射線測定部3から高エネルギー計数率及び警報、低エネルギー放射線測定部4から低エネルギー計数率を入力する。警報診断部51は、実施の形態1または実施の形態2の警報診断機能部24と同様に動作して、ゆらぎ診断とノイズ侵入診断の結果を出力する。表示部52は警報診断部51の診断結果と高エネルギー計数率及び低エネルギー計数率のトレンドを同時表示する。
 高エネルギー放射線測定部3におけるバックグラウンドレベルの時定数をτ1とし、低エネルギー放射線測定部4におけるバックグラウンドレベルの時定数をτ2とするとτ1≫τ2であり、診断装置5の移動平均時間T2を1×τ1<T2<3τ×1、好適にはT=2×τ1に設定することで、実施の形態1のノイズ診断と同様にしてゆらぎが原因で警報発信した場合を的確に識別できる。
 トレンドの表示は横軸が時刻、縦軸は画面の左右で例えば左が高エネルギー計数率、右が低エネルギー計数率の移動平均値を表示し、望ましくはその目盛はリニアと対数を選択でき、レンジを拡大または縮小して表示できるようにすることにより、目視でも指示上昇の原因判断ができる。図6は低エネルギーウィンドウと希ガス核種の放射線のエネルギーの関係、更に高エネルギーウィンドウとの位置関係を示すもので、図6において、Xe-135、Ar-41、Kr-85、Kr-87、Kr-88は、希ガス核種を示し、Y1、Y2、Y3は、N-16核種のダブルエスケ-プピーク、シングルエスケ-プピーク、光電ピークをそれぞれ示している。
 なお、低エネルギー放射線測定部4の表示、診断装置5の表示において、低エネルギー計数率は、本放射線モニタで放出放射能濃度の低レンジを分担し、別の放射線モニタで高レンジを分担し、低レンジと高レンジの測定値の単位を合わせるために、例えば線量当量率で表示してもよい。また、診断装置5は、プラントの計算機システムに統合してもよい。
 以上、この発明の実施の形態1から実施の形態4について説明したが、この発明はこれらの実施の形態のみに限られるものではなく、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。

Claims (7)

  1.  測定対象核種から放出されるγ線を検出してアナログ電圧パルスを出力する放射線検出手段と、上記放射線検出手段から出力されるアナログ電圧パルスを入力して測定エネルギー範囲の放射線を測定し、出力する放射線測定手段と、を備えた放射線モニタにおいて、
     上記放射線測定手段は、入力したアナログ電圧パルスを増幅すると共に重畳する高周波ノイズを除去するパルス増幅手段と、
     上記パルス増幅手段から出力されたアナログ電圧パルスを、電圧レベルに対応して互いに重ならないように設定された高エネルギーのウィンドウ及び低エネルギーのウィンドウによりそれぞれ弁別し、高エネルギーのウィンドウに入ったパルスを標準偏差が一定になるように時定数処理し、高エネルギー計数率を測定して出力すると共に、高エネルギー計数率が許容する設定値を逸脱して上昇したら警報を出力する高エネルギー計数率測定手段と、
     上記低エネルギーのウィンドウに入ったパルスを測定時間一定で移動平均して低エネルギー計数率を測定して出力する低エネルギー計数率測定手段と、
     上記高エネルギー計数率測定手段から警報が出力されたら、低エネルギー計数率が設定された許容範囲内かどうかを判断し、許容範囲内ならば警報の原因がゆらぎによるものと判定し、許容範囲を逸脱して上昇したら測定対象γ線の増加またはノイズ侵入のいずれかであると判定して判定結果を出力する警報診断手段と、
     各出力を表示すると共に各部の操作及び設定を行う表示及び操作手段と、
    を備えたことを特徴とする放射線モニタ。
  2.  上記低エネルギー計数率測定手段の測定時間は、上記高エネルギー計数率測定手段における高エネルギー計数率のバックグラウンドレベルと標準偏差から一義的に決まる時定数の1~3倍に設定されることを特徴とする請求項1に記載の放射線モニタ。
  3.  上記警報診断手段は、上記高エネルギー計数率測定手段から警報が出力されたら、測定対象γ線の増加またはノイズ侵入のいずれかであると判定された場合について、上記低エネルギー計数率測定手段の低エネルギー計数率及び上記高エネルギー計数率測定手段の高エネルギー計数率において、それぞれのバックグラウンドレベルからの正味増加分の比が設定値以上の場合はノイズと判定することを特徴とする請求項1に記載の放射線モニタ。
  4.  上記高エネルギー計数率測定手段は、高エネルギーのウィンドウに入ったパルスに対応する整形パルスをアップ入力に入力するアップダウンカウンタと、
     上記アップダウンカウンタの出力に対して時定数の1次遅れで応答させるような繰り返し周波数のフィードバックパルスを発生して上記アップダウンカウンタのダウン入力に入力する負帰還パルス発生回路と、
     計数率の標準偏差に対応して上記アップダウンカウンタが計数するときに重み付けする積算制御回路と、を備え、
     上記アップダウンカウンタの加減積算値に基づき標準偏差が一定になるように計数率を演算することを特徴とする請求項1に記載の放射線モニタ。
  5.  測定対象核種から放出されるγ線を検出してアナログ電圧パルスを出力する放射線検出手段と、
     上記放射線検出手段から出力されるアナログ電圧パルスを入力して高エネルギー側の測定エネルギー範囲の放射線を測定し、測定結果を出力すると共に測定結果が許容する設定値を逸脱して上昇したら警報を出力する第1の放射線測定手段と、
     上記放射線検出手段から出力されるアナログ電圧パルスを入力して低エネルギー側の測定エネルギー範囲の放射線を測定し、測定結果を出力する第2の放射線測定手段と、を備えると共に、
     上記第1の放射線測定手段の出力及び上記第2の放射線測定手段の出力を入力し、上記第2の放射線測定手段の測定結果を時間一定で移動平均し、その移動平均値が設定された許容範囲を逸脱して上昇したかどうかを判定し、許容範囲内ならば警報の原因がゆらぎによるものと判定し、許容範囲を逸脱して上昇したら測定対象γ線の増加またはノイズ侵入のいずれかであると判定し、その判定結果、上記第1の放射線測定手段の測定結果のトレンド及び前記移動平均値のトレンドを表示する診断装置と、を備え、
     上記第1の放射線測定手段と上記第2の放射線測定手段の測定エネルギー範囲が重ならないように設定されたことを特徴とする放射線モニタ。
  6.  上記第2の放射線測定手段の測定エネルギー範囲は、放出管理対象の放射性希ガスのピークスペクトル及び主要なコンプトン散乱スペクトルを含むように設定されたことを特徴とする請求項5に記載の放射線モニタ。
  7.  上記診断装置の移動平均時間は、上記第1の放射線測定手段のバックグラウンドレベルと標準偏差から一義的に決まる時定数の1~3倍に設定されたことを特徴とする請求項5または請求項6に記載の放射線モニタ。
PCT/JP2014/059093 2014-03-28 2014-03-28 放射線モニタ WO2015145716A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016509815A JP6072977B2 (ja) 2014-03-28 2014-03-28 放射線モニタ
US15/029,311 US9494695B2 (en) 2014-03-28 2014-03-28 Radiation monitor
EP14887516.4A EP3125000B1 (en) 2014-03-28 2014-03-28 Radiation monitor
PCT/JP2014/059093 WO2015145716A1 (ja) 2014-03-28 2014-03-28 放射線モニタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059093 WO2015145716A1 (ja) 2014-03-28 2014-03-28 放射線モニタ

Publications (1)

Publication Number Publication Date
WO2015145716A1 true WO2015145716A1 (ja) 2015-10-01

Family

ID=54194305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059093 WO2015145716A1 (ja) 2014-03-28 2014-03-28 放射線モニタ

Country Status (4)

Country Link
US (1) US9494695B2 (ja)
EP (1) EP3125000B1 (ja)
JP (1) JP6072977B2 (ja)
WO (1) WO2015145716A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180063811A (ko) * 2016-12-02 2018-06-12 한국원자력연구원 방사성 핵종을 검출하는 방법, 이를 이용한 방사성 핵종 검출공정, 및 이를 위한 방사선 검출장치
CN114675320A (zh) * 2022-03-28 2022-06-28 成都理工大学 一种混合β能谱的解谱方法、系统及存储介质
EP3905263A4 (en) * 2018-12-11 2022-09-14 China Nuclear Power Engineering Co., Ltd. ALARM METHOD AND ALARM SYSTEM FOR LEAKAGE MONITORING OF A NUCLEAR POWER PLANT
JP7499734B2 (ja) 2021-06-01 2024-06-14 三菱電機株式会社 放射線モニタ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6628701B2 (ja) * 2016-08-05 2020-01-15 三菱電機株式会社 放射線測定装置
CN111679312A (zh) * 2020-06-21 2020-09-18 陕西卫峰核电子有限公司 一种n-16辐射监测仪稳谱方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110087A (ja) * 1984-11-02 1986-05-28 株式会社東芝 制御棒引抜操作装置
JPH06214039A (ja) * 1993-01-18 1994-08-05 Toshiba Corp 放射線測定装置
JPH07248383A (ja) * 1994-03-14 1995-09-26 Toshiba Corp 放射線モニタ装置及び自然放射線算出方法
JP2008215907A (ja) * 2007-03-01 2008-09-18 Mitsubishi Electric Corp 放射線測定装置
JP2008292245A (ja) * 2007-05-23 2008-12-04 Toshiba Corp 放射線検出器
JP2009175042A (ja) * 2008-01-25 2009-08-06 Mitsubishi Electric Corp 線量率測定装置
JP2011185716A (ja) * 2010-03-08 2011-09-22 Shimadzu Corp 放射線断層撮影装置
JP2011247727A (ja) * 2010-05-26 2011-12-08 Toshiba Corp 放射線モニタ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE787439A (fr) * 1971-08-12 1973-02-12 Westinghouse Electric Corp Systeme de mesure de puissance et de detection de fuite de combustible
JPS61128184A (ja) 1984-11-27 1986-06-16 Hitachi Ltd デジタル計数率計
JPH04268496A (ja) 1991-02-22 1992-09-24 Toshiba Corp 原子炉の異常診断装置およびその診断方法
JPH04326093A (ja) * 1991-04-25 1992-11-16 Toshiba Corp 原子炉の異常診断装置
JP4755061B2 (ja) * 2006-10-13 2011-08-24 株式会社日立製作所 原子力施設の漏洩監視システム及びその漏洩監視方法
KR100960787B1 (ko) * 2008-05-19 2010-06-01 한국전력공사 원자력 발전소의 증기발생기의 누설 감지장치 및 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110087A (ja) * 1984-11-02 1986-05-28 株式会社東芝 制御棒引抜操作装置
JPH06214039A (ja) * 1993-01-18 1994-08-05 Toshiba Corp 放射線測定装置
JPH07248383A (ja) * 1994-03-14 1995-09-26 Toshiba Corp 放射線モニタ装置及び自然放射線算出方法
JP2008215907A (ja) * 2007-03-01 2008-09-18 Mitsubishi Electric Corp 放射線測定装置
JP2008292245A (ja) * 2007-05-23 2008-12-04 Toshiba Corp 放射線検出器
JP2009175042A (ja) * 2008-01-25 2009-08-06 Mitsubishi Electric Corp 線量率測定装置
JP2011185716A (ja) * 2010-03-08 2011-09-22 Shimadzu Corp 放射線断層撮影装置
JP2011247727A (ja) * 2010-05-26 2011-12-08 Toshiba Corp 放射線モニタ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180063811A (ko) * 2016-12-02 2018-06-12 한국원자력연구원 방사성 핵종을 검출하는 방법, 이를 이용한 방사성 핵종 검출공정, 및 이를 위한 방사선 검출장치
KR101975787B1 (ko) 2016-12-02 2019-05-09 한국원자력연구원 방사성 핵종을 검출하는 방법, 이를 이용한 방사성 핵종 검출공정, 및 이를 위한 방사선 검출장치
EP3905263A4 (en) * 2018-12-11 2022-09-14 China Nuclear Power Engineering Co., Ltd. ALARM METHOD AND ALARM SYSTEM FOR LEAKAGE MONITORING OF A NUCLEAR POWER PLANT
JP7499734B2 (ja) 2021-06-01 2024-06-14 三菱電機株式会社 放射線モニタ
CN114675320A (zh) * 2022-03-28 2022-06-28 成都理工大学 一种混合β能谱的解谱方法、系统及存储介质

Also Published As

Publication number Publication date
US9494695B2 (en) 2016-11-15
EP3125000A4 (en) 2017-11-15
US20160252626A1 (en) 2016-09-01
JP6072977B2 (ja) 2017-02-01
JPWO2015145716A1 (ja) 2017-04-13
EP3125000A1 (en) 2017-02-01
EP3125000B1 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6072977B2 (ja) 放射線モニタ
JP5171891B2 (ja) 放射線測定装置
US9435899B1 (en) Radioactive gas monitoring device
KR101085312B1 (ko) 방사선량 검출기 및 방사선량계
JP6066835B2 (ja) 放射線測定装置
JP5755116B2 (ja) 放射線測定装置
KR101260936B1 (ko) 열출력 자동보정기능이 구비된 디지털 노외핵계측계통 시스템
RU2384865C1 (ru) Способ радиационного контроля перемещающихся объектов и портальный радиационный монитор для его осуществления
JP4828962B2 (ja) 放射能検査方法および装置
CN115762831B (zh) 一种基于裂变电离室的宽量程临界事故报警装置
JP6523877B2 (ja) 原子炉計装システム及び原子炉
Fedorov et al. Study of the data acquisition system for ITER divertor neutron flux monitor diagnostic
JP2010210613A (ja) 中性子増倍体系の未臨界度判定装置、及び未臨界度判定プログラム
JP7120608B2 (ja) 放射線計測装置
JP5931690B2 (ja) 放射線測定装置
JPH06324158A (ja) 放射線監視装置
JP2004212337A (ja) 放射線測定システム
JP7499734B2 (ja) 放射線モニタ
JP2951674B2 (ja) 放射線監視方法及びその装置
RU2727072C1 (ru) Способ выявления разгерметизации технологического оборудования на ранней стадии путем снижения значения минимально детектируемой активности жидкости радиометрической установки (варианты)
JP4686328B2 (ja) 放射線モニタリング装置
WO2021090584A1 (ja) 放射線モニタ及びその診断方法
JPH04326095A (ja) 中性子増倍体系の臨界監視モニタ
JP6416039B2 (ja) 放射線検出装置
Bhagaskara et al. Analysis of Single Operation Mode for Wide-range Nuclear Power Channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016509815

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15029311

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014887516

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014887516

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE