WO2015137345A1 - 含フッ素酸化チタン-ナノシリカコンポジット粒子およびその製造法 - Google Patents

含フッ素酸化チタン-ナノシリカコンポジット粒子およびその製造法 Download PDF

Info

Publication number
WO2015137345A1
WO2015137345A1 PCT/JP2015/057024 JP2015057024W WO2015137345A1 WO 2015137345 A1 WO2015137345 A1 WO 2015137345A1 JP 2015057024 W JP2015057024 W JP 2015057024W WO 2015137345 A1 WO2015137345 A1 WO 2015137345A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
titanium oxide
nanosilica
weight
carbon atoms
Prior art date
Application number
PCT/JP2015/057024
Other languages
English (en)
French (fr)
Inventor
剛史 福島
勝之 佐藤
英夫 澤田
Original Assignee
ユニマテック株式会社
国立大学法人弘前大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニマテック株式会社, 国立大学法人弘前大学 filed Critical ユニマテック株式会社
Priority to JP2015532996A priority Critical patent/JP5801023B1/ja
Priority to EP20158060.2A priority patent/EP3670580B1/en
Priority to CN201580012989.0A priority patent/CN106062045B/zh
Priority to US15/125,040 priority patent/US20170015833A1/en
Priority to KR1020167026198A priority patent/KR102336869B1/ko
Priority to EP15761092.4A priority patent/EP3118243B1/en
Publication of WO2015137345A1 publication Critical patent/WO2015137345A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/135Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0202Alcohols or phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0231Halogen-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/123Organometallic polymers, e.g. comprising C-Si bonds in the main chain or in subunits grafted to the main chain
    • B01J31/124Silicones or siloxanes or comprising such units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to fluorine-containing titanium oxide-nanosilica composite particles and a method for producing the same. More specifically, the present invention relates to a fluorine-containing titanium oxide-nanosilica composite particle using a fluorine-containing alcohol that is easy to handle and a method for producing the same.
  • Anatase-type titanium oxide used as a photocatalyst changes its crystal structure to a rutile type when heated at a high temperature, and the catalytic activity is significantly reduced. Therefore, it is known that the crystal structure transition to the rutile type can be suppressed by surface modification or fluorination of titanium oxide.
  • Patent Document 1 since hydrogen fluoride is used as a fluorine source, special equipment resistant to hydrogen fluoride is required.
  • Patent Document 2 discloses a liquid, fluorine-containing and single component composition for permanent oil and water resistant surface treatment of porous and non-porous substrates, with appropriate stabilizing components and hydrophilicity. Compositions with excellent storage stability, hydrophobicity, oleophobicity and dust resistance in combination with silane components are described.
  • Patent Documents 3 to 4 describe that a fluorine-containing alcohol and an alkoxysilane (and a polymerizable functional group-containing alcohol) are subjected to a condensation reaction.
  • the obtained alkoxysilane derivative is a photoacid generator or a photobase. It is used for the preparation of a curable composition to which a generator is added, or an inorganic conductive coating composition.
  • JP 2010-073914 A Special table 2011-511113 gazette JP 2004-285111 A JP-A-5-186719 Japanese Patent No. 4673604 WO 2007/080949 A1 JP 2008-38015 A U.S. Pat. No. 3,574,770
  • the object of the present invention is to have a unit that is not difficult to handle like hydrogen fluoride, does not produce perfluorooctanoic acid or the like even when released into the environment, and is easily decomposed into short-chain compounds.
  • Fluorine-containing titanium oxide-nanosilica composite particles that can be produced using fluorine-containing alcohols that are easy to handle, and that the product can suppress a decrease in the function of titanium oxide as a photocatalyst even when subjected to high-temperature heat treatment, and its It is to provide a manufacturing method.
  • R F is a perfluoroalkyl group having 6 or less carbon atoms, or a part of the fluorine atom of the perfluoroalkyl group is substituted with a hydrogen atom, and the terminal perfluoroalkyl group having 6 or less carbon atoms and the carbon number A fluoroalcohol group comprising 6 or less perfluoroalkylene groups, and A is an alkylene group having 1 to 6 carbon atoms).
  • Fluorine-containing titanium oxide-nanosilica composite particles comprising a condensate are provided. The number of carbons is preferably 4-6.
  • Such fluorine-containing titanium oxide-nanosilica composite particles are produced by a method in which the fluorine-containing alcohol [I] and alkoxysilane are subjected to a condensation reaction using an alkaline or acidic catalyst in the presence of titanium oxide and nanosilica particles.
  • the obtained fluorine-containing titanium oxide-nanosilica composite particles are used as an active ingredient of a surface treatment agent such as a water / oil repellent.
  • R F ′ is a linear or branched perfluoroalkyl group containing an O, S or N atom having a terminal perfluoroalkyl group having 6 or less carbon atoms and a perfluoroalkylene group having 6 or less carbon atoms.
  • R F ′′ is a linear or branched perfluoroalkylene group containing an O, S or N atom having a perfluoroalkylene group having 6 or less carbon atoms, and A is 1 to 6 carbon atoms.
  • fluorine-containing titanium oxide-nanosilica composite particles composed of a condensate of a fluorine-containing alcohol and an alkoxysilane, and titanium oxide and nanosilica particles.
  • the number of carbons is preferably 4-6.
  • Such a fluorine-containing titanium oxide-nanosilica composite particle is obtained by a method in which the fluorine-containing alcohol [Ia] or [Ib] and alkoxysilane are subjected to a condensation reaction using an alkaline or acidic catalyst in the presence of titanium oxide and nanosilica particles.
  • the produced and obtained fluorine-containing titanium oxide-nanosilica composite particles are used as an active ingredient of a surface treatment agent such as a water / oil repellent.
  • the fluorine-containing alcohol used in the present invention has a perfluoroalkylene chain having 6 or less carbon atoms in the terminal perfluoroalkyl group or polyfluoroalkyl group, and decomposes into a short-chain fluorine-containing compound having 6 or less carbon atoms. Because it has a unit that is easily handled, it does not lead to environmental pollution.
  • Fluorine-containing titanium oxide-nanosilica composite particles obtained by the coexistence of titanium oxide and organo-nanosilica particles during the condensation reaction of fluorine-containing alcohol and alkoxysilane are new fluorine-containing compounds and contain 1000 fluorine atoms. Even if a high-temperature heat treatment up to 0 ° C. is performed, it is possible to suppress a decrease in function as a photocatalyst. In addition, by incorporating fluorine atoms into titanium oxide, titanium oxide having improved photocatalytic activity as compared with the raw material titanium oxide can be obtained.
  • fluorine-containing alcohol [I] for example, the general formula C n F 2n + 1 (CH 2 ) j OH [II] n: 1 to 10, preferably 4 to 8 j: 1 to 6, preferably 1 to 3, particularly preferably 2
  • the polyfluoroalkyl alcohol represented by these is used.
  • alkylene group A examples include —CH 2 — group, —CH 2 CH 2 — group, etc.
  • perfluoroalkylalkyl alcohols having such an alkylene group include 2,2,2-trifluoroethanol (CF 3 CH 2 0H), 3,3,3-trifluoro-propanol (CF 3 CH 2 CH 2 OH ), 2,2,3,3,3- pentafluoro-propanol (CF 3 CF 2 CH 2 0H ), 3,3, 4,4,4-pentafluorobutanol (CF 3 CF 2 CH 2 CH 2 OH), 2,2,3,3,4,4,5,5,5-nonafluoropentanol (CF 3 CF 2 CF 2 CH 2 0H), 3,3,4,4,5,5,6,6,6-nonafluorohexanol (CF 3 CF 2 CF 2 CH 2 CH 2 OH), 3,3,4, 4,5,5,6,6,6-nonafluorohexanol (CF 3 CF 2 CF 2 CH 2
  • the polyfluoroalkyl group is a group in which the terminal —CF 3 group of the perfluoroalkyl group is replaced with, for example, —CF 2 H group, or the intermediate —CF 2 — group is —CFH— group or —CH 2 — group.
  • fluorinated alcohol [I] having such a substituent for example, 2,2,3,3-tetrafluoropropanol (HCF 2 CF 2 CH 2 OH), 2,2 , 3,4,4,4-hexafluoro-butanol (CF 3 CHFCF 2 CH 2 OH ), 2,2,3,3,4,4,5,5- octafluoropentanol (HCF 2 CF 2 CF 2 CF 2 CH 2 OH) and the like.
  • the polyfluoroalkyl alcohol represented by the general formula [II] is described in, for example, Patent Document 5 and synthesized through the following series of steps.
  • the general formula C n F 2n + 1 (CF 2 CF 2 ) b (CH 2 CH 2 ) c I A polyfluoroalkyl iodide represented by, for example, CF 3 (CH 2 CH 2 ) I CF 3 (CH 2 CH 2 ) 2 I C 2 F 5 (CH 2 CH 2 ) I C 2 F 5 (CH 2 CH 2 ) 2 I C 3 F 7 (CH 2 CH 2 ) I C 3 F 7 (CH 2 CH 2 ) 2 I C 4 F 9 (CH 2 CH 2 ) I C 4 F 9 (CH 2 CH 2 ) 2 I C 2 F 5 (CF 2 CF 2 ) (CH 2 CH 2 ) I C 2 F 5 (CF 2 CF 2 ) (CH 2 CH 2 ) I C 2 F 5 (CF 2 CF 2 ) (CH 2 CH 2 ) 2 I C 2 F 5
  • R F group is part of the fluorine atoms of the perfluoroalkyl group is replaced by hydrogen atoms, perfluoroalkylene having 6 or less of terminal perfluoroalkyl group and having a carbon number of 6 or less carbon atoms
  • a polyfluoroalkyl group comprising a group, specifically a polyfluoroalkyl group having 3 to 20 carbon atoms, preferably 6 to 10 carbon atoms, and A is an alkylene having 2 to 6 carbon atoms, preferably 2 carbon atoms
  • Fluorine-containing alcohol as a group for example, the general formula C n F 2n + 1 (CH 2 CF 2 ) a (CF 2 CF 2 ) b (CH 2 CH 2 ) c OH [III] n: 1 to 6, preferably 2 to 4 a: 1 to 4, preferably 1 b: 0-2, preferably 1-2 c: 1 to 3, preferably 1
  • the polyfluoroalkyl alcohol represented by the general formula [III] is described in Patent Document 5, and is synthesized through the following series of steps.
  • the general formula C n F 2n + 1 (CH 2 CF 2 ) a (CF 2 CF 2 ) b (CH 2 CH 2 ) c I A polyfluoroalkyl iodide represented by, for example, CF 3 (CH 2 CF 2 ) (CH 2 CH 2 ) I C 2 F 5 (CH 2 CF 2 ) (CH 2 CH 2 ) I C 2 F 5 (CH 2 CF 2 ) (CH 2 CH 2 ) 2 I C 3 F 7 (CH 2 CF 2 ) (CH 2 CH 2 ) I C 3 F 7 (CH 2 CF 2 ) (CH 2 CH 2 ) 2 I C 4 F 9 (CH 2 CF 2 ) (CH 2 CH 2 ) I C 4 F 9 (CH 2 CF 2 ) (CH 2 CH 2 ) 2 I C 2 F 5 (CH 2 CF 2 ) (CF 2
  • the R F ′ group has a terminal perfluoroalkyl group having 6 or less carbon atoms and a perfluoroalkylene group having 6 or less carbon atoms, a straight chain containing O, S or N atoms, or A branched perfluoroalkyl group, specifically an O, S or N atom-containing perfluoroalkyl group having 3 to 305 carbon atoms, preferably 8 to 35 carbon atoms, and A being 1 to 3 carbon atoms, preferably Is a fluorine-containing alcohol which is an alkylene group of 1, for example, the general formula C m F 2m + 1 O [CF (CF 3 ) CF 2 O] d CF (CF 3 ) (CH 2 ) e OH [IIa] m: 1 to 3, preferably 3 d: 0 to 100, preferably 1 to 10 e: 1 to 3, preferably 1 The hexafluoropropene oxide oligomer alcohol
  • the R F ′′ group has a perfluoroalkylene group having 6 or less carbon atoms, a linear or branched perfluoroalkylene group containing an O, S or N atom, Specifically, it is a perfluoroalkylene group containing 5 to 160 carbon atoms containing O, S or N atoms, and A is an alkylene group having 1 to 3 carbon atoms, preferably 1 carbon atom, such as the general formula HO (CH 2 ) f CF (CF 3 ) (OCF 2 CF (CF 3 )) g O (CF 2 ) h O (CF (CF 3 ) CF 2 O] i CF (CF 3 ) (CH 2 ) f OH [IIb] f: 1 to 3, preferably 1 g + i: 0 to 50, preferably 2 to 50 h: 1 to 6, preferably 2 A perfluoroalkylene ether diol represented by the formula:
  • a fluorine-containing ether carboxylic acid alkyl ester represented by the general formula CF 3 O [CF (CF 3 ) CF 2 O] n CF (CF 3 ) COOR (R: alkyl group, n: integer of 0 to 12) is hydrogenated.
  • Reduction reaction is performed using a reducing agent such as sodium borohydride.
  • fluorine-containing alcohol and alkoxysilane are reacted in the presence of an alkaline or acidic catalyst, preferably an ammonia water catalyst, to form fluorine-containing nanocomposite particles.
  • an alkaline or acidic catalyst preferably an ammonia water catalyst
  • the ammonia water catalyst is used in a ratio of about 0.2 to 2.0 by weight with respect to the total amount of titanium oxide, nanosilica and alkoxysilane.
  • the alkoxysilane has the general formula (R 1 O) p Si (OR 2 ) q (R 3 ) r (IV) R 1 , R 3 : H, C 1 -C 6 alkyl group or aryl group R 2 : C 1 -C 6 alkyl group or aryl group provided that R 1 , R 2 and R 3 are all aryl groups P + q + r: 4 where q is not 0, for example, trimethoxysilane, triethoxysilane, triethoxymethylsilane, triethoxymethylsilane, trimethoxyphenylsilane, triethoxyphenylsilane, tetra Methoxysilane, tetraethoxysilane, etc. are used.
  • the reaction between these components may be an alkaline or acidic catalyst such as aqueous ammonia or an aqueous solution of an alkali metal or alkaline earth metal hydroxide such as sodium hydroxide, potassium hydroxide or calcium hydroxide, or hydrochloric acid or sulfuric acid.
  • the reaction is carried out in the presence at a temperature of about 0 to 100 ° C., preferably about 10 to 30 ° C. for about 0.5 to 48 hours, preferably about 1 to 10 hours.
  • the amount of the fluorinated alcohol in the obtained fluorinated nanocomposite particles is about 1-50 mol%, preferably about 5-30 mol%, and the composite particle diameter (measured by dynamic light scattering method) is about 20- 200 nm.
  • titanium oxide anatase-type titanium oxide is used for photocatalysis. Since the product of the present invention is used for a surface treatment agent, a surface modifier, a flame retardant, a paint compounding agent, a resin compounding agent, a rubber compounding agent, etc., various titanium oxides corresponding to the use are used.
  • the nanosilica particles have an average particle size (measured by dynamic light scattering method) of 5 to 200 nm, preferably 10 to 100 nm, and a primary particle size of 40 nm or less, preferably 5 to 30 nm, more preferably 10 to 100 nm.
  • a 20 nm organosilica sol is used.
  • Nissan Chemical Industries products methanol silica sol, SNOWTEX IPA-ST (isopropyl alcohol dispersion), SNOWTEX EG-ST (ethylene glycol dispersion), SNOWTEX MEK-ST (methyl ethyl ketone dispersion), Snowtex MIBK-ST (methyl isobutyl ketone dispersion) or the like is used.
  • Each of these components is about 10 to 200 parts by weight, preferably about 50 to 150 parts by weight of nanosilica particles, and about 10 to 200 parts by weight of fluorinated alcohol, preferably 100 parts by weight of titanium oxide particles.
  • About 50 to 150 parts by weight, and alkoxysilane is used in an amount of about 10 to 200 parts by weight, preferably about 50 to 150 parts by weight.
  • the proportion of nanosilica particles used is less than this, the crystal structure of titanium oxide cannot be sufficiently retained by heat treatment, resulting in a decrease in optical activity. The surface is shielded too much by the silica, and the optical activity decreases.
  • the proportion of the fluorinated alcohol used is less than this, the water / oil repellency becomes low.
  • the proportion of alkoxysilane used is less than this, the dispersibility in the solvent is deteriorated, whereas if it is used in a proportion higher than this, the water / oil repellency is lowered.
  • the reaction product fluorine-containing titanium oxide-nanosilica composite particles
  • fluorine-containing alcohol bonded to the hydroxyl group on the surface of the nanosilica particles using a siloxane bond as a spacer, and thus the chemical and thermal stability of silica.
  • Excellent water and oil repellency and antifouling properties of fluorine and fluorine are effectively exhibited, and the actual glass surface treated with fluorine-containing titanium oxide-nanosilica composite particles exhibits good water and oil repellency. Effects such as reducing weight loss at 1000 ° C are observed.
  • the particle diameter and the variation of the fluorine-containing titanium oxide-nanosilica composite particles are also small.
  • the fluorine-containing titanium oxide-nanosilica composite particles are formed as a reaction product of fluorine-containing alcohol and alkoxysilane with titanium oxide and nanosilica particles, but other components can be mixed unless the object of the present invention is impaired. Is done.
  • Example 1 CF 3 (CF 2 ) 5 (CH 2 ) 2 OH [FA-6] 250 mg (0.69 mmol) was added and dissolved in 30 ml of methanol, and 250 mg of anatase-type titanium oxide and silica sol (Nissan Chemical Methanol) were dissolved in the solution.
  • Silica sol containing 30 wt% nanosilica, average particle diameter 11 nm) 834 mg (250 mg as nanosilica) and tetraethoxysilane (Tokyo Kasei product; density 0.93 g / ml) 0.25 ml (1.13 mmol) were added and stirring with a magnetic stirrer Then, 0.5 ml of 25 wt% aqueous ammonia was added and the reaction was carried out for 5 hours.
  • the particle size and variation of the obtained white powder fluorine-containing titanium oxide-nanosilica composite were measured by a dynamic light scattering (DLS) measurement method at 25 ° C. for a solid concentration of 1 g / L methanol dispersion. Further, thermogravimetric analysis (TGA) was performed before and after firing at 1000 ° C. At that time, the heating rate was 10 ° C./min. The particle diameter after firing is an average value of two times except for Example 1. Furthermore, the percentage of the weight reduced by firing relative to the initial weight was also calculated.
  • DLS dynamic light scattering
  • the obtained fluorine-containing titanium oxide-nanosilica composite particles were evaluated for photocatalytic function by methylene blue decomposition reaction as follows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Silicon Polymers (AREA)

Abstract

 一般式 RF-A-OH(ここで、RFは炭素数6以下のパーフルオロアルキル基であり、またはパーフルオロアルキル基のフッ素原子の一部が水素原子で置換され、炭素数6以下の末端パーフルオロアルキル基および炭素数6以下のパーフルオロアルキレン基を含んで構成されるポリフルオロアルキル基であり、Aは炭素数1~6のアルキレン基である)で表される含フッ素アルコールとアルコキシシランおよび酸化チタンとナノシリカ粒子の縮合体からなる含フッ素酸化チタン-ナノシリカコンポジット粒子。この含フッ素酸化チタン-ナノシリカコンポジット粒子は、フッ化水素の如く取扱いに困難性はみられず、取扱い容易な含フッ素アルコールを用いて製造することができ、生成物は高温加熱処理を行っても酸化チタンの光触媒としての機能の低下を抑制することができる。

Description

含フッ素酸化チタン-ナノシリカコンポジット粒子およびその製造法
 本発明は、含フッ素酸化チタン-ナノシリカコンポジット粒子およびその製造法に関する。さらに詳しくは、取扱い容易な含フッ素アルコールを用いた含フッ素酸化チタン-ナノシリカコンポジット粒子およびその製造法に関する。
 光触媒用として使用されるアナターゼ型酸化チタンは、高温で加熱することにより結晶構造がルチル型に変化し、触媒活性が著しく低下してしまう。そこで、酸化チタンを表面修飾もしくはフッ素化することにより、ルチル型への結晶構造転移を抑制できることが知られている。
 表面修飾では、加熱による結晶構造の転移は抑制できるが、酸化チタンとの接触効率が低下してしまうので、触媒活性の低下が避けられない。フッ素化処理(特許文献1)では、フッ素源としてフッ化水素を使用するため、フッ化水素に対して耐性のある特殊な設備が必要となる。
 特許文献2には、多孔性および非多孔性基体の永久的な耐油および耐水表面処理のための、液状で、フッ素含有および単一成分の組成物であって、適切な安定化成分および親水性シラン成分と組み合わせて、保存安定性、疎水性、疎油性および耐塵性にすぐれた組成物が記載されている。
 しかしながら、ここでは、鉱物および非鉱物基体の表面処理剤の調製に際し、毒性の高いイソシアネート化合物を用いることでフッ素化合物にシリル基を導入しており、したがってその実施に際しては製造環境を整える必要がある。
 無機材料表面を各種の化合物やポリマーでコーティングすることにより、様々な表面特性を発現させることが知られている。中でも、フッ素系化合物を表面処理に使用した場合には、フッ素原子の有する特性から、撥水性だけではなく撥油性の点でも表面改質できるので、様々な基材へのコーティングに利用されている。
 特に、C8のパーフルオロアルキル基を有する表面処理剤を基質に塗布するとことで、高い撥水撥油性を示すコーティングが可能であるが、近年C7以上のパーフルオロアルキル基を有する化合物が、細胞株を用いた試験管内試験において、発がん因子と考えられている細胞間コミュニケーション阻害をひき起すこと、かつこの阻害は官能基ではなく、フッ素化された炭素鎖長に依存し、炭素鎖が長いもの程阻害力が高いことが報告されており、フッ素化された炭素数の長い化合物を使用したモノマーの製造が制限されるようになってきている。
 特許文献3~4には、含フッ素アルコール、アルコキシシラン(および重合性官能基含有アルコール)を縮合反応させることが記載されているが、得られたアルコキシシラン誘導体は、光酸発生剤または光塩基発生剤を添加した硬化性組成物、あるいは無機導電塗料組成物の調製に用いられている。
特開2010-073914号公報 特表2011-511113号公報 特開2004-285111号公報 特開平5-186719号公報 特許第4674604号公報 WO 2007/080949 A1 特開2008-38015号公報 米国特許第3,574,770号公報
 本発明の目的は、フッ化水素の如く取扱いに困難性はみられず、環境中に放出されてもパーフルオロオクタン酸等を生成させず、しかも短鎖の化合物に分解され易いユニットを有する、取扱い容易な含フッ素アルコールを用いて製造することができ、生成物は高温加熱処理を行っても酸化チタンの光触媒としての機能の低下を抑制することができる含フッ素酸化チタン-ナノシリカコンポジット粒子およびその製造法を提供することにある。
 本発明によって、一般式
   RF-A-OH                      〔I〕
(ここで、RFは炭素数6以下のパーフルオロアルキル基であり、またはパーフルオロアルキル基のフッ素原子の一部が水素原子で置換され、炭素数6以下の末端パーフルオロアルキル基および炭素数6以下のパーフルオロアルキレン基を含んで構成されるポリフルオロアルキル基であり、Aは炭素数1~6のアルキレン基である)で表される含フッ素アルコールとアルコキシシランおよび酸化チタンとナノシリカ粒子の縮合体からなる含フッ素酸化チタン-ナノシリカコンポジット粒子が提供される。炭素数としては、4~6が好ましい。
 かかる含フッ素酸化チタン-ナノシリカコンポジット粒子は、上記含フッ素アルコール〔I〕とアルコキシシランとを、酸化チタンおよびナノシリカ粒子の存在下で、アルカリ性または酸性触媒を用いて縮合反応させる方法によって製造される。得られた含フッ素酸化チタン-ナノシリカコンポジット粒子は、撥水撥油剤等の表面処理剤の有効成分として用いられる。
 また、本発明によって、一般式
   RF′-A-OH                 〔Ia〕
または一般式
   HO-A-RF′′-A-OH              〔Ib〕
(ここで、RF′は炭素数6以下の末端パーフルオロアルキル基および炭素数6以下のパーフルオロアルキレン基を有する、O、SまたはN原子を含有する直鎖状または分岐状パーフルオロアルキル基であり、RF′′は炭素数6以下のパーフルオロアルキレン基を有する、O、SまたはN原子を含有する直鎖状または分岐状のパーフルオロアルキレン基であり、Aは炭素数1~6のアルキレン基である)で表される含フッ素アルコールとアルコキシシランおよび酸化チタンとナノシリカ粒子の縮合体からなる含フッ素酸化チタン-ナノシリカコンポジット粒子が提供される。炭素数としては、4~6が好ましい。
 かかる含フッ素酸化チタン-ナノシリカコンポジット粒子は、上記含フッ素アルコール〔Ia〕または〔Ib〕とアルコキシシランとを、酸化チタンおよびナノシリカ粒子の存在下で、アルカリ性または酸性触媒を用いて縮合反応させる方法によって製造され、得られた含フッ素酸化チタン-ナノシリカコンポジット粒子は、撥水撥油剤等の表面処理剤の有効成分として用いられる。
 本発明で用いられる含フッ素アルコールは、末端パーフルオロアルキル基やポリフルオロアルキル基中のパーフルオロアルキレン鎖の炭素数が6以下のものであり、炭素数6以下の短鎖の含フッ素化合物に分解され易いユニットを有しているため、環境汚染につながらない。
 含フッ素アルコールとアルコキシシランとの縮合反応時に酸化チタンおよびオルガノナノシリカ粒子を共存させて得られる含フッ素酸化チタン-ナノシリカコンポジット粒子は、新規の含フッ素化合物であり、フッ素原子を含有しているため1000℃迄の高温加熱処理を行っても、光触媒としての機能低下を抑制することができる。また、酸化チタンにフッ素原子が取込まれることで、原料の酸化チタンよりも光触媒活性を向上させた酸化チタンが得られる。
 含フッ素アルコール〔I〕としては、例えば一般式
   CnF2n+1(CH2)jOH                〔II〕
         n:1~10、好ましくは4~8
         j:1~6、好ましくは1~3、特に好ましくは2
で表されるポリフルオロアルキルアルコール等が用いられる。
 アルキレン基Aとしては、-CH2-基、-CH2CH2-基等が挙げられ、かかるアルキレン基を有するパーフルオロアルキルアルキルアルコールとしては、2,2,2-トリフルオロエタノール(CF3CH20H)、3,3,3-トリフルオロプロパノール(CF3CH2CH2OH)、2,2,3,3,3-ペンタフルオロプロパノール(CF3CF2CH20H)、3,3,4,4,4-ペンタフルオロブタノール(CF3CF2CH2CH2OH)、2,2,3,3,4,4,5,5,5-ノナフルオロペンタノール(CF3CF2CF2CF2CH20H)、3,3,4,4,5,5,6,6,6-ノナフルオロヘキサノール(CF3CF2CF2CF2CH2CH2OH)、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクタノール(CF3CF2CF2CF2CF2CF2CH2CH2OH)等が例示される。
 また、ポリフルオロアルキル基は、パーフルオロアルキル基の末端-CF3基が例えば-CF2H基などに置き換った基あるいは中間-CF2-基が-CFH-基または-CH2-基に置き換った基を指しており、かかる置換基を有する含フッ素アルコール〔I〕としては、例えば2,2,3,3-テトラフルオロプロパノール(HCF2CF2CH2OH)、2,2,3,4,4,4-ヘキサフルオロブタノール(CF3CHFCF2CH2OH)、2,2,3,3,4,4,5,5-オクタフルオロペンタノール(HCF2CF2CF2CF2CH2OH)等が挙げられる。
 一般式〔II〕で表されるポリフルオロアルキルアルコールは、例えば特許文献5に記載されており、次のような一連の工程を経て合成される。
 まず、一般式
   CnF2n+1(CF2CF2)b(CH2CH2)cI
で表されるポリフルオロアルキルアイオダイド、例えば
   CF3(CH2CH2)I
   CF3(CH2CH2)2I
   C2F5(CH2CH2)I
   C2F5(CH2CH2)2I
   C3F7(CH2CH2)I
   C3F7(CH2CH2)2I
   C4F9(CH2CH2)I
   C4F9(CH2CH2)2I
   C2F5(CF2CF2)(CH2CH2)I
   C2F5(CF2CF2)(CH2CH2)2I
   C2F5(CF2CF2)2(CH2CH2)I
   C2F5(CF2CF2)2(CH2CH2)2I
   C2F5(CF2CF2)3(CH2CH2)I
   C4F9(CF2CF2)(CH2CH2)I
   C4F9(CF2CF2)2(CH2CH2)I
   C4F9(CF2CF2)(CH2CH2)2I
   C4F9(CF2CF2)2(CH2CH2)2I
   C4F9(CF2CF2)3(CH2CH2)I
をN-メチルホルムアミド HCONH(CH3)と反応させ、ポリフルオロアルキルアルコールとそのギ酸エステルとの混合物とした後、酸触媒の存在下でそれに加水分解反応させ、ポリフルオロアルキルアルコール
   CnF2n+1(CF2CF2)b(CH2CH2)cOH
を形成させる。ただし、n+2bの値は6以下である。
 含フッ素アルコール〔I〕としてはまた、RF基がパーフルオロアルキル基のフッ素原子の一部が水素原子で置換され、炭素数6以下の末端パーフルオロアルキル基および炭素数6以下のパーフルオロアルキレン基を含んで構成されるポリフルオロアルキル基であり、具体的には炭素数3~20、好ましくは6~10のポリフルオロアルキル基であり、Aが炭素数2~6、好ましくは2のアルキレン基である含フッ素アルコール、例えば一般式
   CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cOH      〔III〕
         n:1~6、好ましくは2~4
         a:1~4、好ましくは1
         b:0~2、好ましくは1~2
         c:1~3、好ましくは1
で表されるポリフルオロアルキルアルコール等が用いられる。
 一般式〔III〕で表されるポリフルオロアルキルアルコールは、特許文献5に記載されており、次のような一連の工程を経て合成される。
 まず、一般式
   CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cI
で表されるポリフルオロアルキルアイオダイド、例えば
   CF3(CH2CF2)(CH2CH2)I
   C2F5(CH2CF2)(CH2CH2)I
   C2F5(CH2CF2)(CH2CH2)2I
   C3F7(CH2CF2)(CH2CH2)I
   C3F7(CH2CF2)(CH2CH2)2I
   C4F9(CH2CF2)(CH2CH2)I
   C4F9(CH2CF2)(CH2CH2)2I
   C2F5(CH2CF2)(CF2CF2)(CH2CH2)I
   C2F5(CH2CF2)(CF2CF2)(CH2CH2)2I
   C2F5(CH2CF2)2(CF2CF2)(CH2CH2)I
   C2F5(CH2CF2)2(CF2CF2)(CH2CH2)2I
   C4F9(CH2CF2)(CF2CF2)(CH2CH2)I
   C4F9(CH2CF2)2(CF2CF2)(CH2CH2)I
   C4F9(CH2CF2)(CF2CF2)(CH2CH2)2I
   C4F9(CH2CF2)2(CF2CF2)(CH2CH2)2I
をN-メチルホルムアミド HCONH(CH3)と反応させ、ポリフルオロアルキルアルコールとそのギ酸エステルとの混合物とした後、酸触媒の存在下でそれに加水分解反応させ、ポリフルオロアルキルアルコール
   CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cOH
を形成させる。
 含フッ素アルコール〔Ia〕としては、RF′基が炭素数6以下の末端パーフルオロアルキル基および炭素数6以下のパーフルオロアルキレン基を有する、O、SまたはN原子を含有する直鎖状または分岐状のパーフルオロアルキル基を有し、具体的には炭素数3~305、好ましくは8~35のO、SまたはN原子含有パーフルオロアルキル基であり、Aが炭素数1~3、好ましくは1のアルキレン基である含フッ素アルコール、例えば一般式
   CmF2m+1O〔CF(CF3)CF2O〕dCF(CF3)(CH2)eOH  〔IIa〕
         m:1~3、好ましくは3
         d:0~100、好ましくは1~10
         e:1~3、好ましくは1
で表されるヘキサフルオロプロペンオキシドオリゴマーアルコール等が用いられる。
 また、含フッ素アルコール〔Ib〕としては、RF′′基が炭素数6以下のパーフルオロアルキレン基を有する、O、SまたはN原子を含有する直鎖状または分岐状のパーフルオロアルキレン基、具体的には炭素数5~160のO、SまたはN原子含有パーフルオロアルキレン基であり、Aが炭素数1~3、好ましくは1のアルキレン基である含フッ素アルコール、例えば一般式
 HO(CH2)fCF(CF3)〔OCF2CF(CF3)〕gO(CF2)hO〔CF(CF3)CF2O〕iCF(CF3)(CH2)fOH
                             〔IIb〕
         f:1~3、好ましくは1
         g+i:0~50、好ましくは2~50
         h:1~6、好ましくは2
で表されるパーフルオロアルキレンエーテルジオール等が用いられる。
 一般式〔IIa〕で表されるヘキサフルオロプロペンオキシドオリゴマーアルコールにおいて、m=1、e=1の化合物は特許文献6に記載されており、次のような工程を経て合成される。
 一般式 CF3O〔CF(CF3)CF2O〕nCF(CF3)COOR (R:アルキル基、n:0~12の整数)で表される含フッ素エーテルカルボン酸アルキルエステルを、水素化ホウ素ナトリウム等の還元剤を用いて還元反応させる。
 さらに、一般式〔IIb〕で表されるパーフルオロアルキレンエーテルジオールにおいて、f=1は特許文献7~8に記載されており、次のような一連の工程を経て合成される。
   FOCRfCOF → H3COOCRfCOOCH3 → HOCH2RfCH2OH
       Rf:-CF(CF3)〔OCF2C(CF3)〕aO(CF2)cO〔CF(CF3)CF2O〕bCF(CF3)-
 これらの含フッ素アルコールとアルコキシシランとは、アルカリ性または酸性の触媒、好ましくはアンモニア水触媒の存在下で反応させることにより、含フッ素ナノコンポジット粒子を形成させる。アンモニア水触媒は、酸化チタン、ナノシリカおよびアルコキシシランの合計量に対して重量比で約0.2~2.0の割合で用いられる。
 前記アルコキシシランは一般式
   (R1O)pSi(OR2)q(R3)r                 〔IV〕
       R1、R3:H、C1~C6のアルキル基またはアリール基
       R2:C1~C6のアルキル基またはアリール基
         ただし、R1、R2、R3が共にアリール基であることはない
       p+q+r:4  ただし、qは0ではない
で表され、例えばトリメトキシシラン、トリエトキシシラン、トリエトキシメチルシラン、トリエトキシメチルシラン、トリメトキシフェニルシラン、トリエトキシフェニルシラン、テトラメトキシシラン、テトラエトキシシラン等が用いられる。
 これら各成分間の反応は、アルカリ性または酸性触媒、例えばアンモニア水あるいは水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属またはアルカリ土類金属の水酸化物の水溶液、または塩酸、硫酸等の存在下で、約0~100℃、好ましくは約10~30℃の温度で約0.5~48時間、好ましくは約1~10時間程度反応させることにより行われる。
 得られた含フッ素ナノコンポジット粒子中の含フッ素アルコール量は、約1~50モル%、好ましくは約5~30モル%であり、コンポジット粒子径(動的光散乱法により測定)は約20~200nmである。
 このような含フッ素ナノコンポジットの製造の際、反応系にオルガノナノシリカ粒子と共に酸化チタンを共存させて縮合反応を行うと、含フッ素アルコール-アルコキシシラン-酸化チタン-ナノシリカ粒子の4成分からなる縮合体を形成させた含フッ素酸化チタン-ナノシリカコンポジット粒子を製造することができる。
 酸化チタンとしては、光触媒用にアナターゼ型酸化チタンが用いられる。本発明の生成物は、表面処理剤、表面改質剤、難燃剤、塗料配合剤、樹脂配合剤、ゴム配合剤等に用いられるので、その用途に対応した各種酸化チタンが用いられる。
 ナノシリカ粒子としては、平均粒径(動的光散乱法により測定)が5~200nm、好ましくは10~100nmであって、その一次粒子径が40nm以下、好ましくは5~30nm、さらに好ましくは10~20nmのオルガノシリカゾルが用いられる。実際には、市販品である日産化学工業製品メタノールシリカゾル、スノーテックスIPA-ST(イソプロピルアルコール分散液)、スノーテックスEG-ST(エチレングリコール分散液)、スノーテックスMEK-ST(メチルエチルケトン分散液)、スノーテックスMIBK-ST(メチルイソブチルケトン分散液)等が用いられる。
 これらの各成分は、酸化チタン粒子100重量部に対し、ナノシリカ粒子が約10~200重量部、好ましくは約50~150重量部の割合で、含フッ素アルコールが約10~200重量部、好ましくは約50~150重量部の割合で、またアルコキシシランが約10~200重量部、好ましくは約50~150重量部の割合で用いられる。
 ナノシリカ粒子の使用割合がこれよりも少ないと加熱処理によって酸化チタンの結晶構造を十分に保持できず、光学活性が低下するようになり、一方これよりも多い割合で使用されると酸化チタン粒子の表面がシリカによって遮蔽され過ぎてしまい、光学活性が低下するようになる。含フッ素アルコールの使用割合がこれよりも少ないと撥水撥油性が低くなり、一方これよりも多い割合で使用されると溶媒への分散性が悪くなる。また、アルコキシシランの使用割合がこれよりも少ないと溶媒への分散性が悪くなり、一方これよりも多い割合で使用されると撥水撥油性が低くなる。
 反応生成物である含フッ素酸化チタン-ナノシリカコンポジット粒子は、ナノシリカ粒子表面の水酸基に、シロキサン結合をスペーサーとして含フッ素アルコールが結合しているものと考えられ、したがってシリカの化学的、熱的安定性とフッ素のすぐれた撥水撥油性、防汚性などが有効に発揮されており、実際にガラス表面を含フッ素酸化チタン-ナノシリカコンポジット粒子で処理したものは良好な撥水撥油性を示し、また1000℃での重量減を少なくするなどの効果がみられる。また、含フッ素酸化チタン-ナノシリカコンポジット粒子の粒径およびそのバラツキも小さい値を示している。なお、含フッ素酸化チタン-ナノシリカコンポジット粒子は、含フッ素アルコールおよびアルコキシシランと酸化チタンおよびナノシリカ粒子との反応生成物として形成されるが、この発明の目的を阻害しない限り他の成分の混在も許容される。
 次に、実施例について本発明を説明する。
 実施例1
 CF3(CF2)5(CH2)2OH〔FA-6〕250mg(0.69ミリモル)を30mlのメタノール中に加えて溶解させ、その溶液中にアナターゼ型酸化チタン250mgおよびシリカゾル(日産化学製品メタノールシリカゾル;30重量%ナノシリカ含有、平均粒子径11nm)834mg(ナノシリカとして250mg)およびテトラエトキシシラン(東京化成製品;密度0.93g/ml)0.25ml(1.13ミリモル)を加え、マグネチックスターラで攪拌しながら、25重量%アンモニア水0.5mlを加え、5時間反応を行った。
 反応終了後、エバポレータを用いて減圧下でメタノールおよびアンモニア水を除去し、得られた粉末を約10mlのメタノール中で一夜再分散させた。翌日遠沈管を用いて遠心分離し、上澄みを捨て、新たなメタノールを加え、リンス作業を行った。このリンス作業を3回行った後、遠沈管の口をアルミホイルで覆い、70℃のオーブン中に一夜入れた。その翌日50℃の真空乾燥機に一夜入れて乾燥し、537mg(収率73%)の白色粉末を得た。
 得られた白色粉末の含フッ素酸化チタン-ナノシリカコンポジットの粒子径およびそのバラツキを、25℃で固形分濃度1g/Lメタノール分散液について、動的光散乱(DLS)測定法によって測定した。また、熱重量分析(TGA)を、1000℃の焼成前後について行った。その際、昇温速度は10℃/分とした。焼成後の粒子径は、実施例1を除いて2回の平均値である。さらに、初期重量に対する焼成による減少重量の百分率も算出した。
 実施例2~7、参考例1~2
 実施例1において、FA-6の代りに、種々の含フッ素アルコールが同量(250mg)用いられた。
FA-8:CF3(CF2)7(CH2)2OH
DTFA:CF3(CF2)3CH2(CF2)5(CH2)2OH  〔CF3(CF2)3(CH2CF2)(CF2CF2)2(CH2CH2)OH)〕
PO-6-OH:HOCH2CF(CF3)〔OCF2CF(CF3)〕nOCF2CF2O〔CF(CF3)CF2O〕mCF(CF3)CH2OH
                          (n+m=6)
PO-9M-OH:HOCH2CF(CF3)〔OCF2CF(CF3)〕nOCF2CF2O〔CF(CF3)CF2O〕mCF(CF3)CH2OH
                          (n+m=9)
 以上の各実施例および参考例で得られた結果は、次の表1に示される。
Figure JPOXMLDOC01-appb-I000001
 また、得られた含フッ素酸化チタン-ナノシリカコンポジット粒子について、メチレンブルー分解反応による光触媒機能評価を次のようにして行った。
 0.8mlのメチレンブルーのメタノール溶液(濃度:0.01g/cm3)と0.4mlのコンポジット粒子のメタノール溶液(濃度:0.20g/cm3)を秤りとり、全体が3.2mlのメタノール溶液になるようにメタノールで希釈した。調製した溶液(メチレンブルー/コンポジット粒子=重量比1/10)に、波長365nmの紫外線を20分間照射し、UVスペクトル測定でメチレンブルーの吸収ピーク(652nm)の経時変化をグラフにプロットすることによって、光触媒としての機能評価(分解率およびそれに基づく判定)を行った。機能評価は、1000℃の焼成前後について行われ、次のような判定基準に従って評価した。
   (判定基準) ◎:アナターゼ型酸化チタンに対して性能が向上
         ○:アナターゼ型酸化チタンに対してどちらか一方の
           性能が向上
         △:アナターゼ型酸化チタンに対して同等の性能
         ×:アナターゼ型酸化チタンに対して性能が低下
 
                   表2
              焼成前         焼成後    
      例   分解率(%)   判定  分解率(%)   判定 
     実施例1    82      ○     42      ◎  
     参考例1    82      ◎     69      ◎  
     実施例3    86      ◎     57      ◎  
      〃 5    80      ◎     75      ◎  
      〃 7    71      △     79      ◎  
なお、アナターゼ型酸化チタンの分解率は、焼成前71%、焼成後10%であり、アナターゼ型酸化チタン/ホウ酸(重量比1:0.94)の分解率は、焼成前82%、焼成後31%であった。

Claims (15)

  1.  一般式
       RF-A-OH                      〔I〕
    (ここで、RFは炭素数6以下のパーフルオロアルキル基であり、またはパーフルオロアルキル基のフッ素原子の一部が水素原子で置換され、炭素数6以下の末端パーフルオロアルキル基および炭素数6以下のパーフルオロアルキレン基を含んで構成されるポリフルオロアルキル基であり、Aは炭素数1~6のアルキレン基である)で表される含フッ素アルコールとアルコキシシランおよび酸化チタンとナノシリカ粒子の縮合体からなる含フッ素酸化チタン-ナノシリカコンポジット粒子。
  2.  一般式〔I〕で表される含フッ素アルコールとして、一般式
       CnF2n+1(CH2)jOH                    〔II〕
    (ここで、nは1~10、jは1~6の整数である)で表されるポリフルオロアルキルアルコールが用いられた請求項1記載の含フッ素酸化チタン-ナノシリカコンポジット粒子。
  3.  一般式〔I〕で表される含フッ素アルコールとして、一般式
       CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cOH          〔III〕
    (ここで、nは1~6、aは1~4、bは0~2、cは1~3の整数である)で表されるポリフルオロアルキルアルコールが用いられた請求項1記載の含フッ素酸化チタン-ナノシリカコンポジット粒子。
  4.  アルコキシシランが、一般式
       (R1O)pSi(OR2)q(R3)r                〔IV〕
    (ここで、R1、R3はそれぞれ水素原子、炭素数1~6のアルキル基またはアリール基であり、R2は炭素数1~6のアルキル基またはアリール基であり、ただしR1、R2、R3は共にアリール基であることはなく、p+q+rは4であり、ただしqは0ではない)で表わされるシラン誘導体である請求項1記載の含フッ素酸化チタン-ナノシリカコンポジット粒子。
  5.  酸化チタン100重量部に対し、ナノシリカ粒子が10~200重量部、含フッ素アルコールが10~200重量部、アルコキシシランが10~200重量部の割合で用いられた請求項1記載の含フッ素酸化チタン-ナノシリカコンポジット粒子。
  6.  酸化チタン100重量部に対し、ナノシリカ粒子が50~150重量部、含フッ素アルコールが50~150重量部、アルコキシシランが50~150重量部の割合で用いられた請求項1記載の含フッ素酸化チタン-ナノシリカコンポジット粒子。
  7.  請求項1記載の含フッ素アルコール〔I〕とアルコキシシランとを、酸化チタンおよびナノシリカ粒子の存在下で、アルカリ性または酸性触媒を用いて縮合反応させることを特徴とする含フッ素酸化チタン-ナノシリカコンポジット粒子の製造法。
  8.  一般式
       RF′-A-OH                    〔Ia〕
    または一般式
       HO-A-RF′′-A-OH                 〔Ib〕
    (ここで、RF′は炭素数6以下の末端パーフルオロアルキル基および炭素数6以下のパーフルオロアルキレン基を有する、O、SまたはN原子を含有する直鎖状または分岐状パーフルオロアルキル基であり、RF′′は炭素数6以下のパーフルオロアルキレン基を有する、O、SまたはN原子を含有する直鎖状または分岐状のパーフルオロアルキレン基であり、Aは炭素数1~6のアルキレン基である)で表される含フッ素アルコールとアルコキシシランおよび酸化チタンとナノシリカ粒子の縮合体からなる含フッ素酸化チタン-ナノシリカコンポジット粒子。
  9.  一般式〔Ia〕で表される含フッ素アルコールとして、一般式
       CmF2m+1O〔CF(CF3)CF2O〕dCF(CF3)(CH2)eOH          〔IIa〕
    (ここで、mは1~3、dは0~100、eは1~3の整数である)で表されるヘキサフルオロプロペンオキシドオリゴマーアルコールが用いられた請求項8記載の含フッ素酸化チタン-ナノシリカコンポジット粒子。
  10.  一般式〔Ib〕で表される含フッ素アルコールとして、一般式
     HO(CH2)fCF(CF3)〔OCF2CF(CF3)〕gO(CF2)hO〔CF(CF3)CF2O〕i
        CF(CF3)(CH2)fOH               〔IIb〕
    (ここで、fは1~3、g+iは0~50、hは1~6の整数である)で表されるパーフルオロアルキレンエーテルジオールが用いられた請求項8記載の含フッ素酸化チタン-ナノシリカコンポジット粒子。
  11.  アルコキシシランが、一般式
       (R1O)pSi(OR2)q(R3)r               〔IV〕
    (ここで、R1、R3はそれぞれ水素原子、炭素数1~6のアルキル基またはアリール基であり、R2は炭素数1~6のアルキル基またはアリール基であり、ただしR1、R2、R3は共にアリール基であることはなく、p+q+rは4であり、ただしqは0ではない)で表わされるシラン誘導体である請求項8記載の含フッ素酸化チタン-ナノシリカコンポジット粒子。
  12.  酸化チタン100重量部に対し、ナノシリカ粒子が10~200重量部、含フッ素アルコールが10~200重量部、アルコキシシランが10~200重量部の割合で用いられた請求項8記載の含フッ素酸化チタン-ナノシリカコンポジット粒子。
  13.  酸化チタン100重量部に対し、ナノシリカ粒子が50~150重量部、含フッ素アルコールが50~150重量部、アルコキシシランが50~150重量部の割合で用いられた請求項8記載の含フッ素酸化チタン-ナノシリカコンポジット粒子。
  14.  請求項8記載の含フッ素アルコール〔Ia〕または〔Ib〕とアルコキシシランとを、酸化チタンおよびナノシリカ粒子の存在下で、アルカリ性または酸性触媒を用いて縮合反応させることを特徴とする含フッ素酸化チタン-ナノシリカコンポジット粒子の製造法。
  15.  請求項1または8記載の含フッ素酸化チタン-ナノシリカコンポジット粒子を有効成分とする表面処理剤。
PCT/JP2015/057024 2014-03-11 2015-03-10 含フッ素酸化チタン-ナノシリカコンポジット粒子およびその製造法 WO2015137345A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015532996A JP5801023B1 (ja) 2014-03-11 2015-03-10 含フッ素酸化チタン−ナノシリカコンポジット粒子およびその製造法
EP20158060.2A EP3670580B1 (en) 2014-03-11 2015-03-10 Fluorine-containing titanium oxide - nano-silica composite particles and method for producing the same
CN201580012989.0A CN106062045B (zh) 2014-03-11 2015-03-10 含氟氧化钛-纳米二氧化硅复合物粒子及其制造方法
US15/125,040 US20170015833A1 (en) 2014-03-11 2015-03-10 Fluorine-containing titanium oxide - nano-silica composite particles and method for producing the same
KR1020167026198A KR102336869B1 (ko) 2014-03-11 2015-03-10 함불소 산화 타이타늄-나노 실리카 복합 입자 및 그 제조법
EP15761092.4A EP3118243B1 (en) 2014-03-11 2015-03-10 Fluorine-containing titanium oxide-nanosilica composite particles, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014047315 2014-03-11
JP2014-047315 2014-03-11

Publications (1)

Publication Number Publication Date
WO2015137345A1 true WO2015137345A1 (ja) 2015-09-17

Family

ID=54071788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057024 WO2015137345A1 (ja) 2014-03-11 2015-03-10 含フッ素酸化チタン-ナノシリカコンポジット粒子およびその製造法

Country Status (6)

Country Link
US (1) US20170015833A1 (ja)
EP (2) EP3118243B1 (ja)
JP (1) JP5801023B1 (ja)
KR (1) KR102336869B1 (ja)
CN (1) CN106062045B (ja)
WO (1) WO2015137345A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017214233A (ja) * 2016-05-30 2017-12-07 サスティナブル・テクノロジー株式会社 基体表面保護膜含有物質及びその物質を用いた基体表面保護膜とその造膜液及びその製造方法
JP2020185530A (ja) * 2019-05-14 2020-11-19 三菱重工業株式会社 水素燃焼触媒
WO2021171745A1 (ja) * 2020-02-27 2021-09-02 ユニマテック株式会社 含フッ素アルコールコンポジット

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111330543B (zh) * 2020-03-17 2022-03-01 福建龙净环保股份有限公司 一种用于处理高湿度VOCs的疏水活性炭吸附剂及其制备方法
KR20220126158A (ko) 2021-03-08 2022-09-15 삼성전자주식회사 공기정화용 광촉매, 이를 포함하는 세라믹 촉매필터 및 공기정화장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112126A (ja) * 1993-08-27 1995-05-02 Asahi Glass Co Ltd 含フッ素溶媒に分散したオルガノゾル
JP2000169481A (ja) * 1998-12-10 2000-06-20 Toray Ind Inc 含フッ素化合物及び防汚性物品
JP2004231952A (ja) * 2003-01-09 2004-08-19 Showa Denko Kk 複合粒子およびその製造方法と用途
JP2009227880A (ja) * 2008-03-25 2009-10-08 Inax Corp ハイブリッドチタニア粉末の製造方法、ハイブリッドチタニア粉末、機能付与液、製品及び機能付与釉薬
JP2011020023A (ja) * 2009-07-14 2011-02-03 Dic Corp 光触媒の製造方法及び光触媒
JP2011207628A (ja) * 2010-03-27 2011-10-20 Univ Of Fukui 着色二酸化チタン粉末の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3574770A (en) 1968-10-24 1971-04-13 Nasa Hydroxy terminated perfluoro ethers
JPH05186719A (ja) 1991-05-31 1993-07-27 Hitachi Chem Co Ltd 無機導電塗料組成物及びこれを用いた導電塗膜の製造法
US5593483A (en) * 1995-03-27 1997-01-14 Advanced Chemical Technologies, Inc. Water repellent composition for cellulose containing materials and method for producing same
JP3728752B2 (ja) 2003-03-19 2005-12-21 荒川化学工業株式会社 硬化性組成物およびその硬化物
JP2007186454A (ja) 2006-01-13 2007-07-26 Yunimatekku Kk 含フッ素エーテルアルコールおよびその製造法
DE602007014332D1 (de) 2006-03-10 2011-06-16 Unimatec Co Ltd Polyfluoralkylalkohol bzw. (meth)acrylsäurederivat daraus und herstellungsverfahren
JP5292680B2 (ja) 2006-08-07 2013-09-18 ユニマテック株式会社 含フッ素ポリエーテル(メタ)アクリレートおよびその製造法
DE102008007190A1 (de) 2008-02-01 2009-08-06 Construction Research & Technology Gmbh Flüssige, fluorhaltige und einkomponentige Zusammensetzung
JP2010073914A (ja) 2008-09-19 2010-04-02 Sony Corp 半導体装置及びその製造方法
JP5704133B2 (ja) * 2012-07-19 2015-04-22 信越化学工業株式会社 コアシェル型正方晶系酸化チタン固溶体水分散液、その製造方法、紫外線遮蔽性シリコーンコーティング組成物、及び被覆物品
CN102923966B (zh) * 2012-11-20 2016-03-30 王德宪 抗菌减反射玻璃镀液组合物、其制法及用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112126A (ja) * 1993-08-27 1995-05-02 Asahi Glass Co Ltd 含フッ素溶媒に分散したオルガノゾル
JP2000169481A (ja) * 1998-12-10 2000-06-20 Toray Ind Inc 含フッ素化合物及び防汚性物品
JP2004231952A (ja) * 2003-01-09 2004-08-19 Showa Denko Kk 複合粒子およびその製造方法と用途
JP2009227880A (ja) * 2008-03-25 2009-10-08 Inax Corp ハイブリッドチタニア粉末の製造方法、ハイブリッドチタニア粉末、機能付与液、製品及び機能付与釉薬
JP2011020023A (ja) * 2009-07-14 2011-02-03 Dic Corp 光触媒の製造方法及び光触媒
JP2011207628A (ja) * 2010-03-27 2011-10-20 Univ Of Fukui 着色二酸化チタン粉末の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017214233A (ja) * 2016-05-30 2017-12-07 サスティナブル・テクノロジー株式会社 基体表面保護膜含有物質及びその物質を用いた基体表面保護膜とその造膜液及びその製造方法
JP2020185530A (ja) * 2019-05-14 2020-11-19 三菱重工業株式会社 水素燃焼触媒
JP7337542B2 (ja) 2019-05-14 2023-09-04 三菱重工業株式会社 水素燃焼触媒
WO2021171745A1 (ja) * 2020-02-27 2021-09-02 ユニマテック株式会社 含フッ素アルコールコンポジット
JPWO2021171745A1 (ja) * 2020-02-27 2021-09-02
JP7202588B2 (ja) 2020-02-27 2023-01-12 ユニマテック株式会社 含フッ素アルコールコンポジット

Also Published As

Publication number Publication date
US20170015833A1 (en) 2017-01-19
EP3670580B1 (en) 2021-02-17
EP3118243B1 (en) 2020-08-26
KR20160134697A (ko) 2016-11-23
CN106062045B (zh) 2019-05-28
EP3670580A1 (en) 2020-06-24
EP3118243A4 (en) 2017-11-22
KR102336869B1 (ko) 2021-12-08
EP3118243A1 (en) 2017-01-18
JPWO2015137345A1 (ja) 2017-04-06
CN106062045A (zh) 2016-10-26
JP5801023B1 (ja) 2015-10-28

Similar Documents

Publication Publication Date Title
JP5801023B1 (ja) 含フッ素酸化チタン−ナノシリカコンポジット粒子およびその製造法
EP2966113B1 (en) Fluorine-containing nanocomposite particles and preparation method therefor
WO2014136893A1 (ja) 含フッ素ナノシリカコンポジット粒子およびその製造法
JP5812367B2 (ja) 含フッ素ナノシリカコンポジット粒子およびその製造法
JP6038327B2 (ja) 樹脂−含フッ素ホウ酸コンポジット粒子の複合体
JP5955468B2 (ja) 含フッ素ホウ酸コンポジット粒子
JP5812368B2 (ja) 含フッ素ナノコンポジット粒子の製造法
JP5812369B2 (ja) 含フッ素ナノコンポジット粒子の製造法
JP5996056B2 (ja) 含フッ素ナノシリカコンポジット粒子の分散液
JP5755350B2 (ja) 含フッ素ナノシリカコンポジット粒子およびその製造法
JP5812366B2 (ja) 含フッ素ナノコンポジット粒子の製造法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015532996

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15125040

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167026198

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015761092

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015761092

Country of ref document: EP