WO2015133663A1 - 소듐 전지 및 이의 제조방법 - Google Patents

소듐 전지 및 이의 제조방법 Download PDF

Info

Publication number
WO2015133663A1
WO2015133663A1 PCT/KR2014/001881 KR2014001881W WO2015133663A1 WO 2015133663 A1 WO2015133663 A1 WO 2015133663A1 KR 2014001881 W KR2014001881 W KR 2014001881W WO 2015133663 A1 WO2015133663 A1 WO 2015133663A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
solid electrolyte
epoxy resin
secondary battery
housing
Prior art date
Application number
PCT/KR2014/001881
Other languages
English (en)
French (fr)
Inventor
김영솔
김정수
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to PCT/KR2014/001881 priority Critical patent/WO2015133663A1/ko
Publication of WO2015133663A1 publication Critical patent/WO2015133663A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3963Sealing means between the solid electrolyte and holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/138Primary casings; Jackets or wrappings adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sodium battery and a method of manufacturing the same.
  • Lithium secondary batteries which are mainly used as secondary batteries, have high energy density and are widely used for portable and miniaturized electronic products.However, the use of rare lithium compounds has a problem such as an increase in cost. It is necessary to resolve.
  • the sodium secondary battery uses sodium ions, including a positive electrode and a negative electrode capable of doping and undoping sodium ions, thereby reducing the cost of raw materials, thereby enabling mass supply of secondary batteries.
  • sodium has a very high reactivity with air and water, it is impossible to use a water-soluble electrolyte, and there is a risk of fire, so special care is required in employing it in a battery.
  • Sodium secondary batteries include sodium sulfur batteries or sodium nickel batteries, which operate at high temperatures of more than 250 degrees.
  • Sodium secondary battery uses ceramics such as alpha alumina as the insulating material between the positive electrode and the negative electrode during high temperature operation, and thus requires a bonding process for bonding between beta alumina and alpha alumina used as a solid electrolyte. The manufacturing cost for this is increased.
  • sodium secondary battery has recently expanded its application range as a battery using a solid electrolyte having a sodium ion conductivity such as beta alumina or NASICON from below 150 °C from room temperature, it is alpha alumina at a temperature not high temperature
  • a solid electrolyte having a sodium ion conductivity such as beta alumina or NASICON from below 150 °C from room temperature, it is alpha alumina at a temperature not high temperature
  • the technical problem to be achieved by the present invention is that a sodium secondary battery operated at a temperature ranging from room temperature to 150 ° C. has been using alpha alumina as an insulating material of a sodium secondary battery operated at a high temperature range in the past, and a process of bonding it with an electrolyte is required. Since it causes the above cost and time, it is to provide a sodium battery and a method for manufacturing the same that can significantly reduce the production cost by simplifying the manufacturing process while replacing the alpha alumina.
  • Sodium secondary battery according to the present invention is a housing in which one end of the both ends is sealed and the other end is open inside the solid electrolyte tube for partitioning the positive electrode space and the negative electrode space, and the upper end of the outer surface of the solid electrolyte tube It includes a resin insulating portion wrapped, comprising insulating the anode space and the cathode space by the resin insulating portion.
  • the resin insulating portion is a solid electrolyte tube in a ring shape surrounding the top of the outer surface by curing the upper end of the outer surface of the solid electrolyte tube in a mold containing the first insulating resin composition. It may be formed integrally with.
  • the first insulating resin composition may include 1 to 120 parts by weight of a curing agent and 0.1 to 10 parts by weight of a curing accelerator based on 100 parts by weight of an epoxy resin.
  • the epoxy resin is biphenyl epoxy resin, novolac epoxy resin, dicyclopentadienyl epoxy resin, bisphenol epoxy resin, terpene epoxy resin, aralkyl epoxy resin, naphthalene epoxy It may include any one or more compounds selected from resins, halogenated epoxy resins and combinations thereof.
  • the first insulating resin composition may further include any one or more fillers selected from alumina, silica, magnesia, zirconia, titania, silicon carbide, and combinations thereof.
  • the method for manufacturing a sodium secondary battery according to the present invention comprises the steps of: integrating the solid electrolyte tube and the resin insulator by forming a ring-shaped resin insulator at an upper end of an outer surface of the solid electrolyte tube;
  • the step of bonding the housing and the resin insulator may be performed by bonding the housing and the resin insulator to the joining member by using a joining member that may join the housing and the resin insulator. It may include doing.
  • the resin insulating portion is hardened by putting the upper end of the outer surface of the solid electrolyte tube in a mold containing the first insulating resin composition to surround the upper end of the outer surface. It may be formed integrally with the solid electrolyte tube.
  • the first insulating resin composition may include 1 to 120 parts by weight of a curing agent and 0.1 to 10 parts by weight of a curing accelerator based on 100 parts by weight of an epoxy resin.
  • the epoxy resin is a biphenyl epoxy resin, novolac epoxy resin, dicyclopentadienyl epoxy resin, bisphenol epoxy resin, terpene epoxy resin, aralkyl epoxy resin And one or more compounds selected from naphthalene epoxy resins, halogenated epoxy resins, and combinations thereof.
  • the first insulating resin composition further includes any one or more fillers selected from alumina, silica, magnesia, zirconia, titania, silicon carbide, and combinations thereof. Can be.
  • the resin insulating portion comprises a 1 to 120 parts by weight of the curing agent and 0.1 to 10 parts by weight of the curing accelerator with respect to 100 parts by weight of the epoxy resin on the upper surface and the lower surface 2 may be coated with an insulating resin composition and bonded to the upper case and the housing, respectively.
  • Sodium secondary battery according to the present invention includes a resin-based insulator that can be applied to the temperature range from room temperature to 200 °C used alpha alumina as an insulating material of a sodium secondary battery that operates in a high temperature range of 250 °C or more conventional and bonded to the electrolyte
  • a resin-based insulator that can be applied to the temperature range from room temperature to 200 °C used alpha alumina as an insulating material of a sodium secondary battery that operates in a high temperature range of 250 °C or more conventional and bonded to the electrolyte
  • FIG. 1 illustrates a sodium secondary battery according to an embodiment of the present invention.
  • FIG. 1 is a schematic view of a sodium secondary battery according to an embodiment of the present invention.
  • a sodium secondary battery according to an embodiment of the present invention is sealed at one end of the two ends and opened at the other end thereof.
  • the solid electrolyte tube 10 partitions the anode space 91 and the cathode space 92.
  • the anode space 91 and the cathode space 92 may be set as shown in FIG. 1, but this is only an example and the present disclosure is not limited thereto, and the positions of the anode space 91 and the cathode space 92 may be interchanged. have.
  • the safety tube 80 prevents a violent reaction between the positive electrode active material and the negative electrode active material when the solid electrolyte tube 10 is broken, and maintains a constant level of molten sodium even during discharge by capillary force.
  • the cathode space 92 is formed in the inner center, and includes a tube-shaped wicking tube 82 formed with a through hole 81 at a lower end of the safety tube 80.
  • the resin insulator 20 is formed by curing the first insulating resin composition using a mold to integrate with the solid electrolyte tube 10, and the upper and lower surfaces 30 and 40 of the formed resin insulator 20 are formed.
  • the second insulating resin composition is coated and cured to bond the bonding member 60 to the housing 70 having a structure bent from one side surface of the lower surface 40 of the resin insulation portion 20.
  • the housing 70 may include a metal housing, and may use a stable material at room temperature to 250 ° C. such as polyether ether ketone (PEEK) or Teflon.
  • PEEK polyether ether ketone
  • Teflon Teflon
  • the solid electrolyte tube 10 includes a solid electrolyte used in the battery field for the selective conduction of sodium ions, for example, sodium super ion conductor (Na super ionic conductor) conductor, NASICON), beta alumina or laminates thereof.
  • sodium super ion conductor Na super ionic conductor
  • NASICON sodium super ion conductor conductor
  • beta alumina beta alumina or laminates thereof.
  • sodium superion conductor is a Na-Zr-Si-O-based composite oxide, Na-Zr-Si-PO-based composite oxide, Y-doped Na-Zr-Si-PO-based It may include a composite oxide, Fe-doped Na-Zr-Si-PO-based composite oxide or a mixture thereof, in detail, Na 3 Zr 2 Si 2 PO 12 , Na 1 + x Si x Zr 2 P 3- x O 12 (real number 1.6 ⁇ x ⁇ 2.4), Y or Fe doped Na 3 Zr 2 Si 2 PO 12 , Y or Fe doped Na 1 + x Si x Zr 2 P 3-x O 12 (1.6 ⁇ x Real number ⁇ 2.4) or mixtures thereof.
  • Sodium secondary battery according to an embodiment of the present invention may include a slurry containing a positive electrode active material in the positive electrode space, which is a space between the housing 70 and the solid electrolyte tube 10 in one embodiment, which is by the current collector Make it possible to collect charges.
  • the current collector may be in the form of a foam, a film, a mesh, a felt, or a porous foil, and carbon, nickel, titanium, yttrium, calcium, chromium, and cobalt. It may be one or more selected from zinc, graphite and graphene.
  • the resin-based insulating part 20 according to an embodiment of the present invention is integrated with the solid electrolyte tube 10 by using an epoxy mold compound (EMC), and there is no limitation on the method of forming an integral part.
  • EMC epoxy mold compound
  • the sodium secondary battery according to the present invention may provide a resin-based insulation 20 to be applied to the operation in the temperature range of room temperature to 200 °C, to simplify the process, the resin-based insulation 20 and the solid electrolyte tube ( 10) Integrate.
  • an insulating portion may be formed using alumina, zirconia, silica, magnesia, mullite, PEEK, Teflon, and the like, as in an embodiment of the present invention. It is preferable to integrate with the solid electrolyte tube 10 using an epoxy mold compound.
  • the sodium secondary battery according to the present invention can replace alpha alumina as an insulator of a sodium secondary battery operated at a high temperature because the conventional operation of a sodium sulfur battery or a sodium nickel chloride battery is operated at a lower temperature than 250 °C or more, The cost increase due to the glass bonding or ceramic bonding process for bonding alpha alumina and solid electrolyte can be reduced.
  • the filler may contain 0 to 1800 parts by weight with respect to 100 parts by weight of the epoxy resin, if more than 1800 parts by weight can not maintain the form of the bond between the fillers can be maintained well Or no bonding may be made.
  • the higher the filler content the higher the temperature of the battery can be driven, and when the fire caused by the battery is less hydrocarbon material that can be burned than that consisting of only the epoxy resin can minimize the flame strength.
  • FIG. 2 to 5 schematically show a method of manufacturing a sodium secondary battery according to an embodiment of the present invention
  • Figure 2 is to form a resin insulating portion 20 on the top of the outer surface of the solid electrolyte tube 10 3 illustrates a step of forming an upper surface 30 and a lower surface 40 of the resin insulation portion 20 for bonding to the upper case 50 and the housing 70.
  • 4 shows the step of bonding the formed upper surface 30 and the lower surface 40 to the upper case 50 and the bonding member 60, respectively
  • the steps of the present invention are illustrated, and each step may be performed sequentially or selectively.
  • the resin insulating part 20 is formed on the upper side of the outer surface of the solid electrolyte tube 10.
  • the resin insulating portion 20 is put into the mold containing the first insulating resin composition the upper end of the outer surface of the solid electrolyte tube 10 in a ring shape to surround the upper end of the outer surface of the solid electrolyte tube 10 by curing the composition. It is integrated with the solid electrolyte tube 10.
  • the first insulating resin composition comprises an epoxy resin, a curing agent and a curing accelerator
  • the content of the curing agent is 1 to 120 parts by weight based on 100 parts by weight of the epoxy resin , Preferably it is 20 to 50 parts by weight, it is difficult to maintain the form outside the above range and the hardness may be lost to the jelly shape.
  • the curing accelerator can shorten the curing reaction time as a curing catalyst with respect to 100 parts by weight of the epoxy resin, it is preferably 0.1 to 10 parts by weight, if it exceeds the above range there is no effect of the addition can be uneconomical.
  • the curing conditions of the first insulating resin composition is a temperature range of 5 °C to 200 °C, the reaction time of 10 minutes to 24 hours of the solid electrolyte and the resin It is preferable to improve the bonding force, and more preferably may further include pressurizing within a range of up to 5000psi.
  • the second insulating resin composition may include 1 to 120 parts by weight of the curing agent and 0.1 to 10 parts by weight of the curing accelerator with respect to 100 parts by weight of the epoxy resin, the epoxy resin may be used including the same as the first insulating resin composition. .
  • the second insulating resin composition may further include 0 to 1800 parts by weight of any one or more fillers selected from alumina, silica, magnesia, zirconia, titania, silicon carbide, and combinations thereof, based on 100 parts by weight of the epoxy resin.
  • the joining member is a connecting member that can be joined to the upper end side of the open end of the housing 70 to prevent damage caused by bonding of the side of the resin insulating portion 20 and the housing 70. It consists of a bent structure leading to the lower surface and one side of the insulating portion 20.
  • the upper surface 30 and the lower surface 40 are bonded to the upper case 50 and the bonding member 60, respectively, as shown in FIG. 5.
  • One side of the bonding member 60 is bonded to the housing 70, and the bottom surface is to be bonded to the resin insulating portion 20.
  • the bonding member 60 bonded to the resin insulating portion 20 may be one side surface is bonded to the upper end of the open end of the housing 70 by a conventional welding method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 양 단 중 일단이 밀폐되고 다른 일단이 개방된 하우징, 상기 하우징 내부에 위치하는 고체전해질 튜브 및 수지 절연부를 포함하며, 상기 고체전해질 튜브에 의해 양극공간 및 음극공간이 구획되고, 상기 수지 절연부는 고체전해질 튜브 외측면의 상단을 감싸는 링형태로 형성되며, 상기 수지 절연부에 의해 양극공간 및 음극공간을 절연시키는 소듐 이차전지 및 이의 제조방법에 관한 것이다.

Description

소듐 전지 및 이의 제조방법
본 발명은 소듐 전지 및 이의 제조방법에 관한 것이다.
전기, 전자, 통신 및 컴퓨터 산업분야에 적용되는 이차전지는 에너지 효율의극대화를 위하여 고에너지밀도, 고출력밀도, 내구성 및 수명안정성 등의 성능 향상을 위한 연구개발이 진행되고 있다.
이차전지로 주로 사용되고 있는 리튬이차전지는 에너지 밀도가 높아 휴대가 용이하고 소형화된 전자제품들에 널리 이용되고 있으나, 희소한 리튬 화합물의 사용으로 비용이 상승되는 등의 문제가 있어 전지 재료의 공급을 해소하는 것이 필요하다.
소듐 이차전지는 소듐 이온을 도핑 및 탈도핑할 수 있는 정극과 부극을 포함하여 소듐 이온을 사용하므로 원재료의 비용을 절감할 수 있어 이차전지 대량 공급을 가능하게 한다. 하지만, 소듐은 공기, 물과의 반응성이 매우 높고 수용성 전해액의 사용이 불가능하며, 화재의 위험이 있어 이를 전지에 채용하는 것에 있어서 각별한 주의를 요구하게 된다.
소듐 이차전지에는 소듐 유황전지 또는 소듐 니켈 전지가 있으며, 이들은 250도가 넘는 고온에서 작동된다. 소듐 이차전지는 고온 작동시 양극과 음극 사이의 절연재로 알파 알루미나와 같은 세라믹스를 사용하며, 이로 인하여 고체 전해질로 사용되는 베타 알루미나와 알파 알루미나 간의 접합을 위한 접합 공정이 요구되어 절연재료의 사용 및 공정을 위한 제조원가가 증대된다.
한편, 소듐 이차전지는 최근 상온에서부터 150℃ 이하에서 베타 알루미나 또는 나시콘(NASICON)과 같은 소듐 이온 전도성을 가진 고체 전해질을 사용하여 전지로서 그 적용범위를 확대하고 있어, 고온이 아닌 온도에서 알파 알루미나를 사용하는 것이 필요 이상의 공정 및 재료 비용 상승을 초래하는 문제점을 야기한다.
본 발명이 이루고자 하는 기술적 과제는 상온 내지 150℃ 범위의 온도에서 작동되는 소듐 이차전지가 종래 높은 온도범위에서 작동되는 소듐 이차전지의 절연재로 알파 알루미나를 사용되어 왔던 것과 이를 전해질과 접합시키는 공정이 필요 이상의 비용과 시간을 초래하므로, 상기 알파 알루미나를 대체하면서도 제조공정을 단순화시켜 생산 원가를 획기적으로 절감할 수 있는 소듐 전지 및 이의 제조방법을 제공하는 데 있다.
본 발명에 따른 소듐 이차전지는 양 단 중 일단이 밀폐되고 다른 일단이 개방된 하우징 상기 하우징 내부에 위치하여 양극공간 및 음극공간을 구획하는 고체전해질 튜브, 및 상기 고체전해질 튜브의 외측면의 상단을 감싸는 수지 절연부를 포함하며, 상기 수지 절연부에 의해 상기 양극공간 및 상기 음극공간을 절연시키는 것을 포함한다.
본 발명의 일 실시예에 따른 소듐 이차전지에 있어서, 수지 절연부는 고체전해질 튜브 외측면의 상단을 제1절연성 수지 조성물을 포함하는 몰드에 넣어 경화시켜 외측면의 상단을 감싸는 링형태로 고체전해질 튜브와 일체화되어 형성된 것일 수 있다.
본 발명의 일 실시예에 따른 소듐 이차전지에 있어서, 제1절연성 수지 조성물은 에폭시 수지 100중량부에 대하여 경화제 1 내지 120중량부 및 경화촉진제 0.1 내지 10중량부를 포함할 수 있다.
본 발명의 일 실시예에 따른 소듐 이차전지에 있어서, 에폭시 수지는 바이페닐 에폭시 수지, 노볼락 에폭시 수지, 디사이클로펜타디에닐 에폭시 수지, 비스페놀 에폭시 수지, 테르펜 에폭시 수지, 아랄킬 에폭시 수지, 나프탈렌 에폭시 수지, 할로겐화 에폭시 수지 및 이들의 조합에서 선택되는 어느 하나 이상의 화합물을 포함할 수 있다.
본 발명의 일 실시예에 따른 소듐 이차전지에 있어서, 제1절연성 수지 조성물은 알루미나, 실리카, 마그네시아, 지르코니아, 티타니아, 탄화규소 및 이들의 조합에서 선택되는 어느 하나 이상의 충진제를 더 포함할 수 있다.
본 발명에 따른 소듐 이차전지의 제조방법은 고체전해질 튜브의 외측면의 상단에 링형태의 수지 절연부를 형성하여 상기 고체전해질 튜브와 상기 수지 절연부를 일체화하는 단계,
양 단 중 일단이 밀폐되고 다른 일단이 개방된 하우징 내에 상기 고체전해질 튜브를 삽입하는 단계,
상기 하우징과 상기 수지 절연부를 접합하는 단계, 및
상기 하우징의 개방된 일단을 밀폐할 수 있는 상부케이스를 상기 수지 절연부와 접합하는 단계,를 포함할 수 있다.
본 발명의 일 실시예에 따른 소듐 이차전지의 제조방법에 있어서, 하우징과 수지 절연부를 접합하는 단계는 하우징 및 수지 절연부와 접합가능한 접합부재를 이용하여 하우징 및 수지절연부 각각을 접합부재와 접합하는 것을 포함할 수 있다.
본 발명의 일 실시예에 따른 소듐 이차전지의 제조방법에 있어서, 수지 절연부는 고체전해질 튜브 외측면의 상단을 제1절연성 수지 조성물을 포함하는 몰드에 넣어 경화시켜 외측면의 상단을 감싸는 링형태로 고체전해질 튜브와 일체화되어 형성되는 것일 수 있다.
본 발명의 일 실시예에 따른 소듐 이차전지의 제조방법에 있어서, 제1절연성 수지 조성물은 에폭시 수지 100중량부에 대하여 경화제 1 내지 120중량부 및 경화촉진제 0.1 내지 10중량부를 포함할 수 있다.
본 발명의 일 실시예에 따른 소듐 이차전지의 제조방법에 있어서, 에폭시 수지는 바이페닐 에폭시 수지, 노볼락 에폭시 수지, 디사이클로펜타디에닐 에폭시 수지, 비스페놀 에폭시 수지, 테르펜 에폭시 수지, 아랄킬 에폭시 수지, 나프탈렌 에폭시 수지, 할로겐화 에폭시 수지 및 이들의 조합에서 선택되는 어느 하나 이상의 화합물을 포함할 수 있다.
본 발명의 일 실시예에 따른 소듐 이차전지의 제조방법에 있어서, 제1절연성 수지 조성물은 알루미나, 실리카, 마그네시아, 지르코니아, 티타니아, 탄화규소 및 이들의 조합에서 선택되는 어느 하나 이상의 충진제를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 소듐 이차전지의 제조방법에 있어서, 수지 절연부는 상부면 및 하부면에 에폭시 수지 100중량부에 대하여 경화제 1 내지 120중량부 및 경화촉진제 0.1 내지 10중량부를 함유하는 제2절연성 수지 조성물을 도포하여 각각 상기 상부케이스 및 상기 하우징과 접합시키는 것을 포함할 수 있다.
본 발명에 따른 소듐 이차전지는 상온 내지 200℃의 온도범위에 적용될 수 있는 수지계 절연체를 포함함으로써 종래 250℃ 이상의 높은 온도범위에서 작동되는 소듐 이차전지의 절연재로 알파 알루미나를 사용하였던 것과 이를 전해질과 접합시키는 공정이 필요이상의 비용과 추가 공정이 요구되어 생산 효율을 떨어뜨리는 문제를 극복하여 높은 온도범위에서 적용되었던 알파 알루미나 절연체를 대체하면서 제조공정을 단순화시시키고 생산 원가를 획기적으로 절감하여 생산성을 극대화할 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 소듐 이차전지를 나타낸 것이다.
도 2 내지 5는 본 발명의 일 실시예에 따른 소듐 이차전지의 제조방법의 단계를 개략적으로 나타낸 것이다.
<부호의 설명>
10 : 고체전해질 튜브, 20 : 수지 절연부
30 : 상부면 40 : 하부면
50 : 상부케이스 60 : 접합부재
70 : 하우징 80 : 안전관
81 : 관통홀 82 : 위킹튜브
91 : 양극공간 92 : 음극공간
이하 본 발명의 소듐 이차전지 및 이의 제조방법에 대하여 상세히 설명한다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. 첨부된 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것으로 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수 있으며, 본 발명의 사상을 명확하게 하기 위해 과장되어 도시될 수 있다. 또한, 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 발명의 일 실시예에 따른 소듐 이차전지의 개략도인 것으로, 도 1에서 도시한 바와 같이, 본 발명의 일 실시예에 따른 소듐 이차전지는 양 단 중 일단이 밀폐되고 다른 일단이 개방된 하우징(70)을 포함하여, 하우징(70) 내부에 소듐 이온을 선택적으로 이동시킬 수 있는 고체전해질 튜브(10) 및 수지 절연부(20)를 포함한다.
이때, 고체전해질 튜브(10)는 양극공간(91) 및 음극공간(92)을 구획한다. 양극공간(91) 및 음극공간(92)은 도 1에서 보이는 바와 같이 설정될 수 있으나 이는 일 예를 보여주는 것으로 반드시 이에 한정되지 않고 양극공간(91)과 음극공간(92)의 위치가 서로 바뀔 수 있다.
안전관(80)은 고체전해질 튜브(10)의 파손시 양극 활물질과 음극 활물질간의 격렬한 반응을 방지하며, 모세관력에 의해 방전시에도 용융 소듐의 수위를 일정하게 유지할 수 있는 것으로 고체전해질 튜브(10) 내에 음극공간(92)이 이루어져 내부 중심에 위치하고, 안전관(80) 안쪽으로 하단에 관통홀(81)이 형성된 튜브 형상의 위킹튜브(82)를 포함한다.
수지 절연부(20)은 제1절연성 수지 조성물을 몰드를 이용하여 경화시켜 형성함으로써 고체전해질 튜브(10)와 일체화시키며, 형성된 수지 절연부(20)의 상부면(30)과 하부면(40)은 제2절연성 수지 조성물을 도포하여 경화시켜 접합부재(60)는 수지 절연부(20)의 하부면(40)에서 일측면으로 절곡된 구조를 갖고 하우징(70)와 접합된다.
본 발명의 일 실시예에 따른 소듐 이차전지에 있어서, 하우징(70)은 금속하우징을 포함하여 PEEK(polyether ether ketone) 또는 테프론 등의 상온 내지 250℃에서 안정적인 재료를 사용할 수 있다.
본 발명의 일 실시예에 따른 소듐 이차전지에 있어서, 고체전해질 튜브(10)는 소듐 이온의 선택적 전도를 위해 전지 분야에서 사용되는 고체전해질을 포함하며, 일 예로, 소듐초이온 전도체(Na super ionic conductor, NASICON), 베타 알루미나 또는 이들의 적층체를 포함할 수 있다. 비 한정적인 일 예로, 소듐초이온전도체(NASICON)는 Na-Zr-Si-O계의 복합산화물, Na-Zr-Si-P-O계의 복합산화물, Y 도핑된 Na-Zr-Si-P-O계의 복합산화물, Fe 도핑된 Na-Zr-Si-P-O계의 복합산화물 또는 이들의 혼합물을 포함할 수 있으며, 상세하게, Na3Zr2Si2PO12, Na1+xSixZr2P3-xO12 (1.6<x<2.4인 실수), Y 또는 Fe가 도핑 Na3Zr2Si2PO12, Y 또는 Fe 도핑된 Na1+xSixZr2P3-xO12 (1.6<x<2.4 인 실수) 또는 이들의 혼합물을 포함한다.
본 발명의 일 실시예에 따른 소듐 이차전지는 일양태로 하우징(70)과 고체전해질 튜브(10) 사이의 공간인 양극공간에 양극활물질을 함유하는 슬러리를 포함시킬 수 있으며, 이는 집전체에 의하여 전하를 모을 수 있도록 한다. 이때, 집전체는 폼(foam), 필름(film), 메쉬(mesh), 펠트(felt) 또는 다공성 박(perforated film)의 형태일 수 있으며, 카본, 니켈, 티타늄, 이트륨, 칼슘, 크롬, 코발트,아연, 그라파이트 및 그래핀 중에서 선택되는 어느 하나 이상인 것일 수 있다.
본 발명의 일 실시예에 따른 수지계 절연부(20)은 에폭시 몰드 컴파운드(EMC: Epoxy Mold Compound)를 사용하여 고체전해질 튜브(10)와 일체화하며, 일체화 형성하는 방법에는 제한이 없다.
본 발명에 따른 소듐 이차전지는 상온 내지 200℃의 온도범위에서 작동되는 것에 적용될 수 있도록 수지계 절연부(20)를 제공할 수 있으며, 공정을 단순화하기 위하여 수지계 절연부(20)와 고체전해질 튜브(10)를 일체화시킨다.
수지 절연부(20)는 에폭시 수지를 사용하지 않을 시 알루미나, 지르코니아, 실리카, 마그네시아, 물라이트(mullite), PEEK, 테프론 등을 사용하여 절연부를 형성할 수 있으며, 본 발명의 일 실시예와 같이 에폭시 몰드 컴파운드를 사용하여 고체전해질 튜브(10)와 일체화하는 것이 바람직하다.
본 발명에 따른 소듐 이차전지는 종래 소듐 유황전지 또는 소듐 염화니켈 전지의 작동온도가 250℃ 이상인 것에 비하여 낮은 온도에서 작동되기 때문에 고온에서 작동되는 소듐 이차전지의 절연체로 알파 알루미나를 대체할 수 있으며, 알파 알루미나와 고체전해질의 접합을 위한 글라스 접합 또는 세라믹 접합 공정으로 인한 비용 상승을 절감할 수 있다.
본 발명의 일 실시예에 따른 소듐 이차전지에 있어서, 충진제는 에폭시 수지 100중량부에 대하여 0 내지 1800중량부 함유할 수 있으며, 1800중량부를 초과하면 충진제 간의 결합이 잘 이루어지지 않아 형태를 유지할 수 없거나 접합이 이루어지지 않을 수 있다. 충진제는 함량이 높을수록 높은 온도에서도 전지를 구동할 수 있으며, 전지에 기인한 화재 발생시 에폭시 수지로만 구성되는 것보다 연소될 수 있는 탄화수소물질이 적어 화염 강도를 최소화할 수 있다.
도 2 내지 도 5는 본 발명의 일 실시예에 따른 소듐 이차전지의 제조방법을 개략적으로 도시한 것으로서, 도 2는 고체전해질 튜브(10)의 외측면 상단에 수지 절연부(20)을 형성하는 단계를 나타낸 것이며, 도 3은 상부케이스(50) 및 하우징(70)과의 접합을 위하여 수지 절연부(20)의 상부면(30) 및 하부면(40)을 형성하는 단계를 나타낸 것이며, 도 4는 형성된 상부면(30) 및 하부면(40)을 각각 상부케이스(50) 및 접합부재(60)에 접합시키는 단계를 나타낸 것이며, 도 5는 접합부재(60)과 하우징(70)을 접합시키는 단계를 나타낸 것으로, 각 단계는 순차적 또는 선택적으로 실시될 수 있다.
본 발명의 일 실시예에 따른 소듐 이차전지의 제조방법은 도 2에서 보이는 바와 같이 고체전해질 튜브(10)의 외측면 상단에 수지 절연부(20)를 형성한다. 이때, 수지 절연부(20)는 고체전해질 튜브(10) 외측면의 상단을 제1절연성 수지 조성물을 함유한 몰드에 넣은 후 조성물을 경화시켜 고체전해질 튜브(10) 외측면 상단을 감싸는 링형태로 고체전해질 튜브(10)와 일체화한다.
본 발명의 일 실시예에 따른 소듐 이차전지의 제조방법에 있어서, 제1절연성 수지 조성물은 에폭시 수지, 경화제 및 경화촉진제를 포함하며, 경화제의 함량은 에폭시 수지 100중량부에 대하여 1 내지 120중량부, 바람직하게는 20 내지 50중량부인 것으로, 상기 범위를 벗어나면 형태 유지가 어렵고 젤리 형상으로 경도가 없어질 수 있다. 또한, 경화촉진제는 에폭시 수지 100중량부에 대하여 경화 촉매로서 경화반응시간을 단축시킬 수 있으며, 0.1 내지 10 중량부인 것이 바람직하며, 상기 범위를 초과하면 첨가의 효과가 없어 비경제적일 수 있다.
본 발명의 일 실시예에 따른 소듐 이차전지의 제조방법에 있어서, 제1절연성 수지 조성물의 경화조건은 5℃ 내지 200℃의 온도범위, 10분 내지 24시간의 반응 시간인 것이 고체전해질과 수지의 접합력을 향상시킬 수 있어 바람직하며, 보다 바람직하게는 최대 5000psi 범위 내에서 가압하는 것을 더 포함할 수 있다.
본 발명의 일 실시예에 따른 소듐 이차전지의 제조방법은 고체전해질 튜브(10)에 수지 절연부(20)를 형성한 후, 도 3에서 보이는 바와 같이 수지 절연부(20)의 상부면(30) 및 하부면(40)에 각각 제2절연성 수지 조성물을 도포하여 경화시킨다. 이때, 제2절연성 수지 조성물은 에폭시 수지 100중량부에 대하여 경화제 1 내지 120중량부 및 경화촉진제 0.1 내지 10 중량부를 포함할 수 있으며, 에폭시 수지는 제1절연성 수지 조성물과 동일한 것을 포함하여 사용할 수 있다. 또한, 제2절연성 수지 조성물은 알루미나, 실리카, 마그네시아, 지르코니아, 티타니아, 탄화규소 및 이들의 조합에서 선택되는 어느 하나 이상의 충진제를 에폭시 수지 100중량부에 대하여 0 내지 1800중량부 더 포함할 수 있다.
본 발명의 일 실시예에 따른 소듐 이차전지의 제조방법은 형성된 상부면(30) 및 하부면(40)을 형성한 후, 도 4에서 보이는 바와 같이 상부면(30)을 상부케이스(50)와 접합시키며, 하부면(40)을 접합부재(60)에 접합시킨다. 이때, 접합부재는 하우징(70)의 개방된 일단의 상단측과 접합할 수 있는 연결부재로서 수지 절연부(20)의 측면과 하우징(70)의 접합으로 인한 손상을 야기를 방지할 수 있는 것으로 수지 절연부(20)의 하단면과 일측면으로 이어지는 절곡된 구조로 이루어진다.
본 발명의 일 실시예에 따른 소듐 이차전지의 제조방법은 상부면(30) 및 하부면(40)을 각각 상부케이스(50) 및 접합부재(60)에 접합시킨 후, 도 5에서 보이는 바와 같이 접합부재(60)의 일측면은 하우징(70)과 접합되고, 하단면은 수지 절연부(20)와 접합되도록 한다. 이때, 수지 절연부(20)와 접합된 접합부재(60)는 일측면이 하우징(70)의 개방된 일단의 상단과 통상의 용접 방법으로 접합된 것일 수 있다.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (9)

  1. 양 단 중 일단이 밀폐되고 다른 일단이 개방된 하우징,
    상기 하우징 내부에 위치하여 양극공간 및 음극공간을 구획하는 고체전해질 튜브, 및
    상기 고체전해질 튜브의 외측면의 상단을 감싸는 수지 절연부를 포함하며,
    상기 수지 절연부에 의해 상기 양극공간 및 상기 음극공간을 절연시키는 소듐 이차전지.
  2. 제1항에 있어서,
    상기 수지 절연부는 에폭시 수지, 경화제 및 경화촉진제를 포함하는 제1절연성 수지 조성물을 경화시킨 것인 소듐 이차전지.
  3. 제2항에 있어서,
    상기 에폭시 수지는 바이페닐 에폭시 수지, 노볼락 에폭시 수지, 디사이클로펜타디에닐 에폭시 수지, 비스페놀 에폭시 수지, 테르펜 에폭시 수지, 아랄킬 에폭시 수지, 나프탈렌 에폭시 수지, 할로겐화 에폭시 수지 및 이들의 조합에서 선택되는 어느 하나 이상의 화합물을 포함하는 소듐 이차전지.
  4. 제2항에 있어서,
    상기 제1절연성 수지 조성물은 알루미나, 실리카, 마그네시아, 지르코니아, 티타니아, 탄화규소 및 이들의 조합에서 선택되는 어느 하나 이상의 충진제를 더 포함하는 소듐 이차전지.
  5. 고체전해질 튜브의 외측면의 상단에 링형태의 수지 절연부를 형성하여 상기 고체전해질 튜브와 상기 수지 절연부를 일체화하는 단계,
    양 단 중 일단이 밀폐되고 다른 일단이 개방된 하우징 내에 상기 고체전해질 튜브를 삽입하는 단계,
    상기 하우징과 상기 수지 절연부를 접합하는 단계, 및
    상기 하우징의 개방된 일단을 밀폐할 수 있는 상부케이스를 상기 수지 절연부와 접합하는 단계,를 포함하는 소듐 이차전지의 제조방법.
  6. 제5항에 있어서,
    상기 하우징과 상기 수지 절연부를 접합하는 단계는 상기 하우징 및 상기 수지 절연부와 접합가능한 접합부재를 이용하여 상기 하우징 및 상기 수지절연부 각각을 상기 접합부재와 접합하는 것을 포함하는 소듐 이차전지의 제조방법.
  7. 제5항에 있어서,
    상기 수지 절연부는 상기 고체전해질 튜브 외측면의 상단을 제1절연성 수지 조성물을 포함하는 몰드에 넣어 경화시켜 상기 고체전해질 튜브의 외측면 상단을 감싸는 링형태로 상기 고체전해질 튜브와 일체화되어 형성되는 소듐 이차전지의 제조방법.
  8. 제5항에 있어서,
    상기 제1절연성 수지 조성물은 에폭시 수지 100중량부에 대하여 경화제 1 내지 120중량부 및 경화촉진제 0.1 내지 10중량부를 포함하는 소듐 이차전지의 제조방법.
  9. 제5항에 있어서,
    상기 수지 절연부는 상부면 및 하부면에 에폭시 수지 100중량부에 대하여 경화제 1 내지 120중량부 및 경화촉진제 0.1 내지 10 중량부를 함유하는 제2절연성 수지 조성물을 도포하여 각각 상기 상부케이스 및 상기 하우징과 접합시키는 것을 포함하는 소듐 이차전지의 제조방법.
PCT/KR2014/001881 2014-03-07 2014-03-07 소듐 전지 및 이의 제조방법 WO2015133663A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/001881 WO2015133663A1 (ko) 2014-03-07 2014-03-07 소듐 전지 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/001881 WO2015133663A1 (ko) 2014-03-07 2014-03-07 소듐 전지 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2015133663A1 true WO2015133663A1 (ko) 2015-09-11

Family

ID=54055454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001881 WO2015133663A1 (ko) 2014-03-07 2014-03-07 소듐 전지 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2015133663A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100071814A (ko) * 2008-12-19 2010-06-29 주식회사 엘지화학 이차전지용 파우치 및 파우치형 이차전지
KR101036086B1 (ko) * 2008-12-05 2011-05-19 삼성에스디아이 주식회사 이차전지
KR101249919B1 (ko) * 2011-09-01 2013-04-03 신흥에스이씨주식회사 진동을 완충시키는 캡조립체를 포함하는 이차전지
KR20130097914A (ko) * 2012-02-27 2013-09-04 에스케이이노베이션 주식회사 안전관 간극이 일정한 나트륨 이차전지
KR20130105578A (ko) * 2013-08-30 2013-09-25 주식회사 엘지화학 절연물질이 코팅된 파우치형 2차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101036086B1 (ko) * 2008-12-05 2011-05-19 삼성에스디아이 주식회사 이차전지
KR20100071814A (ko) * 2008-12-19 2010-06-29 주식회사 엘지화학 이차전지용 파우치 및 파우치형 이차전지
KR101249919B1 (ko) * 2011-09-01 2013-04-03 신흥에스이씨주식회사 진동을 완충시키는 캡조립체를 포함하는 이차전지
KR20130097914A (ko) * 2012-02-27 2013-09-04 에스케이이노베이션 주식회사 안전관 간극이 일정한 나트륨 이차전지
KR20130105578A (ko) * 2013-08-30 2013-09-25 주식회사 엘지화학 절연물질이 코팅된 파우치형 2차전지

Similar Documents

Publication Publication Date Title
KR101426064B1 (ko) 금속공기 2차 전지용 강성 음극 전극부 및 음극 전극부 제조 방법
KR102646446B1 (ko) 전해질 소자, 및 전해질 소자를 포함하는 셀
US20100239893A1 (en) Sodium-sulfur battery with a substantially non-porous membrane and enhanced cathode utilization
CN102656733A (zh) 具有改善的阴极结构的锂电池单元及其制造方法
CN108281702A (zh) 一种复合固态电解质及其制备方法
WO2014133372A1 (ko) 리튬 황 전지용 양극 및 이를 포함하는 리튬 황 전지
TW201724619A (zh) 儲存電能的裝置
WO2010095230A1 (ja) 全固体電池
WO2018034490A1 (ko) 고체 산화물 연료전지
US3765945A (en) Electric cells and batteries
WO2015133663A1 (ko) 소듐 전지 및 이의 제조방법
US4070527A (en) Efficient sodium/sulfur battery
EP0750357A2 (en) Battery separator
CN102683619A (zh) 一种钠硫电池外壳
JP6305505B2 (ja) ナトリウム耐性の接合ガラス及びその使用
WO2012086995A2 (ko) 나트륨-유황 전지 및 그의 제조 방법
KR20140056898A (ko) 소듐 전지 및 이의 제조방법
KR101876102B1 (ko) 고온 팽창 가능한 내화물
CN110061273B (zh) 一种可弯折无机固体电解质膜及其构成的膜电极、钠燃料电池单体和金属钠再生单元
CN206727162U (zh) 一种多管式钠硫电池
CN106711464B (zh) 一种多管式钠硫电池
KR20120074996A (ko) 나트륨유황(NaS) 전지 및 이의 제조방법
US3575720A (en) Insulator means for lithium-chlorine high temperature battery
CN202282389U (zh) 一种钠硫电池外壳
EP4181287A2 (en) Movable cabinet and energy storage apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884304

Country of ref document: EP

Kind code of ref document: A1