WO2010095230A1 - 全固体電池 - Google Patents

全固体電池 Download PDF

Info

Publication number
WO2010095230A1
WO2010095230A1 PCT/JP2009/052853 JP2009052853W WO2010095230A1 WO 2010095230 A1 WO2010095230 A1 WO 2010095230A1 JP 2009052853 W JP2009052853 W JP 2009052853W WO 2010095230 A1 WO2010095230 A1 WO 2010095230A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
solid electrolyte
state battery
electrode assembly
positive electrode
Prior art date
Application number
PCT/JP2009/052853
Other languages
English (en)
French (fr)
Inventor
博司 陶山
浩二 川本
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011500393A priority Critical patent/JPWO2010095230A1/ja
Priority to PCT/JP2009/052853 priority patent/WO2010095230A1/ja
Priority to US13/146,514 priority patent/US8178228B2/en
Priority to CN2009801571568A priority patent/CN102326288A/zh
Publication of WO2010095230A1 publication Critical patent/WO2010095230A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an all solid state battery including a solid electrolyte.
  • Lithium ion secondary batteries are characterized by higher energy density than other secondary batteries and capable of operating at high voltages. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large-sized power such as for hybrid vehicles.
  • the lithium ion secondary battery includes a positive electrode layer and a negative electrode layer, and an electrolyte disposed therebetween, and the electrolyte is composed of a non-aqueous liquid or solid.
  • electrolytic solution a non-aqueous liquid
  • the electrolytic solution penetrates into the positive electrode layer. Therefore, the interface between the positive electrode active material constituting the positive electrode layer and the electrolyte is easily formed, and the performance is easily improved.
  • the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety.
  • the solid electrolyte is nonflammable, the above system can be simplified. Therefore, a lithium ion secondary battery in a form provided with a solid electrolyte that is nonflammable (hereinafter sometimes referred to as a “solid electrolyte layer”) has been proposed.
  • a solid electrolyte layer is disposed between a positive electrode layer and a negative electrode layer
  • the interface between the electrolyte, the positive electrode active material, and the negative electrode active material Becomes the interface between solid and solid (solid interface).
  • the solid-solid interface tends to increase the ionic conduction resistance compared to the solid-liquid interface. Therefore, in an all-solid-state battery, it is necessary to reduce ion conduction resistance (hereinafter referred to as “interface resistance”) at the solid-solid interface by applying pressure to the solid-solid interface.
  • Patent Document 1 discloses an all-solid battery including a wound electrode body in which a belt-like positive electrode and a negative electrode are wound via a solid electrolyte and a separator.
  • an object of the present invention is to provide an all-solid battery capable of improving output.
  • the present invention takes the following means. That is, The present invention comprises a wound solid electrolyte / electrode assembly, and a housing that houses the solid electrolyte / electrode assembly, and between the inner peripheral surface of the housing and the solid electrolyte / electrode assembly, An all-solid-state battery characterized by being filled with a pressurized fluid.
  • the “wound solid electrolyte / electrode assembly” refers to a structure in which a positive electrode layer and a negative electrode layer are wound through a solid electrolyte layer and a separator, for example, a solid electrolyte layer and a positive electrode. It is produced by winding a laminated body constituted by sequentially laminating a band-shaped bonded body in which layers are bonded, a separator, a band-shaped bonded body in which a solid electrolyte layer and a negative electrode layer are bonded, and a separator. A structure.
  • the fluid is preferably an insulating liquid.
  • a pressurized fluid is filled between the solid electrolyte / electrode assembly and the inner peripheral surface of the casing. Therefore, pressure can be applied from the fluid to the solid electrolyte / electrode assembly.
  • pressure can be uniformly applied to the contact interface between the solid electrolyte and the positive electrode active material and the contact interface between the solid electrolyte and the negative electrode active material, thus reducing the interface resistance. It becomes possible to do. Since the output can be improved by reducing the interface resistance, the present invention can provide an all-solid-state battery capable of improving the output.
  • the output can be easily improved.
  • FIG. 1 is a cross-sectional view showing an example of a configuration of an all-solid battery 10. It is sectional drawing which expands and shows a part of solid electrolyte and electrode assembly. It is a figure which decomposes
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of an all solid state battery 10 of the present invention.
  • the characteristic configuration of the all solid state battery 10 is mainly described, and the description of the known configuration is omitted as appropriate.
  • FIG. 2 is an enlarged cross-sectional view of a part of the solid electrolyte / electrode assembly electrode body provided in the all-solid battery 10.
  • FIG. 3 is an exploded view of the all solid state battery 10.
  • FIG. 3 shows a simplified form of the all solid state battery 10.
  • the all-solid battery 10 includes a wound solid electrolyte / electrode assembly 1, a cylindrical body 2 that houses the solid electrolyte / electrode assembly 1, and a cylindrical body 2. And a housing 3 to be accommodated. Further, a space between the outer peripheral surface of the cylindrical body 2 and the inner peripheral surface of the housing 3 is filled with a pressurized liquid 4 and the space inside the housing 3 covered with the lid member 5 is sealed. Has been. By setting it as such a form, the cylindrical body 2 is given a pressure from the liquid 4 with which the outer side was filled.
  • the pressure applied from the liquid 4 is applied to the solid electrolyte / electrode assembly 1 from the outside by using the cylindrical body 2 in a form capable of transmitting the pressure to the solid electrolyte / electrode assembly 1.
  • pressure can be applied to the solid-solid interface between the solid electrolyte and the positive electrode active material and the solid-solid interface between the solid electrolyte and the negative electrode active material. It becomes possible to reduce the interface resistance at the interface. Since the output can be improved by reducing the interface resistance, the present invention can provide the all-solid-state battery 10 capable of improving the output.
  • the all solid state battery 10 will be described for each configuration.
  • the solid electrolyte / electrode assembly 1 is a structure in which a positive electrode layer 1a and a negative electrode layer 1b are wound through a solid electrolyte layer 1c and a separator 1d, and has a so-called jelly roll type structure.
  • the solid electrolyte / electrode assembly 1 includes a strip-shaped joined body 1x in which the solid electrolyte layer 1c and the positive electrode layer 1a are joined, a separator 1d, a strip-shaped joined body 1y in which the solid electrolyte layer 1c and the negative electrode layer 1b are joined, and a separator. It is produced by winding a laminate in which 1d is laminated.
  • the positive electrode layer 1a has a structure in which the positive electrode current collector 1f is in contact with the positive electrode mixture layer 1e.
  • the positive electrode mixture layer 1e contains a positive electrode active material through which lithium ions enter and exit, a solid electrolyte, and a conductive material, and these are uniformly mixed through a binder.
  • a positive electrode active material contained in the positive electrode mixture layer 1e a known positive electrode active material that can be used in an all-solid battery can be used, and specific examples thereof include lithium cobaltate.
  • the solid electrolyte contained in the positive electrode mixture layer 1e can be a known solid electrolyte that can be used in an all-solid battery, and specific examples thereof include Li 7 P 3 S 11. .
  • the electrically conductive material contained in the positive mix layer 1e can use the well-known electrically conductive material which can be used for an all-solid-state battery, As a specific example, carbon materials represented by carbon black etc. are mentioned. Can do.
  • the binder contained in the positive electrode mixture layer 1e a known binder that can be used for the positive electrode layer of an all-solid battery can be used, and specific examples thereof include synthetic rubber such as fluorine rubber. And polymer materials such as polyvinylidene fluoride.
  • the well-known material which can be used for the positive electrode electrical power collector 1f of an all-solid-state battery can be used for the positive electrode electrical power collector 1f, For example, aluminum foil and nickel foil can be used as the positive electrode electrical power collector 1f.
  • the negative electrode layer 1b has a structure in which the negative electrode current collector 1h is in contact with the negative electrode mixture layer 1g.
  • the negative electrode mixture layer 1g contains a negative electrode active material through which lithium ions enter and exit, a solid electrolyte, and a conductive material, and these are uniformly mixed through a binder.
  • a known negative electrode active material that can be used for an all-solid battery can be used, and specific examples thereof include carbon materials such as graphite.
  • the solid electrolyte, conductive material, and binder contained in the negative electrode mixture layer 1g are the same as the solid electrolyte, conductive material, and binder usable in the positive electrode mixture layer 1e. be able to.
  • the negative electrode collector 1h can use a well-known material which can be used for the negative electrode collector of an all-solid-state battery, For example, copper foil and nickel foil can be used as the negative electrode collector 1h.
  • the solid electrolyte layer 1c contains a solid electrolyte that has lithium ion conductivity and does not have conductivity.
  • a known solid electrolyte that can be used in an all-solid battery can be used, and specific examples thereof include Li 7 P 3 S 11 .
  • the separator 1d is a member that separates the positive electrode layer 1a and the negative electrode layer 1b, and is disposed for the purpose of preventing a short circuit or the like associated with contact between the positive electrode active material and the negative electrode active material.
  • the separator 1d can be made of a known material that can be used for an all-solid battery. Examples of the form of the separator 1d include a porous film made of resin such as polytetrafluoroethylene (PTFE) and polypropylene (PP), a porous film made of ceramic, and the like.
  • the cylindrical body 2 has a structure that is used to prevent the liquid 4 from penetrating the electrolyte / electrode interface so that the pressure is not properly applied to the solid / solid interface of the electrolyte / electrode interface when a restraining pressure is applied from the outside. Is the body.
  • the form of the cylindrical body 2 in the all solid state battery 10 is not particularly limited as long as the pressure applied from the liquid 4 can be transmitted to the solid electrolyte / electrode assembly 1.
  • Specific examples of the constituent material of the cylindrical body 2 include insulators such as polymers (PP, PE, etc.) and polymer-coated aluminum foil.
  • the thickness of the cylindrical body 2 can be 0.05 micrometer or more and 3 mm or less, for example.
  • the housing 3 is a member that accommodates the solid electrolyte / electrode assembly 1, the cylindrical body 2, and the pressurized liquid 4, and the inner space is sealed by covering the lid 5.
  • the housing 3 is made of a material that can withstand the pressure of the liquid 4 sealed in a pressurized state, does not react with the liquid 4, and can withstand the environment when the all-solid-state battery 10 is used. If it is, the form will not be specifically limited. Specific examples of the constituent material of the housing 3 include Ni steel.
  • the liquid 4 is filled in the casing 3 in a pressurized state, and by applying pressure to the solid electrolyte / electrode assembly 1, the solid-solid interface between the solid electrolyte and the positive electrode active material, and the solid electrolyte and negative electrode Responsible for reducing the interface resistance at the solid-solid interface with the active material.
  • the liquid 4 is not particularly limited as long as it can exhibit such a function. However, there is a gap in the cylindrical body 2, and even if the liquid 4 enters the electrode, problems such as a short circuit and leakage From the viewpoint of preventing the occurrence of this, the insulating liquid 4 is preferable. Further, from the viewpoint of ensuring safety when using the all-solid battery 10, the non-flammable liquid 4 is preferable.
  • the non-volatile liquid 4 is preferable from the viewpoint of making it possible to apply pressure to the solid electrolyte / electrode assembly 1 over a long period of time.
  • a liquid 4 include mineral oil, alkylbenzene, polybutene, alkylnaphthalene, alkyldiphenylalkane, insulating oil mainly composed of silicone oil, and the like.
  • the method of filling the pressurized liquid 4 into the housing 3 is not particularly limited, and can be filled by a known method.
  • the cylindrical body 2 containing the solid electrolyte / electrode assembly 1 is accommodated in the housing 3 and then pressurized by filling with an inert gas such as nitrogen gas.
  • the all-solid-state battery 10 can be manufactured by filling the casing 3 with the insulating oil and then sealing the casing 3 with the lid 5.
  • the pressure of the liquid 4 accommodated in the sealed housing 3 is particularly limited as long as the pressure that can reduce the interface resistance can be applied to the solid electrolyte / electrode assembly 1. It is not something.
  • the pressure of the liquid 4 can be 0.2 MPa or more and 100 MPa or less, for example.
  • the lid 5 seals the inside of the housing 3 in which the solid electrolyte / electrode assembly 1, the cylindrical body 2, and the liquid 4 are accommodated by closing the opening of the housing 3.
  • the lid 5 is made of a material that can withstand the pressure of the liquid 4 that is sealed in a pressurized state, does not react with the liquid 4, and can withstand the environment during use of the all-solid-state battery 10.
  • the form is not particularly limited.
  • Specific examples of the constituent material of the lid 5 include Ni steel.
  • the all-solid-state battery 10 of this invention although the form with which the cylindrical body 2 is provided was illustrated, the all-solid-state battery of this invention is not limited to the said form.
  • the cylindrical body 2 may not be provided.
  • the form in which the pressurized liquid is filled between the solid electrolyte / electrode assembly 1 and the inner peripheral surface of the housing 3 is illustrated.
  • the all solid state battery is not limited to this form.
  • a pressurized jelly-like fluid, a pressurized gas, or the like may be filled between the solid electrolyte / electrode assembly and the inner peripheral surface of the housing.
  • pressure is applied between the solid electrolyte / electrode assembly and the inner peripheral surface of the housing. It is preferable that the liquid is filled.
  • the whole structure of this invention was illustrated.
  • the solid battery is not limited to this form.
  • the all-solid-state battery of the present invention can be configured to include a negative electrode layer made of, for example, In foil.
  • the all solid state battery 10 of the present invention a mode in which a positive electrode active material and a negative electrode active material capable of occluding and releasing lithium ions are illustrated, but the all solid state battery of the present invention is limited to this mode. It is not something.
  • the all solid state battery of the present invention can be applied to, for example, an all solid state battery in which sodium ions move.
  • the all-solid-state battery of the present invention can be used as a power source for electric vehicles and information equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

 出力を向上させることが可能な全固体電池を提供する。捲回された固体電解質・電極接合体と、該固体電解質・電極接合体を収容する筐体とを備え、筐体の内周面と固体電解質・電極接合体との間に、加圧された流体が充填されている、全固体電池とする。

Description

全固体電池
 本発明は、固体電解質を備えた全固体電池に関する。
 リチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、ハイブリッド自動車用等、大型の動力用としての需要も高まっている。
 リチウムイオン二次電池には、正極層及び負極層と、これらの間に配置される電解質とが備えられ、電解質は、非水系の液体又は固体によって構成される。電解質に非水系の液体(以下において「電解液」という。)が用いられる場合には、電解液が正極層の内部へと浸透する。そのため、正極層を構成する正極活物質と電解質との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、固体の電解質は不燃性であるため、上記システムを簡素化できる。それゆえ、不燃性である固体の電解質(以下において「固体電解質層」ということがある。)が備えられる形態のリチウムイオン二次電池が提案されている。
 固体電解質層が正極層と負極層との間に配設されるリチウムイオン二次電池(以下において「全固体電池」ということがある。)では、電解質と正極活物質及び負極活物質との界面が、固体と固体との界面(固固界面)になる。固固界面は、固液界面と比較して、イオン伝導抵抗が増大しやすい。そのため、全固体電池では、固固界面へ圧力を付与することにより、固固界面におけるイオン伝導抵抗(以下において、「界面抵抗」という。)を低減することが必要とされる。
 このような全固体電池に関する技術として、例えば特許文献1には、帯状の正極と負極とが固体電解質及びセパレータを介して巻回された巻回電極体を備える全固体電池が開示されている。
特開2002-280073号公報
 特許文献1に開示されている技術のように、巻回された巻回電極体が備えられる構成とすれば、高いエネルギー密度を得ることも可能になると考えられる。しかしながら、特許文献1に開示されている技術のように、電極体を単に巻回しても、固固界面へ所定の締結圧力を付与しなければ、界面抵抗を低減することが困難であり、出力を向上させ難い、という問題があった。
 そこで本発明は、出力を向上させることが可能な全固体電池を提供することを課題とする。
 上記課題を解決するために、本発明は以下の手段をとる。すなわち、
  本発明は、捲回された固体電解質・電極接合体と、固体電解質・電極接合体を収容する筐体と、を備え、筐体の内周面と固体電解質・電極接合体との間に、加圧された流体が充填されていることを特徴とする、全固体電池である。
 ここに、「捲回された固体電解質・電極接合体」とは、正極層と負極層とが、固体電解質層及びセパレータを介して捲回された構造体をいい、例えば、固体電解質層及び正極層が接合した帯状の接合体と、セパレーターと、固体電解質層及び負極層が接合した帯状の接合体と、セパレータとを順に積層して構成される積層体を、捲回することにより作製される構造体をいう。
 また、上記本発明において、流体が絶縁性の液体であることが好ましい。
 本発明の全固体電池は、固体電解質・電極接合体と筐体の内周面との間に、加圧された流体が充填されている。そのため、流体から固体電解質・電極接合体へ圧力を付与することができる。このようにして圧力が付与されると、固体電解質と正極活物質との接触界面、及び、固体電解質と負極活物質との接触界面へ、圧力を満遍なく付与することができるので、界面抵抗を低減することが可能になる。界面抵抗を低減することにより出力を向上させることが可能になるので、本発明によれば、出力を向上させることが可能な、全固体電池を提供することができる。
 また、本発明において、固体電解質・電極接合体と筐体の内周面との間に充填される流体が絶縁性の液体であることにより、出力を向上させることが容易になる。
全固体電池10の形態例を示す断面図である。 固体電解質・電極接合体の一部を拡大して示す断面図である。 全固体電池10を分解して示す図である。
符号の説明
 1…固体電解質・電極接合体
 1a…正極層
 1b…負極層
 1c…固体電解質層
 1d…セパレータ
 1e…正極合剤層
 1f…正極集電体
 1g…負極合剤層
 1h…負極集電体
 1x…接合体
 1y…接合体
 2…筒状体
 3…筐体
 4…液体
 5…蓋
 10…全固体電池
 以下、図面を参照しつつ、本発明について説明する。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されるものではない。
 図1は、本発明の全固体電池10の形態例を簡略化して示す断面図である。図1では、全固体電池10の特徴的な構成を中心に記載し、公知の構成の記載は適宜省略している。図2は、全固体電池10に備えられる固体電解質・電極接合体電極体の一部を拡大して示す断面図である。図3は、全固体電池10を分解して示す図である。図3では、全固体電池10の形態を簡略化して示している。
 図1~図3に示すように、全固体電池10は、捲回された固体電解質・電極接合体1と、固体電解質・電極接合体1を収容する筒状体2と、筒状体2を収容する筐体3と、を有している。さらに、筒状体2の外周面と筐体3の内周面との間には、加圧された液体4が充填され、蓋材5が被せられた筐体3の内側の空間は、密閉されている。このような形態とすることにより、筒状体2は、その外側に充填された液体4から圧力を付与される。そのため、液体4から付与された圧力を固体電解質・電極接合体1へと伝達可能な形態の筒状体2を用いることにより、固体電解質・電極接合体1へ、その外側から圧力を付与することができる。このようにして圧力が付与されると、固体電解質と正極活物質との固固界面、及び、固体電解質と負極活物質との固固界面へ圧力を付与することができるので、これらの固固界面における界面抵抗を低減することが可能になる。界面抵抗を低減することにより、出力を向上することが可能になるので、本発明によれば、出力を向上させることが可能な、全固体電池10を提供することができる。以下、全固体電池10について、構成ごとに説明する。
 <固体電解質・電極接合体1>
  固体電解質・電極接合体1は、正極層1aと負極層1bとが、固体電解質層1c及びセパレータ1dを介して捲回された構造体であり、いわゆるジェリーロール型の構造を有している。固体電解質・電極接合体1は、固体電解質層1c及び正極層1aが接合した帯状の接合体1xと、セパレータ1dと、固体電解質層1c及び負極層1bが接合した帯状の接合体1yと、セパレータ1dとを積層した積層体を、捲回することにより作製される。
 正極層1aは、正極合剤層1eに正極集電体1fが接触した構造を有している。正極合剤層1eは、リチウムイオンが出入りする正極活物質、固体電解質、及び、導電材を含有し、結着材を介してこれらが均一に混合されている。正極合剤層1eに含有される正極活物質は、全固体電池に使用可能な公知の正極活物質を用いることができ、その具体例としては、コバルト酸リチウム等を挙げることができる。また、正極合剤層1eに含有される固体電解質は、全固体電池に使用可能な公知の固体電解質を用いることができ、その具体例としては、Li11等を挙げることができる。また、正極合剤層1eに含有される導電材は、全固体電池に使用可能な公知の導電材を用いることができ、その具体例としては、カーボンブラックに代表される炭素材料等を挙げることができる。また、正極合剤層1eに含有される結着材は、全固体電池の正極層に使用可能な公知の結着材を用いることができ、その具体例としては、フッ素系ゴム等の合成ゴムや、ポリビニリデンフルオロライド等の高分子材料等を挙げることができる。また、正極集電体1fは、全固体電池の正極集電体に使用可能な公知の材料を用いることができ、例えば、アルミニウム箔やニッケル箔を正極集電体1fとすることができる。
 負極層1bは、負極合剤層1gに負極集電体1hが接触した構造を有している。負極合剤層1gは、リチウムイオンが出入りする負極活物質、固体電解質、及び、導電材を含有し、結着材を介してこれらが均一に混合されている。負極合剤層1gに含有される負極活物質は、全固体電池に使用可能な公知の負極活物質を用いることができ、その具体例としては、黒鉛等の炭素材料等を挙げることができる。また、負極合剤層1gに含有される固体電解質、導電材、及び、結着材は、正極合剤層1eに使用可能な固体電解質、導電材、及び、結着材と同様のものを用いることができる。また、負極集電体1hは、全固体電池の負極集電体に使用可能な公知の材料を用いることができ、例えば、銅箔やニッケル箔を負極集電体1hとすることができる。
 固体電解質層1cは、リチウムイオン伝導性を有し、且つ、導電性を有しない固体電解質を含有している。固体電解質層1cに含有される固体電解質は、全固体電池に使用可能な公知の固体電解質を用いることができ、その具体例としては、Li11等を挙げることができる。
 セパレータ1dは、正極層1aと負極層1bとを隔てる部材であり、正極活物質と負極活物質との接触に伴う短絡等を防止する目的で配置されている。セパレータ1dは、全固体電池に使用可能な公知の材料によって構成することができる。セパレータ1dの形態例としては、ポリテトラフルオロエチレン(PTFE)やポリプロピレン(PP)等の樹脂製の多孔質膜や、セラミック製の多孔質膜等を挙げることができる。
 <筒状体2>
  筒状体2は、液体4が電解質/電極界面に浸透することで、外部から拘束圧をかけた際に圧力が電解質/電極界面の固固界面にきちんとかからなくなることを防ぐために用いられる構造体である。全固体電池10における筒状体2は、液体4から付与される圧力を固体電解質・電極接合体1へと伝達可能であれば、その形態は特に限定されるものではない。筒状体2の構成材料の具体例としては、ポリマー(PP、PE等)、ポリマーコートされたアルミニウム箔等の絶縁物を挙げることができる。また、筒状体2の厚さは、例えば、0.05μm以上3mm以下とすることができる。
 <筐体3>
  筐体3は、固体電解質・電極接合体1と、筒状体2と、加圧された液体4を収容する部材であり、蓋5が被せられることにより、内側の空間が密閉される。筐体3は、加圧された状態で密閉される液体4の圧力に耐えることができ、液体4と反応せず、且つ、全固体電池10の使用時の環境に耐え得る材料によって構成されていれば、その形態は特に限定されるものではない。筐体3の構成材料の具体例としては、Ni鋼等を挙げることができる。
 <液体4>
  液体4は、加圧された状態で筐体3に充填され、固体電解質・電極接合体1へ圧力を付与することにより、固体電解質と正極活物質との固固界面、及び、固体電解質と負極活物質との固固界面における界面抵抗を低減する機能を担う。このような機能を発揮可能な液体であれば、液体4は特に限定されるものではないが、筒状体2に隙間があり、液体4が電極内に浸入しても短絡、漏電等の問題が生じないようにするという観点から、絶縁性の液体4であることが好ましい。また、全固体電池10の使用時における安全性を担保する等の観点から、不燃性の液体4であることが好ましい。また、長期間に亘って、固体電解質・電極接合体1へ圧力を付与可能にする等の観点から、不揮発性の液体4であることが好ましい。このような液体4の具体例としては、鉱油、アルキルベンゼン、ポリブテン、アルキルナフタレン、アルキルジフェニルアルカン、シリコーン油等を主成分とする絶縁油等を挙げることができる。また、全固体電池10において、加圧された液体4を筐体3へ充填する方法は特に限定されるものではなく、公知の方法で充填することができる。例えば、液体4として上記絶縁油を用いる場合、固体電解質・電極接合体1を収容した筒状体2を筐体3へ収容した後、窒素ガス等の不活性ガスを充填することにより加圧された上記絶縁油を筐体3へと充填し、その後、蓋5を用いて筐体3を密閉する等の過程を経ることにより、全固体電池10を製造することができる。
 全固体電池10において、密閉された筐体3に収容されている液体4の圧力は、界面抵抗を低減可能な圧力を固体電解質・電極接合体1へと付与可能な圧力であれば特に限定されるものではない。液体4の圧力は、例えば、0.2MPa以上100MPa以下とすることができる。
 <蓋5>
  蓋5は、筐体3の開口部を塞ぐことにより、固体電解質・電極接合体1、筒状体2、及び、液体4が収容された筐体3の内側を密閉する。蓋5は、加圧された状態で密閉される液体4の圧力に耐えることができ、液体4と反応せず、且つ、全固体電池10の使用時の環境に耐え得る材料によって構成されていれば、その形態は特に限定されるものではない。蓋5の構成材料の具体例としては、Ni鋼等を挙げることができる。
 本発明の全固体電池10に関する上記説明では、筒状体2が備えられる形態を例示したが、本発明の全固体電池は当該形態に限定されるものではない。絶縁性の液体4が用いられる場合には、筒状体2が備えられない形態とすることも可能である。
 また、本発明の全固体電池10に関する上記説明では、固体電解質・電極接合体1と筐体3の内周面との間に加圧された液体が充填される形態を例示したが、本発明の全固体電池は当該形態に限定されるものではない。本発明の全固体電池では、固体電解質・電極接合体と筐体の内周面との間に、加圧されたゼリー状の流体や、加圧された気体等が充填されていても良い。ただし、固体電解質・電極接合体の外側から、容易に、圧力を満遍なく付与可能な形態にする等の観点からは、固体電解質・電極接合体と筐体の内周面との間に、加圧された液体が充填されることがこのましい。
 また、本発明の全固体電池10に関する上記説明では、正極合剤層1eを有する正極層1a、及び、負極合剤層1gを有する負極層1bが備えられる形態を例示したが、本発明の全固体電池は当該形態に限定されるものではない。本発明の全固体電池は、例えば、In箔によって構成される負極層が備えられる形態とすることも可能である。
 また、本発明の全固体電池10に関する上記説明では、リチウムイオンを吸蔵・放出可能な正極活物質及び負極活物質が備えられる形態を例示したが、本発明の全固体電池は当該形態に限定されるものではない。本発明の全固体電池は、例えば、ナトリウムイオンが移動する形態の全固体電池にも適用することが可能である。
 本発明の全固体電池は、電気自動車や情報機器等の動力源として利用することができる。

Claims (2)

  1. 捲回された電解質・電極接合体と、前記電解質・電極接合体を収容する筐体と、を備え、
     前記筐体の内周面と前記電解質・電極接合体との間に、加圧された流体が充填されていることを特徴とする、全固体電池。
  2. 前記流体が絶縁性の液体であることを特徴とする、請求の範囲第1項に記載の全固体電池。
PCT/JP2009/052853 2009-02-19 2009-02-19 全固体電池 WO2010095230A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011500393A JPWO2010095230A1 (ja) 2009-02-19 2009-02-19 全固体電池
PCT/JP2009/052853 WO2010095230A1 (ja) 2009-02-19 2009-02-19 全固体電池
US13/146,514 US8178228B2 (en) 2009-02-19 2009-02-19 Solid-state battery
CN2009801571568A CN102326288A (zh) 2009-02-19 2009-02-19 全固体电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/052853 WO2010095230A1 (ja) 2009-02-19 2009-02-19 全固体電池

Publications (1)

Publication Number Publication Date
WO2010095230A1 true WO2010095230A1 (ja) 2010-08-26

Family

ID=42633531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052853 WO2010095230A1 (ja) 2009-02-19 2009-02-19 全固体電池

Country Status (4)

Country Link
US (1) US8178228B2 (ja)
JP (1) JPWO2010095230A1 (ja)
CN (1) CN102326288A (ja)
WO (1) WO2010095230A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650228A (zh) * 2011-07-13 2014-03-19 丰田自动车株式会社 电池模块
KR20180080721A (ko) * 2013-08-28 2018-07-13 로베르트 보쉬 게엠베하 바이폴라 고체 상태 배터리 절연 패키지

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056583A1 (ja) * 2013-10-15 2015-04-23 トヨタ自動車株式会社 二次電池の製造方法
JP5928441B2 (ja) * 2013-12-19 2016-06-01 トヨタ自動車株式会社 全固体電池の製造方法
US20170047586A1 (en) 2014-04-16 2017-02-16 Basf Se Electrochemical cells exposed to hydrostatic pressure
US10431849B2 (en) * 2017-04-21 2019-10-01 GM Global Technology Operations LLC High energy density alkali metal batteries incorporating solid electrolytes
ES2745350B2 (es) * 2018-08-28 2021-11-16 Torres Martinez M Bateria electroquimica presurizada y proceso de fabricacion de la misma

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935751A (ja) * 1995-07-14 1997-02-07 Toshiba Battery Co Ltd ポリマー電解質二次電池
JP2002280073A (ja) * 2001-03-19 2002-09-27 Sony Corp 電 池
JP2006310295A (ja) * 2005-04-27 2006-11-09 Samsung Sdi Co Ltd リチウム二次電池{Lithiumsecondarybattery}
JP2006310033A (ja) * 2005-04-27 2006-11-09 Sumitomo Electric Ind Ltd 蓄電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952464A (en) * 1989-01-19 1990-08-28 Hughes Aircraft Company Sodium sulfur cell for weightless environments
JP3184071B2 (ja) * 1995-09-06 2001-07-09 キヤノン株式会社 リチウム二次電池
JPH10214638A (ja) * 1997-01-30 1998-08-11 Hitachi Ltd リチウム二次電池
JP3533117B2 (ja) * 1999-07-23 2004-05-31 日本電気株式会社 フィルム外装電池の製造方法
US6558438B1 (en) * 1999-07-23 2003-05-06 Nec Corporation Method for producing a pressurized package for a film packed battery
JP2001060465A (ja) * 1999-08-23 2001-03-06 Japan Storage Battery Co Ltd 電 池
JP4965012B2 (ja) 1999-12-15 2012-07-04 トヨタ自動車株式会社 車両用電池パック
JP2002245998A (ja) * 2001-02-13 2002-08-30 Toshiba Corp 電池パック及び電池
JP5456954B2 (ja) * 2006-11-30 2014-04-02 日産自動車株式会社 双極型二次電池のモジュール構造
CN101369674A (zh) * 2007-08-13 2009-02-18 黄穗阳 安全高能折壳锂离子电池及其生产工艺
JP2010034002A (ja) * 2008-07-31 2010-02-12 Idemitsu Kosan Co Ltd リチウム電池及びリチウム電池搭載装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935751A (ja) * 1995-07-14 1997-02-07 Toshiba Battery Co Ltd ポリマー電解質二次電池
JP2002280073A (ja) * 2001-03-19 2002-09-27 Sony Corp 電 池
JP2006310295A (ja) * 2005-04-27 2006-11-09 Samsung Sdi Co Ltd リチウム二次電池{Lithiumsecondarybattery}
JP2006310033A (ja) * 2005-04-27 2006-11-09 Sumitomo Electric Ind Ltd 蓄電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650228A (zh) * 2011-07-13 2014-03-19 丰田自动车株式会社 电池模块
KR20180080721A (ko) * 2013-08-28 2018-07-13 로베르트 보쉬 게엠베하 바이폴라 고체 상태 배터리 절연 패키지
KR101973360B1 (ko) 2013-08-28 2019-04-29 로베르트 보쉬 게엠베하 바이폴라 고체 상태 배터리 절연 패키지

Also Published As

Publication number Publication date
US8178228B2 (en) 2012-05-15
US20110287292A1 (en) 2011-11-24
JPWO2010095230A1 (ja) 2012-08-16
CN102326288A (zh) 2012-01-18

Similar Documents

Publication Publication Date Title
KR101914567B1 (ko) 이차 전지
JP4470124B2 (ja) 電池
WO2010095230A1 (ja) 全固体電池
US9853274B2 (en) Solid battery
KR100876268B1 (ko) 리튬 이차전지
US8580438B2 (en) Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold
US20170054139A1 (en) Galvanic element and method for the production thereof
KR20130126365A (ko) 리튬 이차전지의 제조방법
KR20160043724A (ko) 실링층을 포함하는 원통형 이차 전지
JP5327020B2 (ja) 全固体電池
JP2016081681A (ja) リチウムイオン二次電池
EP1780824B1 (en) Lithium secondary battery
CN111418086A (zh) 固态隔膜的阴极电解质管理
KR20140061146A (ko) 파우치형 이차 전지 및 그 제조 방법
JP6430760B2 (ja) 全固体電池及びその製造方法
KR20180127721A (ko) 고효율성 밀봉을 위한 개스킷 와셔를 포함하는 원통형 전지
JP2006236775A (ja) 二次電池
KR20100005792A (ko) 이차전지 및 이의 제조방법
JP2002222666A (ja) リチウム二次電池
KR20070025686A (ko) 리튬 이차전지
JP2005190953A (ja) リチウム二次電池
US10573924B2 (en) Electrochemical cell
KR20120020893A (ko) 리튬 이온 커패시터
US11824157B2 (en) Electrical storage device and method for making the same
CN114026727B (zh) 全固态锂二次电池以及全固态锂二次电池的制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157156.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840337

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011500393

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13146514

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840337

Country of ref document: EP

Kind code of ref document: A1