WO2012086995A2 - 나트륨-유황 전지 및 그의 제조 방법 - Google Patents
나트륨-유황 전지 및 그의 제조 방법 Download PDFInfo
- Publication number
- WO2012086995A2 WO2012086995A2 PCT/KR2011/009839 KR2011009839W WO2012086995A2 WO 2012086995 A2 WO2012086995 A2 WO 2012086995A2 KR 2011009839 W KR2011009839 W KR 2011009839W WO 2012086995 A2 WO2012086995 A2 WO 2012086995A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- solid electrolyte
- insulating ring
- nas battery
- electrolyte tube
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
- H01M10/3909—Sodium-sulfur cells
- H01M10/3918—Sodium-sulfur cells characterised by the electrolyte
- H01M10/3936—Electrolyte with a shape other than plane or cylindrical
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/38—Construction or manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a large capacity battery and a method for manufacturing the same, and more particularly, to a NaS battery and a method for manufacturing the same, in which the capacity of the NaS battery (or sodium-sulfur battery) can be modified into a flat or square tube shape to increase its capacity. It is about.
- the NaS battery refers to a battery using sodium (Na) as a negative electrode, sulfur (S) as a positive electrode, and a beta-aluminum solid electrode (BASE), which is a solid electrolyte having sodium ion conductivity.
- Na sodium
- S sulfur
- BASE beta-aluminum solid electrode
- NaS battery is the largest mass storage device with the highest power storage capacity among the secondary batteries that have been used so far, and has the advantage of using 89% to 92% of high efficiency charge / discharge performance, long lifespan, and resource-rich active materials without self discharge. This makes it a popular mass storage device for renewable energy.
- Such NaS cells are generally designed to be cylindrical.
- the reason why the NaS battery is manufactured in a cylindrical shape is that it can be implemented at an equidistant distance, the mechanical strength is strong, and the manufacturing is easy.
- the size of the battery must be increased. That is, either the diameter or height of the NaS cell must be increased.
- the conventional cylindrical structure has a limit in increasing the capacity of the NaS battery.
- the NaS battery module is manufactured by arranging a plurality of NaS batteries, since the conventional NaS battery has a cylindrical structure, there is a problem in that the size of the overall NaS battery module increases due to the generation of unnecessary space between the NaS batteries. . As a result, as the number of NaS batteries used in the NaS battery module increases, the size of the NaS battery module increases.
- an object of the present invention is to provide a NaS battery and a method of manufacturing the same, which can increase its capacity without deteriorating performance compared to a cylindrical NaS battery.
- Another object of the present invention is to provide a NaS battery and a method for manufacturing the same, which can increase the capacity by improving the structure of the NaS battery.
- Still another object of the present invention is to provide a NaS battery and a method of manufacturing the same, which can simplify the manufacturing process of the NaS battery.
- Still another object of the present invention is to provide a NaS battery and a method of manufacturing the same, which can reduce the size of a NaS battery module manufactured using a NaS battery.
- the present invention provides a NaS battery and a manufacturing method thereof in which the capacity of the NaS battery is modified into a flat or square tube to increase its capacity.
- the present invention provides a NaS battery comprising a tubular sodium electrode, a solid electrolyte tube, and a sulfur electrode.
- the solid electrolyte tube surrounds the outer portion of the sodium electrode and has a shape corresponding to the sodium electrode.
- the sulfur electrode surrounds an outer portion of the solid electrolyte tube.
- the sodium electrode, the solid electrolyte tube, and the sulfur electrode have a flat or square tube shape.
- the NaS battery according to the present invention may further include a case covering an outer portion of the sulfur electrode and having a shape corresponding to the sulfur electrode.
- the NaS battery according to the present invention may further include an insulating ring and a positive electrode bracket.
- the insulating ring is bonded to the inner side of the outer surface of the upper end of the solid electrolyte tube.
- the anode bracket is interposed between the upper end of the case and the insulating ring and bonded to the case and the insulating ring, and is spaced apart from the solid electrolyte tube.
- the positive electrode bracket may include a first positive electrode bracket and a second positive electrode bracket.
- the first anode bracket is bonded to an upper end of the case and an inner side surface adjacent to the upper end of the case, and bonded to an outer side surface of the insulation ring and a lower surface neighboring the outer surface of the insulation ring.
- the second anode bracket is formed integrally or independently of the first anode bracket and extends below the insulating ring, and an upper end portion of the sulfur electrode is fitted to the lower portion of the second anode bracket.
- the present invention also provides a preparation step of preparing a solid electrolyte tube in the form of a flat or square tube, a sulfur electrode forming step of forming a sulfur electrode surrounding the solid electrolyte tube, and the shape of the solid electrolyte tube It provides a method for producing a NaS battery comprising a sodium electrode insertion step of inserting a tubular sodium electrode having a form into the solid electrolyte tube.
- the preparing step includes the steps of: bonding an insulating ring to the outer surface of the upper end of the solid electrolyte tube, and an anode bracket to the outer surface of the insulating ring and the outside of the insulating ring It may comprise the step of bonding to the lower surface of the insulating ring adjacent to the side.
- the upper part of the sulfur electrode is inserted into a portion protruding downward from the lower surface of the insulating ring of the positive electrode bracket to the outside of the solid electrolyte tube
- the sulfur electrode may be formed to cover.
- the solid electrolyte tube having the sulfur electrode formed therein is inserted into a case, which is performed between the sulfur electrode forming step and the sodium electrode insertion step, and the top of the case and the case of The method may further include bonding the anode bracket to an inner side surface adjacent to an upper end.
- the present invention also provides a NaS battery comprising a tubular sodium electrode, a solid electrolyte tube, a sulfur electrode, a case, an insulating ring, and an anode bracket.
- the solid electrolyte tube surrounds the outer portion of the sodium electrode and has a shape corresponding to the sodium electrode.
- the sulfur electrode surrounds an outer portion of the solid electrolyte tube.
- the case covers an outer portion of the sulfur electrode and has a shape corresponding to the sulfur electrode.
- the insulating ring is bonded to the inner side of the outer surface of the upper end of the solid electrolyte tube.
- the anode bracket is interposed between the upper end of the case and the insulating ring and bonded to the case and the insulating ring, and is spaced apart from the solid electrolyte tube.
- the positive electrode bracket may include a first positive electrode bracket and a second positive electrode bracket.
- the first anode bracket is bonded to an upper end of the case and an inner side surface adjacent to the upper end of the case, and attached to an outer side surface of the insulating ring and a lower side adjacent to the outer side surface of the insulating ring.
- the second anode bracket is connected to the first anode bracket and extends below the insulating ring, and an upper end portion of the sulfur electrode is fitted to a lower portion thereof.
- an end portion of the first positive electrode bracket protruding to the lower surface of the insulating ring is spaced apart from the outer surface of the solid electrolyte tube, and the upper portion of the first positive electrode bracket May protrude above the insulating ring.
- the NaS battery since the NaS battery has a flat or square tube structure, it is more efficient than the cylindrical structure and at the same time stable operation is possible compared to the square structure, compared to the conventional cylindrical structure surface area per volume without deterioration in performance
- the dose can be increased through an increase.
- the sulfur electrode is inserted into the lower portion, the insulating ring is bonded to the middle portion, and the upper portion is integrally formed with the anode brackets to be bonded to the upper end of the case, thus reducing the number of parts of the NaS battery to manufacture the NaS battery. You can get the unit price.
- the NaS battery according to the present invention has a flat or square tubular structure, so that the space between the NaS batteries can be reduced as compared with the conventional cylindrical structure. There is also an advantage that can reduce the size of the NaS battery module.
- FIG. 1 is a perspective view showing a flat NaS battery according to a first embodiment of the present invention.
- FIG. 2 is a partial cutaway perspective view of FIG. 1.
- FIG. 3 is a cross-sectional view of FIG. 1.
- 4 to 10 are cross-sectional views showing the steps according to the manufacturing method of the flat NaS battery of FIG.
- FIG. 11 is a perspective view showing a square tube NaS battery according to a second embodiment of the present invention.
- FIG. 12 is a partial cutaway perspective view of FIG. 11.
- FIG. 1 is a perspective view showing a flat NaS battery according to a first embodiment of the present invention.
- 2 is a partial cutaway perspective view of FIG. 1.
- 3 is a cross-sectional view of FIG. 1.
- the NaS battery 100 according to the first embodiment includes a sodium electrode 10, a solid electrolyte tube 20, and a sulfur electrode 30, and the other negative electrode terminal 16.
- the case 40 may further include an insulating ring 50, an anode bracket 60, an anode terminal 70, an anode bracket 80, and an anode cover 90.
- the NaS battery 100 according to the first embodiment has a flat tubular structure rather than a cylindrical structure.
- the flat pipe refers to a tube of a shape including two horizontal surfaces on opposite sides and a pair of curved surfaces connecting both horizontal surfaces.
- the parts constituting the NaS battery 100 according to the first embodiment have a flat tubular shape suitable for the flat tubular structure.
- the capacity of the NaS battery 100 can be increased by increasing the surface area per volume as compared with a conventional cylindrical NaS battery. That is, the cylinder has a geometric structure with the smallest surface area per volume, while the flat tube has a larger surface area per volume than the cylinder. Therefore, the capacity of the NaS cell 100 can be increased by manufacturing the flat NaS cell 100 having a larger surface area per volume.
- the flat tubular structure is capable of stable operation compared to the square tubular structure, the NaS battery 100 according to the first embodiment can minimize the performance degradation compared to the cylindrical NaS battery. Therefore, the NaS battery 100 according to the first embodiment can increase the capacity while minimizing performance degradation compared to the cylindrical NaS battery.
- the sodium electrode 10 may be designed in a double tube structure in which the safety tube 14 and the sodium container 12 are positioned inside the safety tube 14 to secure the safety of the NaS battery 100.
- the safety tube 14 and the sodium container 12 may be made of a material such as stainless steel, aluminum, aluminum alloy or SPCC for uniform reaction and safety in case of electrolyte breakdown.
- the sodium container 12 is a tubular container containing sodium, and the sodium discharge hole 13 is formed at the bottom thereof.
- the gas chamber 15 which adjusts the discharge pressure of sodium is provided.
- the cathode terminal 16 may be installed to protrude upward from the upper portion of the gas chamber 15.
- a gas discharge hole 17 is formed below the gas chamber 15.
- an inert gas is used, for example, argon gas, a mixed gas of an inert gas containing argon gas may be used.
- Safety tube 14 is a tube that can hold the sodium container 12, the top is open so that the sodium container 12 can be inserted.
- the safety tube 14 surrounds the sodium container 12 and functions as a safety device in case of breakage of the sodium container 12 by electric and mechanical shock.
- the safety tube 14 functions to maintain a constant reaction area of sodium by capillary force on the surface of the solid electrolyte tube 20.
- the sodium discharge hole 13 and the gas discharge hole 17 are blocked in the manufacturing step of the NaS battery 100, and is opened when the NaS battery 100 operates.
- the sodium container 12 and the safety tube 14 have a flat tubular structure.
- the solid electrolyte tube 20 surrounds the outer portion of the sodium electrode 10 and has a shape corresponding to the sodium electrode 10, that is, a flat tubular structure.
- the solid electrolyte tube 20 performs an electrolyte function of conducting sodium ions of the NaS battery 100 and a separator function of electrically insulating the negative electrode and the positive electrode.
- the material of the solid electrolyte tube 20 may be used beta-alumina ( ⁇ -alumina), beta "-alumina ( ⁇ " -alumina) and the like.
- the solid electrolyte tube 20 made of beta-alumina or beta ”-alumina is also called beta-alumina tube.
- the sulfur electrode 30 surrounds the outside of the solid electrolyte tube 20.
- the sulfur electrode 30 has a structure in which sulfur is impregnated in the current collector.
- the sulfur electrode 30 uses carbon felt (also referred to as graphite felt) having high electrical conductivity, strength, porosity, and corrosion resistance to sulfur and sodium polysulfide (Na2Sx) as a current collector.
- the sulfur electrode 30 has a flat tubular structure.
- the case 40 covers an outer portion of the sulfur electrode 30 and has a shape corresponding to the sulfur electrode 30. That is, the case 40 also has a flat tubular structure.
- an aluminum alloy having high corrosion resistance to sodium polysulfide may be used, and the surface may be coated by using a plasma coating method to improve corrosion resistance to sodium polysulfide.
- the insulating ring 50 is bonded to the inner surface on the outer surface of the upper end of the solid electrolyte tube 20, it is joined to protrude to a certain height from the top of the solid electrolyte tube 20.
- the insulating ring 50 electrically insulates the solid electrolyte tube 20 and the positive electrode bracket 60.
- the material of the insulating ring 50 may be used alpha-alumina ( ⁇ -alumina).
- the insulating ring 50 made of alpha-alumina is also called alpha-alumina ring.
- the anode bracket 60 is interposed between the upper end of the case 40 and the insulating ring 50 to be bonded to the case 40 and the insulating ring 50, and is spaced apart from the solid electrolyte tube 20 and disposed below.
- the upper end of the sulfur electrode 30 has a structure that is fitted.
- the positive electrode bracket 60 includes a first positive electrode bracket 62 and a second positive electrode bracket 64 that are integrally formed. In this case, the first anode bracket 62 and the second anode bracket 64 may be independently formed and connected to each other.
- the first anode bracket 62 is joined to the upper end of the case 40 and the inner side surface adjacent to the upper end of the case 40, the outer side of the insulating ring 50 and the outer side of the insulating ring 50. It is joined to the neighboring bottom surface. At this time, the end portion of the first positive electrode bracket 62 protruding to the lower surface of the insulating ring 50 is spaced apart from the outer surface of the solid electrolyte tube 20. An upper portion of the first anode bracket 62 protrudes over the insulation ring 50.
- the second positive electrode bracket 64 is integrally formed with the first positive electrode bracket 62 and extends below the insulating ring 50, and has a structure in which an upper end portion of the sulfur electrode 30 is fitted to the lower portion.
- the part where the sulfur electrode 30 is fitted to the second anode bracket 64 may be fixed by bonding, welding, attaching, fastening, or the like.
- the conductivity of the sulfur electrode 30 can be improved. That is, in the conventional case, the sulfur electrode is spaced apart from the anode bracket and has a structure interposed between the case and the solid electrolyte tube. As a result, the sulfur electrode and the case are in physical contact with each other, so that a contact resistance is generated during charging and discharging, and the input or generated electricity is dissipated as heat, resulting in deterioration of energy efficiency, corrosion problems due to generated heat, and fine spark generation. It can cause problems. In addition, as the capacity of the NaS battery increases, the size of the sulfur electrode increases in the width direction and the vertical direction, thereby increasing the internal resistance, which may cause performance degradation such as output, capacity, life, and the like, and safety problems.
- the NaS battery 100 according to the first embodiment has a structure in which the upper end portion of the sulfur electrode 30 is fitted to the anode bracket 60, the sulfur electrode 30 includes the cathode bracket including the case 40 (The electrical conductivity of the sulfur electrode 30 may be improved by being electrically connected to the 60. As a result, the internal resistance of the NaS battery 100 may be reduced to improve output, capacity, and lifespan performance, and the problem of deterioration of the performance of the NaS battery 100 may be compensated for at a large capacity.
- the negative electrode bracket 80 is joined to the upper surface of the insulating ring 50 and the inner surface of the insulating ring 50 adjacent to the upper surface of the insulating ring 50.
- the negative electrode bracket 80 includes a bracket body 82 and a fixing jaw 84 formed around an outer surface of the bracket body 82.
- the bracket body 82 is a tubular having a predetermined length, the lower portion of the fixing jaw 84 is inserted into the insulating ring 50 is joined.
- the negative electrode bracket 80 may have a tubular shape having a “ ⁇ ” shaped cross section in which a fixing jaw 84 is formed around an outer surface thereof.
- the cathode bracket 80 also has a flat tubular structure.
- the negative electrode cap 90 is inserted into the bracket body 82 of the negative electrode bracket 80 and bonded to the inner surface of the bracket body 82, and has a protruding hole 92 through which the negative electrode terminal 16 may protrude. Formed.
- the upper surface of the negative electrode cap 90, the upper end of the negative electrode bracket 80, and the upper end of the positive electrode bracket 60 may be positioned on substantially the same surface.
- the positive electrode terminal 70 is bonded to the upper portion of the fixing jaw 84 of the negative electrode bracket 80 via the insulating adhesive 72, one side is bonded to the positive electrode bracket (60). At this time, the positive electrode terminal 70 and the negative electrode terminal 16 may be formed at substantially the same height.
- the NaS battery 100 performs charge and discharge as follows. That is, in the NaS battery 100, when a load is connected to the negative electrode terminal 16 and the positive electrode terminal 70 at 300 ° C. to 350 ° C., the sodium electrode passes through the solid electrolyte tube 20 with sodium ions at the negative electrode, and the sulfur electrode. Reaches 30. Sodium ions react with sulfur of the sulfur electrode 30 to become sodium polysulfide and generate electricity.
- sodium polysulfide in the sulfur electrode 30 is decomposed into sodium ions and sulfur ions so that the sodium ions to the solid electrolyte tube 20 It penetrates to reach the sodium electrode 10 and is reduced to sodium, and the sulfur ions become molten sulfur to become a charged state capable of generating electricity.
- the NaS battery 100 according to the first embodiment has a flat tubular structure, it is more efficient than the cylindrical structure and at the same time stable operation is possible compared to the square tubular structure, compared to the conventional cylindrical structure, the surface area per volume without deterioration in performance The dose can be increased through an increase.
- the sulfur electrode 30 is fitted into the lower portion, the insulating ring 50 is bonded to the middle portion, and the upper portion of the anode bracket 60 is integrally formed so as to be bonded to the upper end of the case 40.
- the manufacturing cost of the NaS battery 100 may be reduced by reducing the number of parts of the NaS battery 100.
- the productivity of the NaS battery 100 can be improved.
- the NaS battery 100 according to the first embodiment has a flat tubular structure, so that the space between the NaS batteries 100 is larger than that of the conventional cylindrical structure. Also, the size of the overall NaS battery module can be reduced.
- FIGS. 4 to 10 are cross-sectional views showing the steps according to the manufacturing method of the flat NaS battery of FIG.
- a solid electrolyte tube 20 having an open top is prepared.
- beta-alumina tube may be used as the solid electrolyte tube 20.
- the insulating ring 50 is bonded to the outer surface of the upper end of the solid electrolyte tube 20, but bonded to protrude to a predetermined height from the top of the solid electrolyte tube (20).
- an alpha-alumina ring may be used as the insulating ring 50.
- the anode bracket 60 is bonded to the insulating ring 50. That is, the first anode bracket 62 of the anode bracket 60 is bonded to the outer surface of the insulating ring 50 and the lower surface of the insulating ring 50 adjacent to the outer surface of the insulating ring 50.
- the second anode bracket 64 integrally formed with the first anode bracket 62 extends under the insulating ring 50.
- the anode bracket 60 including the first anode bracket 62 is spaced apart from the solid electrolyte tube 20 with the insulating ring 50 therebetween.
- the sulfur electrode 30 is formed to cover the solid electrolyte tube 20 under the anode bracket 60.
- the sulfur electrode 30 may surround the outer periphery of the solid electrolyte tube 20 and may have a flat tubular structure corresponding to the shape of the solid electrolyte tube 20.
- the upper end of the sulfur electrode 30 is fitted and fixed to the second anode bracket 64 of the anode bracket 60.
- the portion in which the sulfur electrode 30 is fitted to the second anode bracket 64 may be fixed by bonding, welding, attaching, or fastening.
- the first anode bracket 62 of the upper anode bracket 60 is inserted into the casing 40 having an open upper portion from the portion where the sulfur electrode 30 is formed. It is bonded to the upper part of 40. That is, the second anode bracket 62 is joined to the upper end of the case 40 and the inner surface of the case 40 adjacent to the upper end of the case 40. At this time, the sulfur electrode 30 inserted into the case 40 is in close contact with the inner surface of the case 40.
- the solid electrolyte tube 20, the insulation ring 50, and the anode bracket 60 are installed in the case 40.
- the sodium electrode 10 is inserted into the solid electrolyte tube 20 fixed to the case 40. That is, after the safety tube 14 is inserted into the inside of the solid electrolyte tube 20, the sodium container 12 may be inserted and installed. At this time, the cathode terminal 16 protrudes upward from the gas chamber 15 of the sodium container 12. The sodium discharge hole 13 and the gas discharge hole 17 are blocked.
- the NaS battery 100 As shown in FIG. 10, after the negative electrode bracket 80 is bonded to the insulating ring 50, the NaS battery 100 according to the first embodiment is provided by installing the negative electrode cover 90 and the positive electrode terminal 70. ) Is completed. That is, first, the negative electrode 80 is bonded to the upper surface of the insulating ring 50 and the inner surface of the insulating ring 50 adjacent to the upper surface of the insulating ring 50. Subsequently, the negative electrode terminal 16 is inserted into the protruding hole 92 of the negative electrode cap 90 to protrude to the upper surface of the negative electrode cap 90, and then the negative electrode cap 90 is fastened to the bracket body 82 of the negative electrode bracket 80.
- the outside of the negative electrode cap 90 is bonded to the negative electrode bracket 80.
- the positive terminal 70 is bonded to the upper portion of the fixing jaw 84 of the negative electrode bracket 80 via the insulating adhesive 72, one side is bonded to the inner surface of the positive electrode bracket (60).
- the positive electrode terminal 70 is installed after the negative electrode cap 90 is installed is disclosed.
- the negative electrode cap 90 may be provided after the positive electrode terminal 70 is installed.
- the NaS battery 100 is implemented in a flat tubular structure, but is not limited thereto.
- the NaS battery may be implemented in a square or flat tubular structure.
- FIG. 11 is a perspective view showing a square tube NaS battery according to a second embodiment of the present invention.
- FIG. 12 is a partial cutaway perspective view of FIG. 11.
- the NaS battery 200 has a square tubular structure. That is, the sodium electrode 110, the solid electrolyte tube 120, the sulfur electrode 130, the case 140, the insulating ring 150, the positive electrode bracket 160, and the negative electrode bracket 180 constituting the NaS battery 200.
- the back has a square tube shape.
- the square tube refers to the shape of the rectangular tube except for the square tube.
- the NaS battery 200 according to the second embodiment has the same structure as the NaS battery (100 of FIG. 1) according to the first embodiment, except that the NaS battery 200 has a square tubular structure.
- the NaS battery 200 according to the second embodiment has a square tubular structure, like the flat NaS battery 100 according to the first embodiment, it is more efficient than the cylindrical structure and at the same time stable operation compared to the square tube This allows the capacity to be increased through surface area per volume increase without compromising performance as compared to conventional cylindrical structures.
- the sulfur electrode 130 is fitted to the lower portion, the insulating ring 150 is bonded to the middle portion, and the upper portion of the anode bracket 160 is formed integrally so as to be bonded to the upper end of the case 140.
- the manufacturing cost of the NaS battery 200 can be reduced by reducing the number of parts of the NaS battery 200.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 NaS 전지 및 그의 제조 방법에 관한 것으로, 원통형인 NaS 전지의 구조를 개선하여 전지의 용량을 증대하기 위한 것이다. 본 발명에 따르면, NaS 전지는 관 형의 나트륨 전극을 포함한다. 고체전해질관은 나트륨 전극의 외곽을 둘러싸며, 나트륨 전극에 대응되는 형태를 갖는다. 그리고 황 전극은 고체전해질관의 외곽을 둘러싼다. 이때 나트륨 전극, 고체전해질관 및 황 전극은 평관형 또는 사각관 형태를 갖는다. 이와 같이 본 발명에 따른 NaS 전지는 평관형 또는 사각관형의 구조를 갖기 때문에, 원통형 구조에 비해 효율적이며 동시에 정사각관형 대비 안정적인 동작이 가능하여, 종래의 원통형 구조와 비교하여 성능의 저하 없이 부피당 표면적 증가를 통하여 용량을 증대시킬 수 있다.
Description
본 발명은 대용량 전지 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 NaS 전지(또는 나트륨-유황 전지)의 구조를 평관형 또는 사각관형으로 변형하여 용량을 증대할 수 있는 NaS 전지 및 그의 제조 방법에 관한 것이다.
휴대폰, 스마트폰, PMP, 게임기 등과 같은 휴대형 기기 및 하이브리드 자동차 등의 응용이 가속화되고 있는 소용량 배터리의 중요성과, 동시에 산업용 및 광역용 대용량 에너지 저장장치 응용 분야에 대한 관심이 점차 커지고 있는 현 상황에서, 녹색에너지 및 청정에너지에 관련하여 환경 친화적인 에너지원과 그러한 에너지원을 효율적으로 저장하고 분배하기 위한 방법이 이슈화 되고 있다.
최근에 이러한 문제를 해결하고자, NaS 전지와 관련하여 단전지/모듈/시스템에 이르기까지 효율적인 상품 개발이 활발히 진행되고 있으며, 그에 관련된 소재, 구조, 운용, 응용 분야 등에 대한 연구도 활발히 수행되고 있다.
여기서 NaS 전지는 음극에 나트륨(Na), 양극에 황(S), 그리고 전해질은 나트륨 이온 전도성을 가진 고체전해질인 베타-알루미늄 세라믹(BASE; Beta-Alumina Solid Electrolyte)을 사용하는 전지를 의미한다.
NaS 전지는 지금까지 실용화된 2차 전지 중 전력저장 용량이 가장 높은 대용량 저장 장치로, 자기방전이 없어 89%~92%에 달하는 고효율 충/방전 성능, 장수명 및 자원 적으로 풍부한 활물질을 사용한다는 장점이 있어 신재생 에너지의 대용량 저장 장치로 각광받고 있다.
이와 같은 NaS 전지는 일반적으로 원통형으로 설계된다. NaS 전지를 원통형으로 제조하는 이유는, 등거리 구현이 가능하고, 기계적 강도가 강하며, 제조가 용이하기 때문이다. 이러한 원통형 구조의 경우 NaS 전지의 성능 저하 없이 용량을 증대하고자 할 경우, 전지의 크기를 증대시켜야 한다. 즉 NaS 전지의 직경 또는 높이 중에 하나를 증가시켜야 한다.
그런데 NaS 전지의 직경을 증가시킬 경우, 전극과 전해질 사이(특히 부도체인 황이 함침된 황 전극)의 거리가 멀어져 내부 저항이 증가하게 되어 전지의 성능이 떨어질 수 있다. 또한 NaS 전지의 길이를 증가시킬 경우, 모세관력 부족 및 내압 설정 가스 압력의 한계로 용융 나트륨이 나트륨 용기로부터 전해질 표면까지 제대로 전달되지 않아 성능이 저하되거나 전지가 작동하지 않을 수 있다. 즉 종래의 원통형의 구조로는 NaS 전지의 용량을 증대시키는 데는 한계가 있다.
또한 NaS 전지를 복수개 배열하여 NaS 전지 모듈을 제조할 때, 종래의 NaS 전지는 원통형의 구조를 갖기 때문에, NaS 전지 사이에 필요없는 공간의 발생으로 인해 전체적인 NaS 전지 모듈의 크기가 커지는 문제점을 안고 있다. 이로 인해 NaS 전지 모듈에 사용되는 NaS 전지의 수가 증가할수록 NaS 전지 모듈의 크기가 더욱 증가하게 된다.
따라서 본 발명의 목적은 원통형의 NaS 전지 대비 성능의 저하 없이 용량을 증대시킬 수 있는 NaS 전지 및 그의 제조 방법을 제공하는 데 있다.
본 발명의 다른 목적은 NaS 전지의 구조를 개선하여 용량을 증대시킬 수 있는 NaS 전지 및 그의 제조 방법을 제공하는 데 있다.
본 발명의 또 다른 목적은 NaS 전지의 제조 공정을 단순화할 수 있는 NaS 전지 및 그의 제조 방법을 제공하는 데 있다.
본 발명의 또 다른 목적은 NaS 전지를 이용하여 제조한 NaS 전지 모듈의 크기를 줄일 수 있는 NaS 전지 및 그의 제조 방법을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 NaS 전지의 구조를 평관형 또는 사각관형으로 변형하여 용량을 증대시킨 NaS 전지 및 그의 제조 방법을 제공한다.
본 발명은 관 형의 나트륨 전극, 고체전해질관 및 황 전극을 포함하는 NaS 전지를 제공한다. 여기서 상기 고체전해질관은 상기 나트륨 전극의 외곽을 둘러싸며, 상기 나트륨 전극에 대응되는 형태를 갖는다. 상기 황 전극은 상기 고체전해질관의 외곽을 둘러싼다. 그리고 나트륨 전극, 고체전해질관 및 황 전극은 평관형 또는 사각관 형태를 갖는다.
본 발명에 따른 NaS 전지는, 상기 황 전극의 외곽을 덮으며, 상기 황 전극에 대응되는 형태를 갖는 케이스를 더 포함할 수 있다.
본 발명에 따른 NaS 전지는 절연링과 양극 금구를 더 포함할 수 있다. 상기 절연링은 상기 고체전해질관 상단부의 외측면에 내측면이 접합된다. 그리고 상기 양극 금구는 상기 케이스의 상단부와 상기 절연링 사이에 개재되어 상기 케이스 및 상기 절연링에 접합되며, 상기 고체전해질관에서 이격되게 설치된다.
본 발명에 따른 NaS 전지에 있어서, 상기 양극 금구는 제1 양극 금구와 제2 양극 금구를 포함할 수 있다. 상기 제1 양극 금구는 상기 케이스의 상단과, 상기 케이스의 상단에 이웃하는 내측면에 접합되고, 상기 절연링의 외측면과, 상기 절연링의 외측면에 이웃하는 하부면에 접합된다. 그리고 상기 제2 양극 금구는 상기 제1 양극 금구와 일체 또는 독립적으로 형성되어 상기 절연링 아래로 뻗어 있으며, 하부에 상기 황 전극의 상단부가 끼움 결합된다.
본 발명은 또한, 평관형 또는 사각관 형태의 고체전해질관을 준비하는 준비 단계, 상기 고체전해질관의 외곽을 둘러싸는 황 전극을 형성하는 황 전극 형성 단계, 및 상기 고체전해질관의 형태에 대응되는 형태를 갖는 관 형의 나트륨 전극을 상기 고체전해질관에 삽입하는 나트륨 전극 삽입 단계를 포함하는 NaS 전지의 제조 방법을 제공한다.
본 발명에 따른 NaS 전지의 제조 방법에 있어서, 상기 준비 단계는, 절연링을 상기 고체전해질관 상단부의 외측면에 접합하는 단계, 및 양극 금구를 상기 절연링의 외측면과, 상기 절연링의 외측면에 이웃하는 상기 절연링의 하부면에 접합하는 단계를 포함할 수 있다.
본 발명에 따른 NaS 전지의 제조 방법에 있어서, 상기 황 전극 형성 단계에서, 상기 양극 금구의 상기 절연링의 하부면에서 아래로 돌출된 부분에 상기 황 전극의 상단부를 끼워 상기 고체전해질관의 외곽을 덮도록 상기 황 전극을 형성할 수 있다.
본 발명에 따른 NaS 전지의 제조 방법은, 상기 황 전극 형성 단계와 상기 나트륨 전극 삽입 단계 사이에 수행되는, 케이스에 상기 황 전극이 형성된 상기 고체전해질관을 삽입하고, 상기 케이스의 상단과 상기 케이스의 상단에 이웃하는 내측면에 상기 양극 금구를 접합하는 단계를 더 포함할 수 있다.
본 발명은 또한, 관 형의 나트륨 전극, 고체전해질관, 황 전극, 케이스, 절연링 및 양극 금구를 포함하는 NaS 전지를 제공한다. 여기서 상기 고체전해질관은 상기 나트륨 전극의 외곽을 둘러싸며, 상기 나트륨 전극에 대응되는 형태를 갖는다. 상기 황 전극은 상기 고체전해질관의 외곽을 둘러싼다. 상기 케이스는 상기 황 전극의 외곽을 덮으며, 상기 황 전극에 대응되는 형태를 갖는다. 상기 절연링은 상기 고체전해질관 상단부의 외측면에 내측면이 접합된다. 그리고 상기 양극 금구는 상기 케이스의 상단부와 상기 절연링 사이에 개재되어 상기 케이스 및 상기 절연링에 접합되며, 상기 고체전해질관에서 이격되게 설치된다. 이때 상기 양극 금구는 제1 양극 금구와 제2 양극 금구를 포함할 수 있다. 상기 제1 양극 금구는 상기 케이스의 상단과, 상기 케이스의 상단에 이웃하는 내측면에 접합되고, 상기 절연링의 외측면과, 상기 절연링의 외측면에 이웃하는 하부면에 부착된다. 상기 제2 양극 금구는 상기 제1 양극 금구와 연결되어 상기 절연링 아래로 뻗어 있으며, 하부에 상기 황 전극의 상단부가 끼움 결합된다.
그리고 본 발명에 따른 NaS 전지에 있어서, 상기 제1 양극 금구 중 상기 절연링의 하부면으로 돌출된 부분의 끝단은 상기 고체전해질관의 외측면에 대해서 이격되게 설치되며, 상기 제1 양극 금구의 상부는 상기 절연링 위로 돌출될 수 있다.
본 발명의 구조를 따르면, NaS 전지가 평관형 또는 사각관형의 구조를 갖기 때문에, 원통형 구조에 비해 효율적이며 동시에 정사각관형 대비 안정적인 동작이 가능하여, 종래의 원통형 구조와 비교하여 성능의 저하 없이 부피당 표면적 증가를 통하여 용량을 증대시킬 수 있다.
또한 하부에는 황 전극이 끼움 결합되고, 중간 부분에는 절연링이 접합되고, 상단 부분은 케이스의 상단에 접합될 수 있도록 양극 금구가 일체로 형성되기 때문에, NaS 전지의 부품 수를 줄여 NaS 전지의 제조 단가를 나출 수 있다. 또한 종래의 NaS 전지 대비 부품 수를 줄여 제조 공정을 단순화함으로써, NaS 전지의 생산성을 향상시킬 수 있다.
또한 NaS 전지를 복수개 배열하여 NaS 전지 모듈을 제조할 때, 본 발명에 따른 NaS 전지는 평관형 또는 사각관형의 구조를 갖기 때문에, 종래의 원통형의 구조에 비해서 NaS 전지 사이의 공간을 줄일 수 있어 전체적인 NaS 전지 모듈의 크기를 줄일 수 있는 이점도 있다.
도 1은 본 발명의 제1 실시예에 따른 평관형의 NaS 전지를 보여주는 사시도이다.
도 2는 도 1의 부분 절개 사시도이다.
도 3은 도 1의 단면도이다.
도 4 내지 도 10은 도 1의 평관형의 NaS 전지의 제조 방법에 따른 각 단계를 보여주는 단면도이다.
도 11은 본 발명의 제2 실시예에 따른 사각관형의 NaS 전지를 보여주는 사시도이다.
도 12는 도 11의 부분 절개 사시도이다.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
이하 첨부 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.
제1 실시예
도 1은 본 발명의 제1 실시예에 따른 평관형의 NaS 전지를 보여주는 사시도이다. 도 2는 도 1의 부분 절개 사시도이다. 그리고 도 3은 도 1의 단면도이다.
도 1 내지 도 3을 참조하면, 제1 실시예에 따른 NaS 전지(100)는 나트륨 전극(10), 고체전해질관(20) 및 황 전극(30)을 포함하며, 그 외 음극 단자(16), 케이스(40), 절연링(50), 양극 금구(60), 양극 단자(70), 음극 금구(80) 및 음극 덮개(90)를 더 포함할 수 있다. 특히 제1 실시예에 따른 NaS 전지(100)는 원통형 구조가 아닌 평관형 구조를 갖는다. 여기서 평관은 마주보는 양쪽의 수평한 두 면과, 수평한 두 면의 양쪽을 연결하는 한 쌍의 곡면을 포함하는 형태의 관을 의미한다. 제1 실시예에 따른 NaS 전지(100)를 구성하는 부품들은 평관형의 구조에 적합한 평관형 형태를 갖는다.
이와 같이 제1 실시예에 따른 NaS 전지(100)는 평관형의 구조를 갖기 때문에, 종래의 원통형 구조의 NaS 전지와 비교하여 부피당 표면적을 증가시켜 용량을 증대시킬 수 있다. 즉 원통형은 부피당 표면적이 가장 적은 기하학적인 구조를 갖는 반면에, 평관형은 원통형에 비해서 부피당 더 넓은 표면적을 갖는다. 따라서 부피당 더 넓은 표면적을 갖는 평관형의 NaS 전지(100)를 제조함으로써, NaS 전지(100)의 용량을 증대할 수 있다. 또한 평관형은 정사각관형의 구조와 비교하여 안정적인 동작이 가능하기 때문에, 제1 실시예에 따른 NaS 전지(100)는 원통형의 NaS 전지와 비교하여 성능 저하를 최소화할 수 있다. 따라서 제1 실시예에 따른 NaS 전지(100)는 원통형의 NaS 전지와 비교하여 성능 저하를 최소화면서 용량을 증대시킬 수 있다.
나트륨 전극(10)은 NaS 전지(100)의 안전성을 확보하기 위해서 안전관(14)과, 안전관(14) 내부에 나트륨 용기(12)가 위치하는 2중관 구조로 설계될 수 있다. 안전관(14)과 나트륨 용기(12)는 균일한 반응과 전해질 파손 시 안전을 위하여 스테인리스 스틸, 알루미늄, 알루미늄합금 또는 SPCC 등의 소재로 제조될 수 있다.
나트륨 용기(12)는 나트륨을 담고 있는 관 형의 용기이며, 하부에 나트륨 배출홀(13)이 형성되어 있다. 나트륨 용기(12)의 상부에는 나트륨의 배출압을 조절하는 가스 실(15)이 마련되어 있다. 가스 실(15)의 상부에는 음극 단자(16)가 상부로 돌출되게 설치될 수 있다. 가스 실(15)의 하부에는 가스 배출홀(17)이 형성되어 있다. 가스로는 불활성 가스가 사용되며, 예컨대 아르곤 가스, 아르곤 가스를 함유하는 불황성 가스의 혼합 가스가 사용될 수 있다.
안전관(14)은 나트륨 용기(12)를 담을 수 있는 관으로, 나트륨 용기(12)를 삽입할 수 있도록 상부는 개방되어 있다. 안전관(14)은 나트륨 용기(12)를 둘러싸며 전기 및 기계적 충격에 의해 나트륨 용기(12)의 파손 시 안전 장치의 기능을 수행한다. 안전관(14)은 고체전해질관(20) 표면에서 모세관력에 의하여 나트륨의 반응면적을 일정하게 유지하는 기능을 수행한다.
이때 나트륨 배출홀(13)과 가스 배출홀(17)은 NaS 전지(100)의 제조 단계에서는 막혀 있으며, NaS 전지(100)가 동작하면 개방된다. 특히 나트륨 용기(12)와 안전관(14)은 평관형 구조를 갖는다.
고체전해질관(20)은 나트륨 전극(10)의 외곽을 둘러싸며, 나트륨 전극(10)에 대응되는 형태, 즉 평관형 구조를 갖는다. 고체전해질관(20)은 NaS 전지(100)의 나트륨 이온을 전도시키는 전해질 기능과, 음극과 양극을 전기적으로 절연하는 격리판 기능을 수행한다. 이때 고체전해질관(20)의 소재로는 베타-알루미나(β-alumina), 베타"-알루미나(β"-alumina) 등이 사용될 수 있다. 베타-알루미나 또는 베타”-알루미나로 제조된 고체전해질관(20)을 베타-알루미나관이라고도 한다
황 전극(30)은 고체전해질관(20)의 외곽을 둘러싼다. 황 전극(30)은 집전체에 황이 함침된 구조를 갖는다. 이때 황 전극(30)은 높은 전기 전도성, 강도, 공극률, 황과 다황화나트륨(Na2Sx)에 내부식성이 큰 카본 펠트(carbon felt)(그라파이트 펠트(graphite felt)라고도 함)를 집전체로 사용한다. 특히 황 전극(30)은 평관형 구조를 갖는다.
케이스(40)는 황 전극(30)의 외곽을 덮으며, 황 전극(30)에 대응되는 형태를 갖는다. 즉 케이스(40) 또한 평관형 구조를 갖는다. 케이스(40)의 소재로는 다황화나트륨에 대한 내부식성이 큰 알루미늄 합금을 사용하고, 다황화나트륨에 대한 내부식성을 향상시키기 위해서 플라즈마 코팅법을 이용하여 표면을 코팅처리할 수 있다.
절연링(50)은 고체전해질관(20) 상단부의 외측면에 내측면이 접합되며, 고체전해질관(20)의 상단에서 일정 높이로 돌출되게 접합된다. 절연링(50)은 고체전해질관(20)과 양극 금구(60)를 전기적으로 절연한다. 이때 절연링(50)의 소재로는 알파-알루미나(α-alumina)가 사용될 수 있다. 알파-알루미나로 제조된 절연링(50)을 알파-알루미나링이라고도 한다.
양극 금구(60)는 케이스(40)의 상단부와 절연링(50) 사이에 개재되어 케이스(40) 및 절연링(50)에 접합되며, 고체전해질관(20)에서 이격되게 설치되며, 하부에 황 전극(30)의 상단부가 끼움 결합된 구조를 갖는다. 양극 금구(60)는 일체로 형성된 제1 양극 금구(62)와 제2 양극 금구(64)를 포함한다. 이때 제1 양극 금구(62)와 제2 양극 금구(64)는 독립적으로 형성되어 연결될 수도 있다.
제1 양극 금구(62)는 케이스(40)의 상단과, 케이스(40)의 상단에 이웃하는 내측면에 접합되고, 절연링(50)의 외측면과, 절연링(50)의 외측면에 이웃하는 하부면에 접합된다. 이때 제1 양극 금구(62) 중 절연링(50)의 하부면으로 돌출된 부분의 끝단은 고체전해질관(20)의 외측면에 대해서 이격되게 설치된다. 제1 양극 금구(62)의 상부는 절연링(50) 위로 돌출되어 있다.
제2 양극 금구(64)는 제1 양극 금구(62)와 일체로 형성되어 절연링(50) 아래로 뻗어 있으며, 하부에 황 전극(30)의 상단부가 끼움 결합된 구조를 갖는다. 이때 제2 양극 금구(64)에 황 전극(30)이 끼움 결합된 부분은 접합, 용접, 부착, 체결 등의 방법으로 고정할 수 있다.
이와 같이 양극 금구(60)에 황 전극(30)의 상단부가 끼움 결합된 구조를 갖기 때문에, 황 전극(30)의 전도도를 향상시킬 수 있다. 즉 종래의 경우 황 전극은 양극 금구에서 이격되어 있으며, 케이스와 고체전해질관 사이에 개재된 구조를 갖는다. 이로 인해 황 전극과 케이스는 물리적으로 접촉되어 있어 충전과 방전 시에 접촉 저항이 발생되며, 투입 또는 발생하는 전기는 열로 발산되어 에너지 효율저하 및 발생 열에 의한 부식문제, 그리고 미세한 스파크 발생 등으로 안정성에 문제를 발생시킬 수 있다. 또한 NaS 전지의 용량이 커질수록 황 전극의 크기가 폭 방향 및 수직 방향으로 커짐에 따라서, 내부 저항은 더욱 커져 출력, 용량, 수명 등의 성능의 저하 및 안전성 문제를 발생시킬 수 있다.
하지만 제1 실시예에 따른 NaS 전지(100)는 양극 금구(60)에 황 전극(30)의 상단부가 끼움 결합된 구조를 갖기 때문에, 황 전극(30)은 케이스(40)를 비롯한 양극 금구(60)와 전기적으로 연결됨으로써 황 전극(30)의 전도도를 향상시킬 수 있다. 이로 인해 NaS 전지(100)의 내부 저항을 감소시켜 출력, 용량, 수명 성능을 향상시키고, 대용량화시 NaS 전지(100)의 성능 저하 문제를 보완할 수 있다.
음극 금구(80)는 절연링(50)의 상부면과, 절연링(50)의 상부면에 이웃하는 절연링(50)의 내측면에 접합된다. 음극 금구(80)는 금구 몸체(82)와, 금구 몸체(82)의 외측면 둘레에 형성된 고정턱(84)을 포함한다. 금구 몸체(82)는 일정 길이를 갖는 관형으로, 고정턱(84) 아래 부분이 절연링(50)에 삽입되어 접합된다. 예컨대 음극 금구(80)는 외측면 둘레에 고정턱(84)이 형성된 단면이 “ㅓ”자형인 관 형태를 가질 수 있다. 음극 금구(80) 또한 전체적인 형태는 평관형의 구조를 갖는다.
음극 캡(90)은 음극 금구(80)의 금구 몸체(82)에 삽입되어 금구 몸체(82)의 내측면에 접합되며, 상부에 음극 단자(16)가 돌출될 수 있는 돌출구멍(92)이 형성되어 있다. 음극 캡(90)의 상부면, 음극 금구(80)의 상단 및 양극 금구(60)의 상단은 실질적으로 동일면 상에 위치할 수 있다.
그리고 양극 단자(70)는 음극 금구(80)의 고정턱(84)의 상부에 절연성 접착제(72)를 매개로 접합되며, 일측은 양극 금구(60)에 접합된다. 이때 양극 단자(70)와 음극 단자(16)는 실질적으로 동일한 높이로 형성될 수 있다.
이와 같은 제1 실시예에 따른 NaS 전지(100)는 아래와 같이 충방전을 수행한다. 즉 NaS 전지(100)는 300℃~350℃에서 음극 단자(16) 및 양극 단자(70)에 부하(Load)를 연결하면 음극에서는 나트륨이 나트륨 이온으로 고체전해질관(20)을 통과하여 황 전극(30)에 도달한다. 나트륨 이온은 황 전극(30)의 황과 반응하여 다황화나트륨이 되면서 전기를 발생시킨다.
한편 방전 완료 후 외부 도선을 통하여 충전 장치로부터 전기를 NaS 전지(100)로 인가하면, 황 전극(30) 내의 다황화나트륨은 나트륨 이온과 황 이온으로 분해되어 나트륨 이온은 고체전해질관(20)을 관통하여 나트륨 전극(10)에 도달하여 나트륨으로 환원되고, 황 이온은 용융된 황으로 되어 전기를 발생할 수 있는 충전 상태가 된다.
특히 제1 실시예에 따른 NaS 전지(100)는 평관형의 구조를 갖기 때문에, 원통형 구조에 비해 효율적이며 동시에 정사각관형 대비 안정적인 동작이 가능하여, 종래의 원통형 구조와 비교하여 성능의 저하 없이 부피당 표면적 증가를 통하여 용량을 증대시킬 수 있다.
또한 하부에는 황 전극(30)이 끼움 결합되고, 중간 부분에는 절연링(50)이 접합되고, 상단 부분은 케이스(40)의 상단에 접합될 수 있도록 양극 금구(60)가 일체로 형성되기 때문에, NaS 전지(100)의 부품 수를 줄여 NaS 전지(100)의 제조 단가를 나출 수 있다. 또한 종래의 NaS 전지 대비 부품 수를 줄여 제조 공정을 단순화함으로써, NaS 전지(100)의 생산성을 향상시킬 수 있다.
또한 NaS 전지를 복수개 배열하여 NaS 전지 모듈을 제조할 때, 제1 실시예에 따른 NaS 전지(100)는 평관형의 구조를 갖기 때문에, 종래의 원통형의 구조에 비해서 NaS 전지(100) 사이의 공간을 줄일 수 있어 전체적인 NaS 전지 모듈의 크기를 줄일 수 있는 이점도 있다.
이와 같은 제1 실시예에 따른 NaS 전지(100)의 제조 방법에 대해서 도 4 내지 도 10을 참조하여 설명하면 다음과 같다. 여기서 도 4 내지 도 10은 도 1의 평관형의 NaS 전지의 제조 방법에 따른 각 단계를 보여주는 단면도이다.
먼저 도 4에 도시된 바와 같이, 상부가 개방된 평관형의 고체전해질관(20)을 준비한다. 이때 고체전해질관(20)으로는 베타-알루미나관이 사용될 수 있다.
다음으로 도 5에 도시된 바와 같이, 절연링(50)을 고체전해질관(20)의 상단부의 외측면에 접합하되, 고체전해질관(20)의 상단에서 일정 높이로 돌출되게 접합한다. 이때 절연링(50)으로는 알파-알루미나링이 사용될 수 있다.
다음으로 도 6에 도시된 바와 같이, 절연링(50)에 양극 금구(60)를 접합한다. 즉 양극 금구(60)의 제1 양극 금구(62)를 절연링(50)의 외측면과, 절연링(50)의 외측면에 이웃하는 절연링(50)의 하부면에 접합한다. 이때 제1 양극 금구(62)와 일체로 형성된 제2 양극 금구(64)는 절연링(50) 아래로 뻗어 있다. 이때 제1 양극 금구(62)를 포함한 양극 금구(60)는 절연링(50)을 사이에 두고 고체전해질관(20)에 대해서는 이격되게 설치된다.
다음으로 도 7에 도시된 바와 같이, 양극 금구(60) 하부의 고체전해질관(20)을 덮도록 황 전극(30)을 형성한다. 이때 황 전극(30)은 고체전해질관(20)의 외곽을 둘러싸며, 고체전해질관(20)의 형태에 대응되게 평관형 구조로 형성될 수 있다. 황 전극(30)의 상단부는 양극 금구(60)의 제2 양극 금구(64)에 끼움 결합되어 고정된다. 예컨대 제2 양극 금구(64)에 황 전극(30)이 끼움 결합된 부분은 접합, 용접, 부착, 체결 등의 방법으로 고정될 수 있다.
이어서 도 8에 도시된 바와 같이, 상부가 개방된 평관형의 케이스(40)에 황 전극(30)이 형성된 부분부터 삽입된 후 상부의 양극 금구(60)의 제1 양극 금구(62)가 케이스(40)의 상부에 접합된다. 즉 제2 양극 금구(62)는 케이스(40)의 상단과, 케이스(40)의 상단에 이웃하는 케이스(40)의 내측면에 접합된다. 이때 케이스(40)에 삽입된 황 전극(30)은 케이스(40)의 내측면에 밀착된다.
따라서 고체전해질관(20), 절연링(50) 및 양극 금구(60)가 케이스(40) 내에 설치된다.
다음으로 도 9에 도시된 바와 같이, 케이스(40)에 고정 설치된 고체전해질관(20)의 안쪽에 나트륨 전극(10)이 삽입된다. 즉 고체전해질관(20)의 안쪽에 안전관(14)을 삽입한 이후에, 나트륨 용기(12)를 삽입하여 설치할 수 있다. 이때 나트륨 용기(12)의 가스 실(15) 상부에는 음극 단자(16)가 상부로 돌출되어 있다. 나트륨 배출홀(13)과 가스 배출홀(17)은 막혀있다.
그리고 도 10에 도시된 바와 같이, 음극 금구(80)를 절연링(50)에 접합한 이후에, 음극 덮개(90) 및 양극 단자(70)를 설치함으로써 제1 실시예에 따른 NaS 전지(100)의 제조가 완료된다. 즉 먼저 음극 금구(80)를 절연링(50)의 상부면과, 절연링(50)의 상부면에 이웃하는 절연링(50)의 내측면에 접합한다. 이어서 음극 캡(90)의 돌출구멍(92)에 음극 단자(16)를 삽입시켜 음극 캡(90)의 상부면으로 돌출시킨 다음, 음극 캡(90)을 음극 금구(80)의 금구 몸체(82)에 삽입한 후, 음극 캡(90)의 외곽을 음극 금구(80)에 접합시킨다. 그리고 양극 단자(70)를 음극 금구(80)의 고정턱(84)의 상부에 절연성 접착제(72)를 매개로 접합시키되, 일측을 양극 금구(60)의 내측면에 접합시킨다.
한편 제1 실시예에서는 음극 캡(90)을 설치한 이후에 양극 단자(70)를 설치하는 예를 개시하였지만, 양극 단자(70)를 설치한 이후에 음극 캡(90)을 설치할 수도 있다.
제2 실시예
한편 제1 실시예에서는 NaS 전지(100)를 평관형의 구조로 구현하는 예를 개시하였지만 이것에 한정되는 것은 아니다. 예컨대 NaS 전지는 사각관형 또는 평관형의 구조로 구현될 수 있다.
도 11은 본 발명의 제2 실시예에 따른 사각관형의 NaS 전지를 보여주는 사시도이다. 그리고 도 12는 도 11의 부분 절개 사시도이다.
도 11 및 도 12를 참조하면, 제2 실시예에 따른 NaS 전지(200)는 사각관형의 구조를 갖는다. 즉 NaS 전지(200)를 구성하는 나트륨 전극(110), 고체전해질관(120), 황 전극(130), 케이스(140), 절연링(150), 양극 금구(160), 음극 금구(180) 등이 사각관 형태를 갖는다. 이때 사각관은 정사각관은 제외한 직사각관 형태를 의미한다.
이와 같이 제2 실시예에 따른 NaS 전지(200)는 사각관형의 구조를 갖는 것을 제외하면, 제1 실시예에 따른 NaS 전지(도 1의 100)와 동일한 구조를 갖는다.
따라서 제2 실시예에 따른 NaS 전지(200)는 사각관형의 구조를 갖기 때문에, 제1 실시예에 따른 평관형의 NaS 전지(100)와 같이, 원통형 구조에 비해 효율적이며 동시에 정사각관형 대비 안정적인 동작이 가능하여, 종래의 원통형 구조와 비교하여 성능의 저하 없이 부피당 표면적 증가를 통하여 용량을 증대시킬 수 있다.
또한 하부에는 황 전극(130)이 끼움 결합되고, 중간 부분에는 절연링(150)이 접합되고, 상단 부분은 케이스(140)의 상단에 접합될 수 있도록 양극 금구(160)가 일체로 형성되기 때문에, NaS 전지(200)의 부품 수를 줄여 NaS 전지(200)의 제조 단가를 나출 수 있다. 또한 종래의 NaS 전지 대비 부품 수를 줄여 제조 공정을 단순화함으로써, NaS 전지(200)의 생산성을 향상시킬 수 있다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것이다.
Claims (10)
- 관 형의 나트륨 전극;상기 나트륨 전극의 외곽을 둘러싸며, 상기 나트륨 전극에 대응되는 형태를 갖는 고체전해질관;상기 고체전해질관의 외곽을 둘러싸는 황 전극;을 포함하며,상기 나트륨 전극, 고체전해질관 및 황 전극은 평관형 또는 사각관 형태를 갖는 것을 특징으로 하는 NaS 전지.
- 제1항에 있어서,상기 황 전극의 외곽을 덮으며, 상기 황 전극에 대응되는 형태를 갖는 케이스;를 더 포함하는 것을 특징으로 하는 NaS 전지.
- 제2항에 있어서,상기 고체전해질관 상단부의 외측면에 내측면이 접합된 절연링;상기 케이스의 상단부와 상기 절연링 사이에 개재되어 상기 케이스 및 상기 절연링에 접합되며, 상기 고체전해질관에서 이격되게 설치되는 양극 금구;를 더 포함하는 것을 특징으로 하는 NaS 전지.
- 제3항에 있어서, 상기 양극 금구는,상기 케이스의 상단과, 상기 케이스의 상단에 이웃하는 내측면에 접합되고, 상기 절연링의 외측면과, 상기 절연링의 외측면에 이웃하는 하부면에 부착되는 제1 양극 금구;상기 제1 양극 금구와 일체로 형성되어 상기 절연링 아래로 뻗어 있으며, 하부에 상기 황 전극의 상단부가 끼움 결합되는 제2 양극 금구;를 포함하는 것을 특징으로 하는 NaS 전지.
- 평관형 또는 사각관 형태의 고체전해질관을 준비하는 준비 단계;상기 고체전해질관의 외곽을 둘러싸는 황 전극을 형성하는 황 전극 형성 단계;상기 고체전해질관의 형태에 대응되는 형태를 갖는 관 형의 나트륨 전극을 상기 고체전해질관에 삽입하는 나트륨 전극 삽입 단계;를 포함하는 것을 특징으로 하는 NaS 전지의 제조 방법.
- 제5항에 있어서, 상기 준비 단계는,절연링을 상기 고체전해질관 상단부의 외측면에 접합하는 단계;양극 금구를 상기 절연링의 외측면과, 상기 절연링의 외측면에 이웃하는 상기 절연링의 하부면에 접합하는 단계;를 포함하는 것을 특징으로 하는 NaS 전지의 제조 방법.
- 제6항에 있어서, 상기 황 전극 형성 단계에서,상기 양극 금구의 상기 절연링의 하부면에서 아래로 돌출된 부분에 상기 황 전극의 상단부를 끼워 상기 고체전해질관의 외곽을 덮도록 상기 황 전극을 형성하는 것을 특징으로 하는 NaS 전지의 제조 방법.
- 제6항에 있어서, 상기 황 전극 형성 단계와 상기 나트륨 전극 삽입 단계 사이에 수행되는,케이스에 상기 황 전극이 형성된 상기 고체전해질관을 삽입하고, 상기 케이스의 상단과 상기 케이스의 상단에 이웃하는 내측면에 상기 양극 금구를 접합하는 단계;를 더 포함하는 것을 특징으로 하는 NaS 전지의 제조 방법.
- 관 형의 나트륨 전극;상기 나트륨 전극의 외곽을 둘러싸며, 상기 나트륨 전극에 대응되는 형태를 갖는 고체전해질관;상기 고체전해질관의 외곽을 둘러싸는 황 전극;상기 황 전극의 외곽을 덮으며, 상기 황 전극에 대응되는 형태를 갖는 케이스;상기 고체전해질관 상단부의 외측면에 내측면이 접합된 절연링;상기 케이스의 상단부와 상기 절연링 사이에 개재되어 상기 케이스 및 상기 절연링에 접합되며, 상기 고체전해질관에서 이격되게 설치되는 양극 금구;를 포함하며,상기 양극 금구는,상기 케이스의 상단과, 상기 케이스의 상단에 이웃하는 내측면에 접합되고, 상기 절연링의 외측면과, 상기 절연링의 외측면에 이웃하는 하부면에 부착되는 제1 양극 금구;상기 제1 양극 금구와 연결되어 상기 절연링 아래로 뻗어 있으며, 하부에 상기 황 전극의 상단부가 끼움 결합되는 제2 양극 금구;를 포함하는 것을 특징으로 하는 NaS 전지.
- 제9항에 있어서,상기 제1 양극 금구 중 상기 절연링의 하부면으로 돌출된 부분의 끝단은 상기 고체전해질관의 외측면에 대해서 이격되게 설치되며, 상기 제1 양극 금구의 상부는 상기 절연링 위로 돌출되어 있는 것을 특징으로 하는 NaS 전지.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0131026 | 2010-12-20 | ||
KR1020100131026A KR20120069469A (ko) | 2010-12-20 | 2010-12-20 | NaS 전지 및 그의 제조 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012086995A2 true WO2012086995A2 (ko) | 2012-06-28 |
WO2012086995A3 WO2012086995A3 (ko) | 2012-09-07 |
Family
ID=46314607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/009839 WO2012086995A2 (ko) | 2010-12-20 | 2011-12-20 | 나트륨-유황 전지 및 그의 제조 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20120069469A (ko) |
WO (1) | WO2012086995A2 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111504914A (zh) * | 2020-04-07 | 2020-08-07 | 九江学院 | 一种固态电池的原位测试装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101451408B1 (ko) * | 2012-12-24 | 2014-10-16 | 주식회사 포스코 | 나트륨 유황 전지 |
KR102028546B1 (ko) * | 2012-12-28 | 2019-10-07 | 재단법인 포항산업과학연구원 | 나트륨 유황 전지 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05114417A (ja) * | 1991-10-22 | 1993-05-07 | Hitachi Ltd | ナトリウム−硫黄電池及びその製造方法 |
KR960002925A (ko) * | 1994-06-09 | 1996-01-26 | 조규향 | 뒤집힌 형태의 나트륨/유황전지 또는 나트륨/염화니켈전지 |
JP2001223021A (ja) * | 2000-02-08 | 2001-08-17 | Mitsubishi Heavy Ind Ltd | ナトリウム電池 |
JP2004095231A (ja) * | 2002-08-29 | 2004-03-25 | Mitsubishi Heavy Ind Ltd | ナトリウム二次電池 |
JP2004178991A (ja) * | 2002-11-27 | 2004-06-24 | Ngk Insulators Ltd | ナトリウム−硫黄電池 |
-
2010
- 2010-12-20 KR KR1020100131026A patent/KR20120069469A/ko active IP Right Grant
-
2011
- 2011-12-20 WO PCT/KR2011/009839 patent/WO2012086995A2/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05114417A (ja) * | 1991-10-22 | 1993-05-07 | Hitachi Ltd | ナトリウム−硫黄電池及びその製造方法 |
KR960002925A (ko) * | 1994-06-09 | 1996-01-26 | 조규향 | 뒤집힌 형태의 나트륨/유황전지 또는 나트륨/염화니켈전지 |
JP2001223021A (ja) * | 2000-02-08 | 2001-08-17 | Mitsubishi Heavy Ind Ltd | ナトリウム電池 |
JP2004095231A (ja) * | 2002-08-29 | 2004-03-25 | Mitsubishi Heavy Ind Ltd | ナトリウム二次電池 |
JP2004178991A (ja) * | 2002-11-27 | 2004-06-24 | Ngk Insulators Ltd | ナトリウム−硫黄電池 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111504914A (zh) * | 2020-04-07 | 2020-08-07 | 九江学院 | 一种固态电池的原位测试装置 |
CN111504914B (zh) * | 2020-04-07 | 2023-04-28 | 九江学院 | 一种固态电池的原位测试装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2012086995A3 (ko) | 2012-09-07 |
KR20120069469A (ko) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019132291A1 (ko) | 공간 활용성과 안전성이 향상된 원통형 전지셀 조립체 및 이를 포함하는 배터리 모듈 | |
WO2018174414A1 (ko) | 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차 | |
WO2017073905A1 (ko) | 테이핑을 이용하는 벤팅 구조의 전지셀 | |
WO2020204407A1 (ko) | 이차 전지용 전지 케이스 및 파우치 형 이차 전지 | |
WO2013168948A1 (ko) | 비정형 구조의 전지셀 및 이를 포함하는 전지모듈 | |
WO2017217641A1 (ko) | 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차 | |
WO2021033943A1 (ko) | 이차 전지 | |
WO2012050343A2 (ko) | 신규한 구조의 캡 어셈블리 및 이를 포함하고 있는 원통형 전지 | |
WO2018074842A1 (ko) | 이차 전지 및 그 모듈 | |
WO2019074193A1 (ko) | 원통형 이차전지 모듈 및 원통형 이차전지 모듈 생산 방법 | |
WO2016032092A1 (ko) | 전지모듈 | |
WO2013027935A1 (en) | Battery module | |
WO2019146892A1 (en) | Battery module comprising a housing with integrated bus bar | |
WO2018236018A1 (ko) | 배터리 팩 | |
WO2019031702A1 (ko) | 배터리 셀 프레임 및 이를 포함하는 배터리 모듈 | |
WO2013119000A1 (ko) | 신규한 구조의 내장형 전지셀 | |
WO2018048159A1 (ko) | 이차 전지 | |
WO2021038545A1 (ko) | 파우치 형 전지 케이스 및 파우치 형 이차 전지 | |
WO2017030272A1 (ko) | 진동을 이용한 전지셀 제조용 가스 트랩 제거 장치 | |
WO2014003361A1 (en) | Easily assembled all-in-one secondary battery module | |
WO2016056776A1 (ko) | 계단 구조의 전극조립체에 대응하는 형상으로 형성되어 있는 전지케이스를 포함하는 전지셀 | |
WO2012086995A2 (ko) | 나트륨-유황 전지 및 그의 제조 방법 | |
WO2015056973A1 (ko) | 파우치형 이차전지 및 이를 포함하는 이차전지 모듈 | |
WO2021033959A1 (ko) | 원통형 전지 | |
WO2020171376A1 (ko) | 단위셀 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11850883 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11850883 Country of ref document: EP Kind code of ref document: A2 |