WO2015133289A1 - 加熱圧縮成形用成形材料、それを用いた成形品及びその製造方法 - Google Patents

加熱圧縮成形用成形材料、それを用いた成形品及びその製造方法 Download PDF

Info

Publication number
WO2015133289A1
WO2015133289A1 PCT/JP2015/054589 JP2015054589W WO2015133289A1 WO 2015133289 A1 WO2015133289 A1 WO 2015133289A1 JP 2015054589 W JP2015054589 W JP 2015054589W WO 2015133289 A1 WO2015133289 A1 WO 2015133289A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
heat compression
molding material
compression molding
molded product
Prior art date
Application number
PCT/JP2015/054589
Other languages
English (en)
French (fr)
Inventor
澤田 栄嗣
木村 正昭
英樹 塩根
三輪 広治
達郎 嘉納
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2015534711A priority Critical patent/JP5950050B2/ja
Publication of WO2015133289A1 publication Critical patent/WO2015133289A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the present invention can increase the viscosity by urethane formation reaction of hydroxyl groups and isocyanate groups in the resin composition, has excellent film releasability, excellent heat compression moldability in a mold having a shear edge, and high strength molding
  • the present invention relates to a carbon fiber reinforced plastic molding material from which a body is obtained, a sheet molding compound, a bulk molding compound, a molded product thereof, and a manufacturing method thereof.
  • the sheet molding compound consists of two resin compound layers in which a liquid resin compound consisting of a matrix resin, inorganic filler, curing agent, thickener, and other additives is applied to a carrier film with a certain thickness by a doctor knife method.
  • a fiber-reinforced material made of glass fiber, carbon fiber, or the like is sandwiched between them, and the fiber-reinforced material is impregnated with a resin compound, and then the resin is thickened (B-stage). It is obtained as a material.
  • This sheet-shaped resin compound is required to be in a liquid state when applied to a carrier film with a certain thickness and thickened after impregnating the fiber reinforcement.
  • These sheet-shaped molding materials are sometimes referred to as prepregs.
  • Bulk molding compounds are mixed into a matrix resin, inorganic fillers, curing agents, thickeners, and relatively short fiber reinforcements called chopped strands by mixing them with a kneader kneader etc. A material is obtained.
  • the molding method is press-heat compression molding, in which a molding material is molded at a pressure of 1 to 20 MPa in a 110 to 180 ° C. mold having a shear edge, and these molding conditions are set for a predetermined time.
  • a molded product is manufactured by holding.
  • the predetermined holding time depends on the curing characteristics of the material, it is 1 to 2 minutes per 1 mm of the thickness of the molded article. For example, it is generally 3 to 6 minutes if the thickness of the molded article is 3 mm.
  • the above unsaturated polyester resins have the disadvantages of high molding shrinkage, fatigue resistance, and poor thermal properties at high temperatures. Also, when carbon fibers are used as fiber reinforcement, the interfacial adhesion between unsaturated polyester resin and carbon fiber is insufficient, so the study of molding materials using epoxy resins having these characteristics as matrix resins is underway. ing.
  • the molding method of these epoxy molding materials is mainly an autoclave molding method. That is, the molding material is shaped by heating and pressing. However, this molding method requires a long time of 30 minutes to 2 hours at a temperature of 110 to 180 ° C. in general, and is free to form by pressing as compared with the press heating compression molding method. A small degree is mentioned as a drawback. Therefore, assuming that the epoxy molding material is molded in a relatively short time by the press heating compression molding method, a molded product having a thickness of 2.2 mm is obtained by the press heating compression molding method at a temperature of 140 ° C., a pressure of 8 MPa, and a molding time of 5 minutes. Proposed technology (see, for example, Patent Document 1).
  • a resin composition containing an alicyclic epoxy resin and an onium salt-based thermal cationic polymerization initiator has been proposed as an improvement in the problem of curability of the epoxy resin (for example, Patent Documents 2 and 3).
  • a molding material for press heating compression molding a molding material partially including an alicyclic epoxy resin has been proposed (see, for example, Patent Document 4), and an epoxy prepreg excellent in curability at a low temperature of 100 ° C. or lower. Is described.
  • a molded product of an epoxy molding material obtained by molding a molding material at a pressure of 1 to 20 MPa in a 110 to 180 ° C. mold having a shear edge and curing for 1 to 2 minutes per 1 mm thickness of the molded product. I didn't.
  • a carbon fiber reinforcing material is impregnated with a resin composition containing an onium salt-based thermal cationic polymerization initiator in combination with an alicyclic epoxy resin and an epoxy resin such as bisphenol A type.
  • a molding material for molding has been proposed (for example, Patent Document 5).
  • the molded product obtained from the molding material for heat compression molding obtained above has a problem that there is a part where the mechanical strength is partially inferior, and a molded product with no bias in mechanical strength is molded.
  • JP 2004-338270 A Japanese Patent Laid-Open No. 3-017101 Japanese Patent Laid-Open No. 3-059001 JP 2000-297141 A JP 2007-270136 A
  • the problem to be solved by the present invention is a molding material for heat compression molding capable of molding a plastic molded product reinforced with carbon fiber having no bias in mechanical strength in a short time, a molded product using the same, and a production thereof Is to provide a method.
  • the present inventors have identified a resin composition containing a poly (meth) acrylate compound having a hydroxyl group, a polyisocyanate compound and a polymerization initiator as a specific carbon fiber reinforcing material.
  • the present inventors have found that the molding material for heat compression molding obtained by impregnating the above can be molded into a molded product having no uneven mechanical strength.
  • the present invention provides a resin composition (A) containing a poly (meth) acrylate compound (a1) having a hydroxyl group, a polyisocyanate compound (a2), and a polymerization initiator (a3) as a carbon fiber reinforcing material ( A molding material for heat compression molding obtained by impregnating B), wherein the carbon fiber reinforcing material (B) is carbon paper surface-treated with a water-soluble resin (b1) having a hydroxyl group.
  • the present invention relates to a molding material for heat compression molding.
  • the present invention also provides a molded product obtained by molding the above-mentioned heat compression molding material, and heat compression molding the heat compression molding material at 110 to 180 ° C. in a mold.
  • the present invention relates to a method for manufacturing a molded product.
  • the molding material for heat compression molding according to the present invention can be suitably used for housing members, automobile parts, electrical parts, civil engineering materials and the like because it can obtain molded products with no bias in mechanical strength.
  • the molding composition for heat compression molding of the present invention comprises a resin composition (A) containing a poly (meth) acrylate compound (a1) having a hydroxyl group, a polyisocyanate compound (a2), and a polymerization initiator (a3).
  • a carbon paper reinforcing material obtained by impregnating a carbon fiber reinforcing material (B), wherein the carbon fiber reinforcing material (B) is a carbon paper surface-treated with a water-soluble resin (b1) having a hydroxyl group.
  • the resin composition (A) contains a poly (meth) acrylate compound (a1) having a hydroxyl group, a polyisocyanate compound (a2), and a polymerization initiator (a3).
  • the poly (meth) acrylate compound (a1) having a hydroxyl group has two or more (meth) acryloyl groups and one or more hydroxyl groups in one molecule.
  • Examples of the poly (meth) acrylate compound (a1) having a hydroxyl group include a vinyl ester resin obtained by acrylating an epoxy part of an epoxy resin, pentaerythritol triacrylate (PETA), dipentaerythritol pentaacrylate (modified DPHA). Etc.
  • PETA pentaerythritol triacrylate
  • DPHA dipentaerythritol pentaacrylate
  • Etc a vinyl ester resin obtained by a reaction between an epoxy resin and an unsaturated monobasic acid is preferable because viscosity increase due to a urethane-forming reaction with an isocyanate compound can be easily controlled.
  • These poly (meth) acrylate compounds (a1) having a hydroxyl group can be used alone or in
  • epoxy resin examples include bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin, novolak type epoxy resins such as phenol novolak type epoxy resin and cresol novolak type epoxy resin, and bromination of these resins.
  • Polyhydric alcohols such as epoxy glycidyl ether such as epoxy resin, dipropylene glycol diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidyl ether of alkylene oxide adduct of bisphenol A, diglycidyl ether of hydrogenated bisphenol A, etc.
  • Glycidyl ether 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclohexanecarboxylate, 1-epoxy -Alicyclic epoxy resins such as 3,4-epoxycyclohexane, glycidyl esters such as diglycidyl phthalate, diglycidyl tetrahydrophthalate, diglycidyl-p-oxybenzoic acid, dimer acid glycidyl ester, tetraglycidyl diaminodiphenylmethane, Heterocyclic such as tetraglycidyl-m-xylenediamine, triglycidyl-p-aminophenol, glycidylamine such as N, N-diglycidylaniline, 1,3-diglycidyl-5,5-dimethylhydantoin, triglycidyl isocyanurate An epoxy resin etc. are mentioned.
  • unsaturated monobasic acid examples include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, acrylic acid dimer, monomethyl malate, monomethyl fumarate, monocyclohexyl fumarate, and sorbic acid. These unsaturated monobasic acids can be used alone or in combination of two or more.
  • the obtained vinyl ester resin may be modified with an acid anhydride such as maleic anhydride or succinic anhydride, an isocyanate compound such as toluene diisocyanate, or isopropenyl-dimethyl-benzyl isocyanate.
  • an acid anhydride such as maleic anhydride or succinic anhydride
  • an isocyanate compound such as toluene diisocyanate, or isopropenyl-dimethyl-benzyl isocyanate.
  • polyisocyanate compound (a2) examples include diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), polymeric MDI, and hydrogenated MDI. Etc. Moreover, these polyisocyanate compounds (a2) can be used alone or in combination of two or more.
  • the polymerization initiator (a3) is not particularly limited, but is preferably an organic peroxide, such as a diacyl peroxide compound, a peroxy ester compound, a hydroperoxide compound, a ketone peroxide compound, an alkyl perester compound, and a carbonate. Examples thereof include compounds, and can be appropriately selected according to molding conditions. These polymerization initiators can be used alone or in combination of two or more.
  • the resin composition (A) is a radically polymerizable two-component compound other than the poly (meth) acrylate compound (a1) having a hydroxyl group, the polyisocyanate compound (a2), and the polymerization initiator (a3). You may use together the monomer, oligomer, polymer, etc. which have a heavy bond.
  • vinyl monomers such as styrene, ⁇ -methylstyrene, chlorostyrene, divinylbenzene, t-butylstyrene, vinyltoluene, vinyl acetate, diarylphthalate, triarylcyanurate, (meth) acrylic acid, (meth) acrylic Examples include acid esters, (anhydrous) phthalic acid, and polymers thereof, unsaturated polyester resins, and urethane acrylate resins.
  • the molar ratio (NCO / OH) of isocyanate groups (NCO) in the polyisocyanate compound (a2) is preferably in the range of 0.1 to 1. If it is smaller than the above range, the thickening reaction is insufficient and the resulting molding material is too soft, resulting in poor workability. If it exceeds the above range, the polyisocyanate compound (a2) becomes excessive, causing coloration and strength reduction due to side reactions. there is a possibility. For the above reason, the range of 0.2 to 0.8 is more preferable.
  • the content of the polymerization initiator (a3) in the resin composition (A) is not particularly limited as long as the object of the present invention is achieved, but the curing characteristics of the molding material of the present invention. And 0.3 to 3% by mass are preferable.
  • the carbon fiber reinforcing material (B) is a carbon paper surface-treated with a water-soluble resin (b1) having a hydroxyl group.
  • a water-soluble resin (b1) having a hydroxyl group.
  • the water-soluble resin (b1) include natural polymers such as starch, saccharides, agar, dextrin, and gelatin, and synthetic polymers such as hydroxyethyl cellulose and polyvinyl alcohol (PVA).
  • the water-soluble resin (b1) has a hydroxyl group in the molecular structure, generates a polyisocyanate compound and a urethane bond, and improves the interfacial adhesion with the matrix resin, but is present on the carbon fiber surface.
  • the content of the water-soluble resin (b1) in the carbon fiber reinforcing material (B) is 1 to 15% by mass because there is a possibility of causing a decrease in the strength of the resulting molded product if the amount is too much or too little. This range is preferable because better interfacial adhesion can be obtained.
  • the carbon paper is uniformly surface-treated with the water-soluble resin (b1), and from the viewpoint of cost, carbon short fibers having a fiber length of 6 to 60 mm are dispersed in an aqueous solution of the water-soluble resin (b1). It is preferable to use a paper-made one. If the short carbon fiber is shorter than the above range, the strength of the molded body obtained from the molding material of the present invention will be insufficient. If longer than the above range, the short carbon fiber will not flow easily during compression molding. There is a possibility that a resin-rich portion is generated in a complex-shaped molded body having a structure or the like.
  • the unit weight of the paper-made carbon fiber reinforcing material (B) is preferably in the range of 50 to 500 g / m 2 from the viewpoint of impregnation with the resin composition (A).
  • the molding material for heat compression molding of the present invention is obtained by impregnating the resin composition (A) into the carbon fiber reinforcing material (B).
  • the resin composition The carbon fiber reinforcing material (B) is preferably in the range of 10 to 60% by mass relative to the product (A).
  • a polymerization inhibitor can be added in the resin composition (A) of the present invention.
  • the polymerization inhibitor is not particularly limited.
  • These polymerization inhibitors may be used alone or in combination of two or more.
  • the addition amount of the polymerization inhibitor is not particularly limited, but preferably 10 to 1000 ppm can be added to the resin composition.
  • a curing accelerator can be contained in the molding material for heat compression molding of the present invention.
  • metal soaps such as cobalt naphthenate, cobalt octenoate, vanadyl octenoate, copper naphthenate, and barium naphthenate
  • metal chelate compounds such as vanadyl acetyl acetate, cobalt acetyl acetate, and iron acetyl acetonate.
  • N, N-dimethylamino-p-benzaldehyde N, N-dimethylaniline, N, N-diethylaniline, N, N-dimethyl-p-toluidine, N-ethyl-m-toluidine, triethanol
  • amine compounds include amine, m-toluidine, diethylenetriamine, pyridine, phenylmorpholine, piperidine, diethanolaniline and the like.
  • filler examples include calcium carbonate, magnesium carbonate, barium sulfate, mica, talc, kaolin, clay, celite, asbestos, barlite, baryta, silica, silica sand, dolomite limestone, gypsum, aluminum fine powder, hollow balloon, alumina , Glass powder, aluminum hydroxide, cryolite, zirconium oxide, antimony trioxide, titanium oxide, molybdenum dioxide, iron powder and the like.
  • the amount of these fillers added is preferably 10 to 500 parts by weight, more preferably 30 to 300 parts by weight, based on 100 parts by weight of the resin composition.
  • Examples of the internal mold release agent include zinc stearate, calcium stearate, paraffin wax, polyethylene wax, and carnauba wax. Paraffin wax, polyethylene wax, and carnauba wax are preferable.
  • thermoplastic resin may be added as a low shrinkage agent in the molding material for heat compression molding of the present invention.
  • the low shrinkage agent include polystyrene, styrene-acrylic acid copolymer, styrene-vinyl acetate copolymer, styrene-butadiene copolymer, poly (meth) acrylic acid ester, and the like. These can suppress the molding shrinkage of the molded product obtained because they cause thermal expansion or foaming when they are heated and compressed at 110 to 180 ° C.
  • an ultraviolet absorber a pigment, a thickener, a thickener, an anti-aging agent, a plasticizer, a flame retardant, an antibacterial agent, a stabilizer, A reinforcing material, a photocuring agent, etc. can be contained.
  • the molding material for heat compression molding of the present invention can be thickened by a urethane formation reaction between a hydroxyl group and an isocyanate group in the resin composition, and can be made into a B-stage.
  • aging is preferably performed in the range of room temperature to 50 ° C. for 12 to 48 hours. Thereby, the molding material can be made tack-free.
  • the viscosity of the molding material after thickening is preferably 10,000 poise or more at 25 ° C., more preferably from 20,000 poise to 100,000 poise.
  • the molding material for heat compression molding of the present invention is preferably a sheet molding compound or a bulk molding compound because it can be easily molded and has excellent reproducibility even in a complicated shape.
  • each component of the resin compound is mixed by mixing a liquid component and a powder component using a mixer such as a normal roll, an intermixer, a planetary mixer, a kneader, and an extruder. Mix and disperse.
  • a mixer such as a normal roll, an intermixer, a planetary mixer, a kneader, and an extruder.
  • the order of mixing the components is not particularly limited, but the polyisocyanate compound (a2) is added to the hydroxyl group-containing poly (meth) acrylate compound (a1) at room temperature and then dispersed using the stirring device. Is preferred. If necessary, an inorganic filler or the like is subsequently added and mixed and dispersed.
  • a lacquer method in which a matrix resin solution containing a solvent is applied to a fiber reinforcing material and then desolvated after impregnation with the resin solution, which is conventionally used in epoxy molding materials, without using a solvent.
  • examples thereof include a hot melt method in which a matrix resin is heated and dissolved in advance, and a resin film is prepared in advance and then impregnated by being bonded to a fiber reinforcing material, a dip method in which a fiber reinforcing material is immersed in a resin solution, and a doctor knife method.
  • the doctor knife method generally employed in the sheet molding compound is preferable.
  • each component of the resin compound is mixed by mixing a liquid component and a powder component using a mixer such as a normal roll, an intermixer, a planetary mixer, a kneader, and an extruder. Mix and disperse.
  • the order of mixing the components is not particularly limited, but the polyisocyanate compound (a2) is added to the hydroxyl group-containing poly (meth) acrylate compound (a1) at room temperature and then dispersed using the stirring device. Is preferred. If necessary, an inorganic filler or the like is subsequently added and mixed and dispersed. Thereafter, a fiber reinforcing material is added and mixed and dispersed.
  • a predetermined amount of the molding material is weighed, put into a mold heated to 110 to 180 ° C. in advance, clamped with a compression molding machine, and the molding material is shaped.
  • a manufacturing method is used in which a molding material is cured by maintaining a molding pressure of 1 to 20 MPa, and then a molded product is taken out to obtain a molded product.
  • a manufacturing method for heat compression molding in a mold having a share edge at a mold temperature of 120 to 160 ° C., holding a molding pressure of 1 to 10 MPa for a specified time of 1 to 2 minutes per 1 mm of a molded product thickness Is preferred.
  • Preparation Example 1 Preparation of resin composition (A-1)
  • the molar ratio (NCO / OH) in the resin composition was 0.30.
  • Preparation Example 2 Preparation of resin composition (A-2)
  • a resin composition (A-2) was obtained in the same manner as in Preparation Example 1, except that the amount of polymeric MDI used in Preparation Example 1 was changed from 8.5 parts by mass to 13 parts by mass.
  • the molar ratio (NCO / OH) in the resin composition was 0.46.
  • Preparation Example 3 Preparation of resin composition (A-3)
  • a resin composition (A-3) was obtained in the same manner as in Preparation Example 1, except that the amount of polymeric MDI used in Preparation Example 1 was changed from 8.5 parts by weight to 19.8 parts by weight.
  • the molar ratio (NCO / OH) in the resin composition was 0.70.
  • Preparation Example 4 Preparation of resin composition (A-4)
  • Resin was prepared in the same manner as in Preparation Example 1 except that 8.5 parts by mass of the polymeric MDI used in Preparation Example 1 was changed to 16.1 parts by mass of HDI-based polyisocyanate (“Bernock DN-902S” manufactured by DIC Corporation).
  • a composition (A-4) was obtained.
  • the molar ratio (NCO / OH) in the resin composition was 0.46.
  • Preparation Example 5 Preparation of resin composition (A-5)
  • a resin composition (A-5) was obtained.
  • the molar ratio (NCO / OH) in the resin composition was 0.46.
  • Preparation Example 6 Preparation of resin composition (A-6)
  • Resin was prepared in the same manner as in Preparation Example 1 except that 8.5 parts by mass of polymeric MDI used in Preparation Example 1 was changed to 11.7 parts of hydrogenated MDI (“Dismodule W” manufactured by Sumika Bayer Urethane Co., Ltd.).
  • a composition (A-6) was obtained.
  • the molar ratio (NCO / OH) in the resin composition was 0.46.
  • Table 1 shows the compositions of the resin compositions (A-1) to (A-6) obtained above.
  • Example 1 Production and evaluation of molding material (1) for heat compression
  • Paper (“CF paper” manufactured by Nippon Polymer Sangyo Co., Ltd., unit weight 380 g / m 2 , hereinafter abbreviated as carbon fiber reinforcement (B-1)) is sandwiched between the resin-coated films to form a sandwich structure, and the PVA surface
  • the carbon fiber content including the treatment agent was impregnated so as to be 33% by mass, and left in an oven at 45 ° C.
  • the carbon fiber reinforcing material (B-1) was obtained by dispersing carbon fiber cut to 1 inch (25.4 mm) in a PVA aqueous solution, papermaking, and drying. The content of PVA in the carbon fiber reinforcing material (B-1) was 5% by mass.
  • the heat compression molding material (1) obtained above is cut into 280 mm x 280 mm to form 360 g by stacking four sheets, and then heat compression molding using a plate-shaped mold of 300 mm x 300 mm x 3 mm. 1) was obtained.
  • the mold temperature was (lower) 130 ° C./(upper) 145 ° C., and after placing the four-layered molding material on the lower mold, the mold was held at a mold closing pressure of 5 MPa for 6 minutes, After the mold was opened, it was taken out and allowed to cool at room temperature.
  • Examples 2 to 6 Production and evaluation of molding materials (2) to (6) for heat compression
  • Example 2 a molded product was produced in the same manner as in Example 1 except that the heat compression molding materials (2) to (6) were used instead of the heat compression molding material (1), and the bending strength, The elastic modulus, tensile strength, and tensile elastic modulus were measured. In addition, each standard deviation was obtained and the variation was evaluated.
  • Table 2 shows the evaluation results of the heating compression molding materials (1) to (6) obtained above.
  • Example 2 a molded product was produced in the same manner as in Example 1 except that the heat compression molding material (R-1) was used instead of the heat compression molding material (1), and the bending strength and the bending elastic modulus were produced. The tensile strength and tensile modulus were measured. In addition, each standard deviation was obtained and the variation was evaluated.
  • Example 2 a molded product was produced and bent in the same manner as in Example 1 except that the heat compression molding materials (R-2) to (R-3) were used instead of the heat compression molding material (1).
  • Strength, flexural modulus, tensile strength, and tensile modulus were measured. In addition, each standard deviation was obtained and the variation was evaluated.
  • Table 3 shows the evaluation results of the heating compression molding materials (R-1) to (R-3) obtained above.
  • Comparative Examples 1 to 3 are examples in which carbon paper surface-treated with a water-soluble resin having a hydroxyl group was not used as the carbon fiber reinforcement, but the standard deviation of tensile strength and tensile modulus was large. It was confirmed that the variation was remarkable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

 水酸基を有するポリ(メタ)アクリレート化合物(a1)と、ポリイソシアネート化合物(a2)、重合開始剤(a3)とを含有する樹脂組成物(A)を、炭素繊維強化材(B)に含浸して得られる加熱圧縮成形用成形材料であって、前記炭素繊維強化材(B)が、水酸基を有する水溶性樹脂(b1)で表面処理されたカーボンペーパーであることを特徴とする加熱圧縮成形用成形材料を提供する。また、該加熱圧縮成形用成形材料を金型内で110~180℃で加熱圧縮成形することを特徴とする成形品の製造方法を提供する。この加熱圧縮成形用成形材料を用いることで、短時間で、機械的強度に偏りのない炭素繊維で強化されたプラスチック成形品を得ることができる。

Description

加熱圧縮成形用成形材料、それを用いた成形品及びその製造方法
 本発明は、樹脂組成物中の水酸基とイソシアネート基のウレタン生成反応により増粘させることができ、フィルム剥離性に優れ、シェアエッジを有する金型内で加熱圧縮成形性に優れ、高強度の成形体が得られる炭素繊維強化プラスチック成形材料、シートモールディングコンパウンド、バルクモールディングコンパウンド、その成形品及びその製造方法に関するものである。
 一般に不飽和ポリエステル樹脂をマトリックス樹脂とした成形材料、シートモールディングコンパウンドと呼ばれるシート状の成形材料、バルクモールディングコンパウンドと呼ばれる塊状の成形材料は、住設部材、自動車部品、電気部品などに広く使用されている。シートモールディングコンパウンドは、マトリックス樹脂、無機充填剤、硬化剤、増粘剤、その他添加剤からなる液状の樹脂コンパウンドをドクターナイフ方式などによりキャリアフィルム上に一定の厚みで塗布した2組の樹脂コンパウンド層の間に、ガラス繊維や炭素繊維等からなる繊維強化材を挟み込み、繊維強化材に樹脂コンパウンドを含浸させ、その後樹脂を増粘させることで(Bステージ化)、取り扱いに優れたシート状の成形材料として得られるものである。このシート状樹脂コンパウンドは、キャリアフィルム上に一定の厚みで塗布する際には液状で、繊維強化材に含浸した後には増粘していることが求められる。なお、これらシート状成形材料をプリプレグと呼ぶ場合がある。一方、バルクモールディングコンパウンドは、マトリックス樹脂、無機充填剤、硬化剤、増粘剤、及びチョップドストランドと呼ばれる比較的短い繊維強化材を、ニーダー混練機などで混合し、増粘させることで塊状の成形材料が得られる。
 また、その成形方法は、プレス加熱圧縮成形であり、シェアエッジを有する110~180℃の金型内で、1~20MPaの圧力にて成形材料を賦型し、所定の時間これらの成形条件を保持することで成形品を製造するものである。所定の保持時間は、材料の硬化特性にもよるが、成形品厚み1mm当たり1~2分間であり、例えば成形品厚み3mmであれば3~6分間であるのが一般的である。
 しかしながら、上記の不飽和ポリエステル樹脂は、成形収縮率が大きいこと、耐疲労特性、高温での熱的特性が劣るという欠点を有する。また繊維強化材として炭素繊維を用いる場合は、不飽和ポリエステル樹脂と炭素繊維の界面接着性が不十分であるため、マトリックス樹脂としてこれらの特性を有するエポキシ樹脂を用いた成形材料の検討が進められている。
 これらエポキシ成形材料の成形方法は、主にオートクレーブ成形法である。すなわち成形材料を加熱、加圧することで賦型させるものである。しかし、この成形法は、硬化時間が、概して110~180℃の温度下で30分~2時間と長時間を要し、プレス加熱圧縮成形法と比較して、加圧による賦型形状に自由度が小さいことが欠点として挙げられる。そこでエポキシ成形材料が、プレス加熱圧縮成形法において比較的短時間で成形されたものとして、プレス加熱圧縮成形法により温度140℃、圧力8MPa、成形時間5分で厚み2.2mmの成形品が得られる技術(例えば特許文献1参照)が提案されている。
 ビスフェノールA型のエポキシ樹脂とアミン化合物とからなるものであるが、硬化特性としては、上記の不飽和ポリエステル樹脂をマトリックス樹脂としたシートモールディングコンパウンドに比較すると、依然硬化性に劣り、Bステージ化の記載もないことから硬化特性、取り扱い性が不十分な成形材料であると推測される。
 エポキシ樹脂の硬化性の問題点を改良するものとして、脂環式エポキシ樹脂とオニウム塩系熱カチオン重合開始剤とを含む樹脂組成物が提案されている(例えば特許文献2、3)。またプレス加熱圧縮成形法用成形材料としては、脂環式エポキシ樹脂を一部含む成形材料が提案されており(例えば特許文献4参照)、100℃以下の低温での硬化性に優れたエポキシプリプレグの記載がある。
 しかしながら、シェアエッジを有する110~180℃の金型内で、1~20MPaの圧力にて成形材料を賦型し、成形品厚み1mm当たり1~2分間で硬化したエポキシ成形材料の成形品はこれまでなかった。
 上記課題を解決するために、脂環式エポキシ樹脂とビスフェノールA型などのエポキシ樹脂を併用し、オニウム塩系熱カチオン重合開始剤を含む樹脂組成物を炭素繊維強化材に含浸せしめてなる加熱圧縮成形用成形材料が提案されている(例えば特許文献5)。
 しかしながら、上記で得られた加熱圧縮成形用成形材料から得られる成形品には、部分的に機械的強度が劣る箇所が存在する等の問題があり、機械的強度に偏りのない成形品を成形可能な加熱圧縮成形用成形材料が求められていた。
特開2004-338270号公報 特開平3-017101号公報 特開平3-059001号公報 特開2000-297141号公報 特開2007-270136号公報
 本発明が解決しようとする課題は、短時間で、機械的強度に偏りのない炭素繊維で強化されたプラスチック成形品を成形可能な加熱圧縮成形用成形材料、それを用いた成形品及びその製造方法を提供することである。
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、水酸基を有するポリ(メタ)アクリレート化合物,ポリイソシアネート化合物及び重合開始剤を含有する樹脂組成物を、特定の炭素繊維強化材に含浸して得られる加熱圧縮成形用成形材料が、機械的強度に偏りのない成形品を成形可能であることを見出し、本発明を完成させた。
 すなわち、本発明は、水酸基を有するポリ(メタ)アクリレート化合物(a1)と、ポリイソシアネート化合物(a2)、重合開始剤(a3)とを含有する樹脂組成物(A)を、炭素繊維強化材(B)に含浸して得られる加熱圧縮成形用成形材料であって、前記炭素繊維強化材(B)が、水酸基を有する水溶性樹脂(b1)で表面処理されたカーボンペーパーであることを特徴とする加熱圧縮成形用成形材料に関する。
 また、本発明は、上記加熱圧縮成形用成形材料を成形して得られることを特徴とする成形品、及び、上記加熱圧縮成形用成形材料を金型内で110~180℃で加熱圧縮成形することを特徴とする成形品の製造方法に関する。
 本発明の加熱圧縮成形用成形材料は、機械的強度に偏りのない成形品を得られることから、住設部材、自動車部品、電気部品、土木建材等に好適に用いることができる。
 本発明の加熱圧縮成形用成形材料は、水酸基を有するポリ(メタ)アクリレート化合物(a1)と、ポリイソシアネート化合物(a2)、重合開始剤(a3)とを含有する樹脂組成物(A)を、炭素繊維強化材(B)に含浸して得られる加熱圧縮成形用成形材料であって、前記炭素繊維強化材(B)が、水酸基を有する水溶性樹脂(b1)で表面処理されたカーボンペーパーであるものである。
 まず、樹脂組成物(A)について説明する。樹脂組成物(A)は、水酸基を有するポリ(メタ)アクリレート化合物(a1)と、ポリイソシアネート化合物(a2)、重合開始剤(a3)とを含有するものである。
 前記水酸基を有するポリ(メタ)アクリレート化合物(a1)は、1分子中に(メタ)アクリロイル基を2個以上有し、水酸基を1個以上有するものである。この水酸基を有するポリ(メタ)アクリレート化合物(a1)としては、例えば、エポキシ樹脂のエポキシ部をアクリル化して得られるビニルエステル樹脂、ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールペンタアクリレート(変性DPHA)などが挙げられる。これらの中でも、イソシアネート化合物とのウレタン生成反応による増粘性が制御しやすいことから、エポキシ樹脂と不飽和一塩基酸との反応によって得られるビニルエステル樹脂が好ましい。また、これらの水酸基を有するポリ(メタ)アクリレート化合物(a1)は、単独で用いることも2種以上併用することもできる。
 前記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、これらの樹脂の臭素化エポキシ樹脂等のフェノールのグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ビスフエノールAのアルキレンオキサイド付加物のジグリシジルエーテル、水素化ビスフェノールAのジグリシジルエーテル等の多価アルコールのグリシジルエーテル、3,4-エポキシー6-メチルシクロヘキシルメチル-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、1-エポシエチル-3,4-エポキシシクロヘキサン等の脂環式エポキシ樹脂、フタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、ジグリシジル-p-オキシ安息香酸、ダイマー酸グリシジルエステルなどのグリシジルエステル、テトラグリシジルジアミノジフェニルメタン、テトラグリシジル-m-キシレンジアミン、トリグリシジル-p一アミノフェノール、N,N-ジグリシジルアニリンなどのグリシジルアミン、1,3-ジグリシジル-5,5-ジメチルヒダントイン、トリグリシジルイソシアヌレートなどの複素環式エポキシ樹脂などが挙げられる。また、これらのエポキシ樹脂は単独で用いることも2種以上併用することもできる。
 前記の不飽和一塩基酸としては、例えばアクリル酸、メタクリル酸、クロトン酸、桂皮酸、アクリル酸ダイマー、モノメチルマレート、モノメチルフマレート、モノシクロヘキシルフマレート、あるいはソルビン酸等が挙げられる。これら不飽和一塩基酸は単独で用いることも2種以上併用することもできる。
 更に、得られたビニルエステル樹脂を無水マレイン酸、無水コハク酸等の酸無水物、トルエンジイソシアネート、イソプロペニルージメチル-ベンジルイソシアネートのようなイソシアネート化合物等で変性してもよい。
 前記ポリイソシアネート化合物(a2)は、例えば、ジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、ポリメリックMDI、水素添加MDIなどが挙げられる。また、これらのポリイソシアネート化合物(a2)は、単独で用いることも2種以上併用することもできる。
 前記重合開始剤(a3)は、特に限定されないが、有機過酸化物が好ましく、例えば、ジアシルパーオキサイド化合物、パーオキシエステル化合物、ハイドロパーオキサイド化合物、ケトンパーオキサイド化合物、アルキルパーエステル化合物、パーカーボネート化合物等が挙げられ、成形条件に応じて適宜選択できる。これらの重合開始剤は、単独で用いることも2種以上併用することもできる。
また、前記樹脂組成物(A)は、前記水酸基を有するポリ(メタ)アクリレート化合物(a1)、前記ポリイソシアネート化合物(a2)及び前記重合開始剤(a3)以外の成分として、ラジカル重合性の二重結合を有するモノマー、オリゴマー、ポリマー等を併用してもよい。例えば、スチレン、α-メチルスチレン、クロロスチレン、ジビニルベンゼン、t-ブチルスチレン、ビニルトルエン、酢酸ビニル、ジアリールフタレート、トリアリールシアヌレート等のビニル単量体、(メタ)アクリル酸、(メタ)アクリル酸エステル、(無水)フタル酸、及びこれらの重合物、不飽和ポリエステル樹脂、ウレタンアクリレート樹脂などが挙げられる。
 本発明の成形材料の作業性、成形性及び成形品の強度がより向上することから、前記樹脂組成物(A)における前記水酸基を有するポリ(メタ)アクリレート樹脂(a1)中の水酸基(OH)と、前記ポリイソシアネート化合物(a2)中のイソシアネート基(NCO)のモル比(NCO/OH)は、0.1~1の範囲内であることが好ましい。前記範囲より小さいと増粘反応が不十分で得られる成形材料が柔らかすぎるため作業性が悪くなり、前記範囲を超えるとポリイソシアネート化合物(a2)が過剰となり、副反応による着色や強度低下を招く可能性がある。前記理由により、より好ましくは0.2~0.8の範囲である。
前記樹脂組成物(A)中の前記重合開始剤(a3)の含有量としては、本発明の目的を達成する範囲であれば特に限定されるものではないが、本発明の成形材料の硬化特性と保存安定性が共に優れることから、0.3~3質量%の範囲が好ましい。
 次に、前記炭素繊維強化材(B)について説明する。前記炭素繊維強化材(B)は、水酸基を有する水溶性樹脂(b1)で表面処理されたカーボンペーパーであり、前記水溶性樹脂(b1)を溶かして適度な粘性とした水溶液中に、炭素短繊維を分散させて、抄紙、乾燥させて得られるものである。
前記水溶性樹脂(b1)としては、例えば、でんぷん、糖類、寒天、デキストリン、ゼラチンなどの天然系ポリマー、ヒドロキシエチルセルロース、ポリビニルアルコール(PVA)などの合成系ポリマーが挙げられる。
 前記水溶性樹脂(b1)は、分子構造中に水酸基を有することを特徴とし、ポリイソシアネート化合物とウレタン結合を生成し、マトリックス樹脂との界面密着性を向上させるが、炭素繊維表面に存在する量が多すぎても、少なすぎても得られる成形体の強度低下を引き起こす可能性があるため、炭素繊維強化材(B)中の前記水溶性樹脂(b1)の含有率は1~15質量%の範囲内が、より優れた界面密着性を得られることから好ましい。
 前記カーボンペーパーは、前記水溶性樹脂(b1)で均一に表面処理するため、またコストの観点から、前記水溶性樹脂(b1)の水溶液中に繊維長6~60mmの炭素短繊維を分散させて抄紙されたものを用いることが好ましい。炭素短繊維が前記範囲より短いと、本発明の成形材料から得られる成形体の強度が不十分となり、前記範囲より長いと、圧縮成形時に前記炭素短繊維が流動し難くなるため、リブおよびボス構造などを有する複雑形状の成形体において樹脂リッチな部分が生じる可能性がある。また、抄紙時の均一性の観点から、前記炭素短繊維が60mmを超えると不均一になる可能性があることから、より好ましくは10~30mmの範囲である。更に、抄紙された炭素繊維強化材(B)の単位重量は、樹脂組成物(A)との含浸性の観点から、50~500g/mの範囲内が好ましい。
 本発明の加熱圧縮成形用成形材料は、樹脂組成物(A)を、炭素繊維強化材(B)に含浸して得られるが、得られる成形体の強度がより向上することから、前記樹脂組成物(A)に対して、前記炭素繊維強化材(B)は10~60質量%の範囲が好ましい。
 本発明の樹脂組成物(A)中には、重合禁止剤を添加することができる。重合禁止剤は特に限定されるものではないが、例えば、ハイドロキノン、トリメチルハイドロキノン、p-t-ブチルカテコール、t-ブチルハイドロキノン、トルハイドロキノン、p-ベンゾキノン、ナフトキノン、ハイドロキノンモノメチルエーテル、フェノチアジン、ナフテン酸銅、塩化銅等が挙げられる。これらの重合禁止剤は、一種のみを用いても良く、また、二種以上を適時混合して用いても良い。尚、上記重合禁止剤の添加量は、特に限定されるものではないが、好ましくは樹脂組成物中に、10~1000ppm添加することができる。
 本発明の加熱圧縮成形用成形材料中には、硬化促進剤を含有させることができる。例えば、ナフテン酸コバルト、オクテン酸コバルト、オクテン酸バナジル、ナフテン酸銅、ナフテン酸バリウム等の金属石鹸、バナジルアセチルアセテート、コバルトアセチルアセテート、鉄アセチルアセトネート等の金属キレート化合物が挙げられる。またアミン化合物として、N,N-ジメチルアミノ-p-ベンズアルデヒド、N,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N-ジメチル-p-トルイジン、N-エチル-m-トルイジン、トリエタノールアミン、m-トルイジン、ジエチレントリアミン、ピリジン、フェニルモルホリン、ピペリジン、ジエタノールアニリン等が挙げられる。
 本発明の加熱圧縮成形用成形材料中には、その他充填剤、内部離型剤等を含有させることができる。充填剤としては、例えば、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、マイカ、タルク、カオリン、クレー、セライト、アスベスト、バーライト、バライタ、シリカ、ケイ砂、ドロマイト石灰石、石こう、アルミニウム微粉、中空バルーン、アルミナ、ガラス粉、水酸化アルミニウム、寒水石、酸化ジルコニウム、三酸化アンチモン、酸化チタン、二酸化モリブデン、鉄粉などが挙げられる。これらの充填剤の添加量は、樹脂組成物100質量部に対して、10~500質量部が好ましく、30~300質量部がより好ましい。
 前記内部離型剤としては、例えばステアリン酸亜鉛、ステアリン酸カルシウム、パラフィンワックス、ポリエチレンワックス、カルナバワックスなどが挙げられる。好ましくは、パラフィンワックス、ポリエチレンワックス、カルナバワックスが挙げられる。
 更に、本発明の加熱圧縮成形用成形材料中には、低収縮化剤として熱可塑性樹脂を添加してもよい。低収縮化剤としては、例えば、ポリスチレン、スチレン-アクリル酸共重合体、スチレン-酢酸ビニル共重合体、スチレン-ブタジエン共重合体、ポリ(メタ)アクリル酸エステルなどが挙げられる。これらは、110~180℃で加熱圧縮成形される際、熱膨張または発泡を生じさせるため得られる成形体の成形収縮率を抑制することができる。
 また、本発明の加熱圧縮成形用成形材料中には、その他の成分として、紫外線吸収剤、顔料、増粘剤、減粘剤、老化防止剤、可塑剤、難燃剤、抗菌剤、安定剤、補強材、光硬化剤等を含有させることができる。
 本発明の加熱圧縮成形用成形材料は、前記樹脂組成物中の水酸基とイソシアネート基とのウレタン生成反応によって増粘し、Bステージ化することが可能である。イソシアネート化合物(a2)の種類に応じて、常温~50℃の範囲内で12~48時間熟成することが好ましい。これにより成形材料をタックフリー化することができる。熟成温度が50℃を越える場合、硬化反応が進みすぎるのでBステージ化した成形材料を得ることはできない。増粘後の成形材料の粘度は、好ましくは25℃で1万ポイズ以上であり、より好ましくは2万ポイズから10万ポイズである。
 本発明の加熱圧縮成形用成形材料は、簡便に成形可能で、且つ複雑形状でも再現性に優れることから、シートモールディングコンパウンド、もしくはバルクモールディングコンパウンドであることが好ましい。
 前記シートモールディングコンパウンドの製造方法としては、通常のロール、インターミキサー、プラネタリーミキサー、ニーダー、押し出し機などの混合機を用いて液状成分と粉末成分とを混合することにより、樹脂コンパウンドの各成分を混合分散させるものである。各成分の混合順序は、特に限定されるものではないが、常温で水酸基含有ポリ(メタ)アクリレート化合物(a1)にポリイソシアネート化合物(a2)を添加した後、上記撹拌装置を用いて分散させるのが好ましい。さらに必要であれば、これに続いて、無機フィラーなどを加え混合分散させる。次いでシート化する方法としては、従来からエポキシ成形材料で使用されている、溶剤を含むマトリックス樹脂溶液を繊維強化材に塗布し、樹脂溶液を含浸させた後に脱溶剤するラッカー法、溶剤を使わずにマトリックス樹脂を加熱溶解させ樹脂フィルムを予め作成し、繊維強化材に貼り合わせて含浸させるホットメルト法、繊維強化材を樹脂液に漬けて塗布するディップ方式、ドクターナイフ方式等が挙げられる。本発明の場合、これらのうち、一般的にシートモールディングコンパウンドで採用されているドクターナイフ方式が好ましい。
 前記バルクモールディングコンパウンドの製造方法としては、通常のロール、インターミキサー、プラネタリーミキサー、ニーダー、押し出し機などの混合機を用いて液状成分と粉末成分とを混合することにより、樹脂コンパウンドの各成分を混合分散させるものである。各成分の混合順序は、特に限定されるものではないが、常温で水酸基含有ポリ(メタ)アクリレート化合物(a1)にポリイソシアネート化合物(a2)を添加した後、上記撹拌装置を用いて分散させるのが好ましい。さらに必要であれば、これに続いて、無機フィラーなどを加え混合分散させる。その後繊維強化材を加え混合分散させる。
 本発明の成形材料の成形にあたっては、成形材料を所定量計量し、予め110~180℃に加熱した金型に投入し、圧縮成形機にて型締めを行い、成形材料を賦型させ、0.1~20MPaの成形圧力を保持することによって、成形材料を硬化させ、その後成形品を取り出し成形品を得る製造方法が用いられる。この場合シェアエッジを有する金型内で金型温度120~160℃にて、成形品厚み1mm当たり1~2分間という規定の時間、1~10MPaの成形圧力を保持し、加熱圧縮成形する製造方法が好ましい。
 以下本発明を実施例によって更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(調製例1:樹脂組成物(A-1)の調製)
 ビニルエステル樹脂とスチレンとの混合物(DIC株式会社製「ディックライトUE-3505」、ビニルエステル樹脂/スチレン=58/42(質量%))100質量部、ポリメリックMDI(三井化学株式会社製「コスモネートLL」)8.5質量部、重合開始剤(化薬アクゾ株式会社製「カヤカルボンAIC-75」、有機過酸化物)1部を混合し、樹脂組成物(A-1)を得た。樹脂組成物におけるモル比(NCO/OH)は0.30であった。
(調製例2:樹脂組成物(A-2)の調製)
 調製例1で用いたポリメリックMDIの量を8.5質量部から13質量部に変更した以外は調製例1と同様にして、樹脂組成物(A-2)を得た。樹脂組成物におけるモル比(NCO/OH)は0.46であった。
(調製例3:樹脂組成物(A-3)の調製)
 調製例1で用いたポリメリックMDIの量を8.5質量部から19.8質量部に変更した以外は調製例1と同様にして、樹脂組成物(A-3)を得た。樹脂組成物におけるモル比(NCO/OH)は0.70であった。
(調製例4:樹脂組成物(A-4)の調製)
 調製例1で用いたポリメリックMDI 8.5質量部を、HDI系ポリイソシアネート(DIC株式会社製「バーノックDN-902S」)16.1質量部に変更した以外は調製例1と同様にして、樹脂組成物(A-4)を得た。樹脂組成物におけるモル比(NCO/OH)は0.46であった。
(調製例5:樹脂組成物(A-5)の調製)
 調製例1で用いたポリメリックMDI 8.5質量部を、XDI(三井化学株式会社製「タケネート500」)8.5部に変更した以外は調製例1と同様にして、樹脂組成物(A-5)を得た。樹脂組成物におけるモル比(NCO/OH)は0.46であった。
(調製例6:樹脂組成物(A-6)の調製)
 調製例1で用いたポリメリックMDI 8.5質量部を、水素添加MDI(住化バイエルウレタン株式会社製「ディスモジュールW」)11.7部に変更した以外は調製例1と同様にして、樹脂組成物(A-6)を得た。樹脂組成物におけるモル比(NCO/OH)は0.46であった。
 上記で得られた樹脂組成物(A-1)~(A-6)の組成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(実施例1:加熱圧縮用成形材料(1)の製造及び評価)
 上記で得られた樹脂組成物(A-1)を、30μmの2枚のポリプロピレンフィルムに塗布量が平均385g/mとなるように塗布して、ポリビニルアルコール(PVA)で表面処理されたカーボンペーパー(日本ポリマー産業株式会社製「CFペーパー」、単位重量380g/m、以下、炭素繊維強化材(B-1)と略記する。)をその樹脂塗布フィルムで挟み込んでサンドイッチ構造として、PVA表面処理剤を含む炭素繊維含量が33質量%となるよう含浸させ、45℃オーブン中に24時間放置し、加熱圧縮用成形材料(1)(シートモールディングコンパウンド)を得た。また得られた成形材料の単位重量は1.15kg/mであった。なお、前記炭素繊維強化材(B-1)は、PVA水溶液中に1インチ(25.4mm)にカットした炭素繊維を分散させ、抄紙、乾燥して得た。炭素繊維強化材(B-1)中のPVAの含有量は5質量%であった。
 次いで、得られた加熱圧縮用成形材料(1)を用いて、下記の成形品の評価を行った。
[評価用成形品の作製]
 上記で得られた加熱圧縮用成形材料(1)を280mm×280mmに切り取り、4枚重ねで360gとして、300mm×300mm×3mmのプレート状金型を用いて加熱圧縮成形することにより、成形品(1)を得た。加熱圧縮成形条件としては、金型温度が(下)130℃/(上)145℃で、下金型に前記4枚重ねの成形材料を置いた後、型閉圧力5MPaで6分間保持し、型開後に取り出して常温下で放置冷却した。
[成形品の曲げ試験方法]
上記で得られた成形品から切り出した10個の試験片(幅25mm×長さ80mm×厚さ3mm)について、JIS K7171準拠し、三点曲げ試験(標点間距離40mm、試験速度1mm/min)を行い、曲げ強さ、曲げ弾性率を測定した。また、それぞれの標準偏差を求め、下記の基準により、ばらつきを評価した。
◎:標準偏差が平均値の5%未満
○:標準偏差が平均値の5%以上10%未満
△:標準偏差が平均値の10%以上30%未満
×:標準偏差が平均値の30%以上
[成形品の引張試験方法]
上記で得られた成形品から切り出した5個の試験片(幅10mm×長さ180mm×厚さ3mm)について、JIS K7161準拠し、引張試験(標点間距離115mm、試験速度1mm/min)を行い、引張強さ、引張弾性率を測定した。また、それぞれの標準偏差を求め、下記の基準により、ばらつきを評価した。
◎:標準偏差が平均値の5%未満
○:標準偏差が平均値の5%以上10%未満
△:標準偏差が平均値の10%以上30%未満
×:標準偏差が平均値の30%以上
(実施例2~6:加熱圧縮用成形材料(2)~(6)の製造及び評価)
 実施例1で用いた樹脂組成物(A-1)に代えて、樹脂組成物(A-2)~(A-6)を用いた以外は実施例1と同様にして、加熱圧縮用成形材料(2)~(6)を得た。
 また、加熱圧縮用成形材料(1)に代えて、加熱圧縮用成形材料(2)~(6)を用いた以外は実施例1と同様にして、成形品を作製し、曲げ強さ、曲げ弾性率、引張強さ、引張弾性率を測定した。また、それぞれの標準偏差を求め、ばらつきを評価した。
 上記で得られた加熱圧縮用成形材料(1)~(6)の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(比較例1:加熱圧縮用成形材料(R-1)の製造及び評価)
 上記で得られた樹脂組成物(A-1)を、30μmの2枚のポリプロピレンフィルムに塗布量が平均385g/mとなるように塗布して、炭素繊維ロービング(東レ株式会社製トレカ「T700SC-12000-50C」、以下、炭素繊維強化材(RB-1)と略記する。)を1インチ(25.4mm)にカットしたものを、1枚の樹脂塗布フィルムの樹脂上にできるだけ均一になるように分散させ、もう1枚の樹脂塗布フィルムで挟み込んでサンドイッチ構造として、炭素繊維含量が33質量%となるよう含浸させ、45℃オーブン中に24時間放置し、加熱圧縮用成形材料(R-1)(シートモールディングコンパウンド)を得た。
 また、加熱圧縮用成形材料(1)に代えて、加熱圧縮用成形材料(R-1)を用いた以外は実施例1と同様にして、成形品を作製し、曲げ強さ、曲げ弾性率、引張強さ、引張弾性率を測定した。また、それぞれの標準偏差を求め、ばらつきを評価した。
(比較例2~3:加熱圧縮用成形材料(R-2)~(R-3)の製造及び評価)
 比較例1で用いた樹脂組成物(A-1)に代えて、樹脂組成物(A-2)~(A-3)を用いた以外は、比較例1と同様にして、加熱圧縮用成形材料(R-2)~(R-3)を得た。
 また、加熱圧縮用成形材料(1)に代えて、加熱圧縮用成形材料(R-2)~(R-3)を用いた以外は実施例1と同様にして、成形品を作製し、曲げ強さ、曲げ弾性率、引張強さ、引張弾性率を測定した。また、それぞれの標準偏差を求め、ばらつきを評価した。
 上記で得られた加熱圧縮用成形材料(R-1)~(R-3)の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例1~6の本発明の加熱圧縮用成形材料から得られる成形品は、曲げ強さ、曲げ弾性率、引張強さ及び引張弾性率が高いことが確認された。また、それらの標準偏差は小さく、ばらつきが少ないことが確認された。
 一方、比較例1~3は、炭素繊維強化材として、水酸基を有する水溶性樹脂で表面処理されたカーボンペーパーを用いなかった例であるが、引張強さ及び引張弾性率の標準偏差が大きく、ばらつきが著しいことが確認された。

Claims (6)

  1.  水酸基を有するポリ(メタ)アクリレート化合物(a1)と、ポリイソシアネート化合物(a2)と、重合開始剤(a3)とを含有する樹脂組成物(A)を、炭素繊維強化材(B)に含浸して得られる加熱圧縮成形用成形材料であって、前記炭素繊維強化材(B)が、水酸基を有する水溶性樹脂(b1)で表面処理されたカーボンペーパーであることを特徴とする加熱圧縮成形用成形材料。
  2.  前記カーボンペーパーが、繊維長6~60mmの炭素短繊維を、前記水酸基を有する水溶性樹脂(b1)の水溶液中に分散させて抄紙したものである請求項1記載の加熱圧縮成形用成形材料。
  3.  前記炭素繊維強化材(B)中の前記水溶性樹脂(b1)の含有率が1~15質量%の範囲内である請求項1又2記載の加熱圧縮成形用成形材料。
  4.  前記水酸基を有するポリ(メタ)アクリレート化合物(a1)中の水酸基(OH)と、前記ポリイソシアネート化合物(a2)中のイソシアネート基(NCO)とのモル比(NCO/OH)が、0.1~1の範囲内である請求項1~3のいずれか1項記載の加熱圧縮成形用成形材料。
  5.  請求項1~4のいずれか1項記載の加熱圧縮成形用成形材料を成形して得られることを特徴とする成形品。
  6.  請求項1~4のいずれか1項記載の加熱圧縮成形用成形材料を金型内で110~180℃で加熱圧縮成形することを特徴とする成形品の製造方法。
PCT/JP2015/054589 2014-03-07 2015-02-19 加熱圧縮成形用成形材料、それを用いた成形品及びその製造方法 WO2015133289A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015534711A JP5950050B2 (ja) 2014-03-07 2015-02-19 加熱圧縮成形用成形材料、それを用いた成形品及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-045027 2014-03-07
JP2014045027 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133289A1 true WO2015133289A1 (ja) 2015-09-11

Family

ID=54055099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054589 WO2015133289A1 (ja) 2014-03-07 2015-02-19 加熱圧縮成形用成形材料、それを用いた成形品及びその製造方法

Country Status (2)

Country Link
JP (1) JP5950050B2 (ja)
WO (1) WO2015133289A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163899A1 (ja) * 2016-03-24 2017-09-28 Dic株式会社 プリプレグ及び成形品
JP2017193599A (ja) * 2016-04-18 2017-10-26 昭和電工株式会社 シートモールディングコンパウンド、その製造方法及び成形品
JP6241583B1 (ja) * 2016-10-11 2017-12-06 Dic株式会社 繊維強化成形材料及びそれを用いた成形品
WO2018070076A1 (ja) * 2016-10-11 2018-04-19 Dic株式会社 繊維強化成形材料及びそれを用いた成形品
CN109071840A (zh) * 2016-05-13 2018-12-21 三菱化学株式会社 成型材料、片状模塑料及纤维增强复合材料
WO2019098007A1 (ja) * 2017-11-20 2019-05-23 Dic株式会社 繊維強化成形材料及びそれを用いた成形品
EP3632969A4 (en) * 2017-05-25 2020-06-24 Mitsubishi Chemical Corporation FIBER REINFORCED MOLDING MATERIAL, MOLDED BODY

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135430A (ja) * 1986-11-27 1988-06-07 Dainippon Ink & Chem Inc 成形用組成物
JP2005247879A (ja) * 2004-03-01 2005-09-15 Showa Highpolymer Co Ltd 繊維強化複合材料用組成物及びその成形材料
JP2006103193A (ja) * 2004-10-06 2006-04-20 Honda Motor Co Ltd 樹脂含浸シートの製造方法および炭素繊維強化プラスチック成形体
JP2010031433A (ja) * 2008-07-31 2010-02-12 Toray Ind Inc 抄紙基材の製造方法
JP2011021303A (ja) * 2009-07-17 2011-02-03 Mitsubishi Plastics Inc 炭素繊維不織布、炭素繊維強化樹脂シートおよび炭素繊維強化樹脂成形体
JP2011084846A (ja) * 2009-10-16 2011-04-28 Toray Ind Inc 抄紙基材の製造方法
JP2011231275A (ja) * 2010-04-30 2011-11-17 Toyota Motor Corp シートモールディングコンパウンド

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4063058B2 (ja) * 2002-11-20 2008-03-19 トヨタ紡織株式会社 繊維マットの製造方法並びに該繊維マットを有する樹脂発泡体複合材の製造方法
JP2007016121A (ja) * 2005-07-07 2007-01-25 Toray Ind Inc 複合材料用プリプレグおよび複合材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135430A (ja) * 1986-11-27 1988-06-07 Dainippon Ink & Chem Inc 成形用組成物
JP2005247879A (ja) * 2004-03-01 2005-09-15 Showa Highpolymer Co Ltd 繊維強化複合材料用組成物及びその成形材料
JP2006103193A (ja) * 2004-10-06 2006-04-20 Honda Motor Co Ltd 樹脂含浸シートの製造方法および炭素繊維強化プラスチック成形体
JP2010031433A (ja) * 2008-07-31 2010-02-12 Toray Ind Inc 抄紙基材の製造方法
JP2011021303A (ja) * 2009-07-17 2011-02-03 Mitsubishi Plastics Inc 炭素繊維不織布、炭素繊維強化樹脂シートおよび炭素繊維強化樹脂成形体
JP2011084846A (ja) * 2009-10-16 2011-04-28 Toray Ind Inc 抄紙基材の製造方法
JP2011231275A (ja) * 2010-04-30 2011-11-17 Toyota Motor Corp シートモールディングコンパウンド

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10793690B2 (en) 2016-03-24 2020-10-06 Dic Corporation Prepreg and molded article
KR102197901B1 (ko) 2016-03-24 2021-01-05 디아이씨 가부시끼가이샤 프리프레그 및 성형품
CN108779276B (zh) * 2016-03-24 2021-12-07 Dic株式会社 预浸料和成形品
JP6260754B1 (ja) * 2016-03-24 2018-01-17 Dic株式会社 プリプレグ及び成形品
WO2017163899A1 (ja) * 2016-03-24 2017-09-28 Dic株式会社 プリプレグ及び成形品
KR20180110155A (ko) * 2016-03-24 2018-10-08 디아이씨 가부시끼가이샤 프리프레그 및 성형품
CN108779276A (zh) * 2016-03-24 2018-11-09 Dic株式会社 预浸料和成形品
JP2017193599A (ja) * 2016-04-18 2017-10-26 昭和電工株式会社 シートモールディングコンパウンド、その製造方法及び成形品
CN109071840A (zh) * 2016-05-13 2018-12-21 三菱化学株式会社 成型材料、片状模塑料及纤维增强复合材料
EP3456761A4 (en) * 2016-05-13 2019-05-01 Mitsubishi Chemical Corporation MOLDING MATERIAL, PREPREGLED IN SHEET, AND FIBER REINFORCED COMPOSITE MATERIAL
US10899856B2 (en) 2016-05-13 2021-01-26 Mitsubishi Chemical Corporation Molding material, sheet molding compound and fiber-reinforced composite material
CN109071840B (zh) * 2016-05-13 2021-04-30 三菱化学株式会社 成型材料、片状模塑料及纤维增强复合材料
CN109415524B (zh) * 2016-10-11 2021-10-26 Dic株式会社 纤维增强成形材料和使用其的成形品
EP3438167A4 (en) * 2016-10-11 2020-01-01 DIC Corporation FIBER REINFORCED MOLDING MATERIAL AND MOLDED BODY THEREFOR
WO2018070076A1 (ja) * 2016-10-11 2018-04-19 Dic株式会社 繊維強化成形材料及びそれを用いた成形品
CN109415524A (zh) * 2016-10-11 2019-03-01 Dic株式会社 纤维增强成形材料和使用其的成形品
JP6241583B1 (ja) * 2016-10-11 2017-12-06 Dic株式会社 繊維強化成形材料及びそれを用いた成形品
US10669386B2 (en) 2016-10-11 2020-06-02 Dic Corporation Fiber-reinforced molding material and molded article using same
EP3632969A4 (en) * 2017-05-25 2020-06-24 Mitsubishi Chemical Corporation FIBER REINFORCED MOLDING MATERIAL, MOLDED BODY
US11390716B2 (en) 2017-11-20 2022-07-19 Dic Corporation Fiber-reinforced molding material and molded article using same
EP3715405A4 (en) * 2017-11-20 2021-08-11 DIC Corporation FIBER REINFORCED MOLDED MATERIAL AND MOLDED BODY WITH IT
WO2019098007A1 (ja) * 2017-11-20 2019-05-23 Dic株式会社 繊維強化成形材料及びそれを用いた成形品
JPWO2019098007A1 (ja) * 2017-11-20 2020-04-02 Dic株式会社 繊維強化成形材料及びそれを用いた成形品

Also Published As

Publication number Publication date
JP5950050B2 (ja) 2016-07-13
JPWO2015133289A1 (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6156612B1 (ja) 加熱圧縮成形用成形材料、それを用いた成形品及びその製造方法
JP5950050B2 (ja) 加熱圧縮成形用成形材料、それを用いた成形品及びその製造方法
EP3395869B1 (en) Prepreg and molded article
CN109415524B (zh) 纤维增强成形材料和使用其的成形品
JP6241583B1 (ja) 繊維強化成形材料及びそれを用いた成形品
JP7087358B2 (ja) 繊維強化成形材料及びそれを用いた成形品
JP6708312B2 (ja) 繊維強化成形材料及びそれを用いた成形品
JP6150034B1 (ja) プリプレグ及び成形品
WO2019142803A1 (ja) マトリクス樹脂、中間材及び成形品
WO2020213414A1 (ja) 繊維強化成形材料及びそれを用いた成形品
JP7003583B2 (ja) 繊維強化成形材料及びそれを用いた成形品
JP6966026B2 (ja) 繊維強化成形材料及びそれを用いた成形品
JP7298800B1 (ja) ラジカル硬化性樹脂組成物、繊維強化成形材料、及びそれを用いた成形品
JP7136393B2 (ja) ラジカル硬化性樹脂組成物、繊維強化成形材料、及びそれを用いた成形品
JP7501803B2 (ja) 繊維強化複合材料の製造方法、繊維強化複合材料、及び、成形品の製造方法
JP2022180095A (ja) ラジカル硬化性樹脂組成物、成形材料、及びそれを用いた成形品
WO2022137666A1 (ja) 成形材料及び成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015534711

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758645

Country of ref document: EP

Kind code of ref document: A1