WO2015129262A1 - エンジン - Google Patents

エンジン Download PDF

Info

Publication number
WO2015129262A1
WO2015129262A1 PCT/JP2015/000949 JP2015000949W WO2015129262A1 WO 2015129262 A1 WO2015129262 A1 WO 2015129262A1 JP 2015000949 W JP2015000949 W JP 2015000949W WO 2015129262 A1 WO2015129262 A1 WO 2015129262A1
Authority
WO
WIPO (PCT)
Prior art keywords
atmospheric pressure
state
injection timing
transient
engine
Prior art date
Application number
PCT/JP2015/000949
Other languages
English (en)
French (fr)
Inventor
知広 大谷
敦仁 岩瀬
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to EP15754534.4A priority Critical patent/EP3112642A4/en
Priority to CA2939475A priority patent/CA2939475A1/en
Priority to CN201580004667.1A priority patent/CN105917104B/zh
Priority to US15/121,349 priority patent/US10502156B2/en
Priority to KR1020167015296A priority patent/KR101833349B1/ko
Publication of WO2015129262A1 publication Critical patent/WO2015129262A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine that controls fuel injection timing according to a transient state and atmospheric pressure.
  • Patent document 1 discloses this kind of engine.
  • Patent Document 1 controls the fuel injection timing based on various data.
  • a standard fuel injection timing (standard injection timing) is calculated by applying a standard injection timing map 91 to the engine speed and the fuel injection amount.
  • the final injection timing is calculated by adding various correction amounts to the standard injection timing.
  • the fuel injection timing is calculated in consideration of the engine state (steady state or transient state). Specifically, the standard injection timing map 94 is applied to the engine speed and the fuel injection amount to calculate the standard injection timing, and the transient injection timing map 95 is applied to the engine speed and the fuel injection amount. The transient injection timing is calculated.
  • the switch 96 outputs the standard injection timing in the steady state, and outputs the transient injection timing in the transient state.
  • the atmospheric pressure correction amount is calculated by applying the atmospheric pressure correction amount map 97 to the atmospheric pressure.
  • the atmospheric pressure correction amount is added to the output value of the switch 96 by the adder 98.
  • the final injection timing is calculated.
  • the atmospheric pressure correction amount calculated by the atmospheric pressure correction amount map 97 does not consider whether it is a steady state or a transient state. Therefore, if the atmospheric pressure is the same, the calculated atmospheric pressure correction amount is the same regardless of whether it is a steady state or a transient state.
  • the same atmospheric pressure correction amount is set in the steady state and the transient state. Therefore, for example, the correction amount is insufficient in a steady state, and misfire may occur. Alternatively, the correction amount may be too large in a transient state and exceed the allowable value of the in-cylinder pressure.
  • the present invention has been made in view of the above circumstances, and a main object thereof is to provide an engine that calculates an appropriate fuel injection timing in a steady state and a transient state in a situation where atmospheric pressure is low. .
  • an engine having the following configuration includes a fuel injection device, a state determination unit, an atmospheric pressure sensor, and an injection timing control unit.
  • the state determination unit determines whether the engine state is a steady state or a transient state.
  • the atmospheric pressure sensor detects atmospheric pressure.
  • the injection timing control unit includes a steady process for calculating fuel injection timing in a steady state, a transient process for calculating fuel injection timing in a transient state, and an atmospheric pressure correction process for correcting the fuel injection timing based on atmospheric pressure. I do.
  • the injection timing control unit varies the presence or absence of the atmospheric pressure correction process or the content of the atmospheric pressure correction process depending on whether the engine state is a steady state or a transient state.
  • the engine has the following configuration. That is, in the steady state, the fuel injection timing calculated in the steady process is corrected with the first correction amount calculated based on the atmospheric pressure. In the transient state, the fuel injection timing calculated in the transient process is corrected with the second correction amount calculated based on the atmospheric pressure. The first correction amount and the second correction amount are different.
  • the engine has the following configuration. That is, in the steady state, the fuel injection timing calculated in the steady process is corrected with the correction amount calculated based on the atmospheric pressure. In the transient state, the fuel injection timing calculated by the transient process is used without using the correction amount based on the atmospheric pressure.
  • the injection timing control unit corrects the correction amount based on the atmospheric pressure when the engine state is a transient state and the atmospheric pressure detected by the atmospheric pressure sensor is within a predetermined range. It is preferable to use the fuel injection timing calculated by the transient process without using the above.
  • the above control can be performed only when the atmospheric pressure is in an appropriate range (when there is no problem even if the correction amount based on the atmospheric pressure is ignored).
  • FIG. Explanatory drawing which shows a gas flow and various sensors typically.
  • the block diagram which shows the process which calculates the fuel-injection time which concerns on 1st Embodiment.
  • the flowchart which shows the process of the state determination part which concerns on 1st Embodiment.
  • the block diagram which shows the process which calculates the fuel-injection time which concerns on 2nd Embodiment.
  • the block diagram which shows the process which calculates the fuel-injection time which concerns on a prior art example.
  • the block diagram which shows the process which calculates the fuel-injection time concerning another prior art example.
  • the graph which shows the change of the cylinder pressure when an altitude (atmospheric pressure) and an engine state differ.
  • the engine 100 is a diesel engine and is mounted on a work machine, a ship, and the like.
  • the engine 100 includes an intake pipe 20, a supercharger 21, a supercharge pipe 24, an intake throttle 25, an intake manifold 26, and a breather hose 27 as intake system members. Prepare.
  • the suction pipe 20 sucks gas from the outside.
  • the suction pipe 20 includes a filter that removes dust and the like in the gas.
  • the supercharger 21 includes a turbine housing 22 and a compressor housing 23.
  • a turbine wheel (not shown) in the turbine housing 22 is configured to rotate using exhaust gas.
  • An unillustrated compressor wheel in the compressor housing 23 is connected to the same shaft 21a (FIG. 2) as the turbine wheel, and rotates as the turbine wheel rotates.
  • the supercharger 21 can forcibly intake air by compressing air by rotating the compressor wheel.
  • the gas sucked by the supercharger 21 flows through the supercharging pipe 24.
  • One side of the supercharging pipe 24 is connected to the supercharger 21, and the other side of the supercharging pipe 24 is connected to the intake throttle 25.
  • the intake throttle 25 has an intake valve.
  • the intake throttle 25 can change the amount of gas supplied to the cylinder by adjusting the opening of the intake valve.
  • the gas that has passed through the intake throttle 25 is sent to the intake manifold 26.
  • the opening degree of the intake valve is controlled by an ECU (engine control unit) 50 shown in FIG.
  • the intake manifold 26 divides the gas supplied from the intake throttle 25 into a number corresponding to the number of cylinders (four in this embodiment) and supplies it to the cylinder head 10.
  • the cylinder head 10 is provided with a cylinder head cover 11 and an injector (fuel injection device) 12.
  • the injector 12 injects fuel into the combustion chamber at a predetermined timing.
  • the injector 12 is configured to perform main injection near the top dead center (TDC). Further, the injector 12 can perform pre-injection for noise reduction immediately before the main injection, or can perform pilot injection for NOx reduction and noise reduction at a timing before the pre-injection. Further, the injector 12 performs after injection for the purpose of reducing PM and promoting exhaust gas purification immediately after the main injection, or performing post injection for the purpose of raising the temperature at a later timing of the after injection. can do.
  • TDC top dead center
  • Motive power can be generated by injecting fuel and driving the piston in this way. Blow-by gas and exhaust gas are generated in the combustion chamber.
  • the breather hose 27 supplies blow-by gas generated in the combustion chamber to the suction pipe 20. Thereby, it can prevent that unburned gas is discharged
  • an intake pressure sensor 51 and an intake temperature sensor 52 are attached to the intake manifold 26.
  • the intake pressure sensor 51 detects the gas pressure in the intake manifold 26 and outputs it to the ECU 50.
  • the ECU 50 recognizes the input pressure as the intake pressure.
  • the intake air temperature sensor 52 detects the temperature of the gas in the intake manifold 26 and outputs it to the ECU 50. Note that the intake pressure sensor 51 and the intake temperature sensor 52 may be arranged not in the intake manifold 26 but in a pipe upstream of the intake manifold 26.
  • the engine 100 includes an exhaust manifold 30, an exhaust pipe 31, and an exhaust gas purification device 32 as exhaust system members.
  • the engine 100 provided with the exhaust gas purification device 32 is particularly referred to as an exhaust gas purification system.
  • the exhaust gas purification device 32 may be arranged at a position slightly away from the engine 100.
  • the exhaust manifold 30 collectively supplies exhaust gas generated in a plurality of combustion chambers to the turbine housing 22 of the supercharger 21.
  • an exhaust pressure sensor 53 and an exhaust temperature sensor 54 are attached to the exhaust manifold 30.
  • the exhaust pressure sensor 53 detects the gas pressure in the exhaust manifold 30 and outputs it to the ECU 50.
  • the ECU 50 recognizes the input pressure as the exhaust pressure.
  • the exhaust temperature sensor 54 detects the temperature of the gas in the exhaust manifold 30 and outputs it to the ECU 50.
  • a part of the gas that has passed through the exhaust manifold 30 and the turbine housing 22 is supplied to the EGR device 40 via the EGR pipe 41 and the remainder is supplied to the exhaust gas purification device 32 via the exhaust pipe 31.
  • the engine 100 includes an EGR device 40 as an intake system and exhaust system member.
  • the EGR device 40 includes an EGR cooler 42 and an EGR valve 43.
  • the EGR cooler 42 cools the exhaust gas.
  • the EGR device 40 can change the amount of exhaust gas supplied to the intake manifold 26 by adjusting the opening of the EGR valve 43.
  • the opening degree of the EGR valve 43 is controlled by the ECU 50.
  • the ECU 50 adjusts the opening degree of the EGR valve 43 based on, for example, a differential pressure between the intake pressure and the exhaust pressure.
  • the exhaust gas purification device 32 purifies the exhaust gas and discharges it.
  • the exhaust gas purification device 32 includes an oxidation catalyst 33 and a filter 34.
  • the oxidation catalyst 33 is made of platinum or the like, and is a catalyst for oxidizing (combusting) unburned fuel, carbon monoxide, nitrogen monoxide and the like contained in the exhaust gas.
  • the filter 34 is configured as a wall flow type filter, for example, and collects PM (particulate matter) contained in the exhaust gas treated by the oxidation catalyst 33.
  • the exhaust gas purification device 32 is provided with a temperature sensor 55 and a differential pressure sensor 56.
  • the temperature sensor 55 detects the temperature in the exhaust gas purification device 32.
  • the differential pressure sensor 56 detects a pressure difference between the upstream side of the filter 34 (the exhaust downstream side of the oxidation catalyst 33) and the downstream side of the filter 34, and outputs the detected pressure difference to the ECU 50.
  • the ECU 50 calculates the amount of PM deposited on the filter 34 based on the detection result of the differential pressure sensor 56.
  • the oxidation reaction occurring in the exhaust gas purification device 32 is calculated based on the operation history of the engine 100, and the PM deposition amount is obtained based on the oxidation reaction. You can also.
  • the engine 100 includes an atmospheric pressure sensor 57 (FIG. 2).
  • the intake air temperature sensor 52 detects atmospheric pressure and outputs it to the ECU 50.
  • the ECU 50 controls each part of engine 100.
  • the ECU 50 includes a state determination unit 58 and an injection timing control unit 59 as a configuration for controlling the fuel injection timing. The processing performed by these will be described later.
  • FIG. 3 shows the processing performed by the ECU 50 as a function.
  • the ECU 50 calculates the standard injection timing by applying the standard injection timing map 61 to the engine speed and the fuel injection amount (steady state processing).
  • the standard injection timing is a value that is a base of the fuel injection timing when the engine state is a steady state.
  • the ECU 50 calculates the correction amount by applying the atmospheric pressure correction amount map 62 to the engine speed and the fuel injection amount, and applies the atmospheric pressure correction coefficient curve 63 to the atmospheric pressure. To calculate the correction coefficient.
  • the atmospheric pressure correction amount is calculated by integrating the two by the integrator 64 (atmospheric pressure correction processing).
  • the standard injection timing and the atmospheric pressure correction amount are added by the adder 65 and output to the switch 67.
  • the ECU 50 calculates the transient injection timing by applying the transient injection timing map 66 to the engine speed and the fuel injection amount (transient processing).
  • the transient injection timing is a value that is a base of the fuel injection timing when the engine state is a transient state.
  • the transient injection timing is output to the switch 67.
  • the state determination unit 58 performs various determination processes and switches the switch 67 according to the determination result. Hereinafter, the processing performed by the state determination unit 58 will be described with reference to the flowchart of FIG.
  • the state determination unit 58 first determines whether or not the engine state is a transient state (S101). This determination is performed based on, for example, at least one of the change amount of the accelerator opening, the change amount of the fuel injection amount, and the change amount of the engine speed.
  • the standard output value (a value obtained by adding the atmospheric pressure correction amount to the standard injection timing) Is switched from the switch 67 (S102).
  • the state determination unit 58 determines whether or not the atmospheric pressure detected by the atmospheric pressure sensor is within a predetermined range (S103). This process determines the magnitude of the influence of atmospheric pressure.
  • the state determination unit 58 determines that the influence of the atmospheric pressure is small, and the switch 67 so that the output value on the transient side (transient injection timing) is output from the switch 67. (S104). If the atmospheric pressure is not within the predetermined range, the state determination unit 58 performs processing such as using another correction method (S105).
  • the ECU 50 performs other corrections on the final injection timing output from the switch 67 (for example, when the turbo lag is generated, the correction amount is applied) to control the injector 12 and the like.
  • correction based on atmospheric pressure is performed only in a steady state. Accordingly, since the correction amount based on the transient state and the correction amount based on the atmospheric pressure are not applied twice, it is possible to prevent the over-advance angle and prevent the in-cylinder pressure from exceeding the allowable value.
  • the second embodiment is different from the first embodiment in that correction based on atmospheric pressure is performed even during transition.
  • correction based on atmospheric pressure is performed even during transition.
  • ECU 50 calculates the standard injection timing by applying the standard injection timing map 71 to the engine speed and the fuel injection amount in the same manner as described above (steady process). Similarly to the above, the ECU 50 calculates the correction amount by applying the standard atmospheric pressure correction amount map 72 to the engine speed and the fuel injection amount, and applies the standard atmospheric pressure correction coefficient curve 73 to the atmospheric pressure to correct the correction coefficient. Is calculated. A standard atmospheric pressure correction amount is calculated by integrating both by the integrator 74 (atmospheric pressure correction processing). The standard atmospheric pressure correction amount map 72 and the standard atmospheric pressure correction coefficient curve 73 are created for a steady state.
  • the standard injection timing and the standard atmospheric pressure correction amount are added by the adder 75 and output to the switch 81.
  • the ECU 50 calculates the transient injection timing by applying the transient injection timing map 76 to the engine speed and the fuel injection amount in the same manner as described above (transient processing).
  • the ECU 50 calculates the correction amount by applying the transient atmospheric pressure correction amount map 77 to the engine speed and the fuel injection amount, and calculates the correction coefficient by applying the transient atmospheric pressure correction coefficient curve 78 to the atmospheric pressure.
  • a transient atmospheric pressure correction amount is calculated (atmospheric pressure correction processing).
  • the transient atmospheric pressure correction amount map 77 and the transient atmospheric pressure correction coefficient curve 78 are created for the transient state. Therefore, even if the atmospheric pressure is the same, the standard atmospheric pressure correction amount and the transient atmospheric pressure correction amount have different values.
  • the transient injection timing and the transient atmospheric pressure correction amount are added by the adder 80 and output to the switch 81.
  • the state determination unit 58 determines whether the engine state is a steady state or a transient state, and in the case of the steady state, a standard-side output value (a value obtained by adding the standard atmospheric pressure correction amount to the standard injection timing) is output from the switch 81.
  • the switch 81 is switched as described above.
  • the state determination unit 58 switches the switch 81 so that an output value on the transient side (a value obtained by adding the transient atmospheric pressure correction amount to the transient injection timing) is output from the switch 81. .
  • the stability of ignition is improved by adjusting the injection timing.
  • Various processes are known as processes for improving the stability of ignition. For example, by lowering the pressure of the common rail, the evaporation of spray can be slowed and the latent heat of vaporization can be suppressed, so that the stability of ignition can be improved.
  • the engine may be configured as follows. That is, the engine includes a common rail device, a state determination unit that determines whether the engine state is a steady state or a transient state, an atmospheric pressure sensor that detects atmospheric pressure, a steady process that calculates a common rail pressure in a steady state, A common rail pressure control unit that performs a transient process for calculating the common rail pressure in a state and an atmospheric pressure correction process for correcting the common rail pressure based on the atmospheric pressure.
  • the presence or absence of the atmospheric pressure correction process or the content of the atmospheric pressure correction process is different between the case of the above and the case of a transient state.
  • the common rail pressure control unit corrects the common rail pressure calculated in the steady process with the first correction amount calculated based on the atmospheric pressure.
  • the common rail pressure control unit performs the transient process.
  • the calculated common rail pressure may be corrected with a second correction amount calculated based on atmospheric pressure, and the first correction amount and the second correction amount may be different.
  • the common rail pressure control unit corrects the common rail pressure calculated in the steady process with a correction amount calculated based on atmospheric pressure in a steady state, and a correction amount based on atmospheric pressure in a transient state.
  • the common rail pressure calculated by the transient process may be used without using the above.
  • the common rail pressure control unit does not use the correction amount based on the atmospheric pressure when the engine state is a transient state and the atmospheric pressure detected by the atmospheric pressure sensor is within a predetermined range.
  • the common rail pressure calculated by the transient process may be used.
  • the in-cylinder temperature can be increased and the ignition stability can be improved. Note that the stability of ignition can be improved even when the pre-injection interval is shortened. Moreover, since the injection amount per injection can be reduced by performing pilot injection, the temperature of spray can be raised and the stability of ignition can be improved.
  • the engine may be configured as follows. That is, the engine includes a fuel injection device, a state determination unit that determines whether the engine state is in a steady state or a transient state, an atmospheric pressure sensor that detects atmospheric pressure, and “implementation of pre-injection and pilot injection in a steady state” Steadily processing for calculating “whether or not, injection amount / injection timing in case of implementation”, “in the presence or absence of pre-injection and pilot injection, in injection state / injection timing in case of implementation” in transient state ”
  • a fuel injection control unit that performs a transient process for calculating the pressure, and an atmospheric pressure correction process that corrects “whether pre-injection or pilot injection is performed, or any of the injection amount / injection timing in the case of execution” based on the atmospheric pressure
  • the fuel injection control unit varies the presence or absence of the atmospheric pressure correction process or the content of the atmospheric pressure correction process depending on whether the engine state is a steady state or a transient state.
  • the fuel injection control unit calculates whether or not the pre-injection and the pilot injection are performed and any one of the injection amount and the injection timing in the case of the steady process based on the atmospheric pressure.
  • the “presence / absence of pre-injection and pilot injection, or any of the injection amount / injection timing in the case of execution” calculated in the transient process is large.
  • Correction may be performed with a second correction amount calculated based on the atmospheric pressure, and the first correction amount and the second correction amount may be different.
  • the fuel injection control unit sets the “presence / absence of pre-injection and pilot injection, or injection amount / injection timing in execution” calculated in the steady process to atmospheric pressure.
  • the correction amount calculated based on the atmospheric pressure is used without using the correction amount based on the atmospheric pressure.
  • One of the quantity and the injection timing may be used.
  • the fuel injection control unit does not use the correction amount based on the atmospheric pressure when the engine state is a transient state and the atmospheric pressure detected by the atmospheric pressure sensor is within a predetermined range.
  • it may have a feature of using “whether or not pre-injection and pilot injection are performed and any of the injection amount and the injection timing in the case of execution” calculated in the transient process.
  • the stability of ignition can be appropriately improved by using them appropriately based on the priority matters and conditions. This proper use may be automatically performed on the ECU 50 side or may be instructed by the user.
  • the engine 100 includes the injector 12, the state determination unit 58, the atmospheric pressure sensor 57, and the injection timing control unit 59.
  • the state determination unit 58 determines whether the engine state is a steady state or a transient state.
  • the atmospheric pressure sensor 57 detects atmospheric pressure.
  • the injection timing control unit 59 includes a steady process for calculating the fuel injection timing in the steady state, a transient process for calculating the fuel injection timing in the transient state, and an atmospheric pressure correction process for correcting the fuel injection timing based on the atmospheric pressure. I do.
  • the injection timing control unit 59 changes the presence / absence of the atmospheric pressure correction process depending on whether the engine state is a steady state or a transient state (first embodiment), or changes the content of the atmospheric pressure correction process ( Second embodiment).
  • the method for determining whether the state is a steady state or a transient state is arbitrary, and may be determined using a method other than the method described above.
  • the correction amount and the correction coefficient are individually calculated to obtain the atmospheric pressure correction amount.
  • the atmospheric pressure correction amount may be obtained based only on the atmospheric pressure.
  • the configuration of the engine 100 and the processing performed by the ECU 50 can be changed as appropriate without departing from the spirit of the present invention.
  • the present invention can be applied to a naturally aspirated engine.
  • Injector fuel injection device 50 ECU 57 atmospheric pressure sensor 58 state determination unit 59 injection timing control unit 61 standard injection timing map 62 atmospheric pressure correction amount map 63 atmospheric pressure correction coefficient curve 66 transient injection timing map

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

エンジンは、燃料噴射装置と、状態判定部(58)と、大気圧センサと、噴射時期制御部と、を備える。状態判定部(58)は、エンジン状態が定常状態か過渡状態かを判定する。大気圧センサは、大気圧を検出する。噴射時期制御部は、定常状態での燃料噴射時期を算出する定常処理、過渡状態での燃料噴射時期を算出する過渡処理、及び、大気圧に基づいて燃料噴射時期を補正する大気圧補正処理を行う。噴射時期制御部は、エンジン状態が定常状態の場合と過渡状態の場合とで、大気圧補正処理の有無、又は、大気圧補正処理の内容を異ならせる。

Description

エンジン
 本発明は、過渡状態及び大気圧に応じて燃料噴射時期を制御するエンジンに関する。
 従来から、コモンレール等を備え、燃料噴射時期を制御可能なエンジンが知られている。特許文献1は、この種のエンジンを開示する。
 特許文献1のエンジンは、様々なデータに基づいて燃料噴射時期を制御する。以下、特許文献1の構成について図6を参照して説明する。特許文献1では、エンジン回転数及び燃料噴射量に標準噴射時期マップ91を適用することで、標準となる燃料噴射時期(標準噴射時期)を算出する。特許文献1では、この標準噴射時期に各種補正量を加えることで、最終噴射時期を算出する。
 ここで、高地のように大気圧が低い地域では筒内圧力の低下により着火の安定性が低下する(図8の高地/定常を参照)。そのため、特許文献1では、大気圧センサで大気圧を検出し、検出した大気圧に大気圧補正量マップ92を適用することで、大気圧補正量を算出する。この大気圧補正量を加算器93によって標準噴射時期に加算することで、最終噴射時期が算出される。
 また、特許文献1では記載されていないが、加速時等の過渡状態においては、シリンダに残留した気体の温度が低下することで、シリンダ内の温度が低下するため、着火の安定性が低下する。従って、例えば高地かつ過渡状態の場合、筒内圧力が大きく低下し、着火の安定性も大きく低下する(図8の高地/過渡を参照)。このように、仮に大気圧が同じ場合であっても、定常状態と過渡状態とで最適な燃料噴射時期が異なる。そのため、図7に示す処理を行って燃料噴射時期を算出する構成が知られている。
 図7のブロック図では、大気圧に基づく補正に加えて、エンジン状態(定常状態か過渡状態)を考慮して燃料噴射時期を算出する。具体的には、エンジン回転数及び燃料噴射量に標準噴射時期マップ94を適用することで、標準噴射時期を算出するとともに、エンジン回転数及び燃料噴射量に過渡噴射時期マップ95を適用することで、過渡噴射時期を算出する。
 そして、スイッチ96は、定常状態の場合は標準噴射時期を出力し、過渡状態の場合は過渡噴射時期を出力する。また、図7のブロック図では、大気圧に大気圧補正量マップ97を適用することで、大気圧補正量を算出する。大気圧補正量は、加算器98によって、スイッチ96の出力値と加算される。以上により、最終噴射時期が算出される。
特開2011-163251号公報
 しかし、図7のブロック図において、大気圧補正量マップ97で算出される大気圧補正量は、定常状態であるか過渡状態であるかを考慮していない。従って、大気圧が同じであれば定常状態であっても過渡状態であっても算出される大気圧補正量は同一である。
 ここで、上述のように定常状態と過渡状態とでは異なる燃料噴射時期を設定する必要がある。しかし、図7の構成では定常状態と過渡状態で同じ大気圧補正量が設定される。従って、例えば定常状態において補正量が足りず、失火が発生する可能性がある。或いは、過渡状態において補正量が大きすぎて、筒内圧力の許容値を超えてしまうことがある。
 本発明は以上の事情に鑑みてされたものであり、その主要な目的は、大気圧が低い状況において、定常状態と過渡状態とで適切な燃料噴射時期を算出するエンジンを提供することにある。
課題を解決するための手段及び効果
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
 本発明の観点によれば、以下の構成のエンジンが提供される。即ち、このエンジンは、燃料噴射装置と、状態判定部と、大気圧センサと、噴射時期制御部と、を備える。前記状態判定部は、エンジン状態が定常状態か過渡状態かを判定する。前記大気圧センサは、大気圧を検出する。前記噴射時期制御部は、定常状態での燃料噴射時期を算出する定常処理、過渡状態での燃料噴射時期を算出する過渡処理、及び、大気圧に基づいて燃料噴射時期を補正する大気圧補正処理を行う。前記噴射時期制御部は、エンジン状態が定常状態の場合と過渡状態の場合とで、前記大気圧補正処理の有無、又は、前記大気圧補正処理の内容を異ならせる。
 これにより、従来は定常状態と過渡状態とで同じ大気圧補正量が算出されていたので、定常状態の失火及び過渡状態での筒内圧力の許容値超えの何れかを避けることが困難であったが、上記の構成を採用することで両方の事態を回避することができる。
 前記のエンジンにおいては、以下の構成とすることが好ましい。即ち、定常状態の場合は、前記定常処理で算出した燃料噴射時期を、大気圧に基づいて算出した第1補正量で補正する。過渡状態の場合は、前記過渡処理で算出した燃料噴射時期を、大気圧に基づいて算出した第2補正量で補正する。前記第1補正量と前記第2補正量とが異なる。
 これにより、定常状態と過渡状態のそれぞれに応じた補正量を算出することができる。従って、失火及び筒内圧力の許容値超えの両方を回避しつつ、NOxの発生も抑えることができる。
 前記のエンジンにおいては、以下の構成とすることが好ましい。即ち、定常状態の場合は、前記定常処理で算出した燃料噴射時期を、大気圧に基づいて算出した補正量で補正する。過渡状態の場合は、大気圧に基づく補正量を利用せずに、前記過渡処理で算出した燃料噴射時期を用いる。
 これにより、簡単な構成で、失火及び筒内圧力の許容値超えの両方を回避することができる。
 前記のエンジンにおいては、前記噴射時期制御部は、エンジン状態が過渡状態の場合であって、かつ、前記大気圧センサが検出した大気圧が所定の範囲である場合に、大気圧に基づく補正量を利用せずに、前記過渡処理で算出した燃料噴射時期を用いることが好ましい。
 これにより、過渡状態であって大気圧が適切な範囲にある場合(大気圧に基づく補正量を無視しても問題ない場合)にのみ、上記の制御を行うことができる。
エンジンの概略平面図。 気体の流れ及び各種センサを模式的に示す説明図。 第1実施形態に係る燃料噴射時期を算出する処理を示すブロック図。 第1実施形態に係る状態判定部の処理を示すフローチャート。 第2実施形態に係る燃料噴射時期を算出する処理を示すブロック図。 従来例に係る燃料噴射時期を算出する処理を示すブロック図。 別の従来例に係る燃料噴射時期を算出する処理を示すブロック図。 高度(大気圧)及びエンジン状態が異なる場合の筒内圧力の変化を示すグラフ。
 次に、図面を参照して本発明の実施形態を説明する。エンジン100は、ディーゼルエンジンであり、作業機及び船舶等に搭載される。
 図1に示すように、エンジン100は、吸気系の部材として、吸入管20と、過給機21と、過給管24と、吸気スロットル25と、吸気マニホールド26と、ブリーザーホース27と、を備える。
 吸入管20は、外部から気体を吸入する。吸入管20は、気体中の塵等を取り除くフィルタを備える。
 過給機21は、タービンハウジング22と、コンプレッサーハウジング23と、を備える。タービンハウジング22内の図略のタービンホイールは、排気ガスを利用して回転するように構成されている。コンプレッサーハウジング23内の図略のコンプレッサホイールは、タービンホイールと同じシャフト21a(図2)に接続されており、タービンホイールの回転に伴って回転する。過給機21は、コンプレッサホイールが回転することにより、空気を圧縮して強制的に吸気を行うことができる。
 過給管24には、過給機21によって吸入された気体が流れる。過給管24の一側は過給機21に接続されており、過給管24の他側は吸気スロットル25に接続されている。
 吸気スロットル25は、吸気バルブを備えている。吸気スロットル25は、吸気バルブの開度を調整することで、シリンダに供給される気体の量を変化させることができる。吸気スロットル25を通過した気体は、吸気マニホールド26へ送られる。吸気バルブの開度は、図2に示すECU(エンジン制御部)50によって制御される。
 吸気マニホールド26は、吸気スロットル25から供給された気体をシリンダ数に応じた数(本実施形態では4つ)に分けてシリンダヘッド10へ供給する。シリンダヘッド10には、シリンダヘッドカバー11及びインジェクタ(燃料噴射装置)12が配置されている。
 インジェクタ12は、所定のタイミングで燃焼室に燃料を噴射する。具体的には、インジェクタ12は、上死点(TDC)の近傍でメイン噴射を行うように構成されている。また、インジェクタ12は、このメイン噴射の直前に騒音低減のためのプレ噴射を行ったり、プレ噴射の更に前のタイミングでNOx低減及び騒音低減のためのパイロット噴射を行ったりすることができる。また、インジェクタ12は、メイン噴射の直後にPMの低減及び排気ガスの浄化促進を目的としたアフター噴射を行ったり、アフター噴射の更に後のタイミングで温度上昇等を目的としたポスト噴射を行ったりすることができる。
 このように燃料を噴射してピストンを駆動させることで、動力を発生させることができる。燃焼室では、ブローバイガス及び排気ガス等が発生する。
 ブリーザーホース27は、燃焼室で発生したブローバイガスを吸入管20に供給する。これにより、未燃焼ガスが外部に排出されることを防止できる。
 また、吸気マニホールド26には、図2に示すように、吸気圧力センサ51と、吸気温度センサ52と、が取り付けられている。
 吸気圧力センサ51は、吸気マニホールド26内の気体の圧力を検出してECU50へ出力する。ECU50は、入力された圧力を吸気圧と認識する。吸気温度センサ52は、吸気マニホールド26内の気体の温度を検出してECU50へ出力する。なお、吸気圧力センサ51及び吸気温度センサ52は、吸気マニホールド26ではなく、それより上流の管等に配置されていても良い。
 エンジン100は、排気系の部材として、排気マニホールド30と、排気管31と、排気ガス浄化装置32と、を備える。このように、排気ガス浄化装置32を備えたエンジン100を特に排気ガス浄化システムと称する。なお、排気ガス浄化装置32は、エンジン100と少し離れた位置に配置されていても良い。
 排気マニホールド30は、複数の燃焼室で発生した排気ガスをまとめて過給機21のタービンハウジング22へ供給する。また、排気マニホールド30には、排気圧力センサ53と、排気温度センサ54と、が取り付けられている。
 排気圧力センサ53は、排気マニホールド30内の気体の圧力を検出してECU50へ出力する。ECU50は、入力された圧力を排気圧と認識する。排気温度センサ54は、排気マニホールド30内の気体の温度を検出してECU50へ出力する。
 排気マニホールド30及びタービンハウジング22を通過した気体は、一部がEGR管41を介してEGR装置40へ供給されるとともに、残りが排気管31を介して排気ガス浄化装置32へ供給される。
 また、エンジン100は、吸気系及び排気系の部材としてEGR装置40を備える。
 EGR装置40は、EGRクーラ42と、EGRバルブ43と、を備えている。EGRクーラ42は、排気ガスを冷却する。EGR装置40は、EGRバルブ43の開度を調整することで、吸気マニホールド26に供給される排気ガスの量を変化させることができる。EGRバルブ43の開度は、ECU50によって制御される。ECU50は、例えば吸気圧と排気圧の差圧に基づいてEGRバルブ43の開度を調整する。
 排気ガス浄化装置32は、排気ガスを浄化して排出する。排気ガス浄化装置32は、酸化触媒33と、フィルタ34と、を備える。酸化触媒33は、白金等で構成されており、排気ガスに含まれる未燃燃料、一酸化炭素、一酸化窒素等を酸化(燃焼)するための触媒である。フィルタ34は、例えばウォールフロー型のフィルタとして構成されており、酸化触媒33で処理された排気ガスに含まれるPM(粒子状物質)を捕集する。
 また、排気ガス浄化装置32には、温度センサ55と、差圧センサ56と、が取り付けられている。温度センサ55は、排気ガス浄化装置32内の温度を検出する。差圧センサ56は、フィルタ34の上流側(酸化触媒33の排気下流側)と、フィルタ34の下流側の圧力差を検出してECU50へ出力する。
 ECU50は、差圧センサ56の検出結果に基づいてフィルタ34に堆積したPM堆積量を算出する。なお、PM堆積量の算出方法としては、差圧を用いる以外にも、エンジン100の動作履歴等に基づいて排気ガス浄化装置32で起こる酸化反応を算出し、それに基づいてPM堆積量を求めることもできる。
 また、エンジン100は、大気圧センサ57(図2)を備えている。吸気温度センサ52は、大気圧を検出してECU50へ出力する。
 ECU50は、エンジン100の各部を制御する。本明細書では、特に燃料噴射時期の制御について説明する。ECU50は、燃料噴射時期を制御する構成として、状態判定部58と、噴射時期制御部59と、を備える。なお、これらが行う処理は後述する。
 次に、燃料噴射時期を制御する処理について図3及び図4を参照して説明する。図3に示すブロック図は、ECU50が行う処理を機能化して示したものである。
 ECU50は、エンジン回転数と燃料噴射量に標準噴射時期マップ61を適用して、標準噴射時期を算出する(定常処理)。標準噴射時期は、エンジン状態が定常状態である場合に燃料噴射時期のベースとなる値である。
 ECU50は、大気圧の影響を考慮するために、エンジン回転数と燃料噴射量に大気圧補正量マップ62を適用して補正量を算出するとともに、大気圧に大気圧補正係数カーブ63を適用して補正係数を算出する。両者を積算器64で積算することで、大気圧補正量が算出される(大気圧補正処理)。
 標準噴射時期と、大気圧補正量は、加算器65によって加算されてスイッチ67へ出力される。
 また、ECU50は、エンジン回転数と燃料噴射量に過渡噴射時期マップ66を適用して、過渡噴射時期を算出する(過渡処理)。過渡噴射時期は、エンジン状態が過渡状態である場合に燃料噴射時期のベースとなる値である。過渡噴射時期は、スイッチ67へ出力される。
 状態判定部58は、様々な判定処理を行って、その判定結果に応じてスイッチ67を切り替える。以下、図4のフローチャートを参照して、状態判定部58が行う処理を説明する。
 状態判定部58は、初めにエンジン状態が過渡状態か否かを判定する(S101)。この判定は、例えば、アクセル開度の変化量、燃料噴射量の変化量、及びエンジン回転数の変化量のうち少なくとも何れかに基づいて行われる。
 状態判定部58は、これらの変化量が小さく過渡状態でないと判定した場合(即ち定常状態であると判定した場合)、標準側の出力値(標準噴射時期に大気圧補正量を加算した値)がスイッチ67から出力されるように当該スイッチ67を切り替える(S102)。
 状態判定部58は、アクセル開度等の変化量が大きく過渡状態であると判定した場合、大気圧センサが検出した大気圧が所定の範囲内にあるか否かを判定する(S103)。この処理は、大気圧の影響の大きさを判定している。
 状態判定部58は、大気圧が所定の範囲内にある場合は、大気圧の影響が小さいと判断し、過渡側の出力値(過渡噴射時期)がスイッチ67から出力されるように当該スイッチ67を切り替える(S104)。状態判定部58は、大気圧が所定の範囲内にない場合は、他の補正方法を用いる等の処理を行う(S105)。
 ECU50は、スイッチ67が出力した最終噴射時期に他の補正を行って(例えばターボラグが生じている場合はその補正量を適用して)インジェクタ12等を制御する。
 ここで、本実施形態では、従来例と異なり、定常状態のときにのみ大気圧に基づく補正が行われる。従って、過渡状態に基づく補正量と大気圧に基づく補正量が二重に適用されることがないので、過進角を防止し、筒内圧力が許容値を超えることを防止できる。
 次に、第2実施形態を説明する。第2実施形態は、過渡時においても大気圧に基づく補正を行う点で、第1実施形態と異なる。以下、図5を参照して具体的に説明する。
 ECU50は、上記と同様に、エンジン回転数と燃料噴射量に標準噴射時期マップ71を適用して、標準噴射時期を算出する(定常処理)。ECU50は、上記と同様に、エンジン回転数と燃料噴射量に標準大気圧補正量マップ72を適用して補正量を算出するとともに、大気圧に標準大気圧補正係数カーブ73を適用して補正係数を算出する。両者を積算器74で積算することで、標準大気圧補正量が算出される(大気圧補正処理)。なお、標準大気圧補正量マップ72及び標準大気圧補正係数カーブ73は、定常状態用に作成されている。
 標準噴射時期と、標準大気圧補正量は、加算器75によって加算されてスイッチ81へ出力される。
 また、ECU50は、上記と同様に、エンジン回転数と燃料噴射量に過渡噴射時期マップ76を適用して、過渡噴射時期を算出する(過渡処理)。ECU50は、エンジン回転数と燃料噴射量に過渡大気圧補正量マップ77を適用して補正量を算出するとともに、大気圧に過渡大気圧補正係数カーブ78を適用して補正係数を算出する。両者を積算器79で積算することで、過渡大気圧補正量が算出される(大気圧補正処理)。なお、過渡大気圧補正量マップ77及び過渡大気圧補正係数カーブ78は、過渡状態用に作成されている。従って、同じ大気圧であっても、標準大気圧補正量と過渡大気圧補正量は値が異なる。
 過渡噴射時期と、過渡大気圧補正量は、加算器80によって加算されてスイッチ81へ出力される。
 状態判定部58は、エンジン状態が定常状態か過渡状態かを判定し、定常状態の場合は標準側の出力値(標準噴射時期に標準大気圧補正量を加算した値)がスイッチ81から出力されるように当該スイッチ81を切り替える。一方、状態判定部58は、エンジン状態が過渡状態の場合は過渡側の出力値(過渡噴射時期に過渡大気圧補正量を加算した値)がスイッチ81から出力されるように当該スイッチ81を切り替える。
 なお、第2実施形態では、過渡状態においても大気圧に基づく補正が行われているので、大気圧が所定の範囲にあるか否かの判断は行わない。
 本実施形態では、定常状態と過渡状態のそれぞれに応じた大気圧補正量を算出することができる。従って、失火及び筒内圧力の許容値超えの両方を回避しつつ、NOxの発生も抑えることができる。
 ここで、上記実施形態では、噴射時期を調整することで着火の安定性を向上させた。着火の安定性を向上させる処理としては、様々な処理が知られている。例えば、コモンレールを低圧力化することで、噴霧の蒸発を緩慢にして気化潜熱を抑制できるので、着火の安定性を向上させることができる。
 従って、エンジンを以下のように構成しても良い。即ち、このエンジンは、コモンレール装置と、エンジン状態が定常状態か過渡状態かを判定する状態判定部と、大気圧を検出する大気圧センサと、定常状態でのコモンレール圧を算出する定常処理、過渡状態でのコモンレール圧を算出する過渡処理、及び、大気圧に基づいてコモンレール圧を補正する大気圧補正処理を行うコモンレール圧制御部と、を備え、前記コモンレール圧制御部は、エンジン状態が定常状態の場合と過渡状態の場合とで、前記大気圧補正処理の有無、又は、前記大気圧補正処理の内容を異ならせることを特徴とする。
 また、前記コモンレール圧制御部は、定常状態の場合は、前記定常処理で算出したコモンレール圧を、大気圧に基づいて算出した第1補正量で補正し、過渡状態の場合は、前記過渡処理で算出したコモンレール圧を、大気圧に基づいて算出した第2補正量で補正し、前記第1補正量と前記第2補正量とが異なるという特徴を有しても良い。
 また、前記コモンレール圧制御部は、定常状態の場合は、前記定常処理で算出したコモンレール圧を、大気圧に基づいて算出した補正量で補正し、過渡状態の場合は、大気圧に基づく補正量を利用せずに、前記過渡処理で算出したコモンレール圧を用いるという特徴を有していても良い。
 また、コモンレール圧制御部は、エンジン状態が過渡状態の場合であって、かつ、前記大気圧センサが検出した大気圧が所定の範囲である場合に、大気圧に基づく補正量を利用せずに、前記過渡処理で算出したコモンレール圧を用いるという特徴を有していても良い。
 なお、燃料噴射時期又はコモンレール圧に代えて、プレ噴射量を増加することで、筒内温度を上昇させて、着火の安定性を向上させることができる。なお、プレ噴射間隔を短くした場合でも着火の安定性を向上させることができる。また、パイロット噴射を行うことで、1噴射あたりの噴射量を低減できるので、噴霧の温度を上昇させることができ、着火の安定性を向上させることができる。
 また、エンジンを以下のように構成しても良い。即ち、このエンジンは、燃料噴射装置と、エンジン状態が定常状態か過渡状態かを判定する状態判定部と、大気圧を検出する大気圧センサと、定常状態での「プレ噴射及びパイロット噴射の実施の有無、実施の場合の噴射量・噴射時期の何れか」を算出する定常処理、過渡状態での「プレ噴射及びパイロット噴射の実施の有無、実施の場合の噴射量・噴射時期の何れか」を算出する過渡処理、及び、大気圧に基づいて「プレ噴射及びパイロット噴射の実施の有無、実施の場合の噴射量・噴射時期の何れか」を補正する大気圧補正処理を行う燃料噴射制御部と、を備え、前記燃料噴射制御部は、エンジン状態が定常状態の場合と過渡状態の場合とで、前記大気圧補正処理の有無、又は、前記大気圧補正処理の内容を異ならせることを特徴とする。
 また、前記燃料噴射制御部は、定常状態の場合は、前記定常処理で算出した「プレ噴射及びパイロット噴射の実施の有無、実施の場合の噴射量・噴射時期の何れか」を大気圧に基づいて算出した第1補正量で補正し、過渡状態の場合は、前記過渡処理で算出した「プレ噴射及びパイロット噴射の実施の有無、実施の場合の噴射量・噴射時期の何れか」を、大気圧に基づいて算出した第2補正量で補正し、前記第1補正量と前記第2補正量とが異なるという特徴を有しても良い。
 また、前記燃料噴射制御部は、定常状態の場合は、前記定常処理で算出した「プレ噴射及びパイロット噴射の実施の有無、実施の場合の噴射量・噴射時期の何れか」を、大気圧に基づいて算出した補正量で補正し、過渡状態の場合は、大気圧に基づく補正量を利用せずに、前記過渡処理で算出した「プレ噴射及びパイロット噴射の実施の有無、実施の場合の噴射量・噴射時期の何れか」を用いるという特徴を有していても良い。
 また、燃料噴射制御部は、エンジン状態が過渡状態の場合であって、かつ、前記大気圧センサが検出した大気圧が所定の範囲である場合に、大気圧に基づく補正量を利用せずに、前記過渡処理で算出した「プレ噴射及びパイロット噴射の実施の有無、実施の場合の噴射量・噴射時期の何れか」を用いるという特徴を有していても良い。
 上述した処理は、メリット、デメリット、使用可能条件(高度等)がそれぞれ異なるので、優先される事項及び条件等に基づいて使い分けることで、適切に着火の安定性を向上させることができる。この使い分けは、ECU50側で自動的に行っても良いし、ユーザが指示しても良い。
 以上に説明したように、エンジン100は、インジェクタ12と、状態判定部58と、大気圧センサ57と、噴射時期制御部59と、を備える。状態判定部58は、エンジン状態が定常状態か過渡状態かを判定する。大気圧センサ57は、大気圧を検出する。噴射時期制御部59は、定常状態での燃料噴射時期を算出する定常処理、過渡状態での燃料噴射時期を算出する過渡処理、及び、大気圧に基づいて燃料噴射時期を補正する大気圧補正処理を行う。噴射時期制御部59は、エンジン状態が定常状態の場合と過渡状態の場合とで、大気圧補正処理の有無を異ならせる(第1実施形態)、又は、大気圧補正処理の内容を異ならせる(第2実施形態)。
 これにより、従来は定常状態と過渡状態とで同じ大気圧補正量が算出されていたので、定常状態の失火及び過渡状態での筒内圧力の許容値超えの何れかを避けることが困難であったが、上記の構成を採用することで両方の事態を回避することができる。
 以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。
 定常状態か過渡状態か判定する方法は任意であり、上記で説明した方法以外の方法を用いて、判定しても良い。
 上記実施形態では、補正量と補正係数を個別に算出して大気圧補正量を求めたが、例えば大気圧のみに基づいて大気圧補正量を求めても良い。
 また、エンジン100の構成及びECU50が行う処理は、本発明の趣旨を逸脱しない範囲で適宜変更することができる。例えば、自然吸気式のエンジンにも本発明を適用することができる。
 12 インジェクタ(燃料噴射装置)
 50 ECU
 57 大気圧センサ
 58 状態判定部
 59 噴射時期制御部
 61 標準噴射時期マップ
 62 大気圧補正量マップ
 63 大気圧補正係数カーブ
 66 過渡噴射時期マップ

Claims (4)

  1.  燃料噴射装置と、
     エンジン状態が定常状態か過渡状態かを判定する状態判定部と、
     大気圧を検出する大気圧センサと、
     定常状態での燃料噴射時期を算出する定常処理、過渡状態での燃料噴射時期を算出する過渡処理、及び、大気圧に基づいて燃料噴射時期を補正する大気圧補正処理を行う噴射時期制御部と、
    を備え、
     前記噴射時期制御部は、エンジン状態が定常状態の場合と過渡状態の場合とで、前記大気圧補正処理の有無、又は、前記大気圧補正処理の内容を異ならせることを特徴とするエンジン。
  2.  請求項1に記載のエンジンであって、
     前記噴射時期制御部は、
     定常状態の場合は、前記定常処理で算出した燃料噴射時期を、大気圧に基づいて算出した第1補正量で補正し、
     過渡状態の場合は、前記過渡処理で算出した燃料噴射時期を、大気圧に基づいて算出した第2補正量で補正し、
     前記第1補正量と前記第2補正量とが異なることを特徴とするエンジン。
  3.  請求項1に記載のエンジンであって、
     前記噴射時期制御部は、
     定常状態の場合は、前記定常処理で算出した燃料噴射時期を、大気圧に基づいて算出した補正量で補正し、
     過渡状態の場合は、大気圧に基づく補正量を利用せずに、前記過渡処理で算出した燃料噴射時期を用いることを特徴とするエンジン。
  4.  請求項3に記載のエンジンであって、
     前記噴射時期制御部は、エンジン状態が過渡状態の場合であって、かつ、前記大気圧センサが検出した大気圧が所定の範囲である場合に、大気圧に基づく補正量を利用せずに、前記過渡処理で算出した燃料噴射時期を用いることを特徴とするエンジン。
PCT/JP2015/000949 2014-02-26 2015-02-25 エンジン WO2015129262A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15754534.4A EP3112642A4 (en) 2014-02-26 2015-02-25 Engine
CA2939475A CA2939475A1 (en) 2014-02-26 2015-02-25 Engine
CN201580004667.1A CN105917104B (zh) 2014-02-26 2015-02-25 发动机
US15/121,349 US10502156B2 (en) 2014-02-26 2015-02-25 Engine controller based on atmospheric pressure
KR1020167015296A KR101833349B1 (ko) 2014-02-26 2015-02-25 엔진

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-035327 2014-02-26
JP2014035327A JP6129097B2 (ja) 2014-02-26 2014-02-26 ディーゼルエンジン

Publications (1)

Publication Number Publication Date
WO2015129262A1 true WO2015129262A1 (ja) 2015-09-03

Family

ID=54008596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000949 WO2015129262A1 (ja) 2014-02-26 2015-02-25 エンジン

Country Status (7)

Country Link
US (1) US10502156B2 (ja)
EP (1) EP3112642A4 (ja)
JP (1) JP6129097B2 (ja)
KR (1) KR101833349B1 (ja)
CN (1) CN105917104B (ja)
CA (1) CA2939475A1 (ja)
WO (1) WO2015129262A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354524B2 (ja) * 2014-11-06 2018-07-11 スズキ株式会社 燃料噴射装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275050A (ja) * 1985-09-27 1987-04-06 Toyota Motor Corp デイ−ゼル機関の燃料噴射時期制御装置
JPH05272374A (ja) * 1992-03-27 1993-10-19 Mitsubishi Electric Corp 内燃機関の電子制御装置
JPH11193737A (ja) * 1997-12-26 1999-07-21 Suzuki Motor Corp エンジンの燃料制御装置
JP2000220501A (ja) * 1999-01-29 2000-08-08 Nissan Motor Co Ltd エンジンの制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2813397B2 (ja) 1989-08-03 1998-10-22 ローベルト・ボッシュ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 内燃機関の噴射開始目標値を発生する装置
JPH10318019A (ja) * 1997-05-22 1998-12-02 Kokusan Denki Co Ltd 内燃機関用燃料噴射制御方法及び装置
US6325050B1 (en) * 2000-03-24 2001-12-04 General Electric Company Method and system for controlling fuel injection timing in an engine for powering a locomotive
JP2002349335A (ja) 2001-03-21 2002-12-04 Mazda Motor Corp 筒内噴射式エンジンの制御装置
JP2003206789A (ja) * 2002-01-15 2003-07-25 Mitsubishi Electric Corp 内燃機関の燃料噴射制御装置
EP1584809B1 (de) * 2003-11-19 2018-10-17 Ford Global Technologies, LLC Verfahren zur Regeneration einer Abgasnachbehandlungseinrichtung
JP3933172B2 (ja) * 2005-07-15 2007-06-20 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2011163251A (ja) 2010-02-12 2011-08-25 Mitsubishi Heavy Ind Ltd ディーゼルエンジンの燃料噴射制御装置および方法
DE112011100766B4 (de) * 2011-08-10 2021-08-12 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für Verbrennungsmotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275050A (ja) * 1985-09-27 1987-04-06 Toyota Motor Corp デイ−ゼル機関の燃料噴射時期制御装置
JPH05272374A (ja) * 1992-03-27 1993-10-19 Mitsubishi Electric Corp 内燃機関の電子制御装置
JPH11193737A (ja) * 1997-12-26 1999-07-21 Suzuki Motor Corp エンジンの燃料制御装置
JP2000220501A (ja) * 1999-01-29 2000-08-08 Nissan Motor Co Ltd エンジンの制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3112642A4 *

Also Published As

Publication number Publication date
CA2939475A1 (en) 2015-09-03
CN105917104B (zh) 2019-06-18
KR101833349B1 (ko) 2018-02-28
EP3112642A4 (en) 2017-11-08
JP2015161185A (ja) 2015-09-07
US20160363086A1 (en) 2016-12-15
KR20160081983A (ko) 2016-07-08
JP6129097B2 (ja) 2017-05-17
US10502156B2 (en) 2019-12-10
EP3112642A1 (en) 2017-01-04
CN105917104A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
JP2011027059A (ja) エンジンの制御装置
WO2014196035A1 (ja) 内燃機関の制御装置
JP2007278223A (ja) 筒内噴射型火花点火式内燃機関の制御装置
JP2005240755A (ja) エンジンの燃料噴射制御装置
JP6129097B2 (ja) ディーゼルエンジン
US20150167559A1 (en) Control device for internal combustion engine
JP5692130B2 (ja) 内燃機関制御装置
JP5695878B2 (ja) 内燃機関の燃焼制御装置及び方法
JP5260770B2 (ja) エンジンの制御装置
JP6473390B2 (ja) エンジン
JP2016000970A (ja) 内燃機関の制御装置
WO2010106828A1 (ja) 内燃機関の制御装置
JP2009091920A (ja) 燃料供給異常判定方法およびその装置
JP2016160921A (ja) 内燃機関の燃焼制御装置
JP2012007541A (ja) 内燃機関の制御装置
KR20180067898A (ko) 엔진의 소기 제어 시의 배기 가스 저감 방법
JP2007239644A (ja) 内燃機関の排気空燃比推定装置
JP5467928B2 (ja) 内燃機関の点火時期補正制御方法
WO2014080455A1 (ja) ディーゼルエンジンの制御装置
JP6311363B2 (ja) 内燃機関の制御装置
JP2015137642A (ja) 内燃機関のNOx量推定方法
JP2010144677A (ja) 内燃機関の燃料噴射制御装置及び制御方法
JP2015197096A (ja) 内燃機関の制御装置
JP2008038623A (ja) 内燃機関の排気浄化装置、及び方法
JP2008038625A (ja) 内燃機関の排気浄化装置、及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167015296

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2939475

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15121349

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015754534

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015754534

Country of ref document: EP