WO2015127904A1 - 一种水净化的超大规模光捕生物反应器及运行方法 - Google Patents

一种水净化的超大规模光捕生物反应器及运行方法 Download PDF

Info

Publication number
WO2015127904A1
WO2015127904A1 PCT/CN2015/073453 CN2015073453W WO2015127904A1 WO 2015127904 A1 WO2015127904 A1 WO 2015127904A1 CN 2015073453 W CN2015073453 W CN 2015073453W WO 2015127904 A1 WO2015127904 A1 WO 2015127904A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
bioreactor
layer
ultra
purified
Prior art date
Application number
PCT/CN2015/073453
Other languages
English (en)
French (fr)
Inventor
胡佑忠
Original Assignee
天下光捕(武汉)生态科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DK15755707.5T priority Critical patent/DK3112321T3/da
Application filed by 天下光捕(武汉)生态科技有限公司 filed Critical 天下光捕(武汉)生态科技有限公司
Priority to CA2940861A priority patent/CA2940861C/en
Priority to JP2016571457A priority patent/JP6471181B2/ja
Priority to EP15755707.5A priority patent/EP3112321B1/en
Priority to PL15755707T priority patent/PL3112321T3/pl
Priority to RU2016138336A priority patent/RU2684080C2/ru
Priority to ES15755707T priority patent/ES2765458T3/es
Priority to US15/247,949 priority patent/US10160681B2/en
Priority to MYPI2016001573A priority patent/MY186743A/en
Priority to AU2015222533A priority patent/AU2015222533B2/en
Priority to KR1020167025697A priority patent/KR102034822B1/ko
Publication of WO2015127904A1 publication Critical patent/WO2015127904A1/zh
Priority to IL247498A priority patent/IL247498B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/34Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filtering material and its pervious support moving
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/02Treatment of plants with carbon dioxide
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/045Filters for aquaria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/102Permeable membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/60Fishing; Aquaculture; Aquafarming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to bioreactors, and more particularly to a large scale photon capture bioreactor (LSPCBR) for water purification.
  • LSPCBR large scale photon capture bioreactor
  • Bioreactor is a bioengineering technology that began in the 1980s and refers to any manufacturing or engineering equipment that provides a biologically active environment.
  • a bioreactor is a device system, a cell, a tissue organ, etc., which utilizes a biological function of an organism, obtains a target product by a biochemical reaction or a biological metabolism in vitro or in vivo, and is a biological or biochemical active substance.
  • These bioreactors are generally cylindrical in shape and vary in volume from a few liters to a few cubic meters, often made of stainless steel.
  • Bioreactor technology has undergone three stages of development: bacterial bioreactors, cell bioreactors, and genetically modified bioreactors.
  • Transgenic bioreactors are further divided into transgenic animal bioreactors and transgenic plant bioreactors.
  • Transgenic plant bioreactors are mostly used for the improvement and cultivation of plant varieties.
  • Transgenic animal bioreactors are used for animal variety improvement. For the production of high value-added pharmaceutical products and proteins.
  • Bioreactor applications in water treatment are mainly membrane bioreactors (Membrane Bioreactor referred to as MBR).
  • MBR membrane bioreactors
  • the membrane bioreactor is a sewage treatment and reuse process that combines biodegradation and high-efficiency separation technology of membranes.
  • Organic membranes are commonly used in membrane bioreactors. Commonly used membrane materials are polyethylene, polypropylene, etc., and hollow membranes and flat membranes are used to make microfiltration membranes, ultrafiltration membranes and reverse osmosis membranes.
  • the membrane bioreactor of the monomer is generally a tubular structure, and is mainly composed of a membrane separation module and a bioreactor.
  • a plurality of monomer membrane bioreactors are connected in series or in parallel, or a combination thereof, into a system, and the membrane separation equipment is used to activate activated sludge and macromolecules in the biochemical reaction tank of the sewage treatment plant.
  • the material is intercepted and the secondary sinking tank is saved.
  • the membrane bioreactor is actually a general term for three types of reactors: 1 Aeration Membrane Bioreactor (AMBR); 2 Extractive Membrane Bioreactor (EMBR); 3 Solid-liquid Separation Membrane Reactor (Solid/Liquid Separation Membrane Bioreactor, SLSMBR,).
  • membrane bioreactors Compared with many traditional biological water treatment processes, membrane bioreactors have the advantages of high quality and stable effluent quality, low residual sludge production, small footprint, high removal rate of ammonia nitrogen and refractory organic matter, but membrane bioreactors. It also has high cost, easy to appear membrane fouling and membrane blockage, inconvenient operation and management, high energy consumption and high maintenance cost. Therefore, membrane bioreactors are generally used in wastewater treatment plants where the effluent water quality is relatively high and the sewage treatment volume is relatively small, such as the remote living quarters, hotels, resorts, schools, office buildings, etc., which are difficult to collect in municipal sewage pipe networks. User's daily sewage treatment, reuse and organic sewage treatment in beer, tanning, food, chemical and other industries. Defects in membrane bioreactors make it difficult to generalize to large wastewater treatment plants.
  • the main problem with drinking water quality is the high oxygen consumption.
  • the high oxygen consumption in drinking water indicates that there are many organic substances.
  • the organic substances in drinking water are mostly chlorinated and disinfected by water.
  • the increase of disinfection by-products makes the water's protrusion activity increase and human health.
  • the harm of organic matter to the human body is often lagging behind, and it is generally found to be sick. It should be reflected in the human body for 20 to 30 years.
  • wastewater treatment the fundamental drawback of traditional treatment methods is the use of high-energy means to hedge potential energy and resources in water bodies.
  • the technical problem to be solved by the present invention is to provide a water purification ultra-large-scale light-trapping bioreactor device and operation method, which converts various organic sewage treatment and water purification processes with little land and low operating cost. For a production process of wealth and resources.
  • the present invention provides a water purification ultra-large-scale light-harvesting bioreactor comprising a closable three-dimensional construction space, a water pipe, an impeller and a generator, and the three-dimensional construction space includes a plurality of planes.
  • Layers each of which has a roundabout-shaped water channel, each of which is provided with a water inlet and a water outlet, and each layer of the water channel is provided with a plurality of microfiltration membranes, each of which is a filter unit;
  • the surface of the filter unit is floated with plants, microorganisms in the water, aquatic animals, and highly adjustable plant growth illumination lamps are suspended above the float plant; the impeller is connected to the outlet of the upper channel, and the impeller is connected to the generator. Below the impeller is the water inlet of the next layer; the water to be purified is connected to the inlet of the uppermost channel through the water pipe.
  • the upper and lower plane layers of the present invention are further provided with a drop-type water tank, a water outlet of the water channel connected to the upper end of the water tank, and an impeller is arranged at the lower end of the water tank.
  • the invention also has a water pump, wherein the water pump connects the water pool to be purified and the water inlet of the uppermost water channel through the water pipe respectively.
  • the water-purified ultra-large-scale light-harvesting bioreactor further includes a carbon dioxide supply pipe that communicates with the three-dimensional construction space.
  • Each planar layer is relatively closed, and each planar layer is provided with a natural vent that can be opened and closed.
  • the filter unit has aquatic animals under the water.
  • the structure of the filtering unit depends on the concentration of organic matter contaminated by the water to be purified, and the filtering unit with high water pollution concentration is not suitable for being placed into aquatic animals, but the structure of the constructed wetland is constructed, which is equivalent to first filtering the membrane through thickening microorganisms. Organic pollutants are quickly explained to conditions suitable for the growth of aquatic animals.
  • the water tank has a structure that is wide and narrow.
  • the water purification ultra-large-scale light-harvesting bioreactor also includes a plurality of biogas digesters and biogas generating units on the ground floor.
  • Solar power and wind power systems are located on the sun-facing side of the exterior of the bioreactor building and on the top of the building.
  • the sewage is physically filtered through a grid before entering the sedimentation tank.
  • the drain has a depth of 1.1-1.3 meters.
  • the operation method of the present invention is that the water to be purified is sent by the water pump through the water pipe to the water inlet of the uppermost layer of the solid structure into the bypass flow channel and starts to flow slowly, and the water to be purified passes through each layer of the layer.
  • the filter unit performs progressive biological filtration, and the water flows to the water outlet of the last filter unit of the layer to enter the upper end of the water tank, and the lower end of the water tank impacts the impeller to rotate, and simultaneously increases oxygen in the water, the impeller rotates to drive the generator to generate electricity, and the generator grows to the plant.
  • the illumination lamp supplies power; after the water passes through the impeller, it enters the water inlet of the next layer; so reciprocating, when the water flows out of the lowest channel, it becomes purified water.
  • each filtration unit plants are planted by floatation, and photosynthesis is carried out under the action of a plant growth illumination lamp to absorb part of the eutrophic substances in the water body and carbon dioxide in the air, and the microorganisms use some eutrophic substances in the water body to carry out Biological response, aquatic animals eat floats to plant part of the roots and floats in the water. Harvestable plants and aquatic animals are obtained while purifying the water.
  • the main product is purified water, and other harvestable organisms in the reactor are by-products of the reaction process, although it is possible that the economic value of by-products is to some extent Will be greater than the main product.
  • the output per unit of land area can be more than 100 times higher than that of traditional methods.
  • the ultra-large-scale light-trapping bioreactor does not have high-energy equipment in the whole process except for the pump to raise the water to a desired height.
  • the biological reaction process can also produce energy substances for self-replenishment, if currently Compared with the commonly used domestic sewage treatment methods, the operating energy consumption has been reduced by more than 90%.
  • the process is non-polluting and clean production. Microbial, aquatic plants and aquatic animals are used for integrated biological reactions without the need for additional non-biomass intervention or addition, and the products can be fully utilized.
  • the economic benefits are significant. Since the artificial light plant growth illumination lamp can regulate the long-term irradiation of the selected plants in a closed environment, the plant photosynthesis efficiency is greatly improved, and the bioreactor is provided with a carbon dioxide injection port to promote the efficiency and reactor of photosynthesis. The growth of internal organisms; the rapid growth of organisms in the reactor accelerates the purification of water speed. Bioreactor organisms (including plant roots) are harvested in a timely manner, and some can be used to generate biomass to supplement the energy required by the bioreactor. Plants and animals that can be harvested in bioreactors, especially those harvested in relatively clean waters in the second half of the ultra-large-scale photo-trapping bioreactor, have very high economic value and can form an ecological production. The economic benefits of the industry are very significant.
  • the ultra-large scale photo-trapping bioreactor of the present invention is very versatile. It can be used for the purification of drinking water, as well as for domestic sewage treatment, highly eutrophic river sewage treatment, deep purification of tail water in traditional sewage treatment plants, purification of organic wastewater from various industrial production processes, and also In super-large-scale aquaculture and soilless cultivation of plants, etc.
  • Figure 1 is a rear elevational view of the structure of the ultra-large scale photo-trapping bioreactor of the present invention.
  • Figure 2 is a front elevational view of the structure of the ultra-large scale photo-trapping bioreactor of the present invention.
  • Figure 3 is a schematic illustration of a partial planar structure of a layer of the ultra-large scale photo-trapping bioreactor of the present invention.
  • Figure 4 is a plan view showing the layout of the first layer of the ultra-large scale photo-trapping bioreactor of the present invention.
  • Fig. 5 is a schematic plan view showing the layout of the double layer of the ultra-large-scale photo-trapping bioreactor of the present invention.
  • Fig. 6 is a schematic plan view showing the planar arrangement of the super-large-scale photo-trapping bioreactor of the present invention except the first layer.
  • the main body is a three-dimensional construction space constructed by a closable multi-planar layer, and the depth of each planar bioreactor layer 1 is 1.2 m.
  • the left and right water channels are provided for the water body to flow back slowly, and the water channel 2 is divided into a plurality of filter units 4 by a microbial filter membrane 3; float plants are selected on the water surface of each filter unit 4, and the high-density stocking Microorganisms 7 in aquatic animals 6 and water roots and microbial filtration membranes.
  • a highly adjustable plant growth illumination lamp 8 is suspended above the float plant 5, and the water 9 to be purified is sent by the water pump 10 through the water pipe 11 to the planar water inlet 12 of the uppermost biological reaction layer in the stereo structure.
  • the flow back in the bypass flow channel 2 starts to flow slowly, and the purified water 9 is subjected to progressive biological filtration through each filter unit 4 of the biological reaction layer, and the water flows to the overflow outlet 13 of the last filtration unit 4 of the biological reaction layer to enter the slope.
  • the lower water tank 14 and the lower water tank 14 are configured to gradually narrow from the top to the bottom, and an impeller 15 is attached to the end of the lower water tank 14 to drive the generator 16 to generate electricity.
  • the water 9 to be purified after being pushed by the lower tank 14 to rotate the impeller 15, enters the water inlet 12 of the next planar biological reaction layer to continue to deepen the progressive filtration purification of the previous biological reaction layer.
  • each planar bioreactor there is a carbon dioxide supply pipe in the bioreactor that enters each planar bioreactor.
  • the first layer of the bioreactor there are a number of biogas digesters 18 and a biogas generator set 19 with solar power and wind power generation systems 20 on the exterior walls of the bioreactor building and on the top of the building.
  • Each layer of bioreactor has a natural vent 21 that can be opened and closed.
  • a leak-proof treated sewage conditioning tank 22 which is physically filtered through a grid 23 before entering the sedimentation tank.
  • FIG. 5 is a schematic plan view of a plan view of a double layer
  • FIG. 6 is a plan view of a plan of a single layer different from the first layer. Since the first floor is provided with a plurality of biogas tanks 18 and a biogas generating unit 19, part of the water channel space is occupied. As a horizontal layer above the first floor, in addition to the necessary upper and lower corridors, water channels can be arranged. In addition, the water outlet of the upper layer corresponds to the position of the water inlet of the next layer.
  • the process of purifying water by the ultra-large-scale photo-trapping bioreactor of the present invention is a gradual biochemical reaction process from quantitative change to qualitative change, and thus the effective elements participating in the reaction process are also changed.
  • a water channel 2 constructed in each biological reaction plane layer 1 for the water body to flow back slowly the water channel is divided into a plurality of filtration units 4 of the microfiltration membrane 3
  • the pore size will gradually become smaller as the filtration progresses gradually.
  • the material of the microfiltration membrane 3 used in the front portion of the slow-flowing water channel 2 of the highest initial bioreactor plane filter layer 1 may be ceramsite particles.
  • each filter unit 4 is determined by the distance of the adjacent two microbial filter membranes 3, either by increasing the number of microbial filtration membranes 3 (ie, reducing the phase)
  • the distance between the two microbial filtration membranes 3 can also be improved by thickening the thickness of the microfiltration membrane 3 itself, and it can also be used simultaneously.
  • the sewage regulating tank 22 is reused as dilution water, and the sewage of the sewage regulating tank 22 is diluted to a concentration of COD of less than 150 mg/L (corresponding to the final ecological water dilution means in the conventional sewage treatment process), It is very beneficial to the entire biological reaction process in the ultra-large-scale light-trapping bioreactor and the recycling of resources in the sewage.
  • the surface float planting plant 5 is generally a particularly finely developed plant of the terrestrial roots.
  • the fine roots are generally grown in water for a length of more than 90 cm. These plants preferably have the characteristics of multiple harvesting at one time, and the plants are planted in a floating manner.
  • the matching variety adjustment will also be carried out according to the gradual purification of the water quality.
  • the high-density aquatic animals 6 in each filter unit 4 will also perform matching variety adjustment according to the gradual purification of the water quality, for example, at the highest initial organism.
  • the front part of the slow-flowing canal 2 of the reaction plane filter layer 1 and the high-density aquatic animals 6 in the water of the filter unit 4 are required to be better adapted to the concentration of higher organic matter pollution, generally with squid, Predatory aquatic animals that can grow rapidly in high-concentration sewage environments, such as loach and earthworms, will gradually transition to filter-feeding aquatic animals such as salmon and trout.
  • microorganisms 7 in the plant roots and the microbial filter membrane are naturally generated in each filter unit 4 water, and functional microorganisms can be added or inhibited in the single or plurality of filter units 4 as needed, with special needs.
  • the illuminating light source of the plant growth illuminating lamp 8 has an optimum irradiation distance to the plant of 50 cm
  • the height of the plant growth illuminating lamp 8 designed to hang above the floating plant 5 can be adjusted to achieve an optimum 50 cm at all times.
  • the irradiation distance produces the best light-harvesting effect.
  • the plant growth illumination lamp 8 adopts energy-saving and long-life LED lamps, and adopts a combination of red and blue light lamps which are most beneficial for promoting photosynthesis of plants, and plant growth illumination lamps 8 in general. Under 24 hours of uninterrupted irradiation, the plant is induced to 24 hours of uninterrupted photosynthesis, release oxygen, accelerate plant growth, and improve water purification efficiency.
  • planar bioreactive layers are isolated between adjacent planar bioreactor layers except for the water 9 to be purified through the lower trough 14 to complete the gap from top to bottom.
  • the layer height between adjacent planar bioreactor layers is between 2.5 and 3 meters, and the depth of the slowly flowing water channel 2 built on the biological reaction plane filter layer 1 is about 1.2 meters, and the plant growth illumination lamp 8 Illuminated light source
  • the optimum irradiation distance of the plant is 50 cm. Therefore, in general, the floating plant 5 is preferably planted with a height of 1 m to 1.5 m, and if the selected float plant 5 is grown at a height of more than 1.5 m. For plants of special significance, it is necessary to increase the layer height between adjacent planar bioreactor layers.
  • the resistance generated by the water pipe 11 should be taken into consideration.
  • the water supply head can be appropriately increased to ensure that the power of the water pump 10 is sufficient.
  • the water to be purified 9 is sent to the highest level planar water inlet 12 into the bypassing slow flowing water channel 2 at a position above the normal operating level of the flowing water channel 2, so that the process of purifying the water 9 into the flowing water channel 2 is actually Become an aerobic process.
  • the biological reaction filtration in this layer is completed when the water 9 to be purified flows into the sloping lower water tank 14 in the flowing water channel 2 to the overflow water outlet 13 of the last filtration unit 4 of the biological reaction layer.
  • the water head difference between the plane water inlet 12 and the overflow water outlet 13 is small, and the flow rate of the water body of the same biological reaction layer in the flowing water channel 2 can be effectively controlled to be prolonged, thereby prolonging the biological reaction time and improving the efficiency of biological reaction filtration.
  • the lower water tank 14 is a structure that is gradually narrowed from the top to the bottom, the water falling from the overflow water outlet 13 can effectively collect the falling potential energy to push the impeller 15 to rotate at the end of the lower water tank 14 to drive the generator 16 to generate electricity.
  • the electricity from the generator 16 becomes the power source for the plant growth illumination lamp 8.
  • the quality of the filtration unit 4 on the surface of the floating plant 5 and the high-density stocked aquatic animal 6 is getting better and better, and the economic value is getting higher and higher.
  • Each of the planar bioreactive layers 1 of the bioreactor is relatively closed, so that each of the planar reaction layers 1 is provided with a carbon dioxide injection port 17, and each layer has an independent carbon dioxide valve, which can be used according to the bioreactor of the layer.
  • Float planting plants 5 can not enter the market into wealth, the residual leaves and roots, as well as the high-density stocking of aquatic animals 6 and genuine waste, are collected into the ground floor of the biogas tank 18 for the production of biogas
  • the biogas is sent to the generator set 19 for power generation, and the electric energy is supplied to the plant growth illumination lamp 8 and the water pump 10.
  • the biogas residue produced by the biogas digester 18 can produce organic fertilizer, and the biogas slurry can be mixed into the water to be purified and then enter the bioreactor for treatment.
  • the carbon dioxide generated by the biogas generator set 19 burning biogas power generation can be collected and connected to the carbon dioxide pipeline 17 and then sent to the ultra-large-scale photo-trapping bioreactor for resource utilization.
  • the external wall of the bioreactor building and the electrical energy generated by the solar and wind power generation system 20 on the top surface of the building are supplied to the plant growth illumination lamp 8 and the water pump 10.
  • Each bioreactor of the bioreactor is relatively closed and independent, and each bioreactor has a natural vent 21 that can be controlled for ease of operation, maintenance and management.
  • the maintenance of ultra-large-scale photo-trapping bioreactors can be carried out in layers.
  • the underground layer of the bioreactor is the sewage regulating tank 22, which is particularly needed when the ultra-large-scale light-harvesting bioreactor treats high-concentration organic sewage, and the sewage regulating tank 22 adopts anti-leakage measures, and passes through the grid before the sewage enters the regulating tank. 23 Physical filtration to prevent large particle contaminants from entering the super-large-scale light-trapping bioreactor, affecting the water purification effect.
  • the ultra-large-scale photo-trapping bioreactor is used for drinking water purification or aquaculture, the sewage conditioning tank 22 and the grid 23 can be omitted, and other functional parts should be adjusted accordingly.
  • the metabolic process of planting plants 5, aquatic animals 6, and microorganisms in a super-large-scale light-harvesting bioreactor is the key to biological response.
  • the reaction solution is water 9 to be purified, and there are mainly seven elements involved in the reaction: nutrients of water 9 to be purified, planting plants 5, aquatic animals 6, microorganisms 7, light emitted by plant growth lamp 8, photosynthetic
  • the release of oxygen and added carbon dioxide, wherein light, oxygen and carbon dioxide have a strong catalytic effect on the biological reaction process, the plant growth illumination lamp 8 for 24 hours of uninterrupted illumination is the main catalytic factor, while light, oxygen and Carbon dioxide is continuously recycled in the bioreactor (where the circulation of light is achieved by the production of biogas from plants).
  • the oxygen released during photosynthesis in the bioreactor is an important bioreactive catalytic factor.
  • Aquatic animals 6 get enough oxygen and a steady stream of food in the slow-flowing canal 2, which will require purified water.
  • the nutrient element is converted into protein; on the other hand, the floating planting plant 5 is driven by the continuous photosynthesis induced by the uninterrupted illumination of the light emitted by the plant growth illumination lamp 8, and the root of the floating plant 5 continuously delivers oxygen to the roots.
  • the rhizosphere symbiotic microorganisms are stimulated to accelerate the reproduction 7 times, accelerate the capture and decomposition of the macromolecules in the water 9 to be purified, and transform into the nutrients directly absorbed by the roots of the floating plant 5;
  • the water that needs to be purified 9 enters the water body during the slow flow in the flowing water channel 2, and the process is good at the same time. Oxygen is distributed evenly throughout the course of the bioreactor, a biological response is more thoroughly.
  • the reaction process of the bioreactor is substantially closed, there is a substance and energy between the overall biomass of the biochain in the bioreactor and the degree of water purification by the bioreactor that needs to be purified, and the sum of the added carbon dioxide. Balanced relationship.
  • the overall biomass of the biochain in the bioreactor is multiplied by the various nutrients and added carbon dioxide in the water 9 that needs to be purified in the bioreactor.
  • the main product is purified water, and other harvestable organisms in the reactor (floating plants 5, aquatic animals 6) are by-products of the biological reaction process. Although it is possible that the economic value of by-products will be greater than the main products to some extent in the current situation.
  • the general land use area is 20,000 square meters, using a super-large-scale light-trapping bioreactor
  • the reactor has a five-storey building area of 12,000. (40X60X5) square meters
  • the volume of the ultra-large-scale light-trapping bioreactor (closed building height of 15 meters) is 36,000 cubic meters (40X60X15).
  • the total budget investment is about 0.23 billion yuan (excluding land cost).
  • each bioreactive filter layer of the ultra-large-scale photo-trapping bioreactor is 60 meters long by 40 meters wide; it is constructed as 20 channels with a depth of 1.2 meters, a width of 2 meters and a length of 60 meters.
  • the 20-meter-wide layer is equally divided into 20).
  • the total length of the channel is 1200 m (20 by 60 m) from the water inlet to the outlet.
  • the micro-filter membrane is placed at intervals of 2 m in the channel. Divide the canal into 600 filter units, each of which has a volume of 4.8 m3 (2 m long, 2 m wide, 1.2 m deep); float plants and stock aquatic animals in 600 filter units .
  • Management and maintenance personnel can see the temperature, humidity, and carbon dioxide content in the reaction layer air through the instrument display in the monitoring room. They are managed and maintained according to the requirements of the operation manual; each layer of plants can be seen through the monitor. Height, adjust the plant growth illumination lamp to the optimal distance from the plant.
  • the management and operation of a super-large-scale light-trap bioreactor requires 20 people (three shifts in 24 hours).
  • the average annual labor remuneration is calculated at 36,000 yuan, and the annual labor cost is 720,000 yuan.
  • Auxiliary power and transportation , equipment maintenance and other expenses are estimated at 1.56 million per year, and the annual operating cost is about 2.28 million yuan. If 10,000 tons of urban domestic sewage is treated according to the current conventional technical process, the annual operating expenses will be 3.65 million yuan based on the processing cost of 1 yuan per cubic meter.
  • ultra-large-scale light-harvesting bioreactors use filtered water to generate free-fall potential energy, harvested biomass power generation, building surface solar and wind power generation, and daily operational power can be self-sufficient, therefore, ultra-large-scale light-trap bioreactors use external energy sources. Use only one tenth of the traditional method. The operating cost of ultra-large-scale light-harvesting bioreactors is 1.37 million yuan less than the traditional method.
  • Ultra-large-scale light-harvesting bioreactors can create economic benefits during operations.
  • the area of the float plant for biological reaction is about 8,000 square meters, and 40 kg of plants can be produced per square meter of float plant (20 kg above the embedded plant plate, 20 kg below), embedded on the plate Some 20 kilograms of ecological plants are calculated at 5 yuan per kilogram.
  • the economic value per square meter of floating planting is 100 yuan.
  • the annual output of 160 tons of water plants for sale is 800,000 yuan; the water body used for aquaculture is about 10,000 yuan.
  • Cubic meter calculated by producing 100 kg of aquatic products per cubic meter of aquaculture, producing 1000 tons of aquatic products per year, calculating economic value at 6 yuan per kilogram (for producing high value-added concentrated organic fertilizer), annual water production value 6 million yuan.
  • the gross operating income of the super-large-scale photo-trapping bioreactor is 6.8 million yuan per year.
  • the traditional method can not only produce economic benefits, but also the cost of sludge for subsequent processing.

Abstract

一种水净化和进行水产养殖的超大规模光捕生物反应器,包括一个可封闭的立体构筑空间,立体构筑空间内每个平面层上分别构建有迂回形的水渠(2),每层水渠(2)分别设有入水口(12)和出水口(13),每层水渠(2)内间隔安装若干过滤单元(4);在每个过滤单元(4)的水面有浮法种植特选植物(5),水下有水生动物(6)和微生物(7);在浮法种植特选植物(5)的上方悬挂有高度可以调节的植物生长照射灯(8);上一层水渠的出水口(13)下端安装有叶轮(15),叶轮(15)连接发电机(16);叶轮(15)下方为下一层的水渠(2)入水口;需要净化的水首先进入立体构筑空间最上层水渠(2)的入水口(12)。该光捕生物反应器运行能耗低,占地面积小,过程无污染,实现了清洁生产。

Description

一种水净化的超大规模光捕生物反应器及运行方法 技术领域
本发明涉及生物反应器,尤其涉及到水净化的超大规模光捕生物反应器(Large Scale Photon Capture Bioreactor简称LSPCBR)。
背景技术
生物反应器(英语:Bioreactor)是开始于20世纪80年代的一种生物工程技术,指任何提供生物活性环境的制造或工程设备。生物反应器是利用生物体所具有的生物功能,在体外或体内通过生化反应或生物自身的代谢获得目标产物的装置系统、细胞、组织器官等等,是一个涉及到生物或生物化学活性物质由特定的生物生产出来的反应过程的容器。这些生物反应器通常呈圆筒状,其体积从几升到几立方米不等,常由不锈钢制成。
生物反应器技术经历了三个发展阶段:细菌生物反应器、细胞生物反应器和转基因生物反应器。转基因生物反应器又分为转基因动物生物反应器和转基因植物生物反应器,转基因植物生物反应器多数用于植物品种的改良和培优,转基因动物生物反应器用于动物品种改良的同时,目前多数用于生产高附加值的医药产品和蛋白。
生物反应器应用在水处理方面主要是膜生物反应器(Membrane Bioreactor简称MBR)。膜生物反应器是将生物降解作用与膜的高效分离技术结合而成的一种污水处理与回用工艺。膜生物反应器普遍采用有机膜,常用的膜材料为聚乙烯、聚丙烯等,用中空纤维膜和平板膜制成微滤膜、超滤膜和反渗透滤膜等。单体的膜生物反应器一般是管状结构,主要由膜分离组件及生物反应器两部分组成。在使用过程中,对多个单体的膜生物反应器进行串联或者并联,或者兼而有之组合安装成一个系统,利用膜分离设备将污水处理厂生化反应池中的活性污泥和大分子物质截留住,省掉二沉池。膜生物反应器实际上是三类反应器的总称:①曝气膜生物反应器(Aeration Membrane Bioreactor,AMBR);②萃取膜生物反应器(Extractive Membrane Bioreactor,EMBR);③固液分离型膜生物反应器(Solid/Liquid Separation Membrane Bioreactor,SLSMBR,)。与许多传统的生物水处理工艺相比,膜生物反应器具有出水水质优质稳定,剩余污泥产量少,占地面积小,氨氮及难降解有机物去除率高等主要优点,但是,膜生物反应器同时又具有造价高,容易出现膜污染与膜堵塞,操作管理不便,运行能耗高,维护成本高等主要缺陷。因此,膜生物反应器一般应用在对出水水质要求比较高,污水处理量比较少的污水处理厂,如市政污水管网比较难收集的偏远生活小区、宾馆饭店、度假区、学校、写字楼等分散用户的日常生活污水处理、回用以及啤酒、制革、食品、化工等行业的有机污水处理。膜生物反应器存在的缺陷导致很难推广应用于大型的污水处理厂。
到目前为止的各种污水处理技术,要么消耗大量的能源,要么占用大量的土地,处理过程成为一个连续的沉重负担。
另外,饮用水的洁净程度直接影响到广大民众的身体健康。饮用水水质存在的主要问题是耗氧量高的问题。饮用水中耗氧量高说明有机物量较多,目前技术条件下对饮用水中的有机物多采用加氯消毒的方法进行水净化,但是消毒副产物增多使水的致突活性增强,对人体健康有长远的负面影响。有机物对人体的危害,往往是滞后的,一般发现得病,在 人体上反映要达20~30年。在污水处理方面,传统处理方法的根本缺陷是采用高能耗的手段来对冲水体中潜在的能源和资源。采用传统的好氧生物处理过程,污染物容易随曝气气流挥发,发生气提现象,不仅处理效果很不稳定,还会造成大气污染。采用物理的方法增氧、用化学的方法絮凝、沉淀、生物方法厌氧反应或者好氧反应,处理一立方米污水的能量消耗非常高。有统计数据表明,在美国有7%~8%的电力消耗用在2.5万座污水处理厂和1.8万座污淤泥处理设施运行。如果按照美国的模式进行污水处理,预计中国按照目前的城市化进程,到2040年,需要修建4.5座污水处理厂和3万座污淤泥处理厂,污水处理的能源消耗将会成为沉重的负担。一种新的能源消耗相对较小的人工湿地污水处理技术正在中国的乡村和城镇推广,但是由于需要占用大片的土地,且去污能力有限等缺点而遇到了较大的阻力。
在饮用水净化和污水处理方面遇到了四个方面的问题:
1)巨大的能源消耗根本不存在可持续性;
2)即使按照要求全部处理达标排放,稀释的生态水已不存在;
3)污水处理的昂贵成本成为普罗大众的终身负担。
4)净化和处理占用大量土地而不能够生产财富,挤压生存空间。
发明内容
本发明所要解决的技术问题是提供一种水净化的超大规模光捕生物反应器装置和运行方法,用很少的土地和极低的运营成本,将各种有机污水处理和水净化的过程转化为一种财富和资源的生产过程。
为解决上述技术问题,本发明提供了一种水净化的超大规模光捕生物反应器,包括一个可封闭的立体构筑空间、输水管、叶轮和发电机,所述立体构筑空间内包括多个平面层,在每个平面层上分别构建有迂回形的水渠,每层水渠分别设有入水口和出水口,每层水渠内间隔安装若干微生物过滤隔膜,每个间隔为一个过滤单元;在每个过滤单元的水面有浮法种植植物,水中有微生物,水生动物,浮法种植植物的上方悬挂有高度可以调控的植物生长照射灯;上一层水渠的出水口下设有叶轮,叶轮连接发电机;叶轮下方为下一层的水渠入水口;需要净化的水通过输水管连接最上层水渠的入水口。
本发明的上下平面层之间还设有下落式水槽,水槽的上端连接的水渠的出水口,叶轮设在水槽的下端。
本发明还设有水泵,所述水泵分别通过所述输水管连接需要净化的水池与最上层水渠的入水口。
所述水净化的超大规模光捕生物反应器还包括二氧化碳供应管道,所述二氧化碳供应管道连通立体构筑空间内。
每一平面层相对封闭,每一平面层设有可开合的自然通风口。
可优选的,所述过滤单元的水下有水生动物。所述过滤单元的结构取决于需要净化的水的有机物污染浓度,水体污染浓度高的过滤单元内不适合放入水生动物,而是建成人工湿地的结构,相当于首先通过加厚微生物过滤隔膜将有机污染物迅速讲解到适合于水生动物生长的条件。
所述水槽为上宽下窄的结构。
所述水净化的超大规模光捕生物反应器还包括,在地面层设有若干个沼气池和沼气发电机组。
在生物反应器建筑物的外墙面向阳的一面和建筑物顶面有太阳能发电和风力发电系统。
在生物反应器的地下层是防渗漏处理过的污水调节池,污水在进入沉淀池之前经过格栅进行物理过滤。
所述水渠深度为1.1-1.3米。
本发明的运行方法是:需要净化的水被水泵通过输水管送到立体构筑物内的最上面层水渠的入水口进入到迂回流动水渠中开始缓慢流动,需要净化的水经过这一层的每一个过滤单元进行渐进式生物过滤,水流到本层最后的过滤单元的出水口进入水槽的上端,经水槽的下端冲击叶轮转动,同时给水中增氧,叶轮转动带动发电机发电,发电机向植物生长照射灯供电;水经叶轮后进入为下一层的水渠入水口;如此往复,水流出最底层的水渠时,已经成为净化水。在每个过滤单元中,浮法种植植物,在植物生长照射灯的作用下进行光合作用,吸取水体中的部分富营养化物质和空气中的二氧化碳,微生物利用水体中的部分富营养化物质进行生物反应,水生动物食用浮法种植植物部分根系和水中浮游物。在净化水的同时,得到可收获植物和水生动物。
在以水净化为目的使用超大规模光捕生物反应器时,主要产品是得到净化的水,反应器内其他能够收获的生物则是反应过程的副产品,尽管有可能副产品的经济价值在一定程度上会大于主要产品。在以水产养殖和水面浮法种植为目的使用超大规模光捕生物反应器时,单位土地面积的产出能够比自然情况下传统方法的产出高百倍以上。本发明的主要优点在于:
1、易于控制,质量稳定。所述生物反应器内参与生物反应的各要素及其配置都能够实现有效控制,多项强化措施促进生物反应过程效率高,正常情况下受外界自然条件变化的影响很小,产出质量稳定。需要净化的水进出生物反应器的流量、流速处于系统控制之下;水体以及浮法植物、水生动物在可封闭立体空间内,不受自然气候影响。
2、集约化,占地面积小,投资省。由于超大规模光捕生物反应器的多层式结构实现了集约化目标,使得水处理和水净化过程所占土地面积减少了百分之七十以上,基本建设的投资比传统方法减少百分之三十。如果将超大规模光捕生物反应器用于水产养殖,其单位面积产量将比传统精养鱼塘的产量提高一百倍以上,并且水产品品质会更好。
3、运行能耗低。所述超大规模光捕生物反应器在运行过程中除水泵将水提升到希望的高度以外,整个过程没有高能耗设备,不仅如此,生物反应过程还能够产出能源物质进行自我补充,如果以目前普遍采用的生活污水处理方式相比较,运行能耗降低了百分之九十以上。
4、过程无污染,清洁生产。采用微生物、水生植物和水生动物进行综合化的生物反应,无需额外的非生物质介入或添加,产出物能够充分利用。
5、经济效益显著。由于人造光植物生长照射灯在封闭的环境中对特选植物进行可以调控的、长时间照射,极大地提高植物光合作用效率,生物反应器设有二氧化碳注入口以促进光合作用的效率和反应器内生物的生长;生物在反应器的快速生长加快了水体净化的 速度。对生物反应器的生物(包括植物根系)进行适时收获,一部分可以用于生物质能发电以补充生物反应器需要的能量。在生物反应器中能够收获的植物和动物,特别是在超大规模光捕生物反应器的后半段的比较洁净的水体中收获的植物和动物,其经济价值非常高,能够形成一个生态生产的产业,其经济效益非常显著。
本发明的超大规模光捕生物反应器的用途非常广泛。既可以用于饮用水水体净化,也可以用于生活污水处理、高度富营养化河涌污水处理、传统污水处理厂尾水深度净化,各种工业生产过程产生的有机废水的净化,还可以用于超大规模水产养殖与植物无土栽培等等。
附图说明
下面结合附图和具体实施方式对本发明的技术方案作进一步具体说明。
图1:本发明的超大规模光捕生物反应器结构的后视立面示意图。
图2:本发明的超大规模光捕生物反应器结构的前视立面示意图。
图3:本发明的超大规模光捕生物反应器某一层的局部平面结构示意图。
图4:本发明的超大规模光捕生物反应器第1层的平面布置示意图。
图5:本发明的超大规模光捕生物反应器双数层的平面布置示意图。
图6:本发明的超大规模光捕生物反应器除第1层外单数层的平面布置示意图。
具体实施方式
结合图1、2、3和图4所示的超大规模光捕生物反应器,其主体为一个可封闭的多平面层构建的立体构筑空间,在每个平面生物反应层1构建深度为1.2米左右的可供水体迂回缓慢流动的水渠2,水渠2被一种微生物过滤隔膜3分隔成若干个过滤单元4;在每个过滤单元4的水面有浮法种植特选植物5,高密度放养的水生动物6和水里植物根系和微生物过滤膜里面的微生物7。
在浮法种植植物5的上方悬挂有高度可以调控的植物生长照射灯8,需要净化的水9被水泵10通过输水管11送到立体构筑物内的最上面生物反应层的平面入水口12进入到迂回流动水渠2中开始缓慢流动,需要净化的水9经过这一生物反应层的每一个过滤单元4进行渐进式生物过滤,水流到本生物反应层最后的过滤单元4的溢出出水口13进入斜坡式下水槽14,下水槽14是一个从上到下逐步收窄的结构,在下水槽14的末端安装有叶轮15带动发电机16发电。需要净化的水9在经过下水槽14推动叶轮15旋转之后,进入接下来一个平面生物反应层的入水口12继续深化上一个生物反应层的渐进式过滤净化。
生物反应器内有二氧化碳供应管道进入到每一个平面生物反应层。在生物反应器的第一层设有若干个沼气池18和沼气发电机组19,在生物反应器建筑物的外墙面和建筑物顶面有太阳能发电和风力发电系统20。每一层生物反应层都有可开合的自然通风口21。在生物反应器的地下层是防渗漏处理过的污水调节池22,污水在进入沉淀池之前经过格栅23进行物理过滤。
图5为双数层的平面布置示意图,图6为不同于第1层的单数层的平面布置示意图。由于第1层设有若干个沼气池18和沼气发电机组19,故占用部分水渠空间。而作为第1层之上的水平层,除了必要的上下楼道外,都可以布置水渠。此外,上一层的出水口与下一层的进水口位置上下对应。
下面详细描述本发明的运行方法。本发明的超大规模光捕生物反应器净化水的过程是一个渐进的由量变到质变的生物化学反应过程,因此参与这个反应过程的有效要素也是变化的。在可封闭的多平面生物反应层的立体空间内,在每个生物反应平面层1构建的可供水体迂回缓慢流动的水渠2,将水渠分隔成若干个过滤单元4的微生物过滤隔膜3的过滤孔径则会随着过滤的渐次推进而逐渐变小,例如,在最高的初始生物反应平面过滤层1的迂回缓慢流动的水渠2的靠前部分微生物过滤隔膜3采用的材料可能是陶粒颗粒,即使是陶粒颗粒做成的微生物过滤隔膜3的陶粒颗粒的粒径也会由前到后逐渐变小,以适应逐步加深水质净化的功能要求,微生物过滤隔膜3到最后过滤出水层会变为具有高效分离过滤功能的帘式有机滤膜,以保证出水水质。
迂回缓慢流动的水渠2的宽度和深度确定之后,每个过滤单元4的大小是由相邻的两个微生物过滤隔膜3的距离决定的,既可以通过增加微生物过滤隔膜3的数量(即减少相邻两个微生物过滤隔膜3之间的距离),也可以通过加厚微生物过滤隔膜3本身的厚度来提高水净化的功能,还可以两项措施同时使用。
一般情况下,水体有机物污染浓度COD超过150mg/L,将会不利于植物生长,水生动物很难生存,因此在系统运行过程中,将部分已经得到净化的从最后一个出水口13的出水添加到污水调节池22作为稀释水进行回用,将污水调节池22的污水,稀释到有机物污染浓度COD低于150mg/L(相当于将传统污水处理工艺中最后的生态水稀释手段前置),将非常有利于超大规模光捕生物反应器内的整个生物反应过程和将污水中资源的回收利用。
水面浮法种植植物5一般是陆生喜水性根系特别细密发达的植物,其细密根系在水中生长的长度一般要达到90厘米以上,这些植物最好具有一次栽种多次收割的特性,浮法种植植物5也会根据水质的逐渐净化而进行匹配性品种调整,同样,每个过滤单元4里面高密度放养的水生动物6也会根据水质的逐渐净化而进行匹配性品种调整,例如,在最高的初始生物反应平面过滤层1的迂回缓慢流动的水渠2的靠前部分,在过滤单元4水里高密度放养的水生动物6,要求是能够较好适应较高有机物污染浓度的品种,一般以鳝鱼,泥鳅和土鲢鱼等能够在较高浓度污水环境下快速生长的捕食性水生动物为主,以后逐步过渡到以鲢鱼和鳙鱼等滤食性水生动物为主。
在每个过滤单元4水里植物根系和微生物过滤膜里面的微生物7是自然生成的,在有特殊需求的情况下,可以根据需要在单个或多个过滤单元4中添加或者抑制功能微生物。
由于植物生长照射灯8的发光光源对植物的最佳照射距离为50厘米,所以设计在浮法种植植物5的上方悬挂的植物生长照射灯8的高度可以通过调控达到始终保持最佳的50厘米照射距离,产生最好的光捕效果,植物生长照射灯8采用节能和使用寿命长久的LED灯,采用最有利于促进植物光合作用的红光灯和蓝光灯组合,植物生长照射灯8一般情况下采用24小时不间断照射,诱导植物24小时不间断光合作用,释放氧气,加速植物生长,提高水体净化效率。
相邻的平面生物反应层之间除了需要净化的水9通过下水槽14完成从上到下流动的缝隙以外,平面生物反应层之间是隔绝的。
相邻的平面生物反应层之间的层高在2.5米至3米之间,由于建在生物反应平面过滤层1上面的迂回缓慢流动的水渠2的深度是1.2米左右,植物生长照射灯8的发光光源对 植物的最佳照射距离为50厘米,因此,一般情况下浮法种植植物5最好选择生长高度为1米至1.5米的植物,如果选择的浮法种植植物5的生长高度是超过1.5米的具有特殊意义的植物,就需要加大相邻的平面生物反应层之间的层高。
单位时间内需要净化的水9的量,以及超大规模光捕生物反应器的高度,共同决定了选用水泵10功率的大小,在设置水泵10时,应该考虑到输水管11产生的阻力,计算时可以适当提高送水扬程来确保水泵10的功率足够。
需要净化的水9送到最高层平面水入口12进入到迂回缓慢流动水渠2中的位置是在流动水渠2的正常运行水平面的上方,这样需要净化的水9进入流动水渠2的过程实际上又成为一个增氧的过程。
当需要净化的水9在流动水渠2中流到本生物反应层最后的一个过滤单元4的溢出出水口13进入斜坡式下水槽14时就完成了在本层的生物反应过滤。平面水入口12与溢出出水口13的水头差很小,能够有效控制同一个生物反应层水体在流动水渠2的流速是缓慢的,以延长生物反应时间,提高生物反应过滤的效率。
由于下水槽14是一个从上到下逐步收窄的结构,从溢出出水口13下落的水能够有效地集聚落差势能在下水槽14的末端推动叶轮15旋转从而带动发电机16发电。发电机16发出来的电成为植物生长照射灯8的电源。
在同一个生物反应层面,当需要净化的水9从平面水入口12到溢出出水口13,经历了本层面的所有过滤单元4,水质得到相应的净化,在经过下水槽14进入接下来的一个平面层入水口12继续深化上一层的渐进式过滤净化过程,但是,此时的需要净化的水9已经不是上一层的水质,因此,每一个生物反应层的过滤单元4里面的水面浮法种植植物5和水里高密度放养的水生动物6都会进行相应的调整。
越是接近最后的生物反应层,在流动水渠2中的水质就越来越好,微生物过滤隔膜3的材料已经是具有高效分离过滤功能的帘式有机滤膜或类似材料,此时在每个过滤单元4水面浮法种植植物5和高密度放养的水生动物6的品质越来越好,经济价值越来越高。
生物反应器每一个平面生物反应层1是相对封闭的,因此在每一个平面反应层1分别设有二氧化碳注入口17,在每一层都有独立的二氧化碳阀门,可以根据本层生物反应对二氧化碳的需要开启或者关闭,因为植物生长照射灯8对水面浮法种植植物5进行24小时不间断照射,诱导植物24小时不间断光合作用,植物需要充足的二氧化碳供应来完成光合作用,有必要对封闭的反应器内适时加入适量的二氧化碳,以确保植物生长,加速水体净化。
浮法种植植物5不能够进入市场转化为财富的部分,残枝败叶和根系,以及高密度放养的水生动物6的次品和正品的废料,都收集到地面层的沼气池18用来生产沼气,将沼气输送到发电机组19发电,电能供应给植物生长照射灯8和水泵10。沼气池18产出的沼渣可以生产有机肥料,沼液可以混入需要净化的水9进入生物反应器再进行处理。
可以收集沼气发电机组19燃烧沼气发电时产生的二氧化碳接入二氧化碳管道17,然后送到超大规模光捕生物反应器内作为资源利用。
生物反应器建筑物的外墙面和建筑物顶面的太阳能和风能发电系统20发出来的电能,供应给植物生长照射灯8和水泵10。
生物反应器的每一生物反应层因为是相对封闭和独立的,每一个生物反应层都有可以控制的自然通风口21,便于运营,维护和管理。超大规模光捕生物反应器的维护可以分层逐步进行,当其中的一个生物反应过滤层进行播种,收割,换季,捕捞,更换设备等维护措施时,不对上一层或上几层的生物反应产生影响,但是会间接加重下一层或几层的生物反应过滤的压力。
生物反应器的地下层是污水调节池22,在超大规模光捕生物反应器处理高浓度有机污水时特别需要,污水调节池22采取了防渗漏措施,在污水在进入调节池之前经过格栅23进行物理过滤,防止大颗粒污染物进入超大规模光捕生物反应器,影响水净化效果。
如果超大规模光捕生物反应器是用于饮用水净化或者水产养殖,污水调节池22和格栅23部分可以省略,其他功能部分也要进行相应调整。
超大规模光捕生物反应器中浮法种植植物5、水生动物6、微生物7的代谢过程是生物反应的关键。反应溶液是需要净化的水9,参与反应的主要有七个要素:需要净化的水9的营养物质、浮法种植植物5、水生动物6、微生物7、植物生长照射灯8发出的光、光合作用释放的氧气和添加的二氧化碳,其中,光、氧气和二氧化碳对生物反应过程产生强烈的催化作用,植物生长照射灯8进行24小时不间断照射发出的光是主要催化因子,同时光、氧气和二氧化碳在生物反应器内不断循环利用(其中光的循环是通过植物产沼气发电而实现的)。
生物反应器内光合作用过程中释放出来的氧气是重要的生物反应催化因子,氧气通过三种途径进入需要净化的水9中参与生物反应过程:一方面反应溶液—需要净化的水9从每一层下落到接下来的一层的过程既是一个发电的过程,也是一个增氧的过程,水生动物6在缓慢流动的水渠2中得到充足的氧气和源源不断的食物,将需要净化的水9的营养元素转化为蛋白质;另一方面浮法种植植物5在植物生长照射灯8发出的光不间断照射诱发的连续光合作用的有力带动下,浮法种植植物5的根系不间断地将氧气输送到需要净化的水9中,激发根际共生微生物7成倍加速繁殖,加速捕捉和分解需要净化的水9中的有极大分子,转化为浮法种植植物5的根系能够直接吸收的营养;再一方面是需要净化的水9在流动水渠2中缓慢流动过程中氧气进入水体,这个过程同时又能够很好地使氧气在整个生物反应过程中得到均匀分布,使生物反应更加彻底。
由于生物反应器的反应过程基本是封闭的,因此生物反应器内生物链的整体生物量与通过生物反应器的需要净化的水9的水体净化程度以及添加的二氧化碳的和之间存在物质和能量的平衡关系。整个生物反应器内生物链的整体生物量的成倍增加,来自于生物反应器中需要净化的水9里面各种营养物质和添加的二氧化碳。在以水净化为目的使用超大规模光捕生物反应器时,主要产品是得到净化的水,反应器内其他能够收获的生物(浮法种植植物5、水生动物6)则是生物反应过程的副产品,尽管有可能副产品的经济价值在目前情况下一定程度上会大于主要产品。
应用举例
以一个三级净化处理排放标准为一级A的日处理一万吨生活污水的项目为例,按照目前比较普遍的工艺,一般土地使用面积为2万平方米,采用超大规模光捕生物反应器为例,只需要占地面积3500平方米(50X70m),反应器高五层建筑面积12000 (40X60X5)平方米,超大规模光捕生物反应器的容积(封闭式的建筑物高度为15米)为3.6万立方米(40X60X15)。加上超大规模光捕生物反应器捕捉设备和发电机组设备等,预算总投资约0.230.3亿元(不含土地成本)。
超大规模光捕生物反应器的每一个生物反应过滤层的总面积为60米长乘40米宽;将其构建为深度为1.2米,宽度度为2米,长度为60米的水渠20条(将40米宽的层面20等分),本层水渠是从水流入口到出口迂回首尾相连通流动的总长度为1200米(20乘60米);在水渠内每间隔2米设置一个微生物过滤隔膜,将水渠分隔为600个过滤单元,每个生物反应过滤单元的容积为4.8立方米(2米长,2米宽,1.2米深);在600个过滤单元里面浮法种植植物和放养水生动物。
在这个五层反应层的超大规模光捕生物反应器里面,总共有水渠长度6000米,共3000个生物反应过滤单元,生物反应容积为14400立方米(3000个4.8立方米生物反应过滤单元)。
管理和维护人员可以通过监控室的仪器显示看到每一层的温度,湿度,反应层空气里面二氧化碳含量等,根据操作手册要求进行管理和维护;可以通过监视器看到每一层植物生长的高度,将植物生长照射灯调节到与植物之间的最佳距离。
管理和运营一个超大规模光捕生物反应器的人员需要20人(24小时分三班),平均每人每年劳动报酬按3.6万元计算,每年的人工成本为72万元,辅助电力、交通运输、设备维护及其他开支按每年156万计预算,每年的运营成本合计约228万元。若按照目前常规的技术工艺日处理1万吨城市生活污水,按处理费用每立方米1元计算,每年的运营的开支费用365万元。由于超大规模光捕生物反应器利用过滤水体自由落差势能发电,收获的生物质发电,建筑物面太阳能和风能发电,日常运营电力基本能够自给自足,因此,超大规模光捕生物反应器利用外部能源只用传统方法的十分之一。超大规模光捕生物反应器的运营成本比传统方法每年节约137万元。
超大规模光捕生物反应器在运营过程中,能够创造经济效益。用于生物反应的浮法种植植物的面积约8000平方米,以每平方米浮法湿地植物能够产生40公斤植物(嵌入式种植盘以上部分20公斤,以下部分20公斤),嵌入式种植盘以上部分20公斤生态植物,以每公斤5元计算,浮法种植每平方米的经济价值为100元,每年160吨可供销售的水体植物产出为80万元;用于水产养殖的水体约10000立方米,以每立方米水产养殖年产100公斤水产品计算,每年产出1000吨水产品,以6元每公斤计算经济价值(用于生产高附加值的浓缩有机肥料),年水产值为600万元。每年超大规模光捕生物反应器的运营毛收益为680万元。而传统的方法不但不能产生经济效益,反而还有污泥需要后续处理的费用需要投入。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种水净化的超大规模光捕生物反应器,其特征在于包括一个可封闭的立体构筑空间、输水管、叶轮和发电机,所述立体构筑空间内包括多个平面层,在每个平面层上分别构建有迂回形的水渠,每层水渠分别设有入水口和出水口,每层水渠内间隔安装若干微生物过滤隔膜,每个间隔为一个过滤单元;在每个过滤单元的水面有浮法种植植物,水中有微生物,浮法种植植物的上方悬挂有高度可以调控的植物生长照射灯;上一层水渠的出水口下设有叶轮,叶轮连接发电机;叶轮下方为下一层的水渠入水口;需要净化的水通过输水管连接最上层水渠的入水口。
  2. 根据权利要求1所述的水净化的超大规模光捕生物反应器,其特征在于,还包括二氧化碳供应管道,所述二氧化碳供应管道连通立体构筑空间内。
  3. 根据权利要求2所述的水净化的超大规模光捕生物反应器,其特征在于,每一平面层相对封闭,每一平面层设有可开合的自然通风口。
  4. 根据权利要求1所述的水净化的超大规模光捕生物反应器,其特征在于,所述上下平面层之间还设有下落式水槽,水槽的上端连接的水渠的出水口,叶轮设在水槽的下端。
  5. 根据权利要求4所述的水净化的超大规模光捕生物反应器,其特征在于,还设有水泵,所述水泵分别通过所述输水管连接需要净化的水池与最上层水渠的入水口。
  6. 根据权利要求1所述的水净化的超大规模光捕生物反应器,其特征在于,所述过滤单元的水下有水生动物。
  7. 根据权利要求4述的水净化的超大规模光捕生物反应器,其特征在于,所述水槽为上宽下窄的结构。
  8. 根据权利要求1所述的水净化的超大规模光捕生物反应器,其特征在于,在地面层设有若干个沼气池和沼气发电机组。
  9. 根据权利要求1所述的水净化的超大规模光捕生物反应器,其特征在于,在生物反应器的地下层是防渗漏处理过的污水调节池,污水在进入调节池之前经过格栅进行物理过滤。
  10. 根据权利要求1所述的水净化的超大规模光捕生物反应器的运行方法,其特征在于,包括以下步骤:
    将需要净化的水的污染浓度在污水调节池稀释到适当程度,用水泵从污水调节池通过输水管送到立体构筑物内的最上面层水渠的入水口进入到迂回流动水渠中开始缓慢流动, 需要净化的水经过这一层的每一个过滤单元进行渐进式生物过滤,水流到本层最后的过滤单元的出水口进入水槽的上端,经水槽的下端冲击叶轮转动,叶轮转动带动发电机发电,发电机向植物生长照射灯供电;水经叶轮增氧后进入为下一层的水渠入水口;如此往复,当水流出最底层的水渠时,已经成为净化水;
    在每个过滤单元中,浮法种植植物,在植物生长照射灯的作用下进行光合作用,吸取水体中的部分富营养化物质和空气中的二氧化碳,微生物利用水体中的部分富营养化物质进行生物反应,水生动物食用浮法种植植物部分根系和水中浮游物。在净化水的同时,得到可收获植物和水生动物。
PCT/CN2015/073453 2014-02-28 2015-02-28 一种水净化的超大规模光捕生物反应器及运行方法 WO2015127904A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
RU2016138336A RU2684080C2 (ru) 2014-02-28 2015-02-28 Биореактор с захватом фотонов для очистки воды и способ его эксплуатации
CA2940861A CA2940861C (en) 2014-02-28 2015-02-28 Bioreactor for water purification and operation method therefor
JP2016571457A JP6471181B2 (ja) 2014-02-28 2015-02-28 水質浄化用の大規模光キャプチャバイオリアクター及び運行方法
EP15755707.5A EP3112321B1 (en) 2014-02-28 2015-02-28 Super-large scale photon capture bioreactor for water purification and operation method therefor
PL15755707T PL3112321T3 (pl) 2014-02-28 2015-02-28 Super wielkoskalowy bioreaktor wychwytujący fotony do oczyszczania wody i jego sposób działania
DK15755707.5T DK3112321T3 (da) 2014-02-28 2015-02-28 Photonindfangningsbioreaktor i meget stor målestok til vandoprensning og funktionsfremgangsmåder dertil
ES15755707T ES2765458T3 (es) 2014-02-28 2015-02-28 Biorreactor de captura de fotones a escala supergrande para la purificación del agua y método de operación del mismo
AU2015222533A AU2015222533B2 (en) 2014-02-28 2015-02-28 Super-large scale photon capture bioreactor for water purification and operation method therefor
MYPI2016001573A MY186743A (en) 2014-02-28 2015-02-28 Super-large scale photon capture bioreactor for water purification and operation method therefor
US15/247,949 US10160681B2 (en) 2014-02-28 2015-02-28 Super-large scale photon capture bioreactor for water purification and operation method therefor
KR1020167025697A KR102034822B1 (ko) 2014-02-28 2015-02-28 정수용 대규모 광자 에코 캡처 생물 반응기 및 그 작동방법
IL247498A IL247498B (en) 2014-02-28 2016-08-25 Photon capture bioreactor on a super-large scale for water purification and a method of operation using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410072754.8A CN104030518B (zh) 2014-02-28 2014-02-28 一种水净化的超大规模光捕生物反应器及运行方法
CN201410072754.8 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015127904A1 true WO2015127904A1 (zh) 2015-09-03

Family

ID=51461549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073453 WO2015127904A1 (zh) 2014-02-28 2015-02-28 一种水净化的超大规模光捕生物反应器及运行方法

Country Status (16)

Country Link
US (1) US10160681B2 (zh)
EP (1) EP3112321B1 (zh)
JP (1) JP6471181B2 (zh)
KR (1) KR102034822B1 (zh)
CN (1) CN104030518B (zh)
AU (1) AU2015222533B2 (zh)
CA (1) CA2940861C (zh)
DK (1) DK3112321T3 (zh)
ES (1) ES2765458T3 (zh)
HU (1) HUE047015T2 (zh)
IL (1) IL247498B (zh)
MY (1) MY186743A (zh)
PL (1) PL3112321T3 (zh)
PT (1) PT3112321T (zh)
RU (1) RU2684080C2 (zh)
WO (1) WO2015127904A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018064997A3 (de) * 2016-10-06 2018-05-31 Lance Elmar Stromlos arbeitende abwasserbehandlungsanlage
CN109879440A (zh) * 2019-03-20 2019-06-14 范天瑜 一种人工构建水生植物落群修复污染水体的系统
CN112106720A (zh) * 2020-10-19 2020-12-22 四川省农业科学院水产研究所(四川省水产研究所) 一种智能生态循环水养殖池、控制方法及应用
CN117084200A (zh) * 2023-08-22 2023-11-21 盐城工业职业技术学院 应用大数据分析的水产养殖投药控制系统

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104030518B (zh) * 2014-02-28 2016-03-02 天下光捕(武汉)生态科技有限公司 一种水净化的超大规模光捕生物反应器及运行方法
US10602727B2 (en) * 2015-02-19 2020-03-31 FOREVER OCEANS CORPORATlON Automated aquaculture harvesting system
CN105805847B (zh) * 2016-03-08 2018-10-19 天下光捕(武汉)生态科技有限公司 一种生态循环的空气净化装置
CN107446584B (zh) * 2016-05-30 2021-06-25 青岛理工大学 一种基于沼渣的六价铬场地原位及异位耦合解毒方法
WO2018035808A1 (zh) * 2016-08-25 2018-03-01 沐耕山(苏州)生物能源设备有限公司 水生微生物养殖系统
CN106614219A (zh) * 2016-09-30 2017-05-10 深圳前海弘稼科技有限公司 一种鱼植共生系统
CN106830519B (zh) * 2017-02-13 2019-07-26 浙江佰年水务有限公司 排污口预处理管道
CN108821437B (zh) * 2018-05-28 2021-08-24 浙江工业大学 一种用于治理富营养水体的生态塔及应用
MX2021004655A (es) * 2018-10-25 2021-09-28 Springworks Farm Maine Inc Sistema y metodo para mejorar el crecimiento de las plantas.
KR102011245B1 (ko) * 2019-03-08 2019-08-14 전라남도 수산식물 바이오 가로수 장치
CN110002684A (zh) * 2019-04-26 2019-07-12 深圳市环境科学研究院 一种人工湿地处理系统及处理方法
CN110482704A (zh) * 2019-08-20 2019-11-22 中国热带农业科学院热带生物技术研究所 一种多层浮萍科植物污水净化装置和污水净化方法
CN111018241A (zh) * 2019-12-10 2020-04-17 上海市净化技术装备成套有限公司 一种农村生活污水处理系统装置
CN111777277B (zh) * 2020-07-13 2023-04-18 福建省蓝深环保技术股份有限公司 一种生活污水处理装置及其施工工艺
CN113044956B (zh) * 2020-10-16 2021-11-02 同济大学 一种针对高盐废水的层叠式生物净化装置及其净化方法
CN112889709B (zh) * 2021-03-09 2022-11-18 浙江省海洋水产研究所 一种利用离子交换技术降低海水酸度的珊瑚培养装置
RU2763132C1 (ru) * 2021-03-13 2021-12-27 Сергей Яковлевич Чернин Система мониторинга концентрации загрязняющих веществ, в том числе нефтепродуктов, в сточных водах и управления работой очистных сооружений предприятий
CN113560309A (zh) * 2021-06-07 2021-10-29 天下光捕(武汉)生态科技有限公司 生活污水净化和生活垃圾提炼的一体化装置和运行方法
CN113845229A (zh) * 2021-09-30 2021-12-28 颜步云 一种用于农业尾水处理的生态净化系统及其应用
CN114009329B (zh) * 2021-11-02 2023-01-03 杭州园林设计院股份有限公司 一种水生植物种植架及组合驳岸
CN114212893A (zh) * 2021-12-20 2022-03-22 北京首创生态环保集团股份有限公司 一种无动力模块化膜传氧食物链水体净化装置
US11937581B2 (en) 2022-08-01 2024-03-26 Peco Foods, Inc. Lighting system for poultry houses
CN117530209A (zh) * 2023-11-23 2024-02-09 华中农业大学 大水面囤鱼吊水系统及其暂养方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5799612A (en) * 1997-04-04 1998-09-01 Page; Darren L. Compact and efficient photosynthetic water filters
CN1328529A (zh) * 1998-12-01 2001-12-26 李相乙 利用水生植物处理被污染水或废水的净化系统
CN101108758A (zh) * 2007-07-20 2008-01-23 黄荣胜 淀粉、酒精废水综合利用的方法及设备
CN101671080A (zh) * 2009-03-31 2010-03-17 上海海洋大学 太阳能引导植物净化水体的装置
CN102287741A (zh) * 2011-05-09 2011-12-21 张博 具有双能源的节能型led水族灯装置
CN104030518A (zh) * 2014-02-28 2014-09-10 天下光捕(武汉)生态科技有限公司 一种水净化的超大规模光捕生物反应器及运行方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329164U (zh) * 1976-08-20 1978-03-13
JPS58199099A (ja) * 1982-05-17 1983-11-19 Toshiba Corp 水溝水処理装置
JPS62125898A (ja) * 1985-11-25 1987-06-08 Takenaka Komuten Co Ltd 水生植物による富栄養化排水等の処理装置
DE3819508A1 (de) 1988-06-08 1989-12-21 Technica Entwicklung Verfahren zum beheben von durch stickstoff-ueberschuss bedingten gewebeerweichungen von kulturpflanzen
US5137625A (en) 1990-12-28 1992-08-11 Wolverton Billy C Aquatic plant/microbial water purification system
JP3069847B2 (ja) * 1997-05-29 2000-07-24 徹 日野 魚介類養殖と植物栽培を同時に行なう養殖、栽培装置
JPH11333482A (ja) * 1998-05-25 1999-12-07 Human Net Kk 水の浄化方法及び水の浄化システムとその浄化システムに使用する導水路
JP2000037144A (ja) * 1998-07-23 2000-02-08 Haruo Fujimoto 食用植物の水耕栽培兼水質浄化及び生態礁となるイカダ
RU2179158C1 (ru) * 2001-01-17 2002-02-10 Шапиро Валерий Абрамович Способ и устройство для очистки воздушных выбросов и сточных вод животноводческих комплексов с использованием растений
JP2003023887A (ja) * 2001-07-19 2003-01-28 Kubota Corp 循環型施設栽培方法
CN2515198Y (zh) * 2001-12-18 2002-10-09 章永泰 带照明的浮床式污水净化装置
CN2526316Y (zh) * 2002-02-05 2002-12-18 章永泰 浮动式水下植物照明装置
US20050064577A1 (en) 2002-05-13 2005-03-24 Isaac Berzin Hydrogen production with photosynthetic organisms and from biomass derived therefrom
JP4136877B2 (ja) * 2003-02-26 2008-08-20 株式会社加藤建設 浮島型水質浄化処理装置
US7176024B2 (en) 2003-05-30 2007-02-13 Biolex, Inc. Bioreactor for growing biological materials supported on a liquid surface
JP3742827B2 (ja) * 2003-07-23 2006-02-08 艮一 小松 イオンガーデンによる環境浄化システム
KR100707365B1 (ko) * 2004-08-20 2007-04-13 배흥섭 호소 수질 정화 시스템 및 이를 이용한 정화방법
CN2741971Y (zh) * 2004-11-05 2005-11-23 武汉大学 一种污染水体净化装置
US20070048848A1 (en) 2005-08-25 2007-03-01 Sunsource Industries Method, apparatus and system for biodiesel production from algae
US8415142B2 (en) * 2006-06-14 2013-04-09 Malcolm Glen Kertz Method and apparatus for CO2 sequestration
BRPI0714051A2 (pt) 2006-07-10 2012-12-11 Greenfuel Technologies Corp sistema de fotobiorreatores e métodos para tratamento de gás enriquecido com co2 e produção de biomassa
US7776211B2 (en) 2006-09-18 2010-08-17 Algaewheel, Inc. System and method for biological wastewater treatment and for using the byproduct thereof
KR100787149B1 (ko) * 2006-12-08 2007-12-21 주식회사 아썸 수처리를 위한 인공습지
DE102007017933B4 (de) 2007-04-13 2014-05-08 Maria Rogmans Verfahren und Anlage zur ökologisch verträglichen Entsorgung von gasförmigen CO2
JP5005479B2 (ja) * 2007-09-03 2012-08-22 Dowaエレクトロニクス株式会社 水の浄化方法
RU2359924C1 (ru) * 2007-10-31 2009-06-27 Алексей Васильевич Друцкий Способ обезвреживания сточных вод и устройство для его осуществления
EP2215210A2 (en) * 2007-11-20 2010-08-11 Philips Intellectual Property & Standards GmbH Bioreactor apparatus, bioreactor system, and method for growing light energy dependant biological species
US20100003741A1 (en) * 2008-07-01 2010-01-07 Fromson Howard A Integrated power plant, sewage treatment, and aquatic biomass fuel production system
CA2739894A1 (en) * 2008-10-09 2010-04-22 Rogmans, Maria Method and device for photosynthesis-supported exhaust gas disposal, particularly co2
WO2010108087A1 (en) * 2009-03-20 2010-09-23 Algal Scientific Corporation System and method for treating wastewater via phototactic heterotrophic microorganism growth
JP2011094522A (ja) * 2009-10-29 2011-05-12 Koichi Totsugi 小規模発電装置
WO2011159709A2 (en) * 2010-06-14 2011-12-22 Chlor Bioenergy Inc. Photobioreactor system
CN102161531A (zh) * 2011-06-02 2011-08-24 南京师范大学 一种富营养化水体净化装置
JP2014000057A (ja) 2012-06-21 2014-01-09 Sorekkusu Kk 植物栽培システム
CN202958271U (zh) * 2012-11-02 2013-06-05 中国建筑股份有限公司 多功能室内除污植物墙
CN103011412A (zh) * 2012-12-12 2013-04-03 天下光捕(武汉)生态科技有限公司 一种旋转式水生态修复装置及应用
CN103395930A (zh) 2013-07-31 2013-11-20 武汉大学 一种生态护坡式污水土地渗滤系统及其渗滤方法
US20160095301A1 (en) * 2014-10-03 2016-04-07 Mariner Farms, Llc Closed loop fish and plant farming structure and method
US10201122B2 (en) * 2015-01-23 2019-02-12 Kevin W. Higgins Large-scale helical farming apparatus
WO2016154360A1 (en) * 2015-03-24 2016-09-29 Smarter Planet Enterprises Corporation Portable agrarian biosystem

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5799612A (en) * 1997-04-04 1998-09-01 Page; Darren L. Compact and efficient photosynthetic water filters
CN1328529A (zh) * 1998-12-01 2001-12-26 李相乙 利用水生植物处理被污染水或废水的净化系统
CN101108758A (zh) * 2007-07-20 2008-01-23 黄荣胜 淀粉、酒精废水综合利用的方法及设备
CN101671080A (zh) * 2009-03-31 2010-03-17 上海海洋大学 太阳能引导植物净化水体的装置
CN102287741A (zh) * 2011-05-09 2011-12-21 张博 具有双能源的节能型led水族灯装置
CN104030518A (zh) * 2014-02-28 2014-09-10 天下光捕(武汉)生态科技有限公司 一种水净化的超大规模光捕生物反应器及运行方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018064997A3 (de) * 2016-10-06 2018-05-31 Lance Elmar Stromlos arbeitende abwasserbehandlungsanlage
CN109879440A (zh) * 2019-03-20 2019-06-14 范天瑜 一种人工构建水生植物落群修复污染水体的系统
CN112106720A (zh) * 2020-10-19 2020-12-22 四川省农业科学院水产研究所(四川省水产研究所) 一种智能生态循环水养殖池、控制方法及应用
CN117084200A (zh) * 2023-08-22 2023-11-21 盐城工业职业技术学院 应用大数据分析的水产养殖投药控制系统
CN117084200B (zh) * 2023-08-22 2024-01-19 盐城工业职业技术学院 应用大数据分析的水产养殖投药控制系统

Also Published As

Publication number Publication date
CA2940861A1 (en) 2015-09-03
DK3112321T3 (da) 2020-01-27
US20180037482A1 (en) 2018-02-08
RU2016138336A (ru) 2018-04-02
AU2015222533A1 (en) 2016-09-22
MY186743A (en) 2021-08-16
KR102034822B1 (ko) 2019-10-21
HUE047015T2 (hu) 2020-04-28
EP3112321A1 (en) 2017-01-04
ES2765458T3 (es) 2020-06-09
CN104030518A (zh) 2014-09-10
JP2017507780A (ja) 2017-03-23
CA2940861C (en) 2020-06-09
EP3112321B1 (en) 2019-12-04
EP3112321A4 (en) 2017-09-20
JP6471181B2 (ja) 2019-02-13
CN104030518B (zh) 2016-03-02
US10160681B2 (en) 2018-12-25
IL247498A0 (en) 2016-11-30
PT3112321T (pt) 2020-01-20
AU2015222533B2 (en) 2017-06-29
RU2684080C2 (ru) 2019-04-03
RU2016138336A3 (zh) 2018-04-02
IL247498B (en) 2020-10-29
PL3112321T3 (pl) 2020-06-01
KR20160123375A (ko) 2016-10-25

Similar Documents

Publication Publication Date Title
WO2015127904A1 (zh) 一种水净化的超大规模光捕生物反应器及运行方法
CN108975615B (zh) 一种沼液生态处理养殖系统
WO2014190571A1 (zh) 一种结合水产养殖及无土农业种植的系统
CN108947134B (zh) 一种沼液光处理养殖系统
CN211241202U (zh) 一种耐海水蔬菜与水产动物的立体共养装置
CN101445309A (zh) 高效生态净化循环水养鱼设施
CN102972329A (zh) 一体化室内生态循环水养殖系统
CN107018945A (zh) 一种双循环亲虾培育的水处理系统及培育方法
TWI504345B (zh) 多重立體式生態循環養殖系統
CN104756916A (zh) 一种自维护回流式冷水性鲑鳟鱼类育苗系统
CN108713489B (zh) 一种鱼植共生的综合套养循环养殖系统及方法
CN108739343A (zh) 一种鱼菜共赢的工厂化养鱼尾液循环利用方法
CN215559753U (zh) 用于处理水产养殖尾水的人工湿地系统及循环水养殖系统
CN109399798A (zh) 一种沉淀藻池-藻菌共生生态板槽-微生物滤池的水处理系统及处理方法
CN105060648B (zh) 工厂化循环水鱼类养殖脱氮零排放系统
CN208545259U (zh) 一种无污染养殖系统
CN201040726Y (zh) 漂移式多功能净水设备
CN209583888U (zh) 一种海淡水工厂化养殖系统循环水处理系统
CN109399799A (zh) 一种水处理藻箱、水处理系统及水处理方法
CN107265755A (zh) 密闭循环水产养殖的水处理系统与方法
WO2022267236A1 (zh) 一种基于互联网的集装箱水产养殖系统
CN112897802A (zh) 一种鱼植共生四级水处理系统
CN206150082U (zh) 一种冷海水养鱼废水的浒苔增殖处理系统
CN109231685A (zh) 一种环保节能型海淡水工厂化养殖系统循环水处理系统与方法
CN106258924A (zh) 一种冷海水养鱼废水的浒苔增殖处理系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755707

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 247498

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2016571457

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2940861

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15247949

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015755707

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015755707

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167025697

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015222533

Country of ref document: AU

Date of ref document: 20150228

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201606491

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016138336

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016019826

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016019826

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160826