WO2015125748A1 - ガス拡散電極基材ならびにそれを備える膜電極接合体および燃料電池 - Google Patents

ガス拡散電極基材ならびにそれを備える膜電極接合体および燃料電池 Download PDF

Info

Publication number
WO2015125748A1
WO2015125748A1 PCT/JP2015/054194 JP2015054194W WO2015125748A1 WO 2015125748 A1 WO2015125748 A1 WO 2015125748A1 JP 2015054194 W JP2015054194 W JP 2015054194W WO 2015125748 A1 WO2015125748 A1 WO 2015125748A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode substrate
microporous
gas diffusion
base material
carbon
Prior art date
Application number
PCT/JP2015/054194
Other languages
English (en)
French (fr)
Inventor
寧昭 谷村
将道 宇都宮
釜江 俊也
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP15752113.9A priority Critical patent/EP3113263B1/en
Priority to JP2015510560A priority patent/JP5835527B1/ja
Priority to CN201580009936.3A priority patent/CN106063008B/zh
Priority to US15/119,314 priority patent/US10411269B2/en
Priority to KR1020167021831A priority patent/KR102120691B1/ko
Priority to CA2939185A priority patent/CA2939185A1/en
Publication of WO2015125748A1 publication Critical patent/WO2015125748A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • H01M4/8631Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8694Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a gas diffusion electrode base material suitably used for a fuel cell, particularly a polymer electrolyte fuel cell. More specifically, it has excellent resistance to flooding, mechanical properties, electrical conductivity, and thermal conductivity because it has good dryness at high temperatures and good gas diffusibility and drainage even under low temperature and high humidification conditions.
  • the present invention relates to a gas diffusion electrode substrate capable of exhibiting high power generation performance over a wide temperature range from low temperature to high temperature while being maintained.
  • a polymer electrolyte fuel cell that supplies a fuel gas containing hydrogen to the anode and an oxidizing gas containing oxygen to the cathode to obtain an electromotive force by an electrochemical reaction occurring at both electrodes is generally a separator, gas diffusion An electrode base material, a catalyst layer, an electrolyte membrane, a catalyst layer, a gas diffusion electrode base material, and a separator are laminated in order.
  • the gas diffusion electrode base material has high gas diffusibility for diffusing the gas supplied from the separator to the catalyst layer, and high drainage for discharging liquid water generated by the electrochemical reaction to the separator. High conductivity is required to extract current, and gas diffusion electrode substrates made of carbon fiber or the like are widely used.
  • Patent Document 1 has a structure in which an electrode base material is impregnated with a carbon porous body, that is, a microporous portion, and the density of the impregnated layer is set within a certain range, so that stable power generation performance under low and high humidification conditions. Is disclosed. However, the structure obtained by such a method in which the microporous portion is impregnated in the electrode base material cannot satisfy both high gas diffusibility and high drainage at the same time, and in particular, power generation performance at low temperatures is insufficient. there were.
  • Patent Document 2 through holes are formed by putting a large amount of pore-forming particles inside a microporous part, and high performance is obtained in each of drying and humidifying conditions by separating water and gas paths. Techniques to do this are disclosed.
  • drainage is improved in the microporous part, but there is a problem that the discharged water accumulates in the carbon paper and inhibits gas diffusion, and sufficient performance is obtained. I could't.
  • the object of the present invention is that it has excellent resistance to flooding, mechanical properties, electrical conductivity, heat conduction because it has good dryness at high temperatures and good gas diffusion and drainage even under low temperature and high humidification conditions.
  • An object is to provide a gas diffusion electrode substrate, a membrane electrode assembly, and a fuel cell capable of exhibiting high power generation performance over a wide temperature range from low temperature to high temperature without greatly impairing the properties.
  • the gas diffusion electrode substrate of the present invention employs the following means in order to solve such problems. That is, it is a gas diffusion electrode base material composed of an electrode base material and a microporous portion used in a fuel cell, wherein the microporous portion (A) is formed on one side of the electrode base material, The microporous part (B) is formed on the part, and the microporous part (B) continues from the surface of the electrode base on the side where the microporous part (A) is formed to the vicinity of the surface of the electrode base on the opposite side.
  • a gas diffusion electrode substrate having a portion in which voids are continuously distributed from the surface of the electrode substrate on the side where the microporous portion (A) is formed to the surface of the electrode substrate on the opposite side is there.
  • the membrane electrode assembly of the present invention employs the following means in order to solve such a problem. That is, the membrane electrode assembly has a catalyst layer on both sides of the electrolyte membrane, and further has the gas diffusion electrode substrate described above outside the catalyst layer.
  • the fuel cell of the present invention employs the following means in order to solve such a problem. That is, the fuel cell has separators on both sides of the membrane electrode assembly described above.
  • the present invention can drastically suppress flooding during low-temperature power generation by promoting drainage of liquid water while maintaining gas diffusibility in the gas diffusion electrode base material while having dry-up resistance during high-temperature power generation. . For this reason, when the gas diffusion electrode substrate of the present invention is used in a fuel cell, high power generation performance can be expressed over a wide temperature range from low temperature to high temperature.
  • the gas diffusion electrode substrate of the present invention also has good mechanical strength, electrical conductivity, and thermal conductivity.
  • the gas diffusion electrode base material of the present invention is composed of an electrode base material and a microporous part, the microporous part (A) is formed on one surface of the electrode base material, and the microporous part is partially formed inside the electrode base material. (B) must be formed.
  • the microporous portion (A) is a microporous portion that is layered on the surface of the electrode substrate, and is a microporous portion (described later) that is formed in a part of the electrode substrate. It is distinguished from B).
  • a substrate made of only carbon paper or the like and not provided with a microporous portion, or a portion of the “gas diffusion electrode substrate” is referred to as an “electrode substrate”, and the microporous portion is provided on the electrode substrate.
  • the provided base material is referred to as “gas diffusion electrode base material”.
  • the electrode base material in the present invention has high gas diffusibility for diffusing the gas supplied from the separator to the catalyst layer, high drainage for discharging liquid water generated by the electrochemical reaction to the separator, and generation High electrical conductivity is needed to extract the measured current.
  • a conductive porous body specifically, a porous body containing carbon fibers such as carbon fiber woven fabric, carbon fiber nonwoven fabric, carbon fiber papermaking body, foam sintered metal, metal mesh, expanded
  • a metal porous body such as metal is used, and among them, it is preferable to use a porous body containing carbon fiber because of its excellent corrosion resistance.
  • the carbon fiber woven fabric may be a woven fabric obtained by weaving carbon fibers, or may be obtained by firing a woven fabric obtained by weaving carbon fiber precursor fibers.
  • a carbon fiber nonwoven fabric it is obtained by firing after applying processing such as compression to a nonwoven fabric processed from carbon fiber precursor fiber, even those processed into a nonwoven fabric carbon fiber, A so-called felt type may be used.
  • a base material obtained by binding a carbon fiber papermaking body with carbide that is, “carbon paper”.
  • a substrate formed by binding a carbon fiber papermaking body with a carbide is usually obtained by impregnating a carbon fiber papermaking body with a resin and carbonizing it, as will be described later.
  • the carbon fiber include polyacrylonitrile (PAN), pitch, and rayon carbon fibers.
  • PAN-based and pitch-based carbon fibers are preferably used in the present invention because of excellent mechanical strength.
  • the thickness of the electrode base material is preferably 50 ⁇ m or more, and more preferably 60 ⁇ m or more. Further, the thickness of the electrode base material is preferably 190 ⁇ m or less, and more preferably 160 ⁇ m or less. This is because when the electrode substrate is impregnated with a thickness of 190 ⁇ m or less, the microporous portion (B) is easily impregnated into the electrode substrate, and the microporous portion (A ) Where the microporous part (B) is continuously present from the surface of the electrode base on the side where the electrode is formed to the surface of the opposite electrode base, that is, the structure in which the microporous part (B) is continuously present. It can be formed efficiently.
  • the thickness of the electrode substrate is 50 ⁇ m or more, the gas diffuses in the substrate in the in-plane direction down to the ribs of the separator, and the gas is easily diffused to the catalyst layer under the ribs. Contributes to improved performance.
  • the thickness of the electrode base material can be determined using a micrometer in a state where the surface pressure is 0.15 MPa. The average of 10 individual measurements is taken as the thickness. In addition, you may measure the thickness of an electrode base material using the electrode base material isolate
  • the thickness of the base material from which the microporous portion (A) existing on the surface thereof is peeled from the gas diffusion electrode base material may be the thickness of the electrode base material.
  • the base material from which the microporous portion (A) existing on the surface thereof has been peeled off from the gas diffusion electrode base material may be referred to as an electrode base material portion.
  • an adhesive tape such as “Scotch” (registered trademark) tape # 810 (manufactured by 3M) is adhered to the microporous portion (A) side of the surface of the gas diffusion electrode substrate with a surface pressure of 0.15 MPa and peeled off.
  • This adhesion and peeling are repeated, and it can be said that the microporous part (A) can be peeled off when the mass reduction by peeling with the pressure-sensitive adhesive tape becomes 1% by mass or less, and an electrode substrate part can be obtained.
  • the thickness measured by the above-described method for this electrode substrate portion can be the thickness of the electrode substrate.
  • the bulk density of the electrode substrate is preferably 0.2 g / cm 3 or more, more preferably 0.22 g / cm 3 or more, and further preferably 0.24 g / cm 3. .
  • the bulk density of the electrode substrate is preferably 0.4 g / cm 3 or less, more preferably 0.35 g / cm 3 or less, and further preferably 0.3 g / cm 3 or less.
  • the bulk density is 0.2 g / cm 3 or more, the water vapor diffusibility is small, and the dry-up can be further suppressed. For this reason, the mechanical properties of the electrode substrate are improved. Can be fully supported. In addition, the conductivity is high, and the power generation performance is improved at both high and low temperatures.
  • the bulk density is 0.4 g / cm 3 or less, drainage is improved and flooding can be further suppressed.
  • the measurement method of the bulk density of the electrode base material is a 2 cm square electrode base material cut out as a test piece, the mass is measured, and the mass is determined based on the thickness of the electrode base material obtained by the above-described method and the cut-out area of the test piece (4 cm It can be determined by dividing by the volume that is the product of 2 ). Five specimens are measured, and the average is taken as the bulk density of the electrode substrate.
  • the electrode substrate used in the present invention preferably has a surface roughness on the side opposite to the surface roughness on which the microporous portion (A) is formed, with a difference of 1 ⁇ m or more being large, It is more preferable that the difference is 2 ⁇ m or more, and it is more preferable that the difference is 2.5 ⁇ m or more. If there is a certain difference in surface roughness between the front and back surfaces of the electrode substrate, when the microporous portion (B) is impregnated, flow occurs in the direction perpendicular to the surface of the electrode substrate, and the microporous portion (B) is straight. It becomes easy to form a continuous structure in the direction.
  • the difference in surface roughness is preferably 5 ⁇ m or less, more preferably 4.5 ⁇ m or less, and even more preferably 4 ⁇ m or less.
  • This can prevent the microporous portion (B) from being biased in the direction perpendicular to the surface roughness by not increasing the difference in surface roughness too much, and this prevents the amount of adhesion on one electrode substrate surface from becoming too large.
  • a continuous structure can be formed.
  • the surface roughness of the electrode substrate is measured by measuring a 5 mm square range on the surface of the electrode substrate using a laser microscope or the like, and after correcting the surface inclination, the arithmetic average roughness Ra [ ⁇ m of the surface] ] Can be obtained.
  • the gas diffusion electrode base material needs to have a microporous portion (A) formed on one side of the electrode base material.
  • the microporous part (A) has high gas diffusibility for diffusing the gas supplied from the separator to the catalyst layer, and high drainage for discharging liquid water generated by the electrochemical reaction to the separator. High electrical conductivity is needed to extract the measured current. Furthermore, it has a function of promoting the reverse diffusion of moisture into the electrolyte membrane and moistening the electrolyte membrane.
  • the thickness of the microporous portion (A) is preferably 10 ⁇ m or more, and more preferably 15 ⁇ m or more.
  • the thickness of the microporous part (A) is preferably 60 ⁇ m or less, and more preferably 35 ⁇ m or less.
  • the thickness of the microporous portion (A) is preferably 60 ⁇ m or less, and more preferably 35 ⁇ m or less.
  • the thickness of the microporous part (A) can be obtained by subtracting the thickness of the electrode base material from the thickness of the gas diffusion electrode base material.
  • the thickness of the gas diffusion electrode substrate can be determined using a micrometer in the state where the surface pressure is 0.15 MPa, as is the case with the electrode substrate, and 10 individual measured values can be obtained. The average is taken as the thickness.
  • the basis weight of the microporous part (A) is preferably 5 g / m 2 or more, more preferably 10 g / m 2 or more, and further preferably 12 g / m 2 or more. Further, the basis weight of the microporous portion (A) is preferably 35 g / m 2 or less, more preferably 30 g / m 2 or less, and further preferably 25 g / m 2 or less. In the present invention, the basis weight means the mass per unit area.
  • the basis weight of the microporous part (A) is 5 g / m 2 or more, the electrode substrate surface can be covered, the durability of the electrolyte membrane can be improved, and the reverse diffusion of water vapor generated at the cathode to the anode is promoted. Thus, dry-up can be further suppressed. Further, when the basis weight of the microporous portion (A) is 35 g / m 2 or less, the drainage performance is further improved, and flooding can be further suppressed.
  • the basis weight of the microporous portion (A) can be obtained by subtracting the basis weight of the electrode base material portion from the basis weight of the gas diffusion electrode base material.
  • the basis weight of the gas diffusion electrode base material and the basis weight of the electrode base material part are determined by cutting out a 10 cm square base material as a test piece and dividing the mass of the test piece by the area of the test piece (0.01 m 2 ). Can do.
  • an electrode base material part can be taken out from a gas diffusion electrode base material by an above-described method regarding the measurement of the thickness of an electrode base material.
  • the basis weight of the microporous part (A) may be obtained by subtracting the basis weight of the microporous part (B) from the basis weight of the entire microporous part.
  • the basis weight of the entire microporous portion may be obtained by subtracting the basis weight of the electrode base material from the basis weight of the gas diffusion electrode base material.
  • the basis weight of the microporous portion (B) is obtained by subtracting the basis weight of the electrode substrate from the basis weight of the electrode substrate impregnated with the microporous portion (B) before applying the carbon coating liquid of the microporous portion (A). It may be obtained by subtracting the basis weight of the electrode base material from the basis weight of the electrode base material portion taken out from the gas diffusion electrode base material by the method described above with respect to the measurement of the thickness of the electrode base material.
  • FIG. 1 shows a schematic cross-sectional view of a gas diffusion electrode substrate which is an example of the present invention.
  • the microporous part (A) 2 is formed on one side of the electrode base material 1, and the microporous part (B) is continuous with the microporous part (A) 2 and partly inside the electrode base material 1. It is formed by impregnation.
  • the voids continuously distributed from the surface of the electrode substrate on the side where the microporous part (A) is formed to the surface of the electrode substrate on the opposite side are voids inherent to the electrode substrate, and are approximately 5 ⁇ m to 100 ⁇ m. With a void diameter of.
  • the microporous portion is inherently formed with a large number of voids, and the voids inherently possessed by the microporous portion are usually continuous voids, but the void diameter is approximately several tens of nm to 5 ⁇ m. It is distinguished from the voids inherent in the electrode substrate.
  • the voids inherently possessed by the electrode substrate are referred to as “large voids”, while the voids inherently possessed by the microporous portion are referred to as “small voids”.
  • this microporous part (B) 3 has a small gap of several ⁇ m or less, when the porous body having the small gap contains a water repellent, water is strongly drained and water is pushed out from the small gap into a continuous large gap. It is. Therefore, even during low-temperature power generation, the microporous part (B) 3 itself maintains gas diffusibility, and the microporous part (B) having a finite width exists continuously in the direction perpendicular to the surface. As a result, a gas path is formed from one side of the electrode substrate to the opposite side, so that gas diffusibility is maintained.
  • the water pushed out from the microporous portion (B) into the large gap has a finite width in the direction perpendicular to the large void, and from the surface of the electrode substrate on the side where the microporous portion (A) is formed. Since the surface of the electrode substrate on the opposite side is continuous, liquid water is discharged out of the gas diffusion electrode substrate through the large gap and further discharged into the flow path of the separator. In other words, the large gap provides an efficient water discharge path within the gas diffusion electrode substrate. This is the reason why the present invention can achieve both gas diffusibility and drainage by the internal structure of the gas diffusion electrode base material, and can greatly improve the flooding resistance even in a power generation situation where a large amount of water is generated at a low temperature.
  • the large pores have high gas diffusibility, so that the water vapor diffusibility also increases and the electrolyte membrane tends to dry up. Since the gas diffusibility is moderate, by forming the microporous part (B) continuous in the direction perpendicular to the surface, the diffusion of water vapor can be suppressed and the electrolyte membrane can be prevented from drying, and the dry-up resistance can also be maintained. It is. For this purpose, it is important that the microporous portion (B) and the large gap have a continuous path in the perpendicular direction.
  • the perpendicular direction means a direction orthogonal to the substrate surface, and is a perpendicular direction from the microporous portion (A) 2 to the opposite side of the electrode substrate 1, and is always linearly opposite. It does not have to be continuous to the side. However, if the bending of the continuous microporous portion (B) or the path of the continuous large gap increases, the path of gas diffusion or water discharge becomes longer. Therefore, it is desirable that the bending be small. Further, “continuous” means that it is continuous while having a width of 10 ⁇ m or more in the cross-sectional plane. The presence of this width allows gas to diffuse inside the microporous portion (B) and to secure the path when water is drained through the large gap.
  • the microporous portion (B) 6 existing in the region (c) has a narrow portion and is continuous, but the microporous portion (B) existing in the region (a). Since 6 has no narrow part, it can be said that it is clearly continuous.
  • the microporous portion (B) is continuous from the surface on the side where the microporous portion (A) is formed to the opposite surface, that is, the entire thickness of the electrode base material.
  • the microporous portion (B) is present in a form connected to the microporous portion (A) inside the electrode substrate, and the surface on the side where the microporous portion (A) is formed is not necessarily formed.
  • connecting usually means that the microporous portions are in contact with each other with a width of 10 ⁇ m or more.
  • the thickness in the direction perpendicular to the surface of the microporous portion (B) with respect to the thickness 4 of the electrode substrate is as shown in FIG.
  • the microporous part (B) has a width of 10 ⁇ m or more from the surface of the electrode base on the side where the microporous part (A) is formed to a depth of 3/4 or more of the thickness of the electrode base. It is preferable to have impregnation. For example, in FIG. 1D, it cannot be said that it is continuous when the thickness is less than three-quarters of the electrode substrate 1 in the direction perpendicular to the plane. This is because gas diffusion or water discharge can be effectively improved effectively because the gas path is continuous in a direction perpendicular to the surface of the electrode substrate by a certain thickness or more.
  • the bending defined by the value obtained by dividing the path length 6 of the microporous portion (B) by the thickness 4 of the electrode base in the continuous distribution in the perpendicular direction of the microporous portion (B) inside the electrode base is small. It is better and 3 or less is desirable. For example, (b) in FIG. 1 is more bent, so (a) is preferable.
  • the path length 6 is a length obtained by connecting the centers of the widths of the continuous large voids or microporous portions (B) and the continuous large voids or continuous microporous portions (B) in the cross-sectional plane.
  • the thickness of the microporous portion (A) of the gas diffusion electrode substrate is 10 ⁇ m or more and 60 ⁇ m or less, and the microporous portion (B) that is continuous in the perpendicular direction with a frequency in the in-plane direction about 10 times the thickness. It is desirable to exist. That is, in the cross section of the electrode substrate, the density of the portion where the microporous portion (B) is continuously present is preferably 1 piece / mm or more, more preferably 1.5 pieces / mm or more, More preferably, it is 2 pieces / mm or more. This can further improve the efficiency of gas diffusion and drainage.
  • the portion where the large voids are continuously distributed also exists at the same frequency, that is, the density of the portion where the large voids continuously exist in the cross section of the electrode substrate is 1 piece / mm or more. It is preferably 1.5 pieces / mm or more, more preferably 2 pieces / mm or more.
  • the gas diffusibility and drainage efficiency can be further improved.
  • this makes it possible to achieve both gas diffusibility and drainage at a high level under a wide range of power generation conditions from low temperature to high temperature, thereby further improving power generation performance.
  • the density in the cross section of an electrode base material of the part in which a microporous part (B) exists continuously is the unit length of an electrode base material longitudinal direction (in-plane direction) in the cross section of an electrode base material in a surface normal direction. This means the number of portions where the microporous portion (B) exists continuously per 1 mm (1 mm).
  • gap distributes continuously is the unit length (1 mm) of an electrode base material longitudinal direction (in-plane direction) in the cross section of a surface direction of an electrode base material. It means the number of voids in a portion where large voids are continuously distributed.
  • the cross section of the electrode base material is produced in a direction perpendicular to the surface of the gas diffusion electrode base material by a method such as ion milling. It is possible to evaluate cross-sectional structures such as various densities by randomly producing five or more such cross sections and observing the cross sections with a scanning electron microscope or the like.
  • the microporous part (A) laminated on the surface of the electrode base material and the microporous part (B) formed inside the electrode base material may have the same composition or different compositions. It doesn't matter.
  • the microporous portion formed by soaking and impregnating the carbon coating liquid used to form the microporous portion (A) into the electrode substrate corresponds to the microporous portion (B).
  • the inside of the electrode base material is excessively impregnated with the microporous part (B)
  • the liquid water cannot permeate the water-repellent small voids of the microporous part (B)
  • the drainage path Since the frequency of large voids that continue in the direction perpendicular to the surface also decreases, the drainage performance of the gas diffusion electrode substrate is degraded.
  • the carbon porous body having a low porosity inhibits gas diffusion, so that the gas diffusibility is reduced and a sufficient amount of gas cannot be supplied to the catalyst layer.
  • the thickness of the electrode base material with the basis weight of the appropriate microporous part (B) so that the microporous part (B) can be formed inside the electrode base material, and the microporous part (B)
  • the basis weight is preferably 0.25 times or more, more preferably 0.3 times or more the basis weight of the electrode substrate.
  • the basis weight of the microporous portion (B) is preferably 0.55 times or less, more preferably 0.5 times or less with respect to the basis weight of the electrode substrate.
  • the weight per unit area between them By setting the weight per unit area between them, it is possible to obtain a microporous part (B) having a continuous structure in the perpendicular direction and a large void continuous in the perpendicular direction, and the electrode base material has a high gas diffusivity in the perpendicular direction. It is because it can have drainage.
  • the ratio of the basis weight of the microporous part (B) to the basis weight of the electrode base material to be 0.25 times or more, the electrode on the side where the microporous part (A) is formed, which is necessary in the present invention.
  • the basis weight of the microporous portion (B) can be obtained by the method described above.
  • the microporous part (B) is smaller than the large gap formed by the electrode base material. It is desirable to have a reasonably large gap, that is, a small gap of about 0.5 ⁇ m to 5 ⁇ m. When there is a small void having a void diameter of 0.5 ⁇ m or more, the gas diffusion can be improved while the microporous portion has drainage. On the other hand, when the thickness is 5 ⁇ m or less, the discharge of liquid water from the small gaps in the microporous portion can be promoted, so that the microporous portion can increase gas diffusion even under conditions where a large amount of water is generated.
  • a porous body containing a carbon-based filler in either the microporous part (A) or (B) or any of them. That is, it is preferable that the microporous parts (A) and (B) include a carbon-based filler.
  • the carbon-based filler carbon black is representative.
  • the carbon-based filler it is desirable to use a carbon-based filler having an aspect ratio of 30 or more and 5000 or less.
  • a carbon-based filler By using such a carbon-based filler, a large number of moderately sized small voids can be formed, so that gas diffusibility can be improved. For this reason, the gas diffusion electrode base material which can make gas diffusibility and drainage compatible is obtained.
  • the aspect ratio of the carbon-based filler is less than 30, the entanglement of the carbon-based filler in the carbon coating liquid is reduced, the viscosity of the carbon coating liquid is reduced, and the back-through of the carbon coating liquid cannot be suppressed.
  • the aspect ratio of the carbon-based filler is more preferably 35 or more, and further preferably 40 or more. Further, the aspect ratio of the carbon-based filler is more preferably 3000 or less, and further preferably 1000 or less.
  • the aspect ratio of the carbon-based filler is obtained as follows.
  • the carbon-based filler is fibrous carbon
  • the aspect ratio means average length ( ⁇ m) / average diameter ( ⁇ m).
  • the average length is taken with a microscope such as a scanning electron microscope or a transmission electron microscope, and the photograph is taken with a magnification of 1000 times or more.
  • Ten different fibrous carbons are selected at random, and the length is measured.
  • the average diameter was obtained by taking a photograph with a microscope such as a scanning electron microscope and a transmission electron microscope at a magnification of 10,000 times or more, and randomly varying 10 fibrous carbons. Is selected, the diameter is measured, and the average value is obtained.
  • As the scanning electron microscope S-4800 manufactured by Hitachi, Ltd. or an equivalent thereof can be used.
  • the aspect ratio means average particle diameter ( ⁇ m) / average thickness ( ⁇ m).
  • the average particle diameter is measured using a laser diffraction particle size distribution meter, and the 50% cumulative diameter in terms of volume is obtained.
  • the average thickness is taken with a microscope such as a scanning electron microscope, a transmission electron microscope, etc., and is photographed at a magnification of 10,000 times or more, randomly selected 10 pieces of flake graphite, the thickness is measured, The average value is obtained.
  • S-4800 manufactured by Hitachi, Ltd. or an equivalent thereof can be used.
  • fibrous carbon having an aspect ratio of 30 or more and 5000 or less.
  • fibrous carbon include vapor grown carbon fiber, single-walled carbon nanotube, double-walled carbon nanotube, multi-walled carbon nanotube, carbon nanohorn, carbon nanocoil, cup-stacked carbon nanotube, bamboo-like carbon nanotube, and graphite nanofiber. .
  • vapor-grown carbon fibers, single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes are suitable as fibrous carbons for use in the present invention because the aspect ratio can be increased and the electrical conductivity and mechanical properties are excellent. Can be mentioned.
  • Vapor-grown carbon fiber is obtained by growing carbon in the gas phase with a catalyst, and preferably has an average diameter of 5 nm to 200 nm and an average fiber length of 1 ⁇ m to 20 ⁇ m.
  • the carbon-based filler capable of obtaining the specific aspect ratio include flaky graphite, scaly graphite, artificial graphite, expanded graphite, flake graphite, etc., in addition to fibrous carbon.
  • flake graphite can be mentioned in addition to fibrous carbon.
  • the average length is preferably in the range of 0.1 ⁇ m to 30 ⁇ m.
  • the average length of the fibrous carbon having a specific aspect ratio is more preferably 1 ⁇ m or more, and further preferably 2 ⁇ m or more.
  • the average length of the fibrous carbon having a specific aspect ratio is more preferably 20 ⁇ m or less, and further preferably 15 ⁇ m or less.
  • the viscosity of the carbon coating liquid is increased, the back-through is suppressed, the gas diffusibility and drainage of the electrode substrate are improved, and the flooding Can be suppressed.
  • the microporous part (A) or (B) or any of them preferably contains a carbon filler having a specific aspect ratio, but may further contain various carbon fillers other than the carbon filler.
  • Carbon fillers that do not have a specific aspect ratio include carbon black such as furnace black, acetylene black, lamp black, thermal black, scaly graphite, scaly graphite, earthy graphite, artificial graphite, expanded graphite, flake graphite, etc.
  • the mixing mass ratio of carbon black to carbon filler having a specific aspect ratio is preferably in the range of 1 to 20, more preferably in the range of 1.5 to 19, more preferably in the range of 2 to 10. More preferably, it is within.
  • the mixing mass ratio is 1 or more, the porosity becomes an appropriate size in the microporous part (A) or (B) or any of them containing the carbon-based filler having a specific aspect ratio and carbon black. Diffusivity is small and dry-up can be suppressed.
  • the mixing mass ratio is 20 or less, the conductivity in the microporous portion can be increased due to the effect of containing the carbon-based filler having a specific aspect ratio, so that the overall power generation performance can be improved. Since a microporous portion having a sufficient thickness is formed on the surface layer of the material and reverse diffusion is promoted, dry-up can be suppressed.
  • the microporous part (A) or (B) or any of them includes a water repellent in combination with a carbon-based filler.
  • a fluorine-based polymer as the water repellent because of its excellent corrosion resistance.
  • the fluorine-based polymer include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA).
  • a water repellent having a melting point of 200 ° C. or higher and 320 ° C. or lower As such a water repellent, FEP Or PFA is mentioned.
  • FEP Or PFA is mentioned.
  • these water repellents liquid water condensed in the small pores of the microporous part (B) is drained into the large voids, and the drainage from the large voids to the separator channels is greatly increased. be able to.
  • the accumulation of water inside the electrode substrate can be reduced, so that the gas diffusibility can be greatly improved even under conditions where a large amount of liquid water is generated by high-load power generation. It leads to improvement.
  • the content of the water repellent in the microporous part (A) or (B) is a mass ratio with respect to the carbon-based filler in the microporous part (value when the mass of the carbon-based filler is 100% by mass). It is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more. Further, the content of the water repellent is 50% by mass or less, more preferably 35% by mass or less, and further preferably 30% by mass or less in terms of mass ratio with respect to the carbon-based filler. By setting the content of the water repellent to such a range, the gas diffusibility of the microporous portion can be further improved while having sufficient water repellency.
  • various materials can be used in combination with the carbonaceous filler in the microporous part (A) or (B) or any of them.
  • the porosity of the microporous part (A) or (B) or any of them is preferably 60% or more, more preferably 65% or more, and further preferably 70% or more. . Further, the porosity is preferably 90% or less, more preferably 87% or less, and further preferably 84% or less. When such a porosity is 60% or more, drainage is further improved, and flooding can be further suppressed. When the porosity is 90% or less, the water vapor diffusibility is small, and dry-up can be suppressed. In addition, the conductivity is high, and the power generation performance is improved at both high and low temperatures.
  • the microporous portion (B) preferably contains a water repellent and has a porosity in the above range.
  • the microporous part having such a porosity is obtained by the following method in the manufacturing method, the basis weight of the microporous part, the water repellent, the content of the carbon-based filler relative to other materials, the type of the carbon-based filler, and the thickness of the microporous part. Can be obtained by controlling. In particular, it is effective to control the content of the carbon-based filler relative to the water repellent and other materials and the type of the carbon-based filler.
  • the porosity of the microporous portion (B) is preferably 5% or more, and more preferably 10% or more larger than the porosity of the microporous portion (A). That is, the difference between the porosity of the microporous part (B) and the porosity of the microporous part (A) is preferably 5% or more, and more preferably 10% or more. This is because drainage can be improved by utilizing the property that liquid water condensed inside the microporous part (A) is easily drained to the microporous part (B) having a large porosity.
  • the porosity of the microporous part (A) and the microporous part (B) is obtained by using a sample for cross-sectional observation using an ion beam cross-sectional processing apparatus, and the cross section thereof is measured with a microscope such as a scanning electron microscope.
  • the cross section of each microporous part was enlarged to 5000 times or more and 20000 times, photographed by imaging using reflected electrons, the area of the void part was measured, and the ratio of the area of the void part to the observation area was obtained. It is.
  • the void can be identified by binarizing the portion below the average luminance of the image as a void.
  • the average luminance can be obtained as follows.
  • a histogram indicating 256 levels of luminance on the horizontal axis and the number of pixels for each luminance on the vertical axis is created.
  • the luminance that is the median value of the range is calculated and used as the average luminance.
  • S-4800 manufactured by Hitachi, Ltd. or an equivalent thereof can be used as the scanning electron microscope.
  • ⁇ Paper making body and method for producing paper making body> In order to obtain a papermaking body containing carbon fiber, a wet papermaking method in which carbon fiber is dispersed in a liquid and a dry papermaking method in which the carbon fiber is dispersed in air and the like are used. Of these, the wet papermaking method is preferably used because of its excellent productivity.
  • the electrode base material For the purpose of improving the drainage property and gas diffusibility of the electrode base material, it is possible to make paper by mixing carbon fibers with organic fibers.
  • organic fiber polyethylene fiber, vinylon fiber, polyacetal fiber, polyester fiber, polyamide fiber, rayon fiber, acetate fiber, or the like can be used.
  • an organic polymer can be included as a binder for the purpose of improving the form retainability and handling properties of the paper body.
  • the organic polymer polyvinyl alcohol, polyvinyl acetate, polyacrylonitrile, cellulose or the like can be used.
  • the paper body is preferably in the form of a sheet in which carbon fibers are randomly dispersed in a two-dimensional plane for the purpose of isotropic in-plane conductivity and thermal conductivity.
  • the pore size distribution obtained from the papermaking body is affected by the carbon fiber content and dispersion state, it can be formed in a size of about 20 ⁇ m to 500 ⁇ m.
  • Paper body is preferably the basis weight of the carbon fibers is in the range of 10 g / m 2 or more 60 g / m 2 or less, and more preferably in a 15 g / m 2 or more 50 g / m 2 within the following ranges. It is preferable that the basis weight of the carbon fiber is 10 g / m 2 or more because the electrode base material has excellent mechanical strength. It is preferable that the basis weight of the carbon fiber is 60 g / m 2 or less because the electrode base material is excellent in gas diffusibility and drainage. In addition, when bonding a plurality of paper bodies, it is preferable that the basis weight of the carbon fibers after the bonding is in the above range.
  • the basis weight of the carbon fiber in the electrode base material is a paper body cut out in a 10 cm square, held in an electric furnace at a temperature of 450 ° C. for 15 minutes in a nitrogen atmosphere, and the mass of the residue obtained by removing organic matter, It can be determined by dividing by the area of the paper body (0.01 m 2 ).
  • ⁇ Impregnation of resin component As a method of impregnating a paper component containing carbon fiber with a resin component, a method of immersing a paper component in a resin composition containing a resin component, a method of applying a resin composition containing a resin component to a paper component, and a resin component For example, a method of transferring a film on a paper body is used. Among them, since the productivity is excellent, a method of immersing the paper body in a resin composition containing a resin component is preferably used.
  • Resin component is carbonized during firing to become conductive carbide.
  • a resin composition means what added the solvent etc. to the resin component as needed.
  • the resin component includes a resin such as a thermosetting resin, and further includes additives such as a carbon-based filler and a surfactant as necessary.
  • the carbonization yield of the resin component contained in the resin composition is preferably 40% by mass or more.
  • the electrode base material is preferable because it has excellent mechanical properties, electrical conductivity, and thermal conductivity.
  • the resin constituting the resin component examples include thermosetting resins such as phenol resin, epoxy resin, melamine resin, and furan resin. Among them, a phenol resin is preferably used because of high carbonization yield. Moreover, as an additive added to a resin component as needed, a carbon-type filler can be included in order to improve the mechanical characteristics, electroconductivity, and thermal conductivity of an electrode base material.
  • a carbon-based filler carbon black, carbon nanotube, carbon nanofiber, carbon fiber milled fiber, graphite, flake graphite and the like can be used.
  • the resin composition can use the resin component obtained by the above-described configuration as it is, and can contain various solvents as needed for the purpose of improving the impregnation property to the papermaking body.
  • methanol, ethanol, isopropyl alcohol, or the like can be used as the solvent.
  • the resin composition is preferably liquid at 25 ° C. and 0.1 MPa. When it is liquid, it is preferable because the paper body has excellent impregnation properties and the electrode base material has excellent mechanical properties, electrical conductivity, and thermal conductivity.
  • the resin component is preferably impregnated in an amount of 30 to 400 parts by mass, more preferably 50 to 300 parts by mass, with respect to 100 parts by mass of the carbon fiber.
  • the electrode base material is preferable because it has excellent mechanical properties, electrical conductivity, and thermal conductivity.
  • the electrode base material is preferable because it has excellent gas diffusibility.
  • the difference in the adhesion amount of the resin component between the front and back surfaces is obtained by impregnating the paper body with the resin component sandwiched between a roll having irregularities and a smooth roll. Can be provided.
  • the surface where the adhesion amount of the resin component is increased has a small surface roughness in the obtained electrode substrate.
  • the pre-impregnated body impregnated with the resin component is formed on the papermaking body containing carbon fiber, the pre-impregnated body can be bonded or heat-treated before carbonization.
  • a plurality of pre-impregnated bodies can be bonded together in order to make the electrode substrate have a predetermined thickness.
  • a plurality of pre-impregnated bodies having the same properties can be bonded together, or a plurality of pre-impregnated bodies having different properties can be bonded together.
  • a plurality of pre-impregnated bodies having different average diameters and average lengths of carbon fibers, carbon fiber basis weight of the papermaking body, impregnation amount of the resin component, and the like can be bonded together.
  • the pre-impregnated body can be heat-treated for the purpose of thickening and partially cross-linking the resin component.
  • a heat treatment method a method of blowing hot air, a method of heating with a hot plate such as a press device, a method of heating with a continuous belt, or the like can be used.
  • ⁇ Carbonization> After impregnating the paper component containing carbon fibers with the resin component, firing is performed in an inert atmosphere in order to carbonize.
  • a batch-type heating furnace can be used, or a continuous-type heating furnace can be used.
  • an inert atmosphere can be obtained by flowing inert gas, such as nitrogen gas and argon gas, in a heating furnace.
  • the maximum firing temperature is preferably in the range of 1300 ° C to 3000 ° C, more preferably in the range of 1700 ° C to 3000 ° C, and further preferably in the range of 1900 ° C to 3000 ° C. preferable.
  • the maximum temperature is 1300 ° C. or higher, the carbonization of the resin component proceeds, and the electrode base material is preferably excellent in conductivity and thermal conductivity.
  • the maximum temperature of 3000 ° C. or lower is preferable because the operating cost of the heating furnace is reduced.
  • the rate of temperature rise is in the range of 80 ° C./min to 5000 ° C./min.
  • a temperature increase rate of 80 ° C./min or more is preferable because productivity is excellent.
  • the rate of temperature increase is 5000 ° C./min or less, since the carbonization of the resin component proceeds slowly and a dense structure is formed, the electrode base material is preferable because it has excellent conductivity and thermal conductivity.
  • Water repellent finish> For the purpose of improving drainage, it is preferable to subject the carbon fiber fired body to a water repellent finish.
  • the water repellent finish can be performed by applying a water repellent to the carbon fiber fired body and heat-treating it.
  • the water repellent it is preferable to use a fluorine-based polymer because of its excellent corrosion resistance.
  • Fluoropolymers include polychlorotrifluoroethylene resin (PCTFE), polytetrafluoroethylene (PTFE), polyvinylidene fluoride resin (PVDF), a copolymer of tetrafluoroethylene and hexafluoropropylene (FEP), tetrafluoro Examples thereof include a copolymer of ethylene and perfluoroalkyl vinyl ether (PFA) and a copolymer of tetrafluoroethylene and ethylene (ETFE).
  • PCTFE polychlorotrifluoroethylene resin
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride resin
  • FEP hexafluoropropylene
  • FEP tetrafluoro Examples thereof include a copolymer of ethylene and perfluoroalkyl vinyl ether (PFA) and a copolymer of tetrafluoroethylene and ethylene (ETFE).
  • the coating amount of the water repellent is 1 part by mass or more, preferably 2 parts by mass or more, more preferably 3 parts by mass or more, further preferably 5 parts by mass or more, particularly preferably 100 parts by mass of the carbon fiber fired body. It should be at least 7 parts by weight, most preferably at least 10 parts by weight.
  • the application amount of the water repellent is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and further preferably 30 parts by mass or less with respect to 100 parts by mass of the carbon fiber fired body.
  • the electrode substrate is preferably excellent in drainage.
  • the application amount of the water repellent is 50 parts by mass or less, the electrode substrate is preferable because it has excellent conductivity.
  • a carbon fiber fired body that has been subjected to water repellent treatment as required is referred to as an “electrode substrate”.
  • the carbon fiber fired body and the “electrode substrate” are the same.
  • a carbon coating liquid is applied to or dipped on the electrode base material, a microporous part precursor is disposed on one side or inside of the electrode base material, and it is dried and sintered. Is formed.
  • the carbon coating liquid is preferably mixed with a carbon-based filler having the specific aspect ratio described above to form a microporous portion precursor. More specifically, it is formed as follows.
  • the carbon coating liquid is composed of at least a carbon-based filler and a dispersion medium such as water or an organic solvent, and may contain a dispersion aid such as a surfactant.
  • a dispersion aid such as a surfactant.
  • Water is preferable as the dispersion medium, and a nonionic surfactant is more preferably used as the dispersion aid.
  • the coating or dipping of the carbon coating liquid onto the electrode substrate can be performed using various commercially available apparatuses.
  • As the coating method screen printing, rotary screen printing, spray spraying, intaglio printing, comma coating, reverse roll coating, gravure printing, die coater coating, bar coating, knife coating, blade coating and the like can be used.
  • the coating methods exemplified above are only for illustrative purposes and are not necessarily limited to these.
  • the carbon coating liquid used as the precursor of the microporous part (B) is preferably low-viscosity in order to obtain a microporous part continuous with the internal structure by impregnating the electrode base material, and an E-type viscometer, cone angle 2
  • the viscosity when measured at a shear rate of 17 s ⁇ 1 is 5 Pa ⁇ s or less, more preferably 1 Pa ⁇ s or less.
  • alcohols such as isopropyl alcohol and ethanol
  • glycols such as ethylene glycol may be included in the carbon coating liquid.
  • the electrode substrate is coated or dipped with the aforementioned low-viscosity coating liquid on the carbon coating liquid for forming the microporous part (B) on the electrode base material, and dried to form the precursor of the microporous part (B).
  • an electrode substrate is impregnated with a carbon coating liquid for forming the microporous portion (B), and airflow is applied from one side of the electrode substrate in a state where the coating liquid has fluidity before drying.
  • the impregnation state is controlled.
  • the carbon coating liquid that becomes the microporous part (B) is locally impregnated in the electrode substrate approximately in the direction perpendicular to the surface.
  • the distribution of the microporous portion (B) and the voids can be obtained efficiently.
  • a carbon coating liquid for forming the microporous portion (B) is applied to the electrode substrate from one side, and further pressed from the surface with a roll or a bar, and then dried and microporous.
  • a carbon coating liquid for forming the microporous portion (B) is applied to the electrode substrate from one side, and further pressed from the surface with a roll or a bar, and then dried and microporous.
  • a carbon coating solution for forming the microporous part (B) is applied in a pattern on the electrode substrate, impregnated further, and dried to form a precursor of the microporous part (B). May be.
  • a carbon coating liquid for forming the microporous part (A) is applied on one side, and dried. Sintering is performed.
  • the carbon coating liquid to the electrode substrate and drying after impregnation are usually performed at a temperature of 80 ° C. or higher and 120 ° C. or lower. That is, the coated material is put into a dryer set at a temperature of 80 ° C. or higher and 120 ° C. or lower and dried in a range of 5 minutes or longer and 30 minutes or shorter. Drying may be performed in the air or in an inert gas such as nitrogen.
  • the dried coated material (electrode substrate on which the microporous part precursor is formed) is put into a muffle furnace, a baking furnace, or a high-temperature dryer, and is at 300 ° C. to 380 ° C. for 5 minutes to 20 minutes.
  • the microporous portion is formed by heating and melting the water repellent and sintering the melted water repellent using the carbon-based filler as a binder.
  • a membrane electrode assembly can be constituted by joining the gas diffusion electrode substrate described above to at least one surface of a solid polymer electrolyte membrane having catalyst layers on both sides. At this time, by arranging the microporous portion (A) on the catalyst layer side, the reverse diffusion of the generated water is more likely to occur, and the contact area between the catalyst layer and the gas diffusion electrode substrate is increased. Resistance can be reduced.
  • a fuel cell is constituted by having separators on both sides of such a membrane electrode assembly.
  • a polymer electrolyte fuel cell is constructed by laminating a plurality of such membrane electrode assemblies on both sides sandwiched by a separator via a gasket.
  • the catalyst layer is composed of a layer containing a solid polymer electrolyte and catalyst-supporting carbon.
  • platinum is usually used.
  • a fuel cell in which a reformed gas containing carbon monoxide is supplied to the anode side it is preferable to use platinum and ruthenium as the catalyst on the anode side.
  • the solid polymer electrolyte it is preferable to use a perfluorosulfonic acid polymer material having high proton conductivity, oxidation resistance, and heat resistance.
  • Such a fuel cell unit and the configuration of the fuel cell itself are well known.
  • Carbon-based filler “DENKA BLACK” (registered trademark) (acetylene black, manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size: 0.035 ⁇ m, aspect ratio: 1)
  • Vapor growth carbon fiber “VGCF” registered trademark (manufactured by Showa Denko KK, average diameter: 0.15 ⁇ m, average fiber length: 8 ⁇ m, aspect ratio: 50, a kind of fibrous carbon)
  • Multi-walled carbon nanotubes (Cheap Tubes, average diameter: 0.015 ⁇ m, average fiber length: 20 ⁇ m, aspect ratio: 1300, a kind of fibrous carbon)
  • VGCF registered trademark
  • Multi-walled carbon nanotubes (Cheap Tubes, average diameter: 0.015 ⁇ m, average fiber length: 20 ⁇ m, aspect ratio: 1300, a kind of fibrous carbon)
  • Carbon fibers were cut to an average length of 12 mm, dispersed in water, and continuously paper-made by a wet papermaking method. Furthermore, a 10% by mass aqueous solution of polyvinyl alcohol as a binder was applied and dried to produce a paper body having a carbon fiber basis weight of 37.5 g / m 2 . The coating amount of polyvinyl alcohol was 22 parts by mass with respect to 100 parts by mass of the papermaking body.
  • thermosetting resin resol type phenol resin and novolac type phenol resin as thermosetting resin
  • scaly graphite carbon filler
  • methanol solvent
  • thermosetting resin / carbon filler / solvent 10 mass parts / 5 mass parts /
  • the mixture was mixed at a blending ratio of 85 parts by mass and stirred for 1 minute using an ultrasonic dispersion device to obtain a uniformly dispersed resin composition.
  • the paper body cut into 15 cm ⁇ 12.5 cm is immersed in a resin composition filled with aluminum bat, and the resin component (thermosetting resin + carbon filler) becomes 130 parts by mass with respect to 100 parts by mass of the carbon fibers. After impregnating in this manner, it was dried by heating at 100 ° C. for 5 minutes to prepare a pre-impregnated body. Next, it heat-processed for 5 minutes at 180 degreeC, pressing with a flat plate press. In addition, a spacer was disposed on the flat plate press during the pressurization, and the interval between the upper and lower press face plates was adjusted so that the thickness of the pre-impregnated body after the heat treatment was 130 ⁇ m.
  • the base material obtained by heat-treating the pre-impregnated body was introduced into a heating furnace having a maximum temperature of 2400 ° C. maintained in a nitrogen gas atmosphere in a heating furnace to obtain a carbon fiber fired body.
  • PTFE resin “Polyflon” (registered trademark) D-1E was applied to the carbon fiber fired body so that the amount of adhesion after drying was 5 parts by weight with respect to 100 parts by weight of the carbon fiber fired body, and at 100 ° C. for 5 minutes. Heating and drying were performed to prepare an electrode substrate 1 having a basis weight of 25 g / m 2 and a thickness of 100 ⁇ m.
  • the carbon fiber basis weight is 65 g / m 2
  • the basis weight of the electrode substrate 2 is 45 g / m 2 and the thickness is 180 ⁇ m
  • the carbon fiber basis weight is 72 g / m 2.
  • a carbon coating solution containing a carbon-based filler and a water repellent was prepared and prepared.
  • the electrode substrate is dipped in this coating solution, left for 10 minutes, then taken out into the atmosphere, and excess impregnating solution is squeezed and removed with a roll, and then introduced into a drying furnace within 2 minutes and dried at 100 ° C. for 10 minutes. I let you.
  • the carbon coating liquid used here was such that the carbon-based filler and the water repellent had a composition ratio shown in Tables 1 to 3, and 32.5 parts by mass of the surfactant was added to 100 parts by mass of the carbon-based filler. What was adjusted with purified water was used. Impregnation and drying were repeated to adjust the basis weight of the impregnated microporous part (B) to obtain the desired basis weight.
  • a carbon coating solution is applied to the surface of the electrode substrate on which the precursor of the microporous part (B) is formed using a die coater, dried at 120 ° C. for 10 minutes, and heated at 380 ° C. for 20 minutes. Sintering was performed to form a planar microporous portion (A).
  • the carbon coating solution used here is a carbon mixture of 7.7 parts of Denka Black as a carbon filler, 2.5 parts of Polyflon as a water repellent, 20 parts of TRITON X-100 as a surfactant, and 100 parts of purified water.
  • the coating liquid was used as a precursor.
  • the electrode base material was coated so as to have a basis weight of 15 g / m 2 after sintering.
  • the thickness of the microporous portion (A) was 30 ⁇ m.
  • the porosity of the microporous portion (A) was 64%.
  • a cross section in the perpendicular direction was formed by ion milling. Since one cross section was about 1 mm in length, five cross sections were formed and the cross section was observed with a scanning electron microscope S-4800 manufactured by Hitachi, Ltd., and the electrode base on the side on which the microporous portion (A) was formed. The presence or absence of a portion in which the microporous portion (B) continuously exists from the surface of the material to the vicinity of the surface of the opposite electrode base material, that is, the presence or absence of continuity of the microporous portion (B) and the large voids was examined. The cross section was observed at a magnification of 400 times.
  • the microporous part inside the electrode base material had a width of 10 ⁇ m even at the smallest part and had a part having a thickness of 3/4 or more of the thickness of the electrode base material, it was continuous. It was judged that there was one microporous part, and it was assumed that there was continuity. Similarly, the large voids were observed to confirm the continuity.
  • the number of continuous microporous parts (B) and the number of continuous large voids confirmed here were each divided by the length (mm) in the longitudinal direction (in-plane direction) of the electrode substrate in the cross section.
  • the density of the microporous part (B) [pieces / mm] and the density of continuous large voids [pieces / mm] were calculated.
  • a cross section in a perpendicular direction was formed by ion milling using the obtained gas diffusion electrode base material.
  • Each of the microporous part (A) and the microporous part (B) of the cross section is magnified by 10,000 times using a scanning electron microscope S-4800 manufactured by Hitachi, Ltd., and photography is performed by imaging using reflected electrons.
  • the void area was measured, and the ratio of the void area to the observation area was determined. At this time, a portion below the average luminance of the image was determined to be a gap, and binarization was performed for identification.
  • the numerical values obtained by calculating the area ratio of the voids were defined as the porosity of the microporous portion (A) and the porosity of the microporous portion (B).
  • the average luminance was determined as follows. First, in the image analysis, a histogram indicating 256 levels of luminance on the horizontal axis and the number of pixels for each luminance on the vertical axis was prepared. In this histogram, in the range where the number of pixels is equal to or greater than the value obtained by dividing the total number of pixels by 2560, the luminance that is the median value of the range is defined as the average luminance.
  • ⁇ Measurement of various thicknesses> When using a gas diffusion electrode substrate or an electrode substrate as a measurement object, 10 points to be measured are selected at random from the measurement object, and 0.15 MPa in a perpendicular direction by a terminal having a circular tip diameter of 3 mm in diameter. The individual thickness was measured with a micrometer and the individual thicknesses of 10 points were averaged to obtain the thickness of the measurement object.
  • the perpendicular direction means a direction orthogonal to the substrate surface.
  • the thickness of the microporous portion (A) was a value obtained by subtracting the thickness of the electrode base material from the thickness of the entire gas diffusion electrode base material.
  • the mass [g] (W2) of the electrode substrate on which the microporous portion (B) was formed was similarly measured in a 10 cm square shape.
  • a value obtained by subtracting W1 from W2 and dividing by 0.01 was defined as the basis weight [g / m 2 ] of the microporous portion (B).
  • the melting point of the water repellent was measured by differential scanning calorimetry. Using a DSC6220 manufactured by Seiko Instruments Inc. (SII), the apparatus was changed from 30 ° C. to 400 ° C. at a temperature rising rate of 2 ° C./min in nitrogen, and the endothermic peak at that time was observed. The endothermic peak at a temperature of 150 ° C. or higher was defined as the melting point of the water repellent.
  • the surface roughness of the electrode substrate was measured using a laser microscope.
  • the measurement apparatus uses VK-X100 (manufactured by Keyence Corporation), scans and measures a 5 mm square range with an objective lens with a magnification of 10, performs surface tilt correction, and then calculates the arithmetic average roughness at 5 mm square. (Ra) was determined. Measurement was performed at 10 randomly selected locations, and the average of the arithmetic average roughness at each location was defined as the surface roughness [ ⁇ m].
  • ⁇ Evaluation of power generation performance of polymer electrolyte fuel cells > 1.00 g of platinum-supported carbon (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., platinum support: 50% by mass), 1.00 g of purified water, “Nafion” (registered trademark) solution (“Nafion” (registered trademark) 5 manufactured by Aldrich) 0.08% by mass) and 8.00 g of isopropyl alcohol (manufactured by Nacalai Tesque) were added in order to prepare a catalyst solution.
  • a catalyst solution was applied to 9001 (manufactured by NICHIAS Corporation) by spraying and dried at room temperature to prepare a PTFE sheet with a catalyst layer having a platinum amount of 0.3 mg / cm 2 .
  • a solid polymer electrolyte membrane “Nafion” (registered trademark) NRE-211CS (manufactured by DuPont) cut to 10 cm ⁇ 10 cm is sandwiched between two PTFE sheets with a catalyst layer, and pressed to 5 MPa with a flat plate press. Pressing at 5 ° C. for 5 minutes transferred the catalyst layer to the solid polymer electrolyte membrane. After pressing, the PTFE sheet was peeled off to produce a solid polymer electrolyte membrane with a catalyst layer.
  • the solid polymer electrolyte membrane with a catalyst layer is sandwiched between two gas diffusion electrode substrates cut to 7 cm ⁇ 7 cm, and pressed at 130 ° C. for 5 minutes while being pressurized to 3 MPa with a flat plate press, and a membrane electrode assembly was made.
  • the gas diffusion electrode base material was arranged so that the surface having a planar microporous portion was in contact with the catalyst layer side.
  • the obtained membrane electrode assembly was incorporated into a single cell for fuel cell evaluation, and the voltage when the current density was changed was measured.
  • a serpentine type single groove having a groove width of 1.5 mm, a groove depth of 1.0 mm, and a rib width of 1.1 mm was used.
  • evaluation was performed by supplying hydrogen pressurized to 210 kPa to the anode side and air pressurized to 140 kPa to the cathode side. Both hydrogen and air were humidified using a humidification pot set at 70 ° C. The utilization rates of hydrogen and oxygen in the air were 80% and 67%, respectively.
  • the current density at which the output voltage was 0.2 V at an operating temperature of 40 ° C. and a humidification temperature of 40 ° C. was measured and used as an indicator of flooding resistance (low temperature performance).
  • the current density at which the output voltage was 0.2 V at a humidification temperature of 80 ° C. and an operating temperature of 80 ° C. was measured and used as an indicator of dry-up resistance (high temperature performance).
  • Example 1 A gas diffusion electrode substrate was obtained according to the methods described in ⁇ Preparation of Electrode Base>, ⁇ Formation of Precursor of Microporous Part (B)>, and ⁇ Formation of Microporous Part (A)>.
  • the electrode substrate 1 having a basis weight of 25 g / m 2 having a thickness of 100 ⁇ m as a range in which the microporous portion (B) can be impregnated inside the electrode substrate is used in the direction perpendicular to the surface.
  • the impregnation weight was 0.3 times the weight of the electrode substrate.
  • Example 2 A gas diffusion electrode substrate was obtained according to the methods described in ⁇ Preparation of Electrode Base>, ⁇ Formation of Precursor of Microporous Part (B)>, and ⁇ Formation of Microporous Part (A)>.
  • the electrode substrate 1 having a thickness of 100 ⁇ m and a basis weight of 25 g / m 2 was used as the electrode substrate, and the basis weight of the impregnation was set to 0.4 times the basis weight of the electrode substrate.
  • the microporous part (B) continuous in the direction perpendicular to the surface of the electrode substrate and the structure of the large voids are further developed, and the density of the continuous microporous part (B) is higher than that of Example 1.
  • the dry-up resistance was improved and the flooding resistance was greatly improved.
  • Example 3 A gas diffusion electrode substrate was obtained according to the methods described in ⁇ Preparation of Electrode Base>, ⁇ Formation of Precursor of Microporous Part (B)>, and ⁇ Formation of Microporous Part (A)>.
  • the electrode substrate 1 having a thickness of 100 ⁇ m and a basis weight of 25 g / m 2 was used as the electrode substrate, and the basis weight of the impregnation was 0.5 times the basis weight of the electrode substrate.
  • the cross-sectional structure evaluation the structure of the microporous portion (B) continuous in the direction perpendicular to the surface of the electrode substrate and the large voids can be confirmed.
  • Table 1 As shown in FIG. 2, although not as much as in Example 2, there was no decrease in dry-up resistance and the flooding resistance was improved as compared with the comparative example.
  • Example 4 ⁇ Production of electrode substrate>, ⁇ Formation of precursor of microporous part (B)> and ⁇ Formation of microporous part (A)> Except that the basis weight of the microporous part (A) was 10 g / m 2 A gas diffusion electrode substrate was obtained according to the described method.
  • the electrode substrate 1 having a thickness of 100 ⁇ m and a basis weight of 25 g / m 2 was used as the electrode substrate, and the basis weight of the impregnation was set to 0.4 times the basis weight of the electrode substrate.
  • the thickness of the microporous part (A) was 20 ⁇ m.
  • the structure of the microporous portion (B) continuous in the direction perpendicular to the surface of the electrode substrate and the large voids can be confirmed.
  • Table 1 As shown in FIG. 4, the dry-up resistance is improved and the flooding resistance is greatly improved as compared with the comparative example. This has the effect of improving the gas diffusibility and water drainage in the microporous part (A), and the effect of improving the drainage and gas diffusibility by the microporous part (B) continuous straight to the electrode substrate. This is because the drainage and gas diffusibility can be achieved in the entire gas diffusion electrode substrate even in the high current density region.
  • Example 5 ⁇ Production of electrode substrate>, ⁇ Formation of precursor of microporous part (B)> and ⁇ Formation of microporous part (A)> Except that the basis weight of the microporous part (A) was 30 g / m 2 A gas diffusion electrode substrate was obtained according to the described method.
  • the electrode base material 1 having a thickness of 100 ⁇ m and a basis weight of 25 g / m 2 was used as the electrode base material, and the basis weight of the impregnation was 0.4 times the basis weight of the electrode base material.
  • the thickness of the microporous part (A) was 55 ⁇ m.
  • Example 6 ⁇ Preparation of electrode substrate>, ⁇ Formation of precursor of microporous part (B)> and ⁇ Formation of microporous part (A)> Except that the basis weight of the microporous part (A) was 35 g / m 2 A gas diffusion electrode substrate was obtained according to the described method.
  • the electrode substrate 1 having a thickness of 100 ⁇ m and a basis weight of 25 g / m 2 was used as the electrode substrate, and the basis weight of the impregnation was set to 0.4 times the basis weight of the electrode substrate.
  • the thickness of the microporous part (A) was 65 ⁇ m.
  • Example 7 According to the methods described in ⁇ Preparation of Electrode Substrate> and ⁇ Formation of Microporous Part (A)>, a carbon coating liquid having the composition shown in Table 1 was sintered on an electrode substrate 1 having a thickness of 100 ⁇ m and the basis weight was 10 g / Immediately after application to m 2 , an original pressure of 0.4 MPa with a slit width of 0.2 mm is applied to one side of the electrode substrate, and air blow is applied from a distance of 5 mm from the electrode substrate to apply wind pressure to the electrode. A gas diffusion electrode base material was obtained in the same manner except that the impregnation liquid impregnated in the base material was biased and impregnated to obtain physical property values shown in Table 1. As a result, as a result of evaluating the power generation performance using this gas diffusion electrode base material, even when compared with Example 2, the dry-up resistance was improved and the flooding resistance was greatly improved.
  • microporous part (B) continuous in the direction perpendicular to the electrode substrate and the large gap were formed in a well-balanced manner by the pressurized airflow, and the structure was easy to achieve both drainage and gas diffusibility. It is done.
  • Example 8 In accordance with the method described except that the electrode substrate 2 is used in ⁇ Preparation of electrode substrate>, ⁇ Formation of precursor of microporous portion (B)> and ⁇ Formation of microporous portion (A)> A substrate was obtained.
  • Table 2 the thickness of 180 ⁇ m as the electrode substrate, using the basis weight 45 g / m 2 electrode substrate 2 was impregnated basis weight and 0.4 times the weight per unit area of the electrode substrate.
  • the cross-sectional structure evaluation the structure of the microporous part (B) continuous in the direction perpendicular to the surface of the electrode substrate and the large voids can be confirmed.
  • Table 2 As a result of evaluating the power generation performance using this gas diffusion electrode substrate, Table 2 As shown in FIG. 5, the flooding resistance was greatly improved without lowering the dry-up resistance as compared with the comparative example.
  • Example 9 to 11 In the same manner as in Example 1 except that the composition shown in Table 2 was prepared by mixing “VGCF” having an aspect ratio of 50 with the carbon coating liquid in ⁇ Formation of precursor of microporous part (B)>. The material was obtained.
  • the electrode substrate 1 having a thickness of 100 ⁇ m and a basis weight of 25 g / m 2 was used as the electrode substrate, and the basis weight of the impregnation was set to 0.4 times the basis weight of the electrode substrate.
  • the cross-sectional structure evaluation the structure of the microporous part (B) continuous in the direction perpendicular to the surface of the electrode substrate and the large voids can be confirmed.
  • Table 2 As shown in FIG. 3, the dry-up resistance is improved and the flooding resistance is greatly improved as compared with the comparative example. This is presumably because the porosity of the microporous part (B) was 5% or more larger than the microporous part (A), and the drainage was improved. In particular, in Example 10, since the blending of the high aspect ratio carbon-based filler was optimal, the flooding resistance was greatly improved.
  • Example 12 Similar to Example 1 except that in ⁇ Formation of precursor of microporous part (B)>, the carbon coating liquid was mixed with multi-walled carbon nanotubes having an aspect ratio of 1300 (manufactured by Cheap Tubes) to obtain the composition shown in Table 2. Thus, a gas diffusion electrode substrate was obtained.
  • the electrode substrate 1 having a thickness of 100 ⁇ m and a basis weight of 25 g / m 2 was used as the electrode substrate, and the basis weight of the impregnation was set to 0.4 times the basis weight of the electrode substrate.
  • Example 13 to 15 A gas diffusion electrode substrate was obtained in the same manner as in Example 1 except that the amount of the resin component attached on the front and back of the electrode substrate was controlled in ⁇ Impregnation of resin component> and the surface roughness of the front and back was changed.
  • the electrode substrate 1 having a thickness of 100 ⁇ m and a basis weight of 25 g / m 2 was used as the electrode substrate, and the basis weight of the impregnation was set to 0.4 times the basis weight of the electrode substrate.
  • a microporous portion (B) continuous in the direction perpendicular to the surface of the electrode substrate and a structure with large voids developed can be confirmed.
  • microporous portion (B) on the microporous portion (A) side can be confirmed.
  • many voids were observed on the opposite side.
  • the dry-up resistance was improved and the flooding resistance was greatly improved.
  • Example 14 the difference in surface roughness between the front and back surfaces of the electrode base material was optimal, so that the optimal internal structure of the electrode base material was obtained, and the power generation performance was greatly improved.
  • Example 16 to 19 A gas diffusion electrode substrate was obtained in the same manner as in Example 1 except that the FEP resin was used instead of the PTFE resin as the water repellent of the carbon coating liquid in ⁇ Formation of precursor of microporous part (B)>. .
  • the electrode substrate 1 having a thickness of 100 ⁇ m and a basis weight of 25 g / m 2 was used as the electrode substrate, and the basis weight of the impregnation was set to 0.4 times the basis weight of the electrode substrate.
  • the microporous portion (B) and the large voids continued in the direction perpendicular to the surface of the electrode substrate.
  • Example 19 by combining the voids of the microporous part (B), it is possible to achieve both good drainage and gas diffusibility, greatly improve dry-up resistance, and extremely improve flooding resistance. did.
  • the gas diffusion electrode layer was formed using the electrode base material 3, but because the electrode base material was thick, it was difficult to impregnate the microporous portion (B) inside the electrode base material, and it was continuous in the direction perpendicular to the surface. The formed microporous part (B) could not be formed. For this reason, it is considered that the power generation performance is lowered because the drainage property and the gas diffusibility are not compatible.
  • Electrode base material 2 Microporous part (A) 3: Microporous part (B) 4: Thickness of electrode substrate 5: Three-quarters of electrode substrate thickness 6: Path length of microporous part (B) 7: Carbon fiber of electrode substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池に用いられる、電極基材とマイクロポーラス部から構成されるガス拡散電極基材であって、電極基材の片面にマイクロポーラス部(A)が形成され、電極基材内部の一部にマイクロポーラス部(B)が形成されており、マイクロポーラス部(A)が形成されている側の電極基材表面から反対側の電極基材表面近傍までマイクロポーラス部(B)が連続して存在する部分と、マイクロポーラス部(A)が形成されている側の電極基材表面から反対側の電極基材表面まで空隙が連続して分布する部分とを有する、ガス拡散電極基材。

Description

ガス拡散電極基材ならびにそれを備える膜電極接合体および燃料電池
 本発明は、燃料電池、特に固体高分子型燃料電池に好適に用いられるガス拡散電極基材に関する。より詳しくは、高温での耐ドライアップ性を持ちながら、低温かつ高加湿条件においてもガス拡散性と排水性が良好であるため、耐フラッディング性に優れ、機械特性、導電性、熱伝導性を維持したまま、低温から高温の広い温度範囲にわたって高い発電性能を発現可能なガス拡散電極基材に関する。
 水素を含む燃料ガスをアノードに供給し、酸素を含む酸化ガスをカソードに供給して、両極で起こる電気化学反応によって起電力を得る固体高分子型燃料電池は、一般的に、セパレータ、ガス拡散電極基材、触媒層、電解質膜、触媒層、ガス拡散電極基材、セパレータを順に積層して構成される。ガス拡散電極基材にはセパレータから供給されるガスを触媒層へと拡散するための高いガス拡散性、電気化学反応に伴って生成する液水をセパレータへ排出するための高い排水性、発生した電流を取り出すための高い導電性が必要であり、炭素繊維などからなるガス拡散電極基材が広く用いられている。
 しかしながら、(1)固体高分子型燃料電池を70℃未満の比較的低い温度かつ高電流密度領域において作動させる場合、大量に生成する液水により電極基材が閉塞し、燃料ガスの供給が不足する結果、発電性能が低下する問題(以下、フラッディングと記載)、(2)固体高分子型燃料電池を80℃以上の比較的高い温度で作動させる場合、水蒸気拡散により電解質膜が乾燥し、プロトン伝導性が低下する結果、発電性能が低下する問題(以下、ドライアップと記載)が知られており、これら(1)、(2)の問題を解決するために多くの取り組みがなされている。この基本的な解決方法としては、ガス拡散電極基材の表面にマイクロポーラス部を形成し、そのマイクロポーラス部内に空隙を形成して、ガス拡散性と排水性を向上させる方法がとられている。
 特許文献1には、カーボン多孔体つまりマイクロポーラス部を電極基材に含浸させた構造をとり、含浸層の密度を一定の範囲とすることで、低加湿条件と高加湿条件で安定した発電性能が得られることが開示されている。しかしながら、斯かる方法で得られる、マイクロポーラス部が電極基材に含浸された構造では、高ガス拡散性と高排水性を同時に満たすことができず、特に、低温での発電性能が不十分であった。
 特許文献2では、マイクロポーラス部の内部に多量の造孔粒子を入れることで貫通孔を形成し、水とガスの経路を分離することにより乾燥条件と加湿条件のそれぞれで高性能を得ようとする技術が開示されている。しかしながら、特許文献2に開示された方法ではマイクロポーラス部で排水性は向上されるが、排出された水分がカーボンペーパーにおいて蓄積しガスの拡散を阻害してしまう問題があり、十分な性能を得ることができなかった。
 これらのような多くの取り組みがなされているが、耐ドライアップ性能を落とさずに特に低温での耐フラッディング性に優れたガス拡散電極基材として満足できるものはまだ見出されていない。
特開2009-129599号公報 特開2008-277093号公報
 本発明の目的は、高温での耐ドライアップ性を持ちながら、低温かつ高加湿条件においてもガス拡散性と排水性が良好であるため、耐フラッディング性に優れ、機械特性、導電性、熱伝導性を大きく損なうことなく、低温から高温の広い温度範囲にわたって高い発電性能を発現可能なガス拡散電極基材、膜電極接合体および燃料電池を提供することである。
 本発明のガス拡散電極基材は、斯かる課題を解決するために、次の手段を採用するものである。すなわち、燃料電池に用いられる、電極基材とマイクロポーラス部から構成されるガス拡散電極基材であって、電極基材の片面にマイクロポーラス部(A)が形成され、電極基材内部の一部にマイクロポーラス部(B)が形成されており、マイクロポーラス部(A)が形成されている側の電極基材表面から反対側の電極基材表面近傍までマイクロポーラス部(B)が連続して存在する部分と、マイクロポーラス部(A)が形成されている側の電極基材表面から反対側の電極基材表面まで空隙が連続して分布する部分とを有する、ガス拡散電極基材である。
 また、本発明の膜電極接合体は、斯かる課題を解決するために、次の手段を採用するものである。すなわち、電解質膜の両側に触媒層を有し、さらに前記触媒層の外側に、前記したガス拡散電極基材を有する、膜電極接合体である。
 さらに、本発明の燃料電池は、斯かる課題を解決するために、次の手段を採用するものである。すなわち、前記した膜電極接合体の両側にセパレータを有する、燃料電池である。
 本発明により、高温発電時に耐ドライアップ性を持ちながら、ガス拡散電極基材でのガス拡散性を保ちつつ、液水の排出を促進することにより、低温発電時でのフラッディングを大幅に抑制できる。このため、本発明のガス拡散電極基材を燃料電池に用いると、低温から高温の広い温度範囲にわたって高い発電性能を発現可能である。また、本発明のガス拡散電極基材は機械強度、導電性、熱伝導性も良好である。
マイクロポーラス部が電極基材に形成されている状態を示すガス拡散電極基材の断面模式図である。
 本発明者等は、従来の方法では電極基材の面直方向のガス拡散性と電極基材からセパレータ流路への排水性が両立できないために性能向上を行うことができなかったことに鑑み、ガス拡散性に寄与する経路と排水性に寄与する経路を分離した構造とすることにより、ガス拡散性を保ちつつ、液水の排出を促進することができることを見出し、本発明に至ったのである。
 本発明のガス拡散電極基材は、電極基材とマイクロポーラス部から構成されており、電極基材の片面にマイクロポーラス部(A)が形成され、電極基材内部の一部にマイクロポーラス部(B)が形成されていることが必要である。マイクロポーラス部(A)は、電極基材の表面に層状に積層されているマイクロポーラス部であり、電極基材内部の一部に形成されているマイクロポーラス部である、後述するマイクロポーラス部(B)とは区別される。
 なお、本発明において、カーボンペーパーなどのみからなり、マイクロポーラス部を設けない基材、または「ガス拡散電極基材」におけるその部分を「電極基材」と称し、電極基材にマイクロポーラス部を設けた基材を「ガス拡散電極基材」と称する。
 以下、各要素について説明する。
 本発明における電極基材は、セパレータから供給されるガスを触媒層へと拡散するための高いガス拡散性、電気化学反応に伴って生成する液水をセパレータへ排出するための高い排水性、発生した電流を取り出すための高い導電性が必要である。
 このため、電極基材として、導電性の多孔体、具体的には、炭素繊維織物、炭素繊維不織布、炭素繊維抄紙体などの炭素繊維を含む多孔体や、発泡焼結金属、金属メッシュ、エキスパンドメタルなどの金属多孔体が用いられ、中でも、耐腐食性が優れることから、炭素繊維を含む多孔体を用いることが好ましい。炭素繊維織物としては、炭素繊維を製織して織物としたものでも、炭素繊維の前駆体繊維を製織した織物を焼成して得られるものでも良い。また、炭素繊維不織布としては、炭素繊維を不織布に加工したものでも、炭素繊維の前駆体繊維を不織布に加工したものを必要に応じて圧縮等の加工を加えた後で焼成して得られる、いわゆるフェルトタイプのものでも良い。特には、炭素繊維を含む多孔体の中でも、機械強度に優れることから、炭素繊維抄紙体を炭化物で結着してなる基材、すなわち「カーボンペーパー」を用いることが好ましい。本発明において、炭素繊維抄紙体を炭化物で結着してなる基材は、通常、後述するように、炭素繊維の抄紙体に樹脂を含浸し炭素化することにより得られる。 炭素繊維としては、ポリアクリロニトリル(PAN)系、ピッチ系、レーヨン系などの炭素繊維が挙げられる。中でも、機械強度に優れることから、PAN系、ピッチ系炭素繊維が本発明において好ましく用いられる。
 電極基材の厚さは50μm以上であることが好ましく、60μm以上であることがより好ましい。また、電極基材の厚さは190μm以下であることが好ましく、160μm以下であることがより好ましい。これは電極基材を190μm以下の厚さとすることでマイクロポーラス部(B)を含浸させた際に、電極基材の内部にまで含浸されやすく、本発明で必要となる、マイクロポーラス部(A)が形成されている側の電極基材表面から反対側の電極基材表面までマイクロポーラス部(B)が連続して存在する部分、すなわちマイクロポーラス部(B)が連続して存在する構造を効率的に形成できる。一方、電極基材を50μm以上の厚さにすると、セパレータのリブ下にまで面内方向にガスが基材中を拡散するようになり、リブ下の触媒層へガスが拡散されやすくなるので発電性能の向上に寄与する。電極基材の厚さは面圧0.15MPaで加圧した状態で、マイクロメーターを用いて求めることができる。10箇所の個別の測定値を平均したものを厚さとする。なお、電極基材の厚さは、ガス拡散電極基材から分離した電極基材を用いて測定しても良い。たとえば、ガス拡散電極基材を大気中に600℃で30分加熱し、ガス拡散電極基材中のマイクロポーラス部に含まれる撥水剤等を酸化分解させた後に、エタノールなどの溶媒中で超音波処理を行うことでマイクロポーラス部の残さを除去して電極基材を取り出すことができ、斯かる電極基材を用いて、前記と同様にして厚さを測定すればよい。また、ガス拡散電極基材からその表面に存在するマイクロポーラス部(A)を剥離した基材の厚さを、電極基材の厚さとしてもよい。以下、ガス拡散電極基材からその表面に存在するマイクロポーラス部(A)を剥離した基材を、電極基材部分と称することもある。たとえば、ガス拡散電極基材表面のマイクロポーラス部(A)側に“スコッチ”(登録商標)テープ♯810(3M製)などの粘着テープを、面圧0.15MPaで接着させ剥離する。この接着と剥離とを繰り返し、粘着テープによる剥離での質量減少が1質量%以下となった時点でマイクロポーラス部(A)が剥離できたとすることができ、電極基材部分を得ることができる。この電極基材部分について前記した方法で測定した厚さを、電極基材の厚さとすることができる。
 本発明において、電極基材の嵩密度が0.2g/cm以上であることが好ましく、0.22g/cm以上であることがより好ましく、0.24g/cmであることがさらに好ましい。また、電極基材の嵩密度は0.4g/cm以下であることが好ましく、0.35g/cm以下であることがより好ましく、0.3g/cm以下であることがさらに好ましい。嵩密度が0.2g/cm以上であると、水蒸気拡散性が小さく、ドライアップをより抑制することができ、このため電極基材の機械特性が向上することにより、電解質膜、触媒層を十分に支えることができる。加えて、導電性が高く、高温・低温のいずれにおいても発電性能が向上する。一方、嵩密度が0.4g/cm以下であると、排水性が向上し、フラッディングをより抑制することができる。
 電極基材の嵩密度の測定方法は2cm四方の電極基材を試験片として切り出し、質量を測定し、その質量を、前記した方法で得られる電極基材の厚さと試験片の切出し面積(4cm)の積である体積で割ることにより求めることができる。検体を5個測定し、その平均を電極基材の嵩密度とする。なお、測定する試験片としては、ガス拡散電極基材から前記のようにして分離した電極基材を用いてもよい。
 本発明に用いられる電極基材は、マイクロポーラス部(A)が形成される側の表面粗さに対して、その反対側の表面粗さが、1μm以上の差を持って大きいことが好ましく、2μm以上の差を持って大きいことがより好ましく、2.5μm以上の差を持って大きいことがさらに好ましい。電極基材の表裏で表面粗さに一定の差があると、マイクロポーラス部(B)が含浸される際に電極基材の面直方向に流動が生じ、マイクロポーラス部(B)が面直方向に連続した構造を形成しやすくなる。一方、斯かる表面粗さの差は5μm以下であることが好ましく、4.5μm以下であることがより好ましく、4μm以下であることがさらに好ましい。これは表面粗さの差を大きくしすぎないことにより、マイクロポーラス部(B)が面直方向に偏りを生じ、一方の電極基材面の付着量が大きくなりすぎることを抑制でき、このため面直に連続した構造を形成することができる。ここで、電極基材の表面粗さは、レーザー顕微鏡などを用いて、電極基材の表面において5mm角の範囲を測定し、面傾き補正を行った後、表面の算術平均粗さRa[μm]を求めることで得ることができる。
 本発明において、ガス拡散電極基材は、電極基材の片面にマイクロポーラス部(A)が形成されていることが必要である。マイクロポーラス部(A)は、セパレータから供給されるガスを触媒層へと拡散するための高いガス拡散性、電気化学反応に伴って生成する液水をセパレータへ排出するための高い排水性、発生した電流を取り出すための高い導電性が必要である。さらには、電解質膜への水分の逆拡散を促進し、電解質膜を湿潤する機能も有する。ここでマイクロポーラス部(A)の厚さは10μm以上であることが好ましく、15μm以上であることがより好ましい。また、マイクロポーラス部(A)の厚さは60μm以下であることが好ましく、35μm以下であることがより好ましい。マイクロポーラス部(A)の厚さを10μm以上とすることで、電極基材を触媒層と隔離することができ電解質膜の耐久性をあげることができる。一方、マイクロポーラス部(A)の厚さを60μm以下とすることで、触媒層から発生し凝結した液体の水を電極基材に透過させ、電極基材内部での排水性をより向上できる。
 ここで、マイクロポーラス部(A)の厚さは、ガス拡散電極基材の厚さから、前記した電極基材の厚さを差し引いて得ることができる。なお、ガス拡散電極基材の厚さは、電極基材の厚さと同様、面圧0.15MPaで加圧した状態で、マイクロメーターを用いて求めることができ、10箇所の個別の測定値を平均したものを厚さとする。
 本発明において、マイクロポーラス部(A)の目付は5g/m以上であることが好ましく、10g/m以上であることがより好ましく、12g/m以上であることがさらに好ましい。また、マイクロポーラス部(A)の目付は35g/m以下であることが好ましく、30g/m以下であることがより好ましく、25g/m以下であることがさらに好ましい。なお、本発明において、目付とは単位面積あたりの質量を意味する。マイクロポーラス部(A)の目付が5g/m以上であると、電極基材表面を覆うことができ、電解質膜の耐久性向上できるとともに、カソードで発生した水蒸気のアノードへの逆拡散が促進され、ドライアップをより抑制できる。また、マイクロポーラス部(A)の目付が35g/m以下であると、排水性がより向上し、フラッディングをより抑制できる。
 ここで、マイクロポーラス部(A)の目付は、ガス拡散電極基材の目付から、電極基材部分の目付を差し引いて求めることができる。ガス拡散電極基材の目付および電極基材部分の目付はそれぞれ、10cm四方の基材を試験片として切り出し、試験片の質量を、試験片の面積(0.01m)で除して求めることができる。なお、電極基材部分は、電極基材の厚さの測定に関して前記した方法でガス拡散電極基材から取り出すことができる。
 また、マイクロポーラス部(A)の目付は、マイクロポーラス部全体の目付からマイクロポーラス部(B)の目付を減じて求めてもよい。マイクロポーラス部全体の目付は、ガス拡散電極基材の目付から電極基材の目付を減じて求めてもよい。マイクロポーラス部(B)の目付は、マイクロポーラス部(A)のカーボン塗液を塗布などする前の、マイクロポーラス部(B)が含浸された電極基材の目付から電極基材の目付を減じて求めてもよいし、電極基材の厚さの測定に関して前記した方法でガス拡散電極基材から取り出した電極基材部分の目付から電極基材の目付を減じて求めてもよい。
 本発明においては電極基材の内部の一部にマイクロポーラス部(B)が形成されていることが必要である。マイクロポーラス部(B)は通常、電極基材内部の一部に含浸されている。本発明の一例であるガス拡散電極基材の断面模式図を図1に示す。ここでは電極基材1の片側にマイクロポーラス部(A)2が形成されており、マイクロポーラス部(A)2に連続してマイクロポーラス部(B)が電極基材1の内部の一部に含浸して形成されている。マイクロポーラス部(A)2が形成されている側の電極基材1の片表面から電極基材1の反対側の表面近傍までマイクロポーラス部(B)3が連続して存在する部分と、マイクロポーラス部(A)2が形成されている側の電極基材1の片表面から電極基材1の反対側の表面近傍まで空隙が連続して分布する部分とを有することが重要である。
 マイクロポーラス部(A)が形成されている側の電極基材表面から反対側の電極基材表面まで連続して分布した空隙は、電極基材が本来的に有する空隙であり、およそ5μm~100μmの空隙径を持つ。一方、マイクロポーラス部は本来的に多数の空隙を有して形成されており、マイクロポーラス部が本来的に有する空隙も通常、連続空隙であるが、その空隙径はおよそ数10nm~5μmであり、電極基材が本来的に有する空隙とは区別される。以下、便宜上、電極基材が本来的に有する空隙を「大空隙」と称し、一方マイクロポーラス部が本来的に有する空隙を「小空隙」と称する。
 このマイクロポーラス部(B)3が数μm以下の小空隙を持つので、その小空隙を有する多孔体が撥水剤を含む場合、排水性が強く小空隙から、連続した大空隙に水が押し出される。よって低温発電時であっても、マイクロポーラス部(B)3自体はガス拡散性を保持しており、有限の幅を持ったマイクロポーラス部(B)が連続して面直方向に存在することにより、電極基材の片面から反対面に向けてガスの経路が形成されるのでガス拡散性が保たれる。
 一方、マイクロポーラス部(B)から大空隙に押し出された水は、大空隙が面直方向に有限の幅を持って、マイクロポーラス部(A)が形成されている側の電極基材表面から反対側の電極基材表面まで連続しているので、液体の水はその大空隙を通じて、ガス拡散電極基材の外に排出され、さらにセパレータの流路に排出される。すなわち、大空隙はガス拡散電極基材内で効率的な水の排出経路となる。これが、本発明でガス拡散電極基材の内部構造によりガス拡散性と排水性を両立でき、低温で大量に水が発生する発電状況においても、耐フラッディング性を大幅に向上できる理由である。一方、高温における発電条件において、大空隙は高いガス拡散性を持つため、水蒸気拡散性も大きくなり、電解質膜がドライアップしやすくなる方向に作用するが、小空隙を持つマイクロポーラス部(B)はガス拡散性が適度であるので、面直方向に連続したマイクロポーラス部(B)を形成することで、水蒸気の拡散を抑え電解質膜の乾燥を防ぐことができ、耐ドライアップ性も維持できるのである。このためにはマイクロポーラス部(B)や大空隙は面直方向に連続する経路を持つことが重要である。
 ここで、面直方向とは、基材面に対して直交する方向を意味し、マイクロポーラス部(A)2から電極基材1の反対側への面直方向であり、必ずしも直線的に反対側に連続していなくとも良い。しかしながら連続したマイクロポーラス部(B)または連続した大空隙の経路の屈曲が大きくなると、ガス拡散または水の排出の経路が長くなるため、斯かる屈曲が小さいほうが望ましい。また、連続するとは、面直断面において10μm以上の幅を有しながら連続していることである。この幅が存在することによりガスがマイクロポーラス部(B)内部を拡散し、また水が大空隙を通じて排水される際にその経路を確保することができる。これにより、高いガス拡散性と高い排水性を両立して、さらに高い発電性能を得ることができる。例えば、図1において、(c)の領域に存在するマイクロポーラス部(B)6は狭い部分を持ち、連続しているといい難いが、(a)の領域に存在するマイクロポーラス部(B)6は狭い部分がないので、明らかに連続しているといえる。
 また、マイクロポーラス部(B)は、電極基材内部において、マイクロポーラス部(A)が形成されている側の表面から反対側の表面にまで、すなわち電極基材の厚さ全体で連続して形成されている必要は必ずしもなく、電極基材内部において、マイクロポーラス部(B)はマイクロポーラス部(A)に接続する形で存在し、マイクロポーラス部(A)が形成されている側の表面から反対側の表面近傍にまで連続していればよい。ここで接続するとは通常、10μm以上の幅を持ってマイクロポーラス部同士が接することをいう。具体的には、電極基材の厚さ4に対してマイクロポーラス部(B)の面直方向の厚さは図1の5で示されるとおり、電極基材の面直方向断面において、電極基材の厚さの4分の3以上あればよい。すなわち、マイクロポーラス部(B)は、マイクロポーラス部(A)が形成されている側の電極基材表面から、電極基材の厚さの4分の3以上の深さにまで、幅10μm以上を有して含浸されていることが好ましい。たとえば図1(d)では厚さが電極基材1の面直方向の4分の3に満たない場合は連続しているとはいえない。これは、ガスの経路が電極基材の面直方向に一定の厚さ以上連続していることにより、効果的にガスの拡散または水の排出を大幅に向上できるためである。よって電極基材内部でのマイクロポーラス部(B)の面直方向の連続分布においてマイクロポーラス部(B)の経路長6を電極基材の厚さ4で除した値で定義される屈曲は小さいほうがよく、3以下が望ましい。たとえば図1の(b)は屈曲が大きいため、(a)のほうが望ましい。なお、経路長6は、面直断面において、連続する大空隙またはマイクロポーラス部(B)連続する大空隙または連続するマイクロポーラス部(B)の幅の中央をつないだ長さである。
 マイクロポーラス部(B)は連続して存在する部分が多いほど、具体的には、断面における単位長さあたりの個数で示される密度が高いほど望ましく、さらに連続するマイクロポーラス部(B)と連続する大空隙が高密度で存在することが望ましい。これは、連続するマイクロポーラス部(B)は、低温で大量に水が発生する発電条件においても、セパレータ側からガスをマイクロポーラス部(A)に接する触媒層に拡散させる役目を担っており、マイクロポーラス部(B)が面内に一定の密度で存在することにより、ガスを効率的にマイクロポーラス部(A)に供給できるからである。ガス拡散電極基材のマイクロポーラス部(A)の厚さが10μm以上60μm以下であり、この厚さの10倍程度の面内方向の頻度で、面直方向に連続するマイクロポーラス部(B)が存在することが望ましい。つまり、電極基材の断面において、マイクロポーラス部(B)が連続して存在する部分の密度が1個/mm以上であることが好ましく、1.5個/mm以上であることがより好ましく、2個/mm以上であることがさらに好ましい。これによりガス拡散と排水性の効率をさらに向上できる。
 また、大空隙が連続して分布する部分も同様の頻度で存在することが好ましく、つまり、電極基材の断面において、大空隙が連続して存在する部分の密度が1個/mm以上であることが好ましく、1.5個/mm以上であることが好ましく、2個/mm以上であることがさらに好ましい。これによりガス拡散性と排水性の効率をさらに向上できる。また、これにより、低温から高温までの広い範囲の発電条件で、ガス拡散性と排水性を高いレベルで両立することができ、発電性能をより向上できる。なお、マイクロポーラス部(B)が連続して存在する部分の、電極基材の断面における密度とは、電極基材の面直方向断面において、電極基材長手方向(面内方向)の単位長さ(1mm)あたりに存在する、マイクロポーラス部(B)が連続して存在する部分の個数を意味する。また、大空隙が連続して分布する部分の、電極基材の断面における密度とは、電極基材の面直方向断面において、電極基材長手方向(面内方向)の単位長さ(1mm)あたりに存在する、大空隙が連続して分布する部分の空隙の個数を意味する。ここで電極基材の断面は、イオンミリングなどの方法にて、ガス拡散電極基材の面直方向に作製したものである。斯かる断面を無作為に5箇所以上作製し、それらの断面を走査型電子顕微鏡などを用いて構造観察することにより、各種密度などの断面構造評価を行うことができる。
 ここで電極基材の表面に層状に積層されているマイクロポーラス部(A)と、電極基材の内部に形成されたマイクロポーラス部(B)は同一の組成であってもかまわないし、異なる組成であってもかまわない。なお、マイクロポーラス部(A)を形成するために用いたカーボン塗液が電極基材内部に染み込み含浸されて形成されたマイクロポーラス部はマイクロポーラス部(B)に該当する。
 電極基材の内部をマイクロポーラス部(B)で過剰に含浸して形成すると、液体の水はマイクロポーラス部(B)が有する撥水性の小空隙を透過することができず、また、排水経路となる面直方向に連続する大空隙の頻度も減少するのでガス拡散電極基材の排水性が低下してしまう。また同時に空隙率の低いカーボン多孔体はガスの拡散を阻害するためにガス拡散性も小さくなり触媒層に十分な量のガスを供給できなくなる。このため、電極基材内部にマイクロポーラス部(B)を形成できるように、電極基材の厚さと適切なマイクロポーラス部(B)の目付を組み合わせることが必要であり、マイクロポーラス部(B)の目付は電極基材の目付に対して0.25倍以上であることが好ましく、0.3倍以上であることがより好ましい。また、マイクロポーラス部(B)の目付は電極基材の目付に対して、0.55倍以下であることが好ましく、0.5倍以下であることがさらに好ましい。この間の目付量とすることで面直方向に連続した構造を持つマイクロポーラス部(B)と面直方向に連続した大空隙を得ることができ、電極基材が面直方向に高いガス拡散性と排水性を持つことができるからである。ここで電極基材の目付に対するマイクロポーラス部(B)の目付の比率を0.25倍以上とすることで、本発明で必要となる、マイクロポーラス部(A)が形成されている側の電極基材表面から反対側の電極基材表面までマイクロポーラス部(B)が連続して存在する構造を効率的に形成でき、高電流密度領域において多量の水が発生しても、ガスの経路を確保できる。また、斯かる目付の比率を0.55倍以下とすることで電極基材内部に面直方向に連続する大空隙と面直方向に連続するマイクロポーラス部(B)を効率的に形成することができ、水の経路を確保することができるために、高電流領域において多量の水が発生しても、水の経路を確保できる。よって、この範囲でもっとも好ましい構造を得ることができる。
 ここでマイクロポーラス部(B)の目付は、前記した方法で求めることができる。
 さらに、マイクロポーラス部(B)が電極基材に比べ小さな小空隙を持ちながら、良好なガス拡散性を維持するために、マイクロポーラス部(B)が電極基材の形成する大空隙よりは小さく適度に大きな空隙、つまり0.5μm以上5μm以下程度の小空隙を持つことが望ましい。0.5μm以上の空隙径を持つ小空隙があるとマイクロポーラス部が排水性を持ちながら、ガス拡散性を向上できる。一方、5μm以下とすることでマイクロポーラス部の小空隙からの液水の排出を促進できるため、水が多量に発生する条件でもマイクロポーラス部はガスの拡散を高くすることができる。
 導電性と排水性を向上するという観点から、マイクロポーラス部(A)または(B)もしくはそのいずれも炭素系フィラーを含む多孔体を用いることが好ましい。つまりマイクロポーラス部(A)や(B)は、炭素系フィラーを含むことが好ましい。ここで炭素系フィラーとしては、カーボンブラックが代表的である。
 炭素系フィラーとして、アスペクト比が30以上5000以下である炭素系フィラーを用いることが望ましい。斯かる炭素系フィラーの使用により、多数の適度な大きさの小空隙を形成できるためガス拡散性を向上することができる。このため、ガス拡散性と排水性を両立できるガス拡散電極基材が得られる。炭素系フィラーのアスペクト比が30未満であると、カーボン塗液中の炭素系フィラーの絡まりあいが少なくなり、カーボン塗液の粘度が低下し、カーボン塗液の裏抜けを抑制することができない。一方、炭素系フィラーのアスペクト比が5000より大きいと、カーボン塗液中の炭素系フィラーの絡まりあいが過剰となり、カーボン塗液で固形分の凝集、沈降が起こるという問題がある。本発明において、炭素系フィラーのアスペクト比が35以上であることがより好ましく、40以上であることがさらに好ましい。また炭素系フィラーのアスペクト比が3000以下であることがより好ましく、1000以下であることがさらに好ましい。
 ここで、炭素系フィラーのアスペクト比は次のようにして求める。炭素系フィラーが繊維状カーボンである場合、アスペクト比は、平均長さ(μm)/平均直径(μm)を意味する。平均長さは、走査型電子顕微鏡、透過型電子顕微鏡などの顕微鏡で、1000倍以上に拡大して写真撮影を行い、無作為に異なる10個の繊維状カーボンを選び、その長さを計測し、平均値を求めたものであり、平均直径は、走査型電子顕微鏡、透過型電子顕微鏡などの顕微鏡で、10000倍以上に拡大して写真撮影を行い、無作為に異なる10個の繊維状カーボンを選び、その直径を計測し、平均値を求めたものである。走査型電子顕微鏡としては、(株)日立製作所製S-4800、あるいはその同等品を用いることができる。
 炭素系フィラーが薄片グラファイトである場合、アスペクト比は、平均粒子径(μm)/平均厚さ(μm)を意味する。平均粒子径は、レーザー回折式粒度分布計を用いて測定し、体積換算の50%累積径を求めたものである。平均厚さは、走査型電子顕微鏡、透過型電子顕微鏡などの顕微鏡で、10000倍以上に拡大して写真撮影を行い、無作為に異なる10個の薄片グラファイトを選び、その厚さを計測し、平均値を求めたものである。走査型電子顕微鏡としては、(株)日立製作所製S-4800、あるいはその同等品を用いることができる。
 アスペクト比が30以上5000以下である炭素系フィラーとしては、アスペクト比が30以上5000以下である繊維状カーボンを用いることが好ましい。繊維状カーボンとしては、気相成長炭素繊維、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブ、カーボンナノホーン、カーボンナノコイル、カップ積層型カーボンナノチューブ、竹状カーボンナノチューブ、グラファイトナノファイバーが挙げられる。中でも、アスペクト比を大きくでき、導電性、機械特性が優れることから、気相成長炭素繊維、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブが、本発明において用いるに好適な繊維状カーボンとして挙げられる。気相成長炭素繊維とは気相中の炭素を触媒により成長させたものであり、平均直径が5nm以上200nm以下、平均繊維長が1μm以上20μm以下の範囲のものが好ましい。また、前記特定アスペクト比のものを得ることができる炭素系フィラーとしては、繊維状カーボン以外に、鱗片状黒鉛、鱗状黒鉛、人造黒鉛、膨張黒鉛、薄片グラファイトなどが挙げられるが、特定アスペクト比のものが得られやすい炭素系フィラーとしては、繊維状カーボン以外に、薄片グラファイトが挙げられる。
 本発明において、特定アスペクト比の繊維状カーボンを用いる場合、その平均長さが0.1μm以上30μm以下の範囲内であることが好ましい。特定アスペクト比の繊維状カーボンの平均長さは1μm以上であることがより好ましく、2μm以上であることがさらに好ましい。また、特定アスペクト比の繊維状カーボンの平均長さは20μm以下であることがより好ましく、15μm以下であることがさらに好ましい。斯かる繊維状カーボンにおいて、その平均長さが0.1μm以上であると、カーボン塗液の粘度が高くなり、裏抜けが抑制され、電極基材のガス拡散性、排水性が向上し、フラッディングを抑制することができる。本発明において、特定アスペクト比の繊維状カーボンを用いる場合、その直径が1nm以上500nm以下の範囲内であるものを用いるのが良い。
 本発明において、マイクロポーラス部(A)または(B)もしくはそのいずれにも、特定アスペクト比の炭素系フィラーを含むことが好ましいが、斯かる炭素系フィラー以外の各種炭素系フィラーをさらに含むことも好ましい。特定アスペクト比を有さない炭素系フィラーとしては、ファーネスブラック、アセチレンブラック、ランプブラック、サーマルブラックなどのカーボンブラックや、鱗片状黒鉛、鱗状黒鉛、土状黒鉛、人造黒鉛、膨張黒鉛、薄片グラファイトなどのグラファイトであってアスペクト比が30以上5000以下の範囲内にはないもの、CNTなどの繊維状カーボンであってアスペクト比が30以上5000以下の範囲内にはないものが挙げられるが、それらの中でもカーボンブラックを用いるのがより好ましく、アセチレンブラックを用いるのが最も好ましい。特定アスペクト比の炭素系フィラーに対するカーボンブラックの混合質量比が1以上20以下の範囲内であることが好ましく、1.5以上19以下の範囲内であることがより好ましく、2以上10以下の範囲内であることがさらに好ましい。斯かる混合質量比が1以上であると、特定アスペクト比の炭素系フィラーとカーボンブラックを含むマイクロポーラス部(A)または(B)もしくはそのいずれにおいても空隙率が適度な大きさとなるため、水蒸気拡散性が小さく、ドライアップを抑制することができる。斯かる混合質量比が20以下であると、特定アスペクト比の炭素系フィラーの含有の効果でマイクロポーラス部における導電性を高めることができるために全体の発電性能を向上でき、さらには、電極基材表層に十分な厚さを有するマイクロポーラス部が形成され、逆拡散が促進されるため、ドライアップを抑制できる。
 本発明において、液水の排水を促進するとの観点から、マイクロポーラス部(A)または(B)もしくはそのいずれにも炭素系フィラーと組み合わせて撥水剤を含むことが好ましい。中でも、耐腐食性が優れることから、撥水剤としてはフッ素系のポリマーを用いることが好ましい。フッ素系のポリマーとしては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)などが挙げられる。焼結時の溶融粘度が低く、均質な撥水状態を得るためには、融点が、200℃以上320℃以下である撥水剤を用いるのが好ましく、このような撥水剤としては、FEPまたはPFAが挙げられる。これらの撥水剤を用いることにより、マイクロポーラス部(B)が有する小空隙で凝結した液体の水を大空隙に排水し、さらに大空隙からセパレータの流路への排水性を格段に大きくすることができる。それにより、電極基材内部での水の蓄積を低減できるために、高負荷発電による大量の液体の水が発生する条件下においてもガス拡散性を大きく改善することができ、大幅な発電性能の向上につながる。
 マイクロポーラス部(A)または(B)中の撥水剤の含有量は、そのマイクロポーラス部中の炭素系フィラーに対する質量比率(炭素系フィラーの質量を100質量%とした場合の値)で、5質量%以上であるのが好ましく、10質量%以上であるのがより好ましく15質量%以上であるのがさらに好ましい。また、撥水剤の含有量は、炭素系フィラーに対する質量比率で、50質量%以下であるのが好ましく、35質量%以下であるのがより好ましく、30質量%以下であるのがさらに好ましい。撥水剤の含有量を斯かる範囲とすることで、十分な撥水性を持ちながらマイクロポーラス部のガス拡散性をより向上させることができる。
 本発明において、液水の排出を促進する、水蒸気拡散を抑制するとの観点から、マイクロポーラス部(A)または(B)もしくはそのいずれにも炭素系フィラーと組み合わせて各種材料を用いることができる。
 本発明において、マイクロポーラス部(A)または(B)もしくはそのいずれとも、空隙率は60%以上であることが好ましく、65%以上であることがより好ましく、70%以上であることがさらに好ましい。また、斯かる空隙率は90%以下であることが好ましく、87%以下であることがより好ましく、84%以下であることがさらに好ましい。斯かる空隙率が60%以上であると、排水性がより向上し、フラッディングをより抑制することができる。斯かる空隙率が90%以下であると、水蒸気拡散性が小さく、ドライアップを抑制することができる。加えて、導電性が高く、高温、低温のいずれにおいても発電性能が向上する。特に、マイクロポーラス部(B)は撥水剤を含み、空隙率が前記範囲にあることが好ましい。斯かる空隙率を有するマイクロポーラス部は、後述する製法において、マイクロポーラス部の目付、撥水剤、その他材料に対する炭素系フィラーの含有量、炭素系フィラーの種類、および、マイクロポーラス部の厚さを制御することにより得られる。中でも、撥水剤、その他材料に対する炭素系フィラーの含有量、炭素系フィラーの種類を制御することが有効である。ここで、撥水剤、消失材を含むその他材料に対する炭素系フィラーの含有量を大きくすることにより高空隙率のマイクロポーラス部が得られ、撥水剤を含むその他材料に対する炭素系フィラーの含有量を小さくすることにより低空隙率のマイクロポーラス部が得られる。また、マイクロポーラス部(B)の空隙率はマイクロポーラス部(A)の空隙率より5%以上大きいことが好ましく、10%以上大きいことがより好ましい。すなわち、マイクロポーラス部(B)の空隙率と、マイクロポーラス部(A)の空隙率の差が、5%以上であることが好ましく、10%以上であることがより好ましい。これはマイクロポーラス部(A)の内部で凝結した液水が空隙率の大きなマイクロポーラス部(B)に排水されやすくなる性質を利用して、排水性を向上できるためである。
 ここで、マイクロポーラス部(A)やマイクロポーラス部(B)の空隙率は、イオンビーム断面加工装置を用いた断面観察用サンプルを用いて、その断面を、走査型電子顕微鏡などの顕微鏡で、各マイクロポーラス部の断面を5000倍以上20000倍以内に拡大して反射電子を用いた撮像により写真撮影を行い、空隙部分の面積を計測し、観察面積に対する空隙部分の面積の比を求めたものである。この際、空隙は画像の平均輝度以下の部分を空隙とみなして二値化を行って識別できる。平均輝度は次のようにして求めることができる。まず画像解析により得られる画素の輝度情報から、横軸に256段階の輝度を、縦軸に輝度ごとの画素数を示すヒストグラムを作製する。このヒストグラムで全画素数を2560で除した数値以上の画素数となる範囲において、範囲の中央値となる輝度を算出し平均輝度とする。走査型電子顕微鏡としては、(株)日立製作所製S-4800、あるいはその同等品を用いることができる。
 次に、本発明のガス拡散電極基材を得るに好適な製造方法について、電極基材として、炭素繊維抄紙体から得られる「炭素繊維焼成体」を例にとって、工程ごとに具体的に説明する。
 <抄紙体、および抄紙体の製造方法>
 炭素繊維を含む抄紙体を得るためには、炭素繊維を液中に分散させて製造する湿式抄紙法や、空気中に分散させて製造する乾式抄紙法などが用いられる。中でも、生産性が優れることから、湿式抄紙法が好ましく用いられる。
 電極基材の排水性、ガス拡散性を向上する目的で、炭素繊維に有機繊維を混合して抄紙することができる。有機繊維としては、ポリエチレン繊維、ビニロン繊維、ポリアセタール繊維、ポリエステル繊維、ポリアミド繊維、レーヨン繊維、アセテート繊維などを用いることができる。
 また、抄紙体の形態保持性、ハンドリング性を向上する目的で、バインダーとして有機高分子を含むことができる。ここで、有機高分子としては、ポリビニルアルコール、ポリ酢酸ビニル、ポリアクリロニトリル、セルロースなどを用いることができる。
 抄紙体は、面内の導電性、熱伝導性を等方的に保つという目的で、炭素繊維が二次元平面内にランダムに分散したシート状であることが好ましい。
 抄紙体で得られる空隙径分布は、炭素繊維の含有率や分散状態に影響を受けるものの、概ね20μm以上500μm以下程度の大きさに形成することができる。
 抄紙体は、炭素繊維の目付が10g/m以上60g/m以下の範囲内にあることが好ましく、15g/m以上50g/m以下の範囲内にあることがより好ましい。炭素繊維の目付が10g/m以上であると、電極基材が機械強度の優れたものとなり好ましい。炭素繊維の目付が60g/m以下であると、電極基材がガス拡散性と排水性の優れたものとなり好ましい。なお、抄紙体を複数枚貼り合わせる場合は、貼り合わせ後の炭素繊維の目付が上記の範囲内にあることが好ましい。
 ここで、電極基材における炭素繊維目付は、10cm四方に切り取った抄紙体を、窒素雰囲気下、温度450℃の電気炉内に15分間保持し、有機物を除去して得た残さの質量を、抄紙体の面積(0.01m)で除して求めることができる。
 <樹脂成分の含浸>
 炭素繊維を含む抄紙体に樹脂成分を含浸する方法として、樹脂成分を含む樹脂組成物中に抄紙体を浸漬する方法、樹脂成分を含む樹脂組成物を抄紙体に塗布する方法、樹脂成分からなるフィルムを抄紙体に重ねて転写する方法などが用いられる。中でも、生産性が優れることから、樹脂成分を含む樹脂組成物中に抄紙体を浸漬する方法が好ましく用いられる。
 樹脂成分は、焼成時に炭化して導電性の炭化物となる。樹脂組成物は、樹脂成分に溶媒などを必要に応じて添加したものをいう。ここで、樹脂成分とは、熱硬化性樹脂などの樹脂を含み、さらに、必要に応じて炭素系フィラー、界面活性剤などの添加物を含むものである。
 樹脂組成物に含まれる樹脂成分の炭化収率は40質量%以上であることが好ましい。炭化収率が40質量%以上であると、電極基材が機械特性、導電性、熱伝導性の優れたものとなり好ましい。
 樹脂成分を構成する樹脂としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、フラン樹脂などの熱硬化性樹脂などが挙げられる。中でも、炭化収率が高いことから、フェノール樹脂が好ましく用いられる。また、樹脂成分に必要に応じて添加する添加物としては、電極基材の機械特性、導電性、熱伝導性を向上する目的で、炭素系フィラーを含むことができる。ここで、炭素系フィラーとしては、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、炭素繊維のミルドファイバー、黒鉛、薄片グラファイトなどを用いることができる。
 樹脂組成物は、前述の構成により得られた樹脂成分をそのまま使用することもできるし、必要に応じて、抄紙体への含浸性を高める目的で、各種溶媒を含むこともできる。ここで、溶媒としては、メタノール、エタノール、イソプロピルアルコールなどを用いることができる。
 樹脂組成物は、25℃、0.1MPaの状態で液状であることが好ましい。液状であると抄紙体への含浸性が優れ、電極基材が機械特性、導電性、熱伝導性に優れたものとなり好ましい。
 本発明において、炭素繊維100質量部に対して、樹脂成分を30質量部以上400質量部以下含浸することが好ましく、50質量部以上300質量部以下含浸することがより好ましい。樹脂成分の含浸量が30質量部以上であると、電極基材が機械特性、導電性、熱伝導性の優れたものとなり好ましい。一方、樹脂成分の含浸量が400質量部以下であると、電極基材がガス拡散性の優れたものとなり好ましい。
 なお、抄紙体に樹脂成分を含浸するに際して、樹脂成分が付与された抄紙体を、凹凸を形成したロールと、平滑なロールとで挟んで含浸することにより、表裏で樹脂成分の付着量の差を設けることができる。樹脂成分の付着量を多くした表面は、得られる電極基材で表面粗さが小さくなる。
 <貼り合わせ、熱処理>
 炭素繊維を含む抄紙体に樹脂成分を含浸した予備含浸体を形成した後、炭素化を行うに先立って、予備含浸体の貼り合わせや、熱処理を行うことができる。
 電極基材を所定の厚さにする目的で、予備含浸体の複数枚を貼り合わせることができる。この場合、同一の性状を有する予備含浸体の複数枚を貼り合わせることもできるし、異なる性状を有する予備含浸体の複数枚を貼り合わせることもできる。具体的には、炭素繊維の平均直径、平均長さ、抄紙体の炭素繊維目付、樹脂成分の含浸量などが異なる複数の予備含浸体を貼り合わせることもできる。
 樹脂成分を増粘、部分的に架橋する目的で、予備含浸体を熱処理することができる。熱処理する方法としては、熱風を吹き付ける方法、プレス装置などの熱板にはさんで加熱する方法、連続ベルトにはさんで加熱する方法などを用いることができる。
 <炭素化>
 炭素繊維を含む抄紙体に樹脂成分を含浸した後、炭素化するために、不活性雰囲気下で焼成を行う。斯かる焼成は、バッチ式の加熱炉を用いることもできるし、連続式の加熱炉を用いることもできる。また、不活性雰囲気は、加熱炉内に窒素ガス、アルゴンガスなどの不活性ガスを流すことにより得ることができる。
 焼成の最高温度が1300℃以上3000℃以下の範囲内であることが好ましく、1700℃以上3000℃以下の範囲内であることがより好ましく、1900℃以上3000℃以下の範囲内であることがさらに好ましい。最高温度が1300℃以上であると、樹脂成分の炭素化が進み、電極基材が導電性、熱伝導性の優れたものとなり好ましい。一方、最高温度が3000℃以下であると、加熱炉の運転コストが低くなるために好ましい。
 焼成にあたっては、昇温速度が80℃/分以上5000℃/分以下の範囲内であることが好ましい。昇温速度が80℃/分以上であると、生産性が優れるために好ましい。一方、昇温速度が5000℃/分以下であると、樹脂成分の炭素化が緩やかに進み緻密な構造が形成されるため、電極基材が導電性、熱伝導性の優れたものとなり好ましい。
 なお、炭素繊維を含む抄紙体に樹脂成分を含浸した後、炭素化したものを、「炭素繊維焼成体」と記載する。
 <撥水加工>
 排水性を向上する目的で、炭素繊維焼成体に撥水加工を施すことが好ましい。撥水加工は、炭素繊維焼成体に撥水剤を塗布、熱処理することにより行うことができる。ここで、撥水剤としては、耐腐食性が優れることから、フッ素系のポリマーを用いることが好ましい。フッ素系のポリマーとしては、ポリクロロトリフルオロエチレン樹脂(PCTFE)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン樹脂(PVDF)、テトラフルオロエチレンとヘキサフルオロプロピレンの共重合体(FEP)、テトラフルオロエチレンとパーフルオロアルキルビニルエーテルの共重合体(PFA)、テトラフルオロエチレンとエチレンの共重合体(ETFE)などが挙げられる。撥水剤の塗布量は、炭素繊維焼成体100質量部に対して、1質量部以上、好ましくは2質量部以上、より好ましくは3量部以上、さらに好ましくは5量部以上、特に好ましくは7量部以上、最も好ましくは10量部以上であるのがよい。また、撥水剤の塗布量は、炭素繊維焼成体100質量部に対して、好ましくは50質量部以下、より好ましくは40質量部以下、さらに好ましくは30質量部以下であるのがよい。撥水剤の塗布量が1質量部以上であると、電極基材が排水性に優れたものとなり好ましい。一方、撥水剤の塗布量が50質量部以下であると、電極基材が導電性の優れたものとなり好ましい。
 なお、炭素繊維焼成体に、必要に応じて撥水加工を施したものを、「電極基材」と記載する。なお、撥水加工を施さない場合は、炭素繊維焼成体と「電極基材」は同一のものを指す。
 <マイクロポーラス部の形成>
 マイクロポーラス部(A)または(B)は、電極基材にカーボン塗液を塗布またはディッピングして、電極基材の片面または内部にマイクロポーラス部前駆体を配置し、それを乾燥と焼結することにより形成される。カーボン塗液には、前記した特定アスペクト比を有する炭素系フィラーを混合してマイクロポーラス部前駆体を形成するのが良い。より具体的には次のようにして形成する。
 カーボン塗液は少なくとも炭素系フィラーと水や有機溶媒などの分散媒で構成されており、界面活性剤などの分散助剤を含んでもよい。分散媒としては水が好ましく、分散助剤にはノニオン性の界面活性剤を用いるのがより好ましい。また、前記したような、撥水剤を含有するのが好ましい。
 カーボン塗液の電極基材への塗布またはディッピングは、市販されている各種の装置を用いて行うことができる。塗布方式としては、スクリーン印刷、ロータリースクリーン印刷、スプレー噴霧、凹版印刷、コンマ塗布、リバースロール塗布、グラビア印刷、ダイコーター塗布、バー塗布、ナイフ塗布、ブレード塗布などが使用できる。以上例示した塗布方法はあくまでも例示のためであり、必ずしもこれらに限定されるものではない。
 マイクロポーラス部(B)の前駆体となるカーボン塗液は電極基材に含浸させ、内部構造に連続したマイクロポーラス部を得るために低粘度であることが好ましく、E型粘度計、コーン角2°、ずり速度17s-1で測定した時の粘度が、5Pa・s以下、さらに好ましくは1Pa・s以下であることが望ましい。含浸を均一にさせるために分散媒として水の他にイソプロピルアルコールやエタノール等のアルコール類やエチレングリコールなどのグリコール類をカーボン塗液に含むこともできる。
 電極基材にマイクロポーラス部(B)を形成するためのカーボン塗液に電極基材を前述の低粘度塗液で塗布またはディッピングし、乾燥して、マイクロポーラス部(B)の前駆体を形成する際に、マイクロポーラス部(B)を形成するためのカーボン塗液をディッピングにより電極基材に含浸させて塗液が乾燥前の流動性がある状態で、電極基材の片面から気流を当てることにより、含浸状態を制御する。つまり面直方向に加圧してスリットやノズルでスポット的に気流を当てることで、電極基材内部におよそ面直方向に、マイクロポーラス部(B)となるカーボン塗液が局所的に含浸していき、マイクロポーラス部(B)と空隙の分布を効率的に得ることができる。
 また、別の方法として、マイクロポーラス部(B)を形成するためのカーボン塗液を電極基材にその片面から塗布し、さらに表面からロールやバーなどで加圧した後、乾燥してマイクロポーラス部(B)の前駆体を形成することで、電極基材内部にマイクロポーラス部(B)がおよそ面直方向に連続した構造を作り出すこともできる。
 また、電極基材上にマイクロポーラス部(B)を形成するためのカーボン塗液をパターン状に塗布を行い、さらに含浸させて後、乾燥してマイクロポーラス部(B)の前駆体を形成しても良い。
 このようにして形成されたマイクロポーラス部(B)の前駆体を有する電極基材を用いて、その片面にマイクロポーラス部(A)を形成するためのカーボン塗液を塗布し、乾燥して、焼結を行う。
 カーボン塗液の電極基材への塗布や含浸後の乾燥は、通常80℃以上120℃以下の温度で行う。すなわち、塗布物を、80℃以上120℃以下の温度に設定した乾燥器に投入し、5分以上30分以下の範囲で乾燥する。乾燥は大気で行っても窒素などの不活性ガス内で行ってもかまわない。
 このようにして、カーボン塗液中の固形分(炭素系フィラー、撥水剤、界面活性剤など)が乾燥後に残存し、マイクロポーラス部の前駆体が形成される。
 乾燥後の塗布物(マイクロポーラス部の前駆体が形成された電極基材)は、マッフル炉や焼成炉または高温型の乾燥機に投入し、300℃以上380℃以下にて5分間以上20分間以下加熱して、撥水剤を溶融し、溶融した撥水剤を炭素系フィラー同士のバインダーにして焼結することによりマイクロポーラス部が形成される。
 本発明において、前記したガス拡散電極基材を、両側に触媒層を有する固体高分子電解質膜の少なくとも片面に接合することで膜電極接合体を構成することができる。その際、触媒層側にマイクロポーラス部(A)を配置することで、より生成水の逆拡散が起こりやすくなるのに加え、触媒層とガス拡散電極基材の接触面積が増大し、接触電気抵抗を低減することができる。
 斯かる膜電極接合体の両側にセパレータを有することで燃料電池を構成する。通常、斯かる膜電極接合体の両側にガスケットを介してセパレータで挟んだものを複数個積層することによって固体高分子型燃料電池を構成する。触媒層は、固体高分子電解質と触媒担持炭素を含む層からなる。触媒としては、通常、白金が用いられる。アノード側に一酸化炭素を含む改質ガスが供給される燃料電池にあっては、アノード側の触媒としては白金およびルテニウムを用いるのが好ましい。固体高分子電解質は、プロトン伝導性、耐酸化性、耐熱性の高い、パーフルオロスルホン酸系の高分子材料を用いるのが好ましい。斯かる燃料電池ユニットや燃料電池の構成自体は、よく知られているところである。
 以下、実施例および比較例によって本発明を具体的に説明する。実施例および比較例で用いた材料、電極基材の作製方法、ガス拡散電極基材の作製方法、および燃料電池の電池性能評価方法などの各種評価方法を次に示した。
 <材料>
 A.炭素系フィラー
・“デンカブラック”(登録商標)(アセチレンブラック、電気化学工業(株)製、平均粒子径:0.035μm、アスペクト比:1)
・気相成長炭素繊維“VGCF”(登録商標)(昭和電工(株)製、平均直径:0.15μm、平均繊維長:8μm、アスペクト比:50、繊維状カーボンの一種)
・多層カーボンナノチューブ(チープ チューブス社製、平均直径:0.015μm、平均繊維長:20μm、アスペクト比:1300、繊維状カーボンの一種)
 B.撥水剤
・PTFE樹脂“ポリフロン”(登録商標)D-1E(ダイキン工業(株)製)
・FEP樹脂“ネオフロン”(登録商標)ND-110(ダイキン工業(株)製)
 C.界面活性剤
・“TRITON”(登録商標)X-100(ノニオン系界面活性剤、ナカライテスク(株)製)
 <電極基材の作製>
 炭素繊維を平均長さ12mmにカットし、水中に分散させて湿式抄紙法により連続的に抄紙した。さらに、バインダーとしてポリビニルアルコールの10質量%水溶液を塗布、乾燥させ、炭素繊維目付37.5g/mの抄紙体を作製した。ポリビニルアルコールの塗布量は、抄紙体100質量部に対して、22質量部であった。
 熱硬化性樹脂としてレゾール型フェノール樹脂とノボラック型フェノール樹脂の混合物、炭素系フィラーとして鱗片状黒鉛、溶媒としてメタノールを用い、熱硬化性樹脂/炭素系フィラー/溶媒=10質量部/5質量部/85質量部の配合比で混合し、超音波分散装置を用いて1分間撹拌を行い、均一に分散した樹脂組成物を得た。
 15cm×12.5cmにカットした抄紙体をアルミバットに満たした樹脂組成物に浸漬し、炭素繊維100質量部に対して、樹脂成分(熱硬化性樹脂+炭素系フィラー)が130質量部となるように含浸させた後、100℃で5分間加熱して乾燥させ、予備含浸体を作製した。次に、平板プレスで加圧しながら、180℃で5分間熱処理を行った。なお、加圧の際に平板プレスにスペーサーを配置して、熱処理後の予備含浸体の厚さが130μmになるように上下プレス面板の間隔を調整した。
 予備含浸体を熱処理した基材を、加熱炉において、窒素ガス雰囲気に保たれた、最高温度が2400℃の加熱炉に導入し、炭素繊維焼成体を得た。
 炭素繊維焼成体にPTFE樹脂“ポリフロン”(登録商標)D-1Eを、乾燥後の付着量が炭素繊維焼成体100質量部に対して5質量部となるように塗布し、100℃で5分間加熱して乾燥させ、目付25g/m、厚さ100μm電極基材1を作製した。
 また、炭素繊維目付を65g/mにすること以外は同様の方法で、目付45g/m、厚さ180μmの電極基材2を、炭素繊維目付を72g/mにすること以外は同様の方法で、目付50g/m、厚さ200μmの電極基材3を得た。
 <マイクロポーラス部(B)の前駆体の形成>
 炭素系フィラーと撥水剤を含んだカーボン塗液を調整し準備した。この塗液に電極基材をディッピングし、10分間放置した後、大気中に取り出し、余分な含浸液をロールで絞り、取り除いた後、2分以内に乾燥炉内に導入し100℃10分間乾燥させた。ここで用いたカーボン塗液は、炭素系フィラー、撥水剤を表1~3に示す組成比となるようにし、界面活性剤を炭素系フィラー100質量部に対して32.5質量部加え、精製水で調整したものを用いた。含浸と乾燥を繰り返したりして、含浸されたマイクロポーラス部(B)の目付を調整し、目的の目付量を得た。
 <マイクロポーラス部(A)の形成>
 マイクロポーラス部(B)の前駆体が形成された電極基材の表面に、ダイコーターを用いてカーボン塗液を面状に塗布後、120℃で10分乾燥し、380℃で20分加熱により焼結を行って、面状のマイクロポーラス部(A)を形成した。ここで用いたカーボン塗液は、炭素系フィラーとしてデンカブラック7.7部、撥水剤としてポリフロン2.5部、界面活性剤としてTRITON X-100を20部、精製水100部を混合したカーボン塗液を前駆体として用いた。焼結後に15g/mの目付となるように電極基材に塗布を行った。後述する<各種厚さの測定>に記述した方法で測定した結果、マイクロポーラス部(A)の厚さは30μmとなった。また、後述する<空隙率の測定方法>に記述した方法で空隙率を測定したところ、マイクロポーラス部(A)の空隙率は64%であった。
 <カーボン塗液の粘度の測定方法>
 E型粘度計によりコーン角度2°、ずり速度17s-1、温度23℃にて測定を行った。繰り返しを3回行い、その平均値を粘度とした。
 <マイクロポーラス部(B)および大空隙の連続性および密度の評価方法>
 得られたガス拡散電極基材について、次のようにして断面構造評価を行った。
 得られたガス拡散電極基材を用いて、イオンミリングにより、面直方向の断面を形成した。1断面は約1mmの長さであったため、5断面を形成して断面を日立製作所製の走査型電子顕微鏡S-4800により観察し、マイクロポーラス部(A)が形成されている側の電極基材表面から反対側の電極基材表面近傍までマイクロポーラス部(B)が連続して存在する部分の有無、すなわち、マイクロポーラス部(B)および大空隙の連続性の有無を調べた。断面を400倍で観察し、電極基材内部のマイクロポーラス部が最小部でも幅10μmをもち、電極基材の厚さの3/4以上の厚さを持っている部分があれば、連続したマイクロポーラス部が1個あると判断し、連続性ありとした。同様に大空隙についても観察してその連続性を確認した。ここで確認された、連続したマイクロポーラス部(B)の個数および連続した大空隙の個数それぞれを、断面における電極基材の長手方向(面内方向)の長さ(mm)で割り、連続したマイクロポーラス部(B)の密度[個/mm]および連続した大空隙の密度[個/mm]を算出した。
 <空隙率の測定方法>
 得られたガス拡散電極基材を用いて、イオンミリングにより、面直方向の断面を形成した。その断面のマイクロポーラス部(A)およびマイクロポーラス部(B)それぞれについて、日立製作所製の走査型電子顕微鏡S-4800を用いて、10000倍で拡大し、反射電子を用いた撮像により写真撮影を行い、空隙部分の面積を計測し、観察面積に対する空隙部分の面積の比を求めた。この際、画像の平均輝度以下の部分を空隙と判定して二値化を行って識別した。この空隙の面積比率を計算した数値それぞれを、マイクロポーラス部(A)の空隙率、およびマイクロポーラス部(B)の空隙率とした。なお、平均輝度は次のようにして求めた。まず画像解析において横軸に256段階の輝度を、縦軸に輝度ごとの画素数を示すヒストグラムを作製した。このヒストグラムで全画素数を2560で除した数値以上の画素数となる範囲において、範囲の中央値となる輝度を平均輝度とした。
 <各種厚さの測定>
 ガス拡散電極基材または電極基材を測定物とする場合、測定物から無作為に、測定すべき10箇所を選択し、直径3mmの円形の先端径を持つ端子により面直方向に0.15MPaに加圧してマイクロメーターで個別の厚さを測定し、10点の個別の厚さを平均して測定物の厚さとした。なお、面直方向とは、基材面に対して直交する方向を意味する。マイクロポーラス部(A)の厚さは、ガス拡散電極基材全体の厚さから、電極基材の厚さを引いた値とした。
 <各種目付の測定>
 まず電極基材の質量[g](W1)を、精密はかりを用いて10cm角の正方形の形状にて測定した。このW1を0.01で除した数値を電極基材の目付[g/m]とした。
 次に、マイクロポーラス部(B)が形成された電極基材の質量[g](W2)を同様に10cm角の正方形の形状にて測定した。W2からW1を引き、0.01で除した数値をマイクロポーラス部(B)の目付[g/m]とした。
 <撥水剤の融点の測定>
 撥水剤の融点を示差走査熱量分析により測定した。装置はセイコーインスツル(株)(SII社)製DSC6220を用いて、窒素中にて昇温速度2℃/分で、30℃から400℃の温度まで変化させ、その際の吸発熱ピークを観察し、150℃以上の温度での吸熱ピークを撥水剤の融点とした。
 <表面粗さの測定>
 電極基材の表面粗さを、レーザー顕微鏡を用いて測定した。測定装置はVK-X100(キーエンス(株)製)を用いて、倍率10の対物レンズにて5mm角の範囲をスキャンして測定し、面傾き補正を行った後、5mm角での算術平均粗さ(Ra)を求めた。無作為に選択した10箇所について測定を行い、各箇所の算術平均粗さの平均を表面粗さ[μm]とした。
 <固体高分子型燃料電池の発電性能評価>
 白金担持炭素(田中貴金属工業(株)製、白金担持量:50質量%)1.00g、精製水 1.00g、“Nafion”(登録商標)溶液(Aldrich社製 “Nafion”(登録商標)5.0質量%)8.00g、イソプロピルアルコール(ナカライテスク社製)18.00gを順に加えることにより、触媒液を作製した。
 次に7cm×7cmにカットした “ナフロン”(登録商標)PTFEテープ“TOMBO”(登録商標)No.9001(ニチアス(株)製)に、触媒液をスプレーで塗布し、室温で乾燥させ、白金量が0.3mg/cmの触媒層付きPTFEシートを作製した。続いて、10cm×10cmにカットした固体高分子電解質膜“Nafion”(登録商標)NRE-211CS(DuPont社製)を2枚の触媒層付きPTFEシートで挟み、平板プレスで5MPaに加圧しながら130℃で5分間プレスし、固体高分子電解質膜に触媒層を転写した。プレス後、PTFEシートを剥がし、触媒層付き固体高分子電解質膜を作製した。
 次に、触媒層付き固体高分子電解質膜を、7cm×7cmにカットした2枚のガス拡散電極基材で挟み、平板プレスで3MPaに加圧しながら130℃で5分間プレスし、膜電極接合体を作製した。なお、ガス拡散電極基材は面状のマイクロポーラス部を有する面が触媒層側と接するように配置した。
 得られた膜電極接合体を燃料電池評価用単セルに組み込み、電流密度を変化させた際の電圧を測定した。ここで、セパレータとしては、溝幅1.5mm、溝深さ1.0mm、リブ幅1.1mmの一本流路のサーペンタイン型のものを用いた。また、アノード側には210kPaに加圧した水素を、カソード側には140kPaに加圧した空気を供給し、評価を行った。なお、水素、空気はともに70℃に設定した加湿ポットにより加湿を行った。また、水素、空気中の酸素の利用率はそれぞれ80%、67%とした。
 まず、運転温度を40℃、加湿温度40℃において出力電圧が0.2Vのとなる電流密度を測定し、耐フラッディング性(低温性能)の指標として用いた。次に、加湿温度80℃、運転温度を80℃において出力電圧が0.2Vとなる電流密度を測定して、耐ドライアップ性(高温性能)の指標として用いた。
 (実施例1)
 <電極基材の作製>、<マイクロポーラス部(B)の前駆体の形成>および<マイクロポーラス部(A)の形成>に記載した方法に従って、ガス拡散電極基材を得た。ここで、表1に示すとおり、電極基材の内部にマイクロポーラス部(B)が含浸できる範囲として厚さ100μmとなった目付25g/mの電極基材1を用いて、面直方向に連続したマイクロポーラス部(B)と空隙を形成するために含浸目付を電極基材の目付の0.3倍とした。断面構造評価の結果、電極基材内部に面直に連続するマイクロポーラス部(B)と大空隙の構造が確認でき、このガス拡散電極基材を用いて発電性能を評価した結果、表1に示すように、比較例に比べ、耐ドライアップ性の低下もなく、耐フラッディング性が大きく向上した。
 (実施例2)
 <電極基材の作製>、<マイクロポーラス部(B)の前駆体の形成>および<マイクロポーラス部(A)の形成>に記載した方法に従って、ガス拡散電極基材を得た。ここで、表1に示すとおり、電極基材として厚さ100μm、目付25g/mの電極基材1を用いて、含浸目付を電極基材の目付の0.4倍とした。断面構造評価の結果、電極基材内部に面直方向に連続するマイクロポーラス部(B)と大空隙の構造がさらに発達して実施例1より連続したマイクロポーラス部(B)の密度が多くなっていることが確認でき、このガス拡散電極基材を用いて発電性能を評価した結果、表1に示すように、耐ドライアップ性が向上し、耐フラッディング性が大幅に向上した。
 (実施例3)
 <電極基材の作製>、<マイクロポーラス部(B)の前駆体の形成>および<マイクロポーラス部(A)の形成>に記載した方法に従って、ガス拡散電極基材を得た。ここで、表1に示すとおり、電極基材として厚さ100μm、目付25g/mの電極基材1を用いて、含浸目付を電極基材の目付の0.5倍とした。断面構造評価の結果、電極基材内部に面直方向に連続するマイクロポーラス部(B)と大空隙の構造が確認でき、このガス拡散電極基材を用いて発電性能を評価した結果、表1に示すように、実施例2ほどではないが、比較例に比べ、耐ドライアップ性の低下もなく、耐フラッディング性が向上した。
 (実施例4)
 <電極基材の作製>、<マイクロポーラス部(B)の前駆体の形成>および<マイクロポーラス部(A)の形成>においてマイクロポーラス部(A)の目付を10g/mとした以外は記載した方法に従って、ガス拡散電極基材を得た。ここで、表1に示すとおり、電極基材として厚さ100μm、目付25g/mの電極基材1を用いて、含浸目付を電極基材の目付の0.4倍とした。また、マイクロポーラス部(A)の厚さは20μmであった。断面構造評価の結果、電極基材内部に面直方向に連続するマイクロポーラス部(B)と大空隙の構造が確認でき、このガス拡散電極基材を用いて発電性能を評価した結果、表1に示すように、比較例に比べ、耐ドライアップ性が向上し、耐フラッディング性が大幅に向上した。これはマイクロポーラス部(A)におけるガス拡散性と水の排水性が向上した効果と、電極基材に面直に連続するマイクロポーラス部(B)による排水性とガス拡散性の向上の効果が組み合わさり、高電流密度領域でもガス拡散電極基材全体で排水性とガス拡散性が両立できたためである。
 (実施例5)
 <電極基材の作製>、<マイクロポーラス部(B)の前駆体の形成>および<マイクロポーラス部(A)の形成>においてマイクロポーラス部(A)の目付を30g/mとした以外は記載した方法に従って、ガス拡散電極基材を得た。ここで、表1に示すとおり、電極基材として厚さ100μm、目付25g/mの電極基材1を用いて、含浸目付を電極基材の目付けの0.4倍とした。また、マイクロポーラス部(A)の厚さは55μmであった。断面構造評価の結果、電極基材内部に面直に連続するマイクロポーラス部(B)と大空隙の構造が確認でき、このガス拡散電極基材を用いて発電性能を評価した結果、表1に示すように、比較例に比べ、耐ドライアップ性が向上し、耐フラッディング性が向上した。
 (実施例6)
 <電極基材の作製>、<マイクロポーラス部(B)の前駆体の形成>および<マイクロポーラス部(A)の形成>においてマイクロポーラス部(A)の目付を35g/mとした以外は記載した方法に従って、ガス拡散電極基材を得た。ここで、表1に示すとおり、電極基材として厚さ100μm、目付25g/mの電極基材1を用いて、含浸目付を電極基材の目付の0.4倍とした。また、マイクロポーラス部(A)の厚さは65μmであった。断面構造評価の結果、電極基材内部に面直に連続するマイクロポーラス部(B)と大空隙の構造が確認でき、このガス拡散電極基材を用いて発電性能を評価した結果、表1に示すように、比較例2に比べ、耐ドライアップ性が向上するが、耐フラッディング性での向上は小さかった。
 (実施例7)
 <電極基材の作製>および<マイクロポーラス部(A)の形成>に記載した方法に従って、厚さ100μmの電極基材1に表1に示す組成のカーボン塗液を焼結後に目付が10g/mとなるように塗布した直後に、電極基材の片面にスリット幅0.2mmで0.4MPaの元圧を加えて、電極基材から5mmの距離からエアブローすることで風圧をかけて電極基材に含浸された含浸液に偏りを生じさせて含浸させたこと以外は同じ方法で、ガス拡散電極基材を得て、表1に示す物性値を得た。その結果、このガス拡散電極基材を用いて発電性能を評価した結果、実施例2と比較しても、耐ドライアップ性が向上し、耐フラッディング性が極めて大きく向上した。
 これは加圧された気流により、電極基材に面直方向に連続したマイクロポーラス部(B)と大空隙がバランスよく形成され、排水性とガス拡散性が両立しやすい構造になったためと考えられる。
 (実施例8)
 <電極基材の作製>、<マイクロポーラス部(B)の前駆体の形成>および<マイクロポーラス部(A)の形成>において電極基材2を用いること以外は記載した方法に従って、ガス拡散電極基材を得た。ここで、表2に示すとおり、電極基材として厚さ180μm、目付45g/mの電極基材2を用いて、含浸目付を電極基材の目付の0.4倍とした。断面構造評価の結果、電極基材内部に面直方向に連続するマイクロポーラス部(B)と大空隙の構造が確認でき、このガス拡散電極基材を用いて発電性能を評価した結果、表2に示すように、比較例に比べ、耐ドライアップ性の低下もなく、耐フラッディング性が大きく向上した。
 (実施例9~11)
 <マイクロポーラス部(B)の前駆体の形成>においてカーボン塗液にアスペクト比50の“VGCF”を混合して表2に示す組成とした以外は実施例1と同様にして、ガス拡散電極基材を得た。ここで、表2に示すとおり、電極基材として厚さ100μm、目付25g/mの電極基材1を用いて、含浸目付を電極基材の目付の0.4倍とした。断面構造評価の結果、電極基材内部に面直方向に連続するマイクロポーラス部(B)と大空隙の構造が確認でき、このガス拡散電極基材を用いて発電性能を評価した結果、表2に示すように、比較例に比べ、耐ドライアップ性は向上し、耐フラッディング性が大幅に向上した。これはマイクロポーラス部(A)に対してマイクロポーラス部(B)の空隙率が5%以上大きく、排水性が向上したためと考えられる。特に実施例10は高アスペクト比の炭素系フィラーの配合が最適であったため、耐フラッディング性が極めて大きく向上した。
 (実施例12)
 <マイクロポーラス部(B)の前駆体の形成>においてカーボン塗液にアスペクト比1300の多層カーボンナノチューブ(チープ チューブス社製)を混合して表2に示す組成とした以外は実施例1と同様にして、ガス拡散電極基材を得た。ここで、表2に示すとおり、電極基材として厚さ100μm、目付25g/mの電極基材1を用いて、含浸目付を電極基材の目付の0.4倍とした。断面構造評価の結果、電極基材内部に面直方向に連続するマイクロポーラス部(B)と大空隙の構造が確認できるものの実施例9に比べて、その構造形成は不十分であった。これは炭素系フィラーのアスペクト比が大きく、電極基材への含浸が不十分になったためと考えられる。このガス拡散電極基材を用いて発電性能を評価した結果、表2に示すように、比較例に比べ、耐ドライアップ性は向上し、耐フラッディング性が大きく向上した。
 (実施例13~15)
 <樹脂成分の含浸>において電極基材の表裏における樹脂成分の付着量を制御して、表裏の表面粗さを変えたこと以外は実施例1と同様にして、ガス拡散電極基材を得た。ここで、表2に示すとおり、電極基材として厚さ100μm、目付25g/mの電極基材1を用いて、含浸目付を電極基材の目付の0.4倍とした。断面構造評価の結果、電極基材内部に面直方向に連続するマイクロポーラス部(B)と大空隙の発達した構造が確認でき、さらに、マイクロポーラス部(A)側でのマイクロポーラス部(B)が多く、反対側に空隙が多く確認された。このガス拡散電極基材を用いて発電性能を評価した結果、表2に示すように、比較例に比べ、耐ドライアップ性は向上し、耐フラッディング性が大幅に向上した。特に実施例14では電極基材の表裏での表面粗さの差が最適であったため、最適な電極基材の内部構造が得られたため、発電性能も極めて大きく向上した。
 (実施例16~19)
 <マイクロポーラス部(B)の前駆体の形成>においてカーボン塗液の撥水剤をPTFE樹脂に代えてFEP樹脂を用いた以外は実施例1と同様にして、ガス拡散電極基材を得た。ここで、表2に示すとおり、電極基材として厚さ100μm、目付25g/mの電極基材1を用いて、含浸目付を電極基材の目付の0.4倍とした。断面構造評価の結果、電極基材内部に面直方向に連続するマイクロポーラス部(B)と大空隙の構造が確認できた。このガス拡散電極基材を用いて発電性能を評価した結果、表2に示すように、比較例に比べ、耐ドライアップ性は大幅に向上し、実施例16は大幅に耐フラッディング性が向上した。特に実施例19ではマイクロポーラス部(B)の空隙を大きくすることを組み合わせることで、良好な排水性とガス拡散性を両立でき、耐ドライアップ性も大きく向上し、耐フラッディング性は極めて大きく向上した。
 (比較例1~4)
 <電極基材の作製>および<マイクロポーラス部>に記載した方法で、表3に示す、電極基材の触媒側に面状のマイクロポーラス部を有するガス拡散電極基材を得た。この時このガス拡散電極基材の発電性能を評価した結果、表3に示すように、耐フラッディング性、耐ドライアップ性が不十分であった。
 比較例1において、耐フラッディング性、耐ドライアップ性が不十分であった原因は塗布されているマイクロポーラス部の前駆体の塗液の粘度が高く、電極基材内部にマイクロポーラス部(B)として機能する部分が存在せず、電極基材内部に空隙が多く存在し水を滞留させてしまうことにより、ガス拡散性が不足していたためと考えられる。
 比較例2において、耐フラッディング性、耐ドライアップ性が不十分であった原因は電極基材内部に含浸されているマイクロポーラス部(B)が塗布後に気流による構造制御が行われず、マイクロポーラス部の面直方向に連続構造が形成されないために、電極基材内部に空隙が多く存在し水を滞留させてしまうことにより、ガス拡散性が不足していたためと考えられる。
 このように、本発明であげられる電極基材内部での連続したマイクロポーラス部(B)と大空隙の構造を得るために、含浸塗液の粘度、含浸される電極基材に対してのマイクロポーラス部(B)の目付、電極基材の厚さが必要な条件を満たさないと目的の性能を得ることができないことがわかる。
 また比較例3においては、耐フラッディング性、耐ドライアップ性が不十分であった原因はマイクロポーラス部(B)の目付が電極基材の目付の0.55倍を超えてしまい、電極基材の空隙のマイクロポーラス部による含浸率が高くなり、ガス拡散性が悪化し、連続した空隙が形成されにくいことにより排水性も低下してしまったことが原因と考えられる。
 また比較例4においては、電極基材3を用いてガス拡散電極層を形成したが電極基材が厚いためにマイクロポーラス部(B)が電極基材内部に含浸困難となり、面直方向に連続したマイクロポーラス部(B)が形成できなかった。このために排水性とガス拡散性が両立できずに発電性能が低下したものと考えられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、表1~3において、含有量は質量部で記載している。
 1:電極基材
 2:マイクロポーラス部(A)
 3:マイクロポーラス部(B)
 4:電極基材の厚さ
 5:電極基材の厚さの4分の3
 6:マイクロポーラス部(B)の経路長
 7:電極基材の炭素繊維
 

Claims (16)

  1. 燃料電池に用いられる、電極基材とマイクロポーラス部から構成されるガス拡散電極基材であって、電極基材の片面にマイクロポーラス部(A)が形成され、電極基材内部の一部にマイクロポーラス部(B)が形成されており、マイクロポーラス部(A)が形成されている側の電極基材表面から反対側の電極基材表面近傍までマイクロポーラス部(B)が連続して存在する部分と、マイクロポーラス部(A)が形成されている側の電極基材表面から反対側の電極基材表面まで空隙が連続して分布する部分とを有する、ガス拡散電極基材。
  2. 電極基材内部の一部にマイクロポーラス部(B)が含浸されている、請求項1に記載のガス拡散電極基材。
  3. マイクロポーラス部(B)の目付が電極基材の目付に対して0.25倍以上0.55倍以下の範囲内である、請求項1または2に記載のガス拡散電極基材。
  4. マイクロポーラス部(B)が炭素系フィラーを含み、前記炭素系フィラーとしてアスペクト比が30以上5000以下の炭素系フィラーを含む、請求項1~3のいずれかに記載のガス拡散電極基材。
  5. アスペクト比が30以上5000以下の炭素系フィラーが、アスペクト比が30以上5000以下の繊維状カーボンである、請求項4に記載のガス拡散電極基材。
  6. 電極基材の断面において、前記マイクロポーラス部(B)が連続して存在する部分の密度が1個/mm以上である、請求項1~5のいずれかに記載のガス拡散電極基材。
  7. 電極基材の断面において、前記空隙が連続して分布する部分の密度が1個/mm以上である、請求項1~6のいずれかに記載のガス拡散電極基材。
  8. マイクロポーラス部(B)がマイクロポーラス部(A)に接続する形で存在し、マイクロポーラス部(B)はマイクロポーラス部(A)が形成されている側の電極基材表面から電極基材の厚さの4分の3以上の深さにまで幅10μm以上を有して含浸されている、請求項1~7のいずれかに記載のガス拡散電極基材。
  9. マイクロポーラス部(A)の厚さが10μm以上60μm以下であり、電極基材の厚さが50μm以上190μm以下である、請求項1~8のいずれかに記載のガス拡散電極基材。
  10. 電極基材は、マイクロポーラス部(A)が形成される側の表面粗さに対して、その反対側の表面粗さが、1μm以上5μm以下の差を持って大きい、請求項1~9のいずれかに記載のガス拡散電極基材。
  11. マイクロポーラス部(B)に、融点が200℃以上320℃以下である撥水剤を含む、請求項1~10のいずれかに記載のガス拡散電極基材。
  12. マイクロポーラス部(B)が撥水剤と炭素系フィラーを含み、炭素系フィラーに対し撥水剤の質量比率が5質量%以上50質量%以下である、請求項1~11のいずれかに記載のガス拡散電極基材。
  13. マイクロポーラス部(B)は、空隙率が60%以上90%以下である、請求項1~12のいずれかに記載のガス拡散電極基材。
  14. マイクロポーラス部(B)の空隙率はマイクロポーラス部(A)の空隙率よりも5%以上大きい、請求項1~13のいずれかに記載のガス拡散電極基材。
  15. 電解質膜の両側に触媒層を有し、さらに前記触媒層の外側に、請求項1~14のいずれかに記載のガス拡散電極基材を有する、膜電極接合体。
  16. 請求項15に記載の膜電極接合体の両側にセパレータを有する、燃料電池。
     
PCT/JP2015/054194 2014-02-24 2015-02-17 ガス拡散電極基材ならびにそれを備える膜電極接合体および燃料電池 WO2015125748A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15752113.9A EP3113263B1 (en) 2014-02-24 2015-02-17 Gas diffusion electrode substrate, as well as membrane electrode assembly and fuel cell provided therewith
JP2015510560A JP5835527B1 (ja) 2014-02-24 2015-02-17 ガス拡散電極基材ならびにそれを備える膜電極接合体および燃料電池
CN201580009936.3A CN106063008B (zh) 2014-02-24 2015-02-17 气体扩散电极基材以及具备其的膜电极接合体及燃料电池
US15/119,314 US10411269B2 (en) 2014-02-24 2015-02-17 Gas diffusion electrode substrate, and membrane electrode assembly and fuel cell provided therewith
KR1020167021831A KR102120691B1 (ko) 2014-02-24 2015-02-17 가스 확산 전극 기재, 및 그것을 구비하는 막 전극 접합체 및 연료 전지
CA2939185A CA2939185A1 (en) 2014-02-24 2015-02-17 Gas diffusion electrode substrate, and membrane electrode assembly and fuel cell provided therewith

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014032828 2014-02-24
JP2014-032828 2014-02-24

Publications (1)

Publication Number Publication Date
WO2015125748A1 true WO2015125748A1 (ja) 2015-08-27

Family

ID=53878250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054194 WO2015125748A1 (ja) 2014-02-24 2015-02-17 ガス拡散電極基材ならびにそれを備える膜電極接合体および燃料電池

Country Status (8)

Country Link
US (1) US10411269B2 (ja)
EP (1) EP3113263B1 (ja)
JP (1) JP5835527B1 (ja)
KR (1) KR102120691B1 (ja)
CN (1) CN106063008B (ja)
CA (1) CA2939185A1 (ja)
TW (1) TWI648162B (ja)
WO (1) WO2015125748A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061833A1 (ja) * 2016-09-29 2018-04-05 東レ株式会社 ガス拡散電極および燃料電池
WO2018105301A1 (ja) * 2016-12-05 2018-06-14 東レ株式会社 ガス拡散電極とその製造方法
WO2020066191A1 (ja) * 2018-09-28 2020-04-02 東レ株式会社 ガス拡散層、膜電極接合体および燃料電池
JP2021032649A (ja) * 2019-08-22 2021-03-01 国立研究開発法人産業技術総合研究所 酸素センサ
JP7551202B1 (ja) 2023-03-16 2024-09-17 国立大学法人九州大学 燃料電池用ガス拡散複合材及び固体高分子形燃料電池
WO2024190898A1 (ja) * 2023-03-16 2024-09-19 国立大学法人九州大学 燃料電池用ガス拡散複合材及び固体高分子形燃料電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6596747B2 (ja) * 2017-10-25 2019-10-30 富山住友電工株式会社 燃料電池及び金属多孔体の製造方法
KR102043263B1 (ko) * 2018-04-04 2019-11-27 두산중공업 주식회사 바이폴라 cdi 전극, 바이폴라 cdi 전극 모듈 및 이를 포함하는 수처리 장치
US10978716B2 (en) * 2018-06-07 2021-04-13 Panasonic Intellectual Property Management Co., Ltd. Gas diffusion layer for fuel battery, membrane electrode assembly, and fuel battery
CN110284334A (zh) * 2019-07-17 2019-09-27 上海博暄能源科技有限公司 一种燃料电池碳纸的制作方法
KR20240048981A (ko) 2022-10-07 2024-04-16 현대자동차주식회사 계면이 없는 다층구조 형성을 위한 연료전지용 전극 슬러리, 이를 이용한 다층 전극 구조체 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022510A1 (fr) * 1999-09-20 2001-03-29 Asahi Glass Company, Limited Assemblage d'electrode/de film pour pile a combustible a polymere solide et procede de fabrication
JP2010232062A (ja) * 2009-03-27 2010-10-14 Toyota Motor Corp 燃料電池
JP2011216375A (ja) * 2010-03-31 2011-10-27 Eneos Celltech Co Ltd 膜電極接合体および燃料電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733915B2 (en) * 2001-12-27 2004-05-11 E. I. Du Pont De Nemours And Company Gas diffusion backing for fuel cells
KR100696621B1 (ko) * 2005-05-11 2007-03-19 삼성에스디아이 주식회사 연료전지용 전극기재, 이의 제조방법 및 이를 포함하는막-전극 어셈블리
TWI334237B (en) * 2007-01-05 2010-12-01 Ind Tech Res Inst Gas diffusion layer, manufacturing apparatus and manufacturing method thereof
JP2008277093A (ja) 2007-04-27 2008-11-13 Equos Research Co Ltd 燃料電池用拡散層、燃料電池及び燃料電池の製造方法。
JP2009129599A (ja) 2007-11-21 2009-06-11 Toyota Motor Corp 膜電極積層体および膜電極積層体を備える燃料電池
US8409769B2 (en) * 2007-12-07 2013-04-02 GM Global Technology Operations LLC Gas diffusion layer for fuel cell
WO2011010339A1 (ja) * 2009-07-21 2011-01-27 株式会社 東芝 燃料電池
CN102456891B (zh) * 2010-10-29 2014-07-23 中国科学院大连化学物理研究所 一种具有梯度孔结构的气体扩散层及其制备和应用
WO2013172174A1 (ja) * 2012-05-14 2013-11-21 東レ株式会社 燃料電池用ガス拡散電極基材
JP5614468B2 (ja) * 2013-03-08 2014-10-29 日産自動車株式会社 燃料電池用ガス拡散電極の製造方法
JP5950031B2 (ja) * 2014-02-24 2016-07-13 東レ株式会社 ガス拡散電極基材ならびにそれを備える膜電極接合体および燃料電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022510A1 (fr) * 1999-09-20 2001-03-29 Asahi Glass Company, Limited Assemblage d'electrode/de film pour pile a combustible a polymere solide et procede de fabrication
JP2010232062A (ja) * 2009-03-27 2010-10-14 Toyota Motor Corp 燃料電池
JP2011216375A (ja) * 2010-03-31 2011-10-27 Eneos Celltech Co Ltd 膜電極接合体および燃料電池

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11088370B2 (en) 2016-09-29 2021-08-10 Toray Industries, Inc. Gas diffusion electrode and fuel cell
WO2018061833A1 (ja) * 2016-09-29 2018-04-05 東レ株式会社 ガス拡散電極および燃料電池
JPWO2018061833A1 (ja) * 2016-09-29 2019-08-15 東レ株式会社 ガス拡散電極および燃料電池
US11283082B2 (en) 2016-12-05 2022-03-22 Toray Industries, Inc. Gas diffusion electrode and production method therefor
EP3550648A4 (en) * 2016-12-05 2020-04-22 Toray Industries, Inc. GAS DIFFUSION ELECTRODE AND MANUFACTURING METHOD THEREFOR
JPWO2018105301A1 (ja) * 2016-12-05 2019-10-24 東レ株式会社 ガス拡散電極とその製造方法
WO2018105301A1 (ja) * 2016-12-05 2018-06-14 東レ株式会社 ガス拡散電極とその製造方法
WO2020066191A1 (ja) * 2018-09-28 2020-04-02 東レ株式会社 ガス拡散層、膜電極接合体および燃料電池
JPWO2020066191A1 (ja) * 2018-09-28 2021-08-30 東レ株式会社 ガス拡散層、膜電極接合体および燃料電池
JP7302474B2 (ja) 2018-09-28 2023-07-04 東レ株式会社 ガス拡散層、膜電極接合体および燃料電池
US11749810B2 (en) 2018-09-28 2023-09-05 Toray Industries, Inc. Gas diffusion layer, membrane electrode assembly, and fuel cell
JP2021032649A (ja) * 2019-08-22 2021-03-01 国立研究開発法人産業技術総合研究所 酸素センサ
JP7296625B2 (ja) 2019-08-22 2023-06-23 国立研究開発法人産業技術総合研究所 酸素センサ
JP7551202B1 (ja) 2023-03-16 2024-09-17 国立大学法人九州大学 燃料電池用ガス拡散複合材及び固体高分子形燃料電池
WO2024190898A1 (ja) * 2023-03-16 2024-09-19 国立大学法人九州大学 燃料電池用ガス拡散複合材及び固体高分子形燃料電池

Also Published As

Publication number Publication date
KR102120691B1 (ko) 2020-06-09
TW201601927A (zh) 2016-01-16
CN106063008B (zh) 2019-05-10
CN106063008A (zh) 2016-10-26
TWI648162B (zh) 2019-01-21
US10411269B2 (en) 2019-09-10
JPWO2015125748A1 (ja) 2017-03-30
EP3113263B1 (en) 2018-08-22
US20170012291A1 (en) 2017-01-12
CA2939185A1 (en) 2015-08-27
JP5835527B1 (ja) 2015-12-24
KR20160124098A (ko) 2016-10-26
EP3113263A1 (en) 2017-01-04
EP3113263A4 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
JP5835527B1 (ja) ガス拡散電極基材ならびにそれを備える膜電極接合体および燃料電池
JP6206186B2 (ja) 燃料電池用ガス拡散電極基材
JP5950031B2 (ja) ガス拡散電極基材ならびにそれを備える膜電極接合体および燃料電池
JP6489009B2 (ja) ガス拡散電極基材
CA2962735C (en) Carbon sheet comprising carbon fiber and a binder for gas diffusion electrode substrate and fuel cell
JP6330282B2 (ja) 燃料電池用ガス拡散電極基材およびその製造方法
JP6115467B2 (ja) 燃料電池用ガス拡散電極基材
WO2016076132A1 (ja) ガス拡散電極基材およびガス拡散電極基材の製造方法
JP2013152927A (ja) 燃料電池ガス拡散層、膜電極接合体、および燃料電池
WO2017069014A1 (ja) 炭素シート、ガス拡散電極基材、巻回体、および燃料電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015510560

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2939185

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20167021831

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015752113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015752113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15119314

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE