WO2015125254A1 - 回転子、その回転子を備えた永久磁石型電動機、永久磁石型電動機を備えた流体機械、及び回転子の製造方法 - Google Patents

回転子、その回転子を備えた永久磁石型電動機、永久磁石型電動機を備えた流体機械、及び回転子の製造方法 Download PDF

Info

Publication number
WO2015125254A1
WO2015125254A1 PCT/JP2014/054033 JP2014054033W WO2015125254A1 WO 2015125254 A1 WO2015125254 A1 WO 2015125254A1 JP 2014054033 W JP2014054033 W JP 2014054033W WO 2015125254 A1 WO2015125254 A1 WO 2015125254A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
hole
rotor core
fitted
press
Prior art date
Application number
PCT/JP2014/054033
Other languages
English (en)
French (fr)
Inventor
裕貴 田村
増本 浩二
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/054033 priority Critical patent/WO2015125254A1/ja
Priority to CN201490001328.9U priority patent/CN205945295U/zh
Priority to JP2016503838A priority patent/JP6377128B2/ja
Priority to US15/109,914 priority patent/US10491088B2/en
Publication of WO2015125254A1 publication Critical patent/WO2015125254A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/805Fastening means, e.g. bolts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/09Magnetic cores comprising laminations characterised by being fastened by caulking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a rotor provided with a permanent magnet, a permanent magnet type electric motor provided with a rotor, a fluid machine using the permanent magnet type electric motor as a drive source of a compression mechanism, and a method for manufacturing the rotor.
  • an electric compressor (hereinafter simply referred to as a “compressor”), which is one of fluid machines, has been used as a component of, for example, an air conditioner, a refrigerating device, a heat pump of a water heater, and the like.
  • a general compressor includes a compression mechanism and an electric motor.
  • the electric motor includes a rotor and a stator, and a main shaft for transmitting a rotational force to the compression mechanism is fixed to the rotor.
  • the main shaft is fixed by shrink fitting or press fitting into the rotor (for example, refer to Patent Document 1).
  • the rotor core which is a component of the rotor, is configured by laminating a plurality of steel plates, permanent magnets are embedded inside the laminated steel plates, and ends made of a non-magnetic material at both ends of the laminated steel plates.
  • a plate is provided.
  • the rotor core is often fastened by a rivet that penetrates the end plate and the laminated steel plate.
  • a balance weight is provided at one end or both ends of the rotor core, and there are some in which the end plate, the laminated steel plate, and the balance weight are fastened with rivets.
  • a plurality of crimping portions are provided on the steel plate, and when the steel plates are laminated, the crimping portion is press-fitted so that the rotor core is integrated. It is known to do.
  • rivets are arranged on the outer peripheral side and the inner peripheral side in the radial direction with respect to the permanent magnet of the rotor core, and the fastening is performed. It is known to improve the accuracy of the inner diameter cylindricity of the rotor core by adjusting the force (see, for example, Patent Document 3).
  • JP 2010-226932 A (FIG. 2) Japanese Patent Laid-Open No. 6-14505 (FIG. 1) JP 2000-217285 A (summary) JP 2005-20825 A (summary)
  • the laminated steel sheet is coated with insulation, and by insulating each steel sheet of the laminated steel sheet, the continuity between the steel sheets in contact with each other is cut off, and a device that does not generate large eddy current in the axial direction of the rotor core Yes.
  • the press-fit crimping portion serves as a contact point, and the laminated steel plate is in a state of conducting in the axial direction.
  • the eddy current generated inside the rotor core due to the alternating magnetic field between the stator and the rotor during operation is not only in the surface of the steel sheet but also in the axial direction of the rotor core via the caulking portion in the stacking direction.
  • the generated heat generated by the rotor would be amplified.
  • a plurality of caulking portions should be provided for each steel plate constituting the rotor core, and when the steel plates are laminated, the caulking portions should be press-fitted and configured integrally.
  • the inner diameter cylindricity of the through hole formed in the central portion it is possible to improve the variation in accuracy of the inner diameter cylindricity of the through hole formed in the central portion.
  • the laminated steel plates are fastened with rivets, it is necessary to fasten them with a load in the laminating direction. Therefore, deterioration of the inner diameter cylindricity corresponding to the outer diameter of the rivet and the clearance of the through hole through which the rivet is inserted is unavoidable. For this reason, there also existed problems, such as the shrinkage
  • the present invention has been made to solve the above-described problems, and includes a rotor capable of suppressing heat generation of the rotor and variation in accuracy of the inner diameter cylindricity of the rotor, and the rotor.
  • Another object of the present invention is to provide a permanent magnet type electric motor, a fluid machine including the permanent magnet type electric motor, and a method for manufacturing a rotor.
  • a rotor according to the present invention is formed by laminating steel plates, and a rotor core having a first through hole at the center, at least one second through hole around the first through hole, and a rivet insertion hole, A plurality of permanent magnets arranged in the circumferential direction of the rotor core and embedded in the lamination direction of the steel plates, a main shaft that is shrink-fitted or press-fitted into the first through hole of the rotor core, and a second through hole of the rotor core And an upper end plate and a lower end plate which are provided at both ends in the laminating direction of the steel plates of the rotor core and are fixed by rivets inserted into the rivet insertion holes.
  • the rotor core is integrated by the insulating pin press-fitted into the second through hole of the rotor core, it is possible to reduce the number of crimping parts without providing a crimping part. It becomes. For this reason, the heat generation of the rotor during operation can be suppressed.
  • the rotor core is integrated with the above-described insulating material pins, it is possible to suppress variation in accuracy of the inner diameter cylindricity of the first through hole of the rotor core. For this reason, the defect of shrink fitting or press-fitting to the rotor core of the main shaft is improved, and the workability of the rotor is improved.
  • FIG. 1 is a longitudinal sectional view of a hermetic scroll compressor according to Embodiment 1.
  • FIG. 3 is a cross-sectional view schematically showing the rotor of FIG. 2.
  • the longitudinal cross-sectional view which shows the rotor of FIG. 3 typically.
  • FIG. 6 is a longitudinal sectional view of the rotor shown in FIG. 5.
  • FIG. 5 is a longitudinal sectional view showing a rotor of a hermetic scroll compressor according to a second embodiment.
  • FIG. 1 is a longitudinal sectional view of a hermetic scroll compressor according to Embodiment 1.
  • FIG. 1 is a longitudinal sectional view of a hermetic scroll compressor according to Embodiment 1.
  • a hermetic scroll compressor 100 that is a fluid machine includes a hermetic container 8 and a compression mechanism unit 1 and an electric motor 4 accommodated in the hermetic container 8.
  • the sealed container 8 includes a cylindrical intermediate container 8a, an upper container 8b provided on the upper part of the intermediate container 8a, and a lower container 8c provided on the lower part of the intermediate container 8a.
  • a suction pipe 9 for sucking a gas refrigerant is connected to the intermediate container 8a.
  • a discharge pipe 10 that guides the high-temperature and high-pressure gas refrigerant discharged upward from the compression mechanism 1 to the outside of the sealed container 8 is connected to the upper container 8b.
  • the lower container 8c is an oil sump 14 for storing lubricating oil.
  • the compression mechanism unit 1 is, for example, a scroll-type compression mechanism unit, and includes a fixed scroll 2 fixed to an intermediate container 8 a of the sealed container 8 and a swing scroll 3 that swings with respect to the fixed scroll 2. .
  • the fixed scroll 2 is formed with a spiral projection wrap portion 2 a erected on a surface facing the orbiting scroll 3.
  • the oscillating scroll 3 is formed with a spiral projection wrap portion 3 a having the same shape as the wrap portion 2 a on the surface facing the fixed scroll 2. In a state where the fixed scroll 2 and the swing scroll 3 are combined, the winding directions of the wrap portion 2a and the wrap portion 3a are opposite to each other.
  • a compression chamber 15 whose volume changes relatively is formed between the wrap portion 2a and the wrap portion 3a.
  • a discharge port 2b for discharging a high-temperature and high-pressure gas refrigerant is formed at the center of the fixed scroll 2.
  • the oscillating scroll 3 performs a revolving orbiting motion (oscillating motion) with respect to the fixed scroll 2, and has a cylindrical oscillating motion at the center of the surface opposite to the surface on which the wrap portion 3 a is formed.
  • a bearing 3b is provided.
  • a slider 3c is rotatably inserted into the swing bearing 3b, and an eccentric shaft portion 7a provided at the upper end of the main shaft 7 is inserted into the slider 3c.
  • the electric motor 4 is, for example, a permanent magnet type electric motor in which a rotor 6 includes a permanent magnet.
  • the electric motor 4 includes a stator 5 formed in a cylindrical shape and a rotor 6 provided rotatably in the hollow of the stator 5. I have.
  • the outer periphery of the stator 5 is fixed to the intermediate container 8a.
  • the winding 22 of the stator 5 is connected to the terminal 11 via the lead wire 13.
  • the main shaft 7 is shrink-fitted or press-fitted at the center, and a balance weight 35 is provided at the lower end of the rotor 6.
  • the terminal 11 is provided through the side wall of the intermediate container 8a.
  • the penetrating portion is sealed with a seal member 18.
  • This terminal 11 is accommodated in a terminal box 19 provided in the intermediate container 8a so that it can be connected to an electric wire from an external power source.
  • the main shaft 7 is rotatably supported by an upper bearing portion 16 and a lower bearing portion 17 provided above and below in the axial direction.
  • An oil supply pump 12 is connected to the lower end portion of the main shaft 7.
  • the oil pump 12 When the oil pump 12 is driven in conjunction with the rotation of the main shaft 7, the lubricating oil in the oil sump 14 is sucked by the oil pump 12.
  • the sucked lubricating oil passes through an oil supply passage 7b provided in the main shaft 7 and is supplied to the lower bearing portion 17, the upper bearing portion 16 and the like, and after lubricating them, returns to the oil sump 14 in the lower container 8c again. .
  • FIG.2 is an enlarged longitudinal sectional view of the electric motor of FIG. 1
  • FIG. 3 is a transverse sectional view schematically showing the rotor of FIG. 2
  • FIG. 4 is a longitudinal sectional view schematically showing the rotor of FIG. is there.
  • the stator 5 includes a stator core 21 and a winding 22 formed by winding a conductor wire around the stator core 21 a plurality of times.
  • the stator core 21 is configured by laminating ring-shaped steel plates made of a high permeability material such as iron.
  • the lead wire 13 is connected to the winding 22 as described above.
  • the rotor 6 includes a main shaft 7 and a rotor core 31.
  • the rotor core 31 is configured by laminating ring-shaped steel plates made of a high permeability material such as iron.
  • a first through hole 38 into which the main shaft 7 is press-fitted is formed at the center of the rotor core 31.
  • the rotor iron core 31 is provided with a plurality (number corresponding to magnetic poles) of magnet insertion holes 32 along the circumferential direction, and, for example, 90 in the circumferential direction between the magnet insertion hole 32 and the first through hole 38.
  • Four rivet insertion holes 40 are provided at intervals. Permanent magnets 33 are inserted (embedded) in the magnet insertion holes 32, and rivets 36 are inserted in the four rivet insertion holes 40.
  • the rotor core 31 is provided with an upper end plate 34a and a lower end plate 34b made of, for example, a nonmagnetic material having holes through which the main shaft 7 and the rivets 36 penetrate at both ends in the stacking direction.
  • the upper end plate 34a and the lower end plate 34b fasten the rotor core 31 in the stacking direction from both sides by tightening the rivets 36 described above.
  • one rivet 36 penetrates the balance weight 35 provided on the lower end plate 34b of the rotor core 31 and is fastened to the lower end plate 34b.
  • the balance weight 35 is provided in the lower end plate 34b of the rotor core 31, you may provide in the upper end plate 34a of the rotor core 31 in addition to this.
  • the rivet 36 is fixed by the rivet 36 that is longer than the rivet 36 by the thickness of the upper end plate 34 a and the balance weight 35.
  • the rotor core 31 is provided with two second through holes 39 at symmetrical positions with the center of the first through hole 38 interposed therebetween.
  • the two second through holes 39 are provided at the same distance from the center of the first through hole 38.
  • a pin 41 made of an insulating material having a diameter substantially the same as the second through hole 39 or larger than the inner diameter of the second through hole 39 is press-fitted into the two second through holes 39.
  • the hermetic scroll compressor 100 configured as described above will be described.
  • the winding 22 of the stator 5 is energized via the terminal 11 and the lead wire 13 of the electric motor 4, a current flows through the winding 22 of the stator 5 to generate a magnetic field. Rotational torque is generated. Due to this rotational torque, the rotor 6 and the main shaft 7 of the rotor 6 rotate. At this time, the eccentric shaft portion 7a of the main shaft 7 also rotates in conjunction with it, and the swing scroll 3 performs swing motion with respect to the fixed scroll 2 along with this rotation. That is, the gas refrigerant is compressed by the compression principle of the scroll compressor in cooperation with the orbiting scroll 3 and the fixed scroll 2.
  • the gas refrigerant from the suction pipe 9 is sucked and flows into the sealed container 8, and then sucked into the compression mechanism portion 1 formed by the fixed scroll 2 and the swing scroll 3.
  • the refrigerant becomes high-temperature and high-pressure (compressed), is blown into the upper container 8 b from the discharge port 2 b of the fixed scroll 2, and is discharged to the refrigerant circuit outside the sealed container 8 through the discharge pipe 10.
  • FIG. 5 is a partial cross-sectional view showing the main part of a conventional electric motor
  • FIG. 6 is a vertical cross-sectional view of the rotor shown in FIG.
  • symbol is attached
  • the rotor core 31 of the conventional electric motor 4 is provided with crimping portions 37 in the stacking direction at a plurality of locations in the circumferential direction.
  • the inner diameter cylindricity is equal to the clearance between the outer diameter r of the rivet 36 and the diameter R of the rivet insertion hole 40. Deterioration is inevitable. For this reason, a shrink fit or press fitting failure of the main shaft 7 to the rotor core 31 may occur. That is, the stacking deviation of the steel plates may occur.
  • an insulating material pin 41 is press-fitted into the second through hole 39 provided in the rotor core 31 without providing the caulking portion 37 in the rotor core 31 as in the prior art.
  • Each steel plate of the rotor core 31 is fixed by the pin 41. In such a configuration, although a small eddy current (broken circle) is generated in the rotor core 31, the generation of eddy current in the stacking direction of the rotor core 31 is reduced.
  • the above-described pin 41 restricts the stacking deviation of the steel plates of the rotor core 31, it is possible to suppress variations in accuracy of the inner diameter cylindrical degree of the first through holes 38 provided in the rotor core 31. . Further, since the pin 41 is provided at a symmetrical position with the center of the first through hole 38 interposed therebetween, there is no influence on the balance when the rotor 6 rotates.
  • the rotor core 31 in which the two pins 41 are press-fitted is used for the rotor 6 of the electric motor 4 of the hermetic scroll compressor 100.
  • the main shaft 7 can be easily shrink-fitted or press-fitted into the rotor core 31, and the workability of the rotor 6 is improved.
  • the rotor core 31 is fixed by the two pins 41, the eddy current generated in the rotor core 31 is reduced compared to the conventional case where the crimping portion 37 provided on each steel plate is press-fitted and fixed. Can be reduced. For this reason, heat_generation
  • the above-mentioned electric motor 4 is used for the hermetic scroll compressor 100, an increase in the internal temperature of the hermetic scroll compressor 100 can be suppressed, so that the refrigerants such as R410A, R407C, and R404A that are conventionally used can be suppressed.
  • a mixed refrigerant containing R32 having a high temperature and pressure rise during compression can be used.
  • the caulking part 37 is completely eliminated.
  • the caulking part 37 does not need to be completely eliminated. That is, when the eddy current generated in the rotor core 31 and the eddy current do not require the effect of suppressing the amount of heat generated by the rotor 6 so much, the caulking portion 37 provided in the circumferential direction of the rotor core 31.
  • the pin 41 may be press-fitted into the rotor core 31 while leaving at least one crimping portion 37. Even in this case, it is possible to suppress variation in accuracy of the inner diameter cylindrical degree of the first through hole 38 of the rotor core 31.
  • the pin 41 is limited to be made of an insulating material.
  • the present invention is not limited to this.
  • a pin 41 made of a non-insulating material may be press-fitted into the rotor core 31.
  • the effect of suppressing variation in accuracy of the inner diameter cylindricity of the first through hole 38 of the rotor core 31 can be obtained, but eddy current and heat generation equal to or higher than those when the caulking portion 37 is provided. It is necessary to pay close attention to the possibility of the amount being generated.
  • the number of pins 41 is two, but the number is not limited to this.
  • one pin 41 may be used. Only one pin 41 can sufficiently suppress variations in accuracy of the inner diameter cylindricity of the first through hole 38 of the rotor core 31. Moreover, the eddy current (refer FIG. 6) over the lamination direction of the steel plate which generate
  • the pin 41 is press-fitted into the second through hole 39 of the rotor core 31 to fix the rotor core 31, and then the main shaft 7 is press-fitted into the first through hole 38. Then, the upper end plate 34a and the lower end plate 34b are arranged at both ends in the stacking direction of the rotor core 31, the rivet 36 is inserted into the rivet insertion hole 40, and the rotor is inserted from both sides of the upper end plate 34a and the lower end plate 34b. The iron core 31 is tightened in the stacking direction.
  • the pin 41 is fixed at a position that matches the second through hole 39 formed when the steel plate is punched in advance by pressing, and the pin 41 is press-fitted into the second through hole 39 simultaneously with the punching of the steel plate.
  • the upper end plate 34a and the lower end plate 34b are arranged at both ends in the stacking direction of the rotor core 31, the rivet 36 is inserted into the rivet insertion hole 40, and the upper end plate 34a and the lower end plate 34b are inserted.
  • the rotor core 31 is tightened in the stacking direction from both sides.
  • Embodiment 2 FIG.
  • the pin 41 press-fitted into the second through hole 39 of the rotor core 31 is left as it is.
  • the main shaft 7 is shrink-fitted or press-fitted into the rotor core 31.
  • the pin 41 can be removed later.
  • FIG. 7 is a longitudinal sectional view showing a rotor of the hermetic scroll compressor according to the second embodiment.
  • the electric motor 4 incorporated in the hermetic scroll compressor is a permanent magnet type electric motor as in the first embodiment, and is composed of a main shaft 7 and a rotor core 31. 6 is provided.
  • the rotor core 31 has a first through-hole 38 in which the main shaft 7 is shrink-fitted or press-fitted at the center.
  • the rotor iron core 31 is provided with a plurality (number corresponding to magnetic poles) of magnet insertion holes 32 along the circumferential direction, and, for example, 90 in the circumferential direction between the magnet insertion hole 32 and the first through hole 38.
  • Four rivet insertion holes 40 are provided at intervals. Permanent magnets 33 are inserted (embedded) in the magnet insertion holes 32, and rivets 36 are inserted in the four rivet insertion holes 40.
  • the rotor core 31 is provided with two second through holes 39 at symmetrical positions with the center of the first through hole 38 interposed therebetween.
  • the two second through holes 39 are provided at the same distance from the center of the first through hole 38.
  • the upper end plate 34a and the lower end plate 34b installed at both ends in the stacking direction of the rotor core 31 have a first through hole 38 into which the main shaft 7 is inserted, and a rivet insertion hole 40 into which the rivet 36 is inserted.
  • a third through hole 42 centered on the axis of the second through hole 39 is provided. That is, in the upper end plate 34 a and the lower end plate 34 b, two third through holes 42 are provided at symmetrical positions across the center of the first through hole 38, similarly to the second through hole 39.
  • the balance weight 35 is provided with a rivet insertion hole 40 into which the rivet 36 is inserted as in the first embodiment, and one third through hole 42 similar to the third through hole 42 described above.
  • the third through hole 42 has a diameter equal to or larger than the outer diameter of the pin 41.
  • one pin 41 is formed longer than the thickness of the upper end plate 34a and the lower end plate 34b and the thickness in the stacking direction of the rotor core 31, and the other pin 41 is In addition to the length, it is formed longer by the thickness of the balance weight 35.
  • the two pins 41 have a strength that can withstand shrink fitting or press-fitting and extraction with respect to the second through hole 39.
  • the rotor core 31 in which the two pins 41 are pulled out after the main shaft 7 is shrink-fitted or press-fitted into the rotor core 31 is used for the rotor 6 of the electric motor 4 in the second embodiment.
  • the two pins 41 mainly have a function of integrating laminated steel sheets for improving the assemblability of the rotor core 31 and a function of suppressing variation in accuracy of the inner diameter cylindrical degree of the first through hole 38.
  • the second through hole 39 of the rotor core 31 is hollow, but in the stacking direction of the rotor core 31 via the pin 41 in the second through hole 39 as in the first embodiment. There is no worry that eddy currents are generated by conduction.
  • the pin 41 has a strength that can withstand press-fitting and extraction with respect to the second through-hole 39, so that it can be used as a reusable assembly jig, and can be attached to the spindle 7. It can also be used as a pin 41 for phase determination at the time of mounting.
  • the hermetic scroll compressor is described as an example of the fluid machine.
  • the fluid machine in which the rotor 6 according to the first and second embodiments is mounted such as water or oil.
  • the present invention can also be applied to a pump that moves liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Compressor (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 鋼板を積層して形成され、中央部に第1貫通孔38、第1貫通孔38の周辺に2つの第2貫通孔39、及びリベット挿通孔40を有する回転子鉄心31と、回転子鉄心31の周方向に配置され、鋼板の積層方向に埋め込まれた複数の永久磁石33と、回転子鉄心31の第1貫通孔38に焼嵌めあるいは圧入された主軸と、回転子鉄心31の第2貫通孔39に圧入された絶縁材のピン41と、回転子鉄心31の鋼板の積層方向の両端に設けられ、リベット挿通孔40に挿通されるリベット36により固定される上端板34a及び下端板34bとを備えている。

Description

回転子、その回転子を備えた永久磁石型電動機、永久磁石型電動機を備えた流体機械、及び回転子の製造方法
 本発明は、永久磁石を備えた回転子、回転子を備えた永久磁石型電動機、永久磁石型電動機を圧縮機構部の駆動源とする流体機械、及び回転子の製造方法に関するものである。
 従来から、流体機械の一つである電動圧縮機(以下、単に「圧縮機」と称する)は、例えば空気調和装置、冷凍装置、給湯器のヒートポンプ装置等の一構成要素として利用されている。一般的な圧縮機は、圧縮機構部と電動機を備えている。電動機は、回転子と固定子で構成されており、回転力を圧縮機構部に伝達するための主軸が回転子に固定されている。主軸は、回転子に焼嵌めあるいは圧入することで固定される(例えば、特許文献1参照)。
 また、回転子の構成部品である回転子鉄心は、複数枚の鋼板を積層して構成され、積層鋼板の内部に永久磁石が埋め込まれており、積層鋼板の両端部に非磁性体からなる端板が設けられている。回転子鉄心は、端板と積層鋼板とを貫通するリベットにより締結されていることが多い。さらに、回転子鉄心の一端あるいは両端にバランスウエイトが設けられており、端板、積層鋼板、及びバランスウエイトをリベットで締結しているものもある。
 一般的に回転子鉄心の工作性を向上させる方法としては、鋼板に複数個のカシメ部(密着する部分)を設け、鋼板を積層した際にカシメ部を圧入して、回転子鉄心を一体とすることが知られている。
 また、回転子鉄心をリベットで締結を講じる場合は、各永久磁石に対して径方向の外周側か径方向の内周側のどちらか一方向に通常1極当たり1本で締結を行う方法が知られている(例えば、特許文献2参照)。
 また、回転子鉄心に主軸を焼嵌めあるいは圧入する際の工作性を向上させる方法として、回転子鉄心の永久磁石に対し径方向の外周側と内周側のそれぞれにリベットを配し、その締結力を調整することで、回転子鉄心の内径円筒度の精度を向上させることが知られている(例えば、特許文献3参照)。
 さらに、回転子鉄心の内径円筒度の精度を向上させることで、主軸を焼嵌めあるいは圧入する際の工作性を向上させる方法としては、回転子鉄心の内径部に略円筒形状の金属パイプを挿入した構造とすることが知られている(例えば、特許文献4参照)。
特開2010-226932号公報(図2) 特開平6-14505号公報(図1) 特開2000-217285号公報(要約) 特開2005-20825号公報(要約)
 従来より、回転子鉄心の工作性の向上を目的として、一枚独立の鋼板に対し複数個のカシメ部を設け、その鋼板を積層した際にカシメ部を圧入して一体とする構成が一般的に用いられている。また、積層鋼板には、絶縁コーティングがなされ、積層鋼板の各鋼板を絶縁することで上下に接する鋼板相互の導通を遮断し、回転子鉄心の軸方向の大きな渦電流を発生させない工夫がなされている。
 しかしながら、前述のカシメ部を設けた構成では、圧入されたカシメ部が接点となり積層鋼板が軸方向に導通する状態となっている。このため、運転中の固定子と回転子の交番磁界により回転子鉄心の内部で発生する渦電流が、鋼板の表面だけでなく、積層方向のカシメ部を介して回転子鉄心の軸方向にも発生し、回転子の発熱を増幅させてしまうという課題があった。
 この課題は、回転子鉄心に埋設される永久磁石の減磁、耐力低下だけでなく、圧縮機内部の温度上昇を招き、圧縮機の摺動部保護のための冷凍機油の劣化、シール材や電動機の絶縁材として使用される樹脂の劣化を引き起こす要因となる。特に、昨今の冷媒動向から、従来から使用されているR410A、R407C、R404A等の冷媒よりも圧縮時の温度上昇及び圧力上昇が高い性質を持つR32を含む混合冷媒を使用する際には、圧縮機内の温度上昇を抑制する手段が求められている。
 また、回転子の工作性の向上を図る上で、回転子鉄心を構成する各鋼板に対し複数個のカシメ部を設け、その鋼板を積層した際にカシメ部を圧入して一体に構成することで、中央部に形成される貫通孔の内径円筒度の精度のバラツキを改善することができる。しかし、積層した鋼板をリベットで締結する際、積層方向に荷重をかけて締結する必要があるため、リベットの外径とリベットを挿通する貫通孔のクリアランス分の内径円筒度の悪化は免れない。このため、主軸の回転子鉄心への焼嵌めあるいは圧入の不良が発生する等の課題もあった。
 本発明は、前記のような課題を解決するためになされたもので、回転子の発熱の抑制、回転子の内径円筒度の精度バラツキの抑制を行うことができる回転子、その回転子を備えた永久磁石型電動機、永久磁石型電動機を備えた流体機械、及び回転子の製造方法を提供することを目的としている。
 本発明に係る回転子は、鋼板を積層して形成され、中央部に第1貫通孔、第1貫通孔の周辺に少なくとも1つの第2貫通孔、及びリベット挿通孔を有する回転子鉄心と、回転子鉄心の周方向に配置され、鋼板の積層方向に埋め込まれた複数の永久磁石と、回転子鉄心の第1貫通孔に焼嵌めあるいは圧入された主軸と、回転子鉄心の第2貫通孔に圧入された絶縁材のピンと、回転子鉄心の鋼板の積層方向の両端に設けられ、リベット挿通孔に挿通されるリベットにより固定される上端板及び下端板とを備えたものである。
 本発明によれば、回転子鉄心の第2貫通孔に圧入された絶縁材のピンにより、回転子鉄心を一体としているので、カシメ部を設けることなく、あるいはカシメ部の個数を減らすことが可能となる。このため、運転中の回転子の発熱を抑えることができる。また、前述した絶縁材のピンにより、回転子鉄心を一体としているので、回転子鉄心の第1貫通孔の内径円筒度の精度バラツキの抑制を行うことができる。このため、主軸の回転子鉄心への焼嵌めあるいは圧入の不良が改善され、回転子の工作性が向上する。
実施の形態1に係る密閉型スクロール圧縮機の縦断面図。 図1の電動機を拡大して示す縦断面図。 図2の回転子を模式的に示す横断面図。 図3の回転子を模式的に示す縦断面図。 従来の電動機の要部を示す部分横断面図。 図5に示す回転子の縦断面図。 実施の形態2に係る密閉型スクロール圧縮機の回転子を示す縦断面図。
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1.
 図1は実施の形態1に係る密閉型スクロール圧縮機の縦断面図である。
 流体機械である例えば密閉型スクロール圧縮機100は、密閉容器8と、この密閉容器8の中に収容された圧縮機構部1及び電動機4とを備えている。密閉容器8は、円筒形状の中間部容器8aと、中間部容器8aの上部に設けられた上部容器8bと、中間部容器8aの下部に設けられた下部容器8cとで構成されている。中間部容器8aには、ガス冷媒を吸入するための吸入管9が接続されている。上部容器8bには、圧縮機構部1から上方に吐出された高温高圧のガス冷媒を密閉容器8外へ導く吐出管10が接続されている。下部容器8cは、潤滑油を貯留する油溜め14となっている。
 圧縮機構部1は、例えばスクロール型の圧縮機構部であり、密閉容器8の中間部容器8aに固定された固定スクロール2及び固定スクロール2に対して揺動運動する揺動スクロール3を備えている。固定スクロール2には、揺動スクロール3と対向する面に立設する渦巻状突起のラップ部2aが形成されている。揺動スクロール3には、固定スクロール2と対向する面にラップ部2aと同一形状の渦巻状突起のラップ部3aが形成されている。固定スクロール2と揺動スクロール3とが組み合わされた状態では、ラップ部2a及びラップ部3aの巻方向が互いに逆となる。ラップ部2aとラップ部3aとの間には、相対的に容積が変化する圧縮室15が形成される。
 固定スクロール2の中央部には、高温高圧のガス冷媒を吐出する吐出ポート2bが形成されている。揺動スクロール3は、固定スクロール2に対して公転旋回運動(揺動運動)を行うようになっており、ラップ部3aの形成面とは反対側の面の中央部に、円筒形状の揺動軸受3bが設けられている。この揺動軸受3bには、スライダー3cが回転自在に挿入され、このスライダー3cには、主軸7の上端に設けられた偏芯軸部7aが挿入されている。
 電動機4は、例えば回転子6に永久磁石を備えた永久磁石型電動機であり、円筒形状に形成された固定子5と、固定子5の中空内に回転自在に設けられた回転子6とを備えている。固定子5は、外周部が中間部容器8aに固定されている。この固定子5の巻線22は、リード線13を介して端子11に接続されている。回転子6は、中央部に主軸7が焼嵌めあるいは圧入されており、その回転子6の下端部にバランスウエイト35が設けられている。
 端子11は、中間部容器8aの側壁を貫通して設けられている。その貫通部分には、シール部材18によって密封されている。この端子11は、中間部容器8aに設けられた端子箱19内に、外部電源からの電線と接続できるように収納されている。
 主軸7は、軸心方向の上下に設けられた上軸受部16と下軸受部17とによって回転自在に支持されている。この主軸7の下端部には、給油ポンプ12が連結されている。主軸7の回転に連動して給油ポンプ12が駆動すると、油溜め14の潤滑油が給油ポンプ12により吸引される。吸引された潤滑油は、主軸7内に設けられた給油通路7bを通って下軸受部17、上軸受部16等に給油され、これらを潤滑した後に再び下部容器8c内の油溜め14に戻る。
 ここで、前述した電動機4の固定子5及び回転子6の構成について、図2、図3及び図4を用いて詳述する。
 図2は図1の電動機を拡大して示す縦断面図、図3は図2の回転子を模式的に示す横断面図、図4は図3の回転子を模式的に示す縦断面図である。
 固定子5は、固定子鉄心21と、固定子鉄心21に導線を複数回巻き付けて形成された巻線22とで構成されている。固定子鉄心21は、鉄等の高透磁率材料からなるリング形状の鋼板を積層して構成されている。巻線22には、前述したようにリード線13が接続されている。
 回転子6は、主軸7と、回転子鉄心31とで構成されている。回転子鉄心31は、固定子5と同様に、鉄等の高透磁率材料からなるリング形状の鋼板を積層して構成されている。回転子鉄心31の中央部には、主軸7が圧入される第1貫通孔38が形成されている。この回転子鉄心31には、周方向に沿って複数(磁極に相当する数)の磁石挿入孔32が設けられ、この磁石挿入孔32と第1貫通孔38との間に周方向に例えば90度間隔に4つのリベット挿通孔40が設けられている。磁石挿入孔32には、永久磁石33が挿入(埋設)されており、4つのリベット挿通孔40には、リベット36が挿入されている。
 また、回転子鉄心31は、積層方向の両端に、主軸7及びリベット36が貫通する孔を有する例えば非磁性材からなる上端板34aと下端板34bとを備えている。この上端板34aと下端板34bは、前述のリベット36の締め付けによって、両側から回転子鉄心31を積層方向に締め付けている。4本のリベット36のうち1本のリベット36は、回転子鉄心31の下端板34bに設けられたバランスウエイト35を貫通して下端板34bに締め付けている。なお、バランスウエイト35を回転子鉄心31の下端板34bに設けているが、これに加えて、回転子鉄心31の上端板34aにも設けてもよい。この場合、前述のリベット36よりも上端板34a及びバランスウエイト35の厚さ分長いリベット36によって固定される。
 また、回転子鉄心31には、第1貫通孔38の中心を挟む対称となる位置に2つの第2貫通孔39が設けられている。2つの第2貫通孔39は、第1貫通孔38の中心から同じ距離の位置に設けられている。この2つの第2貫通孔39には、第2貫通孔39と略同一又は第2貫通孔39の内径以上の径を有する絶縁材からなるピン41が圧入されている。
 前記のように構成された密閉型スクロール圧縮機100の動作について説明する。
 電動機4の端子11及びリード線13を介して固定子5の巻線22に通電が行われると、固定子5の巻線22に電流が流れて磁界が発生し、この磁界によって回転子6に回転トルクが発生する。この回転トルクにより、回転子6及び回転子6の主軸7が回転する。この時、主軸7の偏芯軸部7aも連動して回転し、この回転に伴って揺動スクロール3が固定スクロール2に対して揺動運動を行う。つまり、揺動スクロール3と固定スクロール2との協働におけるスクロール圧縮機の圧縮原理によりガス冷媒が圧縮される。
 この際、吸入管9からのガス冷媒が吸引され、密閉容器8内に流入した後、固定スクロール2と揺動スクロール3とによって形成された圧縮機構部1へ吸入され、前述の圧縮原理によりガス冷媒が高温高圧(圧縮)となり、固定スクロール2の吐出ポート2bから上部容器8b内に吹き出され、吐出管10を介して密閉容器8外の冷媒回路へ吐出される。 
 次に、本実施の形態1における電動機4の回転子6について、回転子にカシメ部(密着する部分)が施された従来の電動機と比較して説明する。
 図5は従来の電動機の要部を示す部分横断面図、図6は図5に示す回転子の縦断面図である。なお、実施の形態1と同様あるいは相当部分に同じ符号を付している。
 従来の電動機4の回転子鉄心31には、図5に示すように、周方向の複数箇所に積層方向にカシメ部37が設けられている。このカシメ部37の圧入によって、回転子鉄心31を構成する各鋼板が固定され、鋼板の積層ズレも規制されている。
 このような回転子鉄心31を備えた電動機4においては、固定子5の巻線22に通電が行われると、固定子5と回転子6とに交番磁界が発生し、図5に示すように、回転子鉄心31の各鋼板に小さな渦電流(破線の円形)が発生する。また、図6に示すように、回転子鉄心31のカシメ部37が接点となって各鋼板が導通し、回転子鉄心31の積層方向の全体に渡って大きな渦電流(破線の楕円形)が発生する。この積層方向の渦電流により、回転子鉄心31が発熱する。さらに、積層された鋼板をリベット36で締結する際、積層方向に荷重をかけて締結する必要があるため、リベット36の外径rとリベット挿通孔40の径Rのクリアランス分の内径円筒度の悪化は免れない。このため、主軸7の回転子鉄心31への焼嵌めあるいは圧入の不良が発生することがある。つまり、鋼板の積層ズレが生じることがある。
 一方、本実施の形態1においては、従来のように回転子鉄心31にカシメ部37を設けることなく、回転子鉄心31に設けられた第2貫通孔39に絶縁材のピン41を圧入して、そのピン41で回転子鉄心31の各鋼板を固定している。このように構成した場合、回転子鉄心31に小さな渦電流(破線の円形)が発生するものの、回転子鉄心31の積層方向に渡る渦電流の発生が軽減されている。
 また、前述のピン41によって、回転子鉄心31の鋼板の積層ズレが規制されるため、回転子鉄心31に設けられた第1貫通孔38の内径円筒度の精度のバラツキを抑制することができる。さらに、ピン41を第1貫通孔38の中心を挟む対称となる位置に設けているため、回転子6の回転時のバランスへの影響もない。
 以上のように実施の形態1においては、密閉型スクロール圧縮機100の電動機4の回転子6に、2本のピン41が圧入された回転子鉄心31を用いているので、回転子鉄心31の第1貫通孔38の内径円筒度の精度のバラツキがなくなる。このため、主軸7の回転子鉄心31への焼嵌めあるいは圧入を容易に行うことができ、回転子6の工作性が向上する。
 また、回転子鉄心31を2本のピン41で固定するようにしているので、各鋼板に設けられたカシメ部37を圧入して固定する従来と比べ、回転子鉄心31に発生する渦電流を軽減できる。このため、回転子鉄心31の発熱を抑制でき、これに伴って渦電流損失や磁束量の低下、電動機4内の温度上昇を抑えることができる。これによって、密閉型スクロール圧縮機100の性能及び信頼性の向上を実現することができる。
 また、前述の電動機4を密閉型スクロール圧縮機100に用いることで、密閉型スクロール圧縮機100の内部温度上昇を抑えることができるので、従来使用されているR410A、R407C、R404A等の冷媒よりも、圧縮時の温度及び圧力上昇が高い性質を持つR32を含む混合冷媒を使用することができる。
 なお、本実施の形態1では、カシメ部37を完全に無くす構成としているが、従来の冷媒の使用を前提とする密閉型スクロール圧縮機100においては、カシメ部37を完全に無くす必要がない。つまり、回転子鉄心31に発生する渦電流、この渦電流によって回転子6の発熱量の抑制効果をそれほど必要としないような場合には、回転子鉄心31の周方向に設けられたカシメ部37のうち、少なくとも1箇所のカシメ部37を残して、回転子鉄心31にピン41を圧入する構成としても良い。この場合においても、回転子鉄心31の第1貫通孔38の内径円筒度の精度のバラツキを抑制することができる。
 また、本実施の形態1では、ピン41が絶縁材からなると限定したが、これに限定されるものではない。例えば、前記と同様に、従来の冷媒の使用を前提とする密閉型スクロール圧縮機100においては、回転子鉄心31に、非絶縁材からなるピン41を圧入する構成としても良い。但し、この場合においては、回転子鉄心31の第1貫通孔38の内径円筒度の精度バラツキの抑制の効果は得ることができるが、カシメ部37を設けた場合と同等以上の渦電流と発熱量が発生する可能性があることに対し、十分留意する必要がある。
 また、本実施の形態1では、ピン41を2本としているが、この本数に限定されるものではない。例えば、1本のピン41でも良い。1本のピン41だけでも十分に回転子鉄心31の第1貫通孔38の内径円筒度の精度のバラツキを抑制することができる。また、カシメ部37の導通で発生していた鋼板の積層方向に渡る渦電流(図6参照)をなくすこともできる。
 但し、ピン41と回転子鉄心31との比重差による回転子6の回転時のバランスへの影響は回避することが不可能である。しかし、これについては、回転子鉄心31の積層方向の両端あるいは何れか一方に設けるバランスウエイト35により十分調整することができる。むしろピン41と回転子鉄心31との比重差と回転子6の回転時のバランスとを予め考慮した上で、第2貫通孔39の位置を設定すれば、バランスウエイト35を軽量化することもできる。
 なお、本実施の形態1においては、回転子6を製造する方法として、以下の2つがある。
 第1は、回転子鉄心31の第2貫通孔39にピン41を圧入して、その回転子鉄心31を固定し、その後に第1貫通孔38に主軸7を圧入する。そして、回転子鉄心31の積層方向の両端に上端板34a及び下端板34bを配置し、リベット36をリベット挿通孔40にリベット36を挿通させて、上端板34a及び下端板34bの両側から回転子鉄心31を積層方向に締め付ける。
 第2は、予めプレス加工で鋼板を打ち抜いたときに成型される第2貫通孔39に合致する位置にピン41を固定し、鋼板の打ち抜きと同時に第2貫通孔39にピン41を圧入していく。そして、前記と同様に、回転子鉄心31の積層方向の両端に上端板34a及び下端板34bを配置し、リベット36をリベット挿通孔40にリベット36を挿通させて、上端板34a及び下端板34bの両側から回転子鉄心31を積層方向に締め付ける。
実施の形態2.
 実施の形態1では、回転子鉄心31の第2貫通孔39に圧入されたピン41をそのまま残すようにしたが、本実施の形態2は、回転子鉄心31に主軸7を焼嵌めあるいは圧入した後に、ピン41を抜き取れるようにしたものである。
 図7は実施の形態2に係る密閉型スクロール圧縮機の回転子を示す縦断面図である。なお、本実施の形態2においては、実施の形態1と同様の部分に同じ符号を付して説明する。
 実施の形態2においては、密閉型スクロール圧縮機に組み込まれている電動機4は、実施の形態1と同様に、永久磁石型電動機であり、主軸7と回転子鉄心31とで構成される回転子6を備えている。
 回転子鉄心31は、図7に示すように、中央部に主軸7が焼嵌めあるいは圧入される第1貫通孔38が形成されている。この回転子鉄心31には、周方向に沿って複数(磁極に相当する数)の磁石挿入孔32が設けられ、この磁石挿入孔32と第1貫通孔38との間に周方向に例えば90度間隔に4つのリベット挿通孔40が設けられている。磁石挿入孔32には、永久磁石33が挿入(埋設)されており、4つのリベット挿通孔40には、リベット36が挿入されている。
 また、回転子鉄心31には、第1貫通孔38の中心を挟む対称となる位置に2つの第2貫通孔39が設けられている。2つの第2貫通孔39は、第1貫通孔38の中心から同じ距離の位置に設けられている。
 また、回転子鉄心31の積層方向の両端に設置される上端板34aと下端板34bとには、主軸7が挿入される第1貫通孔38と、リベット36が挿入されるリベット挿通孔40と、第2貫通孔39の軸心を中心とする第3貫通孔42とが設けられている。つまり、上端板34aと下端板34bとには、第2貫通孔39と同様に、第1貫通孔38の中心を挟む対称となる位置に2つ第3貫通孔42が設けられている。バランスウエイト35には、実施の形態1と同様にリベット36が挿入されるリベット挿通孔40と、前述の第3貫通孔42と同様の第3貫通孔42が1つ設けられている。第3貫通孔42は、ピン41の外径以上の径を有している。
 2本のピン41のうち一方のピン41は、上端板34aと下端板34bの厚み、及び回転子鉄心31の積層方向の厚みよりも長く形成され、もう一方のピン41は、一方のピンの長さに加えて、バランスウエイト35の厚み分長く形成されている。この2本のピン41は、第2貫通孔39に対する焼嵌めあるいは圧入と抜き取りに耐えうる強度を有している。
 つまり、本実施の形態2における電動機4の回転子6には、回転子鉄心31に主軸7を焼嵌めあるいは圧入した後に、2本のピン41が引き抜かれた回転子鉄心31が使用されている。2本のピン41は、回転子鉄心31の組立性の向上のために積層鋼板を一体とする機能と、第1貫通孔38の内径円筒度の精度のバラツキを抑制する機能とを主としている。
 本実施の形態2では、回転子鉄心31の第2貫通孔39は空洞となるが、実施の形態1のように第2貫通孔39内のピン41を介して回転子鉄心31の積層方向に導通して渦電流が発生するという心配がない。
 なお、実施の形態2では、ピン41は第2貫通孔39に対する圧入と抜き取りに耐えうる強度を有しているので、再利用が可能な組立冶具として利用可能であり、また、主軸7への装着の際の位相決めのピン41としても利用可能となる。
 以上、本発明を実施の形態1、2とに分けて説明したが、具体的な構成は、これらの実施の形態1、2に限られるものではなく、発明の要旨を逸脱しない範囲で変更が可能である。また、実施の形態1、2では、流体機械の一例として密閉型スクロール圧縮機を挙げて説明したが、実施の形態1、2に係る回転子6を搭載する流体機械、例えば水や油等の液体を移動させるポンプなどにも適用可能である。
 1 圧縮機構部、2 固定スクロール、2a ラップ部、2b 吐出ポート、3 揺動スクロール、3a ラップ部、3b 揺動軸受、3c スライダー、4 電動機、5 固定子、6 回転子、7 主軸、7a 偏芯軸部、7b 給油通路、8 密閉容器、8a 中間部容器、8b 上部容器、8c 下部容器、9 吸入管、10 吐出管、11 端子、12 給油ポンプ、13 リード線、14 油溜め、15 圧縮室、16 上軸受部、17 下軸受部、18 シール部材、19 端子箱、21 固定子鉄心、22 巻線、31 回転子鉄心、32 磁石挿入孔、33 永久磁石、34a 上端板、34b 下端板、35 バランスウエイト、36 リベット、37 カシメ部、38 第1貫通孔、39 第2貫通孔、40 リベット挿通孔、41 ピン、42 第3貫通孔、100 密閉型スクロール圧縮機。

Claims (9)

  1.  鋼板を積層して形成され、中央部に第1貫通孔、前記第1貫通孔の周辺に少なくとも1つの第2貫通孔、及びリベット挿通孔を有する回転子鉄心と、
     前記回転子鉄心の周方向に配置され、鋼板の積層方向に埋め込まれた複数の永久磁石と、
     前記回転子鉄心の第1貫通孔に焼嵌めあるいは圧入された主軸と、
     前記回転子鉄心の第2貫通孔に圧入された絶縁材のピンと、
     前記回転子鉄心の積層方向の両端に設けられ、前記リベット挿通孔に挿通されるリベットにより固定される上端板及び下端板と
    を備えた回転子。
  2.  前記上端板及び前記下端板は、前記第2貫通孔に圧入される前記ピンが貫通する第3貫通孔を有し、
     前記ピンは、前記回転子鉄心の第1貫通孔に前記主軸が圧入された後に、当該回転子鉄心の第2貫通孔及び前記端板の第3貫通孔から引き抜かれる請求項1記載の回転子。
  3.  前記回転子鉄心の積層方向の両端あるいは前記両端の何れか一方に、当該回転子鉄心を貫通するリベットにより固定されるバランスウエイトを備え、
     前記バランスウエイトには、前記第2貫通孔に圧入される前記ピンが貫通する前記第3貫通孔が設けられている請求項2記載の回転子。
  4.  前記ピンは、前記第1貫通孔の中心を挟む対称となる位置であって、当該中心から同じ距離の位置に設けられる請求項1~3の何れか1項に記載の回転子。
  5.  鋼板を積層して円筒形状に形成された固定子鉄心、及び前記固定子鉄心に複数相に応じて装着された巻線を有する固定子と、
     前記固定子の中空内に回転自在に設けられた請求項1~4の何れか1項に記載の回転子と
    を備えた永久磁石型電動機。
  6.  密閉容器と、
     前記密閉容器内に配置され、流体を圧縮する圧縮機構部と、
     前記密閉容器内に配置され、前記圧縮機構部に主軸を介して連結される請求項5記載の永久磁石型電動機と
    を備えた流体機械。
  7.  前記流体にR32を含む混合冷媒を使用している請求項6記載の流体機械。
  8.  請求項1~4の何れか1項に記載の回転子の製造方法であって、
     前記回転子鉄心の第2貫通孔に前記ピンを圧入し、その後に前記回転子鉄心の第1貫通孔に主軸を圧入する回転子の製造方法。
  9.  請求項1~4の何れか1項に記載の回転子の製造方法であって、
     予めプレス加工で鋼板を打ち抜いたときに成型される第2貫通孔に合致する位置にピンを固定し、鋼板の打ち抜きと同時に第2貫通孔にピンを圧入する回転子の製造方法。
PCT/JP2014/054033 2014-02-20 2014-02-20 回転子、その回転子を備えた永久磁石型電動機、永久磁石型電動機を備えた流体機械、及び回転子の製造方法 WO2015125254A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2014/054033 WO2015125254A1 (ja) 2014-02-20 2014-02-20 回転子、その回転子を備えた永久磁石型電動機、永久磁石型電動機を備えた流体機械、及び回転子の製造方法
CN201490001328.9U CN205945295U (zh) 2014-02-20 2014-02-20 转子、具备该转子的永磁体式电动机、具备永磁体式电动机的流体机械
JP2016503838A JP6377128B2 (ja) 2014-02-20 2014-02-20 回転子の製造方法
US15/109,914 US10491088B2 (en) 2014-02-20 2014-02-20 Permanent magnet motor with a rotor having press fitted rivets and press fitted shaft and pin holes and a method for manufacturing the rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054033 WO2015125254A1 (ja) 2014-02-20 2014-02-20 回転子、その回転子を備えた永久磁石型電動機、永久磁石型電動機を備えた流体機械、及び回転子の製造方法

Publications (1)

Publication Number Publication Date
WO2015125254A1 true WO2015125254A1 (ja) 2015-08-27

Family

ID=53877789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054033 WO2015125254A1 (ja) 2014-02-20 2014-02-20 回転子、その回転子を備えた永久磁石型電動機、永久磁石型電動機を備えた流体機械、及び回転子の製造方法

Country Status (4)

Country Link
US (1) US10491088B2 (ja)
JP (1) JP6377128B2 (ja)
CN (1) CN205945295U (ja)
WO (1) WO2015125254A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018102049A (ja) * 2016-12-20 2018-06-28 株式会社デンソー 回転電機の回転子、及び回転電機
JP2020066426A (ja) * 2018-10-23 2020-04-30 アティエヴァ、インコーポレイテッド 全幅がより短い高トルクかつ高出力密度の駆動システム
JPWO2021124501A1 (ja) * 2019-12-19 2021-06-24
WO2021199464A1 (ja) * 2020-03-31 2021-10-07 株式会社富士通ゼネラル 圧縮機
US11336158B2 (en) 2017-10-18 2022-05-17 Toyota Jidosha Kabushiki Kaisha Manufacturing method of core of rotating electrical machine, and core of rotating electrical machine
WO2024084657A1 (ja) * 2022-10-20 2024-04-25 三菱電機株式会社 圧縮機、冷凍サイクル装置及び回転子

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309939A4 (en) * 2015-06-09 2019-01-16 Mitsubishi Electric Corporation COMPRESSOR ELECTRIC MOTOR, COMPRESSOR AND COLD CIRCULATOR
CN110431725A (zh) * 2017-03-22 2019-11-08 三菱电机株式会社 电动机以及具备该电动机的压缩机
EP3982515B1 (en) * 2018-03-12 2023-05-03 Mitsubishi Electric Corporation Electric motor, compressor, fan, and refrigerating and air conditioning apparatus
US11888353B2 (en) * 2018-04-10 2024-01-30 Mitsubishi Electric Corporation Motor, compressor, and air conditioner
JP6652154B2 (ja) * 2018-04-27 2020-02-19 株式会社富士通ゼネラル 圧縮機
US11362554B2 (en) * 2019-06-12 2022-06-14 Ford Global Technologies, Llc Permanent magnets with soft material layers
CN110176817A (zh) * 2019-06-26 2019-08-27 珠海格力节能环保制冷技术研究中心有限公司 转子铁芯、转子、电机、压缩机
CN110752688A (zh) * 2019-10-30 2020-02-04 山东鸿志机电科技有限公司 永磁电机及潜水泵
JP7294124B2 (ja) * 2019-12-26 2023-06-20 株式会社豊田自動織機 電動圧縮機
FR3108803B1 (fr) * 2020-03-25 2022-03-11 Novares France Rotor pour moteur électrique intégrant des éléments d'absorption acoustique

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103449A (ja) * 1991-10-04 1993-04-23 Asmo Co Ltd 回転電機用積層コアの製造方法
JPH10309051A (ja) * 1997-03-06 1998-11-17 Hitachi Ltd 永久磁石式回転電機
JP2002359956A (ja) * 2001-03-30 2002-12-13 Sanyo Electric Co Ltd 誘導同期電動機
JP2003052156A (ja) * 2001-07-28 2003-02-21 Lg Electronics Inc 同期リラクタンスモータの回転子及びその製造方法
JP2007252076A (ja) * 2006-03-15 2007-09-27 Denso Trim Kk 3相磁石式発電機
JP2009171654A (ja) * 2008-01-11 2009-07-30 Panasonic Corp 永久磁石埋込型ロータおよびその製造方法
JP2012050253A (ja) * 2010-08-27 2012-03-08 Nippon Densan Corp 回転電機

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027229A (en) * 1975-12-15 1977-05-31 Simmonds Precision, Engine Systems, Inc. Regulatable permanent magnet alternator
USRE33655E (en) * 1979-09-21 1991-08-06 General Electric Company Laundry machine drive
JP3189393B2 (ja) 1992-06-29 2001-07-16 松下電器産業株式会社 電動機の回転子
JPH06133479A (ja) * 1992-09-02 1994-05-13 Toshiba Corp 永久磁石ロータ及びその製造装置
US5666015A (en) * 1993-04-30 1997-09-09 Sanyo Electric Co., Ltd. Electric motor for a compressor with a rotor with combined balance weights and oil separation disk
US6047460A (en) * 1996-01-23 2000-04-11 Seiko Epson Corporation Method of producing a permanent magnet rotor
TW364234B (en) * 1997-04-14 1999-07-11 Sanyo Electric Co Rotor for an electric motor
JP3301962B2 (ja) 1997-04-14 2002-07-15 三洋電機株式会社 電動機の回転子
GB2344224A (en) * 1998-11-30 2000-05-31 Huang Shu Chen Two part laminated stator of motor
JP2000217285A (ja) 1999-01-22 2000-08-04 Matsushita Electric Ind Co Ltd 電動機回転子及びその製造方法
JP3869731B2 (ja) * 2002-01-17 2007-01-17 株式会社三井ハイテック アモルファス積層コアの製造方法
JP2005020825A (ja) 2003-06-24 2005-01-20 Matsushita Electric Ind Co Ltd 電動機及びその製造方法
US7562609B2 (en) * 2004-12-27 2009-07-21 Eizou Ueno Method of forming through-hole and through-hole forming machine
ITBO20050437A1 (it) * 2005-06-30 2007-01-01 Spal Automotive Srl Rotore per macchina elettrica
JP4898201B2 (ja) * 2005-12-01 2012-03-14 アイチエレック株式会社 永久磁石回転機
JP4815204B2 (ja) * 2005-12-01 2011-11-16 アイチエレック株式会社 永久磁石回転機及び圧縮機
US7479723B2 (en) * 2007-01-30 2009-01-20 Gm Global Technology Operations, Inc. Permanent magnet machine rotor
ES2660166T3 (es) * 2007-02-26 2018-03-21 Mitsubishi Electric Corporation Motor de imanes permanentes, compresor hermético, y motor de ventilador
KR101341625B1 (ko) * 2007-05-31 2013-12-20 엘지전자 주식회사 동기 리럭턴스 모터
US8051710B2 (en) * 2007-11-28 2011-11-08 General Electric Company Method and apparatus for balancing a rotor
JP5506219B2 (ja) 2009-03-25 2014-05-28 三菱電機株式会社 冷媒圧縮機及び流体圧縮機
JP2011147313A (ja) * 2010-01-18 2011-07-28 Mitsubishi Electric Corp 電動機および圧縮機並びに冷凍サイクル装置
JP5754324B2 (ja) * 2011-09-24 2015-07-29 アイシン精機株式会社 回転電機のロータおよびロータの形成方法
JP6281147B2 (ja) * 2012-08-07 2018-02-21 日本電産株式会社 ロータおよびモータ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103449A (ja) * 1991-10-04 1993-04-23 Asmo Co Ltd 回転電機用積層コアの製造方法
JPH10309051A (ja) * 1997-03-06 1998-11-17 Hitachi Ltd 永久磁石式回転電機
JP2002359956A (ja) * 2001-03-30 2002-12-13 Sanyo Electric Co Ltd 誘導同期電動機
JP2003052156A (ja) * 2001-07-28 2003-02-21 Lg Electronics Inc 同期リラクタンスモータの回転子及びその製造方法
JP2007252076A (ja) * 2006-03-15 2007-09-27 Denso Trim Kk 3相磁石式発電機
JP2009171654A (ja) * 2008-01-11 2009-07-30 Panasonic Corp 永久磁石埋込型ロータおよびその製造方法
JP2012050253A (ja) * 2010-08-27 2012-03-08 Nippon Densan Corp 回転電機

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018102049A (ja) * 2016-12-20 2018-06-28 株式会社デンソー 回転電機の回転子、及び回転電機
WO2018116738A1 (ja) * 2016-12-20 2018-06-28 株式会社デンソー 回転電機の回転子、及び回転電機
CN110089005A (zh) * 2016-12-20 2019-08-02 株式会社电装 旋转电机的转子和旋转电机
US11336158B2 (en) 2017-10-18 2022-05-17 Toyota Jidosha Kabushiki Kaisha Manufacturing method of core of rotating electrical machine, and core of rotating electrical machine
JP2020066426A (ja) * 2018-10-23 2020-04-30 アティエヴァ、インコーポレイテッド 全幅がより短い高トルクかつ高出力密度の駆動システム
JPWO2021124501A1 (ja) * 2019-12-19 2021-06-24
JP7285961B2 (ja) 2019-12-19 2023-06-02 三菱電機株式会社 ステータ、電動機、圧縮機および空気調和装置
WO2021199464A1 (ja) * 2020-03-31 2021-10-07 株式会社富士通ゼネラル 圧縮機
JP2021164292A (ja) * 2020-03-31 2021-10-11 株式会社富士通ゼネラル 圧縮機
JP7088229B2 (ja) 2020-03-31 2022-06-21 株式会社富士通ゼネラル 圧縮機
WO2024084657A1 (ja) * 2022-10-20 2024-04-25 三菱電機株式会社 圧縮機、冷凍サイクル装置及び回転子

Also Published As

Publication number Publication date
JPWO2015125254A1 (ja) 2017-03-30
CN205945295U (zh) 2017-02-08
US20160329784A1 (en) 2016-11-10
JP6377128B2 (ja) 2018-08-22
US10491088B2 (en) 2019-11-26

Similar Documents

Publication Publication Date Title
JP6377128B2 (ja) 回転子の製造方法
US7902713B2 (en) Self-starting type permanent magnet synchronous motor and a compressor using the same
US10879760B2 (en) Permanent-magnet-embedded electric motor for compressor, compressor, and refrigeration cycle device
WO2015166726A1 (ja) 電動機、密閉型圧縮機及び冷凍サイクル装置
KR20180113564A (ko) 전동기, 압축기, 및 냉동 사이클 장치
TWI655828B (zh) Permanent magnet rotary electric machine and compressor using same
JP6195989B2 (ja) 圧縮機、冷凍サイクル装置、および空気調和機
WO2016063576A1 (ja) 圧縮機及び圧縮機製造方法
US11218041B2 (en) Motor rotor, motor using same, and electric compressor
US10424996B2 (en) Motor rotor, motor using this and electric compressor
CN107534370B (zh) 压缩机用电动机、压缩机及制冷循环装置
JP2008138591A5 (ja)
JP2008138591A (ja) 圧縮機
JP6482615B2 (ja) 圧縮機、冷凍サイクル装置、および空気調和機
CN110366809B (zh) 旋转电机、压缩机以及制冷循环装置
JP2005168097A (ja) 電動機および回転圧縮機
JP2011072100A (ja) 自己始動式永久磁石同期電動機およびそれを用いた圧縮機,空気調和機
CN111492560A (zh) 定子以及具备该定子的电动机
WO2017064782A1 (ja) 固定子鉄心、圧縮機及び冷凍サイクル装置
WO2017187534A1 (ja) 固定子、モータ、圧縮機および冷凍サイクル装置
CN111247719B (zh) 定子、电动机和压缩机
WO2021130886A1 (ja) 圧縮機用電動機の固定子、電動機および圧縮機
WO2016181445A1 (ja) 圧縮機
WO2015049754A1 (ja) 電動機またはそれを用いた圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016503838

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15109914

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883021

Country of ref document: EP

Kind code of ref document: A1