WO2015122534A1 - ニッケル粉の製造方法 - Google Patents
ニッケル粉の製造方法 Download PDFInfo
- Publication number
- WO2015122534A1 WO2015122534A1 PCT/JP2015/054280 JP2015054280W WO2015122534A1 WO 2015122534 A1 WO2015122534 A1 WO 2015122534A1 JP 2015054280 W JP2015054280 W JP 2015054280W WO 2015122534 A1 WO2015122534 A1 WO 2015122534A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nickel
- insoluble solid
- nickel powder
- powder
- mixed slurry
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
- B22F9/26—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions using gaseous reductors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
- B22F2009/245—Reduction reaction in an Ionic Liquid [IL]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/15—Nickel or cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Definitions
- the present invention relates to a method for producing a fine nickel powder that can be used as a seed crystal from a solution containing a nickel sulfate ammine complex, and is particularly applicable to the treatment of an intermediate solution in a process generated from a wet nickel smelting process. .
- Patent Document 1 As a method for producing a fine nickel powder, an atomizing method in which molten nickel is dispersed in gas or water to obtain a fine powder, or nickel is volatilized and reduced in the gas phase as disclosed in Patent Document 1. A dry method such as a CVD method for obtaining nickel powder is known.
- Non-Patent Document 1 a method for obtaining nickel powder by supplying hydrogen gas to a nickel sulfate ammine complex solution and reducing nickel ions in the complex solution as shown in Non-Patent Document 1 is industrially inexpensive and useful. .
- the nickel powder particles obtained are easily coarsened, and it has been difficult to produce a fine powder that can be used for seed crystals.
- seed crystals when generating and growing particles from an aqueous solution, a small amount of fine crystals called seed crystals are allowed to coexist in small quantities, a reducing agent is supplied thereto, and seed crystals are grown to obtain a powder having a predetermined particle size.
- the method is used.
- the seed crystal used in this method is often obtained by pulverizing a product, etc., but it is time consuming and leads to an increase in cost because the yield is reduced.
- seed crystals having an optimum particle size and properties are not necessarily obtained by pulverization, and a method for stably obtaining seed crystals has been demanded.
- the present invention provides a method for producing fine nickel powder that becomes a seed crystal suitable for producing nickel powder from a solution containing a nickel sulfate ammine complex.
- a first invention of the present invention that solves such a problem is that a dispersant containing a sulfonate is added to a solution containing a nickel sulfate ammine complex, and an insoluble solid insoluble in the solution containing the nickel sulfate ammine complex is added. Then, after charging the mixed slurry formed in the mixing step and the mixing slurry formed in the mixing step into the reaction tank, hydrogen gas is blown into the mixed slurry to reduce the nickel complex ions contained in the mixed slurry, The nickel powder is produced through a reduction / precipitation step for forming nickel deposits on the insoluble solid surface and a separation step for separating the nickel precipitates on the insoluble solid surface from the insoluble solid surface to form nickel powder. This is a method for producing nickel powder.
- the second invention of the present invention is a method for producing nickel powder, characterized in that the ammonium sulfate concentration in the solution containing the nickel sulfate ammine complex in the first invention is in the range of 10 to 500 g / L.
- a method for producing nickel powder characterized in that the temperature of the mixed slurry when the hydrogen gas is blown in the reduction step of the first and second aspects is 150 to 200 ° C. .
- the fourth invention of the present invention is characterized in that the pressure in the gas phase portion in the reaction tank when hydrogen gas is blown in the reduction steps of the first to third inventions is in the range of 1.0 to 4.0 MPa. It is a manufacturing method of nickel powder.
- the insoluble solid in the first to fourth aspects is a combination of one or more selected from nickel, alumina, zirconia, iron, and silica. It is the manufacturing method of the nickel powder characterized.
- the sixth invention of the present invention is a method for producing nickel powder, characterized in that an insoluble solid is added after adding a dispersant containing a sulfonate during the mixing step in the first to fifth inventions.
- FIG. 2 is an SEM image showing an appearance of nickel powder generated in Example 1.
- FIG. 2 is an SEM image showing an appearance of nickel powder generated in Example 2.
- FIG. It is a SEM image which shows the external appearance of the nickel powder produced
- 6 is an SEM image showing an appearance of nickel powder generated in Example 4.
- 6 is an SEM image showing an appearance of nickel powder generated in Example 5.
- FIG. 1 is an SEM image showing an appearance of nickel powder generated in Example 1.
- the present invention produces nickel powder by blowing hydrogen gas into a slurry of a mixed slurry formed by adding an insoluble solid insoluble in this solution to the nickel sulfate ammine complex solution or by adding the insoluble solid and a dispersant.
- This is a method for producing nickel powder.
- the manufacturing method of the nickel powder of this invention is demonstrated with reference to the manufacturing flowchart shown in FIG.
- the nickel sulfate ammine complex solution used in the present invention is not particularly limited, but one or a mixture selected from nickel and cobalt mixed sulfide, crude nickel sulfate, nickel oxide, nickel hydroxide, nickel carbonate, nickel powder and the like.
- nickel leaching solution solution containing nickel
- a solution obtained by removing impurity elements from the solution to which ammonia is added to form a nickel sulfate ammine complex solution is suitable, and nickel is contained in the form of nickel complex ions.
- the dispersant is first added to the nickel sulfate ammine complex solution prepared above. However, the addition of the dispersant may be omitted and the following insoluble solid may be added to the nickel sulfate amine complex solution. .
- the dispersant used here is not particularly limited as long as it has a sulfonate, but a lignin sulfonate is preferred as an industrially available product.
- the ammonium sulfate concentration in the solution is preferably in the range of 10 to 500 g / L. If it is 500 g / L or more, the solubility is exceeded and crystals are deposited. In addition, since ammonium sulfate is newly generated by the reaction, it is difficult to achieve less than 10 g / L.
- the nickel sulfate ammine complex solution prepared above or a dispersant is added to the prepared nickel sulfate ammine complex solution, and an insoluble solid that is insoluble in the complex solution and serves as a base for precipitation is added.
- the insoluble solid added here is not particularly limited as long as it is insoluble or low in solubility in a nickel sulfate ammine complex solution, an ammonium sulfate aqueous solution or an alkali solution.
- nickel powder, iron powder, alumina powder, Zirconia powder, silica powder and the like can be used.
- the present invention is not a method of precipitating a powder using a seed crystal that has been generally used in the past, and using the seed crystal as a product. Is separated from the deposited and grown powder (nickel deposit), and only the powder portion is used as a product. According to such a method of the present invention, the product of the seed crystal itself as an impurity is provided. Can be avoided.
- the amount of the insoluble solid added is not particularly limited, and an amount that can be mixed by stirring when added to the nickel sulfate ammine complex solution is selected according to the type of the solid.
- the shape and size are not particularly limited, nickel powder deposited on the surface by colliding with each other or applying vibration as described later may separate, so that it has strength to withstand impact and friction.
- a surface having a gentle shape is suitable so that the powder can be effectively separated.
- it is easy to use a shape having no corners such as a sphere or an ellipse having a diameter of about 0.1 to 3 mm in actual operation.
- the insoluble solid of the present invention Prior to depositing the nickel powder, it is preferable to use it as the insoluble solid of the present invention after giving impacts or impacts in advance to remove the debris on the surface of the insoluble solid. Further, the insoluble solid after the nickel powder is separated can be used again after being subjected to pretreatment such as washing as necessary.
- the slurry formed by adding the dispersant and the insoluble solid in the previous step is charged into the reaction vessel of the high pressure and high temperature vessel, and hydrogen gas is introduced into the slurry stored in the reaction vessel. Blowing is performed to reduce nickel complex ions in the slurry and to deposit nickel on the insoluble solid contained.
- the temperature of the mixed slurry at this time that is, the reaction temperature is preferably in the range of 150 to 200 ° C. If it is less than 150 degreeC, reduction efficiency will fall, and even if it is 200 degreeC or more, there is no influence on reaction, rather, since loss, such as a heat energy, increases, it is not suitable.
- the pressure in the gas phase portion in the reaction tank (representing the space in the reaction tank remaining after storing the solution in the reaction tank) during the reaction is maintained at 1.0 to 4.0 MPa by supplying hydrogen gas. It is preferable. If it is less than 1.0 MPa, the reaction efficiency decreases, and even if it exceeds 4.0 MPa, there is no influence on the reaction, and the loss of hydrogen gas increases. In addition, even if hydrogen gas is blown into the mixed slurry, the nickel complex ions in the slurry can be reduced even if it is blown into the gas phase portion in the reaction vessel.
- nickel precipitates are formed on the insoluble solid, and nickel contained in the solution can be extracted and recovered as fine powdery nickel precipitates.
- a specific separation method for example, in order to prevent oxidation due to heat generation, put insoluble solids together in water, rotate and collide the insoluble solids with each other to separate the surface nickel powder, rotate on a wet sieve, There are a method in which the separated nickel powder is sifted simultaneously, and a method in which ultrasonic waves are applied to the liquid to apply vibration to separate the powder. If the mesh is finer than the size of the insoluble solid, it can be used.
- the nickel powder produced as described above can be used, for example, as a nickel paste, which is an internal constituent material of a multilayer ceramic capacitor, and the particles are grown by repeating the hydrogen reduction using the recovered nickel powder as a seed crystal. High-purity nickel metal can be produced.
- Example 1 [Mixing process] To a solution containing 75 g of nickel (nickel sulfate solution) and 330 g of ammonium sulfate, 191 ml of 25% aqueous ammonia and 20 g of sodium lignin sulfonate as a dispersant are added and adjusted so that the total liquid volume becomes 1000 ml. And a solution containing a nickel sulfate ammine complex was prepared. To this solution, 300 g of nickel powder having an average particle size (D50) of 125 ⁇ m was added as an insoluble solid serving as a base for precipitation, and stirred to prepare a desired mixed slurry.
- D50 average particle size
- the mixed slurry in the inner cylinder can is filtered to take out the insoluble solid that has formed nickel deposits on the surface, and then the insoluble solid is put in a wet sieve with an opening of 100 ⁇ m, and the insoluble solid is added by vibration. The solid and the deposited nickel powder were separated. When the collected nickel powder was observed, it was confirmed that fine nickel powder was produced as shown in FIG.
- Example 2 [Mixing process] To a solution containing 75 g of nickel (nickel sulfate solution) and 330 g of ammonium sulfate, add 191 ml of 25% aqueous ammonia and 10 g of sodium lignin sulfonate as a dispersant, and adjust the total liquid volume to 1000 ml. A solution containing and containing a nickel sulfate ammine complex was prepared. To this solution, 75 g of zirconia balls having a diameter of 1 mm was added as an insoluble solid serving as a precipitate matrix to prepare a mixed slurry.
- the mixed slurry in the inner cylinder can is filtered to take out the insoluble solid that has formed nickel deposits on the surface, and then the insoluble solid taken out into a wet sieve with an opening of 500 ⁇ m is added, and vibration is applied to the base The insoluble solid was separated from the precipitated nickel powder. When the collected nickel powder was observed, it was confirmed that fine nickel powder was produced as shown in FIG.
- Nickel sulfate ammine complex is prepared by adding 191 ml of 25% ammonia water to a solution containing 75 g of nickel (nickel sulfate solution) and 330 g of ammonium sulfate, and adding 5 g of sodium lignin sulfonate to the dispersant, so that the total liquid volume becomes 1000 ml.
- a solution containing was prepared.
- 75 g of 200 mesh alumina powder was added as an insoluble solid serving as a precipitation matrix to prepare a mixed slurry.
- Nickel sulfate ammine complex is prepared by adding 191 ml of 25% ammonia water to a solution containing 75 g of nickel (nickel sulfate solution) and 330 g of ammonium sulfate, and adding 5 g of sodium lignin sulfonate to the dispersant, so that the total liquid volume becomes 1000 ml.
- a solution containing was prepared.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
しかし、これらの方法は高価な試薬類や多量のエネルギーを必要とするため、経済的とは言えない。
以下、本発明のニッケル粉の製造方法を、図1に示す製造フロー図を参照して説明する。
本発明に用いる硫酸ニッケルアンミン錯体溶液は、特に限定はされないが、ニッケルおよびコバルト混合硫化物、粗硫酸ニッケル、酸化ニッケル、水酸化ニッケル、炭酸ニッケル、ニッケル粉などから選ばれる一種、または複数の混合物から成る工業中間物などのニッケル含有物を、硫酸あるいはアンモニアにより溶解して得られるニッケル浸出液(ニッケルを含む溶液)を、溶媒抽出法、イオン交換法、中和などの浄液工程を施すことにより溶液中の不純物元素を除去して得られる溶液に、アンモニアを添加し、硫酸ニッケルアンミン錯体溶液としたもの等が適し、ニッケルはニッケル錯イオンの形で含まれている。
この工程では、上記で作製された硫酸ニッケルアンミン錯体溶液に、先ず分散剤を添加するが、分散剤の添加を省略して硫酸ニッケルアミン錯体溶液に、下記の不溶性固体の添加を行っても良い。
ここで用いる分散剤としては、スルホン酸塩を有するものであれば特に限定されないが、工業的に安価に入手できるものとしてリグニンスルホン酸塩が好適である。
また、溶液中の硫酸アンモニウム濃度は10~500g/Lの範囲とすることが好ましい。500g/L以上では溶解度を超えてしまい結晶が析出する。また、反応により硫酸アンモニウムが新たに生成するため、10g/L未満を達成するのは困難である。
上記で作製された硫酸ニッケルアンミン錯体溶液、又は分散剤を添加、調整された硫酸ニッケルアンミン錯体溶液に、その錯体溶液に不溶であり、析出の母体となる不溶性固体を添加する。
ここで添加する不溶性固体は、硫酸ニッケルアンミン錯体溶液、硫酸アンモニウム水溶液或いはアルカリ溶液に対して不溶、若しくは溶解度が小さいものであれば、特に限定はされず、例えば、ニッケル粉、鉄粉、アルミナ粉、ジルコニア粉、シリカ粉などを用いることができる。
形状や大きさも特に限定はしないが、後述するように互いに衝突させたり、振動を与えたりして表面に析出したニッケル粉は分離することがあるので、衝撃や摩擦に耐える強度を有し、ニッケル粉が効果的に分離できるように表面がなだらかな形状であるものが適している。
また、不溶性固体とニッケル粉との効果的な分離を考えると、実操業では例えば直径0.1~3mm程度の球状もしくは楕円形等の角が無い形状であるものが使いやすい。
また、ニッケル粉を分離した後の不溶性固体は、必要に応じて洗浄等の前処理を行った後で再び繰り返して使用することもできる。
次に、この工程は前工程において分散剤及び不溶性固体を添加して形成したスラリーを、耐高圧高温容器の反応槽内に装入し、その反応槽内に貯留されたスラリー内に水素ガスを吹き込み、そのスラリー中のニッケル錯イオンを還元し、含まれる不溶性固体上にニッケルを析出させるものである。
このときの混合スラリーの温度、即ち反応温度は、150~200℃の範囲が好ましい。150℃未満では還元効率が低下し、200℃以上にしても反応への影響はなく、むしろ熱エネルギー等のロスが増加するので適さない。
この工程では、生成したニッケル析出物が、不溶性固体上にくっついた状態であり、その状態では利用できないので、表面に形成されたニッケル析出物を不溶性固体と分離、ニッケル粉として回収するものである。
[混合工程]
ニッケル75g(硫酸ニッケル溶液)、硫酸アンモニウム330gを含む溶液に、25%アンモニア水を191ml、分散剤のリグニンスルホン酸ナトリウム20gを添加し、合計の液量が1000mlになるように調整して、分散剤を含み、且つ硫酸ニッケルアンミン錯体を含有する溶液を作製した。
この溶液に、析出母体となる不溶性固体として、平均粒径(D50)が125μmのニッケル粉300gを添加、攪拌し、所望の混合スラリーを作製した。
次いで、作製した混合スラリーをオートクレーブの内筒缶に装入し、その混合スラリーを撹拌しながら185℃に昇温、保持した状態で、混合スラリー中に水素ガスを吹き込み、さらにオートクレーブの内筒缶内の圧力を3.5MPaに維持するように水素ガスを供給した。水素ガスの供給から140分が経過した後に、水素ガスの供給を停止し、内筒缶を冷却した。
冷却後、内筒缶内の混合スラリーを濾過して表面にニッケルの析出物を生成した不溶体固体を取り出し、次いで目開きが100μmの湿式篩に不溶性固体を入れ、振動を加えて母体の不溶性固体と析出したニッケル粉とを分離した。
回収したニッケル粉を観察したところ、図2に示すように微細なニッケル粉が生成していることを確認した。
[混合工程]
ニッケル75g(硫酸ニッケル溶液)、硫酸アンモニウム330gを含む溶液に25%アンモニア水を191ml、分散剤としてリグニンスルホン酸ナトリウム10gを添加し、合計の液量が1000mlになるように調整して、分散剤を含み、且つ硫酸ニッケルアンミン錯体を含有する溶液を作製した。この溶液に、析出母体となる不溶性固体として直径1mmのジルコニアボール75gを添加して混合スラリーを作製した。
次いで、その混合スラリーをオートクレーブの内筒缶内に装入後、撹拌しながら185℃に昇温、保持した状態で、混合スラリー中に水素ガスを吹き込み、オートクレーブの内筒缶内の圧力を3.5MPaに維持するように水素ガスを供給した。水素ガスの供給から65分が経過した後に水素ガスの供給を停止し、内筒缶を冷却した。
冷却後、内筒缶内の混合スラリーを濾過して表面にニッケルの析出物を生成した不溶体固体を取り出し、次いで目開きが500μmの湿式篩に取り出した不溶性固体を入れ、振動を加えて母体の不溶性固体と析出したニッケル粉とを分離した。
回収したニッケル粉を観察したところ、図3に示すように微細なニッケル粉が生成していることを確認した。
[混合工程]
ニッケル75g(硫酸ニッケル溶液)、硫酸アンモニウム330gを含む溶液に25%アンモニア水を191ml、分散剤にリグニンスルホン酸ナトリウム5gを添加し、合計の液量が1000mlになるように調整して、分散剤を含み、且つ硫酸ニッケルアンミン錯体を含有する溶液を作製した。この溶液に、析出母体となる不溶性固体を添加せずに次の操作を行なった。
作製した溶液をオートクレーブの内筒缶内に装入後、撹拌しながら185℃に昇温、保持した状態で、水素ガスを吹き込み、オートクレーブの内筒缶内の圧力を3.5MPaに維持するように水素ガスを供給した。水素ガスの供給から60分が経過した後に水素ガスの供給を停止し、内筒缶を冷却した。
冷却後、内筒缶内の溶液を濾過したが、ニッケル粉は回収できず、内筒缶内の側壁や攪拌機に板状のニッケルのスケーリングが生成した。
[混合工程]
ニッケル75g(硫酸ニッケル溶液)、硫酸アンモニウム330gを含む溶液に25%アンモニア水を13ml添加し、合計の液量が1000mlになるように調整して硫酸ニッケルアンミン錯体を含有する溶液を作製した。この溶液に、析出母体として電解鉄粉5gを添加して混合スラリーを作製した。
次いで、その混合スラリーをオートクレーブの内筒缶内に装入後、撹拌しながら185℃に昇温、保持した状態で、水素ガスを混合スラリー内に流量0.2L/minで10分間吹き込んだ。この反応中のオートクレーブの内筒缶内の圧力は1.0MPaを示していた。その後、水素ガスの供給を停止し、内筒缶を冷却した。
冷却後、内筒缶内のスラリーを濾過して表面にニッケルの析出物を生成した不溶体固体を取り出して実施例1と同様の方法でニッケル粉を回収した。
その回収した粉を観察したところ、図4に示すように微細なニッケル粉が生成していることを確認した。なお、分散剤を添加した場合の図2と比較するとニッケル粉の形状がやや不均一で荒れている様子がうかがえるが実用上、問題はない。
[混合工程]
ニッケル75g(硫酸ニッケル溶液)、硫酸アンモニウム330gを含む溶液に25%アンモニア水を191ml、分散剤にリグニンスルホン酸ナトリウム5gを添加し、合計の液量が1000mlになるように調整して硫酸ニッケルアンミン錯体を含有する溶液を作製した。この溶液に、析出母体となる不溶性固体として200メッシュのアルミナ粉75gを添加して混合スラリーを作製した。
次いで、その混合スラリーをオートクレーブの内筒缶内に装入後、撹拌しながら185℃に昇温、保持した状態で、水素ガスを吹き込み、オートクレーブの内筒缶内の圧力を3.5MPaに維持するように水素ガスを供給した。水素ガスの供給から90分が経過した後に水素ガスの供給を停止し、内筒缶を冷却した。
冷却後、内筒缶内のスラリーを濾過して表面にニッケルの析出物を生成した不溶体固体を取り出して実施例1と同様の方法でニッケル粉を回収した。
その回収した粉を観察したところ、図5に示すように微細なニッケル粉が母体のアルミナ上に生成していたことを確認した。(生成していた箇所を丸で囲み示した。)
[混合工程]
ニッケル75g(硫酸ニッケル溶液)、硫酸アンモニウム330gを含む溶液に25%アンモニア水を191ml、分散剤にリグニンスルホン酸ナトリウム5gを添加し、合計の液量が1000mlになるように調整して硫酸ニッケルアンミン錯体を含有する溶液を作製した。この溶液に、析出母体となる不溶性固体としてD50=38μmのシリカ粉75gを添加して混合スラリーを作製した。
次いで、その混合スラリーをオートクレーブの内筒缶内に装入後、撹拌しながら185℃に昇温、保持した状態で、水素ガスを吹き込み、オートクレーブの内筒缶内の圧力を3.5MPaに維持するように水素ガスを供給した。水素ガスの供給から90分が経過した後に水素ガスの供給を停止し、内筒缶を冷却した。
冷却後、内筒缶内のスラリーを濾過して表面にニッケルの析出物を生成した不溶体固体を取り出して実施例1と同様の方法でニッケル粉を回収した。
その回収した粉を観察したところ、図6に示すように微細なニッケル粉が生成していることを確認した。
Claims (6)
- 硫酸ニッケルアンミン錯体を含有する溶液に、スルホン酸塩を含む分散剤と前記溶液に不溶な不溶性固体を加えて、混合スラリーを形成する混合工程と、
前記混合スラリーを反応槽内に装入した後、前記混合スラリー内に水素ガスを吹き込んで、前記混合スラリーに含まれるニッケル錯イオンを還元して、前記不溶性固体表面にニッケル析出物を形成する還元・析出工程と、
前記不溶性固体表面のニッケル析出物を、前記不溶性固体表面から分離してニッケル粉を形成する分離工程を、
順に経てニッケル粉を作製することを特徴とするニッケル粉の製造方法。 - 前記硫酸ニッケルアンミン錯体を含有する溶液中の硫酸アンモニウム濃度が、10~500g/Lの範囲であることを特徴とする請求項1に記載のニッケル粉の製造方法。
- 前記還元工程における水素ガスを吹き込む際の混合スラリーの温度が、150~200℃であることを特徴とする請求項1及び2に記載のニッケル粉の製造方法。
- 前記還元工程における水素ガスを吹き込む際の反応槽内気相部の圧力が、1.0~4.0MPaの範囲であることを特徴とする請求項1~3のいずれか1項に記載のニッケル粉の製造方法。
- 前記不溶性固体が、ニッケル、アルミナ、ジルコニア、鉄、シリカの中から選択される1種もしくは2種以上を組み合わせたものであることを特徴とする請求項1~4のいずれか1項に記載のニッケル粉の製造方法。
- 前記混合工程時にスルホン酸塩を含む分散剤を加えてから不溶性固体を加えることを特徴とする請求項1~5のいずれか1項に記載のニッケル粉の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2015216113A AU2015216113B2 (en) | 2014-02-17 | 2015-02-17 | Nickel powder production method |
CN201580008758.2A CN106029268B (zh) | 2014-02-17 | 2015-02-17 | 镍粉的制造方法 |
US15/117,855 US10092955B2 (en) | 2014-02-17 | 2015-02-17 | Method for producing nickel powder |
EP15748557.4A EP3108986B1 (en) | 2014-02-17 | 2015-02-17 | Nickel powder production method |
CA2939493A CA2939493C (en) | 2014-02-17 | 2015-02-17 | Method for producing nickel powder |
PH12016501628A PH12016501628A1 (en) | 2014-02-17 | 2016-08-16 | Method for producing nickel powder |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-027902 | 2014-02-17 | ||
JP2014027902 | 2014-02-17 | ||
JP2014-155511 | 2014-07-30 | ||
JP2014155511A JP6099601B2 (ja) | 2014-02-17 | 2014-07-30 | ニッケル粉の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015122534A1 true WO2015122534A1 (ja) | 2015-08-20 |
Family
ID=53800271
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054280 WO2015122534A1 (ja) | 2014-02-17 | 2015-02-17 | ニッケル粉の製造方法 |
PCT/JP2015/054281 WO2015122535A1 (ja) | 2014-02-17 | 2015-02-17 | ニッケル粉の製造方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054281 WO2015122535A1 (ja) | 2014-02-17 | 2015-02-17 | ニッケル粉の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (2) | US10220446B2 (ja) |
EP (2) | EP3144084B1 (ja) |
JP (1) | JP6099601B2 (ja) |
CN (2) | CN106029268B (ja) |
AU (2) | AU2015216114B2 (ja) |
CA (2) | CA2939493C (ja) |
PH (2) | PH12016501628A1 (ja) |
WO (2) | WO2015122534A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017150305A1 (ja) * | 2016-03-04 | 2017-09-08 | 住友金属鉱山株式会社 | ニッケル粉の製造方法 |
CN108699627A (zh) * | 2016-02-22 | 2018-10-23 | 住友金属矿山株式会社 | 镍粉的制造方法 |
CN109153081A (zh) * | 2016-05-30 | 2019-01-04 | 住友金属矿山株式会社 | 镍粉的制造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3108987A4 (en) * | 2014-02-21 | 2018-02-07 | Kochi University, National University Corporation | Method for producing nickel powder |
JP6202348B2 (ja) * | 2015-10-26 | 2017-09-27 | 住友金属鉱山株式会社 | 高密度ニッケル粉の製造方法 |
JP6350830B2 (ja) * | 2015-10-26 | 2018-07-04 | 住友金属鉱山株式会社 | コバルト粉の種結晶の製造方法 |
JP2018141203A (ja) * | 2017-02-28 | 2018-09-13 | 住友金属鉱山株式会社 | 種晶用ニッケル粉末の製造方法 |
JP6624464B2 (ja) * | 2017-12-21 | 2019-12-25 | 住友金属鉱山株式会社 | ニッケル粉の製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6379904A (ja) * | 1986-09-25 | 1988-04-09 | Sumitomo Metal Mining Co Ltd | 金粉の製造方法 |
JPH10219363A (ja) * | 1997-02-07 | 1998-08-18 | Nanao Kogyo Kk | 溶液中の金属の回収方法および装置 |
JP2005510625A (ja) * | 2001-11-29 | 2005-04-21 | クニ・テクノロジー・ピーティーワイ・リミテッド | ニッケルについての統合されたアンモニア性溶媒抽出および水素還元 |
WO2007004664A1 (ja) * | 2005-07-06 | 2007-01-11 | Kobelco Eco-Solutions Co., Ltd. | 金属の回収方法とその装置 |
JP2011214143A (ja) * | 2010-03-17 | 2011-10-27 | Nippon Steel Chem Co Ltd | ニッケルナノ粒子の製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2734821A (en) | 1956-02-14 | Table ix | ||
US2805139A (en) * | 1956-10-19 | 1957-09-03 | American Cyanamid Co | Gaseous precipitation of metals from solution |
US3399050A (en) | 1964-04-13 | 1968-08-27 | Sherritt Gordon Mines Ltd | Production of nickel powder |
US3767762A (en) | 1972-01-04 | 1973-10-23 | Sherritt Gordon Mines Ltd | Recovery and separation of nickel and cobalt from reduced laterite nickel ore |
US4545814A (en) * | 1984-05-23 | 1985-10-08 | Amax Inc. | Production of cobalt and nickel powder |
US4758266A (en) * | 1986-08-11 | 1988-07-19 | Amax Inc. | Production of high surface area nickel powder |
US5584908A (en) * | 1994-11-14 | 1996-12-17 | Sherritt Inc. | Micron-sized nickel metal powder and a process for the preparation thereof |
FI106635B (fi) * | 1999-11-09 | 2001-03-15 | Outokumpu Oy | Menetelmä nikkelin pelkistämiseksi vesiliuoksesta |
CA2359347A1 (en) | 2001-10-18 | 2003-04-18 | Cesur Celik | Laminated ceramic capacitor internal electrode material |
EP1543902A4 (en) | 2002-08-28 | 2007-06-27 | Toho Titanium Co Ltd | METAL NICKEL POWDER AND PROCESS FOR PRODUCING THE SAME |
CN1292866C (zh) * | 2005-01-10 | 2007-01-03 | 北京工业大学 | 一种纳米镍粉的制备方法 |
JP4811881B2 (ja) | 2009-03-18 | 2011-11-09 | 東京エレクトロン株式会社 | 基板熱処理装置 |
JP5407495B2 (ja) | 2009-04-02 | 2014-02-05 | 住友電気工業株式会社 | 金属粉末および金属粉末製造方法、導電性ペースト、並びに積層セラミックコンデンサ |
CN102892533B (zh) | 2010-03-17 | 2014-12-10 | 新日铁住金化学株式会社 | 镍纳米粒子的制造方法 |
WO2012114637A1 (ja) * | 2011-02-25 | 2012-08-30 | 株式会社村田製作所 | ニッケル粉末の製造方法 |
-
2014
- 2014-07-30 JP JP2014155511A patent/JP6099601B2/ja active Active
-
2015
- 2015-02-17 CN CN201580008758.2A patent/CN106029268B/zh not_active Expired - Fee Related
- 2015-02-17 WO PCT/JP2015/054280 patent/WO2015122534A1/ja active Application Filing
- 2015-02-17 CA CA2939493A patent/CA2939493C/en not_active Expired - Fee Related
- 2015-02-17 CN CN201580008922.XA patent/CN106029269B/zh not_active Expired - Fee Related
- 2015-02-17 CA CA2939513A patent/CA2939513C/en not_active Expired - Fee Related
- 2015-02-17 US US15/117,823 patent/US10220446B2/en not_active Expired - Fee Related
- 2015-02-17 US US15/117,855 patent/US10092955B2/en not_active Expired - Fee Related
- 2015-02-17 WO PCT/JP2015/054281 patent/WO2015122535A1/ja active Application Filing
- 2015-02-17 AU AU2015216114A patent/AU2015216114B2/en not_active Ceased
- 2015-02-17 EP EP15748828.9A patent/EP3144084B1/en active Active
- 2015-02-17 EP EP15748557.4A patent/EP3108986B1/en active Active
- 2015-02-17 AU AU2015216113A patent/AU2015216113B2/en not_active Ceased
-
2016
- 2016-08-16 PH PH12016501628A patent/PH12016501628A1/en unknown
- 2016-08-17 PH PH12016501637A patent/PH12016501637A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6379904A (ja) * | 1986-09-25 | 1988-04-09 | Sumitomo Metal Mining Co Ltd | 金粉の製造方法 |
JPH10219363A (ja) * | 1997-02-07 | 1998-08-18 | Nanao Kogyo Kk | 溶液中の金属の回収方法および装置 |
JP2005510625A (ja) * | 2001-11-29 | 2005-04-21 | クニ・テクノロジー・ピーティーワイ・リミテッド | ニッケルについての統合されたアンモニア性溶媒抽出および水素還元 |
WO2007004664A1 (ja) * | 2005-07-06 | 2007-01-11 | Kobelco Eco-Solutions Co., Ltd. | 金属の回収方法とその装置 |
JP2011214143A (ja) * | 2010-03-17 | 2011-10-27 | Nippon Steel Chem Co Ltd | ニッケルナノ粒子の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3108986A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108699627A (zh) * | 2016-02-22 | 2018-10-23 | 住友金属矿山株式会社 | 镍粉的制造方法 |
WO2017150305A1 (ja) * | 2016-03-04 | 2017-09-08 | 住友金属鉱山株式会社 | ニッケル粉の製造方法 |
EP3424626A4 (en) * | 2016-03-04 | 2019-10-30 | Sumitomo Metal Mining Co., Ltd. | PROCESS FOR PRODUCING NICKEL POWDER |
AU2017227207B2 (en) * | 2016-03-04 | 2019-11-21 | Sumitomo Metal Mining Co., Ltd. | Nickel powder production method |
CN109153081A (zh) * | 2016-05-30 | 2019-01-04 | 住友金属矿山株式会社 | 镍粉的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2939493C (en) | 2018-02-27 |
CN106029269A (zh) | 2016-10-12 |
US10092955B2 (en) | 2018-10-09 |
AU2015216113A1 (en) | 2016-09-01 |
JP6099601B2 (ja) | 2017-03-22 |
EP3108986B1 (en) | 2019-05-22 |
EP3144084B1 (en) | 2019-06-05 |
PH12016501628B1 (en) | 2017-02-06 |
EP3144084A4 (en) | 2018-01-03 |
PH12016501628A1 (en) | 2017-02-06 |
US20160368059A1 (en) | 2016-12-22 |
WO2015122535A1 (ja) | 2015-08-20 |
EP3144084A1 (en) | 2017-03-22 |
AU2015216113B2 (en) | 2017-03-09 |
US10220446B2 (en) | 2019-03-05 |
JP2015166488A (ja) | 2015-09-24 |
PH12016501637B1 (en) | 2017-02-06 |
CN106029268B (zh) | 2017-12-12 |
AU2015216114B2 (en) | 2017-04-13 |
AU2015216114A1 (en) | 2016-09-01 |
EP3108986A1 (en) | 2016-12-28 |
CN106029268A (zh) | 2016-10-12 |
CA2939513A1 (en) | 2015-08-20 |
US20160354844A1 (en) | 2016-12-08 |
CA2939493A1 (en) | 2015-08-20 |
PH12016501637A1 (en) | 2017-02-06 |
EP3108986A4 (en) | 2018-01-10 |
CN106029269B (zh) | 2017-12-12 |
CA2939513C (en) | 2017-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6099601B2 (ja) | ニッケル粉の製造方法 | |
JP2015166488A5 (ja) | ||
WO2017006795A1 (ja) | コバルト粉の製造方法 | |
WO2016117138A1 (ja) | ニッケル粉の製造方法 | |
JP5796696B1 (ja) | ニッケル粉の製造方法 | |
JP6241617B2 (ja) | コバルト粉の製造方法 | |
JP5881091B2 (ja) | ニッケル粉の製造方法 | |
WO2017150305A1 (ja) | ニッケル粉の製造方法 | |
JP2017155319A5 (ja) | ||
WO2017150105A1 (ja) | ニッケル粉の製造方法 | |
JP7272761B2 (ja) | ニッケル粉の製造方法 | |
JP2017155265A5 (ja) | ||
JP2018141203A (ja) | 種晶用ニッケル粉末の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15748557 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 15117855 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2939493 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12016501628 Country of ref document: PH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015216113 Country of ref document: AU Date of ref document: 20150217 Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015748557 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015748557 Country of ref document: EP |