WO2015122295A1 - タイヤ内面撮像方法及びその装置 - Google Patents

タイヤ内面撮像方法及びその装置 Download PDF

Info

Publication number
WO2015122295A1
WO2015122295A1 PCT/JP2015/052692 JP2015052692W WO2015122295A1 WO 2015122295 A1 WO2015122295 A1 WO 2015122295A1 JP 2015052692 W JP2015052692 W JP 2015052692W WO 2015122295 A1 WO2015122295 A1 WO 2015122295A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
tire
camera
imaging
tread
Prior art date
Application number
PCT/JP2015/052692
Other languages
English (en)
French (fr)
Inventor
拡太郎 多田
正道 小山
山本 努
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to US15/118,446 priority Critical patent/US9741109B2/en
Priority to JP2015528753A priority patent/JP6168147B2/ja
Priority to EP15748454.4A priority patent/EP3106860B1/en
Publication of WO2015122295A1 publication Critical patent/WO2015122295A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/027Tyres using light, e.g. infrared, ultraviolet or holographic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means

Definitions

  • the present invention relates to a method and an apparatus for imaging the entire inner surface of a tire.
  • Patent Document 1 inspects the position and depth of peeling of the tire inner surface by a double exposure hologram interference method using a laser. The separation of the tire is detected efficiently and clearly, contributing to the quality management of the tire, and the tread regeneration processing can be performed accurately.
  • a tire inspection apparatus disclosed in Japanese Patent Application Laid-Open No. 2012-112838 (Patent Document 2) includes an inspection unit having illumination, a camera, a reflecting mirror curved along the inner peripheral surface of the tire, and a tire. And a driving unit that relatively rotates the inspection unit around the axis of the tire.
  • the imaging unit captures light from the inner peripheral surface of the tire reflected by the mirror while relatively rotating the tire and the inspection unit, the upper half part of the tire in the tire width direction is composed of two imaging units. And the lower half can be photographed simultaneously.
  • the tire test apparatus disclosed in Japanese Patent Laid-Open No. 2008-203258 has a measurement unit having at least three measurement heads, and each measurement head has an illumination member and a shearing member.
  • the first and second measurement heads scan the outer surface of the tire sidewall.
  • the third measuring head scans at least the inner surface of the tread portion.
  • An object appearance / shape inspection apparatus disclosed in Japanese Patent Laying-Open No. 2003-240521 includes a light projecting unit that irradiates white slit light and a color CCD camera that images a slit light irradiation unit. Shoot while rotating the tire mounted on the turntable. Further, the coordinates and brightness of the tire are detected from the obtained image data by the coordinate computing means and the brightness computing means. Three-dimensional coordinate data and a color image of the tire are reconstructed from the obtained tire shape data and luminance data.
  • a first imaging unit images a line portion irradiated with a first slit light on a tire as a subject. Then, the appearance data is obtained, and at the same time, the second imaging means images the same line portion obliquely by a predetermined angle by the second slit light irradiated to the line portion, and obtains the shape data. Furthermore, the quality of the appearance is determined from the appearance data, and the quality of the shape is determined from the shape data.
  • An article inspection method disclosed in Japanese Patent Application Laid-Open No. 2009-115512 discloses a rotating table that holds a tire, an irradiation unit that irradiates the inner surface of the tire with a line-shaped laser beam, and a robot hand that photographs the inner surface of the tire. And whether the appearance is good or bad is determined based on the image data photographed using the camera.
  • the problem with the mechanism that measures the inside of the tire is that the space inside the tire that becomes the tire hollow area filled with air when the tire is mounted on the rim is narrow, and the dimensions of the measurement part change depending on the size of the tire Is mentioned. For this reason, in order to image the entire inner surface of the tire using the conventional device or method described above, the size of the imaging unit that can be inserted into the space inside the tire is limited, and the tire inner surface is greatly curved in the tire width direction. Therefore, in order to image the entire tire inner surface, it is necessary to separately image the inner surfaces of both the tire sides and the tread inner surface.
  • one side inner surface of the tire, the other side inner surface, and the tread inner surface must be imaged separately, or both tire inner surfaces and the tread inner surface must be imaged separately. Therefore, the man-hour for imaging increases, and it takes time to image one tire inner surface.
  • an object of the present invention is to provide a tire inner surface imaging method and apparatus capable of imaging a tire inner surface in a short time even for tires having various tire outer diameters.
  • One aspect of the present invention is a tire inner surface imaging method for imaging a tire inner surface.
  • the method is With a light source, a mirror, and a camera, the mirror being inserted into the opening of a tire with a part of an imaging device configured to pivot around a rotation axis while changing the orientation of the mirror surface Inserting the mirror into a tire cavity region by swiveling the mirror around the rotation axis, and setting the mirror at an imaging position; Irradiating the inner surface of the tread with a slit light, and scanning the slit light along the inner surface of the tread; During scanning of the slit light, the line irradiation area on the inner surface of the tread formed by the irradiation of the slit light is imaged by the camera from the direction inclined in the tire circumferential direction via the mirror, and image data is output.
  • the camera is a fixed focus camera and includes a mechanism for changing a distance of an optical path between the mirror and the camera.
  • the step of setting the mirror at the imaging position includes setting the mirror from a position where the mirror is arranged so that an outer periphery of a part of the imaging device inserted into the opening is smaller than an inner periphery of the tire. It is preferable that the mirror is pivoted to the imaging position according to the rotation amount.
  • a secondary mirror that directs the light reflected by the mirror toward the light receiving surface of the camera is provided in the optical path between the camera and the mirror of the reflected light of the line irradiation region.
  • the imaging device includes a tread inner surface imaging optical system including the light source, the mirror, and the camera as a tread inner surface light source, a tread inner surface mirror, and a tread inner surface camera.
  • the line irradiation area formed by irradiating the side inner surface with slit light from the side inner surface light source is imaged by the side inner surface camera from the direction inclined in the tire circumferential direction via the side inner surface mirror, and image data
  • a more specific aspect of the present invention is the following tire inner surface imaging method. That is, this is a tire inner surface imaging method in which at least one of a tire or an imaging device is rotated around the tire axis, and the tire inner surface is imaged over one circumference in the tire circumferential direction.
  • this tire inner surface imaging method the tire inner surface is divided into three or more parts in the tire width direction and provided for each part, and the tire inner surface is irradiated with slit light at the same time.
  • An imaging apparatus having an optical system that captures an image and outputs image data is used.
  • At least a part of the mirror including the second mirror of each optical system is inserted into the tire cavity region, and in each of the optical systems, the mirror is inserted when at least a part of the mirror including the second mirror is inserted into the tire cavity region. Is changed so that the outer periphery of the insertion portion becomes smaller than the inner periphery of the tire, and the position of the mirror is changed to a position suitable for imaging after the insertion. Thereafter, the optical system corresponds so that the slit light is emitted from the light source, the slit light emitted from the light source is reflected by the first mirror, and the surface of the reflected slit light extends in the tire width direction. Irradiate a portion of the tire inner surface.
  • the slit light irradiated from the first mirror to the tire inner surface and reflected by the tire inner surface is incident by the second mirror and reflected toward the third mirror, and the slit light reflected by the second mirror is Reflected toward the entrance of the camera by three mirrors, the slit light reflected by the third mirror is received by the camera, the inner surface of the tire irradiated with the slit light is imaged, and the captured image data is externally Output to.
  • the tire inner surface imaging method at least a part of the mirrors including the second mirror of each optical system is inserted into the tire during the tire inner surface imaging. Thereafter, slit light is emitted from each light source, and the slit light is reflected by the first mirror and applied to a predetermined portion of the tire inner surface so as to extend in the tire width direction.
  • the slit light reflected from the tire inner surface enters the second mirror and is reflected toward the third mirror. Further, the slit light reflected by the second mirror is reflected by the third mirror toward the entrance of the camera, and the inner surface of the tire irradiated with the slit light is imaged by the camera.
  • the captured image data is simultaneously output to the outside.
  • the device is A light source that irradiates slit light on the inner surface of the tread of the tire; A mirror that reflects the reflected light of the line irradiation region of the inner surface of the tread formed by irradiation of the slit light; By receiving the reflected light reflected from the mirror, and imaging the line irradiation region from the direction inclined in the tire circumferential direction, and outputting image data, Inner surface measurement having an outer periphery smaller than an inner periphery of the opening of the tire, provided with the light source, the mirror, and a camera, and a mechanism for the mirror to turn around the rotation axis while changing the direction of the surface of the mirror Stage, And a control device that controls the rotational movement of the mirror by controlling the amount of rotation of the rotating shaft.
  • the control device is configured to take an image of the line irradiation region by the camera when the mirror is inserted into a tire cavity region by turning the mirror around the rotation axis and the mirror is set at an imaging position.
  • a control signal for the amount of rotation of the rotating shaft is generated according to the outer diameter of the tire so that the inclination angle is within an allowable range.
  • the camera is a fixed focus camera
  • the tire inner surface imaging device includes a mechanism for moving the camera so as to change a distance of an optical path between the mirror and the camera.
  • control device pivots the mirror from a position where the mirror is arranged so that an outer periphery of the inner surface measurement stage is smaller than an inner periphery of the tire by using the control signal.
  • a secondary mirror that directs the light reflected by the mirror toward the light receiving surface of the camera is provided in the optical path between the camera and the mirror of the reflected light of the line irradiation region.
  • slit light is formed on a side inner surface of the tire inner surface.
  • a more specific aspect of the present invention is a tire inner surface imaging device that images at least one of the tire and the imaging device around the tire axis and images the tire inner surface over one circumference in the tire circumferential direction. It is.
  • This tire inner surface imaging device An inner surface measurement stage having an outer periphery smaller than an inner periphery of the opening of the tire; Provided on the inner surface measurement stage, the tire inner surface is divided into three or more portions in the width direction and provided for each portion, and the slit inner surface is irradiated with slit light, and the tire inner surface is irradiated with the slit light. And an optical system that outputs image data.
  • the optical system is A light source that emits the slit light; A first mirror that reflects the slit light emitted from the light source and irradiates a portion of the tire inner surface corresponding to the optical system so that a surface of the reflected slit light extends in the tire width direction; A second mirror that is incident on the tire inner surface from the first mirror and is reflected by the tire inner surface and is reflected toward the third mirror; The third mirror for reflecting the slit light reflected by the second mirror toward the entrance of the camera; Receiving the slit light reflected by the third mirror, imaging the inner surface of the tire irradiated with the slit light, and outputting the captured image data to the outside; When inserting at least a part of the mirror including the second mirror together with the inner surface measurement stage into the tire, the outer circumference of the insertion portion is smaller than the inner circumference of the tire opening. Means for changing the position of the second mirror.
  • the tire inner surface imaging device of the above aspect at the time of imaging the tire inner surface, at least a part including the second mirror of each optical system is inserted into the tire together with the inner surface measurement stage. Thereafter, slit light is emitted from each light source, and the slit light is reflected by the first mirror and applied to a predetermined portion of the tire inner surface so as to extend in the tire width direction.
  • the slit light reflected from the tire inner surface enters the second mirror and is reflected toward the third mirror. Further, the slit light reflected by the second mirror is reflected by the third mirror toward the entrance of the camera, and the inner surface of the tire irradiated with the slit light is imaged by the camera.
  • the captured image data is simultaneously output to the outside.
  • the tire since the rotation amount of the rotating shaft for performing the turning movement of the mirror is set according to the outer diameter dimension of the tire, the tire has various tire outer diameter dimensions.
  • the inner surface of the tire can be imaged in a short time.
  • each optical system is provided for each part obtained by dividing the inner surface of the tire into three or more parts in the width direction, at least one of the tire and the imaging device is centered around the rotation center axis of the tire.
  • the entire area of the tire inner surface can be imaged over one circumference of the tire in the circumferential direction. Therefore, it is possible to significantly reduce the time for imaging the entire tire inner surface as compared with the conventional case.
  • the mirror of each optical system has only to be inserted into the tire cavity region, the size of the portion to be inserted into the tire cavity region can be made smaller than before. Thereby, the optical system for imaging the whole inner surface of the tire can be driven simultaneously.
  • the tire cavity region in the present specification refers to a region of a space surrounded by a tire and a rim that is filled with air when the tire mounted on the rim is filled with air.
  • the tire inner surface refers to a surface of the tire surface that faces the tire cavity region.
  • the tire inner surface includes a tread inner surface at a position corresponding to the tread portion of the tire, and includes a side inner surface at a position corresponding to the side portion. Including.
  • the side inner surface includes two surfaces corresponding to both sides of the tire. In this specification, one surface is referred to as a side upper surface, and the other surface is referred to as a side lower surface.
  • an imaging device including a light source for a tread inner surface, a tread inner surface mirror, and a tread inner surface camera is used.
  • the imaging device is configured such that the tread inner surface mirror pivots around the rotation axis while changing the direction of the surface of the tread inner surface mirror.
  • a part of the imaging device is inserted into the opening of the tire.
  • the opening portion is an opening portion surrounded by the bead base region of the tire, and refers to a portion where the rim is disposed when the tire is mounted on the rim.
  • the rotation axis is parallel to the tire rotation center axis, and the rotation axis is inserted offset from the tire rotation center axis.
  • the tread inner surface mirror is swung to insert the tread inner surface mirror into the tire cavity region, and the tread inner surface mirror is set at the imaging position.
  • the light source for the tread inner surface irradiates slit light on the inner surface of the tread of the tire, and scans the slit light along the inner surface of the tread.
  • the tread inner surface camera captures image data from the direction in which the line irradiation area of the inner surface of the tread formed by the irradiation of the slit light is inclined in the tire circumferential direction via the mirror for the inner surface of the tread. Is output.
  • the rotation amount of the rotation shaft is set in accordance with the outer diameter of the tire so that the inclination angle of imaging by the tread inner surface camera is within an allowable range.
  • the rotation amount of the rotating shaft that pivots the tread imaging mirror according to the outer diameter size of the tire is set so that the inclination angle of the imaging by the tread inner surface camera is within an allowable range. Therefore, stable image data can be output regardless of the outer diameter of the tire.
  • the tire inner surface imaging device 1 includes a disk-shaped or substantially disk-shaped inner surface measuring stage 11 and a support column fixed vertically to the center of the upper surface of the inner surface measuring stage 11. 12 is provided.
  • the inner surface measurement stage 11 is cut at approximately 120 degrees along the outer periphery and is divided into three regions, that is, a first region, a second region, and a third region. Each region is provided with an optical system for imaging the tire inner surface.
  • the inner surface measuring stage 11 is inserted into the tire through the opening 2a of the tire 2 as shown in FIG.
  • the outer periphery of the inner surface measurement stage 11 is smaller than the inner periphery of the opening 2a, that is, the inner periphery of the bead base region of the tire so that the inner surface measurement stage 11 can be inserted into the opening 2a.
  • it is comprised so that turning movement of the mirror inserted in a tire cavity area
  • the first optical system 100 for imaging the side upper surface in tire 2 is provided in the 1st field.
  • the first optical system 100 includes a light source 101 that emits slit light, first to third mirrors 102, 103, 104, and a camera 105.
  • the light source 101 is a side inner surface light source that forms a line irradiation region by irradiating slit light onto a side upper surface that is one of the side inner surfaces.
  • the first mirror 102 is fixed to the tip of the light source 101.
  • the first mirror 102 is a slit emitted from the light source 101 so that the incident angle of the slit light incident on the side upper surface inside the tire 2 is perpendicular to the tire circumferential direction and the slit light is extended and irradiated in the tire width direction. Reflects light.
  • the first mirror 102 is located within the outer periphery of the inner surface measurement stage 11.
  • the second mirror 103 is fixed to one end side of the support member 106, and the support member 106 is coupled to the rotation drive mechanism 107 on the other end side. As a result, the second mirror 103 can pivot around the rotation axis of the rotation drive mechanism 107. At this time, the direction of the mirror also changes with the turning movement.
  • the second mirror 103 reflects the reflected light of the slit light from the line irradiation region so that the camera 105 images the line irradiation region irradiated with the slit light from the direction inclined in the tire circumferential direction. Thus, it is a side inner surface mirror that leads to the camera 105.
  • the support member 106 and the second mirror 103 are rotated about the rotation axis perpendicular to the upper surface of the inner surface measurement stage 11 by the rotation of the stepping motor of the rotation drive mechanism 107.
  • the second mirror 103 pivots around the rotation axis. 3, 4, and 7, the second mirror 103 is positioned at a predetermined position in the outer periphery of the inner surface measurement stage 11, and at the time of imaging, as shown in FIGS.
  • the second mirror 103 is positioned outside the outer circumference of the inner surface measurement stage 11 and is disposed at a position (imaging position) where the reflected light from the upper surface inside the tire can be received.
  • the turning movement of the mirror 103 is controlled.
  • the second mirror 103 is located outside the outer periphery of the inner surface measurement stage 11, it is located in the tire cavity region.
  • the third mirror 104 is fixed within the outer periphery of the inner surface measurement stage 11 by the support member 104a at a position where the reflected light of the slit light reflected by the second mirror 103 can be reflected toward the entrance of the camera 105 and further toward the light receiving surface. ing.
  • the third mirror 104 is provided in the optical path between the camera 105 and the second mirror 103 of the reflected light of the line irradiation region, and directs the light reflected by the second mirror 103 to the entrance of the camera 105 and further to the light receiving surface. It is a secondary mirror.
  • the camera 105 is attached to a fixed column fixed vertically to the inner surface measurement stage 11 via a movable mechanism 108.
  • the camera 105 is a side inner surface camera that captures an image of a line irradiation region on the inner surface of the tread from a direction inclined in the tire circumferential direction via the second mirror 103 and outputs image data.
  • the camera 105 is provided with a fixed focus lens, and is moved along the optical path between the lens of the camera 105 and the third mirror 104 and further the second mirror 103 by the movable mechanism 108 along the fixed column. The focus of the image of the line irradiation area is adjusted by changing the distance.
  • the movable mechanism unit 108 is operated by a stepping motor, and the stepping motor is driven and controlled by a computer device described later.
  • a second optical system 200 for imaging the inner surface of the tread in the tire 2 is provided in the second region.
  • the second optical system 200 includes a light source 201 that emits slit light, first to third mirrors 202, 203, 204, and a camera 205.
  • the light source 201 is a light source for the inner surface of the tread that irradiates the inner surface of the tread with slit light to form a line irradiation region.
  • the first mirror 202 is fixed to the tip of the light source 201.
  • the first mirror 202 reflects the slit light emitted from the light source 201 and makes the incident angle of the slit light incident on the inner surface of the tread inside the tire 2 perpendicular to the tire circumferential direction and extends the slit light in the width direction of the tire.
  • the slit light emitted from the light source 201 is reflected so as to be irradiated.
  • the first mirror 202 is located within the outer periphery of the inner surface measurement stage 11.
  • the second mirror 203 is fixed to one end side of the support member 206, and the support member 206 is connected to the rotation drive mechanism unit 207 on the other end side. As a result, the second mirror 203 can turn around the rotation axis of the rotation drive mechanism 207. At this time, the direction of the mirror also changes with the turning movement.
  • the second mirror 203 reflects the reflected light from the line irradiation region and guides it to the camera 205 so that the camera 205 captures the line irradiation region from the direction inclined in the tire circumferential direction. It is a mirror.
  • the support member 206 and the second mirror 203 are rotated about the rotation axis perpendicular to the upper surface of the inner surface measurement stage 11 by the rotation of the stepping motor of the rotation drive mechanism unit 207.
  • the second mirror 203 pivots around the rotation axis. 3, 4, and 9, the second mirror 203 is positioned at a predetermined position within the outer periphery of the inner surface measurement stage 11, and at the time of imaging, as shown in FIGS.
  • the second mirror 203 is positioned outside the outer circumference of the inner surface measurement stage 11 and is disposed at a position (imaging position) where the reflected light from the upper surface inside the tire can be received.
  • the turning movement of the mirror 203 is controlled.
  • the second mirror 203 is located outside the outer periphery of the inner surface measurement stage 11, it is located in the tire cavity region.
  • the third mirror 204 is fixed within the outer periphery of the inner surface measurement stage 11 by a support member 204a at a position where the slit light reflected by the second mirror 203 can be reflected toward the entrance of the camera 205 and further toward the light receiving surface.
  • the third mirror 204 is provided in the optical path between the camera 205 and the second mirror 203 of the reflected light of the line irradiation region, and directs the light reflected by the second mirror 203 to the entrance of the camera 205 and further to the light receiving surface. It is a secondary mirror.
  • the camera 205 is attached to a fixed column fixed vertically to the inner surface measurement stage 11 via a movable mechanism 208.
  • the camera 205 is a tread inner surface camera that captures a line irradiation region on the inner surface of the tread from a direction inclined in the tire circumferential direction via the second mirror 203 and outputs image data.
  • the camera 205 is provided with a fixed focus lens, and is moved along the optical path between the lens of the camera 205 and the third mirror 204 and further the second mirror 203 by the movable mechanism 208 along the fixed column. The focus of the image of the line irradiation area is adjusted by changing the distance.
  • the movable mechanism 208 is operated by a stepping motor, and the stepping motor is driven and controlled by a computer device described later.
  • the turning movement of the second mirror 203 is controlled in accordance with the tire outer diameter, and the distance from the line irradiation region on the inner surface of the tread to the second mirror 203 changes. Therefore, a mechanism for changing the distance of the optical path between the camera 205 and the second mirror 203 is provided so that the distance along the optical path to the line irradiation region of the camera 205 having the fixed focus lens is constant. preferable.
  • a first optical system 300 for imaging the lower side surface in the tire 2 includes a light source 301 that emits slit light, first to third mirrors 302, 303, and 304, and a camera 305.
  • the light source 301 is a side inner surface light source that forms a line irradiation region by irradiating slit light onto a side lower surface that is one of the side inner surfaces.
  • the first mirror 302 is fixed to the tip of the light source 301.
  • the first mirror 302 is a slit emitted from the light source 301 so that the incident angle of the slit light incident on the lower side surface inside the tire 2 is perpendicular to the tire circumferential direction and the slit light is extended and irradiated in the tire width direction. Reflects light.
  • the first mirror 302 is located within the outer periphery of the inner surface measurement stage 11.
  • the second mirror 303 is fixed to one end side of the support member 306, and the support member 306 is connected to the rotation drive mechanism unit 307 on the other end side. As a result, the second mirror 303 can turn around the rotation axis of the rotation drive mechanism 307. At this time, the direction of the mirror also changes with the turning movement.
  • the second mirror 303 reflects the reflected light of the slit light from the line irradiation region and guides it to the camera 305 so that the camera 305 images the line irradiation region from the direction inclined in the tire circumferential direction. This is a side inner surface mirror.
  • the support member 306 and the second mirror 303 are rotated around the rotation axis perpendicular to the upper surface of the inner surface measurement stage 11 by the rotation of the stepping motor of the rotation drive mechanism unit 307.
  • the second mirror 303 pivots around the rotation axis. 3, 4, and 7, the second mirror 303 is positioned at a predetermined position in the outer periphery of the inner surface measurement stage 11, and at the time of imaging, the second mirror 303 is shown in FIGS.
  • the second mirror 303 is positioned outside the outer periphery of the inner surface measurement stage 11 and is disposed at a position (imaging position) where the reflected light from the upper surface inside the tire can be received.
  • the turning movement of the mirror 303 is controlled.
  • the second mirror 303 is located outside the outer periphery of the inner surface measurement stage 11, it is located in the tire cavity region.
  • the third mirror 304 is fixed within the outer periphery of the inner surface measurement stage 11 by a support member at a position where the reflected light of the slit light reflected by the second mirror 303 can be reflected toward the entrance of the camera 305 and further toward the light receiving surface. .
  • the third mirror 304 is provided in the optical path between the camera 305 and the second mirror 303 of the reflected light of the line irradiation region, and directs the light reflected by the second mirror 303 to the entrance of the camera 305 and further to the light receiving surface. It is a secondary mirror.
  • the camera 305 is attached to a fixed column fixed vertically to the inner surface measurement stage 11 via a movable mechanism unit 308.
  • the camera 305 is a side inner surface camera that captures an image of a line irradiation region on the inner surface of the tread from a direction inclined in the tire circumferential direction via the second mirror 103 and outputs image data.
  • the camera 305 includes a fixed focus lens, and is moved along the optical path between the lens of the camera 305, the third mirror 304, and further the second mirror 303 by the movable mechanism unit 308 along the fixed column. The focus of the image of the line irradiation area is adjusted by changing the distance.
  • the distance along the optical path between the line irradiation region and the camera 305 can be made constant regardless of the tire outer diameter.
  • the movable mechanism unit 308 is operated by a stepping motor, and the stepping motor is driven and controlled by a computer device described later.
  • the stepping motors 107a, 207a, and 307a of the rotation driving mechanism units 107, 207, and 307 of each optical system and the stepping motors 108a, 208a, and 308a of the movable mechanism units 108, 208, and 308 are controlled signals.
  • the drive is controlled by the computer device 500 via the distribution unit 400.
  • the control signal distribution unit 400 includes a controller 401 and two stepping drivers 402 and 403.
  • the control signal for driving output from the computer device 500 is input to the controller 401, and the controller 401 distributes the control signal to the stepping driver 402 for the rotational drive mechanism and the stepping driver 403 for the movable mechanism.
  • the computer device 500 is a control device that controls the rotational movement of the second mirror 203, which is a tread inner surface mirror fixed to the support member 206, by controlling the amount of rotation of the rotation shaft of the support member 206. More specifically, when the computer apparatus 500 turns the second mirror 203 so as to be inserted into the tire cavity region and sets the second mirror 203 at the imaging position, the imaging of the line irradiation region by the camera 205 is performed. A control signal for the amount of rotation of the rotating shaft is generated in accordance with the outer diameter of the tire so that the inclination angle of the tire falls within an allowable range.
  • the second mirrors 103 and 303 also turn around the rotation axes of the support members 106 and 306 so as to be inserted into the tire cavity region while changing their orientation.
  • the device 1 is inserted into the opening 2a of the tire, and the rotation axis for the turning movement of the second mirror 203 is parallel to the tire rotation center axis, and this rotation axis is offset with respect to the tire rotation center axis. Is in a state.
  • the stepping driver 402 generates drive signals for driving the stepping motors 107a, 207a, and 307a of the rotation drive mechanisms 107, 207, and 307 based on control signals sent from the computer device 500 via the controller 401, and generates stepping motors. It outputs to 107a, 207a, 307a.
  • the stepping driver 403 generates drive signals for driving the stepping motors 108a, 208a, and 308a of the movable mechanism portions 108, 208, and 308 based on the control signals sent from the computer device 500 via the controller 401, and generates the drive signals. It outputs to stepping motor 108a, 208a, 308a.
  • the second mirrors 103, 203, 303 of the optical systems 100-300 are closed, that is, the second mirrors 103, 203, 303 are
  • the inner surface measuring stage 11 is inserted into the opening 2 a of the tire 2 with the support column 12 positioned at the center of the inner surface measuring stage 11 being aligned with the rotation center axis of the tire 2 while being positioned within the outer periphery of the inner surface measuring stage 11. .
  • the apparatus 1 does not interfere with the bead base region surrounding the opening 2 a of the tire 2.
  • the second mirrors 103, 203, and 303 of the respective optical systems 100 to 300 are rotated and deployed.
  • slit light is emitted from the light sources 101, 201, and 301 of the optical systems 100 to 300, and the movable mechanisms 108, 208, and 308 are driven to adjust the positions of the cameras 105, 205, and 305.
  • the apparatus 1 or the tire 2 is rotated once in the tire circumferential direction while acquiring image data output from all of the cameras 105, 205, and 305 of 100 to 300 by an external apparatus.
  • the size of the portion to be inserted into the tire cavity region is conventionally set. Can be made smaller. Thereby, the three optical systems 100, 200, 300 for imaging the entire inner surface of the tire 2 can be driven simultaneously.
  • the entire area of the tire inner surface can be imaged over the entire circumference of the tire only by rotating the device 1 or the tire 2 once in the tire circumferential direction. Therefore, it is possible to significantly reduce the time for imaging the entire tire inner surface as compared with the conventional case.
  • the second mirror 103 is inside the tire 2. Rotate to move and expand. In this state, slit light is emitted from the light source 101 and the movable mechanism unit 108 is driven to adjust the position of the camera 105.
  • the slit light emitted from the light source 101 is reflected by the first mirror 102 and applied to the side upper surface 21 of the tire 2 to form a line irradiation region 31.
  • the slit light reflected by the side upper surface 21 enters the second mirror 103 and is reflected by the second mirror 103 toward the third mirror 104.
  • the slit light incident on the third mirror 104 is reflected by the third mirror 104 toward the entrance of the camera 105 and further toward the light receiving surface.
  • the second mirror 203 is pivoted inside the tire. And expand. That is, the rotation amount by which the second mirror 203 is set from the first position where the second mirror 203 is arranged so that the outer periphery of the portion of the device 1 inserted into the opening of the tire is smaller than the inner periphery of the tire. Accordingly, the second mirror 203 is pivoted to place the second mirror 203 at the imaging position. In this state, slit light is emitted from the light source 201 and the movable mechanism unit 208 is driven to adjust the position of the camera 205.
  • the slit light emitted from the light source 201 is reflected by the first mirror 202 and applied to the inner surface 22 of the tread of the tire 2 to form a line irradiation region 32.
  • the reflected light of the slit light reflected by the tread inner surface 22 enters the second mirror 203 and is reflected by the second mirror 203 toward the third mirror 204.
  • the reflected light incident on the third mirror 204 is reflected by the third mirror 204 toward the entrance of the camera 205 and further toward the light receiving surface.
  • the second mirror 203 reflects the field of view of the image of the line irradiation area of the slit light on the inner surface of the tread viewed from a direction inclined about 30 degrees in the tire circumferential direction on the third mirror 204. reflect. That is, the camera 205 captures an image of the line irradiation area from a direction inclined in the tire circumferential direction via the second mirror 203 and outputs image data.
  • the inclination angle of the imaging of the line irradiation area on the inner surface 22 of the tread is aligned with an allowable range, for example, about 30 degrees, specifically, Align within the range of 30 degrees ⁇ ⁇ .
  • the line irradiation region can be imaged from the minimum diameter tread inner surface B1 to the maximum diameter tread inner surface B2. That is, in the drawing, the reflection angle at the tread inner surface B1 having the smallest diameter is 30 + ⁇ degrees, and the incident angle and the reflection angle at the second mirror 203 at this time are 60 ⁇ degrees.
  • the reflection angle at the tread inner surface B2 having the maximum diameter is 60 ⁇ degrees
  • the incident angle and the reflection angle at the second mirror 203 at this time are 60 + ⁇ degrees. If the inclination angle of the imaging of the line irradiation area is reduced, the image of the line irradiation area to be imaged increases to the extent that it is deformed from a straight line and may protrude from the field of view of the second mirror 203. On the other hand, since the second mirror 203 is inserted into the tire cavity region, the size of the second mirror is also limited and cannot be increased. On the other hand, when the inclination angle of imaging of the line irradiation region is increased, the resolution of the shape data calculated by the processing based on the light cutting method is lowered.
  • the allowable range is set to 30 ⁇ ⁇ degrees.
  • is preferably an angle of, for example, 5 degrees or less.
  • the central angle of the allowable range of the present embodiment is 30 degrees, but it is preferable that the angle is in the range of 25 to 35 degrees.
  • the second mirror 303 is pivoted and moved inside the tire. And expand. In this state, slit light is emitted from the light source 301 and the movable mechanism unit 308 is driven to adjust the position of the camera 305.
  • the slit light emitted from the light source 301 is reflected by the first mirror 302 and applied to the side lower surface 23 of the tire 2 to form a line irradiation region 33.
  • the reflected light of the slit light reflected by the side lower surface 23 enters the second mirror 303 and is reflected by the second mirror 303 toward the third mirror 304.
  • the reflected light incident on the third mirror 304 is reflected by the third mirror 304 toward the entrance of the camera 305 and further toward the light receiving surface.
  • the respective imaging ranges are set so that a part of the adjacent line irradiation regions 31, 32, 33 overlap in the tire width direction or the tire radial direction. That is, the line irradiation region 31 on the side upper surface 21 and the line irradiation region 32 on the tread inner surface 22 have an overlap of the width D1. Further, the line irradiation region 32 on the inner surface 22 of the tread and the line irradiation region 33 on the side lower surface 23 have an overlap of width D2. Thereby, it is prevented that the area
  • the widths D1 and D2 are set to 10 mm or more.
  • each optical system 100, 200, 300 is provided for each part obtained by dividing the inner surface of the tire 2 into three parts in the width direction. Therefore, the slit light can be scanned along the tire circumferential direction by rotating at least one of the tire 2 and the imaging device 1 around the axis of the tire 2 in the tire circumferential direction. The whole area of the tire inner surface can be imaged over one circumference in the circumferential direction of the tire. Therefore, it is possible to significantly reduce the time for imaging the entire tire inner surface as compared with the conventional case.
  • the size of the portion to be inserted into the tire 2 is conventionally increased. Can be made smaller. Thereby, the three optical systems 100, 200, 300 for imaging the entire inner surface of the tire 2 can be driven simultaneously.
  • the positions of the second mirrors 103, 203, and 303 can be changed by turning, and the positions of the cameras 105, 205, and 305 can be changed by moving. Even if 2 is replaced and the size of the tire 2, that is, the outer diameter of the tire is slightly changed, the entire area of the tire inner surface can be imaged.
  • the development positions of the second mirrors 103, 203, and 303, that is, the imaging positions are stored in advance for each tire outer diameter dimension of the tire, and the tire outer diameter dimension of the tire is set in the computer device 500. The imaging positions of the two mirrors 103, 203, and 303 are set so that positioning can be performed.
  • the inner surface of the tire 2 is divided into three parts, that is, the side upper surface 21, the tread inner surface 22, and the side lower surface 23.
  • the number of divided regions is changed depending on the size of the tire 2, and the optical system is divided for each divided region. Is preferably provided. Since the diameter of the opening 2a of the tire 2 increases as the size of the tire 2 increases, the diameter of the inner surface measurement stage 11 can be increased, whereby the inner surface measurement stage 11 is moved along the outer periphery of the inner surface measurement stage 11 by 120. It becomes possible to arrange in a range divided by an angle of less than or equal to degrees, and it is possible to mount three or more optical systems on the inner surface measurement stage 11. For example, when the tire size is large, the side upper surface 21 may be divided into a plurality of parts, the tread inner surface 22 may be divided into a plurality of parts, and the side lower surface 23 may be divided into a plurality of parts.
  • the positions of the light sources 101, 201, 301 and the cameras 105, 205, 305 are not limited to the positions described in the present embodiment, and the arrangement can be changed by changing the angle of each mirror.
  • a light source that emits laser sheet light may be used as the light sources 101, 201, and 301 that emit slit light.
  • the stepping motor is used for the turning movement of the second mirrors 103, 203, and 303 and the movement of the cameras 105, 205, and 305.
  • the present invention is not limited to this.
  • the present invention relates to a tire inner surface imaging method and apparatus capable of imaging the entire tire inner surface in a short time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

 タイヤ内面を撮像するとき、光源、ミラー、及びカメラを備え、前記ミラーが、前記ミラーの面の向きを変えながら回転軸の周りに旋回移動するように構成された撮像装置の一部をタイヤの開口部に挿入した状態で、前記ミラーを前記回転軸の周りに旋回移動させることにより前記ミラーをタイヤ空洞領域内に挿入して前記ミラーを撮像位置にセットする。この後、タイヤのトレッド内面にスリット光を照射し、前記スリット光を前記トレッド内面に沿って走査する。前記スリット光の走査中、前記スリット光の照射により形成される前記トレッド内面のライン照射領域を、前記ミラーを経由してタイヤ周方向に傾斜させた方向から前記カメラで撮像して画像データを出力する。前記ミラーを前記タイヤ空洞領域内に挿入するとき、前記カメラによる撮像の傾斜角度が許容範囲内になるように、タイヤの外径寸法に応じて前記回転軸の回転量が設定される。

Description

タイヤ内面撮像方法及びその装置
 本発明は、タイヤの内面全体を撮像する方法及びその装置に関する。
 タイヤ外観検査では、タイヤの外側の面(外面)と内側の面(内面)を検査員が手で触れたときの手の触感と検査員の目視で全数検査をしている。その中で、タイヤ内面の検査については、非接触でタイヤ内面の輝度や形状を測定するために、カメラやレーザ変位計を使って自動検査を行う多種の方法及び装置が提案されている。
 例えば、実開1987-016450号公報(特許文献1)に開示されるタイヤの検査装置は、タイヤ内面の剥離の位置と深さをレ-ザ-による二重露出ホログラム干渉法により検査するので、タイヤの剥離が能率的にかつ明瞭に検出され、タイヤの品質営理に貢献するとともに、トレッドの再生加工を適確に行うことができる。
 また、特開2012-112838号公報(特許文献2)に開示されるタイヤの検査装置は、照明と、カメラと、タイヤの内周面に沿って湾曲した反射鏡とを有する検査部と、タイヤと検査部とをタイヤの軸回りに相対回転させる駆動部とを備える。当該検査装置は、タイヤと検査部とを相対回転させながら、鏡で反射したタイヤの内周面からの光を撮影部が撮影するので、2つの撮像部でタイヤのタイヤ幅方向の上半部及び下半部を同時に撮影することができる。
 特開2008-203258号公報(特許文献3)に開示されるタイヤ試験装置は、少なくとも3つの測定ヘッドを有する測定ユニットを有し、各測定ヘッドは照明部材とシアリング部材を有している。第1及び第2測定ヘッドは、タイヤの側壁の外側面をスキャンする。第3測定ヘッドは、少なくともトレッド部分の内側面をスキャンする。この装置によって、タイヤは迅速にかつ十分に試験され得る。
 特開2003-240521号公報(特許文献4)に開示される被検体の外観・形状検査装置は、白色のスリット光を照射する投光手段とスリット光の照射部を撮影するカラーCCDカメラにより、回転テーブル上に搭載されたタイヤを回転させながら撮影する。さらに、座標演算手段及び輝度演算手段により、得られた画像データからタイヤの座標と輝度を検出する。得られたタイヤの形状データと輝度データとからタイヤの三次元座標データとカラー画像を再構成する。
 特開2001-249012号公報(特許文献5)に開示される被検体の外観形状検査装置は、被検体であるタイヤに対して第1のスリット光により照射したライン部分を第1撮像手段が撮像して外観データを入手し、同時にライン部分に照射した第2のスリット光により同じライン部分を第2撮像手段が所定角度斜めから撮像して形状データを入手する。さらに、外観データから外観の良否を判定し、形状データから形状の良否を判定する。
 特開2009-115512号公報に開示される物品検査方法は、タイヤを保持する回転テーブルと、タイヤ内面にライン状のレーザ光を照射する照射手段と、ロボットハンドに取付けられてタイヤ内面を撮影するカメラと、を用いて撮影した画像データを基に外観良否の判定を行う。
実開1987-016450号公報 特開2012-112838号公報 特開2008-203258号公報 特開2003-240521号公報 特開2001-249012号公報 特開2009-115512号公報
 しかしながら、タイヤの内側を計測する機構の問題として、タイヤをリムに装着したとき空気が充填されるタイヤ空洞領域になるタイヤ内側のスペースが狭いこと、タイヤのサイズによって計測部分の寸法が変化することが挙げられる。このため、前述した従来の装置或いは方法によってタイヤの内面全体を撮像するには、タイヤ内側のスペースに挿入できる撮像部の大きさが限られてしまうとともにタイヤ内面がタイヤ幅方向に大きく湾曲しているので、タイヤ内面全体を撮像するには、タイヤ両サイド内面とトレッド内面を分けて撮像する必要がある。例えば、タイヤの一方のサイド内面、他方のサイド内面、トレッド内面を分けて撮像する、或いはタイヤ両サイド内面とトレッド内面を分けて撮像しなければならない。したがって、撮像の工数が増え、1つのタイヤ内面を撮像するために時間がかかってしまう。
 本発明の目的は上記の問題点に鑑み、種々のタイヤ外径寸法のタイヤであっても、短時間でタイヤ内面を撮像できるタイヤ内面撮像方法及びその装置を提供することである。
 本発明の一態様は、タイヤ内面を撮像するタイヤ内面撮像方法である。当該方法は、
 光源、ミラー、及びカメラを備え、前記ミラーが、前記ミラーの面の向きを変えながら回転軸の周りに旋回移動するように構成された撮像装置の一部をタイヤの開口部に挿入した状態で、前記ミラーを前記回転軸の周りに旋回移動させることにより前記ミラーをタイヤ空洞領域内に挿入して前記ミラーを撮像位置にセットするステップと、
 タイヤのトレッド内面にスリット光を照射し、前記スリット光を前記トレッド内面に沿って走査するステップと、
 前記スリット光の走査中、前記スリット光の照射により形成される前記トレッド内面のライン照射領域を、前記ミラーを経由してタイヤ周方向に傾斜させた方向から前記カメラで撮像して画像データを出力するステップと、を含む。
 前記ミラーを前記タイヤ空洞領域内に挿入するとき、前記カメラによる撮像の傾斜角度が許容範囲内になるように、タイヤの外径寸法に応じて前記回転軸の回転量が設定される。
 前記カメラは固定焦点カメラであり、前記ミラーと前記カメラとの間の光路の距離を変化させる機構を備える、ことが好ましい。
 前記ミラーを撮像位置にセットするステップは、前記開口部に挿入される前記撮像装置の部分の外周が前記タイヤの内周よりも小さくなるように前記ミラーを配置した位置から、前記ミラーを前記設定された回転量に従って、前記ミラーを前記撮像位置に旋回移動させる、ことが好ましい。
 前記ライン照射領域の反射光の、前記カメラと前記ミラーの間の光路に、前記ミラーで反射した光を前記カメラの受光面に向ける副ミラーが設けられる、ことが好ましい。
 前記撮像装置は、前記光源、前記ミラー、及び前記カメラのそれぞれを、トレッド内面用光源、トレッド内面用ミラー及びトレッド内面用カメラとして備えるトレッド内面撮像用光学系の他に、前記タイヤ内面のうちのサイド内面にサイド内面用光源からスリット光を照射することにより形成されるライン照射領域を、サイド内面用ミラーを経由してタイヤ周方向に傾斜させた方向からサイド内面用カメラで撮像し、画像データを出力するサイド内面用光学系、を含み、前記サイド内面用ミラーが、向きを変えながらサイド内面用回転軸の周りに旋回移動するように構成され、
 前記ミラーを撮像位置にセットするステップは、前記サイド内面用ミラーをタイヤ空洞領域内に挿入するように旋回移動させることを含む、ことが好ましい。
 また、本発明のより具体的な一態様は以下のタイヤ内面撮像方法である。
 すなわち、タイヤの軸を中心にしてタイヤ或いは撮像装置の少なくとも何れか一方を回転して、タイヤの周方向1周にわたってタイヤ内面を撮像するタイヤ内面撮像方法である。このタイヤ内面撮像方法では、タイヤ内面をタイヤ幅方向に3つ以上の部位に分割して各部位毎に設けられるとともに、タイヤ内面に同時にスリット光を照射し、スリット光が照射されたタイヤ内面を撮像して画像データを出力する光学系を備えた撮像装置を用いる。各光学系の第2ミラーを含む少なくとも一部のミラーをタイヤ空洞領域に挿入し、前記各光学系では、前記第2ミラーを含む少なくとも一部のミラーをタイヤ空洞領域に挿入するときに、ミラーの位置を変化させて該挿入部位の外周が前記タイヤの内周よりも小さくなるようにし、挿入後にミラーの位置を撮像に適した位置に変化させる。この後、光源から前記スリット光を出射し、前記光源から出射されたスリット光を第1ミラーによって反射して、反射したスリット光の面がタイヤ幅方向に延びるように、該光学系が対応する前記タイヤ内面の部位に照射する。前記第1ミラーから前記タイヤ内面に照射され前記タイヤ内面によって反射されたスリット光を前記第2ミラーによって入射して第3ミラーに向けて反射し、前記第2ミラーによって反射されたスリット光を第3ミラーによってカメラの入射口に向けて反射し、前記カメラにより、前記第3ミラーによって反射されたスリット光を受光して前記スリット光が照射されたタイヤ内面を撮像し、撮像した画像データを外部に出力する。
 上記タイヤ内面撮像方法によれば、タイヤ内面撮像時には各光学系の第2ミラーを含む少なくとも一部のミラーをタイヤ内部に挿入する。この後、各光源からスリット光が出射され、該スリット光は第1ミラーによって反射されてタイヤ内面の所定部に対してタイヤ幅方向に延びるように照射される。タイヤ内面から反射されたスリット光は第2ミラーに入射されて第3ミラーへ向けて反射される。さらに、第2ミラーによって反射されたスリット光は第3ミラーによってカメラの入射口に向けて反射され、スリット光が照射されたタイヤ内面がカメラによって撮像される。撮像された画像データは外部に同時に出力される。
 本発明の他の一態様は、タイヤ内面を撮像するタイヤ内面撮像装置である。当該装置は、
 タイヤのトレッド内面にスリット光を照射する光源と、
 前記スリット光の照射により形成される前記トレッド内面のライン照射領域の反射光を反射するミラーと、
 前記ミラーから反射した前記反射光を受光することにより、前記ライン照射領域をタイヤ周方向に傾斜させた方向から撮像して画像データを出力するカメラと、
 前記光源、前記ミラー、及びカメラと、前記ミラーが前記ミラーの面の向きを変えながら回転軸の周りを旋回移動する機構、が設けられ、前記タイヤの開口部内周よりも小さい外周を有する内面計測ステージと、
 前記回転軸の回転量を制御して、前記ミラーの旋回移動を制御する制御装置と、を含む。
 前記制御装置は、前記ミラーを前記回転軸の周りに旋回移動させることにより前記ミラーをタイヤ空洞領域内に挿入して前記ミラーを撮像位置にセットするとき、前記カメラによる前記ライン照射領域の撮像の傾斜角度が許容範囲内になるように、タイヤの外径寸法に応じて前記回転軸の回転量の制御信号を生成するように構成されている。
 前記カメラは固定焦点カメラであり、前記ミラーと前記カメラとの間の光路の距離を変化させるように、前記カメラを移動する機構をタイヤ内面撮像装置は備える、ことが好ましい。
 前記制御装置は、前記制御信号を用いて、前記前記内面計測ステージの外周が前記タイヤの内周よりも小さくなるように前記ミラーを配置した位置から、前記ミラーを旋回移動させる、ことが好ましい。
 前記ライン照射領域の反射光の、前記カメラと前記ミラーの間の光路に、前記ミラーで反射した光を前記カメラの受光面に向ける副ミラーが設けられる、ことが好ましい。
 前記光源、前記ミラー、及び前記カメラのそれぞれを、トレッド内面用光源、トレッド内面用ミラー及びトレッド内面用カメラとして備えるトレッド内面撮像用光学系の他に、前記タイヤ内面のうちのサイド内面にスリット光を照射するサイド内面用光源と、前記スリット光の照射により形成されるライン照射領域を撮像して画像データを出力するサイド内面用カメラと、前記サイド内面用カメラがタイヤ周方向に傾斜させた方向から撮像するように、前記ライン照射領域で反射した光の光路に設けられたサイド内面用ミラーと、を備えるサイド内面用光学系、を含み、前記サイド内面用ミラーが、向きを変えながらサイド内面用回転軸の周りに旋回移動するように構成されている、ことが好ましい。
 また、本発明のより具体的な一態様は、タイヤの軸を中心にしてタイヤ或いは撮像装置の少なくとも何れか一方を回転して、タイヤの周方向1周にわたってタイヤ内面を撮像するタイヤ内面撮像装置である。
 このタイヤ内面撮像装置は、
 前記タイヤの開口部内周よりも小さい外周を有する内面計測ステージと、
 前記内面計測ステージ上に設けられ、タイヤ内面を幅方向に3つ以上の部位に分割して各部位毎に設けられるとともに、タイヤ内面に同時にスリット光を照射し、スリット光が照射されたタイヤ内面を撮像して画像データを出力する光学系とを備える。
 前記光学系は、
 前記スリット光を出射する光源と、
 前記光源から出射されたスリット光を反射し、反射したスリット光の面がタイヤ幅方向に延びるように、該光学系が対応する前記タイヤ内面の部位に照射する第1ミラーと、
 前記第1ミラーから前記タイヤ内面に照射され前記タイヤ内面によって反射されたスリット光を入射して第3ミラーに向けて反射する第2ミラーと、
 前記第2ミラーによって反射されたスリット光をカメラの入射口に向けて反射する前記第3ミラーと、
 前記第3ミラーによって反射されたスリット光を受光し、前記スリット光が照射されたタイヤ内面を撮像し、撮像した画像データを外部に出力する前記カメラと、
 前記内面計測ステージと共に前記第2ミラーを含む少なくとも一部のミラーをタイヤ内に挿入するときに、該挿入部位の外周が前記タイヤ開口部の内周よりも小さくなるように前記各光学系の前記第2ミラーの位置を変化させる手段と、を備えている。
 上述の態様のタイヤ内面撮像装置によれば、タイヤ内面撮像時には内面計測ステージと共に各光学系の第2ミラーを含む少なくとも一部がタイヤ内部に挿入される。この後、各光源からスリット光が出射され、該スリット光は第1ミラーによって反射されてタイヤ内面の所定部に対してタイヤ幅方向に延びるように照射される。タイヤ内面から反射されたスリット光は第2ミラーに入射されて第3ミラーへ向けて反射される。さらに、第2ミラーによって反射されたスリット光は第3ミラーによってカメラの入射口に向けて反射され、スリット光が照射されたタイヤ内面がカメラによって撮像される。撮像された画像データは外部に同時に出力される。
 上述のタイヤ内面撮像方法及び装置によれば、タイヤの外径寸法に応じてミラーの旋回移動を行なうための回転軸の回転量が設定されるので、種々のタイヤ外径寸法のタイヤであっても、短時間でタイヤ内面を撮像できる。また、各光学系はタイヤ内面を幅方向に3つ以上の部位に分割した各部位毎に設けられる形態の場合、タイヤの回転中心軸を中心にしてタイヤ或いは撮像装置の少なくとも何れか一方を1回転することによって、タイヤの周方向1周にわたってタイヤ内面の全域を撮像することができる。したがって、従来に比べてタイヤ内面全域を撮像するための時間を大幅に短縮することができる。タイヤ空洞領域へは各光学系のミラーを挿入すればよいので、タイヤ空洞領域へ挿入する部分の大きさを従来よりも小さくすることができる。これにより、タイヤの内面全域を撮像するための光学系を同時に駆動することができる。
本発明の一実施形態におけるタイヤ内面撮像装置の主要部を示す外観斜視図である。 本発明の一実施形態におけるタイヤ内面撮像装置とタイヤの位置関係を示す図である。 本発明の一実施形態におけるタイヤ内面撮像装置のミラー閉塞時を示す平面図である。 本発明の一実施形態におけるタイヤ内面撮像装置のミラー閉塞時を示す外観斜視図である。 本発明の一実施形態におけるタイヤ内面撮像装置のミラー展開時を示す平面図である。 本発明の一実施形態におけるタイヤ内面撮像装置のミラー展開時を示す外観斜視図である。 本発明の一実施形態における第1光学系のミラー閉塞時を示す外観斜視図である。 本発明の一実施形態における第1光学系のミラー展開時を示す外観斜視図である。 本発明の一実施形態における第2光学系のミラー閉塞時を示す外観斜視図である。 本発明の一実施形態における第2光学系のミラー展開時を示す外観斜視図である。 本発明の一実施形態における第3光学系のミラー閉塞時を示す外観斜視図である。 本発明の一実施形態における第3光学系のミラー展開時を示す外観斜視図である。 本発明の一実施形態における電気制御系を示すブロック図である。 本発明の一実施形態におけるタイヤ内サイド上面の撮像時の動作を説明する斜視図である。 本発明の一実施形態におけるタイヤ内サイド上面の撮像時の動作を説明する平面図である。 本発明の一実施形態におけるタイヤトレッド内面の撮像時の動作を説明する斜視図である。 本発明の一実施形態におけるタイヤトレッド内面の撮像時の動作を説明する平面図である。 タイヤトレッド内面撮像時における第2ミラーの回転位置とタイヤ内面との関係を説明する図である。 本発明の一実施形態におけるタイヤ内サイド下面の撮像時の動作を説明する斜視図である。 本発明の一実施形態におけるタイヤ内サイド下面の撮像時の動作を説明する平面図である。 本発明の一実施形態における各光学系の撮像領域の関係を説明する図である。
 以下、図面を参照して本発明の一実施形態を説明する。
 本明細書でいうタイヤ空洞領域は、リムに装着されたタイヤに空気を充填するとき、空気が充填されるタイヤとリムに囲まれた空間の領域をいう。
 タイヤ内面は、タイヤ表面のうち、タイヤ空洞領域に面する面をいい、タイヤ内面には、タイヤのトレッド部に対応した位置にあるトレッド内面を含み、サイド部に対応した位置にあるサイド内面を含む。サイド内面は、タイヤの両サイドに対応して2つの面を含む。本明細書では、1つの面をサイド上面、他方の面をサイド下面という。
 本実施形態のタイヤ内面の撮像では、トレッド内面用光源、トレッド内面用ミラー、及びトレッド内面用カメラを備えた撮像装置が用いられる。撮像装置は、トレッド内面用ミラーが、トレッド内面用ミラーの面の向きを変えながら回転軸の周りに旋回移動するように構成されている。タイヤ内面の撮像時、この撮像装置の一部がタイヤの開口部に挿入される。開口部は、タイヤのビードベース領域で囲まれた開口部分で、タイヤをリムに装着するとき、リムが配置される部分をいう。このとき、上記回転軸がタイヤ回転中心軸に平行になり、上記回転軸がタイヤ回転中心軸に対してオフセットした挿入される。この状態で、トレッド内面用ミラーを旋回移動させることによりタイヤ空洞領域内にトレッド内面用ミラーを挿入して、トレッド内面用ミラーを撮像位置にセットする。トレッド内面用光源がタイヤのトレッド内面にスリット光を照射し、スリット光をトレッド内面に沿って走査する。このスリット光の走査中、スリット光の照射により形成されるトレッド内面のライン照射領域を、トレッド内面用ミラーを経由してタイヤ周方向に傾斜させた方向からトレッド内面用カメラが撮像して画像データを出力する。トレッド内面用ミラーをタイヤ空洞領域内に挿入するとき、トレッド内面用カメラによる撮像の傾斜角度が許容範囲内になるように、タイヤの外径寸法に応じて回転軸の回転量が設定される。
 このように、本実施形態のタイヤ内面撮像では、タイヤの外径寸法に応じて、トレッド撮像用ミラーを旋回移動させる回転軸の回転量を、トレッド内面用カメラによる撮像の傾斜角度が許容範囲内になるように定めることができるので、タイヤの外径寸法に関わらず、安定した画像データを出力することができる。特に、光切断法に基づくデータ処理によって、一定の高分解能を維持し、精度の高いタイヤ内面の形状データを画像データから安定して得るためには、タイヤの外径寸法に関わらず、ライン照射領域の撮像時の傾斜角度を一定の傾斜角度を含む許容範囲内に維持することが好ましい。この点から、タイヤの外径寸法に応じて、トレッド撮像用ミラーを旋回移動させる回転軸の回転量を設定して、トレッド内面用カメラによる撮像の傾斜角度が許容範囲内になるようにすることができる本実施形態のタイヤ内面の撮像は有効である。以下、タイヤ内面の撮像を行う装置及び方法を詳細に説明する。
 図1ないし図6に示すように、本実施形態におけるタイヤ内面撮像装置1は、円板形状あるいは略円板形状の内面計測ステージ11と内面計測ステージ11の上面中央に垂直に固定された支持柱12を備えている。内面計測ステージ11は外周に沿ってほぼ120度毎に切り込みが形成され3つの領域、すなわち、第1の領域、第2の領域、及び第3の領域に分割されている。各領域にはそれぞれタイヤ内面を撮像するための光学系が設けられている。タイヤ内面の撮像時には図2に示すように内面計測ステージ11がタイヤ2の開口部2aからタイヤ内部に挿入される。このとき、内面計測ステージ11を、開口部2aに挿入できるように、内面計測ステージ11の外周は、開口部2aの内周、すなわちタイヤのビードベース領域の内周よりも小さくなっている。このため、本実施形態では、タイヤ内面撮像時、タイヤ空洞領域に挿入するミラーを旋回移動可能なように構成されている。
 まず、本装置1の光学系に関して説明する。
 第1の領域にはタイヤ2内のサイド上面を撮像するための第1光学系100が設けられている。第1光学系100は、図4に示すように、スリット光を出射する光源101、第1ないし第3ミラー102,103、104、及びカメラ105を備えている。光源101は、サイド内面の1つであるサイド上面にスリット光が照射されライン照射領域を形成するサイド内面用光源である。
 第1ミラー102は、光源101の先端部に固定されている。第1ミラー102は、タイヤ2内部のサイド上面に入射するスリット光のタイヤ周方向に対する入射角度が直角となり且つタイヤの幅方向にスリット光を延ばして照射するように、光源101から出射されたスリット光を反射する。第1ミラー102は、内面計測ステージ11の外周内に位置する。
 第2ミラー103は支持部材106の一端側に固定されており、支持部材106は他端側で回転駆動機構部107に連結されている。これにより、第2ミラー103は、回転駆動機構部107の回転軸の周りに旋回移動することができる。このとき、旋回移動に伴ってミラーの向きも変わる。第2ミラー103は、カメラ105がスリット光で照射されたライン照射領域を撮像するとき、タイヤ周方向に傾斜させた方向から撮像するように、ライン照射領域からのスリット光の反射光を反射して、カメラ105に導くサイド内面用ミラーである。回転駆動機構部107のステッピングモータの回転によって内面計測ステージ11の上面に対して垂直な回転軸を中心として支持部材106と第2ミラー103が回転される。こうして、第2ミラー103は上記回転軸の周りに旋回移動する。撮像時以外のときは、図3,4および図7に示すように第2ミラー103が内面計測ステージ11の外周内の所定の位置に位置し、撮像時においては図5,6および図8に示すように第2ミラー103が内面計測ステージ11の外周よりも外に位置し且つタイヤ内サイド上面からの反射光を受光できる位置(撮像位置)に配置されるように後述するコンピュータ装置によって第2ミラー103の旋回移動が制御される。第2ミラー103が内面計測ステージ11の外周よりも外に位置する場合、タイヤ空洞領域内に位置する。
 第3ミラー104は第2ミラー103によって反射されたスリット光の反射光をカメラ105の入射口さらには受光面に向けて反射できる位置に、支持部材104aによって内面計測ステージ11の外周内に固定されている。第3ミラー104は、ライン照射領域の反射光の、カメラ105と第2ミラー103の間の光路に設けられ、第2ミラー103で反射した光をカメラ105の入射口、さらには受光面に向ける副ミラーである。
 カメラ105は内面計測ステージ11に垂直に固定された固定柱に対して可動機構部108を介して取り付けられている。カメラ105は、トレッド内面のライン照射領域を、第2ミラー103を経由してタイヤ周方向に傾斜させた方向から撮像して画像データを出力するサイド内面用カメラである。また、カメラ105は焦点固定レンズを備えたものであり、固定柱に沿って可動機構部108によってカメラ105のレンズと、第3ミラー104、さらには、第2ミラー103との間の光路に沿った距離を変化させることによりライン照射領域の像のピントを調整する。可動機構部108はステッピングモータによって動作し、ステッピングモータは後述するコンピュータ装置によって駆動制御される。
 第2の領域にはタイヤ2内のトレッド内面を撮像するための第2光学系200が設けられている。第2光学系200は、スリット光を出射する光源201、第1ないし第3ミラー202,203,204、及びカメラ205を備えている。
 光源201は、トレッド内面にスリット光が照射されライン照射領域を形成するトレッド内面用光源である。
 第1ミラー202は、光源201の先端部に固定されている。第1ミラー202は、光源201から出射されたスリット光を反射してタイヤ2内部のトレッド内面に入射するスリット光のタイヤ周方向に対する入射角度が直角となり且つタイヤの幅方向にスリット光を延ばして照射するように、光源201から出射されたスリット光を反射する。第1ミラー202は、内面計測ステージ11の外周内に位置する。
 第2ミラー203は支持部材206の一端側に固定されており、支持部材206は他端側で回転駆動機構部207に連結されている。これにより、第2ミラー203は、回転駆動機構部207の回転軸の周りに旋回移動することができる。このとき、旋回移動に伴ってミラーの向きも変わる。第2ミラー203は、カメラ205でライン照射領域を撮像するとき、タイヤ周方向に傾斜させた方向から撮像するように、ライン照射領域からの反射光を反射して、カメラ205に導くトレッド内面用ミラーである。これにより、回転駆動機構部207のステッピングモータの回転によって内面計測ステージ11の上面に対して垂直な回転軸を中心として支持部材206と第2ミラー203が回転される。こうして、第2ミラー203は上記回転軸の周りに旋回移動する。撮像時以外のときは、図3,4および図9に示すように第2ミラー203が内面計測ステージ11の外周内の所定の位置に位置し、撮像時においては図5,6および図10に示すように第2ミラー203が内面計測ステージ11の外周よりも外に位置し且つタイヤ内サイド上面からの反射光を受光できる位置(撮像位置)に配置されるように後述するコンピュータ装置によって第2ミラー203の旋回移動が制御される。第2ミラー203が内面計測ステージ11の外周よりも外に位置する場合、タイヤ空洞領域内に位置する。
 第3ミラー204は第2ミラー203によって反射されたスリット光をカメラ205の入射口、さらには受光面に向けて反射できる位置に支持部材204aによって内面計測ステージ11の外周内に固定されている。第3ミラー204は、ライン照射領域の反射光の、カメラ205と第2ミラー203の間の光路に設けられる、第2ミラー203で反射した光をカメラ205の入射口、さらには受光面に向ける副ミラーである。
 カメラ205は内面計測ステージ11に垂直に固定された固定柱に対して可動機構部208を介して取り付けられている。カメラ205は、トレッド内面のライン照射領域を、第2ミラー203を経由してタイヤ周方向に傾斜させた方向から撮像して画像データを出力するトレッド内面用カメラである。また、カメラ205は焦点固定レンズを備えたものであり、固定柱に沿って可動機構部208によってカメラ205のレンズと、第3ミラー204、さらには、第2ミラー203との間の光路に沿った距離を変化させることによりライン照射領域の像のピントを調整する。可動機構部208はステッピングモータによって動作し、ステッピングモータは後述するコンピュータ装置によって駆動制御される。特に、後述するように、タイヤ外径寸法に応じて第2ミラー203の旋回移動が制御され、トレッド内面のライン照射領域から第2ミラー203までの距離が変化する。したがって、焦点固定レンズを備えたカメラ205のライン照射領域までの光路に沿った距離が一定となるように、カメラ205と第2ミラー203との間の光路の距離を変化させる機構を備えることが好ましい。
 第3の領域にはタイヤ2内のサイド下面を撮像するための第1光学系300が設けられている。第1光学系300は、スリット光を出射する光源301、第1ないし第3ミラー302,303、304、及びカメラ305を備えている。光源301は、サイド内面の1つであるサイド下面にスリット光が照射されライン照射領域を形成するサイド内面用光源である。
 第1ミラー302は、光源301の先端部に固定されている。第1ミラー302は、タイヤ2内部のサイド下面に入射するスリット光のタイヤ周方向に対する入射角度が直角となり且つタイヤの幅方向にスリット光を延ばして照射するように、光源301から出射されたスリット光を反射する。第1ミラー302は、内面計測ステージ11の外周内に位置する。
 第2ミラー303は支持部材306の一端側に固定されており、支持部材306は他端側で回転駆動機構部307に連結されている。これにより、第2ミラー303は、回転駆動機構部307の回転軸の周りに旋回移動することができる。このとき、旋回移動に伴ってミラーの向きも変わる。第2ミラー303は、カメラ305がライン照射領域を撮像するとき、タイヤ周方向に傾斜させた方向から撮像するように、ライン照射領域からのスリット光の反射光を反射して、カメラ305に導くサイド内面用ミラーである。回転駆動機構部307のステッピングモータの回転によって内面計測ステージ11の上面に対して垂直な回転軸を中心として支持部材306と第2ミラー303が回転される。こうして、第2ミラー303は上記回転軸の周りに旋回移動する。撮像時以外のときは、図3,4および図7に示すように第2ミラー303が内面計測ステージ11の外周内の所定の位置に位置し、撮像時においては図5,6および図8に示すように第2ミラー303が内面計測ステージ11の外周よりも外に位置し且つタイヤ内サイド上面からの反射光を受光できる位置(撮像位置)に配置されるように後述するコンピュータ装置によって第2ミラー303の旋回移動が制御される。第2ミラー303が内面計測ステージ11の外周よりも外に位置する場合、タイヤ空洞領域内に位置する。
 第3ミラー304は第2ミラー303によって反射されたスリット光の反射光をカメラ305の入射口さらには受光面に向けて反射できる位置に支持部材によって内面計測ステージ11の外周内に固定されている。第3ミラー304は、ライン照射領域の反射光の、カメラ305と第2ミラー303の間の光路に設けられ、第2ミラー303で反射した光をカメラ305の入射口、さらには受光面に向ける副ミラーである。
 カメラ305は内面計測ステージ11に垂直に固定された固定柱に対して可動機構部308を介して取り付けられている。カメラ305は、トレッド内面のライン照射領域を、第2ミラー103を経由してタイヤ周方向に傾斜させた方向から撮像して画像データを出力するサイド内面用カメラである。また、カメラ305は焦点固定レンズを備えたものであり、固定柱に沿って可動機構部308によってカメラ305のレンズと、第3ミラー304、さらには、第2ミラー303との間の光路に沿った距離を変化させることによりライン照射領域の像のピントを調整する。例えば、タイヤ外径寸法に係らず、ライン照射領域とカメラ305との間の光路に沿った距離を一定にすることができる。
 可動機構部308はステッピングモータによって動作し、ステッピングモータは後述するコンピュータ装置によって駆動制御される。
 次に、本装置1の電気制御系に関して説明する。
 図13に示すように、前述した各光学系の回転駆動機構部107,207,307のステッピングモータ107a,207a,307aおよび可動機構部108,208,308のステッピングモータ108a,208a,308aは制御信号分配部400を介してコンピュータ装置500によって駆動制御されている。すなわち、制御信号分配部400はコントローラ401と2つのステッピングドライバ402,403から構成されている。
 コンピュータ装置500から出力された駆動のための制御信号はコントローラ401に入力され、コントローラ401によって回転駆動機構部用のステッピングドライバ402と可動機構部用のステッピングドライバ403に制御信号が分配される。コンピュータ装置500は、支持部材206の回転軸の回転量を制御して、支持部材206に固定されているトレッド内面用ミラーである第2ミラー203の旋回移動を制御する制御装置である。より具体的には、コンピュータ装置500は、第2ミラー203をタイヤ空洞領域内に挿入するように旋回移動させて、第2ミラー203を撮像位置にセットするとき、カメラ205によるライン照射領域の撮像の傾斜角度が許容範囲内になるように、タイヤの外径寸法に応じて上記回転軸の回転量の制御信号を生成するように構成されている。また、同様に、第2ミラー103,303も、向きを変えながら、タイヤ空洞領域内に挿入するように支持部材106,306の回転軸の周りに旋回移動する。このとき、装置1は、タイヤの開口部2aに挿入され、第2ミラー203の旋回移動のための回転軸がタイヤ回転中心軸に平行になり、この回転軸がタイヤ回転中心軸に対してオフセットした状態にある。
 ステッピングドライバ402はコンピュータ装置500からコントローラ401を介して送られる制御信号に基づいて各回転駆動機構部107,207,307のステッピングモータ107a,207a,307aを駆動する駆動信号を生成して各ステッピングモータ107a,207a,307aに出力する。また、ステッピングドライバ403はコンピュータ装置500からコントローラ401を介して送られた制御信号に基づいて各可動機構部108、208,308のステッピングモータ108a,208a,308aを駆動する駆動信号を生成して各ステッピングモータ108a,208a,308aに出力する。
 次に、本装置1を用いてタイヤ内面を撮像するときの動作を説明する。
 タイヤ内面が撮像される際には図2ないし図4に示すように各光学系100~300の第2ミラー103,203,303を閉塞した状態、すなわち、第2ミラー103,203,303が、内面計測ステージ11の外周内に位置する状態で、内面計測ステージ11の中心に位置する支持柱12をタイヤ2の回転中心軸に一致させて内面計測ステージ11をタイヤ2の開口部2aに挿入する。このため、装置1が、タイヤ2の開口部2aを囲むビードベース領域に干渉することはない。この後、各光学系100~300の第2ミラー103,203,303を旋回移動させて展開する。さらに、各光学系100~300の光源101,201,301からスリット光を出射すると共に可動機構部108,208,308を駆動してカメラ105,205,305の位置を調整した後、各光学系100~300のカメラ105,205,305の全てから出力される画像データを外部装置によって取得しながら装置1あるいはタイヤ2をタイヤ周方向に1回転させる。
 したがって、タイヤ2の内部であるタイヤ空洞領域へは各光学系100,200,300の第2ミラー103,203,303のみを挿入すればよいので、タイヤ空洞領域へ挿入する部分の大きさを従来よりも小さくすることができる。これにより、タイヤ2の内面全域を撮像するための3つの光学系100,200,300を同時に駆動することができる。
 また、装置1あるいはタイヤ2をタイヤ周方向に1回転させるだけでタイヤの周方向1周にわたってタイヤ内面の全域を撮像することができる。したがって、従来に比べてタイヤ内面全域を撮像するための時間を大幅に短縮することができる。
 以下、各光学系100,200,300毎に撮像時の動作を説明する。
 まず、第1光学系100においては、図14および図15に示すように、内面計測ステージ11をタイヤ2の開口部からタイヤ内部の所定位置に挿入した後、タイヤ2の内部において第2ミラー103を旋回移動して展開する。この状態で、光源101からスリット光を出射し、可動機構部108を駆動してカメラ105の位置を調整する。
 光源101から出射されたスリット光は第1ミラー102により反射されてタイヤ2のサイド上面21に照射されライン照射領域31が形成される。サイド上面21によって反射されたスリット光は第2ミラー103に入射され、第2ミラー103によって第3ミラー104に向けて反射される。第3ミラー104に入射されたスリット光は、第3ミラー104によってカメラ105の入射口、さらには受光面に向けて反射される。
 第2光学系200においては、図16および図17に示すように、内面計測ステージ11をタイヤ2の開口部からタイヤ内部の所定位置に挿入した後、タイヤの内部において第2ミラー203を旋回移動して展開する。すなわち、タイヤの開口部に挿入される装置1の部分の外周がタイヤの内周よりも小さくなるように第2ミラー203を配置した第1の位置から、第2ミラー203を設定された回転量に従って、第2ミラー203を旋回移動させて、第2のミラー203を撮像位置に配置する。この状態で、光源201からスリット光を出射し、可動機構部208を駆動してカメラ205の位置を調整する。
 光源201から出射されたスリット光は第1ミラー202により反射されてタイヤ2のトレッド内面22に照射され、ライン照射領域32を形成する。トレッド内面22にて反射されたスリット光の反射光は第2ミラー203に入射され、第2ミラー203によって第3ミラー204に向けて反射される。第3ミラー204に入射された反射光は、第3ミラー204によってカメラ205の入射口、さらには受光面に向けて反射される。
 また、図18に示すように、第2ミラー203はトレッド内面のスリット光のライン状照射領域の像をタイヤ周方向に約30度傾斜させた方向から見た視野を映して第3ミラー204に反射する。すなわち、カメラ205は、ライン照射領域を、第2ミラー203を経由してタイヤ周方向に傾斜させた方向から撮像して画像データを出力する。回転駆動機構部207によって第2ミラー203を回転軸の周りに旋回移動させることにより、トレッド内面22におけるライン照射領域の撮像の傾斜角度を許容範囲に揃え、例えば約30度付近、具体的には30度±αの範囲内に揃える。この範囲において最小径のトレッド内面B1から最大径のトレッド内面B2までライン照射領域の撮像を行うことができる。すなわち、図においては、最小径のトレッド内面B1における反射角度は30+α度であり、このときの第2ミラー203における入射角および反射角は60-α度である。また、最大径のトレッド内面B2における反射角度は60-α度であり、このときの第2ミラー203における入射角および反射角は60+α-β度となる。ライン照射領域の撮像の傾斜角度を小さくすると、撮像するライン照射領域の像は、直線から変形する程度は大きくなり、第2ミラー203の視野範囲からはみ出る場合がある。一方、第2ミラー203はタイヤ空洞領域に挿入するので、第2ミラーの大きさも制限されるため、大きくすることはできない。一方、ライン照射領域の撮像の傾斜角度を大きくすると、光切断法に基づく処理により算出される形状データの分解能は低下する。このため、本実施形態では、許容範囲を30±α度としている。ここで、αは例えば5度以下の角度であることが好ましい。本実施形態の上記許容範囲の中心角度は30度であるが、25~35度の範囲にある角度であるとよい。
 第3光学系300においては、図19および図20に示すように、内面計測ステージ11をタイヤ2の開口部からタイヤ内部の所定位置に挿入した後、タイヤの内部において第2ミラー303を旋回移動して展開する。この状態で、光源301からスリット光を出射し、可動機構部308を駆動してカメラ305の位置を調整する。
 光源301から出射されたスリット光は第1ミラー302により反射されてタイヤ2のサイド下面23に照射され、ライン照射領域33が形成される。サイド下面23によって反射されたスリット光の反射光は第2ミラー303に入射され、第2ミラー303によって第3ミラー304に向けて反射される。第3ミラー304に入射された反射光は、第3ミラー304によってカメラ305の入射口、さらには受光面に向けて反射される。
 なお、本実施形態では、図21に示すように隣り合うライン照射領域31,32,33の一部がタイヤ幅方向あるいはタイヤ径方向で重なり合うようにそれぞれの撮像範囲を設定している。すなわち、サイド上面21のライン照射領域31とトレッド内面22のライン照射領域32とは幅D1の重なりを持たせている。また、トレッド内面22のライン照射領域32とサイド下面23のライン照射領域33とは幅D2の重なりを持たせている。これにより、撮像漏れとなる領域が生じることを防止している。本実施形態で幅D1,D2を10mm以上に設定している。
 以上説明したように、本実施形態のタイヤ内面撮像方法及び装置によれば、各光学系100,200,300はタイヤ2の内面を幅方向に3つの部位に分割した各部位毎に設けられているので、タイヤ2の軸を中心にしてタイヤ2或いは撮像装置1の少なくとも何れか一方をタイヤ周方向に1回転することによって、スリット光をタイヤ周方向に沿って走査させることができ、これにより、タイヤの周方向1周にわたってタイヤ内面の全域を撮像することができる。したがって、従来に比べてタイヤ内面全域を撮像するための時間を大幅に短縮することができる。
 また、タイヤ2の内部へは内面計測ステージ11と各光学系100,200,300の第2ミラー103,203,303のみを挿入すればよいので、タイヤ2内部へ挿入する部分の大きさを従来よりも小さくすることができる。これにより、タイヤ2の内面全域を撮像するための3つの光学系100,200,300を同時に駆動することができる。
 また、本実施形態では第2ミラー103,203,303の位置を旋回移動により変化させることができ、しかも、カメラ105,205,305を移動により位置を変化させることができるので、撮像対象のタイヤ2を取り替えてタイヤ2の大きさ、すなわちタイヤ外径寸法が多少変わってもタイヤ内面の全域を撮像することができる。本実施形態ではタイヤのタイヤ外径寸法毎に第2ミラー103,203,303の展開位置、すなわち撮像位置を予め記憶させておき、コンピュータ装置500にタイヤのタイヤ外径寸法を設定することにより第2ミラー103,203,303の撮像位置を設定して位置決めを行えるようにしている。
 なお、本実施形態では、タイヤ2の内面をサイド上面21、トレッド内面22、サイド下面23の3つに分割したがタイヤ2の大きさによって分割領域の数を変え、分割した領域毎に光学系を設けることが好ましい。タイヤ2のサイズが大きくなるにしたがってタイヤ2の開口部2aの直径も大きくなるので、内面計測ステージ11の直径を大きくでき、これにより内面計測ステージ11を、内面計測ステージ11の外周に沿って120度以下の角度で分割した範囲に配置することが可能になり、内面計測ステージ11に3つ以上の光学系を搭載可能となる。例えば、タイヤのサイズが大きい場合、サイド上面21を複数に分割、トレッド内面22を複数に分割、サイド下面23を複数に分割などしてもよい。
 また、光源101,201,301およびカメラ105,205,305の位置は、本実施形態で説明した位置に限定されることはなく、各ミラーの角度を変えることにより配置を換えることができる。
 また、スリット光を発する光源101,201,301としてレーザシート光を発する光源を用いてもよい。
 また、本実施形態では、第2ミラー103,203,303の旋回移動とカメラ105,205,305の移動にステッピングモータを使用したがこれに限定されることはない。
 本発明は、短時間でタイヤ内面全体を撮像できるタイヤ内面撮像方法及びその装置に関
するものである。
1 タイヤ内面撮像装置
11 内面計測ステージ
12 支持柱
2 タイヤ
2a 開口部
21 サイド上面
22 トレッド内面
23 サイド下面
31,32,33 撮像領域
100 第1光学系
101 光源
102,202,302 第1ミラー
103,203,303 第2ミラー
104,204,304 第3ミラー
105,205,305 カメラ
106,206,306 支持部材
107,207,307 回転駆動機構部
108,208,308 可動機構部
200 第2光学系
300 第3光学系
400 制御信号分配部
401 コントローラ
402,403 ステッピングドライバ
500 コンピュータ装置

Claims (10)

  1.  タイヤ内面を撮像するタイヤ内面撮像方法であって、
     光源、ミラー、及びカメラを備え、前記ミラーが、前記ミラーの面の向きを変えながら回転軸の周りに旋回移動するように構成された撮像装置の一部をタイヤの開口部に挿入した状態で、前記ミラーを前記回転軸の周りに旋回移動させることにより前記ミラーをタイヤ空洞領域内に挿入して前記ミラーを撮像位置にセットするステップと、
     タイヤのトレッド内面にスリット光を照射し、前記スリット光を前記トレッド内面に沿って走査するステップと、
     前記スリット光の走査中、前記スリット光の照射により形成される前記トレッド内面のライン照射領域を、前記ミラーを経由してタイヤ周方向に傾斜させた方向から前記カメラで撮像して画像データを出力するステップと、を含み、
     前記ミラーを前記タイヤ空洞領域内に挿入するとき、前記カメラによる撮像の傾斜角度が許容範囲内になるように、タイヤの外径寸法に応じて前記回転軸の回転量が設定される、ことを特徴とするタイヤ内面撮像方法。
  2.  前記カメラは固定焦点カメラであり、前記ミラーと前記カメラとの間の光路の距離を変化させる機構を備える、請求項1に記載のタイヤ内面撮像方法。
  3.  前記ミラーを撮像位置にセットするステップは、前記開口部に挿入される前記撮像装置の部分の外周が前記タイヤの内周よりも小さくなるように前記ミラーを配置した位置から、前記ミラーを前記設定された回転量に従って、前記ミラーを前記撮像位置に旋回移動させる、請求項1または2に記載のタイヤ内面撮像方法。
  4.  前記ライン照射領域の反射光の、前記カメラと前記ミラーの間の光路に、前記ミラーで反射した光を前記カメラの受光面に向ける副ミラーが設けられる、請求項1~3のいずれか1項に記載のタイヤ内面撮像方法。
  5.  前記撮像装置は、前記光源、前記ミラー、及び前記カメラのそれぞれを、トレッド内面用光源、トレッド内面用ミラー及びトレッド内面用カメラとして備えるトレッド内面撮像用光学系の他に、前記タイヤ内面のうちのサイド内面にサイド内面用光源からスリット光を照射することにより形成されるライン照射領域を、サイド内面用ミラーを経由してタイヤ周方向に傾斜させた方向からサイド内面用カメラで撮像し、画像データを出力するサイド内面撮像用光学系、を含み、前記サイド内面用ミラーが、向きを変えながらサイド内面用回転軸の周りに旋回移動するように構成され、
     前記ミラーを撮像位置にセットするステップは、前記サイド内面用ミラーをタイヤ空洞領域内に挿入するように旋回移動させることを含む、請求項1~4のいずれか1項に記載のタイヤ内面撮像方法。
  6.  タイヤ内面を撮像するタイヤ内面撮像装置であって、
     タイヤのトレッド内面にスリット光を照射する光源と、
     前記スリット光の照射により形成される前記トレッド内面のライン照射領域の反射光を反射するミラーと、
     前記ミラーから反射した前記反射光を受光することにより、前記ライン照射領域をタイヤ周方向に傾斜させた方向から撮像して画像データを出力するカメラと、
    前記光源、前記ミラー、及びカメラと、前記ミラーが前記ミラーの面の向きを変えながら回転軸の周りを旋回移動する機構、が設けられ、前記タイヤの開口部内周よりも小さい外周を有する内面計測ステージと、
     前記回転軸の回転量を制御して、前記ミラーの旋回移動を制御する制御装置と、を含み、
     前記制御装置は、前記ミラーを前記回転軸の周りに旋回移動させることにより前記ミラーをタイヤ空洞領域内に挿入して前記ミラーを撮像位置にセットするとき、前記カメラによる前記ライン照射領域の撮像の傾斜角度が許容範囲内になるように、タイヤの外径寸法に応じて前記回転軸の回転量の制御信号を生成するように構成された、ことを特徴とするタイヤ内面撮像装置。
  7.  前記カメラは固定焦点カメラであり、前記ミラーと前記カメラとの間の光路の距離を変化させるように、前記カメラを移動する機構を備える、請求項6に記載のタイヤ内面撮像装置。
  8.  前記制御装置は、前記制御信号を用いて、前記前記内面計測ステージの外周が前記タイヤの内周よりも小さくなるように前記ミラーを配置した位置から、前記ミラーを旋回移動させる、請求項6または7に記載のタイヤ内面撮像装置。
  9.  前記ライン照射領域の反射光の、前記カメラと前記ミラーの間の光路に、前記ミラーで反射した光を前記カメラの受光面に向ける副ミラーが設けられる、請求項6~8のいずれか1項に記載のタイヤ内面撮像装置。
  10.  前記光源、前記ミラー、及び前記カメラのそれぞれを、トレッド内面用光源、トレッド内面用ミラー及びトレッド内面用カメラとして備えるトレッド内面用光学系の他に、前記タイヤ内面のうちのサイド内面にスリット光を照射するサイド内面用光源と、前記スリット光の照射により形成されるライン照射領域を撮像して画像データを出力するサイド内面用カメラと、前記サイド内面用カメラがタイヤ周方向に傾斜させた方向から撮像するように、前記ライン照射領域で反射した光の光路に設けられたサイド内面用ミラーと、を備えるサイド内面用光学系、を含み、前記サイド内面用ミラーが、向きを変えながらサイド内面用回転軸の周りに旋回移動するように構成されている、請求項6~9のいずれか1項に記載のタイヤ内面撮像装置。
PCT/JP2015/052692 2014-02-12 2015-01-30 タイヤ内面撮像方法及びその装置 WO2015122295A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/118,446 US9741109B2 (en) 2014-02-12 2015-01-30 Tire inner surface imaging method and device
JP2015528753A JP6168147B2 (ja) 2014-02-12 2015-01-30 タイヤ内面撮像方法及びその装置
EP15748454.4A EP3106860B1 (en) 2014-02-12 2015-01-30 Tire inner surface imaging method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-024163 2014-02-12
JP2014024163 2014-02-12

Publications (1)

Publication Number Publication Date
WO2015122295A1 true WO2015122295A1 (ja) 2015-08-20

Family

ID=53800043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052692 WO2015122295A1 (ja) 2014-02-12 2015-01-30 タイヤ内面撮像方法及びその装置

Country Status (4)

Country Link
US (1) US9741109B2 (ja)
EP (1) EP3106860B1 (ja)
JP (1) JP6168147B2 (ja)
WO (1) WO2015122295A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038822A (zh) * 2019-04-20 2019-07-23 东莞中科蓝海智能视觉科技有限公司 反光圆环件的视觉检测方法
US10837920B2 (en) 2016-04-05 2020-11-17 Pirelli Tyre S.P.A. Apparatus and method for checking tyres

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2021005853A (es) * 2018-12-20 2021-06-15 Pirelli Metodo y estacion para revisar neumaticos.
CN112137361B (zh) * 2020-09-29 2022-08-23 江苏苏宁银行股份有限公司 一种多功能组装式银行营业柜台

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274515A (ja) * 1997-03-31 1998-10-13 Omron Corp 曲面検査方法及び検査用カメラユニット
JP2001174224A (ja) * 1999-04-09 2001-06-29 Steinbichler Optotechnik Gmbh タイヤ用検査装置
JP2001249012A (ja) * 1999-12-28 2001-09-14 Bridgestone Corp 被検体の外観形状検査方法及び装置
JP2009531690A (ja) * 2006-03-31 2009-09-03 メーナ,ベルンヴァルト 特に干渉測定法を用いてタイヤをチェックする装置とその方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234256A (en) 1978-04-03 1980-11-18 The Goodyear Tire & Rubber Company Determining depth location of separations within a tire
JPH0610164B2 (ja) 1985-07-16 1994-02-09 日清製粉株式会社 イソプレニル安息香酸エステル誘導体及びその製法
JP2003240521A (ja) 2002-02-21 2003-08-27 Bridgestone Corp 被検体の外観・形状検査方法とその装置、及び、被検体の外観・形状検出装置
DE102007009040C5 (de) 2007-02-16 2013-05-08 Bernward Mähner Vorrichtung und Verfahren zum Prüfen eines Reifens, insbesondere mittels eines interferometrischen Messverfahrens
JP5109598B2 (ja) 2007-11-02 2012-12-26 住友ゴム工業株式会社 物品検査方法
JP5670161B2 (ja) 2010-11-25 2015-02-18 東洋ゴム工業株式会社 タイヤの検査装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274515A (ja) * 1997-03-31 1998-10-13 Omron Corp 曲面検査方法及び検査用カメラユニット
JP2001174224A (ja) * 1999-04-09 2001-06-29 Steinbichler Optotechnik Gmbh タイヤ用検査装置
JP2001249012A (ja) * 1999-12-28 2001-09-14 Bridgestone Corp 被検体の外観形状検査方法及び装置
JP2009531690A (ja) * 2006-03-31 2009-09-03 メーナ,ベルンヴァルト 特に干渉測定法を用いてタイヤをチェックする装置とその方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3106860A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10837920B2 (en) 2016-04-05 2020-11-17 Pirelli Tyre S.P.A. Apparatus and method for checking tyres
EP3842793A1 (en) 2016-04-05 2021-06-30 Pirelli Tyre S.p.A. Apparatus and method for checking tyres
US11215567B2 (en) 2016-04-05 2022-01-04 Pirelli Tyre S.P.A. Apparatus and method for checking tyres
CN110038822A (zh) * 2019-04-20 2019-07-23 东莞中科蓝海智能视觉科技有限公司 反光圆环件的视觉检测方法

Also Published As

Publication number Publication date
EP3106860A4 (en) 2017-12-06
US20170024873A1 (en) 2017-01-26
EP3106860A1 (en) 2016-12-21
JPWO2015122295A1 (ja) 2017-03-30
EP3106860B1 (en) 2020-01-29
JP6168147B2 (ja) 2017-07-26
US9741109B2 (en) 2017-08-22

Similar Documents

Publication Publication Date Title
JP5135672B2 (ja) レーザ照射状態の検出方法およびレーザ照射状態検出システム
US9948841B2 (en) Tire shape testing device and tire shape testing method
US10386266B2 (en) Optical inspection device having a mirror for reflecting light rays, a method of producing a lens using the optical inspection device, and an optical inspection method using the optical inspection device
JP6168147B2 (ja) タイヤ内面撮像方法及びその装置
EP2101144B1 (en) Concave-convex surface inspection apparatus
JP3855756B2 (ja) 3次元色形状検出装置及び3次元スキャナー
JPH09273910A (ja) 光学式測定装置
JP6577488B2 (ja) ダイレクトイメージングシステムのキャリブレーション
US20080210886A1 (en) Laser processing method and laser processing apparatus
JP6230434B2 (ja) 画像検査装置、画像検査方法及び画像検査プログラム並びにコンピュータで読み取り可能な記録媒体
JP2006275536A (ja) 溶接部の検査装置
JP5807772B2 (ja) 欠陥検出装置およびその方法
JP6790380B2 (ja) 内面検査装置
JP5042503B2 (ja) 欠陥検出方法
JP6234253B2 (ja) 画像検査装置、画像検査方法及び画像検査プログラム並びにコンピュータで読み取り可能な記録媒体
US20220155065A1 (en) Measurement apparatus, control apparatus, and control method
JP2014235066A (ja) 表面形状測定装置
JPH10187939A (ja) 光学的検出装置及び光学的検出処理における照明方法
JP2005189205A (ja) 3次元形状計測装置および方法
KR20190027519A (ko) 레이저 가공 장치 및 레이저 가공 방법
KR100591312B1 (ko) 디스플레이 검사장치
JPH0587542A (ja) 曲面の測定方法及び装置
JP2009180597A (ja) 欠陥検出装置および欠陥検出方法
JP2021156846A (ja) 鋳造品検査装置
JP2009150818A (ja) 形状測定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015528753

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15118446

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015748454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015748454

Country of ref document: EP