WO2015121526A1 - Péptido, péptido magnético y método para detectar la enfermedad celíaca - Google Patents

Péptido, péptido magnético y método para detectar la enfermedad celíaca Download PDF

Info

Publication number
WO2015121526A1
WO2015121526A1 PCT/ES2015/070097 ES2015070097W WO2015121526A1 WO 2015121526 A1 WO2015121526 A1 WO 2015121526A1 ES 2015070097 W ES2015070097 W ES 2015070097W WO 2015121526 A1 WO2015121526 A1 WO 2015121526A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkylene
hydroxyalkylene
magnetic
cooh
seq
Prior art date
Application number
PCT/ES2015/070097
Other languages
English (en)
French (fr)
Inventor
Maria Isabel PIVIDORI GURGO
Silvina Vanesa KERGARAVAT
Original Assignee
Universitat Autònoma De Barcelona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Autònoma De Barcelona filed Critical Universitat Autònoma De Barcelona
Priority to EP15749357.8A priority Critical patent/EP3106466B1/en
Priority to CA2939476A priority patent/CA2939476C/en
Priority to US15/118,516 priority patent/US10156565B2/en
Publication of WO2015121526A1 publication Critical patent/WO2015121526A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/564Immunoassay; Biospecific binding assay; Materials therefor for pre-existing immune complex or autoimmune disease, i.e. systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, rheumatoid factors or complement components C1-C9
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/14Peptides being immobilised on, or in, an inorganic carrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/415Assays involving biological materials from specific organisms or of a specific nature from plants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/06Gastro-intestinal diseases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/06Gastro-intestinal diseases
    • G01N2800/065Bowel diseases, e.g. Crohn, ulcerative colitis, IBS

Definitions

  • the present invention relates to a method for the detection of celiac disease by the use of a peptide immobilized on magnetic particles.
  • Celiac Disease is a form of enteropathy that affects genetically predisposed individuals, by coming into contact with foods that contain gluten. This determines the appearance of a characteristic histological lesion, which in the most severe forms causes atrophy of the intestinal villi. As a consequence, there may be a defect in nutrient malabsorption (immediate principles, mineral salts and vitamins) that leads to various deficiency states responsible for a wide spectrum of clinical manifestations such as osteomalacia (softening of bones due to loss of calcareous salts), ulcers digestive and malignant processes such as gastrointestinal neoplasia.
  • osteomalacia softening of bones due to loss of calcareous salts
  • ulcers digestive and malignant processes such as gastrointestinal neoplasia.
  • CD can occur at any age of life and has very varied clinical manifestations, although in many cases the disease is asymptomatic. These premises make the role of the pediatrician and family physician in primary care especially important in early diagnosis, thus avoiding the development of serious long-term complications.
  • CD consists of a permanent intolerance to the gluten proteins of wheat (gliadin), rye (secalin), barley (hordein) and triticale (wheat and rye hybrid).
  • CD Crohn's disease
  • Serum markers are very useful as indicators of CD, although intestinal biopsy remains the definitive method to establish the diagnosis. These markers help to select the individuals most likely to have CD, being particularly useful in those without gastrointestinal symptoms, in those with diseases associated with CD and for the control of first-degree relatives of patients diagnosed. It should be considered, however, that the negativity of these markers does not definitively exclude the diagnosis, and it is sometimes necessary to resort to more advanced tests (genetic study) when the diagnostic suspicion is high.
  • Anti-gliadin antibodies were the first to be used, as described in Stern et al., Validation and standardization of serological screening tests for coeliac disease in 1996, 3rd EMRC / ESPGAN Workshop, Dec. 5-8, 1996 , Molsheim, France, p. 9-24. They are both IgA and IgG class. Those of the IgA class are preferably used and their efficacy for screening for EC is greater in children than in adults.
  • Anti-endomysial antibodies are also IgA class. Its sensitivity and its specificity are variable according to age. According to the document Early diagnosis of celiac disease, Ministry of Health and Consumption, Madrid, 2008, ( ⁇ IPO: 351-08-086-X), these antibodies have the disadvantage of the industriousness of their determination and their interpretation is subjective. In addition, it is known that some patients of CD have an IgA deficit, so these patients would be negative with this test.
  • Human IgA class anti-tissue transglutaminase antibodies (ATG 2 ) are considered sensitive, specific and very useful markers for both diagnosis such as monitoring of CD.
  • Other alternatives such as the combined ATG 2 -lgA / lgG antibodies have also been disclosed.
  • This selective deamidation may be the event that initiates the immune response to gluten in genetically predisposed individuals.
  • Serologic Assay Based on Gliadin-Related Nonapeptides as a Highiy Sensitive and Specific Diagnostic Aid in Celiac Disease, Clin. Chem., 2004, 50, 2370-2375 gliadin-derived nonapeptides are described that are recognized by the antibodies of patients with ED. It is also described that none of the deamidated octadecapeptides tested was a better epitope than the shorter chain peptides.
  • S-transferase or His-tag which may include tissue transaminase.
  • Said antigen is immobilized in magnetic particles modified with carboxyl groups.
  • the object of the present invention is a peptide.
  • Also part of the object of the invention is a magnetic peptide comprising said peptide and a particulate magnetic complex.
  • An immunosensor comprising said magnetic peptide is also part of the object of the invention.
  • a method of detecting celiac disease is also part of the object of the invention.
  • a kit for detecting celiac disease is also part of the object of the invention.
  • the object of the present invention is to provide a linear peptide that responds to the general formula (I):
  • X is Q or E interchangeably, and at least one X is E, and where:
  • n is between 2 and 20, and m is 0, or
  • n is 0.
  • Said peptide is suitable for use in a method for the detection of CD once immobilized with a particulate magnetic complex.
  • the authors of the present invention have developed a method for detecting celiac disease in which the peptide of general formula (I) immobilized on a particulate magnetic complex is used as an antigen, and which, surprisingly, allows detection with high sensitivity and specificity and, in addition, it is a simple and fast method.
  • H is L-histidine
  • L is L-leucine
  • F is L-phenylalanine
  • P is L-proline
  • Q is L-glutamine
  • E glutamic acid
  • the peptide of the invention responds to the general formula (I):
  • X is Q or E interchangeably, and at least one X is E, and where:
  • n is between 2 and 20, and m is 0, or
  • n is 0.
  • peptides defined by the sequences SEQ_ID_NO: 1 to 38, are derived from deamidated gliadin peptides to which a tail of between 2 and 20 histidines (H) at the / V-terminal end, where the amino group (NH 2 ) is located or at the C-terminal end, where the carboxyl group (COOH) is located, preferably n and are between 4 and 15, more preferably between 6 and 10 and even more preferably between 6 and 8.
  • the peptide of the invention responds to the general formula (I), wherein m is zero (0) and n is between 2 and 20, more preferably between 4 and 15, more preferably between 6 and 10 and even more preferably between 6 and 8.
  • the peptide of the invention responds to the general formula (I), wherein n is zero (0) and m is between 2 and 20, more preferably between 4 and 15, more preferably between 6 and 10 and even more preferably between 6 and 8.
  • the peptide of the invention is selected from the group consisting of:
  • the peptide of the invention is selected from the group consisting of:
  • the peptide of the invention is selected from the group consisting of:
  • Such conveniently modified peptides with a histidine tail are also suitable for use in the method of the invention.
  • they comprise between 2 and 20 histidines (H) at the / V-terminal end, that is n is between 2 and 20 and m is zero (0), or at the C-terminal end, this is m is between 2 and 20 and n is zero (0), preferably n and m are between 4 and 15, more preferably between 6 and 10 and even more preferably between 6 and 8.
  • More preferably said peptides comprise a histidine tail where m is zero (0 ) and n is 2 and 20, more preferably between 4 and 15, more preferably between 6 and 10 and even more preferably between 6 and 8.
  • the peptides described in the invention are formed by between 20 and 38 amino acids which makes them suitable for being prepared using the usual methods of solid phase peptide synthesis, such as those described by RB Merrifield, J. Am. Chem. Soc , 1963, 85, 2149-2154. They can also be purchased commercially, for example, from Eurogentec, S.A. (Seraing, Belgium) or GenScript (Piscataway, USA).
  • a magnetic peptide comprising:
  • X is Q or E interchangeably, and at least one X is E, and
  • n is between 2 and 20, and m is 0, or m is between 2 and 20, and n is 0, and b) a particulate magnetic complex of general formula (II):
  • Z is a magnetic polymer particle covalently bonded to the carboxymethylated aspartate ligand through F, it is a binding arm that connects the nitrogen atom of the carboxymethylated aspartate ligand with the magnetic polymer particle Z , and
  • M is an ion of a transition metal with a coordination number 6.
  • the peptide of the invention is immobilized on a magnetic polymer particle (hereinafter PM) by means of the histidine tail that complexes with the transition metal, and thus the coordination sphere of said metal is completed.
  • PM magnetic polymer particle
  • the coordination complex formed between a peptide containing a histidine tail and the transition metal can be classified as very strong.
  • the binding of the peptide with the transition metal is substantially a coordination complex, which does not include covalent bonds.
  • the particulate magnetic complex includes contracations, for example, Na + or Li + , to compensate for the excess negative charges of the carboxymethylated aspartate ligand that is part of it.
  • contracations for example, Na + or Li +
  • a magnetic polymeric particle is understood as a particle formed by a polymer containing a superparamagnetic substance. In this way the PMs are displaceable by the effect of a magnetic field, but they are not permanently magnetizable.
  • Functionalized magnetic polymer particle is understood to be that PM that includes functional groups preferably located on the surface thereof that allow the subsequent anchoring of other molecules.
  • PMs are usually formed from combinations of vinyl polymers (eg, styrene), acrylates and / or methacrylates.
  • the polymer can be crosslinked by incorporating crosslinking agents such as comonomers, for example, divylbenzene or ethylene glycol dimethacrylate.
  • the polymer is a crosslinked styrenic polymer, for example, a polymer formed by styrene and divinylbenzene, and which is functionalized on the surface thereof, or a crosslinked (meth) acrylic polymer functionalized on the surface with a comonomer containing, for example, an epoxy group.
  • the functionalization of the surface of the polymer particles allows to obtain functionalized PMs that facilitate the coupling of the carboxymethylated aspartate ligand to said particles.
  • Said functionalization can be carried out by incorporating, for example, carboxyl, nitro, amino, tosyl, epoxy, or thiol groups.
  • functionalized PMs are prepared from styrene polymers that are nitrated to introduce a nitro group on their surface. The reduction of the nitro group to the amino group by conventional means makes it possible to have PM functionalized with amino groups that can easily react with other groups, for example, halo-derivatives.
  • Iron oxides such as magnetite (Fe 3 0 4 ) can be used as superparamagnetic substance. Different procedures for the preparation of PM have been described, such as that found in US4654267.
  • the PM of the invention typically have an average diameter between 0.3 and 100 microns, preferably between 0.5 and 50 microns, more preferably between 0.8 and 8 microns, and even more preferably between 0.8 and 1.2. you love
  • PMs are substantially spherical and substantially monodispersed. It is understood by substantially monodisperse that for a plurality of particles, they have a coefficient of variation (CV) of less than 20%, preferably less than 15%, more preferably less than 10%, and more preferably no more than 8%, for example, between 2 and 5%.
  • CV coefficient of variation
  • carboxymethylated aspartate ligand is commonly used in protein purification by the affinity chromatography technique on immobilized metals (in IMAC English), as described, for example, in patent application WO-A-98/06739.
  • the carboxymethylate aspartate ligand is covalently bonded to the magnetic polymer particle Z through the F ⁇ binding arm.
  • Said joining can be done by means of different procedures. For example, it may be carried out by reaction between an electrophilic group of the functionalized ligand (for example, a haloalkylene, or an alkylenecarboxylic group) and a nucleophile group of Z (for example, an amino, aminoalkylene, hydroxy, hydroxyalkylene, thiol, or thioalkylene group ). It can also be carried out by reaction between a nucleophilic group of the functionalized ligand (for example, an aminoalkylene, hydroxyalkylene, or thioalkylene group) and an electrophilic group of Z (for example, a haloalkylene group, or a carboxylic group).
  • an electrophilic group of the functionalized ligand for example, a haloalkylene, or an alkylenecarboxylic group
  • Z for example, an amino, aminoalkylene, hydroxy, hydroxyalkylene, thiol, or thioalkylene
  • the reaction is carried out between the ligand modified with a nucleophilic group and an electrophilic group of Z, as described, for example, in the examples of patent application WO-A-2005/089933.
  • the ligand can be functionalized by introducing a nucleophile group, such as the amino group, so that it can react with an electrophilic group of the Z particle, for example, a methylene group that includes a halogen atom such as bromine.
  • the reactive group of the Z particle is preferably on the surface thereof and is the result of the functionalization of the polymer constituting said particle as set forth above.
  • the group that is the bonding arm between the nitrogen atom of the carboxymethylated aspartate ligand and the surface of the particle consists of a chain of between 3 and 20 atoms, more preferably between 5 and 20 atoms, and even more preferably of between 6 and 20 atoms.
  • the binding arm between the nitrogen atom of the carboxymethylated aspartate ligand and the Z particle is preferably selected from -alkylene-NH-, -alkylene-CO-NH-, -alkylene-NH-CO-, - alkylene-O- , -alkylene-CO-O-, -alkylene-O-CO-, -alkylene-S-, -alkylene-CO-S-, - alkylene-S-CO-, -alkylene-NH-alkylene-R 2 , - alkylene-NH-CO-alkylene-R 2 , alkylene-CO-NH-alkylene-R 2 , -alkylene-0-alkylene-R 2 , -alkylene-O-CO-alkylene- R 2 , -alkylene-CO-0 -alkylene-R 2 , -alkylene-S-alkylene-R 2 , -alkylene-CO-alkylene-
  • R ⁇ is selected from -alkylene-NH-, - alkylene-CO-NH-, -alkylene-NH-CO-, -alkylene-O-, -alkylene-CO-O-, -alkylene-O- CO -, -alkylene-NH-alkylene-R 2 , -alkylene-NH-CO-alkylene-R 2 , -alkylene-CO-NH-alkylene-R 2 , -alkylene-0-alkylene-R 2 , -alkylene-0 -CO-alkylene-R 2 , -alkylene-CO- 0-alkylene-R 2 , -hydroxyalkylene-NH-, -hydroxyalkylene-CO-NH-, -hydroxyalkylene-NH- CO-, -hydroxyalkylene-O-, -hydroxyalkylene -CO-O-, -hydroxyalkylene-O-CO-, hydroxyalkylene-NH-alkylene-
  • R ⁇ is selected from -alkylene-NH-alkylene-R 2 , -alkylene-NH-CO-alkylene-R 2 , -alkylene-CO- NH-alkylene-R 2 , -alkylene-0-alkylene- R 2 , -alkylene-0-CO-alkylene-R 2 , and -alkylene-CO-0-alkylene-R 2 ; even more preferably between -alkylene-NH-alkylene-R 2 , and -alkylene-0-alkylene-R 2 ; even more preferably it is -alkylene-NH-alkylene-R 2 , wherein R 2 is a functional linking group and preferably it is O, S or NH, and more preferably it is NH.
  • R ⁇ is the group - (CH 2 ) x -NH- (CH 2 ) and -NH, where x and y are between 1 and 6, more preferably between 3 and 5, where the group (CH 2 ) X is attached to the nitrogen atom of the carboxymethylated aspartate ligand, and the NH group on the right is the one that is attached to the magnetic polymer particle Z.
  • Transition metal is the group - (CH 2 ) x -NH- (CH 2 ) and -NH, where x and y are between 1 and 6, more preferably between 3 and 5, where the group (CH 2 ) X is attached to the nitrogen atom of the carboxymethylated aspartate ligand, and the NH group on the right is the one that is attached to the magnetic polymer particle Z.
  • the transition metal M with a coordination number 6 is preferably selected from the group consisting of Ni, Fe, Ga, Mn, Co, Cu and Zn, more preferably Ni, Fe, Mn and Co, and more preferably Co.
  • the transition metal ion M preferably has an oxidation state of +2 or +3, more preferably it is +2. Particularly preferred the transition metal ion is Co +2 .
  • the metal M is complexed by the three carboxylate groups and the amino group of the carboxymethylated aspartate binder.
  • a salt of the metal for example, it can be prepared by suspending the magnetic polymer particles comprising the ligand in water and adding to said suspension a solution of a corresponding metal salt.
  • the following salts can be used: CoCI 2 , CuS0 4 , FeCI 3 , GaCI 2 , GaCI 3 , MnS0 4 , NiCI 2 , or ZnCI 2 .
  • the particulate magnetic complexes that are part of the magnetic peptide of the invention can be prepared using methods analogous to those described above, or they can be purchased commercially through the Clontech companies, Invitrogen Dynal, Merck Millipore. Especially preferred are the particulate magnetic complexes called Dynabeads ® TALON ® which can be obtained commercially through the company Invitrogen Dynal (Oslo, Norway), and which respond to the particulate magnetic complex obtained in Example 4 of patent application WO-A- 2007/089933.
  • the magnetic peptide is obtained by immobilization of the peptide of the invention on the particulate magnetic complex.
  • Such immobilization can be carried out, for example, using the conditions described by the manufacturer for the Dynabeads ® TALON ® product , for example, in the Manuals and Protocols section of the website http://lifetechnologies.com/, or in the technical brochure of it. It is a process of incubation of the peptide with said particulate magnetic complex within an immobilization buffer formed by 0.05 M sodium phosphate, pH 8, 0.3 M NaCI, and 0.01% Tween ® 20 (sorbitan monolaurate with 20 moles of ethylene oxide) for a period of about 10 minutes at a temperature of 25 ° C.
  • an immobilization buffer formed by 0.05 M sodium phosphate, pH 8, 0.3 M NaCI, and 0.01% Tween ® 20 (sorbitan monolaurate with 20 moles of ethylene oxide) for a period of about 10 minutes at a temperature of 25 ° C.
  • the efficiency of immobilization to obtain the magnetic peptide of the invention is practically quantitative.
  • the magnetic peptide of the invention comprises the peptide defined by the sequence SEQ_ID_NO: 39, Z are polystyrene magnetic particles, F is the group - (CH 2 ) 5-NH- (CH 2 ) 3-NH, and M is Co 2+ , where the group (CH 2 ) 5 is attached to the nitrogen atom of the carboxymethylated aspartate ligand, and the NH group on the right is the one that is attached to the magnetic polymer particle Z.
  • An immunosensor comprising the magnetic peptide of the invention and a transducer having a magnet attached or integrated is part of the invention.
  • an immunosensor consists of a biological recognition element (antigen or antibody) and a transducer (electrochemical: potentiometric, amperometric or conductimetric; optical; piezoelectric; thermometric; magnetic; micromechanical). Some of them are defined as direct, in which a physical change is detected during the formation of the complex and others as indirect, in which the signal is generated by a marker (usually enzymatic).
  • the transducer is preferably electrochemical or optical.
  • the method is carried out by the use of an immunosensor comprising an electrochemical transducer which has been included with a magnet.
  • electrochemical measurements based on three types of analytical signals (potential, current and load), are performed in an electrochemical cell consisting of two or more electrodes and electronically associated to control and measure the potential and current.
  • electrochemical cells consisting of two or more electrodes and electronically associated to control and measure the potential and current.
  • the method of detecting celiac disease consists in what is called an immunoassay which, within the framework of the present invention, includes sets of laboratory analytical immunochemical techniques that have in common the use of immune complexes, that is the result of making interact antibodies with antigens, in order to detect and / or quantify analytes in samples.
  • the selectivity of antibodies to bind their ligands allows these biomolecules to be used in highly specific analytical methods when it comes to complex matrices such as blood, plasma or urine.
  • immunoassays By combining the selectivity of antibody-antigen interactions with a wide variety of preformed antibodies in the immunization processes of host animals and the availability of numerous readily detectable markers (radioisotopes, absorbance, fluorescence or chemiluminescence enzymatically or electrochemically induced) immunoassays can be designed for a wide variety of analytes with extraordinarily low detection limits. Examples of these limits are concentration levels of hormones, enzymes, viruses, tumor and bacterial antigens close to 10 "12-10 " 9 mol / L.
  • markers include radioactive elements (eg, sulfur, iodine, etc.); enzymes (for example, peroxidase, glycosidase, alkaline phosphatase, HRP peroxidase, glucose-6-phosphate dehydrogenase, ⁇ - galactosidase, ⁇ -glucosidase, ⁇ -glucuronidase, etc.); fluorescent compounds or dyes (for example, fluorescein, rhodamine, etc.), phosphorescent or chemiluminescent (for example, dioxetanes, acridiniums, phenanthridines, ruthenium, luminol, etc.).
  • radioactive elements eg, sulfur, iodine, etc.
  • enzymes for example, peroxidase, glycosidase, alkaline phosphatase, HRP peroxidase, glucose-6-phosphate dehydrogenase, ⁇ - galactosidase, ⁇
  • the selection of a particular marker is not critical, as long as it is capable of producing a signal by itself or in conjunction with one or more additional substances.
  • the complex formed can be detected or visualized by any appropriate technique, depending on the chosen marker, well known to those skilled in the art, using the appropriate devices, for example, by techniques based on radioactive, electrochemical, colorimetric, fluorimetric methods, (chemo) luminescent, etc., all known to those skilled in the art.
  • the detection of the complex (antigen-antibody) / label can be carried out by contacting said complex with an appropriate substrate and, optionally, with the activators and / or enzymatic amplifying agents appropriate.
  • substrates include for:
  • p-NPP p-nitrophenyl phosphate
  • CPPCQ 2- (5- chloro-2'-phosphoryloxyphenyl) -6-chloro-4- (3H) quinazolinone
  • - peroxidases substrates based on 2,2-azinobis (3-ethylbenzothiazolin-6- sulfonic acid) (ABTS), ophenylenediamine (OPT), 3,3 ', 5,5'-tetramethylbenzidine (TMB), o-dianisidine, acid 5-aminosalicylic, 3-dimethylaminobenzoic acid (DMAB) and 3-methyl-2-benzothiazolinhydrazone (MBTH), 3-amino-9-ethylcarbazole (AEC) and 3,3'-diaminobenzidine tetrachloride (DAB), 4-hydroxy-3 acid - methoxyphenylacetic, reduced phenoxazines and reduced benzothiazines.
  • ABTS 2,2-azinobis (3-ethylbenzothiazolin-6- sulfonic acid)
  • OPT ophenylenediamine
  • TMB 3,3 ', 5,5'-tetramethyl
  • o-NPG o-nitrophenyl- ⁇ -D-galactoside
  • p-nitrophenyl- ⁇ -D-galactoside p-nitrophenyl- ⁇ -D-galactoside
  • 4-methylumbelliphenyl- ⁇ -D-galactoside UMG
  • immunoassay formats suitable for the implementation of the methods of the present invention include ELISA (enzyme-linked immunosorbent assay), DAS-ELISA ("Double Antibody Sandwich-ELISA"), DELFIA (fluoroimmunoassay of increased dissociation by lanthanides), FPIA (fluorescence polarization immunoassay), CMIA (chemiluminescent magnetic immunoassay), IRMA (heterogeneous and non-competitive radioimmunoassay), MEIA (microparticle immunoassay), luminoimmunoassays, immunocytochemical immunochemical assays based on colloidal precipitation (dipsticks).
  • ELISA enzyme-linked immunosorbent assay
  • DAS-ELISA Double Antibody Sandwich-ELISA
  • DELFIA fluoroimmunoassay of increased dissociation by lanthanides
  • FPIA fluorescence polarization immunoassay
  • CMIA chemiluminescent magnetic immuno
  • Illustrative, non-limiting examples of platforms for performing these immunoassays include microtiter plates, biochips, biosensors (eg, immunosensors) or microarrays, lab-on-a-chip, dipsticks, side-flow chromatography immunoassays based on the use of immunochromatographic strips, and, in all cases, to which a magnet has been attached or integrated.
  • a method of detecting celiac disease is also part of the object of the invention, comprising the following steps:
  • anti-human serum-HRP antibodies are used, which are preferably anti-human IgA-HRP, where HRP corresponds to the enzyme horseradish peroxidase, because they have advantages over other antibodies.
  • HRP peroxidase is a 40 kDa protein that catalyzes the oxidation of substrates by means of hydrogen peroxide, resulting in a colored or fluorescent product or the emission of light as a secondary product. Said enzyme works optimally at an approximately neutral pH, and can be inhibited by cyanides, sulfides and azides.
  • the antibody-HRP conjugates are superior to the antibody-alkaline phosphatase conjugates with respect to the specific activities of the enzyme and the antibody.
  • said peroxidase has a high enzymatic speed, good stability, low cost and wide availability, making it one of the enzymes to choose for most applications.
  • the method of the invention is an immunoassay in which the antigen immobilized in the magnetic particle (magnetic peptide of the invention) captures the antibody to be investigated (present in the serum or blood of an individual) and the immunocomplex thus formed is then binds to an antibody labeled with the enzyme (human anti-IgA-HRP) that generates an electrochemical or optical signal directly proportional to the concentration of antibody in the sample, once the entire immunocomplex is captured on a platform for detection from of the application of permanent magnetic field.
  • the incubation can be carried out in Eppendorff tubes using between 50 and 100 ⁇ _, preferably between 60 and 80 ⁇ _ of a magnetic peptide solution of the invention at a concentration of 0.2 mg / mL.
  • Incubation of the suspension of the magnetic peptide with a serum or blood sample of an individual who may suffer from CD is usually carried out at a temperature between 20 ° C and 27 ° C, preferably around 25 ° C, during a period of time between 20 and 45 minutes, preferably between 25 and 35 minutes, and even more preferably about 30 minutes.
  • Incubation of the suspension obtained after adding human anti-IgA-HRP is usually carried out at a temperature between 20 ° C and 27 ° C, preferably around 25 ° C, for a period of time between 20 and 45 minutes, preferably between 25 and 35 minutes, and even more preferably about 30 minutes.
  • the measurement of the electrochemical or optical signal can be carried out by measuring a signal generated by the HRP enzyme by reaction with hydrogen peroxide as a substrate and a mediator selected from a group consisting of phenol, o-phenylenediamine (OPD), 3, 3 ', 5,5'-tetramethylbenzidine (TB), hydroquinone, p-chlorophenol, pyrocatechol and p-aminophenol.
  • a mediator selected from a group consisting of phenol, o-phenylenediamine (OPD), 3, 3 ', 5,5'-tetramethylbenzidine (TB), hydroquinone, p-chlorophenol, pyrocatechol and p-aminophenol.
  • OPD o-phenylenediamine
  • TB 3, 3 ', 5,5'-tetramethylbenzidine
  • hydroquinone p-chlorophenol
  • pyrocatechol pyrocatechol
  • p-aminophenol p-amino
  • the use of the peptide of the invention to detect celiac disease is part of the object of the invention.
  • the use of the magnetic peptide of the invention to detect celiac disease is also part of the object of the invention.
  • the use of the immunosensor to detect celiac disease is also part of the object of the invention.
  • a kit for detecting celiac disease comprising the magnetic peptide of the invention is also part of the invention.
  • the kit of the invention includes, in addition to the magnetic peptide, a suitable immunoassay or platform for the implementation of the method for detecting celiac disease.
  • immunoassay formats suitable for the implementation of the methods of the present invention include ELISA (enzyme-linked immunosorbent assay), DAS-ELISA ("Double Antibody Sandwich-ELISA"), DELFIA (fluoroimmunoassay of dissociation lanthanide augmentation), FPIA (fluorescence polarization immunoassay), CMIA (chemiluminescent magnetic immunoassay), IRMA (heterogeneous and non-competitive radioimmunoassay), MEIA (microparticle immunoassay), luminoimmunoassays, immunocytochemical and histo-immunochemical assays colloidal precipitation (dipsticks).
  • Illustrative, non-limiting examples of platforms for performing these immunoassays include microtiter plates, biochips, biosensors (eg, immunosensors) or microarrays, lab-on-a-chip, dipsticks, side-flow chromatography immunoassays based on the use of immunochromatographic strips, and, in all cases, to which a magnet has been attached or integrated.
  • Sensitivity corresponds to the probability of obtaining a positive result when the individual has the disease, and is defined by the following equation:
  • vp corresponds to a truly positive sample and fn corresponds to a false negative sample.
  • the specificity is calculated as the probability of obtaining a negative result when the individual does not have the disease and is defined by the following equation:
  • vn corresponds to a truly negative sample
  • fp corresponds to a false positive sample.
  • An ideal diagnostic test should have an SE and an ES as close to 100% as possible. In practice, tests whose SE and ES are below 80% should be doubted.
  • the immunosensor with the magnetic peptide of the invention presents for the various samples tested the greatest electrochemical signals and allowed a better differentiation between positive and negative samples with respect to! immunosensor obtained in Reference Example 1, in which the peptide of the invention covalently bound to magnetic polymer particles functionalized with tosyl groups.
  • the immunosensor with the magnetic peptide of the invention presented a sensitivity of 100%, a specificity of 100%, and an efficiency of 100%, while the immunosensor with the peptide attached covalently it presented a sensitivity of 86%, a specificity of 75%, and an efficiency of 82%, where this last parameter is calculated as a percentage of the correctly positive and correctly negative results with respect to the expected reference value.
  • the magnetic peptide of the invention which comprises the peptide of the invention and a particulate magnetic complex, allows providing a method of detecting EC with a selectivity and specificity significantly superior to those of the other methods of detection described in the state of the art.
  • the peptide defined by the sequence SEQ_ID_NO: 40 modified with biotin is used in a lanthanide solid phase immunofluorometric assay, it has a higher sensitivity and specificity, 100 % vs. 92%, and 100% vs.
  • the peptide of the invention has a higher sensitivity and specificity, 100% vs. 85% and 100% vs. 95 %, respectively.
  • Said method constitutes a rapid, economical, minimal manipulation detection test and can be used for outpatient analysis, whereby the object of the invention represents a significant development for the detection of celiac disease.
  • electrochemical methodologies have the potential, as opposed to optical ELISAs, to develop Small devices that reduce sample volume and reagents and be coupled to portable instruments easily transportable to different health centers away from large urbanizations.
  • the immobilization of the peptides on the magnetic particles was carried out using a Termomixer Eppendorf. Nunc brand polystyrene ELISA plates (Roskilde, Denmark) were used. The magnetic separation of the particles was carried out by means of a Dynal MPC-S magnetic separator (Dynal, Norway). In the incubation and washing steps, a MS1 Miniagitator (IKA, R.F.A.) and a Termomixer Eppendorf were used. The optical and electrochemical measurements were made with a TECAN Sunrise plate reader and with an LC-4C amperometric controller (BAS Bioanalytical System Inc., USA).
  • An electrochemical cell consisting of a system of three independent electrodes was used: an m-GEC electrode (graphite-epoxy composite with magnetic connector, for its acronym in English) as work; a platinum electrode as auxiliary and an Ag / AgCI electrode in 3 mol L "1 NaCI solution as a reference (Orion 92-02-00).
  • the m-GEC electrodes are described in Zaceo et al., Electrochemical Magnetoimmunosensing Strategy for the Detection of Pesticides Residues, Anal. Chem., 2006, 78, 1780-1788.
  • Ten m-GEC electrodes were prepared with their magnetic connectors and the CV% obtained from the average of the magnetic inductions measured at the center of the surface of the electrode was 6.4%.
  • the deamidated gliadin peptide (PDG) of the sequence HHHHHHLPFPEQPEQPFPQPEQPQ (99.2% purity) was immobilized on the magnetic particles (PM) of 1 ⁇ in diameter modified with Dynabeads MyOne Tosylactivated tosyl groups (Invitrogen Dynal AS, Oslo, Norway) following the protocol suggested by the manufacturer. For this, 10 mg of PM, equivalent to a volume of 100 ⁇ _ (100 mg ml_ "1 ) was washed twice with 200 ⁇ _ of immobilization buffer solution (0.05 M sodium phosphate, pH 8).
  • PM magnetic particles
  • the PM were resuspended in 83 ⁇ _ of 3 mol L “1 , 50 ⁇ _ ammonium sulfate of the concentrated PDG solution (4.3 mg ml_ " 1 ), and immobilization buffer solution was added until reaching a final volume of 250 ⁇ _
  • the PMs were incubated for 24 hours at 37 ° C and 800 rpm.
  • the supernatant was removed with the help of a magnet and the modified PMs were resuspended in 250 ⁇ _ of blocking buffer solution and incubated overnight in them conditions that the immobilization
  • the PMs were subjected to three washing steps with the wash buffer solution and finally resuspended in the preservation buffer solution to achieve the concentrated solutions of 4 mg mL "1 of PM-PDG which were preserved at 4 ° C
  • Example 1 Dynabeads ® magnetic particle peptide immobilization
  • the deamidated gliadin peptide (PDG) of the sequence HHHHHHLPFPEQPEQPFPQPEQPQ (99.2% purity) was immobilized on the magnetic particles (PM) of 1 ⁇ in diameter Dynabeads ® TALON ® (Invitrogen Dynal AS, Oslo, Norway) following the protocol suggested by the manufacturer.
  • the supernatant liquid from each tube was separated with the help of a magnet and the modified PM was washed four times with 700 L of the immobilization / wash buffer solution and finally resuspended in PBS buffer to achieve a working solution of 4 mg / mL, from which a diluted solution with a concentration of 0.2 mg / mL was prepared .
  • Example 2 Screening tests for celiac disease Detection assays were performed using an electrochemical cell and also using the ELISA optical immunoassay.
  • the detection test comprised the following stages:
  • Electrochemical measurement in the last washing stage the modified magnetic particles were captured by the m-GEC electrodes and this working electrode together with the reference and auxiliary electrodes were immersed in 20 mL of PBS buffer solution contained in an electrochemical cell .
  • the amperometric signal was based on the enzymatic activity of HRP after the addition of hydroquinone (2.0 ⁇ 10-3 mol / L) as a mediator and H 2 0 2 (2.0 ⁇ 10 ⁇ 3 mol / L) as a substrate .
  • Human anti-human IgG-HRP antibodies were obtained from Sigma-Aldrich.
  • an ELISA test with optical detection was performed on a 96-well plate, which included the following steps:
  • First incubation stage 70 of the 0.2 mg / mL solution of the magnetic peptide obtained in Example 1, were incubated with 70 ⁇ of the positive and negative controls, and of test serum in microtiter plates, under conditions Stirring for 30 min at room temperature, and then three washes were performed with 100 ⁇ ⁇ - of PBST, applying a magnetic field between the washes in order to separate the modified PM from the supernatant.
  • Second incubation stage 100 ⁇ of human anti-IgA-HRP diluted 1: 20,000 was added and the resulting immunocomplex was incubated for 30 min at room temperature under stirring conditions. Subsequently, the washing step explained in (1) was applied again.
  • Table I shows the results obtained (sensitivity, SE, and specificity, ES) with the magnetic peptide of the invention (Example 1) both with the electrochemical immunosensor, as with the ELISA optical immunoassay and the results obtained in hospitals of origin for the same samples (23) through the use of commercial methods:
  • the method of the invention has a sensitivity and specificity superior to other methods described in the state of the art based on the detection of antibodies against gliadin deamidated peptides.
  • Example 3 Screening test for celiac disease with two types of magnetic peptides
  • Example 1 The magnetic peptides obtained in Example 1 and in the Comparative Example were tested according to a procedure substantially analogous to that of Example 2. Eleven samples were tested: seven positive sera and four negative sera.
  • Example 13 Comparative test for the detection of celiac disease with magnetic peptides of different sequences

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Rehabilitation Therapy (AREA)
  • Rheumatology (AREA)
  • Inorganic Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

La presente invención se refiere a un péptido, a un péptido magnético y a un método para detectar la enfermedad celíaca. También se refiere a un péptido desamidado que se emplea para preparar dicho péptido magnético, y al empleo de ambos para la detección de la enfermedad celíaca. Dicho péptido desamidado comprende una cola de histidinas y está unido a un complejo magnético particulado. También se refiere a un inmunosensor que comprende dicho péptido magnético, a un método apropiado para detectar la enfermedad celíaca basado en un immunoensayo magnético y a un kit que comprende dicho péptido magnético.

Description

PÉPTIDO, PÉPTIDO MAGNETICO Y MÉTODO PARA DETECTAR LA ENFERMEDAD CELÍACA
Campo de la técnica
La presente invención se refiere a un método para la detección de la enfermedad celíaca mediante el empleo de un péptido inmovilizado sobre partículas magnéticas.
Estado de la técnica anterior
La Enfermedad Celíaca (EC) es una forma de enteropatía que afecta a individuos genéticamente predispuestos, al entrar en contacto con alimentos que contienen gluten. Ello determina la aparición de una lesión histológica característica, que en las formas más graves provoca atrofia de las vellosidades intestinales. Como consecuencia de ello, puede producirse un defecto de malabsorción de nutrientes (principios inmediatos, sales minerales y vitaminas) que conduce a diversos estados carenciales responsables de un amplio espectro de manifestaciones clínicas como osteomalacia (reblandecimiento de huesos por pérdida de sales calcáreas), úlceras digestivas y procesos malignos como neoplasia gastrointestinal.
La EC puede presentarse a cualquier edad de la vida y cursa con manifestaciones clínicas muy variadas, aunque en muchos casos la enfermedad es asintomática. Estas premisas hacen especialmente relevante el papel del pediatra y del médico de familia en atención primaria en el diagnóstico precoz, evitando así el desarrollo de complicaciones graves a largo plazo.
La EC consiste en una intolerancia permanente a las proteínas del gluten del trigo (gliadina), del centeno (secalina), de la cebada (hordeina) y del triticale (híbrido de trigo y centeno).
A pesar de que esta enfermedad fue considerada rara en muchos países europeos, la disponibilidad de ensayos serológicos sensibles no invasivos han permitido detectar la enfermedad celíaca en la población en general.
La prevalencia mundial se estima en 1/266, y en España oscila entre 1/118 en la población infantil y 1/389 en la población adulta. Sin embargo, se considera que la epidemiología de la EC tiene las características de un iceberg ya que esta prevalencia podría ser mucho mayor, puesto que un porcentaje importante de casos permanece sin detectar. Se estima que por cada paciente diagnosticado se encuentran entre 5 y 10 que no lo son. Así, según diversos estudios epidemiológicos realizados en todo el mundo, la EC sin sintomatología clásica es más frecuente que la forma sintomática, constituyendo un reto para el sistema sanitario su detección precoz.
Inicialmente, la detección de la enfermedad celíaca se basaba en un ensayo de malabsorción mediante el empleo de D-xilosa. Posteriormente se empezaron a utilizar ensayos serológicos para anticuerpos anti-gliadina (AGA) y anticuerpos anti-endomisio (EMA). Más adelante se incorporó la detección de los anticuerpos anti-transglutaminasa tisular 2 (ATG2) y, más recientemente, de los anticuerpos anti-péptidos desamidados de gliadina (APDG).
Los marcadores séricos son de gran utilidad como indicadores de EC, si bien la biopsia intestinal sigue siendo el método definitivo para establecer el diagnóstico. Dichos marcadores ayudan a seleccionar a los individuos con mayor probabilidad de presentar la EC, siendo particularmente útiles en aquéllos sin síntomas gastrointestinales, en aquellos con enfermedades asociadas a la EC y para el control de familiares de primer grado de enfermos diagnosticados. Debe considerarse, no obstante, que la negatividad de estos marcadores no excluye definitivamente el diagnóstico, siendo necesario en ocasiones recurrir a pruebas más avanzadas (estudio genético) cuando la sospecha diagnóstica es elevada.
Los anticuerpos anti-gliadina (AGA) fueron los primeros en utilizarse, tal como se describe en Stern et al., Validation and standardization of serological screening tests for coeliac disease in 1996, 3rd EMRC/ESPGAN Workshop, Dec. 5-8, 1996, Molsheim, Francia, pág. 9-24. Son tanto de clase IgA como IgG. Se utilizan preferentemente los de clase IgA y su eficacia para el cribado de EC es mayor en niños que en adultos.
Los anticuerpos anti-endomisio (EMA) son también de clase IgA. Su sensibilidad y su especificidad son variables según la edad. Según el documento Diagnóstico precoz de la enfermedad celíaca, Ministerio de Sanidad y Consumo, Madrid, 2008, (ÑIPO: 351-08-086-X), dichos anticuerpos tienen el inconveniente de la laboriosidad de su determinación y su interpretación es subjetiva. Además, es conocido que algunos pacientes de la EC presentan un déficit de IgA, por lo que dichos pacientes darían negativos con este test.
Los anticuerpos anti-transglutaminasa tisular humana de clase IgA (ATG2) se consideran marcadores sensibles, específicos y muy útiles tanto para el diagnóstico como el seguimiento de la EC. También se han divulgado otras alternativas como los anticuerpos combinados ATG2-lgA/lgG.
En el estado de la técnica se han descrito diversos métodos en los que se emplean los anticuerpos ATG2. Por ejemplo, en el artículo Kergeravat et al., Magneto immunofluorescence assay for diagnosis of celiac disease, Anal. Chim Acta., 2013, 798, 89-96 se describe un método para el diagnóstico de la EC basado en la detección de anticuerpos anti-ATG2 mediante el uso de la enzima ATG2 inmovilizada en partículas magnéticas y la detección se realizó por inmunofluorescencia. Se describe que dicho ensayo presentó una sensibilidad del 96,6% y una especificidad del 89,5%, y una eficiencia del 93,8% comparado con el kit comercial ELISA.
Para evitar la toma de muestras de sangre también se ha divulgado la detección de anticuerpos ATG2 en saliva como, por ejemplo, en la solicitud de patente norteamericana US-A-2008/0038760.
Posteriormente, tal como se describe en Aleanzi et al., Antibody Recognition against Native and Selectively Deamidated Gliadin Peptides, Clin. Chem., 2001 , 47, 2023-2028, se comenzó a estudiar la relación entre la enfermedad celíaca y los APDG del isotipo IgG e IgA, ya que en la enfermedad celíaca, los péptidos de gliadina ingeridos en la dieta son selectivamente desamidados en el intestino por la enzima TG2, de modo que la glutamina, H2NCOCH2CH(NH2)COOH, es transformada por dicha enzima en ácido glutámico, HOOCCH2CH(NH2)COOH. Esta desamidación selectiva puede ser el evento que inicia la respuesta inmune al gluten en individuos predispuestos genéticamente. En Schwertz et ai, Serologic Assay Based on Gliadin- Related Nonapeptides as a Highiy Sensitive and Specific Diagnostic Aid in Celiac Disease, Clin. Chem., 2004, 50, 2370-2375, se describen nonapéptidos derivados de gliadina que son reconocidos por los anticuerpos de pacientes con la ED. También se describe que ninguno de los octadecapéptidos desamidados ensayados fue mejor epitopo que los péptidos de cadena más corta.
En el estado de la técnica se han descrito métodos para detectar estos anticuerpos APDG. Dichos métodos se basan en ensayos ELISA con detección óptica como, por ejemplo, el descrito en Sakly et al., Performance of anti-deamidated gliadin peptides antibodies in celiac disease diagnosis, Clin. Res. Hepatol. Gastroenterol., 2012, 36, 598-603, o un ensayo inmunofluorimétrico como el descrito en Ankelo et al., Antibody responses to deamidated gliadin peptide show high specificity and parallel antibodies to tissue transglutaminase in developing coeliac disease, Clin. Exp. Immunol., 2007, 150, 285-293. En el estado de la técnica se siguen divulgando nuevos métodos para la detección de la EC. Por ejemplo, en la solicitud de patente internacional WO-A- 2009/131909 se describe un método para detectar la EC en un individuo en el que se emplea un antígeno formado por una gliadina recombinante desamidada unida a una cola tal como la proteína glutationa-S-transferasa o His-tag, que puede incluir transaminasa tisular. Dicho antígeno se encuentra inmovilizado en partículas magnéticas modificadas con grupos carboxilo.
Recientemente, en la solicitud de patente internacional WO-A- 2013/083866, se ha descrito el empleo de anticuerpos anti-beta-lactoglobulina en el diagnóstico y el seguimiento de la EC mediante el análisis de una muestra de sangre del paciente.
A pesar de las soluciones descritas en el estado de la técnica, persiste la necesidad de proporcionar un método simple, rápido y con una selectividad y especificidad mejoradas para detectar la enfermedad celíaca y superar, al menos en parte, los inconvenientes que presentan los métodos del estado de la técnica.
Objeto de la invención
El objeto de la presente invención es un péptido.
Forma también parte del objeto de la invención un péptido magnético que comprende dicho péptido y un complejo magnético particulado.
También forma parte del objeto de la invención un inmunosensor que comprende dicho péptido magnético.
También forma parte del objeto de la invención un método para detectar la enfermedad celíaca.
Forma parte también del objeto de la invención el uso de dicho péptido para detectar la enfermedad celíaca.
También forma parte del objeto de la invención el uso de dicho péptido magnético para detectar la enfermedad celíaca.
También forma parte del objeto de la invención el uso de dicho inmunosensor para detectar la enfermedad celíaca.
Forma parte también del objeto de la invención un kit para detectar la enfermedad celíaca.
Descripción detallada de la invención El objeto de la presente invención es proporcionar un péptido lineal que responde a la fórmula general (I):
H2N-(H)n-LPFPXXPXXPFPXPXXPX-(H)m-COOH (I) en donde:
X es Q o E indistintamente, y al menos un X es E, y en donde:
n está comprendido entre 2 y 20, y m es 0, o
m está comprendido entre 2 y 20, y n es 0.
Dicho péptido resulta apropiado para ser empleado en un método para la detección de la EC una vez inmovilizado con un complejo magnético particulado.
Los autores de la presente invención han desarrollado un método para detectar la enfermedad celíaca en el que se emplea como antígeno el péptido de fórmula general (I) inmovilizado sobre un complejo magnético particulado, y que, sorprendentemente, permite una detección con una elevada sensibilidad y especificidad y, además, se trata de un método simple y rápido.
Las abreviaturas empleadas para los aminoácidos en esta descripción siguen la normativa de la Comisión para la Nomenclatura Bioquímica de la IUPAC- IUB, según se describe en el artículo Nomenclature and symbolism for amino acids and peptides, Puré & Appl. Chem., 1984, 56(5), 595-624. De esta forma H es L- histidina, L es L-leucina, F es L-fenilalanina, P es L-prolina, Q es L-glutamina y E es ácido glutámico.
En la presente descripción, así como en las reivindicaciones, las formas singular "un", "una" y "el" o "la" incluyen la referencia en plural a menos que el contexto indique claramente lo contrario.
Péptido
El péptido de la invención responde a la fórmula general (I):
H2N-(H)n-LPFPXXPXXPFPXPXXPX-(H)m-COOH (I) en donde:
X es Q o E indistintamente, y al menos un X es E, y en donde:
n está comprendido entre 2 y 20, y m es 0, o
m está comprendido entre 2 y 20, y n es 0.
Dichos péptidos, definidos por las secuencias SEQ_ID_NO: 1 a 38, derivan de péptidos desamidados de gliadina a los que se ha añadido una cola de entre 2 y 20 histidinas (H) en el extremo /V-terminal, donde se encuentra el grupo amino (NH2) o en el extremo C-terminal, donde se encuentra el grupo carboxilo (COOH), preferiblemente n y m están comprendidas entre 4 y 15, más preferiblemente entre 6 y 10 y aún más preferiblemente entre 6 y 8.
Más preferiblemente el péptido de la invención responde a la fórmula general (I), en donde m es cero (0) y n está comprendida entre 2 y 20, más preferiblemente entre 4 y 15, más preferiblemente entre 6 y 10 y aún más preferiblemente entre 6 y 8.
En otra realización preferida, el péptido de la invención responde a la fórmula general (I), en donde n es cero (0) y m está entre 2 y 20, más preferiblemente entre 4 y 15, más preferiblemente entre 6 y 10 y aún más preferiblemente entre 6 y 8.
De forma más preferida, el péptido de la invención se selecciona del grupo formado por:
H2N-(H)6-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 39),
H2N-(H)6-LPFPQQPQQPFPQPQQPQ-COOH (SEQ_ID_NO: 53),
H2N-LPFPEQPEQPFPQPEQPQ-(H)6-COOH (SEQ_ID_NO: 54),
H2N-LPFPEQPEQPFPQPEEPQ-(H)6-COOH (SEQ_ID_NO: 55),
H2N-LPFPEQPEQPFPQPEQPQ-(H)2-COOH (SEQ_ID_NO: 56),
H2N-(H)4-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 57),
H2N-(H)10-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 58),
H2N-LPFPEQPEQPFPQPEQPQ-(H)6-COOH (SEQ_ID_NO: 59),
H2N-LPFPEQPEQPFPEPEQPQ-(H)6-COOH (SEQ_ID_NO: 60), y
H2N-(H)2-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 61).
Aún más preferiblemente, el péptido de la invención se selecciona del grupo formado por:
H2N-(H)6-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 39),
H2N-(H)6-LPFPQQPQQPFPQPQQPQ-COOH (SEQ_ID_NO: 53),
H2N-LPFPEQPEQPFPQPEQPQ-(H)6-COOH (SEQ_ID_NO: 54),
H2N-(H)4-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 57),
H2N-(H)10-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 58),
H2N-LPFPEQPEQPFPQPEQPQ-(H)6-COOH (SEQ_ID_NO: 59), y
H2N-(H)2-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 61).
Todavía más preferiblemente, el péptido de la invención se seleciona del grupo formado por:
H2N-(H)6-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 39), H2N-LPFPEQPEQPFPQPEQPQ-(H)6-COOH (SEQ_ID_NO: 54), y
H2N-(H)10-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 58).
En el artículo de Schwertz et al., ya mencionado, se describen 12 octadecapéptidos desamidados, sin cola de histidinas, que vienen definidos por las secuencias siguientes:
Figure imgf000008_0001
Dichos péptidos modificados convenientemente con una cola de histidina también son apropiados para ser empleados en el método de la invención. Preferiblemente, comprenden de entre 2 y 20 histidinas (H) en el extremo /V-terminal, esto es n está comprendida entre 2 y 20 y m es cero (0), o en el extremo C-terminal, esto es m está comprendida entre 2 y 20 y n es cero (0), preferiblemente n y m están comprendidas entre 4 y 15, más preferiblemente entre 6 y 10 y aún más preferiblemente entre 6 y 8. Más preferiblemente dichos péptidos comprenden una cola de histidinas en donde m es cero (0) y n está comprendida 2 y 20, más preferiblemente entre 4 y 15, más preferiblemente entre 6 y 10 y aún más preferiblemente entre 6 y 8. En el artículo de Ankelo et al., ya mencionado, se describen dos derivados del péptido definido por la fórmula (SEQ_ID_NO_ 40), sin cola de histidinas. Uno de ellos está modificado con biotina en el extremo N-terminal, y en el otro en el extremo C-terminal, habiéndose incluido un residuo adicional de lisina para facilitar la incorporación de la biotina, H2N-LPFPEQPEQPFPQPEQPQK-COOH (SEQ_ID_NO: 52). La incorporación de la biotina en dichos péptidos se debe al empleo de placas recubiertas con la proteína estreptavidina, que forma un complejo de afinidad muy fuerte con la biotina, y así se inmoviliza el péptido.
Los péptidos descritos en la invención están formados por entre 20 y 38 aminoácidos que los hace apropiados para ser preparados empleando los procedimientos habituales de síntesis de péptidos en fase sólida como, por ejemplo, los descritos por R. B. Merrifield, J. Am. Chem. Soc, 1963, 85, 2149-2154. También pueden adquirirse comercialmente como, por ejemplo, a las compañías Eurogentec, S.A. (Seraing, Bélgica) o GenScript (Piscataway, EE.UU.).
Péptido magnético
También forma parte del objeto de la invención un péptido magnético que comprende:
a) el péptido de fórmula general (I):
H2N-(H)n-LPFPXXPXXPFPXPXXPX-(H)m-COOH (I)
en donde:
X es Q o E indistintamente, y al menos un X es E, y
en donde:
n está comprendido entre 2 y 20, y m es 0, o m está comprendido entre 2 y 20, y n es 0, y b) un complejo magnético particulado de fórmula general (II):
Figure imgf000009_0001
en donde:
Z es una partícula polimérica magnética unida covalentemente al ligando aspartato carboximetilado a través de F , es un brazo de unión que conecta el átomo de nitrógeno del ligando aspartato carboximetilado con la partícula polimérica magnética Z, y
M es un ion de un metal de transición con un número de coordinación 6.
El péptido de la invención se encuentra inmovilizado sobre una partícula polimérica magnética (en adelante PM) por medio de la cola de histidina que forma complejos con el metal de transición, y así se completa la esfera de coordinación de dicho metal. De acuerdo con las divulgaciones del estado de la técnica, por ejemplo, la patente norteamericana US5962641 , el complejo de coordinación formado entre un péptido que contiene una cola de histidina y el metal de transición se puede clasificar como muy fuerte. En el contexto de esta invención se considera que la unión del péptido con el metal de transición se trata sustancialmente de un complejo de coordinación, que no incluye enlaces covalentes.
Eventualmente el complejo magnético particulado incluye contracationes, por ejemplo, Na+ o Li+, para compensar las cargas negativas en exceso del ligando aspartato carboximetilado que forma parte del mismo.
Partícula polimérica magnética
En el contexto de la invención se entiende por partícula polimérica magnética (PM) una partícula formada por un polímero que contiene una sustancia superparamagnética. De este modo las PM son desplazables por el efecto de un campo magnético, pero no son magnetizables permanentemente.
Se entiende por partícula polimérica magnética funcionalizada aquella PM que incluye grupos funcionales situados preferiblemente en la superficie de la misma que permiten el anclaje ulterior de otras moléculas.
Las PM están formadas habitualmente a partir de combinaciones de polímeros vinílicos (per ejemplo, estireno), acrilatos y/o metacrilatos. El polímero puede estar reticulado mediante la incorporación de agentes reticulantes como comonómeros, por ejemplo, divilbenceno o dimetacrilato de etilenglicol. Preferiblemente el polímero es un polimérico estirénico reticulado, por ejemplo, un polímero formado por estireno y divinilbenceno, y que se encuentra funcionalizado en la superficie del mismo, o bien un polímero (met)acrílico reticulado funcionalizado en la superficie con un comonómero que contiene, por ejemplo, un grupo epoxi. El experto en la materia no encuentra dificultades para determinar las cantidades apropiadas de cada uno de los monómeros implicados en la formación de las partículas poliméricas. Por ejemplo, en la solicitud de patente WO-A-00/61647 se describen procedimientos para la preparación de partículas poliméricas, que pueden incluir materiales magnéticos, entre otros.
La funcionalización de la superficie de las partículas poliméricas permite obtener PM funcionalizadas que facilitan el acoplamiento del ligando aspartato carboximetilado a dichas partículas. Dicha funcionalización puede llevarse a cabo mediante la incorporación de, por ejemplo, grupos carboxilo, nitro, amino, tosilo, epoxi, o tiol. A menudo, las PM funcionalizadas son preparadas a partir de polímeros de estireno que son nitrados para introducir un grupo nitro en la superficie de las mismas. La reducción del grupo nitro a grupo amino por medios convencionales permite disponer de PM funcionalizadas con grupos amino que fácilmente pueden reaccionar con otros grupos, por ejemplo, haloderivados.
Como sustancia superparamagnética se pueden emplear óxidos de hierro como, por ejemplo, la magnetita (Fe304). Se han descrito diferentes procedimientos para la preparación de PM como, por ejemplo, el que se encuentra en la patente US4654267.
Las PM de la invención tienen típicamente un diámetro medio comprendido entre 0,3 y 100 mieras, preferiblemente entre 0,5 y 50 mieras, más preferiblemente entre 0,8 y 8 mieras, y aún más preferiblemente entre 0,8 y 1 ,2 mieras.
Habitualmente las PM son sustancialmente esféricas y sustancialmente monodispersas. Se entiende por sustancialmente monodispersas que para una pluralidad de partículas, las mismas tienen un coeficiente de variación (CV) de menos del 20%, preferiblemente menos del 15%, más preferiblemente menos del 10%, y más preferiblemente no más del 8%, por ejemplo, entre 2 y 5%. El coeficiente de variación se determina en porcentaje como CV = (100 x desviación estándar)/media.
Debido a su pequeño tamaño y geometría sustancialmente esférica, un gran número de biomoléculas pueden ser inmovilizadas sobre la superficie de estas PM funcionalizadas. La utilización de estas partículas presenta una serie de ventajas, entre las que se pueden destacar: la mejora de la sensibilidad del ensayo, la disminución del posible efecto matriz de la muestra, evitar etapas complejas de pretratamientos, la reducción de los tiempos de reacción y la posibilidad de manipularlas en diferentes plataformas mediante la aplicación de un campo magnético permanente, como por ejemplo en la superficie del electrodo de trabajo o en una placa de microtitulación. Ligando aspartato carboxi metí lado
El ligando aspartato carboximetilado se emplea habitualmente en la purificación de proteínas mediante la técnica de cromatografía de afinidad sobre metales inmovilizados (en inglés IMAC), tal como se describe, por ejemplo, en la solicitud de patente WO-A-98/06739.
El ligando aspartato carboximetilato está unido covalentemente a la partícula polimérica magnética Z a través del brazo de unión F^ .
Dicha unión puede efectuarse por medio de diferentes procedimientos. Por ejemplo, puede efectuarse por reacción entre un grupo electrófilo del ligando funcionalizado (por ejemplo, un haloalquileno, o un grupo alquilenocarboxílico) y un grupo nucleófilo de Z (por ejemplo, un grupo amino, aminoalquileno, hidroxi, hidroxialquileno, tiol, o tioalquileno). También puede efectuarse por reacción entre un grupo nucleófilo del ligando funcionalizado (por ejemplo, un grupo aminoalquileno, hidroxialquileno, o tioalquileno) y un grupo electrófilo de Z (por ejemplo, un grupo haloalquileno, o un grupo carboxílico). Preferiblemente la reacción se efectúa entre el ligando modificado con un grupo nucleófilo y un grupo electrófilo de Z, tal como se describe, por ejemplo, en los ejemplos de la solicitud de patente WO-A-2005/089933. Para ello el ligando puede ser funcionalizado introduciendo un grupo nucleófilo, como el grupo amino, para que pueda reaccionar con un grupo electrófilo de la partícula Z, por ejemplo, un grupo metileno que incluye un átomo de halógeno como el bromo. El grupo reactivo de la partícula Z se encuentra preferiblemente en la superficie de la misma y es el resultado de la funcionalización del polímero que constituye dicha partícula tal como se ha expuesto anteriormente.
Preferiblemente el grupo que es el brazo de unión entre el átomo de nitrógeno del ligando aspartato carboximetilado y la superficie de la partícula, consta de una cadena de entre 3 y 20 átomos, más preferiblemente de entre 5 y 20 átomos, y aún más preferiblemente de entre 6 y 20 átomos. El brazo de unión entre el átomo de nitrógeno del ligando aspartato carboximetilado y la partícula Z, se selecciona preferiblemente de entre -alquileno-NH-, -alquileno-CO-NH-, -alquileno-NH-CO-, - alquileno-O-, -alquileno-CO-O-, -alquileno-O-CO-, -alquileno-S-, -alquileno-CO-S-, - alquileno-S-CO-, -alquileno-NH-alquileno-R2, -alquileno-NH-CO-alquileno-R2, alquileno-CO-NH-alquileno-R2, -alquileno-0-alquileno-R2, -alquileno-O-CO-alquileno- R2, -alquileno-CO-0-alquileno-R2, -alquileno-S-alquileno-R2, -alquileno-S-CO- alquileno-R2, -alquileno-CO-S-alquileno-R2, -hidroxialquileno-NH-, -hidroxialquileno- CO-NH-, -hidroxialquileno-NH-CO-, -hidroxialquileno-O-, -hidroxialquileno-CO-O-, - hidroxialquileno-O-CO-, -hidroxialquileno-S-, -hidroxialquileno-CO-S-, -hidroxialquileno- S-CO-, -hidroxialquileno-NH-alquileno-R2, -hidroxialquileno-NH-CO-alquileno-R2, - hidroxialquileno-CO-NH-alquileno-R2, -hidroxialquileno-0-alquileno-R2, hidroxialquileno-0-CO-alquileno-R2, -hidroxialquileno-CO-0-alquileno-R2, hidroxialquileno-S-alquileno-R2, -hidroxialquileno-S-CO-alquileno-R2, -hidroxialquileno- CO-S-alquileno-R2, -alquileno-NH-hidroxialquileno-R2, -alquileno-NH-CO- hidroxialquileno-R2, -alquileno-CO-NH-hidroxialquileno-R2 , -alquileno-O- hidroxialquileno-R2, -alquileno-0-CO-hidroxialquileno-R2, -alquileno-CO-O- hidroxialquileno-R2, -alquileno-S-hidroxialquileno-R2, -alquileno-S-CO-hidroxialquileno- R2, y -alquileno-CO-S-hidroxialquileno-R2, en donde R2 es un grupo funcional de enlace y preferiblemente es O, S o NH, y más preferiblemente es NH.
Más preferiblemente R^ se selecciona de entre -alquileno-NH-, - alquileno-CO-NH-, -alquileno-NH-CO-, -alquileno-O-, -alquileno-CO-O-, -alquileno-O- CO-, -alquileno-NH-alquileno-R2, -alquileno-NH-CO-alquileno-R2, -alquileno-CO-NH- alquileno-R2, -alquileno-0-alquileno-R2, -alquileno-0-CO-alquileno-R2, -alquileno-CO- 0-alquileno-R2, -hidroxialquileno-NH-, -hidroxialquileno-CO-NH-, -hidroxialquileno-NH- CO-, -hidroxialquileno-O-, -hidroxialquileno-CO-O-, -hidroxialquileno-O-CO-, hidroxialquileno-NH-alquileno-R2, -hidroxialquileno-NH-CO-alquileno-R2, hidroxialquileno-CO-NH-alquileno-R2, -hidroxialquileno-0-alquileno-R2, hidroxialquileno-0-CO-alquileno-R2, -hidroxialquileno-CO-0-alquileno-R2, -alquileno- NH-hidroxialquileno-R2, -alquileno-NH-CO-hidroxialquileno-R2, -alquileno-CO-NH- hidroxialquileno-R2, -alquileno-0-hidroxialquileno-R2, -alquileno-O-CO-hidroxialquileno- R2, y -alquileno-CO-0-hidroxialquileno-R2. Aún más preferiblemente R^ se selecciona de entre -alquileno-NH-alquileno-R2, -alquileno-NH-CO-alquileno-R2, -alquileno-CO- NH-alquileno-R2, -alquileno-0-alquileno-R2, -alquileno-0-CO-alquileno-R2, y -alquileno- CO-0-alquileno-R2; todavía más preferiblemente de entre -alquileno-NH-alquileno-R2, y -alquileno-0-alquileno-R2; aún más preferiblemente es -alquileno-NH-alquileno-R2, en donde R2 es un grupo funcional de enlace y preferiblemente es O, S o NH, y más preferiblemente es NH. Aún más preferiblemente R^ es el grupo -(CH2)x-NH-(CH2)y-NH, en donde x e y están comprendidos entre 1 y 6, más preferiblemente entre 3 y 5, en donde el grupo (CH2)X se encuentra unido al átomo de nitrógeno del ligando aspartato carboximetilado, y el grupo NH situado a la derecha es el que se encuentra unido a la partícula polimérica magnética Z. El metal de transición
El metal de transición M con un número de coordinación 6 se selecciona preferiblemente de entre el grupo formado por Ni, Fe, Ga, Mn, Co, Cu y Zn, más preferiblemente por Ni, Fe, Mn y Co, y más preferiblemente Co. El ion del metal de transición M tiene preferiblemente un estado de oxidación de +2 o +3, más preferiblemente es +2. De forma particularmente preferida el ion del metal de transición es Co+2. En la partícula polimérica magnética de fórmula (II) el metal M está complejado por los tres grupos carboxilato y el grupo amino del ligante aspartato carboximetilado. Para la formación del complejo entre el metal de transición y el ligando aspartato carboximetilado se pueden emplear métodos bien conocidos por el experto en la materia como, por ejemplo, exponiendo una sal del metal al ligando. Por ejemplo, se puede preparar suspendiendo las partículas poliméricas magnéticas que comprenden el ligando en agua y añadiendo a dicha suspensión una solución de una sal del metal correspondiente. Entre otras, pueden emplearse las siguientes sales: CoCI2, CuS04, FeCI3, GaCI2, GaCI3, MnS04, NiCI2, o ZnCI2.
Un complejo magnético particulado particularmente preferido descrito en el Ejemplo 4 de la solicitud de patente WO-A-2007/089933. En dicho ejemplo se cargan con cloruro de cobalto (II) unas PM que comprenden el ligando carboximetil aspartato y que se obtienen de acuerdo con el siguiente proceso: se hacen reaccionar partículas magnéticas de estireno funcionalizadas con grupos alilo con un agente de bromación, a continuación se hacen reaccionar dichas partículas bromadas con el A/-aminopentil-A/-etoxicarboximetilaspartato de dietilo, y finalmente se hidrolizan los grupos éster. Dicha secuencia de reacciones se visualiza en el siguiente esquema:
PMM alil
Figure imgf000014_0001
3) Hidrólisis
Los complejos magnéticos particulados que forman parte del péptido magnético de la invención se pueden preparar empleando procedimientos análogos a los descritos anteriormente, o bien se pueden adquirir comercialmente a través de las compañías Clontech, Invitrogen Dynal, Merck Millipore. Especialmente preferidos son los complejos magnéticos particulados denominados Dynabeads® TALON® que pueden obtenerse comercialmente a través de la compañía Invitrogen Dynal (Oslo, Noruega), y que responden al complejo magnético particulado obtenido en el Ejemplo 4 de la solicitud de patente WO-A-2007/089933.
El péptido magnético se obtiene por inmovilización del péptido de la invención sobre el complejo magnético particulado.
Dicha inmovilización se puede efectuar, por ejemplo, empleando las condiciones descritas por el fabricante para el producto Dynabeads® TALON®, por ejemplo, en el apartado de Manuales y Protocolos de la página web http://lifetechnologies.com/, o en el folleto técnico del mismo. Se trata de un proceso de incubación del péptido con dicho complejo magnético particulado en el seno de un tampón de inmovilización formado por fosfato de sodio 0,05 M, pH 8, NaCI 0,3 M, y 0,01 % de Tween® 20 (monolaurato de sorbitán con 20 moles de óxido de etileno) durante un período de tiempo de unos 10 minutos a una temperatura de 25° C.
La eficiencia de la inmovilización para obtener el péptido magnético de la invención es prácticamente cuantitativa.
En una realización particularmente preferida el péptido magnético de la invención comprende el péptido definido por la secuencia SEQ_ID_NO: 39, Z son partículas magnéticas de poliestireno, F es el grupo -(CH2)5-NH-(CH2)3-NH, y M es Co2+, en donde el grupo (CH2)5 se encuentra unido al átomo de nitrógeno del ligando aspartato carboximetilado, y el grupo NH situado a la derecha es el que se encuentra unido a la partícula polimérica magnética Z.
Inmunosensor
Forma parte de la invención un inmunosensor que comprende el péptido magnético de la invención y un transductor que tiene acoplado o integrado un imán.
En general, un inmunosensor consta de un elemento de reconocimiento biológico (antígeno o anticuerpo) y un transductor (electroquímico: potenciométrico, amperométrico o conductimétrico; óptico; piezoeléctico; termométrico; magnético; micromecánico). Algunos de ellos se encuentran definidos como directos, en los cuales se detecta un cambio físico durante la formación del complejo y otros como indirectos, en los cuales la señal es generada por un marcador (generalmente es enzimático). En el marco de la invención el transductor preferiblemente es electroquímico u óptico. En una realización preferida el método se lleva a cabo mediante el empleo de un inmunosensor que comprende un transductor electroquímico al que se le ha incluido un imán.
En este caso concreto, las medidas electroquímicas, basadas en tres tipos de señales analíticas (potencial, corriente y carga), se realizan en una celda electroquímica constituida por dos o más electrodos y asociados electrónicamente para controlar y medir el potencial y la corriente. En el caso de una celda compuesta de dos electrodos inmersos en una solución, al aplicar un potencial externo entre dichos electrodos, se producirá la circulación de una corriente eléctrica derivada de los procesos electroquímicos que ocurren en la inferíase electrodo-solución. El origen de esta corriente puede ser la transferencia de carga debida a reacciones químicas (procesos faradaicos) o a la reorganización de la carga en la inferíase (procesos no faradaicos).
Método de detección
El método de detección de la enfermedad celíaca consiste en lo que se denomina un inmunoensayo que, en el marco de la presente invención, incluye conjuntos de técnicas inmunoquímicas analíticas de laboratorio que tienen en común la utilización de complejos inmunes, es decir el resultado de hacer interaccionar anticuerpos con antígenos, con la finalidad de detectar y/o cuantificar analitos en muestras. La selectividad de los anticuerpos para unirse a sus ligandos permite a estas biomoléculas ser empleadas en métodos analíticos altamente específicos cuando se trata de matrices complejas como sangre, plasma u orina. Combinando la selectividad de las interacciones anticuerpo-antígeno con una gran diversidad de anticuerpos preformados en los procesos de inmunización de animales huéspedes y la disponibilidad de numerosos marcadores fácilmente detectables (radioisótopos, absorbancia, fluorescencia o quimio-luminiscencia inducida enzimática o electroquímicamente) los inmunoensayos pueden ser diseñados para una amplia variedad de analitos con límites de detección extraordinariamente bajos. Ejemplos de estos límites son niveles de concentración de hormonas, enzimas, virus, antígenos tumorales y bacteriales cercanos a 10"12 - 10"9 mol/L.
Ejemplos ilustrativos, no limitativos, de marcadores incluyen elementos radiactivos (por ejemplo, azufre, iodo, etc.); enzimas (por ejemplo, peroxidasa, glicosidasa, fosfatasa alcalina, peroxidasa HRP, glucosa-6-fosfato deshidrogenasa, β- galactosidasa, β-glucosidasa, β-glucuronidasa, etc.); compuestos o colorantes fluorescentes (por ejemplo, fluoresceína, rhodamina, etc.), fosforescentes o quimioluminiscentes (por ejemplo, dioxetanos, acridinios, fenantridinios, rutenio, luminol, etc.). La selección de un marcador particular no es crítica, siempre y cuando sea capaz de producir una señal por sí mismo o conjuntamente con una o más sustancias adicionales. Así, el complejo formado puede ser detectado o visualizado por cualquier técnica apropiada, dependiendo del marcador elegido, bien conocida por los técnicos en la materia, utilizando los dispositivos apropiados, por ejemplo, mediante técnicas basadas en métodos radiactivos, electroquímicos, colorimétricos, fluorimétricos, (quimio)luminiscentes, etc., todas ellas conocidas por los técnicos en la materia.
A modo de ejemplo, cuando el marcador es una enzima, la detección del complejo (antígeno-anticuerpo)/marcador puede llevarse a cabo poniendo en contacto dicho complejo con un sustrato apropiado y, opcionalmente, con los activadores y/o agentes de amplificación enzimáticos apropiados. Ejemplos ilustrativos de dichos sustratos incluyen para:
- la fosfatasa alcalina: sustratos basados en p-nitrofenil fosfato (p-NPP) o 2-(5- cloro-2'-fosforiloxifenil)-6-cloro-4-(3H)quinazolinona (CPPCQ);
- peroxidasas: sustratos basados en ácido 2,2-azinobis(3-etilbenzotiazolin-6- sulfónico) (ABTS), ofenilendiamina (OPT), 3,3',5,5'-tetrametilbenzidina (TMB), o-dianisidina, ácido 5-aminosalicílico, ácido 3-dimetilaminobenzoico (DMAB) y 3-metil-2-benzotiazolinhidrazone (MBTH), 3-amino-9etilcarbazol (AEC) y tetracloruro de 3,3'-diaminobenzidina (DAB), ácido 4-hidroxi-3- metoxifenilacético, fenoxazinas reducidas y benzotiazinas reducidas.
- glicosidasas: sustratos basados en o-nitrofenil- β-D-galactósido (o-NPG), p- nitrofenil- β-D-galactósido y 4-metilumbelifenil- β-D-galactósido (MUG) para β- D-galactosidasa
Ejemplos ilustrativos, no limitativos, de formatos de inmunoensayos adecuados para la puesta en práctica de los métodos de la presente invención incluyen ELISA (ensayo inmunoabsorbente ligado a enzima), DAS-ELISA ("Double Antibody Sandwich-ELISA"), DELFIA (fluoroinmunoensayo de disociación aumentada por lantánidos), FPIA (inmunoensayo por polarización de fluorescencia), CMIA (inmunoensayo magnético quimioluminiscente), IRMA (radioinmunoensayo heterogéneo y no competitivo), MEIA (inmunoensayo por micropartícula), luminoinmunoensayos, técnicas inmunocitoquímicas e inmuno-histoquímicas, ensayos basados en la precipitación coloidal (dipsticks). Ejemplos ilustrativos, no limitativos, de plataformas para la realización de estos inmunoensayos incluyen placas de microtitulación, biochips, biosensores (por ejemplo, inmunosensores) o microarrays, lab-on-a-chip, dipsticks, inmunoensayos por cromatografía de flujo lateral basado en el empleo de tiras inmunocromatográficas, y, en todos los casos, a los que se les ha acoplado o integrado un imán.
Así pues, también forma parte del objeto de la invención un método para detectar la enfermedad celíaca, que comprende las siguientes etapas:
1) incubar una suspensión del péptido magnético de la invención con una muestra de suero o sangre de un individuo,
2) añadir anti-suero humana-HRP, seleccionado de entre anti-lgA humana-HRP y anti-lgG humana-HRP, a la suspensión incubada en el punto 1) e incubar la suspensión obtenida, y
3) medir la señal electroquímica u óptica obtenida a partir de la suspensión obtenida en el punto 2).
En la etapa 2) se emplean anticuerpos anti-suero humana-HRP, que preferiblemente son anti-lgA humana-HRP, donde HRP corresponde a la enzima peroxidasa del rábano, porque presentan ventajas con respecto a otros anticuerpos. La peroxidasa HRP es una proteína de 40 kDa que cataliza la oxidación de sustratos por medio del peróxido de hidrógeno, resultando un producto coloreado o fluorescente o la emisión de luz como producto secundario. Dicha enzima funciona óptimamente a un pH aproximadamente neutro, y puede ser inhibido por cianuros, sulfuros y azidas. Los conjugados anticuerpos-HRP son superiores a los conjugados anticuerpos- fosfatasa alcalina con respecto a las actividades específicas de la enzima y del anticuerpo. Además, dicha peroxidasa presenta una elevada velocidad enzimática, buena estabilidad, bajo coste y amplia disponibilidad, por lo que es una de las enzimas a escoger para la mayoría de aplicaciones.
El método de la invención se trata de un immunoensayo en el que el antígeno inmovilizado en la partícula magnética (péptido magnético de la invención) capta al anticuerpo a investigar (presente en el suero o sangre de un individuo) y el immunocomplejo así formado luego se une a un anticuerpo marcado con la enzima (anti-lgA humana-HRP) que genera una señal electroquímica u óptica directamente proporcional a la concentración de anticuerpo en la muestra, una vez que todo el immunocomplejo se capta en una plataforma para su detección a partir de la aplicación de campo magnético permanente. La incubación se puede llevar a cabo en tubos Eppendorff empleando entre 50 y 100 μΙ_, preferiblemente entre 60 y 80 μΙ_ de una solución de péptido magnético de la invención a una concentración de 0,2 mg/mL. La incubación de la suspensión del péptido magnético con una muestra de suero o sangre de un individuo que puede padecer la EC se lleva a cabo habitualmente a una temperatura comprendida entre 20° C y 27° C, preferiblemente alrededor de 25° C, durante un período de tiempo comprendido entre 20 y 45 minutos, preferiblemente entre 25 y 35 minutos, y aún más preferiblemente alrededor de 30 minutos.
La incubación de la suspensión obtenida después de añadir anti-lgA humana-HRP se lleva a cabo habitualmente a una temperatura comprendida entre 20° C y 27° C, preferiblemente alrededor de 25° C, durante un período de tiempo comprendido entre 20 y 45 minutos, preferiblemente entre 25 y 35 minutos, y aún más preferiblemente alrededor de 30 minutos.
Después de cada etapa se aplica un campo magnético permanente para capturar las partículas magnéticas y proceder a lavados con tampón PBS, siguiendo procedimientos bien conocidos por el experto en la materia.
La medida de la señal electroquímica u óptica se puede realizar mediante la medición de una señal generada por la enzima HRP por reacción con peróxido de hidrógeno como sustrato y un mediador seleccionado de un grupo formado por fenol, o-fenilendiamina (OPD), 3,3',5,5'-tetrametilbencidina (T B), hidroquinona, p-clorofenol, pirocatecol y p-aminofenol. Preferiblemente se emplea hidroquinona como mediador para la detección electroquímica y TMB para la óptica.
Forma parte del objeto de la invención el uso del péptido de la invención para detectar la enfermedad celíaca.
También forma parte del objeto de la invención el uso del péptido magnético de la invención para detectar la enfermedad celíaca.
También forma parte del objeto de la invención el uso del inmunosensor para detectar la enfermedad celíaca.
Forma parte también de la invención un kit para detectar la enfermedad celíaca que comprende el péptido magnético de la invención.
El kit de la invención incluye, además del péptido magnético, un inmunoensayo adecuado o plataforma para la puesta en práctica del método para detectar la enfermedad celíaca. Ejemplos ilustrativos, no limitativos, de formatos de inmunoensayos adecuados para la puesta en práctica de los métodos de la presente invención incluyen ELISA (ensayo inmunoabsorbente ligado a enzima), DAS-ELISA ("Double Antibody Sandwich-ELISA"), DELFIA (fluoroinmunoensayo de disociación aumentada por lantánidos), FPIA (inmunoensayo por polarización de fluorescencia), CMIA (inmunoensayo magnético quimioluminiscente), IRMA (radioinmunoensayo heterogéneo y no competitivo), MEIA (inmunoensayo por micropartícula), luminoinmunoensayos, técnicas inmunocitoquímicas e inmuno-histoquímicas, ensayos basados en la precipitación coloidal (dipsticks). Ejemplos ilustrativos, no limitativos, de plataformas para la realización de estos inmunoensayos incluyen placas de microtitulación, biochips, biosensores (por ejemplo, inmunosensores) o microarrays, lab-on-a-chip, dipsticks, inmunoensayos por cromatografía de flujo lateral basado en el empleo de tiras inmunocromatográficas, y, en todos los casos, a los que se les ha acoplado o integrado un imán.
Ensayos de detección
Se evaluaron sueros de pacientes clínicamente clasificados como celíacos y no-celíacos, en ambos casos confirmados por biopsia, mediante el inmunosensor electroquímico de la invención destinado a la detección individual de los anticuerpos anti-APDG-lgA. Además, estos sueros también fueron analizados con un ELISA óptico. Además se ensayó un inmunosensor electroquímico obtenido en el Ejemplo de referencia 1 , en el que el péptido de la invención se unió de forma covalente a partículas poliméricas magnéticas funcionalizadas con grupos tosilo.
Los resultados de cada inmunosensor fueron analizados a partir de los datos de sensibilidad y de especificidad.
La sensibilidad corresponde a la probabilidad de obtener un resultado positivo cuando el individuo tiene la enfermedad, y viene definida por la siguiente ecuación:
enfermos positivos vp
SE = =
total enfermos vp + fh
en donde vp corresponde a una muestra verdaderamente positiva y fn corresponde a una muestra falsa negativa.
Por su parte, la especificidad se calcula como la probabilidad de obtener un resultado negativo cuando el individuo no tiene la enfermedad y viene definida por la siguiente ecuación:
sanos negativos vn
ES = =
total sanos vn + fp
en donde vn corresponde a una muestra verdaderamente negativa, y fp corresponde a una muestra falsa positiva. Una prueba diagnóstica ideal debería tener una SE y una ES tan próximas al 100% como fuera posible. En la práctica se debe dudar de pruebas cuyas SE y ES sean inferiores al 80%.
Se ha observado que el inmunosensor con el péptido magnético de la invención presenta para las diversas muestras ensayadas las mayores señales electroquímicas y permitió una mejor diferenciación entre muestras positivas y negativas con respecto a! inmunosensor obtenido en el Ejemplo de referencia 1 , en el que el péptido de la invención se unió de forma covalente a partículas poliméricas magnéticas funcionalizadas con grupos tosilo. En un ensayo con 11 muestras, 7 positivas y 4 negativas, el inmunosensor con el péptido magnético de la invención presentó una sensibilidad del 100%, una especificidad del 100%, y una eficiencia del 100%, mientras que el inmunosensor con el péptido unido covalentemente presentó una sensibilidad del 86%, una especificidad del 75%, y una eficiencia del 82%, en donde este último parámetro es calculado como porcentaje de los resultados correctamente positivos y correctamente negativos con respecto al valor de referencia esperado.
También se ha observado que con el péptido magnético de la invención se han podido discriminar el 100% de los 23 pacientes que tenían la EC confirmada por biopsia. Se puede observar también que, sorprendentemente, el péptido magnético de la invención, que comprende el péptido de la invención y un complejo magnético particulado, permite proporcionar un método de detección de la EC con una selectividad y especificidad significativamente superiores a las de los otros métodos de detección descritos en el estado de la técnica. En comparación con el método descrito en Ankelo et al., ya citado, en el que se emplea el péptido definido por la secuencia SEQ_ID_NO: 40 modificado con biotina en un ensayo inmunofluorométrico en fase sólida lantánido, presenta una sensibilidad y una especificidad superiores, 100% vs 92%, y 100% vs 96%, respectivamente. En comparación con el método descrito en Schwertz et al., en el que se emplean octadecapéptidos desamidados definidos por las SEQ_ID_NO: 40 a 51 , el péptido de la invención presenta una sensibilidad y especificidad superiores, 100% vs 85% y 100% vs 95%, respectivamente.
Dicho método constituye un ensayo de detección rápido, económico, mínima manipulación, y puede ser empleado para análisis ambulatorios, por lo que el objeto de la invención representa un desarrollo significativo para la detección de la enfermedad celíaca. Además, cabe destacar que las metodologías electroquímicas presentan la potencialidad, frente a los ensayos ELISA ópticos, de poder desarrollar dispositivos de pequeñas dimensiones que permiten disminuir el volumen de muestra y reactivos y ser acoplados a instrumentación portátil fácilmente transportable a los diferentes centros de salud alejados de las grandes urbanizaciones.
El experto en la materia no tiene dificultad en aplicar el péptido magnético de la invención a otras plataformas con sistemas de detección distintos al inmunosensor electroquímico o al inmunoensayo ELISA óptico que se han descrito, tales como ensayos de flujo lateral o sistemas de microfluídica.
A continuación se incluyen algunos ejemplos para ilustrar la presente invención, si bien no deben ser considerados como limitantes de la misma.
Ejemplos
La inmovilización de los péptidos sobre las partículas magnéticas se llevó a cabo usando un Termomixer Eppendorf. Se utilizaron placas ELISA de poliestireno marca Nunc (Roskilde, Dinamarca). La separación magnética de las partículas se realizó mediante un separador magnético Dynal MPC-S (Dynal, Noruega). En las etapas de incubaciones y lavados se utilizaron un Miniagitador MS1 (IKA, R.F.A.) y un Termomixer Eppendorf. Las medidas ópticas y electroquímicas se realizaron con un lector de placas TECAN Sunrise y con un controlador amperométrico LC-4C (BAS Bioanalytical System Inc., E.E.U.U.).
Se utilizó una celda electroquímica que consistió en un sistema de tres electrodos independientes: un electrodo m-GEC (composite grafito-epoxi con conector magnético, por sus siglas en inglés) como trabajo; un electrodo de platino como auxiliar y un electrodo de Ag/AgCI en solución 3 mol L"1 de NaCI como referencia (Orion 92-02-00). Los electrodos m-GEC se encuentran descritos en Zaceo et al., Electrochemical Magnetoimmunosensing Strategy for the Detection of Pesticides Residues, Anal. Chem., 2006, 78, 1780-1788. Se prepararon diez electrodos m-GEC con sus conectores magnéticos y el CV% obtenido del promedio de las inducciones magnéticas medidas en el centro de la superficie del electrodo fue 6,4%.
Ejemplo comparativo: Inmovilización del péptido en partículas magnéticas modificadas con el grupo tosilo
El péptido desamidado de gliadina (PDG) de secuencia HHHHHHLPFPEQPEQPFPQPEQPQ (99,2% pureza) (GenScript, Cat. n° 246440) se inmovilizó sobre las partículas magnéticas (PM) de 1 μηι de diámetro modificadas con grupos tosilo Dynabeads MyOne Tosylactivated (Invitrogen Dynal AS, Oslo, Noruega) siguiendo el protocolo sugerido por el fabricante. Para ello, 10 mg de PM, equivalente a un volumen de 100 μΙ_ (100 mg ml_"1) se lavaron dos veces con 200 μΙ_ de solución tampón de inmovilización (fosfato de sodio 0,05 M, pH 8). Posteriormente, las PM se resuspendieron en 83 μΙ_ de sulfato de amonio 3 mol L"1 , 50 μΙ_ de la solución concentrada de PDG (4,3 mg ml_"1), y se añadió solución tampón de inmovilización hasta llegar a un volumen final de 250 μΙ_. Las PM se incubaron durante 24 horas a 37° C y 800 rpm. Se eliminó el sobrenadante con la ayuda de un imán y las PM modificadas se resuspendieron en 250 μΙ_ de solución tampón bloqueante y se incubaron durante toda la noche, en las mismas condiciones que la inmovilización. Las PM se sometieron a tres etapas de lavado con el solución tampón de lavado y finalmente se resuspendieron en el solución tampón de conservación para lograr las soluciones concentradas de 4 mg mL"1 de PM-PDG las cuales se conservaron a 4°C.
Ejemplo 1 : Inmovilización del péptido en partículas magnéticas Dynabeads®
TALON®
El péptido desamidado de gliadina (PDG) de secuencia HHHHHHLPFPEQPEQPFPQPEQPQ (99,2% pureza) (GenScript, Cat. n° 246440) se inmovilizó sobre las partículas magnéticas (PM) de 1 μηι de diámetro Dynabeads® TALON® (Invitrogen Dynal AS, Oslo, Noruega) siguiendo el protocolo sugerido por el fabricante. Es decir, en un tubo Eppendorf se lavaron 50 μί o 2 mg de PM (40 mg mL" 1) con 650 L de solución tampón de inmovilización/lavado (fosfato de sodio 0,05 M, pH 8, NaCI 0,3 M, y 0,01 % de Tween® 20, monolaurato de sorbitán con 20 moles de óxido de etileno). Luego se descartó el sobrenadante mediante la aplicación de un campo magnético y las PM se incubaron con 10 μί, equivalentes a 4,3 μg de PDG (a partir de la solución concentrada en agua desionizada de 4,3 mg mL"1) en un volumen final de 700 μί con solución tampón de inmovilización/lavado, durante 10 minutos a 750 rpm y 25° C. Después de la incubación, el líquido sobrenadante de cada tubo se separó con la ayuda de un magneto y las PM modificadas se lavaron cuatro veces con 700 L del solución tampón de inmovilización/lavado y finalmente se resuspendieron en tampón PBS para lograr una solución de trabajo de 4 mg/mL, a partir de la cual se preparó una solución diluida con una concentración de 0,2 mg/mL.
Ejemplo 2: Ensayos de detección de la enfermedad celíaca Se efectuaron ensayos de detección empleando una celda electroquímica y también empleando el inmunoensayo óptico ELISA.
En el primer caso, el ensayo de detección comprendió las siguientes etapas:
1) Primer etapa de incubación: 70 de la solución de 0,2 mg/mL de péptido magnético obtenido en el Ejemplo 1 , se incubaron con 70 de los controles positivo y negativo, y de suero problema en sendos tubos Eppendorff de 2 mL a 800 rpm y 25° C durante 30 minutos. Luego, se descartó el sobrenadante con la ayuda de un separador magnético y se realizaron tres etapas de lavado con 100 L de solución tampón PBS a 800 rpm y 25° C durante 3 minutos, aplicando el separador magnético después de cada etapa.
2) Segunda etapa de incubación: se adicionaron 140 de anti-lgA humana-HRP diluido 1 :20000 y se incubaron a 800 rpm y 25° C durante 30 minutos. Posteriormente, se aplicaron las etapas de lavado de igual manera que en el paso (i).
3) Medida electroquímica: en la última etapa de lavado se capturaron las partículas magnéticas modificadas mediante los electrodos m-GEC y este electrodo de trabajo junto con los electrodos de referencia y auxiliar se sumergieron en 20 mL de solución tampón PBS contenido en una celda electroquímica. La medida electroquímica se determinó por polarización del electrodo de trabajo a E = - 0,050 V (contra Ag/AgCI en solución 3 mol/L de NaCI como electrodo de referencia). La señal amperométrica se basó en la actividad enzimática de HRP después de la adición de hidroquinona (2,0 χ 10-3 mol/L) como mediador y H202 (2,0 χ 10~3 mol/L) como sustrato.
Los anticuerpos anti-lgA humana-HRP se obtuvieron de Sigma-Aldrich. En el segundo caso, se realizó un ensayo ELISA con detección óptica en una placa de 96 pocilios, que comprendió las siguientes etapas:
1) Primera etapa de incubación: 70 de la solución de 0,2 mg/mL de péptido magnético obtenido en el Ejemplo 1 , se incubaron con 70 μί de los controles positivo y negativo, y de suero problema en placas de microtitulación, en condiciones de agitación durante 30 min a temperatura ambiente, y luego se realizaron tres lavados con 100 μ\- de PBST, aplicando un campo magnético entre los lavados con la finalidad de separar las PM modificadas del sobrenadante. 2) Segunda etapa de incubación: se adicionaron 100 μΙ de anti-lgA humana-HRP diluido 1 :20000 y el inmunocomplejo resultante se incubó durante 30 min a temperatura ambiente bajo condiciones de agitación. Posteriormente, se aplicó nuevamente la etapa de lavado explicada en (1).
3) Se adicionaron a cada pocilio 100 μΙ_ de solución TMB:H202 (1 : 1) y la placa se incubó durante 30 minutos en oscuridad, luego se agregaron 100 μΙ_ de solución de parada (H2S04 2 M);
4) Finalmente se realizó la lectura de absorbancia de cada pocilio con un lector de placa a λ= 450 nm.
Con ambos métodos se analizaron 23 sueros, que habían sido confirmados histológicamente con biopsia duodenal, de los cuáles, a su vez, 13 y 10 sueros fueron clasificados como celíacos y no celíacos, respectivamente.
En la tabla I se muestran los resultados obtenidos (sensibilidad, SE, y especificidad, ES) con el péptido magnético de la invención (Ejemplo 1) tanto con el inmunosensor electroquímico, como con el inmunoensayo óptico ELISA y los resultados obtenidos en los hospitales de origen para las mismas muestras (23) mediante el empleo de métodos comerciales:
TABLA I
Método Anticuerpo SE ES
(%) (%)
Electrodo m-GEC APDG-lgA 100 100
Inmunosensor electroquímico
(Invención)
Microplaca ELISA APDG-lgA 100 100
Inmunoensayo óptico
(Invención)
Método comercial 1 AGA-lgA 96,3 50,0
Método comercial 2 AGA-lgA 96,2 91 ,7
Método comercial 3 ATG2-lgA 95,0 99,4
Método comercial 4 ATG2-lgA 93,6 94,3 En la tabla II se muestran los resultados obtenidos resultados obtenidos (sensibilidad, SE, y especificidad, ES) con el péptido magnético de la invención tanto con el inmunosensor electroquímico, como con el inmunoensayo óptico ELISA y resultados descritos en el estado de la técnica para la detección de anticuerpos anti- PDG como diagnóstico de la enfermedad celíaca:
TABLA II
Figure imgf000026_0001
* Muestras positivas comprobadas por biopsia duodenal
1 Ankelo et al., 2007
2 Sakly et al., 2012
3 Schwertz et al., 2004
Se puede observar que el método de la invención presenta una sensibilidad y especificidad superiores a otros métodos descritos en el estado de la técnica basados en la detección de anticuerpos frente a péptidos desamidados de gliadina.
Ejemplo 3: Ensayo de detección de la enfermedad celíaca con dos tipos de péptidos magnéticos
Se ensayaron los péptidos magnéticos obtenidos en el Ejemplo 1 y en el Ejemplo comparativo de acuerdo con un procedimiento sustancialmente análogo al del Ejemplo 2. Se ensayaron once muestras: siete sueros positivos y cuatro sueros negativos.
Los resultados obtenidos permitieron concluir que el inmunosensor con el péptido magnético de la invención presentó para las diversas muestras las mayores señales electroquímicas y permitió una mejor diferenciación entre muestras positivas y negativas con respecto al inmunosensor preparado a partir del péptido obtenido en el Ejemplo comparativo, en el que el péptido estaba unido covalentemente con las partículas magnéticas modificadas con el grupo tosilo.
En la Tabla III se presentan los resultados obtenidos:
TABLA III
Figure imgf000027_0001
Ejemplos 4 a 12: Inmovilización de péptidos en partículas magnéticas Dynabeads
TALON®
Se prepararon otros péptidos magnéticos acuerdo con un procedimiento sustancialmente análogo al procedimiento descrito en el Ejemplo 1 , y cuyas secuencias se presentan a continuación en la Tabla IV:
TABLA IV
Ejemplo Péptido SEQ_ID_NO:
4 H2N-(H)6-LPFPQQPQQPFPQPQQPQ-COOH 53
5 H2N-LPFPEQPEQPFPQPEQPQ-(H)6-COOH 54
6 H2N-LPFPEQPEQPFPQPEEPQ-(H)6-COOH 55
7 H2N-LPFPEQPEQPFPQPEQPQ-(H)2-COOH 56
8 H2N-(H)4-LPFPEQPEQPFPQPEQPQ-COOH 57
9 H2N-(H)10-LPFPEQPEQPFPQPEQPQ-COOH 58 10 H2N-LPFPEQPEQPFPQPEQPQ-(H)6-COOH 59
1 1 H2N-LPFPEQPEQPFPEPEQPQ-(H)6-COOH 60
12 H2N-(H)2-LPFPEQPEQPFPQPEQPQ-COOH 61
Ejemplo 13: Ensayo comparativo de detección de la enfermedad celíaca con péptidos magnéticos de diferente secuencia
Se han ensayado comparativamente con un suero positivo y un suero negativo a enfermedad celíaca los péptidos magnéticos obtenidos en los ejemplos 1 y 4 a 12 con un procedimiento sustancialmente análogo al del Ejemplo 2 .En la Tabla V se presentan los resultados obtenidos, expresadas como la relación entre la señal de la muestra positiva y de la muestra negativa, como el grado de diferenciación entre muestras positivas y negativa, indicando un valor de 1 la no capacidad de discriminar una muestra positiva de una negativa y valores mayores de 1 la capacidad de discriminarlas:
TABLA V
Ejemplo SEQ_ID_NO: Relación señal positivo/señal negativo
1 39 6,5
4 53 2,3
5 54 7,6
6 55 1 ,9
7 56 1 ,9
8 57 2,7
9 58 9,8
10 59 2,0
11 60 1 ,9
12 61 2,5 Los resultados obtenidos permitieron concluir que el inmunosensor con el péptido magnético del Ejemplo 9 presentó la mayor capacidad de diferenciación entre muestras positivas y negativas, seguido por los péptidos magnéticos de los ejemplos 5, 1 , 8, 12, 4. y 10.

Claims

REIVINDICACIONES
1. - Péptido caracterizado porque responde a la fórmula general (I):
H2N-(H)n-LPFPXXPXXPFPXPXXPX-(H)m-COOH (I) en donde:
X es Q o E indistintamente, y al menos un X es E, y en donde:
n está comprendido entre 2 y 20, y m es 0, o
m está comprendido entre 2 y 20, y n es 0.
2. - Péptido según la reivindicación 1 , caracterizado porque m es 0 y n está comprendida entre 4 y 15, preferiblemente entre 6 y 10.
3. - Péptido según la reivindicación 2, caracterizado porque n es 0 y m está comprendida entre 4 y 15, preferiblemente entre 6 y 10.
4. - Péptido según la reivindicación 1 , caracterizado porque se selecciona del grupo formado por:
H2N-(H)6-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 39),
H2N-(H)6-LPFPQQPQQPFPQPQQPQ-COOH (SEQ_ID_NO: 53),
H2N-LPFPEQPEQPFPQPEQPQ-(H)6-COOH (SEQ_ID_NO: 54),
H2N-LPFPEQPEQPFPQPEEPQ-(H)6-COOH (SEQ_ID_NO: 55),
H2N-LPFPEQPEQPFPQPEQPQ-(H)2-COOH (SEQ_ID_NO: 56),
H2N-(H)4-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 57),
H2N-(H)10-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 58),
H2N-LPFPEQPEQPFPQPEQPQ-(H)6-COOH (SEQ_ID_NO: 59),
H2N-LPFPEQPEQPFPEPEQPQ-(H)6-COOH (SEQ_ID_NO: 60), y
H2N-(H)2-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 61)
5. - Péptido según la reivindicación 4, caracterizado porque se seleciona del grupo formado por:
H2N-(H)6-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 39),
H2N-(H)6-LPFPQQPQQPFPQPQQPQ-COOH (SEQ_ID_NO: 53),
H2N-LPFPEQPEQPFPQPEQPQ-(H)6-COOH (SEQ_ID_NO: 54),
H2N-(H)4-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 57), H2N-(H)10-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 58),
H2N-LPFPEQPEQPFPQPEQPQ-(H)6-COOH (SEQ_ID_NO: 59), y
H2N-(H)2-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 61).
6.- Péptido según la reivindicación 5, caracterizado porque se seleciona del grupo formado por:
H2N-(H)6-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 39),
H2N-LPFPEQPEQPFPQPEQPQ-(H)6-COOH (SEQ_ID_NO: 54), y
H2N-(H)10-LPFPEQPEQPFPQPEQPQ-COOH (SEQ_ID_NO: 58).
- Péptido magnético, caracterizado porque comprende:
a) el péptido de cualquiera de las reivindicaciones 1 a 6, y
b) un complejo magnético particulado de fórmula general (II):
Figure imgf000031_0001
en donde:
Z es una partícula polimérica magnética unida covalentemente al ligando aspartato carboximetilado a través de F ,
F es un brazo de unión que conecta el átomo de nitrógeno del ligando aspartato carboximetilado con la partícula polimérica magnética Z, y M es un ion de un metal de transición con un número de coordinación 6.
8. - Péptido magnético según la reivindicación 7, caracterizado porque la partícula polimérica magnética está constituida por un polímero estirénico reticulado.
9. - Péptido magnético según las reivindicaciones 7 u 8, caracterizado porque el brazo de unión F consta de una cadena de entre 3 y 20 átomos y se selecciona de entre - alquileno-NH-, -alquileno-CO-NH-, -alquileno-NH-CO-, -alquileno-O-, -alquileno-CO-O-, -alquileno-O-CO-, -alquileno-S-, -alquileno-CO-S-, -alquileno-S-CO-, -alquileno-NH- alquileno-R2, -alquileno-NH-CO-alquileno-R2, -alquileno-CO-NH-alquileno-R2, alquileno-0-alquileno-R2, -alquileno-0-CO-alquileno-R2, -alquileno-CO-0-alquileno-R2, -alquileno-S-alquileno-R2, -alquileno-S-CO-alquileno-R2, -alquileno-CO-S-alquileno-R2, -hidroxialquileno-NH-, -hidroxialquileno-CO-NH-, -hidroxialquileno-NH-CO-, hidroxialquileno-O-, -hidroxialquileno-CO-O-, -hidroxialquileno-0-CO-, hidroxialquileno-S-, -hidroxialquileno-CO-S-, -hidroxialquileno-S-CO-, -hidroxialquileno- NH-alquileno-R2, -hidroxialquileno-NH-CO-alquileno-R2, -hidroxialquileno-CO-NH- alquileno-R2, -hidroxialquileno-0-alquileno-R2, -hidroxialquileno-0-CO-alquileno-R2, - hidroxialquileno-CO-0-alquileno-R2, -hidroxialquileno-S-alquileno-R2, -hidroxialquileno- S-CO-alquileno-R2, -hidroxialquileno-CO-S-alquileno-R2, -alquileno-NH- hidroxialquileno-R2, -alquileno-NH-CO-hidroxialquileno-R2, -alquileno-CO-NH- hidroxialquileno-R2 , -alquileno-0-hidroxialquileno-R2, -alquileno-O-CO- hidroxialquileno-R2, -alquileno-CO-0-hidroxialquileno-R2, -alquileno-S-hidroxialquileno- R2, -alquileno-S-CO-hidroxialquileno-R2, y -alquileno-CO-S-hidroxialquileno-R2, en donde R2 es O, S o NH, y preferiblemente es NH.
10. - Péptido magnético la reivindicación 9, caracterizado porque el brazo de unión se selecciona de entre -alquileno-NH-, -alquileno-CO-NH-, -alquileno-NH-CO-, - alquileno-O-, -alquileno-CO-O-, -alquileno-O-CO-, -alquileno-NH-alquileno-R2, - alquileno-NH-CO-alquileno-R2, -alquileno-CO-NH-alquileno-R2, -alquileno-O-alquileno- R2, -alquileno-0-CO-alquileno-R2, -alquileno-CO-0-alquileno-R2, -hidroxialquileno-NH-, -hidroxialquileno-CO-NH-, -hidroxialquileno-NH-CO-, -hidroxialquileno-O-, hidroxialquileno-CO-O-, -hidroxialquileno-O-CO-, -hidroxialquileno-NH-alquileno-R2, - hidroxialquileno-NH-CO-alquileno-R2, -hidroxialquileno-CO-NH-alquileno-R2, hidroxialquileno-0-alquileno-R2, -hidroxialquileno-0-CO-alquileno-R2, -hidroxialquileno- CO-0-alquileno-R2, -alquileno-NH-hidroxialquileno-R2, -alquileno-NH-CO- hidroxialquileno-R2, -alquileno-CO-NH-hidroxialquileno-R2, -alquileno-O- hidroxialquileno-R2, -alquileno-0-CO-hidroxialquileno-R2, y -alquileno-CO-O- hidroxialquileno-R2, en donde R2 es O, S o NH, y preferiblemente es NH.
1 1. - Péptido magnético según la reivindicación 10, caracterizado porque el brazo de unión R se selecciona de entre -alquileno-NH-alquileno-R2, -alquileno-NH-CO- alquileno-R2, -alquileno-CO-NH-alquileno-R2, -alquileno-0-alquileno-R2, -alquileno-O- CO-alquileno-R2, y -alquileno-CO-0-alquileno-R2 en donde R2 es O, S o NH, y preferiblemente es NH.
12. - Péptido magnético según la reivindicación 11 , caracterizado porque el brazo de unión R es -alquileno-NH-alquileno- R2 en donde R2 es O, S o NH, y preferiblemente es NH.
13. - Péptido magnético según la reivindicación 12, caracterizado porque el brazo de unión R es -(CH2)x-NH-(CH2)y-NH, en donde x e y están comprendidos entre 1 y 6, y preferiblemente entre 3 y 5.
14. - Péptido magnético según cualquiera de las reivindicaciones 7 a 13, caracterizado porque el metal de transición M se selecciona de entre el grupo formado por Ni, Fe, Ga, Mn, Co, Cu y Zn.
15. - Péptido magnético según la reivindicación 14, caracterizado porque el metal de transición M se selecciona de entre el grupo formado por Ni, Fe, Mn y Co.
16. - Péptido magnético según la reivindicación 15, caracterizado porque el metal de transición M es Co.
17. - Péptido magnético según la reivindicación 16, caracterizado porque el metal de transición tiene un estado de oxidación de +2.
18. - Péptido magnético según la reivindicación 7, caracterizado porque el complejo magnético particulado es Dynabeads® TALON®.
19. - Inmunosensor caracterizado porque comprende el péptido magnético de cualquiera de las reivindicaciones 7 a 18 y un transductor que tiene acoplado o integrado un imán.
20. - Método para detectar la enfermedad celíaca, caracterizado porque comprende las siguientes etapas:
1) incubar una suspensión del péptido magnético de cualquiera de las reivindicaciones 7 a 18 con una muestra de suero o sangre de un individuo,
2) añadir anti-suero humana-HRP, seleccionado de entre anti-lgA humana-HRP y anti-lgG humana-HRP, a la suspensión incubada en el punto 1) e incubar la suspensión obtenida, y 3) medir la señal electroquímica u óptica obtenida a partir de la suspensión obtenida en el punto 2).
21. - Kit para detectar la enfermedad celíaca, caracterizado porque comprende el péptido magnético de cualquiera de las reivindicaciones 7 a 18.
22. - Uso del péptido de cualquiera de las reivindicaciones 1 a 6 para detectar la enfermedad celíaca.
23. - Uso del péptido magnético de cualquiera de las reivindicaciones 7 a 18 para detectar la enfermedad celíaca.
24. - Uso del inmunosensor de la reivindicación 19 para detectar la enfermedad celíaca.
PCT/ES2015/070097 2014-02-14 2015-02-16 Péptido, péptido magnético y método para detectar la enfermedad celíaca WO2015121526A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15749357.8A EP3106466B1 (en) 2014-02-14 2015-02-16 Peptide, magnetic peptide and method for detecting celiac disease
CA2939476A CA2939476C (en) 2014-02-14 2015-02-16 Peptides, magnetic peptides, immunosensors and method for detecting celiac disease
US15/118,516 US10156565B2 (en) 2014-02-14 2015-02-16 Peptide, magnetic peptide and method for detecting celiac disease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201430198 2014-02-14
ES201430198A ES2465715B1 (es) 2014-02-14 2014-02-14 Péptido, péptido magnético y método para detectar la enfermedad celíaca

Publications (1)

Publication Number Publication Date
WO2015121526A1 true WO2015121526A1 (es) 2015-08-20

Family

ID=50843176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070097 WO2015121526A1 (es) 2014-02-14 2015-02-16 Péptido, péptido magnético y método para detectar la enfermedad celíaca

Country Status (5)

Country Link
US (1) US10156565B2 (es)
EP (1) EP3106466B1 (es)
CA (1) CA2939476C (es)
ES (1) ES2465715B1 (es)
WO (1) WO2015121526A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017132564A2 (en) * 2016-01-27 2017-08-03 The General Hospital Corporation Magnetic electrochemical sensing
EP3922991A1 (en) * 2020-06-10 2021-12-15 PreOmics GmbH Dispersion using a moving magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005089933A1 (en) * 2004-03-17 2005-09-29 Dynal Biotech Asa Improvements in polymer particles
US20090311727A1 (en) * 2008-04-21 2009-12-17 Bio-Rad Laboratories, Inc. Recombinant deamidated gliadin antigen
US20130109034A1 (en) * 2010-03-10 2013-05-02 IMMCO Diagnostics, Inc. Compositions and Methods for Determining Celiac Disease

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO155316C (no) 1982-04-23 1987-03-11 Sintef Fremgangsmaate for fremstilling av magnetiske polymerpartikler.
US5962641A (en) 1996-08-16 1999-10-05 Clontech Laboratories, Inc. Method for purification of recombinant proteins
AU777829B2 (en) 1999-04-09 2004-11-04 Life Technologies As Process for the preparation of monodisperse polymer particles
EP1638662A2 (en) * 2003-06-27 2006-03-29 Dynal Biotech ASA Conjugates of magnetic polymer particles and carboxymethylated aspartic acid
US20080038760A1 (en) 2004-06-08 2008-02-14 Method For Decting Anti-Transglutaminase Antibodies Method for Detecting Anti-Transglutaminase Antibodies
DE102007025291A1 (de) * 2007-05-30 2008-12-04 Euroimmun Ag Verfahren und Immunabsorbentien zur spezifischen Detektion und Absorption Zöliakie- und Dermatitis herpetiformis assoziierter Antikörper
ES2688268T3 (es) * 2011-12-05 2018-10-31 Bio-Rad Laboratories, Inc. Antígeno de gliadina desamidada recombinante
ES2407055B1 (es) 2011-12-07 2014-04-16 Universidad Pablo De Olavide Empleo de anticuerpos anti-beta-lactoglobulina en el diagnóstico y seguimiento de la enfermedad celíaca

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005089933A1 (en) * 2004-03-17 2005-09-29 Dynal Biotech Asa Improvements in polymer particles
US20090311727A1 (en) * 2008-04-21 2009-12-17 Bio-Rad Laboratories, Inc. Recombinant deamidated gliadin antigen
US20130109034A1 (en) * 2010-03-10 2013-05-02 IMMCO Diagnostics, Inc. Compositions and Methods for Determining Celiac Disease

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LAUBE T. ET AL.: "Magneto immunosensor for gliadin detection in gluten free food-stuff: Towards food safety for celiac patients.", BIOSENSORS AND BIOELECTRONICS., vol. 27, 2011, pages 46 - 52, XP028252575, DOI: doi:10.1016/j.bios.2011.06.006 *
SCHWERTZ E. ET AL.: "Serologic Assay Based on Gliadin- Related Nonapeptides as a Highly Sensitive and Specific Diagnostic Aid in Celiac Disease.", CLINICAL CHEMISTRY, vol. 50, no. 12, 2004, pages 2370 - 2375, XP002503352, DOI: doi:10.1373/CLINCHEM.2004.036111 *

Also Published As

Publication number Publication date
ES2465715A1 (es) 2014-06-06
EP3106466A1 (en) 2016-12-21
US20170153233A1 (en) 2017-06-01
ES2465715B1 (es) 2015-03-18
US10156565B2 (en) 2018-12-18
EP3106466A4 (en) 2017-09-06
CA2939476A1 (en) 2015-08-20
CA2939476C (en) 2021-06-22
EP3106466B1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
US11255854B2 (en) Signal amplification in lateral flow and related immunoassays
ES2743128T3 (es) Método y dispositivo para la detección combinada de infecciones víricas y bacterianas
ES2810760T3 (es) Kit de reactivos utilizado para detectar gastrina-17 y método de preparación y aplicación para el kit de reactivos
US20230333115A1 (en) KIT FOR DETECTING ANTI-PROTEASOME SUBUNIT ALPHA TYPE 1-IMMUNOGLOBULIN G (IgG) ANTIBODY
CA3033035C (en) Method for the diagnosis of acute pancreatitis (ap) by detection of glycoprotein 2 isoform alpha (gp2a)
CN113447649B (zh) 一种检测抗粘着斑蛋白-IgG抗体的试剂盒
ES2465715B1 (es) Péptido, péptido magnético y método para detectar la enfermedad celíaca
US20080038760A1 (en) Method for Detecting Anti-Transglutaminase Antibodies
JP6578119B2 (ja) 前立腺特異抗原の測定方法及び測定キット
KR20150093544A (ko) 양자점 층을 포함한 비드 입자를 포함하는 복합체 및 이를 이용한 심근경색 관련 질환의 진단 방법
WO2023017817A1 (ja) 免疫測定方法、検体希釈液、及びイムノクロマトグラフィーキット
EP2584361A1 (en) Marker for detection and/or discrimination of non-alcoholic steatohepatitis, method for detection and/or discrimination of non-alcoholic steatohepatitis, and kit for use in the method
JP5857385B2 (ja) Ape1/ref−1を含有する膀胱癌診断用組成物、及びこれを利用した膀胱癌診断キット
Oh et al. One-step-immunoassay of procalcitonin enables rapid and accurate diagnosis of bacterial infection
WO2021023836A1 (en) An improved autoantibody detection assay
ES2279980T3 (es) Sistema y procedimiento inmunocromatografico para la identificacion simultanea de anticuerpos frente a aga y t-tg, y su uso en el diagnostico de enfermedad celiaca.
EP4220166A1 (en) In vitro method for detecting antibodies in a sample
JP3727739B2 (ja) 糞便中の血液成分の検出方法及びこれに用いる検出キット
Basso et al. Insights in the laboratory diagnosis of celiac disease
JP2023547188A (ja) 住血吸虫感染症の検出のためのタンパク質
NZ724911A (en) Compositions and methods for identifying ehrlichia species

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749357

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2939476

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15118516

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015749357

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015749357

Country of ref document: EP