WO2015119243A1 - イメージセンサ - Google Patents

イメージセンサ Download PDF

Info

Publication number
WO2015119243A1
WO2015119243A1 PCT/JP2015/053370 JP2015053370W WO2015119243A1 WO 2015119243 A1 WO2015119243 A1 WO 2015119243A1 JP 2015053370 W JP2015053370 W JP 2015053370W WO 2015119243 A1 WO2015119243 A1 WO 2015119243A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
delay
pixel
conversion elements
circuit
Prior art date
Application number
PCT/JP2015/053370
Other languages
English (en)
French (fr)
Inventor
川人 祥二
啓太 安富
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to US15/116,732 priority Critical patent/US9832409B2/en
Priority to JP2015561054A priority patent/JP6501403B2/ja
Publication of WO2015119243A1 publication Critical patent/WO2015119243A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/7795Circuitry for generating timing or clock signals

Definitions

  • One aspect of the present invention relates to an image sensor including a plurality of pixels.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • TOF Time of Flight
  • an indirect method using lock-in detection synchronized with a light source is adopted, and distance resolution is enhanced.
  • a time shift (skew) of a control signal supplied to a pixel becomes a problem as high time resolution is required.
  • the skew of the control signal occurs due to manufacturing variations of buffers provided in the control signal supply line, delay in the supply line, and the like, and may range from several hundred picoseconds to about nanoseconds for each pixel.
  • the measurement range is about several hundred pico, distance calculation becomes difficult due to skew, and imaging accuracy is increased. Decreases.
  • one aspect of the present invention has been made in view of such a problem, and an object thereof is to provide an image sensor that enables high-accuracy imaging with improved time resolution.
  • an image sensor includes a light receiving unit that converts incident light into electric charge, a charge storage unit that stores electric charge, and charge transfer from the light receiving unit to the charge storage unit.
  • a plurality of one-dimensionally arranged photoelectric conversion elements, a clock input unit for inputting a control clock to be applied to the gate electrode, a photoelectric conversion element or a photoelectric conversion element Provided in correspondence with each of a plurality of columns of the group, and delays the control clock input by the clock input unit by a variable time and applies the control clock to the gate electrodes of the plurality of photoelectric conversion elements belonging to the corresponding column. 1 delay adjustment unit.
  • the control clock is input from the clock input unit to the gate electrodes of the plurality of photoelectric conversion elements arranged for each of the plurality of columns, so that the charge storage unit from the light receiving unit in each photoelectric conversion element.
  • the charge transfer timing to is controlled.
  • the control clock input to each photoelectric conversion element is variable for each column by passing through the first delay adjustment unit provided for each of the plurality of columns of the photoelectric conversion element or the group of photoelectric conversion elements. Delay time is set.
  • the first delay adjustment unit may include a storage unit that holds a value that determines the delay time, and a delay adjustment circuit that changes a signal delay characteristic according to the value held in the storage unit.
  • the plurality of photoelectric conversion elements or the group of the plurality of photoelectric conversion elements are further arranged one-dimensionally for each of the plurality of rows, and the control clock input from the clock input unit can be changed for each of the plurality of rows in a variable time.
  • a second delay adjustment unit that delays and applies the control clock to the gate electrodes of the plurality of photoelectric conversion elements belonging to the corresponding row may be further provided.
  • the second delay adjustment circuit is provided corresponding to each of the plurality of rows of the photoelectric conversion elements, the storage unit holding a value for determining the delay time, and the storage unit provided for each of the plurality of photoelectric conversion elements. And a delay adjustment circuit that changes the signal delay characteristic for each row of the photoelectric conversion elements in accordance with the value held in.
  • the signal delay characteristic of the second delay adjustment unit provided for each row can be changed by adjusting the value held in the storage unit. Thereby, the difference in transmission delay for each row of the photoelectric conversion elements can be easily canceled.
  • the second delay adjustment circuit is provided for each of the plurality of photoelectric conversion elements, and stores a value for determining a delay time, and is provided for each of the plurality of photoelectric conversion elements and is held in the storage unit.
  • the signal delay characteristic of the second delay adjustment unit can be changed for each row by adjusting the value held in the storage unit. Thereby, the difference in transmission delay for each row of the photoelectric conversion elements can be easily canceled.
  • the second delay adjustment circuit is provided for each group of the plurality of photoelectric conversion elements, and includes a storage unit that holds a value that determines the delay time, and a storage unit that is provided for each group of the plurality of photoelectric conversion elements. And a delay adjustment circuit that changes the signal delay characteristic for each group of photoelectric conversion elements in accordance with the value held in. Also with the configuration of the second delay adjustment unit, the signal delay characteristic of the second delay adjustment unit can be changed for each row by adjusting the value held in the storage unit. Thereby, the difference in transmission delay for each row of the photoelectric conversion elements can be easily canceled.
  • FIG. 1 is a diagram illustrating a schematic configuration of a measurement system 100 including a camera device 1 that is a distance measurement device according to an embodiment of the present invention. It is a block diagram which shows schematic structure of the camera apparatus 1 of FIG. It is a circuit diagram which shows the structure of the pixel Xij in the pixel array part 5 of FIG. It is a perspective view which shows the laminated structure of the semiconductor element 15 provided in the pixel Xij of FIG. 5 is a diagram showing a potential distribution in a vertical section when a voltage is applied to a gate electrode 31 in the semiconductor element 15 of FIG.
  • FIG. 3 is a circuit diagram showing a connection configuration between each pixel Xij in the pixel array section 5 of FIG. 2 and a timing generation circuit 8; FIG.
  • FIG. 7 is a circuit diagram illustrating a configuration example of a delay adjustment circuit 44 included in the correction circuit unit 41 of FIG. 6.
  • FIG. 7 is a circuit diagram illustrating a configuration example of a delay adjustment circuit 44 included in the correction circuit unit 41 of FIG. 6.
  • FIG. 7 is a circuit diagram illustrating a configuration example of a delay adjustment circuit 44 included in the correction circuit unit 41 of FIG. 6.
  • 3 is a timing chart showing light emission timing and charge accumulation timing in a pixel controlled by the timing generation circuit 8 of FIG. 2. It is a graph which shows the measurement result of the skew which arises in the pixel array part 5 of the camera apparatus 1 which concerns on this embodiment.
  • FIG. 7 is a circuit diagram illustrating a configuration example of a delay adjustment circuit 44 included in the correction circuit unit 41 of FIG. 6.
  • 3 is a timing chart showing light emission timing and charge accumulation timing in a pixel controlled by the timing generation circuit 8 of FIG. 2. It is a graph which shows the measurement result of the skew which arises in the
  • FIG. 6 is a circuit diagram showing a connection configuration between each pixel Xij in a pixel array section 5 and a timing generation circuit 8 in a modification of the present invention.
  • FIG. 10 is a circuit diagram showing a connection configuration between each pixel Xij in a pixel array section 5 and a timing generation circuit 8 in another modification of the present invention.
  • FIG. 10 is a circuit diagram showing a connection configuration between each pixel Xij in a pixel array section 5 and a timing generation circuit 8 in another modification of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of a measurement system 100 including a camera device (image sensor) 1 which is a distance measuring device according to an embodiment of the present invention.
  • the measurement system 100 is used to measure the distance to the object Sa using a TOF (Time Of Flight) method, and a laser light source 3 that irradiates light toward the object Sa, and the object Sa. And a camera device 1 that calculates the distance by detecting the reflected light.
  • the laser light source 3 is a light source device capable of emitting pulsed light having a pulse width sufficiently shorter than a response time of a light receiving unit of the camera device 1 to be described later. For example, it can emit pulsed light having a central wavelength of 445 nm and a pulse width of 100 psec. It is configured.
  • the center wavelength and pulse width of the light irradiated by the laser light source 3 are not limited to the above values, and can be set to various values.
  • FIG. 2 is a block diagram showing the configuration of the camera device 1.
  • the camera device 1 is configured by integrating a pixel array unit 5 and peripheral circuit units 6, 7, 8, 9, 10, and 12 on the same semiconductor chip. It is configured on a separate circuit inside the camera device 1 outside the semiconductor chip.
  • the circuit unit 11 may be integrated on the same semiconductor chip together with the pixel array unit 5 and the peripheral circuit units 6, 7, 8, 9, 10, and 12.
  • a large number of pixels (photoelectric conversion elements) Xij (i is an integer from 1 to n, j is an integer from 1 to m) are arranged in a two-dimensional matrix, and a rectangular imaging region is formed. It is composed. That is, n pixels Xij are arranged one-dimensionally along the vertical direction for each of a plurality of columns, and m pixels are arranged one-dimensionally along the horizontal direction for every plurality of rows.
  • a horizontal scanning circuit 6 is provided along the horizontal pixel rows of the plurality of pixels Xij in the peripheral portion of the pixel array unit 5, and the vertical scanning is performed along the vertical pixel columns of the plurality of pixels Xij.
  • a circuit 7 is provided.
  • a timing generation circuit (clock input unit) 8 is connected to the horizontal scanning circuit 6 and the vertical scanning circuit 7.
  • Each pixel Xij is connected to a timing generation circuit 8 via a clock supply line including a column skew correction circuit 12.
  • the pixel Xij in the pixel array unit 5 is sequentially scanned by the timing generation circuit 8, the horizontal scanning circuit 6, and the vertical scanning circuit 7, and pixel signals are read out and initialized. That is, by scanning the pixel array unit 5 in the vertical direction in units of pixel rows by the vertical scanning circuit 7, the pixel signal of each pixel column included in the scanned pixel column is provided for each pixel column. It is configured to read by a line. Reading of the pixel signal of each pixel column is performed by outputting via a noise cancellation circuit 9 and an output buffer circuit 10 provided for each vertical signal line. Further, when the pixel signal of each pixel column is read, the horizontal scanning circuit 6 scans the pixel Xij in the horizontal direction.
  • the timing generation circuit 8 controls the timing of vertical scanning and horizontal scanning of the pixel Xij of the pixel array unit 5 as described above, and controls the irradiation timing of the pulsed light of the laser light source 3 provided in the measurement system 100. In addition, the timing of charge accumulation and charge discharge in each pixel Xij is controlled based on the irradiation timing by the control pulse voltage TW given to each pixel Xij.
  • FIG. 3 is a circuit diagram showing a configuration of the pixel Xij in the pixel array section 5
  • FIG. 4 is a perspective view showing a stacked structure of the semiconductor elements 15 provided in the pixel Xij.
  • a plurality of semiconductor elements 15 functioning as pixel circuits are arranged in the pixel Xij.
  • the semiconductor element 15 is embedded in a first conductivity type (p-type) semiconductor region 21 and a second conductivity type (n-type) light-receiving surface buried in a part of the upper portion of the semiconductor region 21.
  • a two-conductivity (n + -type) discharge drain region (charge discharge portion) 27 is formed.
  • the discharge drain region 27 is a portion for discharging electrons generated in the light receiving surface buried region 23, and a boundary that intersects the boundary line of the light receiving surface buried region 23 in contact with the charge accumulation region 25 substantially perpendicularly. It is provided near the line.
  • the light receiving surface embedded region 23 and the semiconductor region 21 immediately below the light receiving surface embedded region 23 constitute an embedded photodiode D1 that converts reflected light (incident light) from the object Sa into electric charges (electrons).
  • a first conductivity type epitaxial growth layer having a lower impurity concentration than the semiconductor substrate formed on the first conductivity type semiconductor substrate may be used.
  • a p + -type pinning layer 29 is further disposed on the light receiving surface buried region 23 of the semiconductor element 15.
  • the pinning layer 29 is a layer for suppressing charge formation on the surface of the embedded photodiode D1 in the dark, and may be provided for reducing dark current. In applications where dark current is not a problem, the pinning layer 29 may be omitted.
  • the potential of the transfer channel formed between the buried photodiode D1 and the drain region 27 is controlled between the buried photodiode D1 and the drain region 27 on the semiconductor region 21 to control the buried photodiode.
  • a gate electrode 31 for controlling the discharge of charges from D1 to the discharge drain region 27 is formed.
  • FIG. 5A and 5B show the potential distribution in the vertical cross section of the semiconductor element 15 when a voltage is applied to the gate electrode 31.
  • FIG. 5A shows a potential distribution in a vertical cross section along the line XX ′ from the region of the embedded photodiode D1 to the charge storage region 25. The region of the embedded photodiode D1 is shown in FIG. A potential gradient is formed from the charge accumulation region 25 to the charge accumulation region 25.
  • FIG. 5B shows a potential distribution in a vertical section along the YY ′ line from the buried photodiode D1 region to the discharge drain region 27. The solid line indicates a low voltage applied to the gate electrode 31.
  • the distribution when applied and the dotted line show the distribution when a high voltage is applied to the gate electrode 31, respectively.
  • a potential barrier is formed between the region of the embedded photodiode D1 and the drain region 27, so that the region of the buried photodiode D1 and the drain region are discharged. 27 is closed, and all of the electrons e ⁇ generated with the incidence of the incident light L in are transferred to the charge storage region 25.
  • the potential barrier between the region of the embedded photodiode D1 and the discharge drain region 27 disappears and a potential gradient is formed, whereby the region of the embedded photodiode D1.
  • a transfer channel between the discharge drain region 27 is opened, electrons generated in association with the incidence of the incident light L in e - all are transferred to the discharge drain region 27. That is, when a high voltage is applied to the gate electrode 31, the charge transfer effect of the transfer channel between the region of the embedded photodiode D1 and the discharge drain region 27 is greater than the region of the embedded photodiode D1 and the charge storage region. The generated electrons e ⁇ are all transferred to the discharge drain region 27 because they are more dominant than the charge transfer effect between them.
  • the gate electrode 31 also has a function as the virtual switch 33 for controlling the transfer of charges from the embedded photodiode D1 to the charge storage region 25.
  • the pixel Xij further includes a buffer circuit 35 that inverts the control pulse voltage TW applied from the timing generation circuit 8 and applies it to the gate electrode 31 as the control pulse voltage TD.
  • the buffer circuit 35 is an inverter circuit.
  • the pixel Xij is provided with a readout circuit (charge readout unit) 37 that reads out the electric charge accumulated in the electric charge accumulation region 25 as an electric signal is applied with the application of the control pulse voltage TW.
  • the readout circuit 37 includes a signal readout transistor 37a, a switching transistor 37b, and a reset transistor 37c.
  • the gate electrode of the signal readout transistor 37a is connected to the charge storage region 25, the drain electrode of the signal readout transistor 37a is connected to a bias power source, and the source electrode of the signal readout transistor 37a is connected to the drain electrode of the pixel selection switching transistor 37b. It is connected.
  • the source electrode of the switching transistor 37b is connected to the vertical signal line, and the pixel column selection control signal S is supplied from the vertical scanning circuit 7 to the gate electrode of the switching transistor 37b.
  • the selection control signal S By setting the selection control signal S to a high level, the switching transistor 37b is turned on, and an electric signal having a potential corresponding to the amount of charge accumulated in the charge accumulation region 25 amplified by the signal read transistor 37a is applied to the vertical signal line. Is output.
  • the reset transistor 37 c has a source electrode connected to the charge storage region 25, a drain electrode connected to a bias power supply, and a gate electrode to which a reset signal R is supplied from the vertical scanning circuit 7. The reset transistor 37c resets the charge accumulation region 25 by discharging the charge accumulated in the charge accumulation region 25 when the reset signal R is set to a high level.
  • FIG. 6 shows the connection configuration between each pixel Xij in the pixel array unit 5 and the timing generation circuit 8 in detail. As shown in the figure, the timing generation circuit 8 and the pixel array unit 5 are connected via a column skew correction circuit 12.
  • the column skew correction circuit 12 includes a plurality of correction circuit units (first delay adjustment units) 41 provided corresponding to the columns of the plurality of pixels Xij of the pixel array unit 5. Yes.
  • Each correction circuit unit 41 includes a delay adjustment circuit 44 connected to the timing generation circuit 8 via a clock supply line 42 and a memory (storage unit) 43.
  • the memory 43 holds a digital value that determines a delay time for delaying the control pulse voltage TW supplied from the timing generation circuit 8.
  • the delay adjustment circuit 44 is connected to the clock supply line 42 and all the pixels Xij in the corresponding pixel column, and the control pulse voltage TW supplied from the timing generation circuit 8 is variable according to the digital value read from the memory 43.
  • the control pulse voltage TW is applied to the gate electrodes 31 of all the pixels Xij belonging to the corresponding column.
  • the timing generation circuit 8 is a PLL (Phase Locked Loop) circuit that receives a clock from the input terminal 47 and generates a control pulse voltage TW based on the clock.
  • the timing generation circuit 8 generates a trigger signal that controls the irradiation timing of the pulsed light from the laser light source 3, and outputs the trigger signal from the output terminal 48.
  • the timing generation circuit 8 is a PLL circuit that generates a clock.
  • the PLL circuit is not necessarily required, and receives a clock from an external input and inputs a control pulse voltage TW to the pixel Xij based on the received clock. It may be a circuit.
  • the delay adjustment circuit 44 is connected to the gate electrode 31 of the semiconductor element 15 via the plurality of buffer circuits 45, the wiring resistors 46 in each pixel Xij, and the buffer circuit 35.
  • the buffer circuit 45 is for driving a plurality of buffer circuits 35 connected to each pixel column, and a plurality of buffer circuits 45 are connected in series for each pixel column.
  • the buffer circuit 35 shapes the clock supplied to the semiconductor element 15 and reduces the load directly connected to the buffer circuit 45.
  • the column skew correction circuit 12 having the above-described configuration is provided in order to eliminate a time lag (skew) of the control pulse voltage TW generated between the pixel columns in the plurality of pixels Xij.
  • the skew of the control pulse voltage TW between the pixel columns is caused by a delay time in the clock supply line generated by a difference in performance due to manufacturing variations of the buffer circuit 45, a difference in power supply voltage drop, or the like.
  • Each correction circuit unit 41 in the column skew correction circuit 12 sets the delay time of the control pulse voltage TW supplied to each pixel column so as to cancel the skew of the control pulse voltage TW generated between the pixel columns. That is, the correction circuit unit 41 in the column skew correction circuit 12 changes the signal delay characteristic of the clock supply line between the timing generation circuit 8 and each pixel column.
  • the delay adjustment circuit 44 includes a single-ended amplifier 51, current sources 52 and 53 that drive the single-ended amplifier 51, and digital analog (D / A) that converts adjustment bits into voltage values.
  • the converter 61 is configured, and the current delay values of the current sources 52 and 53 are adjusted by a control signal supplied to the adjustment bit line 54, so that the signal delay characteristic can be changed.
  • the delay adjustment circuit 44 includes a differential amplifier 55, a current source 56 that drives the differential amplifier 55, and a digital analog (D / A) converter that converts an adjustment bit into a voltage value.
  • the delay adjustment circuit 44 may be a digital delay element as shown in FIG. That is, a combinational circuit of a pair of AND gates 58 and 59 is connected in series. In each AND gate 58, the control pulse voltage TW is input to one input, and the other input is controlled via the adjustment bit line 60. Bits are input, and in each AND gate 59, the output of the preceding AND gate 59 is sequentially input to one input, and the output of the AND gate 58 forming a pair is input to the other input. According to such a configuration, the control pulse voltage TW whose delay time is adjusted can be output by the input of the control bit.
  • the calculation circuit (calculation unit) 11 shown in FIG. 2 calculates the distance to the object Sa based on the electrical signal read from the pixel Xij by the timing control by the timing generation circuit 8.
  • FIG. 10 is a timing chart showing the light emission timing and the charge accumulation timing controlled by the timing generation circuit 8.
  • FIG. 10A shows the time waveform of the pulsed light emitted from the laser light source 3, and FIG. the time waveform of the reflected light received by the pixel Xij, FIG. 10 (c), the time waveform of the photocurrent I ph is a response to the reflection light in the pixel Xij, FIG. 10 (d) the gate of the pixel Xij 4 is a time waveform of a control pulse voltage TW applied to an electrode 31.
  • the timing generation circuit 8 determines a light emission timing so that light is repeatedly emitted at a predetermined frequency, and a trigger signal is supplied from the timing generation circuit 8 so that pulsed light is emitted from the laser light source 3 at the light emission timing. Accordingly, the reflected light is incident on the pixel Xij with a time difference t d corresponding to the distance to the object Sa after the light emission timing.
  • the pulse width of the reflected light incident on the pixel Xij is set to a value sufficiently shorter than the response time of the light receiving unit of the pixel Xij (for example, a pulse width of 100 psec or less).
  • the response waveform with respect to the incident light in the light receiving portion of the pixel Xij is substantially equal to the impulse response.
  • a close response waveform falls like a single triangular wave in a subsequent response time T 0 .
  • the timing generation circuit 8 In response to the response waveform of the pixel Xij, the timing generation circuit 8 generates control pulse voltages TW (1), TW (2), and TW (3) having three types of phase differences based on the light emission timing. It is controlled to generate repeatedly. Specifically, the control pulse voltage TW (1) is set to a rectangular pulse wave that is at a high level only for a predetermined period after the light emission timing. The control pulse voltage TW (2) becomes a high level from the emission timing to the time T 1 of the post-emission timing control pulse voltage TW (1) and the high-level period is set to a rectangular pulse wave as to partially overlap The Further, the control pulse voltage TW (3) is set to a rectangular pulse wave obtained by inverting the control pulse voltage TW (1).
  • the timing generation circuit 8 performs control so that the control pulse voltage TW (1) is repeatedly applied after the light emission timing
  • the charge is accumulated along with the application of the control pulse voltage TW (1) from the pixel Xij. Control is performed so that the first charge accumulated in the region 25 is read out as the first electric signal.
  • the charge accumulation region 25 is applied to the charge accumulation region 25 as the control pulse voltage TW (2) is applied from the pixel Xij. Control is performed so that the accumulated second charge is read out as the second electric signal.
  • the timing generation circuit 8 performs control so that the control pulse voltage TW (3) is repeatedly applied after the light emission timing
  • the charge accumulation region 25 is applied in accordance with the application of the control pulse voltage TW (3) from the pixel Xij.
  • the third electric charge stored in is controlled to be read out as the third electric signal.
  • the calculation circuit 11 normalizes the read values of the first to third electric signals to convert them into the number of stored electrons N 1 , N 2 , N 3 .
  • the impulse applied waveform of the photocurrent of the pixel Xij is approximated by a linear function represented by the following formula (1).
  • the number of electrons accumulated in response to the application of each control pulse voltage TW (1), TW (2), TW (3) is such that the time difference t d is T 1 ⁇ T. It can be calculated by the following formula (2) in the range of 0 ⁇ t d ⁇ T 1 .
  • the calculation circuit 11 calculates the time difference t d that is the flight time of light using the following formula (3) by using the relationship of the above formula (2). At this time, the calculation circuit 11 calculates a ratio r of values obtained by correcting the number of stored electrons N 1 and N 2 with the number of stored electrons N 3 . Furthermore, calculation circuit 11, a distance L a time difference t d calculated to the object Sa based, the speed of light as the c [m / s], and outputs the calculated by the following equation (4).
  • the range of the distance L that can be measured by the above equation (4) is a range of values calculated by the following equation (5), and is proportional to the response time T 0 of the impulse response of the pixel Xij.
  • the output of the accumulated electron number N 2 is changed. Since the differentiation of the output value N 2 is equivalent to the photocurrent I ph , the output value N 2 is acquired while changing the delay time of the light emission timing for each pixel Xij, and the modulation characteristic of the output value N 2 is used.
  • the delay time t peak (i, j, D c ) D c : digital value set in the memory 43) at which the differential value is maximum, the digital value of the memory 43 set for each pixel column Is selected. This modulation characteristic can also be obtained by changing the delay amount of the control pulse voltage TW (2).
  • the input to the camera device 1 is the direct light of a light source that is equidistant from all pixels or the reflected light of an object that is equidistant from all pixels
  • the digital value in the memory of the correction circuit unit 41 is the initial value D C0. and when the deviation between pixels Xij delay time t peak (i, j, D c0) is skew ⁇ T 1 (i, j, D c0) it becomes equivalent to.
  • the delay time t peak (i, j, D c ) changes according to the delay amount of the control pulse voltage TW (2).
  • a digital value can be determined from the observed delay time t peak (i, j, D c ).
  • T 1 in the above equation (4) actually takes a different value for each pixel due to clock skew.
  • the distance L (i, j) calculated for the pixel Xij is the following equation (7);
  • T1 , max is the following formula (8);
  • the skew ⁇ T 1 (i, j, D c0 ) indicates the amount of deviation from T 1, max , that is, the skew between pixels to be corrected.
  • an error occurs in the calculated distance even if the object exists at an equal distance from all the pixels Xij due to the skew. If the skew is large, the pixel Xij is out of the range that can be calculated, and the distance cannot be measured in all the pixels Xij, so that the pixel array unit 5 needs to correct the skew.
  • the digital value D c of the memory 43 can be set for each column, and the distance is expressed by the following equation (9); Is calculated by
  • D c0 is an initial value of the digital value of the memory 43
  • T 1 of the most delayed pixel Xij is expressed by the following equation (10);
  • the adjustment value t calib_skew (j, D c ) is given by the correction circuit unit 41 at the time of the digital value D c and takes the same value for each column.
  • the adjustment value t caly_dig (i, j) is a delay adjustment value by digital correction, and can take an independent value for each pixel.
  • the digital value D c is expressed by the following formula (11) so that the skew between columns is minimized. It is set to satisfy.
  • N R is the number of pixels Xij in the vertical direction.
  • the adjustment value t cali_skew (j, D c ) has a resolution determined by the number of bits in the memory 43 and further corrects only the skew between columns, so that a certain amount of correction error occurs. This correction error is corrected in the digital domain. That is, the adjustment value t cali_dig (i, j) is expressed by the following formula (12); The distance error between pixels due to the skew is completely removed by setting so as to be the value calculated in (1).
  • the differential value from the modulation characteristic of the output value N 2 was asking a delay time becomes maximum.
  • the input to the camera device 1 is direct light from a light source that is equidistant from all pixels or reflected light from an object that is equidistant from all pixels, and the amount of light at each pixel Xij is constant. It is only necessary to select the digital value D c that makes the output value N 2 equal in all pixels.
  • the control pulse voltage TW is applied from the timing generation circuit 8 to the gate electrodes 31 of the plurality of pixels Xij arranged in a plurality of columns, whereby the light receiving surface in each pixel Xij.
  • the charge transfer timing from the buried region 23 to the charge storage region 25 and the charge transfer timing from the light receiving surface buried region 23 to the discharge drain region 27 are controlled.
  • the control pulse voltage TW applied to each pixel Xij passes through the correction circuit unit 41 provided for each of the plurality of columns of the pixel Xij, so that a variable delay time is set for each column.
  • the correction circuit unit 41 can change the signal delay characteristic between the timing generation circuit 8 and each column of the pixel Xij for each column by adjusting the value held in the memory 43. Thereby, the skew (difference in delay time) between the columns of the pixel Xij can be easily canceled.
  • FIG. 11 shows a measurement result of skew generated in the pixel array unit 5 of the camera device 1 according to the present embodiment.
  • FIG. 11A shows a measurement result in a comparative example that does not include the column skew correction circuit 12, and FIG.
  • the measurement results of the present embodiment including the column skew correction circuit 12 are respectively shown. From this result, it was found that in the camera device 1 of the present embodiment, the skew in all the pixels Xij included in the pixel array unit 5 is effectively reduced. In particular, the occurrence of skew between columns of pixels when the column skew correction circuit 12 is not provided is remarkable, but in this embodiment, such skew between columns is almost eliminated.
  • FIG. 12 shows a connection configuration between each pixel Xij in the pixel array unit 5 and the timing generation circuit 8 in the modification of the present invention.
  • This modification further includes a row skew correction circuit 71 in addition to the column skew correction circuit 12.
  • the row skew correction circuit 71 includes a plurality of correction circuit units (second delay adjustment units) 72 provided for each of a plurality of rows of the pixel Xij, and each of the correction circuit units 72 includes each pixel row.
  • a memory 73 for holding a digital value for determining the delay time in FIG. 6 and a D / A converter 74 for D / A converting the digital value read from the memory 73 are included.
  • Each pixel Xij is provided with a current source 75 for driving the buffer circuit 35 connected to the D / A converter 74, and this current source 75 is supplied from the timing generation circuit 8 together with the buffer circuit 35.
  • the delay adjustment circuit 76 is configured to change the delay time of the control pulse voltage TW for each row. According to such a modification, the signal delay characteristic between the timing generation circuit 8 and each pixel Xij can be adjusted for each pixel row in accordance with the digital value held in the memory 73 of the correction circuit unit 72. The Therefore, the control pulse voltage TW supplied from the timing generation circuit 8 can be delayed by a variable time for each of a plurality of pixel rows, and the control pulse voltage TW can be applied to the gate electrode 31 of the pixel Xij.
  • FIG. 13 shows a connection configuration between each pixel Xij in the pixel array unit 5 and the timing generation circuit 8 in another modification of the present invention.
  • This modification includes a plurality of correction circuit units (second delay adjustment units) 77 provided in each pixel Xij in addition to the column skew correction circuit 12.
  • the correction circuit unit 77 includes a memory 78 that holds a digital value for determining a delay time in each pixel, and a delay of the control pulse voltage TW supplied from the timing generation circuit 8 according to the digital value read from the memory 78.
  • a delay adjustment circuit 79 that changes the time for each pixel. Specifically, the delay adjustment circuit 79 is connected between the buffer circuit 35 and the semiconductor element 15 in each pixel Xij, and adjusts the signal delay characteristic between the timing generation circuit 8 and each pixel Xij for each pixel. .
  • the signal delay characteristic of the delay adjustment circuit 79 can be changed for each row by adjusting the digital value held in the memory 78. Thereby, the difference in transmission delay for each row of the pixel Xij can be easily canceled out.
  • FIG. 14 shows a connection configuration between each pixel Xij in the pixel array unit 5 and the timing generation circuit 8 in another modification of the present invention.
  • a plurality of adjacent pixels constitute a pixel group (for example, a pixel group including eight pixels Xij), and these pixel groups are two-dimensionally arranged to constitute the pixel array unit 5.
  • a column skew correction circuit 12 is provided for each row of the pixel group, and in addition, a plurality of correction circuit units (second delay adjustment units) 80 provided in the pixel array unit 5 for each pixel group are provided.
  • the correction circuit unit 80 is supplied from the memory 81 that holds a digital value for determining the delay time in the pixel Xij constituting each pixel group, and the timing generation circuit 8 according to the digital value read from the memory 81.
  • a delay adjustment circuit 82 for changing the delay time of the control pulse voltage TW for each pixel Xij constituting the pixel group.
  • the delay adjustment circuit 82 is connected between the buffer circuit 35 and the semiconductor elements 15 of the eight pixels Xij in each pixel Xij group, and is connected to the timing generation circuit 8 and all the pixels Xij constituting the pixel group. The signal delay characteristic is adjusted for each pixel group.
  • the signal delay characteristic of the delay adjustment circuit 82 can be changed for each row of the pixel group by adjusting the digital value held in the memory 81. Thereby, the difference in transmission delay for each row of the pixel Xij can be easily canceled out.
  • the present invention is not limited to an image sensor using the TOF (Time-Of-Flight) method, and can also be applied to an image sensor for fluorescence lifetime measurement, Raman spectroscopic imaging, or near-infrared spectroscopic imaging. It is.
  • the present invention is also applicable to a charge modulation element including a plurality of gate electrodes and a plurality of charge storage regions and using two or more gate control signals, such as a lateral (lateral) electric field control charge modulation element. .
  • Sa ... target object 1 ... camera device (image sensor), 5 ... pixel array unit, 8 ... timing generation circuit (clock input unit), 12 ... column skew correction circuit, 15 ... semiconductor element, D1 ... embedded photodiode (light reception) ), 23... Surface embedded region for light reception (light receiving portion), 25... Charge storage region (charge storage portion), 27... Drain region (charge discharge portion), 31... Gate electrode, 35.
  • Correction circuit unit (first delay adjustment unit) 43... Memory (storage unit) 44.
  • Delay adjustment circuit 45.
  • Correction circuit unit (second delay adjustment circuit) 73. Part), 76 ... delay adjustment circuit, 77, 80 ... correction circuit part (second delay adjustment circuit), 78, 81 ... memory (storage part), 79, 82 ... delay adjustment circuit, Xij ... pixel (photoelectric conversion element) ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 時間分解能が高められた高精度のイメージングを可能にする。 このカメラ装置は、入射光を電荷に変換する受光用表面埋込領域と、電荷を蓄積する電荷蓄積領域と、受光用表面埋込領域から電荷蓄積領域への電荷の転送を制御するゲート電極とを有し、複数の列毎に一次元的に複数配列された画素と、ゲート電極に印加する制御パルス電圧を生成するタイミング発生回路と、画素の複数の列毎に対応して設けられ、制御パルス電圧を可変の時間で遅延させ、該制御パルス電圧を対応する列に属する複数の画素のゲート電極に印加する補正回路部とを備える。

Description

イメージセンサ
 本発明の一側面は、複数の画素を含むイメージセンサに関する。
 従来から、光の飛行時間を計測することで距離計測が可能なTOF(Time Of Flight)法を用いたCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ、蛍光寿命計測用、ラマン分光イメージング用、又は近赤外分光イメージング用のイメージセンサの開発が進められている。例えば、下記非特許文献1及び下記特許文献2には、TOF距離画像センサが開示されている。このTOF距離画像センサでは、光源と同期したロックイン検出による間接法が採用され、距離分解能が高められている。
S. Kawahito et al., "A CMOS time-of-flight range image sensor with gates-on-field-oxide structure"; IEEE Sensors Journal, Vol. 7, No. 12, pp.1578-1586, Dec 2007. K.Yasutomi et al., "A Time-of-Flight Image Sensor with Sub-mm Resolution Using Draining Only Modulation Pixels," Proc. 2013 Intl. Image Sensor Workshop, pp.361-364, Jun. 2013.
 しかしながら、上記の従来のイメージセンサにおいては、高時間分解能が要求されるにしたがって、画素に供給する制御信号の時間的ずれ(スキュー)が問題となる。制御信号のスキューは、制御信号の供給線に設けられるバッファの製造ばらつきや供給線における遅延などにより発生し、画素ごとに数百ピコ秒からナノ秒程度に至ることがある。例えば、上記非特許文献2のような数ピコ秒の分解能を有するイメージセンサを実現しようとした場合には、測定範囲が数百ピコ程度であるため、スキューにより距離演算が困難となり、イメージングの精度が低下する。
 そこで、本発明の一側面は、かかる課題に鑑みて為されたものであり、時間分解能が高められた高精度のイメージングを可能にするイメージセンサを提供することを目的とする。
 上記課題を解決するため、本発明の一側面にかかるイメージセンサは、入射光を電荷に変換する受光部と、電荷を蓄積する電荷蓄積部と、受光部から電荷蓄積部への電荷の転送を制御するゲート電極とを有し、複数の列毎に一次元的に複数配列された光電変換素子と、ゲート電極に印加する制御クロックを入力するクロック入力部と、光電変換素子或いは光電変換素子の群の複数の列毎に対応して設けられ、クロック入力部の入力した制御クロックを可変の時間で遅延させ、該制御クロックを対応する列に属する複数の光電変換素子のゲート電極に印加する第1の遅延調整部と、を備える。
 このようなイメージセンサによれば、複数の列毎に配列された複数の光電変換素子のゲート電極にクロック入力部から制御クロックが入力されることにより、各光電変換素子における受光部から電荷蓄積部への電荷の転送タイミングが制御される。その際、各光電変換素子に入力される制御クロックは、光電変換素子或いは光電変換素子の群の複数の列毎に設けられた第1の遅延調整部を経由することにより、列毎に可変の遅延時間が設定される。これにより、クロック入力部と光電変換素子との間に設けられるバッファの特性差等によって生じやすい列毎の伝送遅延の差を打ち消すことができ、光電変換素子の列間での制御信号のスキューの発生を防止できる。その結果、時間分解能が高められた高精度のイメージングを可能にする。
 第1の遅延調整部は、遅延時間を決定する値を保持する記憶部と、記憶部に保持された値に応じて信号遅延特性を変化させる遅延調整回路と、を有してもよい。このような第1の遅延調整部の構成により、記憶部に保持する値を調整することにより第1の遅延調整部の信号遅延特性を変化させることができる。これにより、光電変換素子の列毎の伝送遅延の差を容易に打ち消すことができる。
 また、複数の光電変換素子或いは複数の光電変換素子の群は、複数の行毎に一次元的にさらに配列されており、クロック入力部の入力した制御クロックを複数の行毎に可変の時間で遅延させ、該制御クロックを対応する行に属する複数の光電変換素子のゲート電極に印加する第2の遅延調整部をさらに備えてもよい。かかる構成を採れば、クロック入力部と光電変換素子との間の配線部によって生じる行毎の伝送遅延の差を打ち消すことができ、光電変換素子の行間での制御信号のスキューの発生を防止できる。その結果、さらに時間分解能が高められた高精度のイメージングを可能にする。
 さらに、第2の遅延調整回路は、光電変換素子の複数の行毎に対応して設けられ、遅延時間を決定する値を保持する記憶部と、複数の光電変換素子毎に設けられ、記憶部に保持された値に応じて信号遅延特性を光電変換素子の行毎に変化させる遅延調整回路とを有してもよい。このような第2の遅延調整部の構成により、記憶部に保持する値を調整することにより行毎に設けられた第2の遅延調整部の信号遅延特性を変化させることができる。これにより、光電変換素子の行毎の伝送遅延の差を容易に打ち消すことができる。
 またさらに、第2の遅延調整回路は、複数の光電変換素子毎に設けられ、遅延時間を決定する値を保持する記憶部と、複数の光電変換素子毎に設けられ、記憶部に保持された値に応じて信号遅延特性を光電変換素子の属する画素毎に変化させる遅延調整回路とを有してもよい。このような第2の遅延調整部の構成によっても、記憶部に保持する値を調整することにより第2の遅延調整部の信号遅延特性を行毎に変化させることができる。これにより、光電変換素子の行毎の伝送遅延の差を容易に打ち消すことができる。
 さらにまた、第2の遅延調整回路は、複数の光電変換素子の群毎に設けられ、遅延時間を決定する値を保持する記憶部と、複数の光電変換素子の群毎に設けられ、記憶部に保持された値に応じて信号遅延特性を光電変換素子の群毎に変化させる遅延調整回路とを有してもよい。このような第2の遅延調整部の構成によっても、記憶部に保持する値を調整することにより第2の遅延調整部の信号遅延特性を行毎に変化させることができる。これにより、光電変換素子の行毎の伝送遅延の差を容易に打ち消すことができる。
 本発明の一側面によれば、時間分解能が高められた高精度のイメージングを可能にする。
本発明の一実施形態に係る距離計測装置であるカメラ装置1を含む測定システム100の概略構成を示す図である。 図1のカメラ装置1の概略構成を示すブロック図である。 図2の画素アレイ部5内の画素Xijの構成を示す回路図である。 図3の画素Xijに設けられた半導体素子15の積層構造を示す斜視図である。 図4の半導体素子15において、ゲート電極31に電圧を印加した際の垂直断面におけるポテンシャル分布を示す図である。 図2の画素アレイ部5内の各画素Xijとタイミング発生回路8との接続構成を示す回路図である。 図6の補正回路部41を構成する遅延調整回路44の構成例を示す回路図である。 図6の補正回路部41を構成する遅延調整回路44の構成例を示す回路図である。 図6の補正回路部41を構成する遅延調整回路44の構成例を示す回路図である。 図2のタイミング発生回路8によって制御された発光タイミング及び画素における電荷蓄積タイミングを示すタイミングチャートである。 本実施形態に係るカメラ装置1の画素アレイ部5で生じるスキューの測定結果を示すグラフである。 本発明の変形例における画素アレイ部5内の各画素Xijとタイミング発生回路8との接続構成を示す回路図である。 本発明の他の変形例における画素アレイ部5内の各画素Xijとタイミング発生回路8との接続構成を示す回路図である。 本発明の他の変形例における画素アレイ部5内の各画素Xijとタイミング発生回路8との接続構成を示す回路図である。
 以下、図面を参照しつつ本発明の一側面に係るイメージセンサである距離計測装置の実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。また、各図面は説明用のために作成されたものであり、説明の対象部位を特に強調するように描かれている。そのため、図面における各部材の寸法比率は、必ずしも実際のものとは一致しない。
 図1は、本発明の一実施形態に係る距離計測装置であるカメラ装置(イメージセンサ)1を含む測定システム100の概略構成を示す図である。この測定システム100は、対象物Saまでの距離をTOF(Time Of Flight)法を用いて測定するために用いられ、対象物Saに向けて光を照射するレーザ光源3と、対象物Saからの反射光を検出して距離を算出するカメラ装置1とを含んで構成されている。レーザ光源3は、後述するカメラ装置1の受光部の応答時間よりも十分短いパルス幅のパルス光を照射可能な光源装置であり、例えば、中心波長445nm、パルス幅100psecのパルス光を照射可能に構成されている。なお、レーザ光源3の照射する光の中心波長及びパルス幅は上記値には限定されず、様々な値に設定され得る。
 図2は、カメラ装置1の構成を示すブロック図である。カメラ装置1は、同図に示すように、画素アレイ部5と周辺回路部6,7,8,9,10,12とが同一の半導体チップ上に集積化されて構成され、回路部11が半導体チップの外部のカメラ装置1内部の別回路上に構成されている。なお、回路部11が画素アレイ部5と周辺回路部6,7,8,9,10,12とともに同一の半導体チップ上に集積化されていてもよい。
 画素アレイ部5には、2次元マトリクス状に多数の画素(光電変換素子)Xij(iは1~nの整数、jは1~mの整数)が配列されており、方形状の撮像領域を構成している。すなわち、画素Xijが、複数の列毎に一次元的に垂直方向に沿ってn個配列されるとともに、複数の行毎に一次元的に水平方向に沿ってm個配列される。そして、この画素アレイ部5の周辺部には、複数の画素Xijの水平方向の画素行に沿って水平走査回路6が設けられるとともに、複数の画素Xijの垂直方向の画素列に沿って垂直走査回路7が設けられている。これらの水平走査回路6及び垂直走査回路7にはタイミング発生回路(クロック入力部)8が接続されている。また、各画素Xijには、列スキュー補正回路12を含むクロック供給線を介してタイミング発生回路8が接続されている。
 タイミング発生回路8、水平走査回路6及び垂直走査回路7によって画素アレイ部5内の画素Xijが順次走査され、画素信号の読み出しや初期化が実行される。すなわち、画素アレイ部5を垂直走査回路7によって各画素行単位で垂直方向に走査することにより、走査された画素列に含まれる各画素列の画素信号を各画素列毎に設けられた垂直信号線によって読み出す構成となっている。各画素列の画素信号の読み出しは、垂直信号線毎に設けられたノイズキャンセル回路9、及び出力バッファ回路10を経由して出力することにより行われる。さらに、各画素列の画素信号の読み出し時には、水平走査回路6によって画素Xijの水平方向の走査が行われる。タイミング発生回路8は、上述したような画素アレイ部5の画素Xijの垂直走査及び水平走査のタイミングの制御を行うと共に、測定システム100に設けられたレーザ光源3のパルス光の照射タイミングの制御、及び各画素Xijに与える制御パルス電圧TWによるその照射タイミングを基準にした各画素Xijにおける電荷蓄積及び電荷排出のタイミングの制御を行う。
 図3は、画素アレイ部5内の画素Xijの構成を示す回路図であり、図4は、画素Xijに設けられた半導体素子15の積層構造を示す斜視図である。これらの図に示すように、画素Xij内には画素回路として機能する半導体素子15が複数配列されて設けられている。半導体素子15は、第1導電型(p型)の半導体領域21と、半導体領域21の上部の一部に埋め込まれ、光が入射される第2導電型(n型)の受光用表面埋込領域(受光部)23と、半導体領域21の上部の一部に受光用表面埋込領域(受光部)23に隣接して設けられ、受光用表面埋込領域(受光部)23が生成した電荷を蓄積する第2導電型(n型)の電荷蓄積領域(電荷蓄積部)25と、半導体領域21の上部の一部に受光用表面埋込領域23の近傍に分離して埋め込まれた第2導電型(n型)の排出ドレイン領域(電荷排出部)27とが形成されている。この排出ドレイン領域27は、受光用表面埋込領域23で生成された電子を排出するための部位であり、受光用表面埋込領域23の電荷蓄積領域25と接する境界線と略垂直に交わる境界線の近傍に設けられている。これらの受光用表面埋込領域23とその領域の直下の半導体領域21とで、対象物Saからの反射光(入射光)を電荷(電子)に変換する埋め込みフォトダイオードD1を構成している。なお、第1導電型の半導体領域21の代わりに、第1導電型の半導体基板上に形成した半導体基板よりも低不純物濃度の第1導電型のエピタキシャル成長層を用いてもよい。
 また、半導体素子15の受光用表面埋込領域23の上部には、p型のピニング層29が更に配置されている。ピニング層29は、ダーク時の埋め込みフォトダイオードD1の表面での電荷の形成を抑制するための層であり、ダーク電流削減のためには設けられてもよい。ダーク電流が問題とならない用途では、ピニング層29が省略されてもよい。さらに、半導体領域21上の埋め込みフォトダイオードD1と排出ドレイン領域27との間には、埋め込みフォトダイオードD1と排出ドレイン領域27との間に形成される転送チャネルの電位を制御して、埋め込みフォトダイオードD1から排出ドレイン領域27への電荷の排出を制御するためのゲート電極31が形成されている。
 図5(a)及び(b)には、ゲート電極31に電圧を印加した際の半導体素子15の垂直断面におけるポテンシャル分布を示している。具体的には、図5(a)には、埋め込みフォトダイオードD1の領域から電荷蓄積領域25にかけてのX-X’線に沿った垂直断面におけるポテンシャル分布を示しており、埋め込みフォトダイオードD1の領域から電荷蓄積領域25にかけて電位勾配が形成されている。また、図5(b)には、埋め込みフォトダイオードD1の領域から排出ドレイン領域27にかけてのY-Y’線に沿った垂直断面におけるポテンシャル分布を示しており、実線がゲート電極31に低電圧を印加した際の分布、点線がゲート電極31に高電圧を印加した際の分布をそれぞれ示している。このように、ゲート電極31に低電圧を印加した際には、埋め込みフォトダイオードD1の領域と排出ドレイン領域27との間に電位障壁が形成されることにより埋め込みフォトダイオードD1の領域と排出ドレイン領域27との間の転送チャネルが閉じられ、入射光Linの入射に伴って生成される電子eは全てが電荷蓄積領域25に転送される。その一方で、ゲート電極31に高電圧を印加した際には、埋め込みフォトダイオードD1の領域と排出ドレイン領域27との間の電位障壁が無くなり電位勾配が形成されることにより埋め込みフォトダイオードD1の領域と排出ドレイン領域27との間の転送チャネルが開かれ、入射光Linの入射に伴って生成される電子eは全てが排出ドレイン領域27に転送される。すなわち、ゲート電極31に高電圧を印加した際には、埋め込みフォトダイオードD1の領域と排出ドレイン領域27との間の転送チャネルの電荷転送効果の方が、埋め込みフォトダイオードD1の領域と電荷蓄積領域25との間の電荷転送効果よりも支配的であるため、発生する電子eは全てが排出ドレイン領域27に転送される。このように、ゲート電極31は、埋め込みフォトダイオードD1から電荷蓄積領域25への電荷の転送を制御するためのバーチャルスイッチ33としての機能も併せ持つ。
 図3に戻って、画素Xijには、タイミング発生回路8から印加される制御パルス電圧TWを反転させて制御パルス電圧TDとしてゲート電極31に与えるバッファ回路35をさらに備えている。具体的には、バッファ回路35は、インバータ回路である。このバッファ回路35を備えることにより、画素Xijのゲート電極31に直接接続される負荷を小さくすることができ、制御パルス電圧TWの波形の劣化を防止できる。
 さらに、画素Xijには、制御パルス電圧TWの印加に伴って電荷蓄積領域25に蓄積された電荷を電気信号として読み出す読出回路(電荷読出部)37が設けられている。この読出回路37は、信号読み出しトランジスタ37aと、スイッチングトランジスタ37bと、リセットトランジスタ37cとを含んで構成されている。信号読み出しトランジスタ37aのゲート電極は電荷蓄積領域25に接続され、信号読み出しトランジスタ37aのドレイン電極はバイアス電源に接続され、信号読み出しトランジスタ37aのソース電極は、画素選択用のスイッチングトランジスタ37bのドレイン電極に接続されている。スイッチングトランジスタ37bのソース電極は垂直信号線に接続され、スイッチングトランジスタ37bのゲート電極には、画素列の選択用制御信号Sが垂直走査回路7から与えられる。選択用制御信号Sをハイレベルに設定することにより、スイッチングトランジスタ37bが導通され、信号読み出しトランジスタ37aで増幅された電荷蓄積領域25に蓄積された電荷量に対応する電位の電気信号が垂直信号線に出力される。リセットトランジスタ37cは、そのソース電極が電荷蓄積領域25に接続され、そのドレイン電極はバイアス電源に接続され、そのゲート電極には垂直走査回路7からリセット信号Rが与えられる。このリセットトランジスタ37cは、リセット信号Rがハイレベルに設定された際に、電荷蓄積領域25に蓄積された電荷を吐き出すことにより電荷蓄積領域25をリセットする。
 図6には、画素アレイ部5内の各画素Xijとタイミング発生回路8との接続構成を詳細に示している。同図に示すように、タイミング発生回路8と画素アレイ部5とは、列スキュー補正回路12を介して接続されている。
 詳細には、列スキュー補正回路12は、画素アレイ部5の複数の画素Xijの列毎に対応して設けられた複数の補正回路部(第1の遅延調整部)41を含んで構成されている。それぞれの補正回路部41は、タイミング発生回路8にクロック供給線42を介して接続された遅延調整回路44と、メモリ(記憶部)43とにより構成されている。このメモリ43は、タイミング発生回路8から供給された制御パルス電圧TWを遅延させるための遅延時間を決定するデジタル値を保持する。また、遅延調整回路44は、クロック供給線42及び対応する画素列の全画素Xijに接続され、タイミング発生回路8から供給された制御パルス電圧TWを、メモリ43から読み出したデジタル値に応じて可変の時間で遅延させ、その制御パルス電圧TWを対応する列に属する全画素Xijのゲート電極31に印加する。タイミング発生回路8は、入力端子47からクロックが供給され、そのクロックを基に制御パルス電圧TWを生成するPLL(Phase Locked Loop)回路である。また、タイミング発生回路8は、レーザ光源3のパルス光の照射タイミングを制御するトリガー信号を生成し、そのトリガー信号を出力端子48から出力する。このタイミング発生回路8は、クロックを生成するPLL回路であるが、本実施形態において必ずしもPLL回路は必須では無く、外部入力からのクロックを受けてそれに基づいて制御パルス電圧TWを画素Xijに入力する回路であってもよい。
 ここで、遅延調整回路44は、複数のバッファ回路45と、各画素Xij内の配線抵抗46及びバッファ回路35とを経由して半導体素子15のゲート電極31に接続される。このバッファ回路45は、各画素列に接続される複数のバッファ回路35を駆動するためのものであり、各画素列毎に複数直列に接続されて構成される。バッファ回路35は半導体素子15へ供給するクロックの波形整形を行うとともに、バッファ回路45へ直接接続される負荷を小さくするためのものである。
 上記構成の列スキュー補正回路12は、複数の画素Xijにおいて画素列間で生じる制御パルス電圧TWの時間的ずれ(スキュー)を解消するために設けられる。この画素列間の制御パルス電圧TWのスキューは、バッファ回路45の製造ばらつきによる性能差、電源電圧ドロップの差等によって発生するクロック供給線における遅延時間が原因となる。列スキュー補正回路12内のそれぞれの補正回路部41は、画素列間に生じる制御パルス電圧TWのスキューを打ち消すように、各画素列に供給される制御パルス電圧TWの遅延時間を設定する。すなわち、列スキュー補正回路12内の補正回路部41は、タイミング発生回路8と各画素列との間のクロック供給線の信号遅延特性を変化させる。
 図7~9には、補正回路部41を構成する遅延調整回路44の構成例を示している。例えば、遅延調整回路44は、図7に示すように、シングルエンド型増幅器51とシングルエンド型増幅器51を駆動する電流源52,53と調整ビットを電圧値に変換するデジタルアナログ(D/A)変換器61とを含んで構成され、電流源52,53の電流値が調整ビット線54に与えられる制御信号によって調整されることにより、信号遅延特性を変更可能に構成される。また、遅延調整回路44は、図8に示すように、差動型増幅器55と差動型増幅器55を駆動する電流源56と調整ビットを電圧値に変換するデジタルアナログ(D/A)変換器62とを含んで構成され、電流源56の電流値が調整ビット線57に与えられる制御信号によって調整されることにより、信号遅延特性を変更可能に構成されてもよい。さらに、遅延調整回路44は、図9に示すようなデジタル型の遅延素子であってもよい。すなわち、一組のANDゲート58,59の組み合わせ回路が直列に接続され、それぞれのANDゲート58において、一方の入力に制御パルス電圧TWが入力され、他方の入力に調整ビット線60を介して制御ビットが入力され、それぞれのANDゲート59において、一方の入力に前段のANDゲート59の出力が順次入力され、他方の入力に対を成すANDゲート58の出力が入力される。このような構成によれば、制御ビットの入力により、遅延時間が調整された制御パルス電圧TWが出力可能とされる。
 図2に示す算出回路(算出部)11は、タイミング発生回路8によるタイミング制御により画素Xijから読み出された電気信号を基に、対象物Saまでの距離を算出する。
 以下、タイミング発生回路8及び算出回路11による距離算出動作の手順を説明する。図10は、タイミング発生回路8によって制御された発光タイミング及び電荷蓄積タイミングを示すタイミングチャートであり、図10(a)は、レーザ光源3から照射されるパルス光の時間波形、図10(b)は、画素Xijによって受光される反射光の時間波形、図10(c)は、画素Xijの反射光に対する応答特性である光電流Iphの時間波形、図10(d)は、画素Xijのゲート電極31に印加される制御パルス電圧TWの時間波形である。
 まず、タイミング発生回路8により所定周波数で繰り返し発光するように発光タイミングが決定され、その発光タイミングでレーザ光源3からパルス光が照射されるように、タイミング発生回路8からトリガー信号が供給される。それに応じて、発光タイミング後に対象物Saまでの距離に対応した時間差tで画素Xijに反射光が入射することになる。ここで画素Xijに入射する反射光のパルス幅は、画素Xijの受光部の応答時間よりも十分短い値(例えば、パルス幅100psec以下)に設定されている。その結果、画素Xijの受光部における入射光に対する応答波形はインパルス応答とほぼ等しくなる。すなわち、発光タイミング基準とした反射光の入射時刻tから受光部の応答時間Tで極大値Iまで立ち上がり、その後応答時間Tで立ち下がるような単一の三角波に近い応答波形となる。
 このような画素Xijの応答波形に対応して、タイミング発生回路8により、発光タイミングを基準にして3種類の位相差を有する制御パルス電圧TW(1),TW(2),TW(3)を繰り返し生成するように制御される。具体的には、制御パルス電圧TW(1)は、発光タイミング後の所定期間だけハイレベルとなるような矩形パルス波に設定される。また、制御パルス電圧TW(2)は、発光タイミングから発光タイミング後の時刻Tまでハイレベルとなり、制御パルス電圧TW(1)とハイレベル区間が一部重複するような矩形パルス波に設定される。また、制御パルス電圧TW(3)は、制御パルス電圧TW(1)を反転させたような矩形パルス波に設定される。
 このようにして、タイミング発生回路8により、発光タイミング後に繰り返し制御パルス電圧TW(1)が印加されるように制御された後に、画素Xijから制御パルス電圧TW(1)の印加に伴って電荷蓄積領域25に蓄積された第1の電荷を第1の電気信号として読み出すように制御される。また、タイミング発生回路8により、発光タイミング後に繰り返し制御パルス電圧TW(2)が印加されるように制御された後に、画素Xijから制御パルス電圧TW(2)の印加に伴って電荷蓄積領域25に蓄積された第2の電荷を第2の電気信号として読み出すように制御される。同様に、タイミング発生回路8により、発光タイミング後に繰り返し制御パルス電圧TW(3)が印加されるように制御された後に、画素Xijから制御パルス電圧TW(3)の印加に伴って電荷蓄積領域25に蓄積された第3の電荷を第3の電気信号として読み出すように制御される。
 その後、算出回路11は、読み出された第1~第3の電気信号の値をぞれぞれ正規化することにより蓄積電子数N,N,Nに変換する。ここで、画素Xijの光電流のインパルス応用波形を、下記式(1)に示す1次関数により近似する。
Figure JPOXMLDOC01-appb-M000001
この1次関数によれば、理想的には各制御パルス電圧TW(1),TW(2),TW(3)の印加に応じて蓄積される電子数は、時間差tがT-T<t≦Tの範囲で、下記式(2)によって計算できる。
Figure JPOXMLDOC01-appb-M000002
 そこで、算出回路11は、上記式(2)の関係を利用することにより、光の飛行時間である時間差tを、下記式(3)を用いて算出する。このとき、算出回路11は、蓄積電子数N,Nのそれぞれを蓄積電子数Nで補正した値の比rを計算する。
Figure JPOXMLDOC01-appb-M000003
さらに、算出回路11は、算出された時間差tを基に対象物Saまでの距離Lを、光の速さをc[m/s]として、下記式(4)により算出して出力する。
Figure JPOXMLDOC01-appb-M000004
なお、上記式(4)によって測定可能な距離Lの範囲は、下記式(5)で計算される値の範囲となり、画素Xijのインパルス応答の応答時間Tに比例する。
Figure JPOXMLDOC01-appb-M000005
また、ショットノイズが支配的な状態において測定可能な距離Lの分解能σは、下記式(6)で計算される値となり、蓄積電子数Nの平方根に反比例し、画素Xijのインパルス応答の応答時間Tに比例する。例えば、蓄積電子数N=10、応答時間T=100psec、パラメータrの取りうる値を0~0.5とした場合は、測定可能な距離Lの範囲は15mm、測定可能な分解能σは=10.6μm~13μmとなる。
Figure JPOXMLDOC01-appb-M000006
 次に、補正回路部41を構成するメモリ43に記憶されるデジタル値の設定方法について説明する。
 上述したように、パルス光の発光タイミングの遅延を変化させると、蓄積電子数Nの出力が変化する。この出力値Nの微分は光電流Iphと等価であることから、各画素Xij毎において発光タイミングの遅延時間を変化させながら出力値Nを取得し、この出力値Nの変調特性から微分値が最大となる遅延時間tpeak(i,j,D)(D:メモリ43に設定されているデジタル値)を測定することで、各画素列毎に設定するメモリ43のデジタル値の選定が行われる。なお、この変調特性は、制御パルス電圧TW(2)の遅延量を変化させても求めることができる。
 例えば、カメラ装置1への入力を、全画素から等距離にある光源の直接光、もしくは全画素から等距離にある物体の反射光とし、補正回路部41のメモリのデジタル値を初期値DC0とした場合には、遅延時間tpeak(i,j,Dc0)の画素Xij間のずれは、スキューΔT(i,j,Dc0)と等価となる。そして、メモリ43のデジタル値を変化させると、制御パルス電圧TW(2)の遅延量に応じて遅延時間tpeak(i,j,D)が変化するため、各画素列毎のメモリ43のデジタル値を、観測された遅延時間tpeak(i,j,D)から決定することができる。
 詳細には、上記式(4)中のTは、実際にはクロックスキューのために画素ごとに異なる値をとる。それを考慮すると画素Xijに関して計算される距離L(i,j)は、下記式(7);
Figure JPOXMLDOC01-appb-M000007
によって計算される。ここで、T1,maxは下記式(8);
Figure JPOXMLDOC01-appb-M000008
で与えられる値であり、最も遅延の大きい画素XijのTの値を示している。また、スキューΔT(i,j,Dc0)は、T1,maxからのずれ量、すなわち、補正すべき画素間のスキューを示している。上記式(7)から分かるように、スキューが生じることによって物体が全画素Xijから等距離に存在していたとしても計算される距離に誤差が生じる。スキューが大きいとある画素Xijにおいては計算可能な範囲外となり、全画素Xijで距離を計測することができなくなるため、画素アレイ部5でスキューを補正する必要性が生じる。
 本実施形態のように、補正回路部41が列毎に存在する場合には、列毎にメモリ43のデジタル値Dを設定することが可能になり、距離は、下記式(9);
Figure JPOXMLDOC01-appb-M000009
により算出される。ここで、Dc0はメモリ43のデジタル値の初期値であり、最も遅延している画素XijのTは、下記式(10);
Figure JPOXMLDOC01-appb-M000010
で与えられ、調節値tcali_skew(j,D)は、デジタル値Dのときの補正回路部41による遅延量で列毎に同一の値をとる。また、調節値tcali_dig(i,j)は、デジタル補正による遅延調節値であり、画素ごとに独立した値をとることができる。
 本実施形態においては、デジタル値Dは、列間のスキューが最も小さくなるように、下記式(11);
Figure JPOXMLDOC01-appb-M000011
を満たすように設定される。ここで、Nは、画素Xijの垂直方向の数である。調節値tcali_skew(j,D)はメモリ43のビット数で決まる分解能を有し、さらに列間のスキューのみを補正するため、ある程度の補正誤差が生じる。この補正誤差はデジタル領域で補正する。すなわち、調節値tcali_dig(i,j)が、下記式(12);
Figure JPOXMLDOC01-appb-M000012
で計算される値となるように設定されることで、スキューによる画素間の距離誤差は完全に除去される。
 ここで、上述した設定方法では、出力値Nの変調特性から微分値が最大となる遅延時間を求めていた。その他の方法として、カメラ装置1への入力を全画素から等距離にある光源の直接光、もしくは全画素から等距離にある物体の反射光とし、各画素Xijにおける光量を一定とした状態で、出力値Nが全画素で等しくなるデジタル値Dを選定するだけでもよい。
 以上説明したカメラ装置1によれば、複数の列毎に配列された複数の画素Xijのゲート電極31にタイミング発生回路8から制御パルス電圧TWが印加されることにより、各画素Xijにおける受光用表面埋込領域23から電荷蓄積領域25への電荷の転送タイミング、及び受光用表面埋込領域23から排出ドレイン領域27への電荷の転送タイミングが制御される。その際、各画素Xijに印加される制御パルス電圧TWは、画素Xijの複数の列毎に設けられた補正回路部41を経由することにより、列毎に可変の遅延時間が設定される。これにより、タイミング発生回路8と画素Xijとの間に設けられるバッファ回路45の特性差等によって生じやすい列毎の伝送遅延の差を打ち消すことができ、画素Xijの列間での制御信号のスキューの発生を防止できる。その結果、時間分解能が高められた高精度のイメージングを可能にする。
 また、補正回路部41は、メモリ43に保持する値を調整することによりタイミング発生回路8と画素Xijの各列との間の信号遅延特性を列毎に変化させることができる。これにより、画素Xijの列間のスキュー(遅延時間の差)を容易に打ち消すことができる。
 図11には、本実施形態に係るカメラ装置1の画素アレイ部5で生じるスキューの測定結果を示し、(a)は、列スキュー補正回路12を備えない比較例における測定結果、(b)は、列スキュー補正回路12を備える本実施形態の測定結果を、それぞれ示している。この結果から、本実施形態のカメラ装置1においては、画素アレイ部5に含まれる全画素Xijにおけるスキューが効果的に低減されることが分かった。特に、列スキュー補正回路12を備えない場合の画素の列間でのスキューの発生が著しいが、本実施形態では、そのような列間のスキューがほとんど解消されている。
 なお、本発明は上述した実施形態に限定されるものではない。
 例えば、図12には、本発明の変形例における画素アレイ部5内の各画素Xijとタイミング発生回路8との接続構成を示している。この変形例は、列スキュー補正回路12に加えて、行スキュー補正回路71をさらに備える。この行スキュー補正回路71は、画素Xijの複数の行毎に対応して設けられた補正回路部(第2の遅延調整部)72を複数有し、補正回路部72は、それぞれ、各画素行における遅延時間を決定するデジタル値を保持するメモリ73と、メモリ73から読み出したデジタル値をD/A変換するD/A変換器74を含んでいる。また、各画素Xijには、D/A変換器74に接続されたバッファ回路35の駆動用の電流源75が備えられ、この電流源75は、バッファ回路35とともに、タイミング発生回路8から供給される制御パルス電圧TWの遅延時間を行毎に変化させる遅延調整回路76を構成する。このような変形例によれば、補正回路部72のメモリ73に保持されたデジタル値に応じて、タイミング発生回路8と各画素Xijとの間の信号遅延特性が画素行毎に調整可能とされる。従って、タイミング発生回路8から供給される制御パルス電圧TWを、複数の画素行毎に可変の時間で遅延させ、その制御パルス電圧TWを画素Xijのゲート電極31に印加することができる。
 図12に示す構成によれば、タイミング発生回路8と画素Xijとの間のクロック供給線の寄生素子等に起因して生じる行毎の伝送遅延の差を打ち消すことができ、画素Xijの行間での制御パルス電圧TWのスキューの発生を防止できる。その結果、さらに時間分解能が高められた高精度のイメージングを可能にする。さらに、補正回路部72のメモリ73に保持する値を調整することにより遅延調整回路76の信号遅延特性を行毎に変化させることができる。これにより、画素Xijの行毎の伝送遅延の差を容易に打ち消すことができる。
 また、図13には、本発明の他の変形例における画素アレイ部5内の各画素Xijとタイミング発生回路8との接続構成を示している。この変形例は、列スキュー補正回路12に加えて、各画素Xij内に設けられる補正回路部(第2の遅延調整部)77を複数備える。この補正回路部77は、それぞれ、各画素における遅延時間を決定するデジタル値を保持するメモリ78と、メモリ78から読み出したデジタル値に応じてタイミング発生回路8から供給される制御パルス電圧TWの遅延時間を画素毎に変化させる遅延調整回路79とを含んで構成される。詳細には、遅延調整回路79は、各画素Xij内においてバッファ回路35と半導体素子15との間に接続され、タイミング発生回路8と各画素Xijとの間の信号遅延特性を画素毎に調整する。
 図13に示す構成によれば、メモリ78に保持するデジタル値を調整することにより遅延調整回路79の信号遅延特性を行毎に変化させることができる。これにより、画素Xijの行毎の伝送遅延の差を容易に打ち消すことができる。
 また、図14には、本発明の他の変形例における画素アレイ部5内の各画素Xijとタイミング発生回路8との接続構成を示している。この変形例では、互いに隣接する複数の画素が画素群(例えば、8つの画素Xijからなる画素群)を構成し、それらの画素群が二次元的に配列されて画素アレイ部5が構成されている。そして、列スキュー補正回路12が画素群の行毎に設けられ、それに加えて、画素群毎に画素アレイ部5内に設けられる補正回路部(第2の遅延調整部)80を複数備える。この補正回路部80は、それぞれ、各画素群を構成する画素Xijにおける遅延時間を決定するデジタル値を保持するメモリ81と、メモリ81から読み出したデジタル値に応じてタイミング発生回路8から供給される制御パルス電圧TWの遅延時間を画素群を構成する画素Xij毎に変化させる遅延調整回路82とを含んで構成される。詳細には、遅延調整回路82は、各画素Xij群内においてバッファ回路35と8つの画素Xijの半導体素子15との間に接続され、タイミング発生回路8と画素群を構成する全画素Xijとの間の信号遅延特性を画素群毎に調整する。
 図14に示す構成によっても、メモリ81に保持するデジタル値を調整することにより遅延調整回路82の信号遅延特性を画素群の行毎に変化させることができる。これにより、画素Xijの行毎の伝送遅延の差を容易に打ち消すことができる。
 なお、本発明は、TOF(Time Of Flight)法を用いたイメージセンサに限定されるものではなく、蛍光寿命計測用、ラマン分光イメージング用、又は近赤外分光イメージング用のイメージセンサにも適用可能である。また、本発明は、複数のゲート電極及び複数の電荷蓄積領域を含み、2以上のゲート制御信号が用いられる電荷変調素子、例えばラテラル(横方向)電界制御電荷変調素子等にも適用可能である。
 Sa…対象物、1…カメラ装置(イメージセンサ)、5…画素アレイ部、8…タイミング発生回路(クロック入力部)、12…列スキュー補正回路、15…半導体素子、D1…埋め込みフォトダイオード(受光部)、23…受光用表面埋込領域(受光部)、25…電荷蓄積領域(電荷蓄積部)、27…排出ドレイン領域(電荷排出部)、31…ゲート電極、35…バッファ回路、41…補正回路部(第1の遅延調整部)、43…メモリ(記憶部)、44…遅延調整回路、45…バッファ回路、72…補正回路部(第2の遅延調整回路)、73…メモリ(記憶部)、76…遅延調整回路、77,80…補正回路部(第2の遅延調整回路)、78,81…メモリ(記憶部)、79,82…遅延調整回路、Xij…画素(光電変換素子)。

Claims (6)

  1.  入射光を電荷に変換する受光部と、電荷を蓄積する電荷蓄積部と、前記受光部から前記電荷蓄積部への電荷の転送を制御するゲート電極とを有し、複数の列毎に一次元的に複数配列された光電変換素子と、
     前記ゲート電極に印加する制御クロックを入力するクロック入力部と、
     前記光電変換素子或いは前記光電変換素子の群の複数の列毎に対応して設けられ、前記クロック入力部の入力した前記制御クロックを可変の時間で遅延させ、該制御クロックを対応する列に属する複数の前記光電変換素子の前記ゲート電極に印加する第1の遅延調整部と、
    を備えることを特徴とするイメージセンサ。
  2.  前記第1の遅延調整部は、遅延時間を決定する値を保持する記憶部と、
     前記記憶部に保持された前記値に応じて信号遅延特性を変化させる遅延調整回路と、
    を有することを特徴とする請求項1記載のイメージセンサ。
  3.  複数の前記光電変換素子或いは複数の前記光電変換素子の群は、複数の行毎に一次元的にさらに配列されており、
     前記クロック入力部の入力した前記制御クロックを前記複数の行毎に可変の時間で遅延させ、該制御クロックを対応する行に属する複数の前記光電変換素子の前記ゲート電極に印加する第2の遅延調整部をさらに備える、
    ことを特徴とする請求項1又は2記載のイメージセンサ。
  4.  前記第2の遅延調整回路は、
     前記光電変換素子の複数の行毎に対応して設けられ、遅延時間を決定する値を保持する記憶部と、
     前記複数の光電変換素子毎に設けられ、前記記憶部に保持された前記値に応じて信号遅延特性を前記光電変換素子の行毎に変化させる遅延調整回路とを有する、
    ことを特徴とする請求項3に記載のイメージセンサ。
  5.  前記第2の遅延調整回路は、
     前記複数の光電変換素子毎に設けられ、遅延時間を決定する値を保持する記憶部と、
     前記複数の光電変換素子毎に設けられ、前記記憶部に保持された前記値に応じて信号遅延特性を前記光電変換素子の属する画素毎に変化させる遅延調整回路とを有する、
    ことを特徴とする請求項3に記載のイメージセンサ。
  6.  前記第2の遅延調整回路は、
     前記複数の光電変換素子の群毎に設けられ、遅延時間を決定する値を保持する記憶部と、
     前記複数の光電変換素子の群毎に設けられ、前記記憶部に保持された前記値に応じて信号遅延特性を前記光電変換素子の群毎に変化させる遅延調整回路とを有する、
    ことを特徴とする請求項3に記載のイメージセンサ。
PCT/JP2015/053370 2014-02-07 2015-02-06 イメージセンサ WO2015119243A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/116,732 US9832409B2 (en) 2014-02-07 2015-02-06 Image sensor
JP2015561054A JP6501403B2 (ja) 2014-02-07 2015-02-06 イメージセンサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014022344 2014-02-07
JP2014-022344 2014-02-07

Publications (1)

Publication Number Publication Date
WO2015119243A1 true WO2015119243A1 (ja) 2015-08-13

Family

ID=53778040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053370 WO2015119243A1 (ja) 2014-02-07 2015-02-06 イメージセンサ

Country Status (3)

Country Link
US (1) US9832409B2 (ja)
JP (1) JP6501403B2 (ja)
WO (1) WO2015119243A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170568A1 (ja) * 2016-03-30 2017-10-05 国立大学法人静岡大学 画素回路及び撮像素子
JP2018004486A (ja) * 2016-07-04 2018-01-11 パイオニア株式会社 レーザ射出装置、レーザ射出方法及びプログラム
WO2018037862A1 (ja) * 2016-08-23 2018-03-01 株式会社ニコン 撮像素子および撮像システム
WO2019049662A1 (ja) * 2017-09-05 2019-03-14 ソニーセミコンダクタソリューションズ株式会社 センサチップおよび電子機器
JP2019140532A (ja) * 2018-02-09 2019-08-22 キヤノン株式会社 光電変換装置、撮像システム、および、移動体
US10721425B2 (en) 2018-08-14 2020-07-21 Kabushiki Kaisha Toshiba Solid-state imaging device
WO2020184224A1 (ja) * 2019-03-14 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 距離測定装置及びスキュー補正方法
WO2022269995A1 (ja) * 2021-06-23 2022-12-29 ソニーセミコンダクタソリューションズ株式会社 測距装置および方法、並びにプログラム
US11800255B2 (en) 2020-02-25 2023-10-24 Nuvoton Technology Corporation Japan Solid-state imaging device including driver circuits comprising multi-stage buffer elements
US11937003B2 (en) 2021-03-10 2024-03-19 Kabushiki Kaisha Toshiba Solid-state image sensor and solid-state image sensor driving method
JP7492834B2 (ja) 2019-02-12 2024-05-30 三星電子株式会社 距離測定のためのイメージセンサ

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10132927B2 (en) * 2013-05-10 2018-11-20 National University Corporation Shizuoka University Distance measurement device
US10419701B2 (en) 2017-06-26 2019-09-17 Facebook Technologies, Llc Digital pixel image sensor
US10686996B2 (en) 2017-06-26 2020-06-16 Facebook Technologies, Llc Digital pixel with extended dynamic range
US10598546B2 (en) 2017-08-17 2020-03-24 Facebook Technologies, Llc Detecting high intensity light in photo sensor
WO2019033382A1 (zh) * 2017-08-18 2019-02-21 深圳市汇顶科技股份有限公司 图像传感电路以及图像深度传感系统
US11393867B2 (en) 2017-12-06 2022-07-19 Facebook Technologies, Llc Multi-photodiode pixel cell
US10969273B2 (en) 2018-03-19 2021-04-06 Facebook Technologies, Llc Analog-to-digital converter having programmable quantization resolution
US11004881B2 (en) 2018-04-03 2021-05-11 Facebook Technologies, Llc Global shutter image sensor
US11233085B2 (en) 2018-05-09 2022-01-25 Facebook Technologies, Llc Multi-photo pixel cell having vertical gate structure
US11089210B2 (en) 2018-06-11 2021-08-10 Facebook Technologies, Llc Configurable image sensor
US11089241B2 (en) 2018-06-11 2021-08-10 Facebook Technologies, Llc Pixel cell with multiple photodiodes
US10903260B2 (en) 2018-06-11 2021-01-26 Facebook Technologies, Llc Multi-photodiode pixel cell
US11906353B2 (en) 2018-06-11 2024-02-20 Meta Platforms Technologies, Llc Digital pixel with extended dynamic range
US11463636B2 (en) 2018-06-27 2022-10-04 Facebook Technologies, Llc Pixel sensor having multiple photodiodes
US10897586B2 (en) 2018-06-28 2021-01-19 Facebook Technologies, Llc Global shutter image sensor
JP2020020675A (ja) * 2018-08-01 2020-02-06 ソニーセミコンダクタソリューションズ株式会社 計測装置
US10931884B2 (en) 2018-08-20 2021-02-23 Facebook Technologies, Llc Pixel sensor having adaptive exposure time
US11956413B2 (en) 2018-08-27 2024-04-09 Meta Platforms Technologies, Llc Pixel sensor having multiple photodiodes and shared comparator
US11595602B2 (en) 2018-11-05 2023-02-28 Meta Platforms Technologies, Llc Image sensor post processing
US11102430B2 (en) 2018-12-10 2021-08-24 Facebook Technologies, Llc Pixel sensor having multiple photodiodes
CN113518930B (zh) * 2019-03-08 2024-05-03 布鲁克曼科技株式会社 距离图像传感器以及距离图像拍摄装置
US11218660B1 (en) 2019-03-26 2022-01-04 Facebook Technologies, Llc Pixel sensor having shared readout structure
US11070757B2 (en) * 2019-05-02 2021-07-20 Guangzhou Tyrafos Semiconductor Technologies Co., Ltd Image sensor with distance sensing function and operating method thereof
US11943561B2 (en) 2019-06-13 2024-03-26 Meta Platforms Technologies, Llc Non-linear quantization at pixel sensor
US11936998B1 (en) 2019-10-17 2024-03-19 Meta Platforms Technologies, Llc Digital pixel sensor having extended dynamic range
US11902685B1 (en) 2020-04-28 2024-02-13 Meta Platforms Technologies, Llc Pixel sensor having hierarchical memory
US11910114B2 (en) 2020-07-17 2024-02-20 Meta Platforms Technologies, Llc Multi-mode image sensor
US11956560B2 (en) 2020-10-09 2024-04-09 Meta Platforms Technologies, Llc Digital pixel sensor having reduced quantization operation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298532A (ja) * 1999-04-15 2000-10-24 Hitachi Ltd タイミング制御回路装置
JP2009290345A (ja) * 2008-05-27 2009-12-10 Sony Corp 固体撮像素子、データ転送回路及びカメラシステム
WO2014021417A1 (ja) * 2012-08-03 2014-02-06 国立大学法人 静岡大学 半導体素子及び固体撮像装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300807B1 (en) * 1998-09-04 2001-10-09 Hitachi, Ltd. Timing-control circuit device and clock distribution system
JP4337779B2 (ja) * 2004-07-01 2009-09-30 ソニー株式会社 物理情報取得方法および物理情報取得装置並びに物理量分布検知の半導体装置
US7903160B2 (en) * 2007-05-10 2011-03-08 Sony Corporation Data transfer circuit, solid-state imaging device and camera
JP5533069B2 (ja) * 2009-03-18 2014-06-25 株式会社リコー 画像形成装置、画像形成方法およびプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298532A (ja) * 1999-04-15 2000-10-24 Hitachi Ltd タイミング制御回路装置
JP2009290345A (ja) * 2008-05-27 2009-12-10 Sony Corp 固体撮像素子、データ転送回路及びカメラシステム
WO2014021417A1 (ja) * 2012-08-03 2014-02-06 国立大学法人 静岡大学 半導体素子及び固体撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KEITA YASUTOMI: "A Time-of-Flight Image Sensor with Sub-mm Resolution Using Draining Only Modulation Pixels", 2013 INTERNATIONAL IMAGE SENSOR WORKSHOP, 2013, XP055217393, Retrieved from the Internet <URL:http://www.imagesensors.org/Past%20Workshops/2013%20Workshop/2013%20Papers/10-5_105-Yasutomi_paper.pdf> *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170568A1 (ja) * 2016-03-30 2017-10-05 国立大学法人静岡大学 画素回路及び撮像素子
JPWO2017170568A1 (ja) * 2016-03-30 2019-02-07 国立大学法人静岡大学 画素回路及び撮像素子
JP2018004486A (ja) * 2016-07-04 2018-01-11 パイオニア株式会社 レーザ射出装置、レーザ射出方法及びプログラム
WO2018037862A1 (ja) * 2016-08-23 2018-03-01 株式会社ニコン 撮像素子および撮像システム
US11057578B2 (en) 2016-08-23 2021-07-06 Nikon Corporation Image-capturing device and image-capturing system
JPWO2018037862A1 (ja) * 2016-08-23 2019-06-20 株式会社ニコン 撮像素子および撮像システム
JPWO2019049662A1 (ja) * 2017-09-05 2020-08-20 ソニーセミコンダクタソリューションズ株式会社 センサチップおよび電子機器
JP7167036B2 (ja) 2017-09-05 2022-11-08 ソニーセミコンダクタソリューションズ株式会社 センサチップおよび電子機器
US11889213B2 (en) 2017-09-05 2024-01-30 Sony Semiconductor Solutions Corporation Sensor chip and electronic apparatus
US10748952B2 (en) 2017-09-05 2020-08-18 Sony Semiconductor Solutions Corporation Sensor chip and electronic apparatus
US10418405B2 (en) 2017-09-05 2019-09-17 Sony Semiconductor Solutions Corporation Sensor chip and electronic apparatus
WO2019049662A1 (ja) * 2017-09-05 2019-03-14 ソニーセミコンダクタソリューションズ株式会社 センサチップおよび電子機器
US10872920B2 (en) 2017-09-05 2020-12-22 Sony Semiconductor Solutions Corporation Sensor chip and electronic apparatus
JP7102159B2 (ja) 2018-02-09 2022-07-19 キヤノン株式会社 光電変換装置、撮像システム、および、移動体
US11451732B2 (en) 2018-02-09 2022-09-20 Canon Kabushiki Kaisha Photoelectric conversion apparatus, imaging system, and moving body
JP2019140532A (ja) * 2018-02-09 2019-08-22 キヤノン株式会社 光電変換装置、撮像システム、および、移動体
US10721425B2 (en) 2018-08-14 2020-07-21 Kabushiki Kaisha Toshiba Solid-state imaging device
JP7492834B2 (ja) 2019-02-12 2024-05-30 三星電子株式会社 距離測定のためのイメージセンサ
WO2020184224A1 (ja) * 2019-03-14 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 距離測定装置及びスキュー補正方法
US11800255B2 (en) 2020-02-25 2023-10-24 Nuvoton Technology Corporation Japan Solid-state imaging device including driver circuits comprising multi-stage buffer elements
US11937003B2 (en) 2021-03-10 2024-03-19 Kabushiki Kaisha Toshiba Solid-state image sensor and solid-state image sensor driving method
WO2022269995A1 (ja) * 2021-06-23 2022-12-29 ソニーセミコンダクタソリューションズ株式会社 測距装置および方法、並びにプログラム

Also Published As

Publication number Publication date
JP6501403B2 (ja) 2019-04-17
JPWO2015119243A1 (ja) 2017-03-30
US20160353045A1 (en) 2016-12-01
US9832409B2 (en) 2017-11-28

Similar Documents

Publication Publication Date Title
JP6501403B2 (ja) イメージセンサ
JP6265346B2 (ja) 距離計測装置
JP5585903B2 (ja) 距離画像センサ、及び撮像信号を飛行時間法により生成する方法
US9720076B2 (en) Calibration circuitry and method for a time of flight imaging system
JP4798254B2 (ja) 受光デバイス及びその制御方法
JP6738334B2 (ja) 固体撮像装置
US20230236067A1 (en) Readout circuits and methods
JPWO2017022220A1 (ja) 固体撮像装置
US11115612B2 (en) Solid-state image sensor and image capture apparatus
Yasutomi et al. A Sub-100$\mu $ m-Range-Resolution Time-of-Flight Range Image Sensor With Three-Tap Lock-In Pixels, Non-Overlapping Gate Clock, and Reference Plane Sampling
Vornicu et al. A CMOS 0.18 μm 64× 64 single photon image sensor with in-pixel 11b time-to-digital converter
US20220146648A1 (en) Distance measuring device, method for controlling distance measuring device, and electronic device
US20220357445A1 (en) Distance image measuring device
TW202139688A (zh) 像素電路、感測裝置以及相關方法
JP6010425B2 (ja) 距離センサ及び距離画像センサ
JPWO2020027221A1 (ja) 撮像装置、それに用いられる固体撮像素子及び撮像方法
Yasutomi et al. A time-of-flight image sensor with sub-mm resolution using draining only modulation pixels
WO2021172364A1 (ja) 固体撮像装置および撮像装置
Tadmor et al. A fast global shutter image sensor based on the VOD mechanism
Diehl et al. Monolithic MHz-frame rate digital SiPM-IC with sub-100 ps precision and 70 μm pixel pitch
JP6641442B1 (ja) 光検出素子及び光検出装置
WO2020054617A1 (ja) 測距撮像装置、及び固体撮像素子
JP5932400B2 (ja) 距離センサ及び距離画像センサ
WO2022137685A1 (ja) 測距装置、測距方法および位相検出装置
US20220115366A1 (en) Photoelectric conversion apparatus, photo-detection system, and movable body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561054

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15116732

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.11.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 15746969

Country of ref document: EP

Kind code of ref document: A1