WO2015118948A1 - 熱電変換素子の製造方法及び熱電変換素子 - Google Patents

熱電変換素子の製造方法及び熱電変換素子 Download PDF

Info

Publication number
WO2015118948A1
WO2015118948A1 PCT/JP2015/051562 JP2015051562W WO2015118948A1 WO 2015118948 A1 WO2015118948 A1 WO 2015118948A1 JP 2015051562 W JP2015051562 W JP 2015051562W WO 2015118948 A1 WO2015118948 A1 WO 2015118948A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion member
conversion element
electrode
members
Prior art date
Application number
PCT/JP2015/051562
Other languages
English (en)
French (fr)
Inventor
直樹 内山
和哉 久保
Original Assignee
株式会社アツミテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アツミテック filed Critical 株式会社アツミテック
Priority to CN201580007068.5A priority Critical patent/CN105960716B/zh
Priority to US15/115,106 priority patent/US10158058B2/en
Priority to CA2944838A priority patent/CA2944838C/en
Priority to EP15746764.8A priority patent/EP3104424B1/en
Priority to KR1020167022392A priority patent/KR101906975B1/ko
Publication of WO2015118948A1 publication Critical patent/WO2015118948A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials

Definitions

  • the present invention relates to a method for manufacturing a thermoelectric conversion element and a thermoelectric conversion element manufactured thereby, and more particularly to a thermoelectric conversion element having stable thermoelectric characteristics and a method for manufacturing the same.
  • Thermoelectric conversion elements can convert thermal energy into electrical energy by the Seebeck effect. By using such energy conversion properties, waste heat exhausted from industrial and consumer processes and mobile objects can be converted into effective power, so the thermoelectric conversion is an energy-saving technology that takes environmental issues into consideration. Devices are drawing attention.
  • thermoelectric conversion element is generally constituted by joining a plurality of thermoelectric conversion materials (p-type semiconductor and n-type semiconductor) with electrodes.
  • a thermoelectric conversion element is manufactured by filling a sintered material in a space formed by left and right dies and upper and lower punches, and applying a direct current (pulse current) while pressing the space from above and below with a punch.
  • a direct current pulse current
  • Patent Document 1 Such pulse electric current sintering is disclosed in Patent Document 1, for example.
  • patent document 2 Such pulse electric current sintering is disclosed in Patent Document 1, for example.
  • patent document 2 the method of manufacturing by joining a thermoelectric conversion material with an electrode is disclosed by patent document 2, for example (refer especially FIG. 14 of patent document 2).
  • thermoelectric conversion material made of a p-type semiconductor or an n-type semiconductor
  • bonding variations such as bonding strength occur between the thermoelectric conversion material and the electrode due to dimensional variations of the thermoelectric conversion material.
  • the bonding interface between the electrode and the thermoelectric conversion element is easily peeled off to form a part that is not bonded, or even if it does not peel off, the bonding becomes defective and the thermal resistance and electrical resistance at the bonding interface vary. May be a cause.
  • thermoelectric conversion material when an electrode is joined to a thermoelectric conversion material, current is supplied by applying pressure from above and below, but due to the existence of dimensional variation (height variation) of the thermoelectric conversion material, the electrode and the thermoelectric conversion material When a state in which these are not joined occurs, the interface resistance in such a non-joined portion increases, and the non-joined portion generates heat and the temperature partially rises. Such a partial temperature increase may affect the thermoelectric characteristics of the thermoelectric conversion element. In addition, when a gap is formed between the electrode and the thermoelectric conversion material, a portion where the load is concentrated occurs during pressing, and the load balance is lowered.
  • thermoelectric conversion material there is a method of adding additional processing to the thermoelectric conversion material in order to reduce the dimensional variations of the thermoelectric conversion material described above. Specifically, by arranging one end face of a plurality of thermoelectric conversion materials as a reference and performing a grinding process or a polishing process on the other end faces at the same time, the dimensional variation of individual thermoelectric conversion elements is eliminated (reduced). be able to. However, when such additional processing is performed, there arises a problem that the cost of the thermoelectric conversion element increases.
  • the present invention has been made in view of such problems, and the object of the present invention is to reduce the thermoelectric characteristics due to the dimensional variation of the thermoelectric conversion material without requiring additional processing to the thermoelectric conversion material and It is providing the manufacturing method of the thermoelectric conversion element which can prevent the fall of the load balance at the time of a press, and a thermoelectric conversion element provided with the outstanding thermoelectric characteristic.
  • the method of manufacturing a thermoelectric conversion element of the present invention includes a holding step of holding the thermoelectric conversion member while exposing at least one end of at least one thermoelectric conversion member, and exposure of the thermoelectric conversion member.
  • thermoelectric conversion element of the present invention includes a plurality of thermoelectric conversion members arranged in parallel and electrodes bonded to both ends of the plurality of thermoelectric conversion members.
  • at least one of the electrodes joined to both ends of the thermoelectric conversion member is formed by sintering metal powder provided so as to cover the end of the thermoelectric conversion member.
  • thermoelectric conversion element which can be provided, and the thermoelectric conversion element provided with the outstanding thermoelectric characteristic can be provided.
  • FIG. 1 is a cross-sectional view illustrating an outline of a thermoelectric conversion element according to Example 1.
  • FIG. 10 is a cross-sectional view taken along line IX-IX in FIG. 9 and is a schematic cross-sectional view during the manufacturing process of the thermoelectric conversion element.
  • FIG. 10 is a cross-sectional view taken along line IX-IX in FIG. 9 and is a schematic cross-sectional view during the manufacturing process of the thermoelectric conversion element.
  • FIG. 10 is a cross-sectional view taken along line IX-IX in FIG. 9 and is a schematic cross-sectional view during the manufacturing process of the thermoelectric conversion element.
  • FIG. 10 is a cross-sectional view taken along line IX-IX in FIG.
  • FIG. 9 is a schematic cross-sectional view during the manufacturing process of the thermoelectric conversion element.
  • FIG. 10 is a cross-sectional view taken along line IX-IX in FIG. 9 and is a schematic cross-sectional view during the manufacturing process of the thermoelectric conversion element. It is a schematic sectional drawing in the manufacturing process of the thermoelectric conversion element shown similarly to FIG. It is a schematic sectional drawing in the manufacturing process of the thermoelectric conversion element shown similarly to FIG. It is a schematic sectional drawing in the manufacturing process of the thermoelectric conversion element shown similarly to FIG. It is a schematic sectional drawing in the manufacturing process of the thermoelectric conversion element shown similarly to FIG. It is a schematic sectional drawing in the manufacturing process of the thermoelectric conversion element shown similarly to FIG.
  • thermoelectric conversion element and its constituent members schematically show the thermoelectric conversion element and its constituent members according to the present invention, and the partial emphasis, enlargement, reduction, omission, etc. are made to deepen the understanding. In some cases, it does not accurately represent the scale and shape of the thermoelectric conversion element and its constituent members.
  • various numerical values and quantities used in the embodiments are merely examples, and can be variously changed as necessary.
  • FIG. 1 is a cross-sectional view schematically illustrating a thermoelectric conversion element according to the first embodiment.
  • FIG. 1 is sectional drawing along the extension direction of the thermoelectric conversion member which comprises a thermoelectric conversion element.
  • the thermoelectric conversion element 1 includes a first thermoelectric conversion member 2 made of a P-type semiconductor material, a second thermoelectric conversion member 3 made of an N-type semiconductor material, and a first thermoelectric conversion member. 2 and electrodes 4 a and 4 b joined to both ends of the second thermoelectric conversion member 3.
  • the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 have the same outer shape, a diameter of 2 mm, and a length of 5 mm to 10 mm.
  • the 1st thermoelectric conversion member 2 and the 2nd thermoelectric conversion member 3 are arranged in parallel by turns.
  • thermoelectric conversion element 1 has a configuration in which the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 are connected in series.
  • the electrode 4a provided in the 1st end part 2a side of the 1st thermoelectric conversion member 2 and the 1st end part 3a side of the 2nd thermoelectric conversion member 3 is 1st end part 2a. 3a is covered.
  • the electrode 4b provided on the second end portion 2b side of the first thermoelectric conversion member 2 and the second end portion 3b side of the second thermoelectric conversion member 3 includes the first thermoelectric conversion member 2 and the second thermoelectric conversion member. 3 is provided in contact with the end face of 3 (that is, the surfaces of the second end portions 2b and 3b).
  • the electrode 4a is formed by sintering metal powder
  • the electrode 4b is a flat copper plate.
  • the end surfaces of the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 on the second end portions 2b and 3b are disposed on the same plane. That is, the interface between the first thermoelectric conversion member 2 and the electrode 4b and the interface between the second thermoelectric conversion member 3 and the electrode 4b form the same reference end face (shown by a broken line in FIG. 1). In other words, the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 have one end aligned at the reference end surface.
  • the electrode 4b is not limited to a copper plate, but may be formed by sintering metal powder in the same manner as the electrode 4a. In such a case, the electrode 4b may cover the first end portions 2a and 3a similarly to the electrode 4a.
  • thermoelectric conversion element 1 (Method for manufacturing thermoelectric conversion element) Next, a method for manufacturing the thermoelectric conversion element 1 according to this embodiment will be described with reference to FIGS. 2 to 4 and 6 are schematic cross-sectional views during the manufacturing process of the thermoelectric conversion element 1 shown in the same manner as FIG. 1, and FIG. 5 is an outline of the electrode 4a during the manufacturing process of the thermoelectric conversion element 1. It is a top view.
  • the manufacturing apparatus 10 is used to manufacture the thermoelectric conversion element 1.
  • the manufacturing apparatus 10 includes a holding part (die) 11 that holds the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3, and an electrode sintering punch 12.
  • the holding portion 11 has a plurality of openings 11 a into which the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 are inserted.
  • the bottom surface of the opening 11a is located on the same plane. In other words, all the openings 11a have the same depth.
  • the holding part 11 has a concave part 11b formed on the side where the opening 11a is formed.
  • the holding part 11 and the electrode sintering punch 12 are made of a conductive material (for example, graphite).
  • the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 prepared are inserted into the opening 11 a of the holding unit 11 constituting the manufacturing apparatus 10, and the first thermoelectric conversion member is inserted by the holding unit 11. 2 and the 2nd thermoelectric conversion member 3 holding process is performed.
  • the first thermoelectric conversion member 2 and the second thermoelectric conversion member 2 are arranged in such a direction that the second end portion 2b of the first thermoelectric conversion member 2 and the second end portion 3b of the second thermoelectric conversion member 3 are in contact with the bottom surface of the opening 11a.
  • the two thermoelectric conversion members 3 are alternately inserted, and the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 are juxtaposed.
  • the depth of the opening 11 a is set to be smaller than the minimum value of the standard lengths of the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3.
  • thermoelectric conversion member 2 and the second thermoelectric conversion member 3 are aligned.
  • the positions of the first end portions 2a and 3a vary.
  • a coating step of charging metal powder 13 for example, nickel and copper powder
  • metal powder 13 for example, nickel and copper powder
  • the input amount of the metal powder 13 is adjusted so that all the first end portions 2a and 3a are covered.
  • the material of the metal powder 13 can be appropriately changed according to the material (that is, the semiconductor material) of the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3.
  • an electrode forming step is performed in which the metal powder 13 is sintered to form the electrode 4a.
  • the electrode sintering punch 12 is fitted into the opening 11a, the metal powder 13 is pressed (pressed), and an electric current is supplied to the electrode sintering punch 12 and the holding unit 11 to produce a manufacturing apparatus. 10 is heated.
  • the metal powder 13 is subjected to pressure treatment and heat treatment.
  • the temperature in the manufacturing apparatus 10 may be about 900 ° C.
  • the temperature in the manufacturing apparatus 10 may be about 600 ° C. to 700 ° C.
  • the metal powder 13 may be heated and sintered by another method without supplying current to the electrode sintering punch 12 and the holding unit 11.
  • unevenness is formed on the surface of the electrode sintering punch 12 that contacts the metal powder 13, and the patterning of the electrode 4a is performed by the unevenness. That is, by pressurizing the metal powder 13, the entire shape of the metal powder 13 corresponding to the shapes of the first end portions 2a, 3a and the recess 11b is changed to a desired pattern shape by the unevenness.
  • the electrode 4 a is partially cut (that is, a through hole is formed), and a plurality of small piece-like main body portions 14, from one end to the other end of the plurality of main body portions 14.
  • the main connecting portion 15 extending to the main connecting portion 15 and the main connecting portion 15 are connected to the main connecting portion 15. That is, in the cross section in FIG.
  • thermoelectric conversion members 2 and 1 adjacent to each other so that the first thermoelectric conversion members 2 and the second thermoelectric conversion members 3 are not electrically connected to each other.
  • Two second thermoelectric conversion members 3 are connected to each other through a main body 14 (electrode 4a).
  • thermoelectric conversion member 2 and the second thermoelectric conversion member 3 connected by the electrode 4a are taken out from the holding unit 11 and placed on a flat support base 17 as shown in FIG.
  • the above-described removal of the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 is performed by pinching the electrode 4a (more specifically, the main connecting portion 15) using tweezers, for example. Further, when placing the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3, the electrode 4 a is brought into contact with the support base 17.
  • a flat copper plate is joined to the second ends 2b and 3b to form the electrode 4b.
  • the electrode 4b is already fragmented and is electrically connected to one first thermoelectric conversion member 2 and one second thermoelectric conversion member 3 adjacent to each other, but depending on the electrode 4b, the first thermoelectric conversion is performed.
  • the members 2 and the second thermoelectric conversion members 3 are not electrically connected.
  • the support method of the 1st thermoelectric conversion member 2 and the 2nd thermoelectric conversion member 3 is not limited to the method mentioned above, The 1st thermoelectric conversion member 2 and the 2nd thermoelectric conversion member 3 are fallen and mounted. Also good. Even in such a case, the first end portions 2a and 3a are placed so as to be aligned.
  • thermoelectric conversion element 1 is completed through the above steps.
  • thermoelectric conversion element 1 In the manufacturing method of the thermoelectric conversion element 1 according to the present embodiment, the first thermoelectric conversion member 2 is exposed while exposing the first end 2a of the first thermoelectric conversion member 2 and the first end 3a of the second thermoelectric conversion member 3. And the 2nd thermoelectric conversion member 3 is hold
  • the said 1st edge part 2a, 3a is covered with the electrode 4a, even if the variation in the dimension of the 1st thermoelectric conversion member 2 and the 2nd thermoelectric conversion member 3 exists, it is manufactured. In the thermoelectric conversion element 1, the variation is absorbed.
  • thermoelectric conversion element 1 in the method for manufacturing the thermoelectric conversion element 1 according to the present embodiment, the reduction in thermoelectric characteristics due to the dimensional variation of the thermoelectric conversion material and the load balance during pressing are not required without additional processing to the thermoelectric conversion material. The reduction can be prevented and the manufacturing cost can be reduced. Moreover, the electrode 4a, the 1st thermoelectric conversion member 2, and the 2nd thermoelectric conversion member 3 can be joined firmly. That is, the bonding strength between the electrode 4a, the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 can be greatly improved.
  • thermoelectric conversion element 1 In the manufacturing method of the thermoelectric conversion element 1 according to the present embodiment, the plurality of first thermoelectric conversion members 2 and the second thermoelectric conversion members 3 are juxtaposed in the holding step, and the adjacent first thermoelectric conversion members 2 are formed in the electrode forming step. The first end 2a and the first end 3a of the second thermoelectric conversion member 3 are electrically connected by an electrode 4a. Accordingly, the thermoelectric conversion element 1 can be reduced in size while preventing a decrease in thermoelectric characteristics due to dimensional variation of the thermoelectric conversion material and a decrease in load balance at the time of pressing without requiring additional processing on the thermoelectric conversion material. Can be realized. Furthermore, the bonding strength between the electrode 4a, the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 can be greatly improved.
  • the second end portions 2b of the plurality of first thermoelectric conversion members 2 and the second end portions 3b of the second thermoelectric conversion members 3 are placed on the same plane in the holding step. While arrange
  • the electrode 4b disposed on the second end 2b, 3b side is in good contact (that is, in a state where there is no non-contact portion), and the electrode 4b is brought into contact with the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3. Can be firmly bonded to each other. That is, the bonding strength between the electrode 4b, the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 can be greatly improved while realizing a reduction in manufacturing cost.
  • thermoelectric conversion element 1 In the manufacturing method of the thermoelectric conversion element 1 according to the present embodiment, the opening 11a in which the plurality of first thermoelectric conversion members 2 and the second thermoelectric conversion members 3 are fitted and the bottom surfaces are arranged on the same plane in the holding step. A plurality of first thermoelectric conversion members 2 and second thermoelectric conversion members 3 are held by the holding unit 11 provided. By holding using such a holding part 11, the second end 2 b of the first thermoelectric conversion member 2 and the second end 3 b of the second thermoelectric conversion member 3 are arranged on the same plane by a simple configuration and process. You can be surely aligned.
  • the thermoelectric conversion element 1 includes a plurality of first thermoelectric conversion members 2 and second thermoelectric conversion members 3 arranged in parallel, and both end portions of the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3. Electrodes 4a and 4b joined to each other, and the electrode 4a joined to the first end 2a of the first thermoelectric conversion member 2 and the first end 3a of the second thermoelectric conversion member 3 has a first end It is formed by sintering a metal powder 13 provided so as to cover 2a and 3a. Even if there is a variation in the dimensions of the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3, the variation of the thermoelectric conversion element 1 is absorbed by the configuration of the electrode 4 a.
  • thermoelectric conversion element 1 does not require additional processing to the thermoelectric conversion material, and prevents deterioration in thermoelectric characteristics and reduction in load balance during pressing due to dimensional variation of the thermoelectric conversion material. Cost has been reduced. Moreover, in the thermoelectric conversion element 1 which concerns on a present Example, the electrode 4a, the 1st thermoelectric conversion member 2, and the 2nd thermoelectric conversion member 3 are joined firmly. That is, the bonding strength between the electrode 4a and the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 is greatly improved.
  • thermoelectric conversion element 1 the second end 2b of the first thermoelectric conversion member 2 and the second end 3b of the second thermoelectric conversion member 3 are arranged on the same plane.
  • the second end portion 2b can be prevented while requiring no additional processing to the thermoelectric conversion material and preventing deterioration in thermoelectric properties and load balance during pressing due to dimensional variation of the thermoelectric conversion material.
  • 3b and the electrode 4b arranged on the second end portion 2b, 3b side make good contact (that is, in a state where there is no non-contact portion), and the electrode 4b, the first thermoelectric conversion member 2 and the second thermoelectric conversion
  • the member 3 is firmly joined. That is, in the thermoelectric conversion element 1 according to the present embodiment, the bonding strength between the electrode 4b, the first thermoelectric conversion member 2, and the second thermoelectric conversion member 3 is greatly improved while cost reduction is realized.
  • thermoelectric that can prevent the deterioration of thermoelectric characteristics and the load balance during pressing due to the dimensional variation of the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 can be prevented.
  • the manufacturing method of the conversion element 1 and the thermoelectric conversion element 1 provided with the outstanding thermoelectric characteristic can be provided.
  • Example 2 In Example 1 mentioned above, the 2nd end part 2b of the 1st thermoelectric conversion member 2 and the 2nd end part 3b of the 2nd thermoelectric conversion member 3 are made to contact
  • FIG. 7 is a schematic cross-sectional view during the manufacturing process of the thermoelectric conversion element 1 shown in the same manner as FIG.
  • description other than a holding process is abbreviate
  • the holding unit 21 of the manufacturing apparatus 20 includes an insertion part 23 including a through hole 22 into which the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 are inserted, and a through hole. And a positioning portion 24 that is inserted into 22 and abuts on the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 for positioning.
  • the positioning portion 24 includes a plurality of pin punches 25 that are inserted into the through holes 22 and a base 26 that holds the pin punches 25. Further, since the plurality of pin punches 25 have the same length and the holding surface of the pin punch 25 of the pedestal 26 is flat, one end of the pin punch 25 not held by the pedestal 26 is aligned on the same plane. is doing.
  • the pin punch 25 is comprised from metal materials, such as iron and copper which can be processed easily, and the base is comprised from graphite.
  • thermoelectric conversion member 2 and the 2nd thermoelectric conversion member 3 When the 1st thermoelectric conversion member 2 and the 2nd thermoelectric conversion member 3 are inserted by the through-hole 22, 2nd edge part 2b, 3b contact
  • the reference end surfaces of the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 are formed by positioning the second end portions 2 b and 3 b in contact with the pin punch 25.
  • pressurization is performed through the electrode sintering punch 12 and the pin punch 25.
  • thermoelectric conversion element 1 can be manufactured in a flexible manner corresponding to the dimensions of the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3.
  • the electrode 4a is After the formation, the pin punch 25 is moved in the push-in direction (that is, the pin punch 25 is pressed toward the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3), so that the first electrode 4a is formed.
  • the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 can be easily taken out.
  • thermoelectric conversion element of the present invention is not limited to the thermoelectric conversion element 1 according to Example 1 and Example 2 described above, and all the electrodes located at both ends of the thermoelectric conversion member cover the ends of the thermoelectric conversion member. May be formed. That is, all the electrodes may be formed from metal powder.
  • a thermoelectric conversion element 101 having such a structure will be described as a third embodiment with reference to FIGS. 8 to 14 and its structure and manufacturing method.
  • FIG. 8 is a cross-sectional view schematically illustrating the thermoelectric conversion element according to the third embodiment.
  • FIG. 8 is a cross-sectional view taken along the extending direction of the thermoelectric conversion member constituting the thermoelectric conversion element 101.
  • the thermoelectric conversion element 101 includes a first thermoelectric conversion member 102 made of a P-type semiconductor material, a second thermoelectric conversion member 103 made of an N-type semiconductor material, and a first thermoelectric conversion member. 102 and electrodes 104 a and 104 b provided at both ends of the second thermoelectric conversion member 103. Also in the present embodiment, the outer shapes of the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103 are the same, the diameter is 2 mm, and the length is 5 mm to 10 mm. Moreover, the 1st thermoelectric conversion member 102 and the 2nd thermoelectric conversion member 103 are arranged in parallel by turns.
  • thermoelectric conversion element 101 has a configuration in which the first thermoelectric conversion member 2 and the second thermoelectric conversion member 3 are connected in series as in the thermoelectric conversion element 1 of the first embodiment.
  • the electrodes 104a and 104b provided at both ends of the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103 are connected to the end portions (the first end portions 102a and 103a and the second end). Part 102b, 103b).
  • the electrodes 104a and 104b are formed by sintering metal powder.
  • standard end surface like Example 1 is not formed, but the position of each edge part does not need to be aligned.
  • thermoelectric conversion element 101 (Method for manufacturing thermoelectric conversion element) Next, a method for manufacturing the thermoelectric conversion element 101 according to this example will be described with reference to FIGS. 9 is a schematic cross-sectional view during the manufacturing process of the thermoelectric conversion element 101 shown in the same manner as FIG. 8, and FIGS. 10 to 14 are cross-sectional views taken along line IX-IX in FIG. 6 is a schematic cross-sectional view during the manufacturing process of the conversion element 101.
  • FIG. 9 is a schematic cross-sectional view during the manufacturing process of the thermoelectric conversion element 101 shown in the same manner as FIG. 8, and FIGS. 10 to 14 are cross-sectional views taken along line IX-IX in FIG. 6 is a schematic cross-sectional view during the manufacturing process of the conversion element 101.
  • the manufacturing apparatus 110 is used to manufacture the thermoelectric conversion element 101.
  • the manufacturing apparatus 110 includes a first holding part (die) 111 and a second holding part (die) 112 that hold the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103, a plurality of electrode sintering punches 113, and electrodes Two pedestals 114 are provided to support the sintering punch.
  • the first holding unit 111 and the second holding unit 112 have both ends of the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103 when holding the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103. Through holes 111a and 112a are formed for exposing the.
  • the first holding portion 111 is formed with a recess 111b for mounting the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103, and the second holding portion 112 is fitted into the recess 111b.
  • the protrusion 112b is even formed.
  • maintenance part 112 is fitted by the recessed part 111b of the 1st holding
  • the first holding part 111, the second holding part 112, the electrode sintering punch 113, and the pedestal 114 are made of a conductive material (for example, graphite).
  • the prepared first thermoelectric conversion member 102 and second thermoelectric conversion member 103 are placed in the recess 111 b of the first holding unit 111 constituting the manufacturing apparatus 110.
  • the first end portion 102a and the second end portion 102b of the first thermoelectric conversion member 102, and the first end portion 103a and the second end portion 103b of the second thermoelectric conversion member 103 are formed in the through hole 111a. It is exposed at the formation part.
  • the electrode sintering punch 113 is inserted into the through hole 111 a of the first holding part 111. At this time, the position of the electrode sintering punch 113 is adjusted so that the electrode sintering punch 113 does not contact the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103.
  • the second holding part 112 is fitted to the first holding part 111.
  • the convex portion 112b of the second holding portion 112 is fitted into the concave portion 111b of the first holding portion 111, and the first thermoelectric conversion member 102 and the second holding portion 112 are fitted by the first holding portion 111 and the second holding portion 112.
  • the thermoelectric conversion member 103 is sandwiched.
  • the through hole 111a and the through hole 112a communicate with each other, and both ends of the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103 are exposed at the portions where the through holes 111a and 112a are formed.
  • thermoelectric conversion member 102 and the second thermoelectric conversion member 103 The holding process of the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103 is completed through the above steps. Note that the step of inserting the electrode sintering punch 113 and the step of fitting the second holding unit 112 to the first holding unit 111 may be interchanged.
  • metal powder 115 (for example, nickel and copper) is placed in the through holes 111 a and 112 a so as to cover both ends of the exposed first thermoelectric conversion member 102 and second thermoelectric conversion member 103.
  • a coating step of charging powder is performed.
  • the amount of the metal powder 115 is appropriately set so as not to protrude from the through hole 112a.
  • an electrode forming step is performed in which the metal powder 115 is sintered to simultaneously form the electrodes 104a and 104b.
  • the electrode sintering punch 113 is inserted into the through-hole 112a of the second holding part 112, and the metal powder 115 is inserted into the first holding part 111, the second holding part 112, and the electrode sintering punch 113.
  • the metal powder 115 is pressed (pressed) by the electrode sintering punch 113, and current is supplied to the electrode sintering punch 113 to heat the inside of the manufacturing apparatus 110.
  • the metal powder 115 is subjected to pressure treatment and heat treatment.
  • the heating temperature is the same as in Example 1.
  • thermoelectric conversion member 102 and the second thermoelectric conversion member 103 are held by the first holding portion 111 and the second holding portion 112, they are adjacent to each other by the one through-holes 111a and 112a that communicate with each other. The ends of one first thermoelectric conversion member 102 and one second thermoelectric conversion member 103 are exposed. For this reason, by forming the electrodes 104a and 104b in the through holes 111a and 112a, the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103 that are adjacent to each other are electrically connected. Become.
  • thermoelectric conversion element 101 is taken out from the manufacturing apparatus 110.
  • the extraction of the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103 is performed by pinching the electrodes 104a and 104b using tweezers, for example, as in the first embodiment.
  • thermoelectric conversion element 101 is completed.
  • the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103 are held while both end portions of the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103 are exposed.
  • the electrodes 104 a and 104 b are simultaneously formed on both end portions of the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103 by sintering the metal powder 115.
  • the first thermoelectric conversion member 102, the second thermoelectric conversion member 103, and the electrode 104b are more firmly and reliably bonded as compared to the first and second embodiments described above. Can do.
  • the electrodes 104a and 104b can be formed at the same time, and the manufacturing process and manufacturing cost can be further reduced.
  • thermoelectric conversion member 102 it is not necessary to align the end portions of the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103, and the manufacturing process and manufacturing cost can be further reduced.
  • Example 4 In Example 3 described above, when the electrodes 104a and 104b are formed during the sintering of the metal powder 115, the electrodes 104a and 104b have one first thermoelectric conversion member 102 and one second thermoelectric element adjacent to each other. Although electrically connected to the conversion member 103, independent electrodes may be formed on each of the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103 when the metal powder 115 is sintered.
  • FIGS. 15 to 17 are schematic cross-sectional views in the manufacturing process of the thermoelectric conversion element shown in the same manner as FIG. Note that the description of the same steps as those in Example 3 will be omitted.
  • the prepared first thermoelectric conversion member 102 and second thermoelectric conversion member 103 are placed in the recess 121 b of the first holding part 121 constituting the manufacturing apparatus.
  • the first end portion 102a and the second end portion 102b of the first thermoelectric conversion member 2 and the first end portion 103a and the second end portion 103b of the second thermoelectric conversion member 103 are formed in the through hole 121a. It is exposed at the formation part.
  • the through holes 121 a are disposed at both ends of the mounting positions of the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103. That is, the through holes 121a are formed in both end portions of the recess 121b.
  • the electrode sintering punch is inserted and the second holding part is fitted, and the holding process of the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103 is performed.
  • the through hole of the second holding part corresponds to the through hole 121 a of the first holding part 121.
  • the through holes of the second holding part are arranged at both ends of the convex part inserted into the concave part 121 b of the first holding part 121.
  • maintenance part are connected similarly to Example 3.
  • thermoelectric conversion member 102 and the second thermoelectric conversion member 103 were independent at both ends (that is, adjacent first thermoelectric conversion members). 102 and the second thermoelectric conversion member 103 are not electrically connected) electrodes 124a and 124b are formed. Furthermore, as shown in FIG. 16, the holding
  • connection portion 125 that is a connection electrode is formed so as to electrically connect the electrodes 124 a and 124 b of the adjacent first thermoelectric conversion member 102 and second thermoelectric conversion member 103. That is, a connection step of electrically connecting the electrodes 124a and 124b of the adjacent first thermoelectric conversion member 102 and second thermoelectric conversion member 103 is performed.
  • the connection part 125 may be formed by spot welding, for example.
  • thermoelectric conversion element 130 According to the present embodiment is formed.
  • the electrodes connecting the first thermoelectric conversion members 102 and the second thermoelectric conversion members 103 are curved surfaces.
  • the trajectory connecting the plurality of electrodes 124a and the trajectory connecting the plurality of electrodes 124b may be curved (broken lines in FIG. 18) so as to be electrodes. That is, the surface shape of the formation surface of the electrodes 124a and 124b may be curved.
  • thermoelectric conversion element 130 of the present embodiment the first thermoelectric conversion member 102 and the second thermoelectric conversion member 103 on which the electrodes 124a and 124b are formed are manufactured electrically independently, and thereafter spot welding or the like.
  • the electrodes 124a and 124b of the adjacent first thermoelectric conversion member 102 and second thermoelectric conversion member 103 are electrically connected.
  • the electrodes 124a and 124b can be reliably connected and the adjacent first thermoelectric conversion member 102 and second thermoelectric conversion member 103 can be electrically connected.
  • the shape of the manufactured thermoelectric conversion element 130 can be freely deformed.
  • the method of manufacturing a thermoelectric conversion element according to the first embodiment of the present invention includes a holding step of holding the thermoelectric conversion member while exposing at least one end of at least one thermoelectric conversion member, and an exposed end of the thermoelectric conversion member.
  • the method for manufacturing a thermoelectric conversion element according to the second embodiment of the present invention is a method for manufacturing a thermoelectric conversion element according to the first embodiment, wherein the plurality of thermoelectric conversion members are juxtaposed in the holding step, and the electrode In the forming step, the adjacent ends of the thermoelectric conversion members are electrically connected by the electrodes.
  • the method for manufacturing a thermoelectric conversion element according to the fourth embodiment of the present invention is a method for manufacturing a thermoelectric conversion element according to the third embodiment, wherein a plurality of the thermoelectric conversion members are inserted and held in the holding step. A plurality of the thermoelectric conversion members are held by a holding portion having openings arranged on the same plane.
  • the manufacturing method of the thermoelectric conversion element which concerns on 5th embodiment of this invention is a manufacturing method of the thermoelectric conversion element which concerns on 3rd embodiment, Comprising: The said through-hole in which the said several thermoelectric conversion member is inserted in the said holding process And a positioning portion that is inserted into the insertion portion and is positioned so that one end surfaces of the plurality of thermoelectric conversion members are positioned on the same plane while being in contact with the plurality of thermoelectric conversion members.
  • the plurality of thermoelectric conversion members are held by the holding unit provided.
  • a method for manufacturing a thermoelectric conversion element according to a sixth embodiment of the present invention is a method for manufacturing a thermoelectric conversion element according to the first embodiment, wherein, in the holding step, the both ends of the thermoelectric conversion member are exposed. The thermoelectric conversion member is held.
  • the manufacturing method of the thermoelectric conversion element according to the seventh embodiment of the present invention is the manufacturing method of the thermoelectric conversion element according to the sixth embodiment, and in each of the ends of the plurality of thermoelectric conversion members in the electrode forming step.
  • thermoelectric conversion element includes a plurality of thermoelectric conversion members arranged in parallel and electrodes bonded to both end portions of the plurality of thermoelectric conversion members. And at least one of the electrodes joined to both ends of the thermoelectric conversion member is formed by sintering metal powder provided so as to cover the end of the thermoelectric conversion member.
  • thermoelectric conversion element according to the ninth embodiment of the present invention is the thermoelectric conversion element according to the eighth embodiment, wherein the electrode electrically connects the ends of the adjacent thermoelectric conversion members.
  • thermoelectric conversion element according to the tenth embodiment of the present invention is the thermoelectric conversion element according to the ninth embodiment, wherein one end face of the plurality of thermoelectric conversion members is arranged on the same plane and the other end face side.
  • the electrode joined to is formed by sintering the metal powder.
  • thermoelectric conversion element according to an eleventh embodiment of the present invention is the thermoelectric conversion element according to the ninth embodiment, wherein both of the electrodes joined to both end portions of the thermoelectric conversion member cover the end portions of the thermoelectric conversion member.
  • the metal powder provided to sinter is formed by sintering.
  • thermoelectric conversion element is the thermoelectric conversion element according to the eighth embodiment, wherein the thermoelectric conversion element has a connection portion that electrically connects the electrodes joined to both end portions of the adjacent thermoelectric conversion members. is doing.
  • thermoelectric conversion element according to the thirteenth embodiment of the present invention is the thermoelectric conversion element according to the twelfth embodiment, wherein the surface shape of the electrode forming surface is curved.
  • thermoelectric conversion element 2 1st thermoelectric conversion member 2a 1st edge part 2b 2nd edge part 3 2nd thermoelectric conversion member 3a 1st edge part 3b 2nd edge part 4a, 4b Electrode 10 Manufacturing apparatus 11 Holding part 11a Opening 11b Recessed part 12 Punch for Electrode Sintering 13 Metal Powder 14 Main Body 15 Main Connection 16 Sub-connection 17 Support

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

 少なくとも1つの熱電変換部材(2、3)の少なくとも一端部を露出させつつ前記熱電変換部材を保持する保持工程と、前記熱電変換部材の露出した端部を金属粉末(13)によって被覆する被覆工程と、前記金属粉末を焼結させて前記熱電変換部材の端部に電極(4a)を形成する電極形成工程と、を有すること。

Description

熱電変換素子の製造方法及び熱電変換素子
 本発明は、熱電変換素子の製造方法及びこれによって製造される熱電変換素子に関し、特に熱電特性の安定した熱電変換素子及びその製造方法に関する。
 熱電変換素子は、ゼーベック効果によって熱エネルギーを電気エネルギーに変換することが可能である。このようなエネルギーの変換性質を利用することで、産業・民生用プロセスや移動体から排出される排熱を有効な電力に変換することができるため、環境問題に配慮した省エネルギー技術として当該熱電変換素子が注目されている。
 このような熱電変換素子は、一般的に、複数個の熱電変換材料(p型半導体及びn型半導体)を電極で接合して構成される。熱電変換素子は、焼結材料を左右のダイス、及び上下のパンチで形成される空間に充填し、これをパンチで上下からプレスしながら直接電流を加えること(パルス通電)により製造される。このように、焼結炉を温めるのではなく、電流を流すことによってジュール発熱させるため、狭い範囲のみの加熱で行うことができ、焼結時間が短くなり、更には温度ムラが少なくなる。
 このようなパルス通電焼結は、例えば特許文献1に開示されている。また、熱電変換材料を電極で接合して製造する方法は、例えば特許文献2に開示されている(特に特許文献2の図14参照)。
特開2003-46149号公報 特開2004-221464号公報
 しかしながら、p型半導体又はn型半導体からなる熱電変換材料に電極を接合する場合に、熱電変換材料の寸法バラツキによって熱電変換材料と電極との間に接合強度等の接合バラツキを生じる。そのため、電極と熱電変換素子間の接合界面が容易に剥離して接合されていない部分ができたり、剥離しないまでも接合不良となって接合界面での熱的抵抗や電気的抵抗にバラツキを生じたりする原因となることがある。
 すなわち、熱電変換材料に電極を接合する際には、上下から加圧して電流を供給することになるが、熱電変換材料の寸法バラツキ(高さバラツキ)が存在することによって電極と熱電変換材料とが接合されていない状態が生じると、このような非接合部分における界面抵抗が大きくなり、当該非接合部分が発熱して部分的に温度が上がることになる。このような部分的な温度上昇は、熱電変換素子の熱電特性に影響を与えるおそれがある。また、電極と熱電変換材料の間に隙間ができると、プレスの際に荷重が集中される部分が生じ、荷重バランスが低下することになる。
 上述した熱電変換材料の寸法バラツキを少なくするために、熱電変換材料に追加の加工を加える方法がある。具体的には複数の熱電変換材料の一方端面を基準に配置し、複数の他方端面に対して同時に研削工程又は研磨工程を施すことで、個々の熱電変換素子の寸法バラツキを無くす(少なくする)ことができる。しかしながら、このような追加加工を行うと、熱電変換素子のコストが増加する問題が生じる。
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、熱電変換材料への追加加工を必要としないで、熱電変換材料の寸法バラツキに起因する熱電特性の低下及びプレス時の荷重バランスの低下を防止することができる熱電変換素子の製造方法、及び優れた熱電特性を備える熱電変換素子を提供することにある。
 上記の目的を達成するべく、本発明の熱電変換素子の製造方法は、少なくとも1つの熱電変換部材の少なくとも一端部を露出させつつ前記熱電変換部材を保持する保持工程と、前記熱電変換部材の露出した端部を金属粉末によって被覆する被覆工程と、前記金属粉末を焼結させて前記熱電変換部材の端部に電極を形成する電極形成工程と、を有することを特徴とする。
 また、上記の目的を達成するべく、本発明の熱電変換素子は、並設された複数の熱電変換部材と、前記複数の熱電変換部材の両端部のそれぞれに接合された電極と、を有し、前記熱電変換部材の両端部に接合した前記電極の少なくとも一方は、前記熱電変換部材の端部を被覆するように設けられた金属粉末を焼結して形成されていることを特徴とする。
 以上のことから、本発明によれば、熱電変換材料の寸法バラツキに起因する熱電特性の低下及びプレス時の荷重バランスの低下を、熱電変換材料への追加加工を必要とせずに防止することができる熱電変換素子の製造方法、及び優れた熱電特性を備える熱電変換素子を提供することができる。
実施例1に係る熱電変換素子の概略を示す断面図である。 図1と同様にして示した熱電変換素子の製造工程中の概略断面図である。 図1と同様にして示した熱電変換素子の製造工程中の概略断面図である。 図1と同様にして示した熱電変換素子の製造工程中の概略断面図である。 図4の製造工程中における電極の概略平面図である。 図1と同様にして示した熱電変換素子の製造工程中の概略断面図である。 図1と同様にして示した熱電変換素子の製造工程中の概略断面図である。 実施例3に係る熱電変換素子の概略を示す断面図である。 図8と同様にして示した熱電変換素子の製造工程中の概略断面図である。 図9の線IX-IXに沿って示す断面であって、熱電変換素子の製造工程中の概略断面図である。 図9の線IX-IXに沿って示す断面であって、熱電変換素子の製造工程中の概略断面図である。 図9の線IX-IXに沿って示す断面であって、熱電変換素子の製造工程中の概略断面図である。 図9の線IX-IXに沿って示す断面であって、熱電変換素子の製造工程中の概略断面図である。 図9の線IX-IXに沿って示す断面であって、熱電変換素子の製造工程中の概略断面図である。 図9と同様にして示した熱電変換素子の製造工程中の概略断面図である。 図9と同様にして示した熱電変換素子の製造工程中の概略断面図である。 図9と同様にして示した熱電変換素子の製造工程中の概略断面図である。 図9と同様にして示した熱電変換素子の製造工程中の概略断面図である。
 以下、図面を参照し、本発明の実施の形態について、実施例に基づき詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施例の説明に用いる図面は、いずれも本発明による熱電変換素子及びその構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、又は省略などを行っており、熱電変換素子及びその構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。更に、実施例で用いる様々な数値及び数量は、いずれも一例を示すものであり、必要に応じて様々に変更することが可能である。
<実施例1>
(熱電変換素子の構造)
 以下において、図1を参照しつつ、本発明の実施例1に係る熱電変換素子の構造について説明する。図1は、実施例1に係る熱電変換素子の概略を示す断面図である。なお、図1は、熱電変換素子を構成する熱電変換部材の延在方向に沿った断面図である。
 図1に示すように、実施例1に係る熱電変換素子1は、P型半導体材料からなる第1熱電変換部材2、N型半導体材料からなる第2熱電変換部材3、並びに第1熱電変換部材2及び第2熱電変換部材3の両端に接合した電極4a、4bから構成されている。本実施例において、第1熱電変換部材2及び第2熱電変換部材3の外形は同一であり、直径が2mm、長さが5mmから10mmである。また、第1熱電変換部材2と第2熱電変換部材3とは交互に並設されている。そして、隣接する第1熱電変換部材2と第2熱電変換部材3とは、小片化された電極4a、4bによって電気的に接続されている。すなわち、熱電変換素子1は、第1熱電変換部材2と第2熱電変換部材3とが直列接続された構成を備えている。
 また、図1に示すように、第1熱電変換部材2の第1端部2a側、及び第2熱電変換部材3の第1端部3a側に設けられた電極4aは、第1端部2a、3aを覆っている。一方、第1熱電変換部材2の第2端部2b側、及び第2熱電変換部材3の第2端部3b側に設けられた電極4bは、第1熱電変換部材2及び第2熱電変換部材3の端面(すなわち、第2端部2b、3bの表面)に当接して設けられている。本実施例において、電極4aは金属粉末を焼結させることによって形成されており、電極4bは平板状の銅板である。ここで、第1熱電変換部材2及び第2熱電変換部材3の第2端部2b、3b側の端面は、同一平面上に配置されている。すなわち、第1熱電変換部材2と電極4bとの界面、及び第2熱電変換部材3と電極4bとの界面は、同一の基準端面(図1において破線で示す)を形成している。換言すれば、第1熱電変換部材2及び第2熱電変換部材3は、当該基準端面において一端がそろえられている。
 なお、電極4bは銅板に限定されることなく、電極4aと同様に、金属粉末を焼結することによって形成されてもよい。このような場合、電極4bも電極4aと同様に、第1端部2a、3aを覆っていてもよい。
(熱電変換素子の製造方法)
 次に、図2乃至図6を参照しつつ、本実施例に係る熱電変換素子1の製造方法を説明する。図2乃至図4、及び図6は、図1と同様にして示した熱電変換素子1の製造工程中の概略断面図であり、図5は熱電変換素子1の製造工程中における電極4aの概略平面図である。
 図2乃至図4から分かるように、本実施例においては、熱電変換素子1を製造するために、製造装置10を使用する。製造装置10は、第1熱電変換部材2及び第2熱電変換部材3を保持する保持部(ダイス)11、及び電極焼結用パンチ12を備えている。図2に示すように、保持部11には、第1熱電変換部材2及び第2熱電変換部材3が嵌挿されるための複数の開口11aが形成されている。ここで、開口11aの底面は同一平面上に位置している。換言すれば、開口11aの深さは全て同一である。また、保持部11は、開口11aの形成面側に凹部11bが形成されている。保持部11及び電極焼結用パンチ12は、導電性を備える材料(例えば、黒鉛)から構成されている。
 先ず、図2に示すように、製造装置10を構成する保持部11の開口11aに準備した第1熱電変換部材2及び第2熱電変換部材3を嵌挿し、保持部11によって第1熱電変換部材2及び第2熱電変換部材3を保持する保持工程を行う。本実施例においては、第1熱電変換部材2の第2端部2b及び第2熱電変換部材3の第2端部3bが開口11aの底面と接触する向きに、第1熱電変換部材2及び第2熱電変換部材3を交互に嵌挿し、第1熱電変換部材2及び第2熱電変換部材3を並置する。ここで、開口11aの深さは、第1熱電変換部材2及び第2熱電変換部材3の規格長の最小値よりも小さくなるように設定されている。これにより第1熱電変換部材2及び第2熱電変換部材3を開口11aに嵌挿すると、第1熱電変換部材2の第1端部2a及び第2熱電変換部材3の第1端部3aは、開口11aから露出(突出)し、凹部11b内に位置することになる。また、開口11aの底面が同一平面上に位置するように設定されているため、第1熱電変換部材2の第2端部2b及び第2熱電変換部材3の第2端部3bは同一平面上に位置することになり、第1熱電変換部材2及び第2熱電変換部材3の端部がそろった状態となる。一方、図2に示すように、第1熱電変換部材2及び第2熱電変換部材3の長さにバラツキがあると、第1端部2a、3aの位置がばらつくことになる。
 次に、図3に示すように、露出した第1端部2a、3aを被覆するように、開口11aの凹部11b内に金属粉末13(例えば、ニッケル及び銅の粉末)を投入する被覆工程を行う。ここで、金属粉末13の投入量は、全ての第1端部2a、3aが覆われるように調整される。なお、金属粉末13の材料は、第1熱電変換部材2及び第2熱電変換部材3の材料(すなわち、半導体材料)に応じて適宜変更することができる。
 次に、図4に示すように、金属粉末13を焼結させて電極4aを形成する電極形成工程を行う。具体的には、電極焼結用パンチ12を開口11aに嵌装させ、金属粉末13を加圧(押圧)するとともに、電極焼結用パンチ12及び保持部11に電流を供給して、製造装置10内を加熱する。換言すれば、金属粉末13に対して加圧処理及び加熱処理を施すことになる。例えば、第1熱電変換部材2及び第2熱電変換部材3の材料の融点温度が比較的に高い場合には、製造装置10内の温度が約900℃となるようにしてもよく、第1熱電変換部材2及び第2熱電変換部材3の材料の融点温度が比較的に低い場合には、製造装置10内の温度が約600℃~700℃となるようにしてもよい。なお、電極焼結用パンチ12及び保持部11に電流を供給することなく、他の方法によって金属粉末13を加熱して焼結させてもよい。
 また、電極焼結用パンチ12の金属粉末13に対して接触する面には凹凸が形成されており、当該凹凸により電極4aのパターニングが施されることになる。すなわち、金属粉末13を加圧することにより、第1端部2a、3a及び凹部11bの形状に対応した金属粉末13の全体形状を、当該凹凸によって所望のパターン形状に変更している。具体的には、図5に示すように、電極4aは部分的に切断され(すなわち貫通孔が形成され)、小片状の複数の本体部14、複数の本体部14の一端から他端にまで延在する主連結部15、及び本体部14と主連結部15とを接続する副連結部16から構成されることになる。すなわち、図4における断面においては、第1熱電変換部材2同士及び第2熱電変換部材3同士が電気的に接続されることがないように、互いに隣接する1つの第1熱電変換部材2と1つの第2熱電変換部材3とを本体部14(電極4a)を介して接続されている。
 次に、図6に示すように、第1熱電変換部材2の第2端部2b及び第2熱電変換部材3の第2端部3bに電極4bを形成する工程を行う。具体的には、電極4aによって接続された状態の第1熱電変換部材2及び第2熱電変換部材3を保持部11から取り出し、図6に示すような平坦な支持台17上に載置する。第1熱電変換部材2及び第2熱電変換部材3の上記取り出しには、例えばピンセットを用いて電極4a(より具体的には主連結部15)をつまむことにより行われる。また、第1熱電変換部材2及び第2熱電変換部材3を載置する際、電極4aを支持台17に当接させる。その後、第2端部2b、3bに平板状の銅板を接合し、電極4bを形成する。例えば、溶接等の技術を利用して、第2端部3bに銅板を接合してもよい。ここで、電極4bは既に小片化されており、互いに隣接する1つの第1熱電変換部材2と1つの第2熱電変換部材3と電気的に接続されるものの、電極4bによっては第1熱電変換部材2同士及び第2熱電変換部材3同士が電気的に接続されていない。なお、第1熱電変換部材2及び第2熱電変換部材3の支持方法は、上述した方法に限定されることなく、第1熱電変換部材2及び第2熱電変換部材3を倒して載置してもよい。このような場合にも、第1端部2a、3aが一直線上にそろうように載置することになる。
 そして、電極4bの形成後に、副連結部16を切断して電極4aを小片化して(すなわち、本体部14のみから電極4aを構成させ)、電極4aによって第1熱電変換部材2同士及び第2熱電変換部材3同士が電気的に接続されないように、互いに隣接する1つの第1熱電変換部材2と1つの第2熱電変換部材3と電気的に接続する。以上の工程を経て、熱電変換素子1の製造が完了する。
(本実施例の効果)
 本実施例に係る熱電変換素子1の製造方法においては、第1熱電変換部材2の第1端部2a及び第2熱電変換部材3の第1端部3aを露出させつつ第1熱電変換部材2及び第2熱電変換部材3を保持し、当該第1端部2a、3aを金属粉末13によって被覆し、当該金属粉末13を焼結して電極4aを形成している。このように、当該第1端部2a、3aが電極4aによって覆われているため、第1熱電変換部材2及び第2熱電変換部材3の寸法のバラツキが存在していたとしても、製造される熱電変換素子1においては、当該バラツキが吸収されることになる。すなわち、本実施例に係る熱電変換素子1の製造方法においては、熱電変換材料への追加加工を必要とせずに、熱電変換材料の寸法バラツキに起因する熱電特性の低下及びプレス時の荷重バランスの低下を防止し、製造コストの低減を実現することができる。また、電極4aと第1熱電変換部材2及び第2熱電変換部材3とを強固に接合することができる。すなわち、電極4aと第1熱電変換部材2及び第2熱電変換部材3との接合強度を大幅に向上することができる。
 本実施例に係る熱電変換素子1の製造方法においては、保持工程において複数の第1熱電変換部材2及び第2熱電変換部材3を並置させ、電極形成工程において隣接する第1熱電変換部材2の第1端部2a及び第2熱電変換部材3の第1端部3aを電極4aによって電気的に接続している。これにより、熱電変換材料への追加加工を必要とせずに、熱電変換材料の寸法バラツキに起因する熱電特性の低下及びプレス時の荷重バランスの低下を防止しつつ、熱電変換素子1の小型化を実現することができる。更に、電極4aと第1熱電変換部材2及び第2熱電変換部材3との接合強度を大幅に向上することもできる。
 本実施例に係る熱電変換素子1の製造方法においては、保持工程において複数の第1熱電変換部材2の第2端部2b及び第2熱電変換部材3の第2端部3bを同一平面上に配置するとともに、第1熱電変換部材2の第1端部2a及び第2熱電変換部材3の第1端部3aを露出させている。これにより、熱電変換材料への追加加工を必要とせずに、熱電変換材料の寸法バラツキに起因する熱電特性の低下及びプレス時の荷重バランスの低下を防止しつつ、第2端部2b、3bと第2端部2b、3b側に配置される電極4bとを良好に(すなわち、非接触部分が存在しない状態で)当接させ、電極4bを第1熱電変換部材2及び第2熱電変換部材3に対して強固に接合することができる。すなわち、製造コストの低減を実現しつつ、電極4bと第1熱電変換部材2及び第2熱電変換部材3との接合強度を大幅に向上することができる。
 本実施例に係る熱電変換素子1の製造方法においては、保持工程において複数の第1熱電変換部材2及び第2熱電変換部材3が嵌挿され且つ底面が同一平面上に配置された開口11aを備える保持部11により、複数の第1熱電変換部材2及び第2熱電変換部材3を保持している。このような保持部11を用いて保持することにより、簡易な構成及び工程によって第1熱電変換部材2の第2端部2b及び第2熱電変換部材3の第2端部3bを同一平面上に確実にそろえることができる。
 本実施例に係る熱電変換素子1は、並設された複数の第1熱電変換部材2及び第2熱電変換部材3と、第1熱電変換部材2及び第2熱電変換部材3の両端部のそれぞれに接合された電極4a、4bと、を有し、第1熱電変換部材2の第1端部2a及び第2熱電変換部材3の第1端部3aに接合した電極4aは、第1端部2a、3aを被覆するように設けられた金属粉末13を焼結して形成されている。このような電極4aの構成により、第1熱電変換部材2及び第2熱電変換部材3の寸法のバラツキが存在していたとしても、熱電変換素子1としては当該バラツキが吸収されることになる。従って、本実施例に係る熱電変換素子1は、熱電変換材料への追加加工を必要とせずに、熱電変換材料の寸法バラツキに起因する熱電特性の低下及びプレス時の荷重バランスの低下を防止され、コストが低減されている。また、本実施例に係る熱電変換素子1においては、電極4aと第1熱電変換部材2及び第2熱電変換部材3とが強固に接合されている。すなわち、電極4aと第1熱電変換部材2及び第2熱電変換部材3との接合強度が大幅に向上されている。
 本実施例に係る熱電変換素子1は、第1熱電変換部材2の第2端部2b及び第2熱電変換部材3の第2端部3bは、同一平面上に配置される。このような構造により、熱電変換材料への追加加工を必要とせずに、熱電変換材料の寸法バラツキに起因する熱電特性の低下及びプレス時の荷重バランスの低下が防止されつつ、第2端部2b、3bと第2端部2b、3b側に配置される電極4bとが良好に(すなわち、非接触部分が存在しない状態で)当接し、電極4bと第1熱電変換部材2及び第2熱電変換部材3とが強固に接合されている。すなわち、本実施例に係る熱電変換素子1は、コストの低減が実現されつつも、電極4bと第1熱電変換部材2及び第2熱電変換部材3との接合強度が大幅に向上されている。
 以上のことから、本実施例によれば、第1熱電変換部材2及び第2熱電変換部材3の寸法バラツキに起因する熱電特性の低下及びプレス時の荷重バランスの低下を防止することができる熱電変換素子1の製造方法、及び優れた熱電特性を備える熱電変換素子1を提供することができる。
<実施例2>
 上述した実施例1においては、製造装置10の保持部11の底面に第1熱電変換部材2の第2端部2b、及び第2熱電変換部材3の第2端部3bを当接させ、これにより第2端部2b、3bを同一平面上にそろえていたが、図7に示すような方法によって第2端部2b、3bを同一平面上にそろえてもよい。図7は、図1と同様にして示した熱電変換素子1の製造工程中の概略断面図である。なお、第1熱電変換部材2及び第2熱電変換部材3を製造装置によって保持する工程以外は、上述した実施例1と同様のため、保持工程以外の説明は省略する。
 図7に示すように、実施例2における製造装置20の保持部21は、第1熱電変換部材2及び第2熱電変換部材3が嵌挿される貫通孔22を備える嵌挿部23と、貫通孔22に嵌挿されて第1熱電変換部材2及び第2熱電変換部材3に当接して位置決めをなす位置決め部24とから構成されている。また、位置決め部24は、貫通孔22に嵌挿される複数のピンパンチ25、ピンパンチ25を保持する台座26から構成されている。更に、複数のピンパンチ25の長さは同一であり、且つ台座26のピンパンチ25の保持面は平坦であるため、台座26によって保持されていないピンパンチの25の一端は、同一平面上にそろって位置している。ここで、ピンパンチ25は加工を容易に行うことができる鉄、銅等金属材料から構成され、台座は黒鉛から構成されている。
 第1熱電変換部材2及び第2熱電変換部材3が貫通孔22に嵌挿されると、第2端部2b、3bがピンパンチ25に当接し、第1熱電変換部材2及び第2熱電変換部材3の端部がそろった状態となる。換言すれば、ピンパンチ25に第2端部2b、3bを当接して位置決めすることにより、第1熱電変換部材2及び第2熱電変換部材3の基準端面の形成が行われている。
 なお、電極4aの形成工程においては、電極焼結用パンチ12及びピンパンチ25を介して加圧が行われることになる。
 本実施例の製造方法においては、上述したような保持部21を備える製造装置20を使用して第1熱電変換部材2及び第2熱電変換部材3を保持しているため、上述した実施例1の効果に加えて、第1熱電変換部材2及び第2熱電変換部材3の寸法に柔軟に対応して熱電変換素子1を製造することができる。
 また、本実施例の製造方法においては、上述したような保持部21を備える製造装置20を使用して第1熱電変換部材2及び第2熱電変換部材3を保持しているため、電極4aが形成された後に、ピンパンチ25を押し込み方向へ移動させる(すなわち、ピンパンチ25を第1熱電変換部材2及び第2熱電変換部材3に向けて押圧する)ことで、電極4aが形成された状態の第1熱電変換部材2及び第2熱電変換部材3を容易に取り出すことが可能になる。
<実施例3>
 本発明の熱電変換素子は、上述した実施例1及び実施例2に係る熱電変換素子1に限定されることなく、熱電変換部材の両端に位置する全ての電極が熱電変換部材の端部を被覆するように形成されてもよい。すなわち、すべての電極が金属粉末から形成されていてもよい。以下において、このような構造を備える熱電変換素子101を実施例3として、図8乃至図14を参照しつつ、その構造及び製造方法を説明する。
(熱電変換素子の構造)
 まず、図8を参照しつつ、本発明の実施例3に係る熱電変換素子101の構造について説明する。図8は、実施例3に係る熱電変換素子の概略を示す断面図である。なお、図8は、熱電変換素子101を構成する熱電変換部材の延在方向に沿った断面図である。
 図8に示すように、実施例3に係る熱電変換素子101は、P型半導体材料からなる第1熱電変換部材102、N型半導体材料からなる第2熱電変換部材103、並びに第1熱電変換部材102及び第2熱電変換部材103の両端に設けられた電極104a、104bから構成されている。本実施例においても、第1熱電変換部材102及び第2熱電変換部材103の外形は同一であり、直径が2mm、長さが5mmから10mmである。また、第1熱電変換部材102と第2熱電変換部材103とは交互に並置されている。そして、隣接する第1熱電変換部材102と第2熱電変換部材103とは、小片化された電極104a、104bによって電気的に接続されている。すなわち、熱電変換素子101は、実施例1の熱電変換素子1と同様に、第1熱電変換部材2と第2熱電変換部材3とが直列接続された構成を備えている。
 また、図8に示すように、第1熱電変換部材102及び第2熱電変換部材103の両端に設けられた電極104a、104bは、各端部(第1端部102a、103a、及び第2端部102b、103b)を覆っている。本実施例において、電極104a、104bは金属粉末を焼結させることによって形成されている。なお、本実施例の熱電変換素子101においては、実施例1のような基準端面が形成されておらず、各端部の位置はそろっていなくもよい。
(熱電変換素子の製造方法)
 次に、図9乃至図14を参照しつつ、本実施例に係る熱電変換素子101の製造方法を説明する。図9は、図8と同様にして示した熱電変換素子101の製造工程中の概略断面図であり、図10乃至図14は図9の線IX-IXに沿って示す断面であって、熱電変換素子101の製造工程中の概略断面図である。
 図9乃至図14から分かるように、本実施例においては、熱電変換素子101を製造するために、製造装置110を使用する。製造装置110は、第1熱電変換部材102及び第2熱電変換部材103を保持する第1保持部(ダイス)111及び第2保持部(ダイス)112、複数の電極焼結用パンチ113、並びに電極焼結用パンチを支持する2つの台座114を備えている。また、第1保持部111及び第2保持部112には、第1熱電変換部材102及び第2熱電変換部材103を保持する際に、第1熱電変換部材102及び第2熱電変換部材103の両端を露出するための貫通孔111a、112aが形成されている。更に、第1保持部111には、第1熱電変換部材102及び第2熱電変換部材103が載置されるための凹部111bが形成され、第2保持部112には、凹部111bに嵌合する凸部112bが形成さえている。ここで、第2保持部112の凸部112bが第1保持部111の凹部111bに嵌装されると、対向する貫通孔111aと貫通孔112aとは連通することになる。本実施例においては、第1保持部111、第2保持部112、電極焼結用パンチ113、及び台座114は、導電性を備える材料(例えば、黒鉛)から構成されている。
 先ず、図9及び図10に示すように、製造装置110を構成する第1保持部111の凹部111b内に準備した第1熱電変換部材102及び第2熱電変換部材103を載置する。当該載置の際に、第1熱電変換部材102の第1端部102a及び第2端部102b、並びに第2熱電変換部材103の第1端部103a及び第2端部103bが貫通孔111aの形成部分において露出するようにする。
 次に、図11に示すように、第1保持部111の貫通孔111aに電極焼結用パンチ113を嵌挿する。この際、電極焼結用パンチ113が第1熱電変換部材102及び第2熱電変換部材103に接触しないように、電極焼結用パンチ113の位置を調整する。
 次に、図12に示すように、第2保持部112を第1保持部111に嵌合させる。具体的には、第2保持部112の凸部112bを第1保持部111の凹部111bに嵌装させ、第1保持部111と第2保持部112とによって第1熱電変換部材102及び第2熱電変換部材103を挟み込む。この際、貫通孔111aと貫通孔112aとが連通し、第1熱電変換部材102及び第2熱電変換部材103の両端は、貫通孔111a、112aの形成部分において露出した状態となる。
 以上の工程を経て、第1熱電変換部材102及び第2熱電変換部材103の保持工程が完了する。なお、電極焼結用パンチ113を嵌挿する工程と、第2保持部112を第1保持部111に嵌合させる工程とを入れ替えてもよい。
 次に、図13に示すように、露出した第1熱電変換部材102及び第2熱電変換部材103の両端を被覆するように、貫通孔111a、112a内に金属粉末115(例えば、ニッケル及び銅の粉末)を投入する被覆工程を行う。ここで、金属粉末115の投入量は、貫通孔112aからはみ出さない程度に適宜行われる。
 次に、図14に示すように、金属粉末115を焼結させて電極104a、104bを同時に形成する電極形成工程を行う。具体的には、第2保持部112の貫通孔112aにも電極焼結用パンチ113を嵌挿させ、金属粉末115を第1保持部111、第2保持部112、及び電極焼結用パンチ113によって取り囲む。その後、電極焼結用パンチ113によって金属粉末115を加圧(押圧)するとともに、電極焼結用パンチ113に電流を供給して、製造装置110内を加熱する。換言すれば、金属粉末115に対して加圧処理及び加熱処理を施すことになる。加熱温度は、実施例1と同様である。
 本実施例においては、第1保持部111及び第2保持部112による第1熱電変換部材102及び第2熱電変換部材103を保持した状態において、連通した1つの貫通孔111a、112aにより、互いに隣接する1つの第1熱電変換部材102と1つの第2熱電変換部材103との端部同士が露出されている。このため、当該貫通孔111a、112aに電極104a、104bを形成することにより、互いに隣接する1つの第1熱電変換部材102と1つの第2熱電変換部材103とが電気的に接続されることになる。
 次に、金属粉末115を焼結後、完成した熱電変換素子101を製造装置110から取り出す。第1熱電変換部材102及び第2熱電変換部材103の取り出しには、実施例1と同様に、例えばピンセットを用いて電極104a、104bをつまむことにより行われる。
 以上の工程を経て、熱電変換素子101の製造が完了する。
(本実施例の効果)
 本実施例の熱電変換素子101の製造方法においては、第1熱電変換部材102及び第2熱電変換部材103の両端部分を露出させつつ第1熱電変換部材102及び第2熱電変換部材103を保持し、金属粉末115を焼結することによって第1熱電変換部材102及び第2熱電変換部材103の両端部分に電極104a、104bを同時に形成している。このような製造工程を用いることにより、上述した実施例1及び実施例2と比較して、第1熱電変換部材102及び第2熱電変換部材103と電極104bとをより強固且つ確実に接合することができる。また、電極104a、104bを同時に形成することができ、製造工程及び製造コストの削減を一層図ることができる。
 更に、第1熱電変換部材102及び第2熱電変換部材103の端部の位置合わせが不要となり、製造工程及び製造コストの削減をより一層図ることができる。
<実施例4>
 上述した実施例3においては、金属粉末115の焼結時である電極104a、104bの形成の際に、電極104a、104bは、互いに隣接する1つの第1熱電変換部材102と1つの第2熱電変換部材103と電気的に接続されているが、金属粉末115の焼結時には、第1熱電変換部材102及び第2熱電変換部材103のそれぞれに、独立した電極を形成してもよい。以下において、図15乃至図17を参照しつつ、このような製造工程を含む製造方法を説明する。ここで、図15乃至図17は、図9と同様にして示した熱電変換素子の製造工程中の概略断面図である。なお、実施例3と同様の工程については、その説明を省略するものとする。
 先ず、図15に示すように、製造装置を構成する第1保持部121の凹部121b内に準備した第1熱電変換部材102及び第2熱電変換部材103を載置する。当該載置の際に、第1熱電変換部材2の第1端部102a及び第2端部102b、並びに第2熱電変換部材103の第1端部103a及び第2端部103bが貫通孔121aの形成部分において露出するようにする。ここで、貫通孔121aは、第1熱電変換部材102及び第2熱電変換部材103の載置位置の両端に配設されている。すなわち、凹部121bのそれぞれの両端部分に貫通孔121aが形成されている。
 その後、上述した実施例3と同様に、電極焼結用パンチの嵌挿、及び第2保持部の嵌合を行い、第1熱電変換部材102及び第2熱電変換部材103の保持工程を行う。この際、第2保持部の貫通孔は、第1保持部121の貫通孔121aに対応している。すなわち、第2保持部の貫通孔は、第1保持部121の凹部121bに嵌挿される凸部の両端に配設されている。そして、第1保持部121の貫通孔121aと第2保持部の貫通孔とは、実施例3と同様に、連通することになる。
 続いて、上述した実施例3と同様に、金属粉末の投入及び焼成を行い、第1熱電変換部材102及び第2熱電変換部材103の両端部に独立した(すなわち、隣接する第1熱電変換部材102及び第2熱電変換部材103を電気的に接続しない)電極124a、124bを形成する。更に、図16に示すように、保持部による保持を解除し、第1熱電変換部材102及び第2熱電変換部材103を交互に並設する。その後、図17に示すように、隣接する第1熱電変換部材102及び第2熱電変換部材103の電極124a、124b同士を電気的に接続するように、接続電極である接続部125を形成する。すなわち、隣接する第1熱電変換部材102及び第2熱電変換部材103の電極124a、124bを電気的に接続する接続工程を行う。接続部125は、例えば、スポット溶接によって形成されてもよい。
 以上の工程を経て、本実施例に係る熱電変換素子130が形成される。
 また、図18に示すように、第1熱電変換部材102及び第2熱電変換部材103を交互に並設する際に、第1熱電変換部材102及び第2熱電変換部材103を接続する電極が曲面電極となるように、複数の電極124aを結ぶ軌跡及び複数の電極124bを結ぶ軌跡が曲線(図18における破線)となるようにしてもよい。すなわち、電極124a、124bの形成面の表面形状を湾曲させてもよい。
 本実施例の熱電変換素子130の製造方法においては、電極124a、124bが形成された第1熱電変換部材102及び第2熱電変換部材103を電気的に独立して製造し、その後においてスポット溶接等により、隣接する第1熱電変換部材102及び第2熱電変換部材103の電極124a、124bを電気的に接続している。このような製造工程を用いることにより、電極124a、124b同士を確実に接続し、隣接する第1熱電変換部材102及び第2熱電変換部材103を電気的に接続することができる。また、このような製造工程を用いることにより、製造される熱電変換素子130の形状を自在に変形することができる。
<本発明の実施態様>
 本発明の第1実施態様に係る熱電変換素子の製造方法は、少なくとも1つの熱電変換部材の少なくとも一端部を露出させつつ前記熱電変換部材を保持する保持工程と、前記熱電変換部材の露出した端部を金属粉末によって被覆する被覆工程と、前記金属粉末を焼結させて前記熱電変換部材の端部に電極を形成する電極形成工程と、を有している。
 本発明の第2実施態様に係る熱電変換素子の製造方法は、第1実施態様に係る熱電変換素子の製造方法であって、前記保持工程において、複数の前記熱電変換部材を並置させ、前記電極形成工程において、隣接する前記熱電変換部材の端部を前記電極によって電気的に接続する。
 本発明の第3実施態様に係る熱電変換素子の製造方法は、第2実施態様に係る熱電変換素子の製造方法であって、前記保持工程において、複数の前記熱電変換部材の一端面を同一平面上に配置するとともに、他端面側を露出させる。
 本発明の第4実施態様に係る熱電変換素子の製造方法は、第3実施態様に係る熱電変換素子の製造方法であって、前記保持工程において、複数の前記熱電変換部材が嵌挿され且つ底面が同一平面上に配置された開口を備える保持部により、複数の前記熱電変換部材を保持する。
 本発明の第5実施態様に係る熱電変換素子の製造方法は、第3実施態様に係る熱電変換素子の製造方法であって、前記保持工程において、複数の前記熱電変換部材が嵌挿される貫通孔を含む嵌挿部と、前記嵌挿部に嵌挿されるとともに複数の前記熱電変換部材に当接して複数の前記熱電変換部材の一端面が同一平面上に位置するように位置決めする位置決め部とを備える保持部により、複数の前記熱電変換部材を保持する。
 本発明の第6実施態様に係る熱電変換素子の製造方法は、第1実施態様に係る熱電変換素子の製造方法であって、前記保持工程において、前記熱電変換部材の両端部を露出させつつ前記熱電変換部材を保持する。
 本発明の第7実施態様に係る熱電変換素子の製造方法は、第6実施態様に係る熱電変換素子の製造方法であって、前記電極形成工程において、複数の前記熱電変換部材の両端のそれぞれに前記電極を独立して形成し、複数の前記熱電変換部材の保持を解除するとともに複数の前記熱電変換部材を並設し、隣接する前記熱電変換部材の電極を電気的に接続する接続工程を備える。
 また、本発明の本発明の第8実施態様に係る熱電変換素子は、並設された複数の熱電変換部材と、前記複数の熱電変換部材の両端部のそれぞれに接合された電極と、を有し、前記熱電変換部材の両端部に接合した前記電極の少なくとも一方は、前記熱電変換部材の端部を被覆するように設けられた金属粉末を焼結して形成されている。
 本発明の第9実施態様に係る熱電変換素子は、第8実施態様に係る熱電変換素子において、前記電極は、隣接する前記熱電変換部材の端部同士を電気的に接続している。
 本発明の第10実施態様に係る熱電変換素子は、第9実施態様に係る熱電変換素子において、前記複数の熱電変換部材の一方の端面は、同一平面上に配置されるとともに、他方の端面側に接合された前記電極は、前記金属粉末を焼結して形成されている。
 本発明の第11実施態様に係る熱電変換素子は、第9実施態様に係る熱電変換素子において、前記熱電変換部材の両端部に接合した前記電極の双方は、前記熱電変換部材の端部を被覆するように設けられた前記金属粉末を焼結して形成されている。
 本発明の第12実施態様に係る熱電変換素子は、第8実施態様に係る熱電変換素子において、隣接する前記熱電変換部材の両端部に接合した前記電極同士を電気的に接続する接続部を有している。
 本発明の第13実施態様に係る熱電変換素子は、第12実施態様に係る熱電変換素子において、前記電極の形成面の表面形状は湾曲している。
 1  熱電変換素子
 2  第1熱電変換部材
 2a  第1端部
 2b  第2端部
 3  第2熱電変換部材
 3a  第1端部
 3b  第2端部
 4a、4b  電極
 10  製造装置
 11  保持部
 11a  開口
 11b  凹部
 12  電極焼結用パンチ
 13  金属粉末
 14  本体部
 15  主連結部
 16  副連結部
 17  支持台
 

Claims (13)

  1.  少なくとも1つの熱電変換部材の少なくとも一端部を露出させつつ前記熱電変換部材を保持する保持工程と、
     前記熱電変換部材の露出した端部を金属粉末によって被覆する被覆工程と、
     前記金属粉末を焼結させて前記熱電変換部材の端部に電極を形成する電極形成工程と、を有することを特徴とする熱電変換素子の製造方法。
  2.  前記保持工程において、複数の前記熱電変換部材を並置させ、
     前記電極形成工程において、隣接する前記熱電変換部材の端部を前記電極によって電気的に接続することを特徴とする請求項1に記載の熱電変換素子の製造方法。
  3.  前記保持工程において、複数の前記熱電変換部材の一端面を同一平面上に配置するとともに、他端面側を露出させることを特徴とする請求項2に記載の熱電変換素子の製造方法。
  4.  前記保持工程において、複数の前記熱電変換部材が嵌挿され且つ底面が同一平面上に配置された開口を備える保持部により、複数の前記熱電変換部材を保持することを特徴とする請求項3に記載の熱電変換素子の製造方法。
  5.  前記保持工程において、複数の前記熱電変換部材が嵌挿される貫通孔を含む嵌挿部と、前記嵌挿部に嵌挿されるとともに複数の前記熱電変換部材に当接して複数の前記熱電変換部材の一端面が同一平面上に位置するように位置決めする位置決め部とを備える保持部により、複数の前記熱電変換部材を保持することを特徴とする請求項3に記載の熱電変換素子の製造方法。
  6.  前記保持工程において、前記熱電変換部材の両端部を露出させつつ前記熱電変換部材を保持することを特徴とする請求項1に記載の熱電変換素子の製造方法。
  7.  前記電極形成工程において、複数の前記熱電変換部材の両端のそれぞれに前記電極を独立して形成し、
     複数の前記熱電変換部材の保持を解除するとともに複数の前記熱電変換部材を並設し、隣接する前記熱電変換部材の電極を電気的に接続する接続工程を備えることを特徴とする請求項6に記載の熱電変換素子の製造方法。
  8.  並設された複数の熱電変換部材と、
     前記複数の熱電変換部材の両端部のそれぞれに接合された電極と、を有し、
     前記熱電変換部材の両端部に接合した前記電極の少なくとも一方は、前記熱電変換部材の端部を被覆するように設けられた金属粉末を焼結して形成されていることを特徴とする熱電変換素子。
  9.  前記電極は、隣接する前記熱電変換部材の端部同士を電気的に接続することを特徴とする請求項8に記載の熱電変換素子。
  10.  前記複数の熱電変換部材の一方の端面は、同一平面上に配置されるとともに、
     他方の端面側に接合された前記電極は、前記金属粉末を焼結して形成されていることを特徴とする請求項9に記載の熱電変換素子。
  11.  前記熱電変換部材の両端部に接合した前記電極の双方は、前記熱電変換部材の端部を被覆するように設けられた前記金属粉末を焼結して形成されていることを特徴とする請求項9に記載の熱電変換素子。
  12.  隣接する前記熱電変換部材の両端部に接合した前記電極同士を電気的に接続する接続部を有することを特徴とする請求項8に記載の熱電変換素子。
  13.  前記電極の形成面の表面形状は、湾曲していることを特徴とする請求項12に記載の熱電変換素子。
PCT/JP2015/051562 2014-02-04 2015-01-21 熱電変換素子の製造方法及び熱電変換素子 WO2015118948A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580007068.5A CN105960716B (zh) 2014-02-04 2015-01-21 热电转换元件的制造方法及热电转换元件
US15/115,106 US10158058B2 (en) 2014-02-04 2015-01-21 Method for manufacturing thermoelectric conversion element, and thermoelectric conversion element
CA2944838A CA2944838C (en) 2014-02-04 2015-01-21 Method for manufacturing thermoelectric conversion element, and thermoelectric conversion element
EP15746764.8A EP3104424B1 (en) 2014-02-04 2015-01-21 Method for manufacturing thermoelectric conversion element, and thermoelectric conversion element
KR1020167022392A KR101906975B1 (ko) 2014-02-04 2015-01-21 열전 변환 소자의 제조방법 및 열전 변환 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-019336 2014-02-04
JP2014019336A JP6240525B2 (ja) 2014-02-04 2014-02-04 熱電変換素子の製造方法及び熱電変換素子

Publications (1)

Publication Number Publication Date
WO2015118948A1 true WO2015118948A1 (ja) 2015-08-13

Family

ID=53777755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051562 WO2015118948A1 (ja) 2014-02-04 2015-01-21 熱電変換素子の製造方法及び熱電変換素子

Country Status (7)

Country Link
US (1) US10158058B2 (ja)
EP (1) EP3104424B1 (ja)
JP (1) JP6240525B2 (ja)
KR (1) KR101906975B1 (ja)
CN (1) CN105960716B (ja)
CA (1) CA2944838C (ja)
WO (1) WO2015118948A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6250002B2 (ja) 2015-07-24 2017-12-20 矢崎総業株式会社 電源装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148636A (ja) * 1995-11-27 1997-06-06 Aisin Seiki Co Ltd 熱電素子の製造方法
JP2001274466A (ja) * 2000-03-28 2001-10-05 Matsushita Electric Works Ltd 熱電モジュールの製造方法、及び熱電モジュール製造用治具
JP2006352023A (ja) * 2005-06-20 2006-12-28 Toyota Motor Corp 熱電モジュール
WO2010103949A1 (ja) * 2009-03-12 2010-09-16 株式会社アツミテック 熱電変換素子の製造方法
JP2012134410A (ja) * 2010-12-24 2012-07-12 Hitachi Powdered Metals Co Ltd 熱電変換モジュールおよびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074986A (ja) * 1996-06-27 1998-03-17 Natl Aerospace Lab 熱電変換素子、π型熱電変換素子対および熱電変換モジュールの各製造方法
JP3619872B2 (ja) 2001-08-02 2005-02-16 国立大学法人島根大学 熱電変換材料の製造装置
JP3930410B2 (ja) * 2002-09-27 2007-06-13 株式会社東芝 熱電素子モジュール及びその製造方法
JP2004221464A (ja) 2003-01-17 2004-08-05 Sony Corp 熱電半導体の製造方法、熱電変換素子又は熱電変換装置の製造方法、並びにこれらの実施に用いる装置
KR100888389B1 (ko) 2007-04-17 2009-03-13 한국기계연구원 열전모듈
WO2011002035A1 (ja) * 2009-06-30 2011-01-06 学校法人東京理科大学 マグネシウム-ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148636A (ja) * 1995-11-27 1997-06-06 Aisin Seiki Co Ltd 熱電素子の製造方法
JP2001274466A (ja) * 2000-03-28 2001-10-05 Matsushita Electric Works Ltd 熱電モジュールの製造方法、及び熱電モジュール製造用治具
JP2006352023A (ja) * 2005-06-20 2006-12-28 Toyota Motor Corp 熱電モジュール
WO2010103949A1 (ja) * 2009-03-12 2010-09-16 株式会社アツミテック 熱電変換素子の製造方法
JP2012134410A (ja) * 2010-12-24 2012-07-12 Hitachi Powdered Metals Co Ltd 熱電変換モジュールおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3104424A4 *

Also Published As

Publication number Publication date
US20170012191A1 (en) 2017-01-12
EP3104424A4 (en) 2017-08-30
CA2944838A1 (en) 2015-08-13
CN105960716B (zh) 2019-03-01
KR101906975B1 (ko) 2018-10-12
JP2015146407A (ja) 2015-08-13
KR20160108536A (ko) 2016-09-19
EP3104424A1 (en) 2016-12-14
CA2944838C (en) 2021-03-16
EP3104424B1 (en) 2019-05-22
CN105960716A (zh) 2016-09-21
JP6240525B2 (ja) 2017-11-29
US10158058B2 (en) 2018-12-18

Similar Documents

Publication Publication Date Title
WO2010103949A1 (ja) 熱電変換素子の製造方法
JP5511301B2 (ja) プレスフィット端子、及び該プレスフィット端子を備えた電力用半導体装置
JP2013258414A (ja) 熱電モジュール
EP2950360A1 (en) Method for manufacturing thermoelectric converter
JP2014200825A (ja) 加圧加熱接合構造及び加圧加熱接合方法
JP5548525B2 (ja) 冷却装置を備えて成る電流コンバータ装置構造を製造する方法
JP6240525B2 (ja) 熱電変換素子の製造方法及び熱電変換素子
JP2008109054A (ja) 熱電変換モジュール及び熱電変換モジュールの製造方法
JP5525173B2 (ja) 熱電変換素子の製造方法及び装置
WO2013183160A1 (ja) 端子金具付き電線及び端子金具付き電線の製造方法
JP5048704B2 (ja) 通電加圧焼結装置の焼結型および通電加圧焼結装置による焼結方法
KR20160013746A (ko) 탄탈륨 캐패시터 및 그 제조 방법
JP7125299B2 (ja) 電極埋設部材及びその製造方法
CN109285790B (zh) 压力烧结方法及用于该方法的压力传递装置
JP2009095861A (ja) ロウ付け層の形成方法
JP6933441B2 (ja) 熱電変換モジュール
JP2017050519A (ja) FeSi2系積層型熱電変換モジュール
JP2018041867A (ja) 放熱基板、及び放熱基板の製造方法
JP2015050372A (ja) 熱電変換モジュールの製造方法
JP2004362933A (ja) セラミックスヒータの製造方法
JP5807671B2 (ja) 配線板及び配線板の製造方法
WO2017154918A1 (ja) 熱電変換モジュール及び熱電変換素子
WO2014006682A1 (ja) 半導体装置及びその製造方法
JPH0429333A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2944838

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15115106

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015746764

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015746764

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167022392

Country of ref document: KR

Kind code of ref document: A