WO2015118574A1 - 列車エネルギー制御システム、地上装置、車上装置 - Google Patents

列車エネルギー制御システム、地上装置、車上装置 Download PDF

Info

Publication number
WO2015118574A1
WO2015118574A1 PCT/JP2014/000653 JP2014000653W WO2015118574A1 WO 2015118574 A1 WO2015118574 A1 WO 2015118574A1 JP 2014000653 W JP2014000653 W JP 2014000653W WO 2015118574 A1 WO2015118574 A1 WO 2015118574A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
power
state
storage battery
state information
Prior art date
Application number
PCT/JP2014/000653
Other languages
English (en)
French (fr)
Inventor
義史 瀧川
哲朗 甲村
健太郎 星野
雅之 竹山
良範 山下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP14881944.4A priority Critical patent/EP3103676B1/en
Priority to PCT/JP2014/000653 priority patent/WO2015118574A1/ja
Priority to US15/116,717 priority patent/US10507739B2/en
Priority to JP2015560850A priority patent/JP6112234B2/ja
Priority to CN201480074934.8A priority patent/CN105980199B/zh
Publication of WO2015118574A1 publication Critical patent/WO2015118574A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/40Adaptation of control equipment on vehicle for remote actuation from a stationary place
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • B61C17/06Power storing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0058On-board optimisation of vehicle or vehicle train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/04Automatic systems, e.g. controlled by train; Change-over to manual control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables
    • B61L27/16Trackside optimisation of vehicle or train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/40Handling position reports or trackside vehicle data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2201/00Control methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the present invention relates to a technology for effectively using regenerative power generated by a train during regenerative braking.
  • a train equipped with power storage means charges and discharges the power storage means through the overhead line with another train in the track section.
  • This invention was made in order to solve the above-mentioned problem, and train energy control capable of supplying and supplying power as long as the train runs within the same power section even if it is outside the communication range of the train information transmission device.
  • a system is provided.
  • the ground device is provided in a train with traveling state information indicating a traveling state that is in a regenerative braking state, a power running state, or a coasting state from each of a plurality of trains traveling in the same electric section.
  • traveling state information indicating a traveling state that is in a regenerative braking state, a power running state, or a coasting state from each of a plurality of trains traveling in the same electric section.
  • the ground device is provided in a train with traveling state information indicating a traveling state that is in a regenerative braking state, a power running state, or a coasting state from each of a plurality of trains traveling in the same electric section.
  • traveling state information indicating a traveling state that is in a regenerative braking state, a power running state, or a coasting state from each of a plurality of trains traveling in the same electric section.
  • the ground device includes, from each of a plurality of trains traveling in the same power section, traveling state information indicating a traveling state that is in a regenerative braking state, a power running state, or a coasting state, and a train.
  • traveling state information indicating a traveling state that is in a regenerative braking state, a power running state, or a coasting state
  • a train When the ground transmission / reception unit that receives the storage battery state information indicating the charge state of the storage battery provided and the traveling state information of one or more trains indicate that the regenerative braking state is present, the traveling state information of a plurality of trains and Based on the storage battery state information, a train that absorbs regenerative power is determined from among a plurality of trains, and the ground transmission / reception unit is controlled to transmit a power absorption command to the determined train.
  • a control unit for controlling the terrestrial transceiver to transmit the output command is for comprising the.
  • the on-board device displays traveling state information indicating a traveling state in which the train is in a regenerative braking state, a power running state, or a coasting state, and storage battery state information indicating a charging state of a storage battery provided in the train.
  • An on-vehicle transmission / reception unit that transmits to the device and receives a power absorption command instructed to absorb power or a power release command instructed to release power;
  • driving state information indicating a regenerative braking state or a power running state is received from a control device that supplies regenerative power generated from the motor to the overhead line or charges the storage battery and supplies power from the overhead line or storage battery to the motor, the running state
  • a train information management unit that controls information to be transmitted to the on-board transmission / reception unit, and transmits the power absorption command or the power release command to the control device when the on-board transmission / reception unit receives the power absorption command or the power release command.
  • the train energy control system includes, from each of a plurality of trains traveling in the same power section, traveling state information indicating a traveling state that is one of a regenerative braking state, a power running state, and a coasting state, and a train
  • traveling state information indicating a traveling state that is one of a regenerative braking state, a power running state, and a coasting state
  • the ground transmission / reception unit that receives the storage battery state information indicating the charge state of the storage battery provided and the traveling state information of one or more trains indicate that the regenerative braking state is present, the traveling state information of a plurality of trains and Based on the storage battery state information, a train that determines a train that absorbs regenerative power from among a plurality of trains, and a control unit that controls the ground transceiver unit to transmit a power absorption command to the determined train
  • a ground device comprising: In addition to transmitting the driving state information and storage battery state information to the ground device, the on-vehicle transmission
  • the train energy control system includes, from each of a plurality of trains traveling in the same power section, traveling state information indicating a traveling state that is either a regenerative braking state, a power running state, or a coasting state, and
  • traveling state information indicating a traveling state that is either a regenerative braking state, a power running state, or a coasting state
  • the ground transmission / reception unit that receives the storage battery state information indicating the charge state of the storage battery provided in the train and the traveling state information of one or more trains indicate that it is in a power running state
  • the traveling state information of a plurality of trains A ground device comprising: a control unit that determines a train that releases power from a plurality of trains based on the storage battery state information, and controls a ground transmission / reception unit to transmit a power release command to the determined train; and
  • the running state information and storage battery state information are transmitted to the ground device, and the on-board transceiver unit that receives the power release command and the regenerative
  • the on-board device includes a train information management unit that controls and transmits a power release command to the control device when the on-board transmission / reception unit receives the power release command.
  • the ground device of the present invention since the ground device grasps the traveling state information and the storage battery state information of a plurality of trains traveling in the same power section, the same power outside the communication range of the mounted on-board device is obtained. Electricity supply and demand is possible even between trains traveling in the section. Since the on-board device of the present invention transmits the driving state information and the storage battery state information to the ground device, power supply and demand can be made even with a train traveling in the same power section outside the communication range. Is. In the train energy control system of the present invention, the on-board device transmits the running state information and the storage battery state information to the ground device, and the running state information and the storage battery state information of a plurality of trains traveling in the same power section are grounded. Since the device grasps, it is possible to supply and demand electric power even between trains traveling in the same power section outside the communication range of the on-board device installed.
  • FIG. 1 is a configuration diagram of a train energy control system in Embodiment 1.
  • FIG. FIG. 3 is a diagram illustrating a configuration of a train in the first embodiment. It is a figure explaining the structure of the ground apparatus in Embodiment 1.
  • FIG. 3 is a diagram schematically showing a first situation of trains 4A to 4C in the first embodiment.
  • FIG. 5 is a flowchart showing a train information transmission process of the on-board device to the ground device in the first embodiment.
  • FIG. 4 is a flowchart showing power absorption command transmission processing of the ground device in the first embodiment. 4 is an evaluation table describing evaluation points indicating priorities as power absorption targets in the first embodiment.
  • FIG. 10 is a diagram schematically showing a second situation of trains 4A to 4C in the second embodiment.
  • FIG. 10 is a flowchart showing processing for determining an appropriate train as a power absorption target in the second embodiment.
  • FIG. 10 is a flowchart for determining a future traveling state in the second embodiment.
  • it is the evaluation table which described the evaluation point which shows the priority as an electric power absorption object.
  • FIG. 10 is a diagram schematically showing a third situation of trains 4A to 4C in the third embodiment.
  • FIG. 10 is a flowchart showing a power release command transmission process of the ground device in the third embodiment. 10 is an evaluation table describing evaluation points indicating priorities as power discharge targets in the third embodiment.
  • FIG. 10 is a flowchart showing processing for determining an appropriate train as a power absorption target in the second embodiment.
  • FIG. 10 is a flowchart for determining a future traveling state in the second embodiment.
  • it is the evaluation table which described the evaluation point which shows the priority as an electric power absorption object.
  • FIG. 10 is a diagram schematically showing a third situation of trains 4A to
  • FIG. 10 is a diagram schematically showing a fourth situation of trains 4A to 4C in the fourth embodiment.
  • FIG. 10 is a flowchart showing processing for determining an appropriate train as a power release target in the fourth embodiment.
  • FIG. 10 is a flowchart for determining a future traveling state in the fourth embodiment.
  • it is the evaluation table
  • FIG. 10 is a flowchart showing power absorption command transmission processing and power release command transmission processing of a ground device in the fifth embodiment.
  • FIG. 1 is a configuration diagram of a train energy control system according to Embodiment 1 of the present invention.
  • the same reference numerals are the same or equivalent, and this is common throughout the entire specification.
  • a substation 1 is connected to an overhead line 2 and supplies power to the overhead line 2.
  • Section 3 is equipment provided to insulate the overhead wire 2 from the adjacent feeder section.
  • the trains 4A to 4C travel in the same power section fed by the substation 1.
  • the trains 4A to 4C are depicted as one-car trains, but may be composed of a plurality of vehicles.
  • the rail 5 is used as a return line for the current supplied from the overhead wire 2.
  • the ground device 6 exchanges information with the trains 4A to 4C, and can exchange information with a plurality of trains 4A to 4C traveling in the same power section.
  • FIG. 2 is a diagram illustrating the configuration of the train in the first embodiment of the present invention.
  • the train 4 includes a pantograph 7 that receives power from the overhead line 2, a motor 9 that drives the wheels of the train 4, a storage battery 10 that stores power, a control device 8 that controls the power of the motor 9 and the storage battery 10, and train information of the train 4. Is stored and transmitted to the ground device 6.
  • the pantograph 7 is connected to a control device 8, and the control device 8 is connected to a motor 9 and a storage battery 10.
  • the control device 8 converts the power from the overhead line 2 into an appropriate voltage / frequency and drives the motor 9.
  • control device 8 converts the regenerative power generated from the motor 9 into an appropriate voltage / frequency during regenerative braking of the train 4, and supplies it to the overhead line 2 via the pantograph 7.
  • the control device 8 converts the power from the overhead line 2 or the regenerative power from the motor 9 into a voltage suitable for the storage battery 10 and charges the storage battery 10.
  • the control device 8 also has a function of converting the electric power stored in the storage battery 10 into an appropriate voltage or frequency and releasing it to the overhead wire 2 or supplying it to the motor 9.
  • the onboard device 11 includes a train information management unit 12 and an onboard transmission / reception unit 13.
  • the train information management unit 12 is connected to the control device 8 and a brake device (not shown), and transmits a power running or braking control command from a cab (not shown) to the control device 8 or the brake device.
  • the train information management unit 12 transmits a command for instructing the control device 8 to charge or discharge the storage battery 10.
  • the train information management unit 12 receives train information indicating the operation state of each device mounted on the train 4 including the control device 8.
  • the train information received by the train information management unit 12 from the control device 8 includes a power running state, a running state information that is in a regenerative braking state or a coasting state, and storage battery state information that indicates a remaining charge of the storage battery 10.
  • the state of charge of the storage battery 10 is, for example, full indicating a full charge when the remaining charge amount is 80% or more, and a remaining charge amount of 20% or more and less than 80% is a medium charge amount.
  • the quantity is expressed as empty.
  • the definition of full, medium or empty representing the storage battery state can be arbitrarily set.
  • the train information received from the control device 8 includes the current, voltage or frequency of the motor 9, the current, voltage or power value received from the overhead line 2 during power running, or the current, voltage or power value returned to the overhead line 2 during regenerative braking. and so on.
  • the train information includes route information such as the current travel position (about kilometer), speed, starting station, or destination that the train information management unit 12 holds.
  • the train information management unit 12 transmits the train information to the ground device 6 via the on-vehicle transmission / reception unit 13 and the on-board antenna 14. Further, the information transmitted from the ground device 6 is received by the train information management unit 12 via the on-board antenna 14 and the on-vehicle transmission / reception unit 13.
  • the train 4 may be composed of a plurality of vehicles.
  • the pantograph 7, the control device 8, the motor 9, the storage battery 10, and the onboard device 11 may be mounted on a plurality of vehicles, but one for each train 4. It is assumed that the on-vehicle device 11 performs transmission / reception with the ground device 6.
  • FIG. 3 is a diagram illustrating the configuration of the ground device according to Embodiment 1 of the present invention.
  • the ground device 6 includes a control unit 15, a storage unit 16, and a ground transmission / reception unit 17.
  • a ground antenna 18 is connected to the ground transceiver 17.
  • Train information from the on-board device 11 is received by the ground transmission / reception unit 16 via the ground antenna 18 and transmitted to the control unit 15.
  • information from the control unit 15 is transmitted to the on-board device 11 via the ground transmission / reception unit 17 and the on-board antenna 18.
  • the control unit 15 accumulates the train information of the train 4 in the storage unit 16 and transmits command information for the devices mounted on the train 4 to the on-board device 11.
  • FIG. 3 only one ground antenna 18 is depicted. However, in order to enable transmission / reception with the train 4 traveling in the same power section, a plurality of ground antennas 18 may be provided along the section on which the train 4 travels. Good.
  • FIG. 4 is a diagram schematically showing a first situation of trains 4A to 4C in the first embodiment of the present invention.
  • Each of the trains 4A to 4C traveling in the same power section periodically transmits train information including traveling state information to the ground device 6.
  • the train 4A is in a regenerative braking state
  • the train 4B is in a coasting state
  • the train 4C is in a powering state.
  • the ground device 6 determines the train 4 for absorbing the regenerative power as the train 4C, and transmits a power absorption command for instructing the power absorption to the determined train 4C.
  • FIG. 5 is a flowchart showing the train information transmission process of the on-board device to the ground device in the first embodiment of the present invention.
  • the train information management unit 12 receives train information including travel state information and storage battery state information from the control device 8.
  • step S ⁇ b> 53 the train information management unit 12 transmits the train information received from the control device 8 to the ground device 6 via the on-vehicle transmission / reception unit 13 and the on-vehicle antenna 14.
  • step S54 the train information management unit 12 confirms whether or not an instruction to end the train information transmission process has been received.
  • step S52 If the train information management unit 12 has not received an instruction to end the train information transmission process, the train information management unit 12 returns to step S52 and periodically repeats step S52 to step S54 to periodically transmit the traveling state information and the storage battery state information to the ground device 6. Is sending.
  • step S54 the train information management unit 12 ends the train information transmission process in step S55.
  • FIG. 6 is a flowchart showing a power absorption command transmission process of the ground device in the first embodiment of the present invention.
  • Step S61 indicates the start of the operation.
  • step S ⁇ b> 62 the ground transmission / reception unit 17 of the ground device 6 receives train information from the on-vehicle device 11 via the ground antenna 18.
  • step S ⁇ b> 63 the control unit 15 confirms the received traveling state information of each train 4 and determines whether there is a train 4 whose traveling state information is in a regenerative braking state (referred to as “regenerative power release target train”).
  • step S ⁇ b> 64 the control unit 15 determines whether there is a train 4 that can absorb regenerative power from the running state information and storage battery state information of each train 4. If there is a train 4 capable of absorbing regenerative power, the process proceeds to step S65, and if not, the process proceeds to S67 and the flow ends. In step S65, the control unit 15 determines a train suitable for power absorption from the running state information and the storage battery state information.
  • step S66 the control part 15 transmits the electric power absorption command which instruct
  • the power absorption command is transmitted from the control unit 15 to the on-board device 11 via the ground transmission / reception unit 17 and the ground antenna 18.
  • step S67 the flow ends.
  • the ground device 6 periodically repeats the operations in steps S61 to S67.
  • control unit 15 determines whether there is a train 4 that absorbs the regenerative power of the regenerative power discharge target train (step S ⁇ b> 64), and the train 4 that absorbs the regenerative power of the regenerative power discharge target train.
  • a method for determining according to an evaluation table in which evaluation points indicating predetermined priorities are described is shown below as a method for determining (step S65).
  • FIG. 7 is an example of an evaluation table (first table) describing evaluation points indicating priorities (first priorities) as power absorption targets in the first embodiment of the present invention.
  • evaluation points as power absorption targets are set according to the current running state of the train 4 and the current storage battery state of the storage battery 10 mounted on the train 4.
  • the evaluation score indicates that a larger number is suitable as a condition and has a higher priority, but is described only for relatively evaluating each item.
  • the evaluation points shown in FIG. 7 are, for example, that the train 4 in the power running state absorbs the regenerative power among the train 4 in the regenerative braking state and the train 4 traveling in the same power section of the train 4 in the regenerative braking state. Therefore, the evaluation score for the power running state is set to be the highest.
  • the evaluation score of the train 4 in the regenerative braking state other than the regenerative power discharge target train is set to 0.
  • the evaluation score of the fully charged regenerative power discharge target train and the fully charged coasting train is set to 0.
  • the evaluation score of the regenerative power release target train is set higher than the evaluation score of the coasting train 4.
  • FIG. 7 is an example, and the evaluation score may be set by actually performing a running test of the train 4.
  • the evaluation table in FIG. 7 is stored as a reference table (first table) in the storage unit 16 of the ground device 16.
  • step S64 of FIG. 6 the control unit 15 reads the reference table (first table) of FIG. 7 from the storage unit 16, applies the traveling state information and the storage battery state to the reference table, and Determine evaluation points.
  • the evaluation score of all the trains 4 is 0, it is determined that there is no train that can absorb regenerative power, and the process proceeds to step S67 to end the flow. If there is a train 4 with an evaluation score greater than 0, it is determined that there is a train 4 capable of absorbing regenerative power, and the process proceeds to step S65.
  • step S65 the control unit 15 determines the train 4 having the largest evaluation score as the train 4 that should absorb the regenerative power.
  • the evaluation score is 0 for all the trains 4
  • there is no train 4 that absorbs the regenerative power the regenerative invalidation occurs, and the regenerative power cannot be effectively used.
  • the control unit 15 sets the evaluation score of the train 4B to 7 and the evaluation score of the train 4C. Judge 100 points.
  • the control unit 15 determines that the evaluation score of the train 4A is 10 points. As a result, the control unit 15 determines the train 4 suitable for absorbing the regenerative power of the train 4A as the train 4C having the highest evaluation score.
  • the train 4 equipped with the storage battery 10 is assumed as a target for absorbing regenerative power.
  • regenerative power is absorbed by a power storage facility (not shown) installed on the ground such as a station yard or along a railway line. It may be a target.
  • the evaluation score of the power storage equipment can be determined using the reference table (first table) of FIG.
  • the evaluation score of the storage facility in the reference table (first table) of FIG. 7 may be the evaluation score of the coasting train 4 or may be set separately.
  • traveling that indicates a traveling state that is one of the regenerative braking state, the power running state, or the coasting state from each of a plurality of trains traveling in the same power section.
  • the ground transmission / reception unit that receives the state information and the storage battery state information indicating the state of charge of the storage battery provided in the train, and the traveling state information of one or more trains indicate that the regenerative braking state is present, a plurality of Based on the train running state information and storage battery state information, determine a train that absorbs regenerative power from among a plurality of trains, and a control unit that controls the ground transceiver unit to transmit a power absorption command to the determined train;
  • a ground device comprising: In addition to transmitting the driving state information and the storage battery state information to the ground device, the on-vehicle transmission / reception unit that receives the power absorption command and the regenerative power generated from the motor is reduced to the overhead line or charged to the storage battery, and the power
  • the traveling state information and the storage battery state information are transmitted to the ground device, and the power absorption command for instructing the absorption of regenerative power is received from the ground device. Therefore, power supply and demand can be made even with trains traveling in the same power section outside the communication range, and opportunities for power supply and demand can be increased.
  • the on-board device mounted on a plurality of trains traveling in the same power section transmits the traveling state information and the storage battery state information to the ground device, and the ground device I tried to figure out.
  • a power absorption command for instructing absorption of regenerative power is transmitted to a train traveling in the same feeder section outside the communication range of the on-board device mounted on the train in the regenerative braking state. Enabled to receive power absorption command. Therefore, even if the trains run in the same power section outside the communication range of the on-board device, power supply and demand can be made, and the opportunity for power supply and demand can be increased.
  • Embodiment 2 when the control unit 15 of the ground device 6 determines a train 4 suitable for absorbing regenerative power (FIG. 6, step S65), the power absorption set based on the current travel state
  • An evaluation table (FIG. 7, first table) describing evaluation points indicating the priority (first priority) as a target is used.
  • the priority (second priority) as the power absorption target set based on the future traveling state is shown.
  • a train 4 suitable for absorption of regenerative power is determined using an evaluation table (second table) in which evaluation points are described. The method is shown below.
  • FIG. 8 is a diagram schematically showing a second situation of trains 4A to 4C in the second embodiment of the present invention.
  • train 4A is in a regenerative braking state
  • train 4B is in a coasting state
  • train 4C is in a powering state.
  • the train 4B is currently traveling in a flat section, but will soon reach an uphill section, indicating that the future traveling state after a predetermined period from now will be a power running state.
  • the train 4C currently travels in an uphill section, but soon approaches a flat section, indicating that the future traveling state will be a coasting state.
  • the ground device 6 determines the train 4 for absorbing the regenerative power of the train 4A, and transmits a power absorption command for instructing power absorption to the determined train 4 (train 4B).
  • FIG. 9 is a diagram illustrating the configuration of the control unit 15 of the ground device 6 according to Embodiment 2 of the present invention.
  • the control unit 15 includes a travel section determination unit 19, an average gradient determination unit 20, a travel state determination unit 21, a first priority determination unit 23, a second priority determination unit 22, and a train determination unit 24.
  • the travel section determination unit 19 determines the future travel section after elapse of a predetermined period from the present, based on the current travel position (km) information, speed, and route information included in the train information received from the onboard device 11. To decide.
  • the average slope determination unit 20 receives a future travel section from the travel section determination unit 19, refers to the slope data of the route on which the train travels stored in advance in the storage unit 16, and calculates the average slope in the future travel section. decide.
  • the traveling state determination unit 21 determines a future traveling state in a future traveling section from the average gradient value.
  • the 2nd priority determination part 22 is an evaluation score which shows the priority as a power absorption object set up based on the future running state beforehand memorized by storage part 16 as the 2nd reference table (2nd table). Is used to determine the future evaluation point E (F) that defines the priority of each train, and the second priority of the train suitable for absorption of regenerative power is determined.
  • the first priority determination unit 23 uses the first table (FIG.
  • the train determination unit 24 acquires the first priority from the first priority determination unit 23, acquires the second priority from the second priority determination unit 22, and obtains the first priority and the second priority. Is comprehensively evaluated to determine a train 4 suitable for absorbing regenerative power.
  • FIG. 10 is a flowchart showing a process for determining an appropriate train 4 as a power release target in the second embodiment of the present invention.
  • FIG. 10 shows details of steps S64 and S65 in FIG.
  • step S101 indicates that the first priority determination unit 23 determines the current evaluation score E (R) of each train 4.
  • Step S102 determines whether or not the current evaluation point E (R) of all trains 4 is 0. If the current evaluation point E (R) of all trains 4 is 0, the process proceeds to step S67 of FIG. move on.
  • the process that proceeds to step S67 in FIG. 6 corresponds to the case where there is no train 4 that absorbs power in step S64 in FIG. In step S102 of FIG.
  • step S103 the traveling state determination unit 21 determines a future traveling state based on the current traveling position (about kilometer), the destination, and the current speed. Details of step S103 will be described with reference to FIG.
  • step S104 based on the future driving state and storage battery state determined in step S103, the second priority determination unit 22 refers to the second table stored in the storage unit 16 and refers to the future evaluation point E. (F) is determined. Details of the second table will be described with reference to FIG.
  • step S105 the current evaluation point E (R) determined in step S101 is acquired from the first priority determination unit, and the future evaluation point E (F) determined in step S104 is acquired from the second priority determination unit 22. It has acquired and the train determination part 24 has shown that the comprehensive evaluation score E (T) is determined based on the following (1) Formula.
  • k is a weighting coefficient for the future evaluation point E (F) that can be arbitrarily set.
  • step S106 the train determination unit 24 determines the train having the largest comprehensive evaluation point E (T) as a train suitable for power absorption, and proceeds to step S66 in FIG.
  • FIG. 11 is a flowchart showing processing for determining a future traveling state in the second embodiment of the present invention.
  • FIG. 11 illustrates details of the process for determining the future traveling state in step S104 of FIG.
  • Step S111 represents the start of processing.
  • Step S112 indicates that the ground transmission / reception unit 17 receives the train information, and the travel section determination unit 19 recognizes the current travel position (km distance), speed, and destination included in the train information.
  • the travel section determination unit 19 determines a future travel section after the elapse of a predetermined period from the current travel position, speed, and destination.
  • the predetermined period is 5 to 10 seconds later, but can be arbitrarily set in consideration of the characteristics of the route and the train 4.
  • step S114 the average gradient determination unit 20 receives the future travel section from the travel section determination unit 19, and refers to the gradient data of the route on which the train travels stored in the storage unit 16 in advance, so that the future travel section Determine the average slope at.
  • Steps S115 to S124 indicate that the traveling state determination unit 21 determines the future traveling state based on the average gradient in the future traveling section.
  • the future running state is a power running state
  • it is indicated by power running (small), power running (medium) or power running (large), but this means that the power during power running is reduced to power running (small).
  • the power running (large) is relatively larger than the power running (middle).
  • the categories of power running (small), power running (medium), and power running (large) are defined by the average slope in the future travel section, but the slope values shown in FIG. 11 are examples and can be set arbitrarily. It is.
  • step S115 determines that the future traveling state is the coasting state in step S116 and ends the process (step S115).
  • a negative value of the average gradient indicates a downward gradient
  • a positive value indicates an upward gradient.
  • step S117 when the gradient is not less than 5 ⁇ and less than 10 ⁇ , in step S118, the traveling state determination unit 21 determines the future traveling state as the power running (small) state, and ends the process (step S124).
  • step S119 if the slope is outside the range of 5 ⁇ or more and less than 10 ⁇ in step 117, the traveling state determination unit 21 advances the process to step S119.
  • step S119 if the gradient is not less than 10 ⁇ and less than 20 ⁇ , in step S120, the traveling state determination unit 21 determines that the future traveling state is a power running (medium) state, and ends the process (step S124). ).
  • step S119 if the gradient is outside the range of 10 ⁇ or more and less than 20 ⁇ , the traveling state determination unit 21 advances the process to step S121. If the gradient is 20 ⁇ or more in step S121, the traveling state determination unit 21 determines that the future traveling state is the power running (large) state in step S122, and ends the process (step S124).
  • step S121 if the gradient is outside the range of 20 ⁇ or more, the traveling state determination unit 21 advances the process to step S123.
  • step S123 the traveling state determination unit 21 determines the future traveling state as the regenerative braking state, and ends the process (step S124).
  • FIG. 12 is an example of an evaluation table describing evaluation points indicating priorities as power absorption targets in Embodiment 2 of the present invention.
  • the evaluation table in FIG. 12 is stored as a reference table (second table) in the storage unit 16 as in FIG. 7, and the evaluation points can be arbitrarily set.
  • the second priority determination unit 22 acquires the future traveling state from the traveling state determination unit 21, applies the future traveling state and the storage battery state to the reference table in FIG.
  • An evaluation point E (F) is determined.
  • power running (middle) is better than power running (middle)
  • power running (large) is better than power running (middle) as a power absorption target.
  • the first priority determination unit 23 determines the current evaluation score E (R)
  • the current traveling state described in the first table is the future traveling state described in the second table. In this way, powering (small), powering (medium), or powering (large) is not classified according to the average gradient.
  • the train information of each train 4 includes information on the power running power, but it is possible to quantitatively grasp the power running power regardless of the average gradient. Therefore, if necessary, the first priority of each train 4 can be determined by adding the power running power of each train 4 to the first table.
  • the traveling state determination unit 22 determines that the average gradient of the future traveling section is 25 ⁇ (uphill gradient).
  • the future running state is determined to be power running (large) from FIG. 10, and the future evaluation point E (F) is 100 points from FIG.
  • the current evaluation point E (R) is 7 points from FIG.
  • the coefficient k is 1 in the equation (1), the overall evaluation point E (T) of the train 4B is determined to be 107 points.
  • the traveling state determination unit 22 determines that the future traveling section is ⁇ 3 ⁇ (downhill slope of 3 ⁇ ).
  • the future running state is determined to be coasting from FIG. 11, and the future evaluation point E (F) is determined to be 5 points from FIG.
  • the current evaluation score is 100 points from FIG. If the coefficient k is also set to 1, the total evaluation score is determined to be 105 points.
  • the current evaluation point E (R) is 0 from FIG.
  • the total evaluation point E (T) of the train 4A is determined to be 0 point.
  • the evaluation score of the train 4B will become the highest, and the train 4B will be determined as the train 4 suitable for electric power absorption.
  • the ground device As described above, in the ground device according to the second embodiment, information on the current traveling position, the destination and the current speed of a plurality of trains traveling in the same power section is grasped, and a plurality of traveling in the same power section.
  • the future running state of the train is determined, and the train that absorbs the regenerative power is determined from the current running state and the future running state. Since the train that absorbs the regenerative power is determined including not only the current travel state but also the future travel state, a power absorption command that instructs the more appropriate train to absorb the regenerative power can be transmitted.
  • the on-board device in the second embodiment information on the current travel position, the destination and the current speed is transmitted to the ground device, and the train determined by the ground device from the current travel state and the future travel state is determined.
  • the transmitted power absorption command was received. Since the electric power absorption command transmitted with respect to the train determined also including the future driving state is received, electric power supply and demand can be performed more appropriately. Therefore, in the train energy control system in the second embodiment, the on-board device transmits information on the current travel position, the destination, and the current speed to the ground device, and the ground device travels within the same power section.
  • the future travel status of multiple trains traveling in the same power section is determined, and the regenerative power is determined from the current travel status and the future travel status.
  • the train to be absorbed was decided. Therefore, a power absorption command can be transmitted to a more appropriate train, and power supply and demand can be more appropriately performed.
  • Embodiment 3 In the first embodiment, when a certain train 4 enters a regenerative braking state, a train 4 that absorbs regenerative power is determined from other trains 4 that travel in the same power section, and power is supplied to the determined train 4. The operation of transmitting the absorption command has been described. In the third embodiment, when a certain train 4 is in a power running state, a train 4 that releases power from other trains 4 that travel in the same power section is determined, and power is supplied to the determined train 4. An operation for transmitting a release command will be described.
  • FIG. 13 is a diagram schematically showing a third situation of trains 4A to 4C in the third embodiment of the present invention.
  • each of the trains 4A to 4C traveling in the same power section periodically transmits train information including travel state information and storage battery state information to the ground device 6.
  • the train information transmission process to the ground device 6 is the same as the process of FIG. 5 in the first embodiment.
  • Train 4A is in a power running state
  • train 4B is in a coasting state
  • train 4C is in a regenerative braking state.
  • the ground device 6 determines the train 4 for discharging power, and transmits a power discharge command for instructing power discharge to the determined train 4 (train 4C).
  • FIG. 14 is a flowchart showing a power release command transmission process of the ground device 6 in the third embodiment of the present invention.
  • the configurations of the ground device 6 and the on-vehicle device 11 are the same as the configurations of the ground device 6 and the on-vehicle device 11 of the first embodiment shown in FIG. FIG. 14 corresponds to FIG. 6 in the first embodiment.
  • step S141 indicates the start of the operation.
  • Step S142 is the same as step S62 of FIG.
  • the control unit 15 confirms the received traveling state information of each train 4, and determines whether there is a train 4 (power absorption target train) whose traveling state information is in a power running state.
  • step S ⁇ b> 144 the control unit 15 determines whether there is a train 4 capable of discharging power from the running state information and storage battery state information of each train 4. If there is a train 4 capable of discharging electric power, the process proceeds to step S145, and if not, the process proceeds to S147 to end the flow. In step S145, as in step S144, the control unit 15 determines the train 4 suitable for power discharge from the running state information and the storage battery state information.
  • step S146 the control part 15 transmits the electric power discharge
  • the power release command is transmitted from the control unit 15 to the on-board device 11 via the ground transmission / reception unit 17 and the ground antenna 18.
  • step S147 the flow ends.
  • the ground device 6 periodically repeats the operations of steps S141 to S147.
  • FIG. 15 is an example of an evaluation table that describes evaluation points indicating priorities (third priorities) as power discharge targets in the third embodiment of the present invention.
  • FIG. 15 corresponds to FIG. 7 in the first embodiment.
  • the evaluation table in FIG. 15 is stored as a reference table (third table) in the storage unit 16 as in FIG. 7, and the evaluation points can be set arbitrarily.
  • the power-training train 4 other than the power-absorbing target train that travels in the same power section as the power-absorbing target train and the power-absorbing target train is distinguished.
  • the evaluation score of the train 4 in a power running state other than the absorption target train is set to 0. Also, when the storage battery state of the power absorption target train is empty and when the storage battery state of the coasting train 4 other than the power absorption target train is empty, the storage battery state is empty because it cannot be the target of power discharge.
  • the evaluation score of the coasting train 4 other than the electric power absorption target train and the electric power absorption target train whose storage battery state is empty is 0.
  • step S145 the control unit 15 determines the train 4 having the maximum evaluation score as the train 4 suitable for power discharge.
  • the evaluation score is 0 in all the trains 4, there is no train 4 that can discharge electric power.
  • the control unit 15 determines that the evaluation point E (R) of the train 4A is 10 points. Further, the control unit 15 determines that when the train 4B is in a coasting state (storage battery state: full) and the train 4C is in a regenerative braking state (storage battery state: empty), the evaluation point E (R) of the train 4B is 7 points, The evaluation score E (R) of 4C is determined as 100 points. As a result, the control unit 15 determines the train 4C as the train 4 that releases electric power.
  • the train 4 carrying the storage battery 10 is assumed as a power discharge target
  • a power storage facility (not shown) installed on the ground such as a station yard or along a railway line is a power discharge target. Also good. Since the power storage equipment installed on the ground can be regarded as the same as the coasting train 4, the evaluation score of the power storage equipment can be determined using the reference table (third table) in FIG.
  • the evaluation score of the storage facility in the reference table (third table) in FIG. 15 may be the evaluation score of the coasting train 4, or the evaluation score of the storage facility may be set separately.
  • traveling that indicates a traveling state that is one of a regenerative braking state, a power running state, or a coasting state from each of a plurality of trains traveling in the same power section.
  • the ground transmission / reception unit that receives the state information and the storage battery state information representing the state of charge of the storage battery provided in the train and the traveling state information of one or more trains indicate that it is in a power running state
  • a plurality of trains A control unit that determines a train that releases power from a plurality of trains based on the running state information and the storage battery state information, and controls the ground transmission / reception unit to transmit a power release command to the determined train.
  • the ground device, the driving state information and the storage battery state information are transmitted to the ground device, and the on-vehicle transmission / reception unit that receives the power release command and the regenerative power generated from the motor
  • the driving state information indicating the regenerative braking state or the power running state
  • the driving state information is transmitted to the on-vehicle transmission / reception unit.
  • an on-board device provided with a train information management unit that transmits the power release command to the control device when the on-board transmission / reception unit receives the power release command.
  • the traveling state information and the storage battery state information are transmitted to the ground device, and the power release command for instructing the discharge of power is received from the ground device. Therefore, power supply and demand can be made even with trains traveling in the same power section outside the communication range, and opportunities for power supply and demand can be increased.
  • the on-board device mounted on a plurality of trains traveling in the same power section transmits the traveling state information and the storage battery state information to the ground device, and the ground device I tried to figure out.
  • a power release command for instructing the release of power is also transmitted to a train traveling in the same power section outside the communication range of the on-board device mounted on the power running train. The release command can be received. Therefore, even if the trains run in the same power section outside the communication range of the on-board device, power supply and demand can be made, and the opportunity for power supply and demand can be increased.
  • Embodiment 4 FIG.
  • the control unit 15 when the train 4 in the regenerative braking state is generated, the control unit 15 considers the evaluation table (first table) in consideration of the current traveling state and the future traveling state.
  • Evaluation Table FIG. 12 (second table) is combined to determine the train 4 suitable for absorbing regenerative power, but in the fourth embodiment, when the train 4 in a power running state occurs, Evaluation Table Considering Current Traveling State FIG. 15 (third table) and Evaluation Table Considering Future Traveling State FIG. 18 is combined to determine the train 4 from which electric power is discharged.
  • Basic operations of the ground device 6 and the on-vehicle device 11 are the same as those in the second embodiment. The method will be described below in comparison with the second embodiment.
  • FIG. 16 is a diagram schematically showing a fourth situation of trains 4A to 4C in the fourth embodiment of the present invention.
  • train 4A is in a power running state
  • train 4B is in a coasting state
  • train 4C is in a regenerative braking state.
  • the train 4B currently travels in a flat section, but will soon reach a downhill section, indicating that the future traveling state will be in a regenerative braking state.
  • the train 4C currently travels in the downward slope section, but soon approaches the upward slope section, indicating that the future traveling state becomes a power running state.
  • the ground device 6 determines the train 4 for releasing power, and transmits a power release command for instructing power release to the determined train 4 (train 4B).
  • FIG. 17 is a flowchart showing processing for determining an appropriate train 4 as a power release target in the fourth embodiment of the present invention.
  • FIG. 17 corresponds to FIG. 10 in the second embodiment, and will be described by comparing FIGS. 17 and 10.
  • FIG. 17 shows details of steps S144 and S145 in FIG.
  • step S143 of FIG. 14 when step S143 of FIG. 14 is Yes, it progresses to step S171 of FIG.
  • Step S171 corresponds to S101 in FIG. 10, and the first priority determination unit 23 uses the current evaluation score E in FIG. 15 (third table) instead of FIG. 7 (first table). (R) is determined.
  • Step S172 is the same as step S102, and when the current evaluation points E (R) of all the trains 4 are 0, the process proceeds to step S147 in FIG.
  • step S173 the traveling state determination unit 21 determines a future traveling state based on the current traveling position (about kilometer), the destination, and the current speed. Details of step S173 will be described with reference to FIG.
  • the second priority determination unit 22 determines a future evaluation point E (F) using FIG. 19 (fourth table) instead of FIG. 12 (second table).
  • Step S175 is the same as step S105.
  • the train determination unit 24 determines in S175 that the train 4 with the highest overall evaluation score E (T) should be discharged.
  • FIG. 18 is a flowchart showing processing for determining a future traveling state in the fourth embodiment of the present invention.
  • FIG. 18 illustrates details of the process of determining the future traveling state in step S173 of FIG. FIG. 18 corresponds to FIG. 11 in the second embodiment.
  • Steps S181 to S186 are the same as Steps S111 to S116 in FIG.
  • Steps S187 to S194 indicate that the traveling state determination unit 21 determines the future traveling state based on the average gradient in the future traveling section, similarly to steps S117 to S124 in FIG.
  • FIG. 11 shows details when the future running state is a power running state
  • FIG. 18 shows details when the future running state is a regenerative braking state.
  • the classification of the traveling state is indicated by regenerative (small), regenerative (medium), or regenerative (large). This indicates that the regenerative electric power during regenerative braking is relatively higher for regenerative (medium) than for regenerative (small) and regenerative (large) compared to regenerative (middle).
  • the classification of the running state at the time of regenerative braking is also defined by the average gradient in the future running section, the value of the gradient shown in FIG. 18 is an example and can be arbitrarily set.
  • step S185 when the average gradient is outside the range of greater than ⁇ 5 ⁇ and less than 5 ⁇ in step S185, the traveling state determination unit 21 advances the process to step S187. If the gradient is greater than ⁇ 10 ⁇ and less than ⁇ 5 ⁇ in step S187, the traveling state determination unit 21 determines the future traveling state as the regenerative (small) state in step S188, and ends the process (step S187). S194). In step 187, if the gradient is outside the range of greater than ⁇ 10 ⁇ and less than ⁇ 5 ⁇ , the traveling state determination unit 21 advances the process to step S189.
  • step S189 determines the future travel state to be the regenerative (medium) state in step S190, and ends the process.
  • step S194 when the gradient is outside the range of greater than ⁇ 20 ⁇ and less than ⁇ 10 ⁇ , the traveling state determination unit 21 advances the process to step S191. If the gradient is ⁇ 20 ⁇ or less in step S191, the traveling state determination unit 21 determines that the future traveling state is the regenerative (large) state in step S192, and ends the process (step S194).
  • step S191 when the gradient is out of the range of ⁇ 20 ⁇ or less, the traveling state determination unit 21 advances the process to step S193. In step S193, the traveling state determination unit 21 determines the future traveling state as the power running state, and ends the process (step S194).
  • FIG. 19 is an example of an evaluation table that describes evaluation points indicating priorities (fourth priorities) as power discharge targets in the fourth embodiment of the present invention.
  • the evaluation table of FIG. 19 is stored as a reference table (fourth table) in the storage unit 16 as in FIG. 15, and the evaluation points can be arbitrarily set.
  • the second priority determination unit 22 acquires the future traveling state from the traveling state determination unit 21, applies the future traveling state and the storage battery state to the reference table of FIG.
  • An evaluation point E (F) is determined.
  • the evaluation score of the train 4B will become the highest, and the train 4B is determined as the train 4 which should discharge
  • the operation for transmitting the power release command is the same as the operation for transmitting the power release command in the third embodiment.
  • the information on the current traveling position, the destination and the current speed of a plurality of trains traveling in the same power section is grasped, and the plurality of traveling in the same power section.
  • the future running state of the train is determined, and the train from which power is released is determined from the current running state and the future running state. Since the train that releases power including not only the current running state but also the future running state is determined, it is possible to transmit a power release command that instructs the more appropriate train to release the power.
  • the on-board device in the fourth embodiment information on the current travel position, the destination and the current speed is transmitted to the ground device, and the train determined by the ground device from the current travel state and the future travel state Received the transmitted power release command. Since the electric power discharge command transmitted with respect to the train determined also including the future driving
  • the future travel state of multiple trains traveling in the same power section is determined, and power is calculated from the current travel state and the future travel state.
  • the train to be released was decided. Therefore, it is possible to transmit a power release command to a more appropriate train and to supply and supply power more appropriately.
  • the ground device 6 has a power release command transmission function in the third embodiment in addition to the power absorption command transmission function in the first embodiment.
  • the configurations of the ground device 6 and the on-board device 11 are the same as those of the ground device 6 of the first embodiment or the third embodiment shown in FIG. 3, and the first embodiment or the implementation shown in FIG. It is the same as that of the structure of the on-vehicle apparatus 11 of the form 3.
  • the basic operations of the ground device 6 and the on-vehicle device 11 are the same as those in the first or third embodiment.
  • FIG. 20 is a flowchart showing a power absorption command transmission process and a power release command transmission process of ground device 6 according to the fifth embodiment of the present invention.
  • FIG. 20 corresponds to FIG. 6 in the first embodiment or FIG. 14 in the third embodiment.
  • step S201 indicates the start of the operation.
  • step S ⁇ b> 202 the ground transmission / reception unit 17 of the ground device 6 receives train information from the on-vehicle device 11 via the ground antenna 18.
  • the control unit 15 confirms the received traveling state information of each train 4, and determines whether there is a train 4 whose traveling state information is in a regenerative braking state (referred to as a “regenerative power release target train”).
  • step S207 When there is no train 4 (regenerative power release target train) whose running state information is in a regenerative braking state, the process proceeds to step S207, and when there is a regenerative braking state train 4 (regenerative power release target train), the process proceeds to step S204. .
  • step S204 the control unit 15 determines whether there is a train 4 capable of absorbing regenerative power from the running state information and storage battery state information of each train 4. If there is a train 4 capable of absorbing regenerative power, the process proceeds to step S205, and if not, the process proceeds to S211 and the flow ends.
  • step S205 the control unit 15 determines a train suitable for power absorption from the running state information and the storage battery state information.
  • step S206 the control unit 15 transmits a power absorption command instructing absorption of regenerative power to the train determined in step S205.
  • the power absorption command is transmitted from the control unit 15 to the on-board device 11 via the ground transmission / reception unit 17 and the ground antenna 18.
  • step S211 the flow ends.
  • step S207 the control unit 15 confirms the received traveling state information of each train 4, and determines whether there is a train 4 (power absorption target train) whose traveling state information is in a power running state. If there is no train 4 (power absorption target train) whose running state information is in a power running state, the process returns to step S202, and if there is a power running state train 4 (power absorption target train), the process proceeds to step S208.
  • step S208 the control unit 15 determines whether or not there is a train 4 capable of discharging power from the running state information and storage battery state information of each train 4.
  • step S209 determines the train 4 suitable for power release from the running state information and the storage battery state information.
  • step S210 the control part 15 transmits the electric power discharge
  • the power release command is transmitted from the control unit 15 to the on-board device 11 via the ground transmission / reception unit 17 and the ground antenna 18.
  • step S211 the flow ends.
  • the ground device 6 periodically repeats the operations in steps S201 to S211.
  • steps S201 to S202 correspond to steps S61 to S62 of FIG. 6 in the first embodiment or steps S141 to S142 of FIG. 14 in the third embodiment.
  • steps S203 to S206 in FIG. 20 correspond to steps S63 to S66 in FIG. 6
  • steps S207 to S210 in FIG. 20 correspond to steps S143 to S146 in FIG.
  • Step S211 in FIG. 20 corresponds to step S67 in FIG. 6 or step S147 in FIG.
  • the traveling state information indicating the traveling state that is one of the regenerative braking state, the power running state, or the coasting state from each of a plurality of trains traveling in the same power section.
  • the ground transmission / reception part which receives the storage battery state information showing the charge state of the storage battery with which the train was equipped, and the running state information of one or more trains show that it is in a regenerative braking state.
  • a train that absorbs regenerative power is determined from among a plurality of trains, and the ground transmission / reception unit is controlled to transmit a power absorption command to the determined train, and one or more trains
  • the running state information indicates that the vehicle is in a power running state
  • a train that releases power is determined from the plurality of trains based on the running state information and the storage battery state information of the plurality of trains.
  • a control unit for controlling the terrestrial transceiver to transmit the power release command to the train and further comprising
  • step S205 of FIG. 20 in addition to the evaluation table in consideration of the current driving state (FIG. 7, first table), the evaluation table in consideration of the future driving state (FIG. 12, second table) is used.
  • the train 4 suitable for absorbing regenerative power is determined (corresponding to the second embodiment), and in step S209, in addition to the evaluation table (FIG. 15, third table) considering the current traveling state, the future
  • the evaluation table FIG. 18, fourth table
  • Ground device 6 can have the power release command transmission function in the fourth embodiment in addition to the power absorption command transmission function in the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

地上装置6は、制御部15、記憶部16および地上送受信部17を有している。地上送受信部17には地上アンテナ18が接続されている。車上装置11からの列車情報は、地上アンテナ18を経由して地上送受信部16で受信し、制御部15へ送信される。一方、制御部15からの情報は、地上送受信部17および車上アンテナ18を経由して、車上装置11へ送信される。制御部15は、列車4の列車情報を記憶部16へ蓄積するとともに、車上装置11に、列車4に搭載された機器に対する指令情報を送信する。

Description

列車エネルギー制御システム、地上装置、車上装置
 本発明は、列車が回生制動時に発生させる回生電力を有効活用する技術に関する。
 従来の列車エネルギー制御システムは、連続した架線のある軌道区間において、電力蓄積手段(蓄電池)を搭載した列車が、軌道区間内の他の列車と架線を通して電力蓄積手段の充放電を行う。
特開2012-175803号公報(第3~5頁)
 従来の列車エネルギー制御システムは、蓄電池を備えた列車と、同一き電区間内の他の列車との電力需給を架線を通して行う際、双方の列車に搭載された列車情報伝達装置を用いて、直接、列車情報のやりとりを行っていた。そのため、電力需給を行う双方の列車情報伝達装置の通信範囲内でなければ列車情報のやりとりを行えず、列車同士で電力需給ができないという問題点があった。
また、列車情報伝達装置の通信範囲内に双方の列車が存在したとしても、一方の列車に搭載された蓄電池が電力吸収できない状態であった場合は、回生制動状態の他の列車の電力を吸収できなかった。また、一方の列車に搭載された蓄電池が電力放出できない状態であった場合は、力行状態の他の列車に電力を供給することができなかった。
 この発明は、上述の課題を解決するためになされたもので、列車情報伝達装置の通信範囲外であっても、同一き電区間内を走行する列車であれば電力需給が可能な列車エネルギー制御システムを提供するものである。
 本発明にかかる地上装置は、同一き電区間内を走行する複数の列車のそれぞれから、回生制動状態、力行状態または惰行状態のいずれかである走行状態を示す走行状態情報および、列車に備えられた蓄電池の充電状態を表す蓄電池状態情報を受信する地上送受信部と、1以上の列車の走行状態情報が回生制動状態であることを示した場合には、複数の列車の走行状態情報および蓄電池状態情報に基づいて、複数の列車の中から回生電力を吸収する列車を決定し、決定した列車に電力吸収指令を送信するよう地上送受信部を制御する制御部と、を備えたことを特徴とするものである。
本発明にかかる地上装置は、同一き電区間内を走行する複数の列車のそれぞれから、回生制動状態、力行状態または惰行状態のいずれかである走行状態を示す走行状態情報および、列車に備えられた蓄電池の充電状態を表す蓄電池状態情報を受信する地上送受信部と、1以上の列車の走行状態情報が力行状態であることを示した場合には、複数の列車の走行状態情報および蓄電池状態情報に基づいて、複数の列車の中から電力を放出する列車を決定し、決定した列車に電力放出指令を送信するよう地上送受信部を制御する制御部と、を備えたことを特徴とするものである。
また、本発明にかかる地上装置は、同一き電区間内を走行する複数の列車のそれぞれから、回生制動状態、力行状態または惰行状態のいずれかである走行状態を示す走行状態情報および、列車に備えられた蓄電池の充電状態を表す蓄電池状態情報を受信する地上送受信部と、1以上の列車の走行状態情報が回生制動状態であることを示した場合には、複数の列車の走行状態情報および蓄電池状態情報に基づいて、複数の列車の中から回生電力を吸収する列車を決定し、決定した列車に電力吸収指令を送信するよう地上送受信部を制御し、1以上の列車の走行状態情報が力行状態であることを示した場合には、複数の列車の走行状態情報および蓄電池状態情報に基づいて、複数の列車の中から電力を放出する列車を決定し、決定した列車に電力放出指令を送信するよう地上送受信部を制御する制御部と、を備えたことを特徴とするものである。
本発明にかかる車上装置は、列車が回生制動状態、力行状態または惰行状態のいずれかである走行状態を示す走行状態情報および、列車に備えられた蓄電池の充電状態を表す蓄電池状態情報を地上装置に送信するとともに、電力を吸収するよう指示された電力吸収指令または電力を放出するよう指示された電力放出指令を受信する車上送受信部と、
モータから発生した回生電力を架線に還元または蓄電池に充電し、架線または蓄電池からの電力をモータに供給する制御装置から回生制動状態または力行状態を示す走行状態情報を受信した場合には、走行状態情報を車上送受信部に送信させるよう制御するとともに、車上送受信部が電力吸収指令または電力放出指令を受信した場合には、電力吸収指令または電力放出指令を制御装置に送信する列車情報管理部と、を備えることを特徴とするものである。
本発明にかかる列車エネルギー制御システムは、同一き電区間内を走行する複数の列車のそれぞれから、回生制動状態、力行状態または惰行状態のいずれかである走行状態を示す走行状態情報および、列車に備えられた蓄電池の充電状態を表す蓄電池状態情報を受信する地上送受信部と、1以上の列車の走行状態情報が回生制動状態であることを示した場合には、複数の列車の走行状態情報および蓄電池状態情報に基づいて、複数の列車の中から回生電力を吸収する列車を決定し、決定した列車に電力吸収指令を送信するよう地上送受信部を制御する制御部と、を備える地上装置および、走行状態情報および蓄電池状態情報を地上装置に送信するとともに、電力吸収指令を受信する車上送受信部と、モータから発生した回生電力を架線に還元または蓄電池に充電し、架線または蓄電池からの電力をモータに供給する制御装置から回生制動状態または力行状態を示す走行状態情報を受信した場合には、走行状態情報を車上送受信部に送信させるよう制御するとともに、車上送受信部が電力吸収指令を受信した場合には、電力吸収指令を制御装置に送信する列車情報管理部と、を備える車上装置を備えることを特徴とするものである。
また、本発明にかかる列車エネルギー制御システムは、同一き電区間内を走行する複数の列車のそれぞれから、回生制動状態、力行状態または惰行状態のいずれかである走行状態を示す走行状態情報および、列車に備えられた蓄電池の充電状態を表す蓄電池状態情報を受信する地上送受信部と、1以上の列車の走行状態情報が力行状態であることを示した場合には、複数の列車の走行状態情報および蓄電池状態情報に基づいて、複数の列車の中から電力を放出する列車を決定し、決定した列車に電力放出指令を送信するよう地上送受信部を制御する制御部と、を備える地上装置および、走行状態情報および蓄電池状態情報を地上装置に送信するとともに、電力放出指令を受信する車上送受信部と、モータから発生した回生電力を架線に還元または蓄電池に充電し、架線または蓄電池からの電力をモータに供給する制御装置から回生制動状態または力行状態を示す走行状態情報を受信した場合には、走行状態情報を車上送受信部に送信させるよう制御するとともに、車上送受信部が電力放出指令を受信した場合には、電力放出指令を制御装置に送信する列車情報管理部と、を備える車上装置を備えることを特徴とするものである。
 この発明の地上装置は、同一き電区間内を走行する複数の列車の走行状態情報および蓄電池状態情報を地上装置が把握するようにしたため、搭載された車上装置の通信範囲外の同一き電区間内を走行する列車同士であっても電力需給が可能なようにしたものである。この発明の車上装置は、地上装置に走行状態情報および蓄電池状態情報を送信するようにしたため、通信範囲外の同一き電区間内を走行する列車との間でも電力需給が可能なようにしたものである。また、この発明の列車エネルギー制御システムは、車上装置が地上装置に走行状態情報および蓄電池状態情報を送信し、同一き電区間内を走行する複数の列車の走行状態情報および蓄電池状態情報を地上装置が把握するようにしたため、搭載された車上装置の通信範囲外の同一き電区間内を走行する列車同士であっても電力需給が可能なようにしたものである。
実施の形態1における、列車エネルギー制御システムの構成図である。 実施の形態1における、列車の構成を説明する図である。 実施の形態1における、地上装置の構成を説明する図である。 実施の形態1における、列車4A~4Cの第1の状況を模式的に示した図である。 実施の形態1における、車上装置の地上装置への列車情報送信処理を表したフロー図である。 実施の形態1における、地上装置の電力吸収指令送信処理を示したフロー図である。 実施の形態1における、電力吸収対象としての優先度を示す評価点を記載した評価表である。 実施の形態2における、列車4A~4Cの第2の状況を模式的に示した図である。 実施の形態2おける、地上装置6の制御部15の構成を説明する図である。 実施の形態2における、電力吸収対象として適切な列車を決定する処理を表したフロー図である。 実施の形態2における、将来の走行状態を決定するフロー図である。 実施の形態2において、電力吸収対象としての優先度を示す評価点を記載した評価表である。 実施の形態3における、列車4A~4Cの第3の状況を模式的に示した図である。 実施の形態3における、地上装置の電力放出指令送信処理を表したフロー図である。 実施の形態3における、電力放出対象としての優先度を示す評価点を記載した評価表である。 実施の形態4における、列車4A~4Cの第4の状況を模式的に示した図である。 実施の形態4における、電力放出対象として適切な列車を決定する処理を表したフロー図である。 実施の形態4における、将来の走行状態を決定するフロー図である。 実施の形態4において、電力放出対象としての優先度を示す評価点を記載した評価表である。 実施の形態5における、地上装置の電力吸収指令送信処理および電力放出指令送信処理を表したフロー図である。
 実施の形態1.
図1は、本発明の実施の形態1における列車エネルギー制御システムの構成図である。図において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書全文において共通することである。
図1において、変電所1は、架線2に接続されており、架線2に給電している。セクション3は、架線2を隣接するき電区間と絶縁するために設けられた設備である。列車4A~4Cは、変電所1から給電される、同一き電区間内を走行する。列車4A~4Cは1両編成の列車として描かれているが、複数の車両で編成されていてもよい。レール5は、架線2から供給される電流の帰線として使用している。地上装置6は、列車4A~4Cとの情報のやり取りを行い、同一き電区間内を走行する複数の列車4A~4Cと情報の送受信が可能である。
図2は、本発明の実施の形態1における列車の構成を説明する図である。列車4は、架線2から電力を受けるパンタグラフ7、列車4の車輪を駆動するモータ9、電力を蓄積する蓄電池10、モータ9および蓄電池10の電力を制御する制御装置8、ならびに列車4の列車情報を記憶し、地上装置6に送信する車上装置11を備える。パンタグラフ7は制御装置8に接続されており、制御装置8は、モータ9および蓄電池10と接続されている。制御装置8は、列車4の力行時には、架線2からの電力を適切な電圧・周波数に変換して、モータ9を駆動する。また、制御装置8は、列車4の回生制動時には、モータ9から発生する回生電力を適切な電圧・周波数に変換し、パンタグラフ7を介して架線2に供給する。また、制御装置8は、架線2からの電力またはモータ9からの回生電力を蓄電池10に適した電圧に変換し、蓄電池10への充電を行う。また、制御装置8は、蓄電池10に蓄えられた電力を適切な電圧や周波数に変換して架線2に放出または、モータ9に供給する機能も有している。
車上装置11は、列車情報管理部12と車上送受信部13を内蔵している。列車情報管理部12は、制御装置8およびブレーキ装置(図示せず)と接続されており、運転台(図示せず)からの力行または制動の制御指令を制御装置8またはブレーキ装置に送信する。また、列車情報管理部12は、制御装置8へ蓄電池10の充電または放電を指示する指令を送信する。また、列車情報管理部12は、制御装置8を含む列車4に搭載された各機器の動作状態を示す列車情報を受信している。列車情報管理部12が制御装置8より受信する列車情報としては、力行状態、回生制動状態または惰行状態のいずれかである走行状態情報、および蓄電池10の充電残量を示す蓄電池状態情報などがある。蓄電池10の充電状態は、例えば、80%以上の充電残量では満充電を表す満、20%以上80%未満の充電残量は中くらいの充電量の意味で中、20%以下の充電残量では空と表すこととする。蓄電池状態を表す、満、中または空の定義は、任意に設定可能である。他に制御装置8から受信する列車情報は、モータ9の電流、電圧もしくは周波数、力行時に架線2から受電する電流、電圧もしくは電力値、または回生制動時に架線2に還元する電流、電圧もしくは電力値などがある。列車情報には、列車情報管理部12が保持している、現在走行位置(キロ程)、速度、始発駅、または行先などの進路情報なども含まれる。
列車情報管理部12は、これらの列車情報を、車上送受信部13および車上アンテナ14を経由して、地上装置6に送信する。また、地上装置6から送信された情報は、車上アンテナ14および車上送受信部13を経由して、列車情報管理部12で受信する。
列車4は、複数の車両で編成されていてもよい。複数の車両で編成された列車4の場合、パンタグラフ7、制御装置8、モータ9、蓄電池10、および車上装置11は複数の車両に搭載されていてもよいが、1つの列車4につき1台の車上装置11が地上装置6との送受信を行うものとする。
図3は、本発明の実施の形態1における、地上装置の構成を説明する図である。地上装置6は、制御部15、記憶部16および地上送受信部17を有している。地上送受信部17には地上アンテナ18が接続されている。車上装置11からの列車情報は、地上アンテナ18を経由して地上送受信部16で受信し、制御部15へ送信される。一方、制御部15からの情報は、地上送受信部17および車上アンテナ18を経由して、車上装置11へ送信される。制御部15は、列車4の列車情報を記憶部16へ蓄積するとともに、車上装置11に、列車4に搭載された機器に対する指令情報を送信する。図3では、地上アンテナ18は1つだけ描かれているが、同一き電区間内を走行する列車4との送受信を可能とするため、列車4の走行する区間に沿って、複数設けてもよい。
以下、ある列車4が回生制動を開始した際に、同一き電区間内を走行する他の列車4に対し、電力の吸収を指示する電力吸収指令を送信する動作を説明する。
図4は、本発明の実施の形態1における、列車4A~4Cの第1の状況を模式的に示した図である。同一き電区間内を走行する列車4A~4Cのそれぞれは、走行状態情報を含む列車情報を周期的に地上装置6に送信している。図4においては、列車4Aは回生制動状態であり、列車4Bは惰行状態であり、列車4Cは力行状態である。地上装置6は、回生電力を吸収させるための列車4を列車4Cと決定し、決定した列車4Cに電力吸収を指示する電力吸収指令を送信する。
図5は、本発明の実施の形態1における、車上装置の地上装置への列車情報送信処理を表したフロー図である。ステップS51で処理を開始すると、ステップS52では、列車情報管理部12は、制御装置8から、走行状態情報および蓄電池状態情報を含む列車情報を受信する。次にステップS53では、列車情報管理部12は、制御装置8から受信した列車情報を車上送受信部13および車上アンテナ14を介して地上装置6へ送信する。次にステップS54で、列車情報管理部12は、列車情報送信処理の終了指示を受信したかどうかを確認する。列車情報管理部12は、列車情報送信処理の終了指示を受信していない場合はステップS52に戻り、ステップS52からステップS54を周期的に繰り返し、走行状態情報および蓄電池状態情報を地上装置6に周期的に送信している。ステップS54で、列車情報送信処理の終了指示を受信した場合は、列車情報管理部12は、ステップS55で列車情報送信処理を終了する。
図6は、本発明の実施の形態1における、地上装置の電力吸収指令送信処理を示したフロー図である。ステップS61は動作の開始を示している。ステップS62では、地上装置6の地上送受信部17は、地上アンテナ18を介して車上装置11から列車情報を受信する。ステップS63では、制御部15は、受信した各列車4の走行状態情報を確認し、走行状態情報が回生制動状態である列車4(「回生電力放出対象列車」とする)があるか判断する。走行状態情報が回生制動状態の列車4(回生電力放出対象列車)がなかった場合にはステップS62に戻り、回生制動状態の列車4(回生電力放出対象列車)がある場合にはステップS64に進む。ステップS64では、各列車4の走行状態情報および蓄電池状態情報から、回生電力を吸収可能な列車4が存在するかどうかを制御部15は判断する。回生電力を吸収可能な列車4が存在すればステップS65へ、存在しなければS67へ移行しフローを終了する。ステップS65では、走行状態情報と蓄電池状態情報から、電力吸収に適した列車を制御部15は決定する。ステップS66では、ステップS65で決定した列車に対し、制御部15は回生電力の吸収を指示する電力吸収指令を送信する。電力吸収指令は、制御部15から地上送受信部17および地上アンテナ18を経由して、車上装置11に送信される。ステップS67でフローは終了する。地上装置6は、ステップS61~ステップS67の動作を周期的に繰り返している。
図6において、制御部15が、回生電力放出対象列車の回生電力を吸収させる列車4が存在するかどうかを判断する方法(ステップS64)、および回生電力放出対象列車の回生電力を吸収させる列車4を決定する方法(ステップS65)として、本実施の形態では、予め定められた優先度を示す評価点を記載した評価表に従って判定する方法を以下に示す。
図7は、本発明の実施の形態1における、電力吸収対象としての優先度(第1の優先度)を示す評価点を記載した評価表(第1のテーブル)の例である。図7においては、列車4の現在の走行状態および列車4に搭載された蓄電池10の現在の蓄電池状態に応じて、電力吸収対象としての評価点を設定している。評価点は、数字の大きい方が条件として適しており優先度が高いことを示しているが、あくまで各項目を相対的に評価するために記載されたものである。図7に示す評価点は、例えば、回生制動状態の列車4、回生制動状態の列車4の同一き電区間内を走行する列車4の中で、力行状態の列車4が回生電力を吸収させるのに最も適していると考えられることから、力行状態の評価点を最も高く設定している。また、回生電力放出対象列車と同一き電区間内を走行する回生電力放出対象列車以外の回生制動状態の列車4とを比べた場合、回生電力放出対象列車内で電力をやり取りしたほうが効率的であると考えられるため、回生電力放出対象列車以外の回生制動状態の列車4の評価点を0としている。また、回生電力放出対象列車の蓄電池10が満充電である場合、および同一き電区間内を走行する惰行状態の列車4の蓄電池10が満充電である場合も、電力吸収対象とはなり得ないので、満充電の回生電力放出対象列車および満充電の惰行状態の列車の評価点を0点としている。また、回生電力放出対象列車と同一き電区間内を走行する惰行状態の列車4の蓄電池10と、回生電力放出対象列車の蓄電池10とでは、双方の蓄電池10の充電状態が満充電でない場合、惰行状態の列車4の蓄電池10より回生電力放出対象列車の蓄電池10に充電する方が効率的と考えられる。そのため、蓄電池10が同じ充電状態であった場合、惰行状態の列車4の評価点より回生電力放出対象列車の評価点を高く設定してある。なお、図7は一例であり、実際に列車4の走行試験を行うなどして、評価点を設定してもよい。図7の評価表は、地上装置16の記憶部16に参照テーブル(第1のテーブル)として記憶しておく。
図6のステップS64の判断を行う際、制御部15は記憶部16から図7の参照テーブル(第1のテーブル)を読み出して、走行状態情報と蓄電池状態を参照テーブルに当てはめ、各列車4の評価点を決定する。すべての列車4の評価点が0であった場合には、回生電力を吸収可能な列車なしと判断し、ステップS67に移行してフローを終了する。評価点が0より大きい列車4があった場合には、回生電力を吸収可能な列車4が存在すると判断し、ステップS65に移行する。ステップS65では評価点が最大の列車4を、制御部15は回生電力を吸収すべき列車4と決定する。なお、全ての列車4で評価点が0であった場合には、回生電力を吸収する列車4が存在せず、回生失効が発生し、回生電力を有効活用することができなくなる。
図4の例において、列車4Bが惰行状態(蓄電池状態:空とする)、列車4Cが力行状態であるときは、制御部15は、列車4Bの評価点を7点、列車4Cの評価点を100点と判断する。また、列車4Aの蓄電池状態が空とすると、制御部15は、列車4Aの評価点を10点と判断する。結果、制御部15は、列車4Aの回生電力を吸収するのに適した列車4を評価点が最も高い列車4Cと決定する。
なお、図4の例においては、回生電力吸収対象として蓄電池10を搭載した列車4を想定しているが、駅構内や沿線等の地上に設置された蓄電設備(図示せず)を回生電力吸収対象としてもよい。地上に設置された蓄電設備は惰行状態の列車4と同様とみなせるため、図7の参照テーブル(第1のテーブル)を用いて、蓄電設備の評価点を決定することができる。図7の参照テーブル(第1のテーブル)における蓄電設備の評価点は、惰行状態の列車4の評価点を用いてもよいし、蓄電設備の評価点を別途設定してもよい。
このように、本実施の形態1における列車エネルギー制御システムでは、同一き電区間内を走行する複数の列車のそれぞれから、回生制動状態、力行状態または惰行状態のいずれかである走行状態を示す走行状態情報および、列車に備えられた蓄電池の充電状態を表す蓄電池状態情報を受信する地上送受信部と、1以上の列車の走行状態情報が回生制動状態であることを示した場合には、複数の列車の走行状態情報および蓄電池状態情報に基づいて、複数の列車の中から回生電力を吸収する列車を決定し、決定した列車に電力吸収指令を送信するよう地上送受信部を制御する制御部と、を備える地上装置と、
走行状態情報および蓄電池状態情報を地上装置に送信するとともに、電力吸収指令を受信する車上送受信部と、モータから発生した回生電力を架線に還元または蓄電池に充電し、架線または蓄電池からの電力をモータに供給する制御装置から回生制動状態または力行状態を示す走行状態情報を受信した場合には、走行状態情報を車上送受信部に送信させるよう制御するとともに、車上送受信部が電力吸収指令を受信した場合には、電力吸収指令を制御装置に送信する列車情報管理部と、を備える車上装置と、を備えることを特徴とする。
このように、本実施の形態1における地上装置では、同一き電区間内を走行する複数の列車の走行状態情報および蓄電池情報を地上装置が把握するようにした。そのため、回生制動状態の列車に搭載された車上装置の通信範囲外の同一き電区間内を走行する列車に対しても、回生電力の吸収を指示する電力吸収指令を送信することができる。そのため、車上装置の通信範囲外の同一き電区間内を走行する列車同士であっても電力需給が可能となり、電力需給の機会を増やすことができる。また、本実施の形態1における地上装置では、回生電力を吸収する第1の優先度を記載した第1のテーブルを用いて回生電力を吸収する列車を決定するため、適切な列車を回生電力吸収対象とすることができる。
また、本実施の形態1における車上装置では、走行状態情報および蓄電池状態情報を地上装置に送信し、回生電力の吸収を指示する電力吸収指令を地上装置から受信するようにした。そのため、通信範囲外の同一き電区間内を走行する列車との間でも電力需給が可能となり、電力需給の機会を増やすことができる。
従って、本実施の形態1における列車エネルギー制御システムでは、同一き電区間内を走行する複数の列車に搭載された車上装置が、走行状態情報および蓄電池状態情報を地上装置に送信し、地上装置が把握するようにした。また、回生制動状態の列車に搭載された車上装置の通信範囲外の同一き電区間内を走行する列車に対しても、回生電力の吸収を指示する電力吸収指令を送信し、車上装置は電力吸収指令を受信することができるようにした。そのため、車上装置の通信範囲外の同一き電区間内を走行する列車同士であっても電力需給が可能となり、電力需給の機会を増やすことができる。また、同一き電区間内を走行する複数の列車を電力需給の対象としているため、車上装置の通信範囲内である近傍の列車の蓄電池が、電力吸収できない状態であって、電力需給の対象として不適切であったとしても、同一き電区間内を走行する通信範囲外の列車を電力需給の対象として選択でき、電力需給の機会を増やし、より回生電力を有効活用できる。また、本実施の形態1における列車エネルギー制御システムでは、回生電力を吸収する第1の優先度を記載した第1のテーブルを用いて回生電力を吸収する列車を決定するため、適切な列車を回生電力吸収対象とすることができる。
実施の形態2.
実施の形態1では、地上装置6の制御部15が回生電力を吸収するのに適した列車4を決定する際に(図6、ステップS65)、現在の走行状態に基づいて設定された電力吸収対象としての優先度(第1の優先度)を示す評価点を記載した評価表(図7、第1のテーブル)を用いることとした。本実施の形態2では、図6のステップS65において、実施の形態1の評価表に加え、将来の走行状態に基づいて設定された電力吸収対象としての優先度(第2の優先度)を示す評価点を記載した評価表(第2のテーブル)を用いて、回生電力の吸収に適した列車4を決定するようにしたものである。その方法について、以下に示す。
図8は、本発明の実施の形態2における、列車4A~4Cの第2の状況を模式的に示した図である。図8において、列車4Aは回生制動状態、列車4Bは惰行状態、列車4Cは力行状態である。なお、列車4Bは、現在は平坦区間を走行しているが、まもなく上り勾配区間に差し掛かかり、現在から予め定められた期間を経過後の将来の走行状態は、力行状態になることを示している。また列車4Cは、現在は上り勾配区間を走行しているが、まもなく平坦区間に差し掛かかり、将来の走行状態は惰行状態になることを示している。地上装置6は、列車4Aの回生電力を吸収させるための列車4を決定し、決定した列車4(列車4B)に電力吸収を指示する電力吸収指令を送信する。
図9は、本発明における実施の形態2における、地上装置6の制御部15の構成を説明する図である。制御部15は、走行区間決定部19、平均勾配決定部20、走行状態決定部21、第1優先度決定部23、第2優先度決定部22および列車決定部24を有している。走行区間決定部19は、車上装置11から受信する列車情報に含まれる現在走行位置(キロ程)の情報、速度および進路情報から、現在から予め定められた期間を経過後の将来の走行区間を決定する。平均勾配決定部20は、走行区間決定部19から将来の走行区間を受信し、記憶部16に予め記憶された列車の走行する路線の勾配データを参照して、将来の走行区間における平均勾配を決定する。走行状態決定部21は、平均勾配の値から、将来の走行区間における将来の走行状態を決定する。第2優先度決定部22は、第2の参照テーブル(第2のテーブル)として予め記憶部16に記憶した、将来の走行状態に基づいて設定された電力吸収対象としての優先度を示す評価点を記載した評価表を使用して、各列車の優先度を定めた将来の評価点E(F)を決定し、回生電力の吸収に適した列車の第2の優先度を決定する。第1優先度決定部23は、実施の形態1における第1のテーブル(図7)を使用して、各列車4の現在の走行状態および蓄電池状態に基づいて、優先度を定めた現在の評価点E(R)を決定し、回生電力の吸収に適した列車4の第1の優先度を決定する。列車決定部24は、第1優先度決定部23から第1の優先度を取得し、第2優先度決定部22から第2の優先度を取得して、第1位の優先度と第2の優先度を総合的に評価して、回生電力の吸収に適した列車4を決定する。
図10は、本発明の実施の形態2における、電力放出対象として適切な列車4を決定する処理を表したフロー図である。図10は、図6におけるステップS64およびS65の詳細を示したものとなっている。図10において、図6のステップS63がYesの場合、ステップS101に進む。ステップS101は、第1優先度決定部23において、各列車4の現在の評価点E(R)を決定することを示している。ステップS102は、全ての列車4の現在の評価点E(R)が0かどうかを判断し、全ての列車4の現在の評価点E(R)が0であれば、図6のステップS67へ進む。図6のステップS67へ進む処理は、図6のステップS64において、電力を吸収させる列車4が無い場合に対応している。図10のステップS102で、全ての列車4の現在の評価点E(R)が0で無い場合は、ステップS103へ進む。ステップS103では、現在走行位置(キロ程)、行先および現在速度に基づいて、走行状態決定部21が将来の走行状態を決定する。なお、ステップS103の詳細については、図11で説明する。ステップS104では、ステップS103で決定した将来の走行状態と蓄電池状態に基づいて、第2優先度決定部22が、記憶部16に記憶された第2のテーブルを参照して、将来の評価点E(F)を決定する。第2のテーブルの詳細は図12にて説明する。ステップS105は、ステップS101で決定した現在の評価点E(R)を第1優先度決定部より取得し、ステップS104で決定した将来の評価点E(F)を第2優先度決定部22より取得して、列車決定部24が下記(1)式に基づいて、総合評価点E(T)を決定することを示している。
E(T)=E(R)+k・E(F)      ・・・・・(1)
ここでkは任意に設定可能な、将来の評価点E(F)に対する重み付けの係数である。係数kは、将来の評価点E(F)を現在の評価点E(R)と同等に評価したい場合はk=1、将来の評価点E(F)を現在の評価点E(R)の50%に評価したい場合はk=0.5などと設定する。
ステップS106では、列車決定部24は、総合評価点E(T)の最も大きい列車を電力吸収に適した列車と決定し、図6のステップS66へ移行する。
図11は、本発明の実施の形態2における、将来の走行状態を決定する処理を表したフロー図である。図11は、図10のステップS104における、将来の走行状態を決定する処理の詳細を説明したものである。ステップS111は処理の開始を表している。ステップS112は、地上送受信部17が列車情報を受信し、走行区間決定部19が、列車情報に含まれる現在走行位置(キロ程)、速度および行先を認識することを示している。ステップS113では、走行区間決定部19が、現在走行位置、速度および行先から、現在から予め定められた期間経過後の将来の走行区間を決定する。予め定められた期間は、5~10秒後としているが、路線や列車4の特性等を考慮して任意に設定可能である。ステップS114では、平均勾配決定部20は、走行区間決定部19から将来の走行区間を受信し、記憶部16に予め記憶された列車の走行する路線の勾配データを参照して、将来の走行区間における平均勾配を決定する。ステップS115~S124は、走行状態決定部21が将来の走行区間における平均勾配をもとに、将来の走行状態を決定することを示している。なお以下では将来の走行状態が力行状態であった場合、力行(小)、力行(中)または力行(大)の区分で示しているが、これは力行時の電力が、力行(小)に比べて力行(中)が、力行(中)に比べて力行(大)の方が相対的に大きいことを示している。また、力行(小)、力行(中)および力行(大)の区分は、将来の走行区間における平均勾配によって定義しているが、図11に示す勾配の値は一例であり、任意に設定可能である。
ステップS115で、平均勾配が-5‰より大きく5‰未満であった場合には、走行状態決定部21は、ステップS116で将来の走行状態を惰行状態と決定して、処理を終了する(ステップS124)。ここで、平均勾配のマイナス値は下り勾配を、プラス値は上り勾配を示している。ステップS115で、平均勾配が-5‰より大きく5‰未満の範囲外では、走行状態決定部21は処理をステップS117に進める。ステップS117において、勾配が5‰以上10‰未満であった場合、ステップS118で走行状態決定部21は、将来の走行状態を力行(小)状態と決定し、処理を終了する(ステップS124)。ステップ117において、勾配が5‰以上10‰未満の範囲外では、走行状態決定部21は、処理をステップS119に進める。ステップS119において、勾配が10‰以上20‰未満であった場合には、ステップS120で走行状態決定部21は、将来の走行状態を力行(中)状態と決定し、処理を終了する(ステップS124)。ステップS119において、勾配が10‰以上20‰未満の範囲外では、走行状態決定部21は、処理をステップS121に進める。ステップS121において勾配が20‰以上であった場合には、ステップS122で走行状態決定部21は、将来の走行状態を力行(大)状態と決定し、処理を終了する(ステップS124)。ステップS121において、勾配が20‰以上の範囲外では、走行状態決定部21は、処理をステップS123に進める。ステップS123で走行状態決定部21は、将来の走行状態を回生制動状態と決定し、処理を終了する(ステップS124)。
図12は、本発明の実施の形態2における、電力吸収対象としての優先度を示す評価点を記載した評価表の例である。図12の評価表は図7と同様、記憶部16に参照テーブル(第2のテーブル)として記憶されており、評価点は任意に設定可能である。図10のステップS105において、第2優先度決定部22は、走行状態決定部21から将来の走行状態を取得し、将来の走行状態と蓄電池状態とを図12の参照テーブルに当てはめて、将来の評価点E(F)を決定する。図12において、将来の走行状態が力行(小)よりも力行(中)、力行(中)よりも力行(大)の方が電力吸収対象として優れていると考えられるため、力行(小)、力行(中)、力行(大)の順で電力吸収対象としての評価点を高く設定している。また、将来の走行状態が回生制動状態の列車4は電力吸収対象とはなり得ないので、将来の評価点E(F)を0としている。なお、図12において将来の走行状態は、回生電力放出対象列車以外の列車しか記載されていない。回生電力放出対象列車は現在の走行状態が継続するのが前提で、走行状態が変化すれば回生電力放出対象列車では無くなるため、将来の走行状態を定義することに意味が無いと考えられるためである。そのため、(1)式にて回生電力放出対象列車の総合評価点E(T)を決定する場合には、便宜的にE(F)=E(R)とするか、係数kを小さく設定している場合はE(F)=0としてE(T)を決定する。
なお、第1優先度決定部23において現在の評価点E(R)を決定する際、第1のテーブルに記載される現在の走行状態は、第2のテーブルに記載される将来の走行状態のように、平均勾配による、力行(小)、力行(中)、もしくは力行(大)の区分を行っていない。これは簡便のためでもあるが、各列車4の列車情報には力行電力の情報が含まれており、平均勾配によらずとも、力行電力の量的把握が可能なためである。そのため必要により、第1のテーブルに各列車4の力行電力を加味して、各列車4の第1の優先度を決定することも可能である。
図8に戻り、本実施の形態における回生電力吸収指示の流れを具体的に説明する。列車4Bは現在惰行状態(蓄電池状態:空)であり、走行状態決定部22によって、将来の走行区間の平均勾配が25‰(上り勾配)と決定されたとする。この時将来の走行状態は図10より力行(大)と決定され、将来の評価点E(F)は図12より100点となる。また、現在の評価点E(R)は、図7より7点となる。(1)式で係数kを1とすると、列車4Bの総合評価点E(T)は107点と決定される。また、列車4Cは現在力行状態(蓄電池状態:中)であり、走行状態決定部22によって、将来の走行区間が-3‰(3‰の下り勾配)と決定されたとする。この時将来の走行状態は、図11より惰行と決定され、図12より将来の評価点E(F)は5点と決定される。また、現在の評価点は、図7より100点となる。係数kを同じく1とすると、総合評価点は105点と決定される。一方、列車4Aの蓄電池状態が満であったとすると、図7より現在の評価点E(R)は0点となる。便宜的に将来の評価点をE(F)=E(R)とし、係数kを1とすると、列車4Aの総合評価点E(T)は0点と決定される。このように、将来の走行状態まで評価すれば、列車4Bの評価点が最高となり、列車4Bを電力吸収に適した列車4と決定する。
このように、本実施の形態2における地上装置では、同一き電区間内を走行する複数の列車の現在走行位置、行先および現在速度の情報を把握して、同一き電区間内を走行する複数の列車の将来の走行状態を決定し、現在の走行状態と将来の走行状態とから、回生電力を吸収させる列車を決定するようにした。現在の走行状態だけでなく将来の走行状態も含めて回生電力を吸収させる列車を決定するようにしたので、より適切な列車に回生電力の吸収を指示する電力吸収指令を送信することができる。また、本実施の形態2における車上装置では、現在走行位置、行先および現在速度の情報を地上装置に送信し、現在の走行状態と将来の走行状態とから地上装置が決定した列車に対して送信された電力吸収指令を受信するようにした。将来の走行状態も含めて決定された列車に対して送信された電力吸収指令を受信するようにしたので、より適切に電力需給を行うことができる。よって、本実施の形態2における列車エネルギー制御システムでは、車上装置が、現在走行位置、行先および現在速度の情報を地上装置に送信し、地上装置が、同一き電区間内を走行する複数の列車の現在走行位置、行先および現在速度の情報を把握して、同一き電区間内を走行する複数の列車の将来の走行状態を決定し、現在の走行状態と将来の走行状態とから回生電力を吸収させる列車を決定するようにした。そのため、より適切な列車に電力吸収指令を送信することができ、より適切に電力需給を行うことができる。
実施の形態3
実施の形態1では、ある列車4が回生制動状態となった際に、同一き電区間内を走行する他の列車4から回生電力を吸収させる列車4を決定し、決定した列車4に対し電力吸収指令を送信する動作を説明した。本実施の形態3では、ある列車4が力行状態となった際に、同一き電区間内を走行する他の列車4から電力を放出させる列車4を決定し、決定した列車4に対し、電力放出指令を送信する動作を説明する。
図13は、本発明の実施の形態3における、列車4A~4Cの第3の状況を模式的に示した図である。図13において、同一き電区間内を走行する列車4A~4Cのそれぞれは、走行状態情報と蓄電池状態情報を含む列車情報を周期的に地上装置6に送信している。地上装置6への列車情報の送信処理は、実施の形態1における図5の処理と同様である。列車4Aは力行状態であり、列車4Bは惰行状態であり、列車4Cは回生制動状態である。地上装置6は、電力を放出させるための列車4を決定し、決定した列車4(列車4C)に電力放出を指示する電力放出指令を送信する。
図14は、本発明の実施の形態3における、地上装置6の電力放出指令送信処理を示したフロー図である。本実施の形態3においては、地上装置6および車上装置11の構成は、図3に示す実施の形態1の地上装置6および車上装置11の構成と同様である。図14は実施の形態1における図6に対応している。図14において、ステップS141は動作の開始を示している。ステップS142は、図6のステップS62と同様である。ステップS143では、制御部15は、受信した各列車4の走行状態情報を確認し、走行状態情報が力行状態である列車4(電力吸収対象列車)があるか判断する。走行状態情報が力行状態の列車4(電力吸収対象列車)がなかった場合にはステップS142に戻り、力行状態の列車4(電力吸収対象列車)がある場合にはステップS144に進む。ステップS144では、各列車4の走行状態情報および蓄電池状態情報から、電力を放出可能な列車4が存在するかどうかを制御部15は判断する。電力を放出可能な列車4が存在すればステップS145へ、存在しなければS147へ移行しフローを終了する。ステップS145ではステップS144と同様、走行状態情報と蓄電池状態情報から、電力放出に適した列車4を制御部15は決定する。ステップS146では、ステップS145で決定した列車4に対し、制御部15は電力の放出を指示する電力放出指令を送信する。電力放出指令は、制御部15から地上送受信部17および地上アンテナ18を経由して、車上装置11に送信される。ステップS147でフローは終了する。地上装置6は、ステップS141~ステップS147の動作を周期的に繰り返している。
図15は、本発明の実施の形態3における、電力放出対象としての優先度(第3の優先度)を示す評価点を記載した評価表の例である。図15は、実施の形態1における図7に対応している。図15の評価表は図7と同様、記憶部16に参照テーブル(第3のテーブル)として記憶されており、評価点は任意に設定可能である。また、図15の現在の走行状態の項目では、電力吸収対象列車と電力吸収対象列車と同一き電区間内を走行する電力吸収対象列車以外の力行状態の列車4を区別している。電力吸収対象列車と同一き電区間内を走行する電力吸収対象列車以外の力行状態の列車4とを比べた場合、電力吸収対象列車内で電力をやり取りした方が効率的と考えられるため、電力吸収対象列車以外の力行状態の列車4の評価点を0としている。また、電力吸収対象列車の蓄電池状態が空である場合、および電力吸収対象列車以外の惰行中の列車4の蓄電池状態が空である場合も電力放出対象とはなり得ないので、蓄電池状態が空である電力吸収対象列車および蓄電池状態が空である電力吸収対象列車以外の惰行状態の列車4の評価点を0としている。図14のステップS144の判断を行う際、制御部15は記憶部16から図15の参照テーブル(第3のテーブル)を読み出して、走行状態情報と蓄電池状態情報を参照テーブルに当てはめ、各列車4の評価点を決定する。すべての列車4の評価点が0であった場合には、電力を放出可能な列車4はなしと判断し、ステップS147に移行してフローを終了する。評価点が0より大きい列車4があった場合には、電力を放出可能な列車4が存在すると判断し、ステップS145に移行する。ステップS145では、制御部15は、評価点が最大の列車4を電力放出に適した列車4と決定する。なお、全ての列車4で評価点が0であった場合には、電力を放出可能な列車4は存在しないこととなる。
図13の例において、列車4Aが力行状態となった際に、電力を放出すべき列車4を決定する動作について説明する。列車4Aの蓄電池状態は満とすると、制御部15は列車4Aの評価点E(R)を10点と判断する。また、制御部15は、列車4Bが惰行状態(蓄電池状態:満)、列車4Cが回生制動状態(蓄電池状態:空)であった場合、列車4Bの評価点E(R)は7点、列車4Cの評価点E(R)は100点と判断する。結果、制御部15は、列車4Cを電力を放出させる列車4として決定する。
なお、図13の例においては、電力放出対象として蓄電池10を搭載した列車4を想定しているが、駅構内や沿線等の地上に設置された蓄電設備(図示せず)を電力放出対象としてもよい。地上に設置された蓄電設備は惰行状態の列車4と同様とみなせるため、図15の参照テーブル(第3のテーブル)を用いて、蓄電設備の評価点を決定することができる。図15の参照テーブル(第3のテーブル)における蓄電設備の評価点は、惰行状態の列車4の評価点を用いてもよいし、蓄電設備の評価点を別途設定してもよい。
このように、本実施の形態3における列車エネルギー制御システムでは、同一き電区間内を走行する複数の列車のそれぞれから、回生制動状態、力行状態または惰行状態のいずれかである走行状態を示す走行状態情報および、列車に備えられた蓄電池の充電状態を表す蓄電池状態情報を受信する地上送受信部と、1以上の列車の走行状態情報が力行状態であることを示した場合には、複数の列車の走行状態情報および蓄電池状態情報に基づいて、複数の列車の中から電力を放出する列車を決定し、決定した列車に電力放出指令を送信するよう地上送受信部を制御する制御部と、を備える地上装置と、走行状態情報および蓄電池状態情報を地上装置に送信するとともに、電力放出指令を受信する車上送受信部と、モータから発生した回生電力を架線に還元または蓄電池に充電し、架線または蓄電池からの電力をモータに供給する制御装置から回生制動状態または力行状態を示す走行状態情報を受信した場合には、走行状態情報を車上送受信部に送信させるよう制御するとともに、車上送受信部が電力放出指令を受信した場合には、電力放出指令を制御装置に送信する列車情報管理部と、を備える車上装置と、を備えることを特徴とする。
このように、本実施の形態3における地上装置では、同一き電区間内を走行する複数の列車の走行状態情報および蓄電池情報を地上装置が把握するようにした。そのため、力行状態の列車に搭載された車上装置の通信範囲外の同一き電区間内を走行する列車に対しても、電力の放出を指示する電力放出指令を送信することができる。そのため、車上装置の通信範囲外の同一き電区間内を走行する列車同士であっても電力需給が可能となり、電力需給の機会を増やすことができる。また、本実施の形態3における地上装置では、電力を放出する第3の優先度を記載した第3のテーブルを用いて電力を放出する列車を決定するため、適切な列車を電力放出対象とすることができる。
また、本実施の形態3における車上装置では、走行状態情報および蓄電池状態情報を地上装置に送信し、電力の放出を指示する電力放出指令を地上装置から受信するようにした。そのため、通信範囲外の同一き電区間内を走行する列車との間でも電力需給が可能となり、電力需給の機会を増やすことができる。
従って、本実施の形態3における列車エネルギー制御システムでは、同一き電区間内を走行する複数の列車に搭載された車上装置が、走行状態情報および蓄電池状態情報を地上装置に送信し、地上装置が把握するようにした。また、力行状態の列車に搭載された車上装置の通信範囲外の同一き電区間内を走行する列車に対しても、電力の放出を指示する電力放出指令を送信し、車上装置は電力放出指令を受信することができるようにした。そのため、車上装置の通信範囲外の同一き電区間内を走行する列車同士であっても電力需給が可能となり、電力需給の機会を増やすことができる。また、同一き電区間内を走行する複数の列車を電力需給の対象としているため、車上装置の通信範囲内である近傍の列車の蓄電池が、電力放出できない状態であって、電力需給の対象として不適切であったとしても、同一き電区間内を走行する通信範囲外の列車を電力需給の対象として選択でき、電力需給の機会を増やし、より電力を有効活用できる。また、本実施の形態3における列車エネルギー制御システムでは、電力を放出する第3の優先度を記載した第3のテーブルを用いて電力を放出する列車を決定するため、適切な列車を電力放出対象とすることができる。
実施の形態4.
実施の形態2では、回生制動状態となった列車4が発生した際に、制御部15は、現在の走行状態を考慮した評価表 図7(第1のテーブル)と将来の走行状態を考慮した評価表 図12(第2のテーブル)を総合して回生電力の吸収に適した列車4を決定していたが、本実施の形態4では、力行状態となった列車4が発生した際に、現在の走行状態を考慮した評価表 図15(第3のテーブル)および将来の走行状態を考慮した評価表 図18を総合して、電力を放出させる列車4を決定するようにしたものである。地上装置6および車上装置11の基本的な動作は実施の形態2と同様である。その方法について、実施の形態2と対比しながら、以下に示す。
図16は、本発明の実施の形態4における、列車4A~4Cの第4の状況を模式的に示した図である。図16において、列車4Aは力行状態、列車4Bは惰行状態、列車4Cは回生制動状態である。なお、列車4Bは、現在は平坦区間を走行しているが、まもなく下り勾配区間に差し掛かかり、将来の走行状態は、回生制動状態になることを示している。また列車4Cは、現在は下り勾配区間を走行しているが、まもなく上り勾配区間に差し掛かかり、将来の走行状態は力行状態になることを示している。地上装置6は、電力を放出させるための列車4を決定し、決定した列車4(列車4B)に電力放出を指示する電力放出指令を送信する。
図17は、本発明の実施の形態4における、電力放出対象として適切な列車4を決定する処理を表したフロー図である。図17は、実施の形態2における図10と対応しており、図17と図10を対比して説明する。また図17は、図14におけるステップS144およびS145の詳細を示したものとなっている。図17において、図14のステップS143がYesの場合、図17のステップS171に進む。ステップS171は、図10のS101に対応しており、図7(第1のテーブル)の代わりに図15(第3のテーブル)を用いて、第1優先度決定部23が現在の評価点E(R)を決定する。ステップS172はステップS102と同様であり、全ての列車4の現在の評価点E(R)が0である場合には、図14のステップS147へ移行する。ステップS173では、現在走行位置(キロ程)、行先および現在速度に基づいて、走行状態決定部21が将来の走行状態を決定する。なお、ステップS173の詳細については、図18で説明する。ステップS174は、第2優先度決定部22が、図12(第2のテーブル)の代わりに図19(第4のテーブル)を用いて将来の評価点E(F)を決定する。ステップS175はステップS105と同様である。ステップS176もステップS106と同様、列車決定部24が、S175で総合評価点E(T)が最高の列車4を電力放出させるべき列車4と決定する。
図18は、本発明の実施の形態4における、将来の走行状態を決定する処理を表したフロー図である。図18は、図17のステップS173において、将来の走行状態を決定する処理の詳細を説明したものである。また、図18は、実施の形態2における、図11に対応している。図18において、ステップS181~ステップS186は、図11における、ステップS111~ステップS116と同様である。ステップS187~ステップS194は、図11におけるステップS117~124と同様、走行状態決定部21が将来の走行区間における平均勾配をもとに、将来の走行状態を決定することを示している。しかし、図11は将来の走行状態が力行状態である場合の詳細を示しているが、図18は将来の走行状態が回生制動状態である場合の詳細を示している。以下将来の走行状態が回生制動状態である場合においては、走行状態の区分を、回生(小)、回生(中)または回生(大)で示している。これは回生制動時の回生電力が、回生(小)に比べて回生(中)が、回生(中)に比べて回生(大)の方が相対的に大きいことを示している。回生制動時の走行状態の区分も将来の走行区間における平均勾配によって定義しているが、図18に示す勾配の値は一例であり、任意に設定可能である。
図18において、ステップS185で、平均勾配が-5‰より大きく5‰未満の範囲外では、走行状態決定部21は処理をステップS187に進める。ステップS187において、勾配が-10‰より大きく-5‰以下であった場合、ステップS188で走行状態決定部21は、将来の走行状態を回生(小)状態と決定し、処理を終了する(ステップS194)。ステップ187において、勾配が-10‰より大きく-5‰以下の範囲外では、走行状態決定部21は、処理をステップS189に進める。ステップS189において、勾配が-20‰より大きく-10‰以下であった場合には、ステップS190で走行状態決定部21は、将来の走行状態を回生(中)状態と決定し、処理を終了する(ステップS194)。ステップS189において、勾配が-20‰より大きく-10‰以下の範囲外では、走行状態決定部21は、処理をステップS191に進める。ステップS191において勾配が-20‰以下であった場合には、ステップS192で走行状態決定部21は、将来の走行状態を回生(大)状態と決定し、処理を終了する(ステップS194)。ステップS191において、勾配が-20‰以下の範囲外では、走行状態決定部21は、処理をステップS193に進める。ステップS193で走行状態決定部21は、将来の走行状態を力行状態と決定し、処理を終了する(ステップS194)。
図19は、本発明の実施の形態4における、電力放出対象としての優先度(第4の優先度)を示す評価点を記載した評価表の例である。図19の評価表は図15と同様、記憶部16に参照テーブル(第4のテーブル)として記憶されており、評価点は任意に設定可能である。図17のステップS174において、第2優先度決定部22は、走行状態決定部21から将来の走行状態を取得し、将来の走行状態と蓄電池状態とを図19の参照テーブルに当てはめて、将来の評価点E(F)を決定する。
図16の例において、列車4Aが力行状態となった際に、電力放出すべき列車4を決定する動作について説明する。列車4Bが惰行状態(蓄電池状態:中)、列車4Cが回生制動状態(蓄電池状態:満)であった場合、列車4Bおよび列車4Cの現在の評価点E(R)は、図15(第3のテーブル)を用いて、列車4Bは5点、列車4Cは100点と決定される。次に、平均勾配決定部20で決定された将来の走行区間の平均勾配が、列車4Bで-25‰(25‰の下り勾配)、列車4Cで10‰であったとする。走行状態決定部21は、列車4Bの将来の走行状態を回生(大)、列車4Cの将来の走行状態を力行(中)と決定する。第2優先度決定部は、図18より、将来の評価点E(F)を列車4Bで100点、列車4Cで0点と決定。総合評価点E(T)は(k=1とする)、列車4Bで105点、列車4Cで100点と決定される。一方、列車4Aの蓄電池状態が空であったとすると、図15より現在の評価点E(R)は0点となる。便宜的に将来の評価点をE(F)=E(R)とし、係数kを1とすると、列車4Aの総合評価点E(T)は0点と決定される。このように、将来の走行状態まで評価すれば、列車4Bの評価点が最高となり、列車4Bを電力放出すべき列車4として決定する。電力放出指令を送信する動作は、実施の形態3における電力放出指令を送信する動作と同様である。
このように、本実施の形態4における地上装置では、同一き電区間内を走行する複数の列車の現在走行位置、行先および現在速度の情報を把握して、同一き電区間内を走行する複数の列車の将来の走行状態を決定し、現在の走行状態と将来の走行状態とから、電力を放出させる列車を決定するようにした。現在の走行状態だけでなく将来の走行状態も含めて電力を放出させる列車を決定するようにしたので、より適切な列車に電力の放出を指示する電力放出指令を送信することができる。また、本実施の形態4における車上装置では、現在走行位置、行先および現在速度の情報を地上装置に送信し、現在の走行状態と将来の走行状態とから地上装置が決定した列車に対して送信された電力放出指令を受信するようにした。将来の走行状態も含めて決定された列車に対して送信された電力放出指令を受信するようにしたので、より適切に電力需給を行うことができる。よって、本実施の形態4における列車エネルギー制御システムでは、車上装置が、現在走行位置、行先および現在速度の情報を地上装置に送信し、地上装置が、同一き電区間内を走行する複数の列車の現在走行位置、行先および現在速度の情報を把握して、同一き電区間内を走行する複数の列車の将来の走行状態を決定し、現在の走行状態と将来の走行状態とから電力を放出させる列車を決定するようにした。そのため、より適切な列車に電力放出指令を送信することができ、より適切に電力需給を行うことができる。
実施の形態5
本実施の形態5は、地上装置6が、実施の形態1における電力吸収指令送信機能に加え、実施の形態3における電力放出指令送信機能も有するようにしたものである。本実施の形態5においては、地上装置6および車上装置11の構成は、図3に示す実施の形態1もしくは実施の形態3の地上装置6、および図2に示す実施の形態1もしくは実施の形態3の車上装置11の構成と同様である。また、基本的な地上装置6および車上装置11の動作は、実施の形態1もしくは実施の形態3と同様である。
図20は、本発明の実施の形態5における、地上装置6の電力吸収指令送信処理および電力放出指令送信処理を表したフロー図である。図20は、実施の形態1における図6、または実施の形態3における図14に対応している。図20において、ステップS201は動作の開始を示している。ステップS202では、地上装置6の地上送受信部17は、地上アンテナ18を介して車上装置11から列車情報を受信する。ステップS203では、制御部15は、受信した各列車4の走行状態情報を確認し、走行状態情報が回生制動状態である列車4(「回生電力放出対象列車」とする)があるか判断する。走行状態情報が回生制動状態の列車4(回生電力放出対象列車)がなかった場合にはステップS207に進み、回生制動状態の列車4(回生電力放出対象列車)がある場合にはステップS204に進む。ステップS204では、各列車4の走行状態情報および蓄電池状態情報から、回生電力を吸収可能な列車4が存在するかどうかを制御部15は判断する。回生電力を吸収可能な列車4が存在すればステップS205へ、存在しなければS211へ移行しフローを終了する。ステップS205では、走行状態情報と蓄電池状態情報から、電力吸収に適した列車を制御部15は決定する。ステップS206では、ステップS205で決定した列車に対し、制御部15は回生電力の吸収を指示する電力吸収指令を送信する。電力吸収指令は、制御部15から地上送受信部17および地上アンテナ18を経由して、車上装置11に送信される。ステップS211でフローは終了する。
また図20において、ステップS207では、制御部15は、受信した各列車4の走行状態情報を確認し、走行状態情報が力行状態である列車4(電力吸収対象列車)があるか判断する。走行状態情報が力行状態の列車4(電力吸収対象列車)がなかった場合にはステップS202に戻り、力行状態の列車4(電力吸収対象列車)がある場合にはステップS208に進む。ステップS208では、各列車4の走行状態情報および蓄電池状態情報から、電力を放出可能な列車4が存在するかどうかを制御部15は判断する。電力を放出可能な列車4が存在すればステップS209へ、存在しなければS211へ移行しフローを終了する。ステップS209ではステップS205と同様、走行状態情報と蓄電池状態情報から、電力放出に適した列車4を制御部15は決定する。ステップS210では、ステップS209で決定した列車4に対し、制御部15は電力の放出を指示する電力放出指令を送信する。電力放出指令は、制御部15から地上送受信部17および地上アンテナ18を経由して、車上装置11に送信される。ステップS211でフローは終了する。地上装置6は、ステップS201~ステップS211の動作を周期的に繰り返している。
なお図20において、ステップS201~S202は、実施の形態1における図6のステップS61~S62、または実施の形態3における図14のステップS141~S142に対応している。図20のステップS203~S206は図6のステップS63~S66に、図20のステップS207~S210は図14のステップS143~S146に対応している。図20のステップS211は、図6のステップS67または図14のステップS147に対応している。
このように、本実施の形態5における地上装置では、同一き電区間内を走行する複数の列車のそれぞれから、回生制動状態、力行状態または惰行状態のいずれかである走行状態を示す走行状態情報および、列車に備えられた蓄電池の充電状態を表す蓄電池状態情報を受信する地上送受信部と、1以上の列車の走行状態情報が回生制動状態であることを示した場合には、複数の列車の走行状態情報および蓄電池状態情報に基づいて、複数の列車の中から回生電力を吸収する列車を決定し、決定した列車に電力吸収指令を送信するよう地上送受信部を制御し、1以上の列車の走行状態情報が力行状態であることを示した場合には、複数の列車の走行状態情報および蓄電池状態情報に基づいて、複数の列車の中から電力を放出する列車を決定し、決定した列車に電力放出指令を送信するよう地上送受信部を制御する制御部と、を備えたことを特徴とする。
このように、本実施の形態5における地上装置では、同一き電区間内を走行する複数の列車の走行状態情報および蓄電池情報を地上装置が把握するようにした。そのため、回生制動状態の列車に搭載された車上装置の通信範囲外の同一き電区間内を走行する列車に対しては、回生電力の吸収を指示する電力吸収指令を送信することができる。また、力行状態の列車に搭載された車上装置の通信範囲外の同一き電区間内を走行する列車に対しても、電力の放出を指示する電力放出指令を送信することができる。そのため、車上装置の通信範囲外の同一き電区間内を走行する列車同士であっても電力需給が可能となり、電力需給の機会を増やすことができる。
なお、図20のステップS205において、現在の走行状態を考慮した評価表(図7、第1のテーブル)に加え、将来の走行状態を考慮した評価表(図12、第2のテーブル)を用いて回生電力の吸収に適した列車4を決定するようにし(実施の形態2に相当)、ステップS209において、現在の走行状態を考慮した評価表(図15、第3のテーブル)に加え、将来の走行状態を考慮した評価表(図18、第4のテーブル)を用いて電力を放出させる列車4を決定するようにした場合には(実施の形態4に相当)、本実施の形態5における地上装置6は、実施の形態2における電力吸収指令送信機能に加え、実施の形態4における電力放出指令送信機能を有することが可能となる。
 1 変電所、2 架線、3 セクション、 4、4A、4B、4C 列車、5 レール、6 地上装置、7 パンタグラフ、8 制御装置、9 モータ、10 蓄電池、11 車上装置、12 列車情報管理部、 13 車上送受信部、14 車上アンテナ、 15 制御部、16記憶部、17 地上送受信部、18 地上アンテナ、19 走行区間決定部、20 平均勾配決定部、21 走行状態決定部、22 第2優先度決定部、23 第1優先度決定部、24 列車決定部、S51~S211 処理

Claims (10)

  1. 同一き電区間内を走行する複数の列車のそれぞれから、回生制動状態、力行状態または惰行状態のいずれかである走行状態を示す走行状態情報および、前記列車に備えられた蓄電池の充電状態を表す蓄電池状態情報を受信する地上送受信部と、
    1以上の列車の前記走行状態情報が回生制動状態であることを示した場合には、前記複数の列車の前記走行状態情報および前記蓄電池状態情報に基づいて、前記複数の列車の中から前記回生電力を吸収する列車を決定し、前記決定した列車に電力吸収指令を送信するよう前記地上送受信部を制御する制御部と、
    を備えたことを特徴とする地上装置。
  2. 前記走行状態情報および前記蓄電池状態情報に基づいて設定された、前記回生電力を吸収する列車の第1の優先度を記載した第1のテーブルを記憶する記憶部を備え、
    前記制御部は、前記走行状態情報、前記蓄電池情報および前記第1のテーブルに基づいて、前記回生電力を吸収するための列車を決定することを特徴とする請求項1に記載の地上装置。
  3. 前記記憶部は、所定の走行区間の勾配データを記憶し、現在から予め定められた期間を経過後の前記複数の列車の走行状態である将来の走行状態情報および前記蓄電池状態情報に基づいて設定された、前記回生電力を吸収する列車の第2の優先度を記載した第2のテーブルを記憶し、
    前記地上送受信部は、前記複数の列車のそれぞれから現在位置、行先および速度を受信し、
    前記制御部は、前記現在位置、前記行先および前記速度から将来の走行区間を決定する走行区間決定部と、前記記憶部に記憶された前記勾配データを参照して前記将来の走行区間の平均勾配を決定する平均勾配決定部と、前記平均勾配から前記将来の走行状態を決定する走行状態決定部と、前記蓄電池状態情報、前記将来の走行状態および前記第2のテーブルとから第2の優先度を求める第2優先度決定部と、前記蓄電池情報、現在の走行状態および前記第1のテーブルから求められる第1の優先度を求める第1優先度決定部と、前記第1の優先度および前記第2の優先度から前記回生電力を吸収する列車を決定する列車決定部と、
    を備えることを特徴とする請求項2に記載の地上装置。
  4. 同一き電区間内を走行する複数の列車のそれぞれから、回生制動状態、力行状態または惰行状態のいずれかである走行状態を示す走行状態情報および、前記列車に備えられた蓄電池の充電状態を表す蓄電池状態情報を受信する地上送受信部と、
    1以上の列車の前記走行状態情報が力行状態であることを示した場合には、前記複数の列車の前記走行状態情報および前記蓄電池状態情報に基づいて、前記複数の列車の中から電力を放出する列車を決定し、前記決定した列車に電力放出指令を送信するよう前記地上送受信部を制御する制御部と、
    を備えたことを特徴とする地上装置。
  5. 前記走行状態情報および前記蓄電池状態情報に基づいて設定された、前記電力を放出する列車の第1の優先度を記載した第3のテーブルを記憶する記憶部を備え、
    前記制御部は、前記走行状態情報、前記蓄電池情報および前記第3のテーブルに基づいて、前記電力を放出するための列車を決定することを特徴とする請求項4に記載の地上装置。
  6. 前記記憶部は、所定の走行区間の勾配データを記憶し、現在から予め定められた期間を経過後の前記複数の列車の走行状態である将来の走行状態情報および前記蓄電池状態情報に基づいて設定された、前記電力を放出する列車の第2の優先度を記載した第4のテーブルを記憶し、
    前記地上送受信部は、前記複数の列車のそれぞれから現在位置、行先および速度を受信し、
    前記制御部は、前記現在位置、前記行先および前記速度から将来の走行区間を決定する走行区間決定部と、前記記憶部に記憶された前記勾配データを参照して前記将来の走行区間の平均勾配を決定する平均勾配決定部と、前記平均勾配から前記将来の走行状態を決定する走行状態決定部と、前記蓄電池状態情報、前記将来の走行状態および前記第4のテーブルとから第2の優先度を求める第2優先度決定部と、前記蓄電池情報、現在の走行状態および前記第3のテーブルから求められる第1の優先度を求める第1優先度決定部と前記第1の優先度および前記第2の優先度から前記電力を放出する列車を決定する列車決定部と
    を備えることを特徴とする請求項5に記載の地上装置。
  7. 同一き電区間内を走行する複数の列車のそれぞれから、回生制動状態、力行状態または惰行状態のいずれかである走行状態を示す走行状態情報および、前記列車に備えられた蓄電池の充電状態を表す蓄電池状態情報を受信する地上送受信部と、
    1以上の列車の前記走行状態情報が回生制動状態であることを示した場合には、前記複数の列車の前記走行状態情報および前記蓄電池状態情報に基づいて、前記複数の列車の中から前記回生電力を吸収する列車を決定し、前記決定した列車に電力吸収指令を送信するよう前記地上送受信部を制御し、1以上の列車の前記走行状態情報が力行状態であることを示した場合には、前記複数の列車の前記走行状態情報および前記蓄電池状態情報に基づいて、前記複数の列車の中から電力を放出する列車を決定し、前記決定した列車に電力放出指令を送信するよう前記地上送受信部を制御する制御部と、
    を備えたことを特徴とする地上装置。
  8. 列車が回生制動状態、力行状態または惰行状態のいずれかである走行状態を示す走行状態情報および、前記列車に備えられた蓄電池の充電状態を表す蓄電池状態情報を地上装置に送信するとともに、電力を吸収するよう指示された電力吸収指令または電力を放出するよう指示された電力放出指令を受信する車上送受信部と、
    モータから発生した回生電力を架線に還元または蓄電池に充電し、架線または蓄電池からの電力をモータに供給する制御装置から回生制動状態または力行状態を示す走行状態情報を受信した場合には、前記走行状態情報を前記車上送受信部に送信させるよう制御するとともに、
    前記車上送受信部が前記電力吸収指令または電力放出指令を受信した場合には、前記電力吸収指令または前記電力放出指令を前記制御装置に送信する列車情報管理部と、
    を備えることを特徴とする車上装置。
  9. 同一き電区間内を走行する複数の列車のそれぞれから、回生制動状態、力行状態または惰行状態のいずれかである走行状態を示す走行状態情報および、前記列車に備えられた蓄電池の充電状態を表す蓄電池状態情報を受信する地上送受信部と、
    1以上の列車の前記走行状態情報が回生制動状態であることを示した場合には、前記複数の列車の前記走行状態情報および前記蓄電池状態情報に基づいて、前記複数の列車の中から前記回生電力を吸収する列車を決定し、前記決定した列車に電力吸収指令を送信するよう前記地上送受信部を制御する制御部と、
    を備える地上装置と
    前記走行状態情報および蓄電池状態情報を前記地上装置に送信するとともに、前記電力吸収指令を受信する車上送受信部と、
    モータから発生した回生電力を架線に還元または蓄電池に充電し、架線または蓄電池からの電力をモータに供給する制御装置から回生制動状態または力行状態を示す前記走行状態情報を受信した場合には、前記走行状態情報を前記車上送受信部に送信させるよう制御するとともに、前記車上送受信部が前記電力吸収指令を受信した場合には、前記電力吸収指令を前記制御装置に送信する列車情報管理部と、
    を備える車上装置と、
    を備えることを特徴とする、列車エネルギー制御システム。
  10. 同一き電区間内を走行する複数の列車のそれぞれから、回生制動状態、力行状態または惰行状態のいずれかである走行状態を示す走行状態情報および、前記列車に備えられた蓄電池の充電状態を表す蓄電池状態情報を受信する地上送受信部と、
    1以上の列車の前記走行状態情報が力行状態であることを示した場合には、前記複数の列車の前記走行状態情報および前記蓄電池状態情報に基づいて、前記複数の列車の中から前記電力を放出する列車を決定し、前記決定した列車に電力放出指令を送信するよう前記地上送受信部を制御する制御部と、
    を備える地上装置と
    前記走行状態情報および蓄電池状態情報を前記地上装置に送信するとともに、前記電力放出指令を受信する車上送受信部と、
    モータから発生した回生電力を架線に還元または蓄電池に充電し、架線または蓄電池からの電力をモータに供給する制御装置から回生制動状態または力行状態を示す前記走行状態情報を受信した場合には、前記走行状態情報を前記車上送受信部に送信させるよう制御するとともに、前記車上送受信部が前記電力放出指令を受信した場合には、前記電力放出指令を前記制御装置に送信する列車情報管理部と、
    を備える車上装置と、
    を備えることを特徴とする、列車エネルギー制御システム。
PCT/JP2014/000653 2014-02-07 2014-02-07 列車エネルギー制御システム、地上装置、車上装置 WO2015118574A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14881944.4A EP3103676B1 (en) 2014-02-07 2014-02-07 Train energy control system, ground device, and on-vehicle device
PCT/JP2014/000653 WO2015118574A1 (ja) 2014-02-07 2014-02-07 列車エネルギー制御システム、地上装置、車上装置
US15/116,717 US10507739B2 (en) 2014-02-07 2014-02-07 Train-energy control system, ground device, and on-board device
JP2015560850A JP6112234B2 (ja) 2014-02-07 2014-02-07 列車エネルギー制御システム、地上装置、車上装置
CN201480074934.8A CN105980199B (zh) 2014-02-07 2014-02-07 列车能量控制系统、地上装置、车上装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/000653 WO2015118574A1 (ja) 2014-02-07 2014-02-07 列車エネルギー制御システム、地上装置、車上装置

Publications (1)

Publication Number Publication Date
WO2015118574A1 true WO2015118574A1 (ja) 2015-08-13

Family

ID=53777417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000653 WO2015118574A1 (ja) 2014-02-07 2014-02-07 列車エネルギー制御システム、地上装置、車上装置

Country Status (5)

Country Link
US (1) US10507739B2 (ja)
EP (1) EP3103676B1 (ja)
JP (1) JP6112234B2 (ja)
CN (1) CN105980199B (ja)
WO (1) WO2015118574A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017121835A (ja) * 2016-01-05 2017-07-13 株式会社東芝 列車蓄電池制御装置、方法及びプログラム
JP2017147786A (ja) * 2016-02-15 2017-08-24 株式会社東芝 異常診断装置、方法、及びプログラム
JP2022032366A (ja) * 2020-08-11 2022-02-25 トヨタ自動車株式会社 貨物輸送システム、制御装置、及び貨物輸送方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118574A1 (ja) * 2014-02-07 2015-08-13 三菱電機株式会社 列車エネルギー制御システム、地上装置、車上装置
SI3265358T2 (sl) * 2015-03-05 2024-02-29 Stadler Rail Ag Tirno vozilo, postopek za vožnjo tirnega vozila in postopek za izdelavo tirnega vozila
EP3277535B1 (en) * 2015-04-02 2018-08-29 Transnet SOC Limited Regenerative railway braking system
JP5987085B1 (ja) * 2015-05-14 2016-09-06 株式会社トミーテック 模型車両の制御装置および模型車両制御用のコンピュータプログラム
CN105083338B (zh) * 2015-08-25 2016-08-24 北京交通大学 最大化利用再生能量的列车运行控制方法
US10279823B2 (en) * 2016-08-08 2019-05-07 General Electric Company System for controlling or monitoring a vehicle system along a route
CN106394622B (zh) * 2016-11-22 2018-06-22 中车株洲电力机车有限公司 一种推峰机车在驼峰调车模式下的制动控制方法
US11852496B2 (en) * 2021-01-08 2023-12-26 Toyota Motor Engineering & Manufacturing North America, Inc. Predictable and delay tolerant traffic management system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304989A (ja) * 2003-04-01 2004-10-28 Hitachi Ltd エネルギ送受制御システム及び鉄道車両駆動システム、並びに鉄道車両
JP2008148531A (ja) * 2006-12-13 2008-06-26 Toshiba Corp 電気鉄道システム
JP2012175803A (ja) * 2011-02-22 2012-09-10 Hitachi Ltd 電力蓄積手段を備える鉄道システム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19652407C1 (de) * 1996-12-06 1998-06-25 Siemens Ag Verfahren und Vorrichtung zur Energieversorgung eines Fahrbetriebs mit einer Anzahl von Schienenfahrzeugen
DE19654960A1 (de) 1996-12-20 1998-07-02 Elpro Ag Verfahren und Einrichtung zur gleichmäßigen Lastverteilung in Unterwerken für elektrisch betriebene Fahrzeuge
JP2001158356A (ja) 1999-12-03 2001-06-12 Hitachi Ltd 列車制御システム、および、列車運転支援システム
US20060005739A1 (en) * 2001-03-27 2006-01-12 Kumar Ajith K Railroad system comprising railroad vehicle with energy regeneration
FR2866607A1 (fr) * 2004-02-23 2005-08-26 Herve Benjamin Afriat Systeme d'alimentation en energie electrique a tres basse tension par des rails pour vehicule ferroviaire a stockage d'energie embarque
JP2006254536A (ja) 2005-03-08 2006-09-21 Toshiba Corp シミュレーション装置、走行制御装置、運行管理・制御装置
JP4670827B2 (ja) * 2007-03-29 2011-04-13 株式会社日立製作所 車両制御システム
JP2009143266A (ja) * 2007-12-11 2009-07-02 Toyo Electric Mfg Co Ltd 鉄道車両用推進制御支援システム
JP5079535B2 (ja) 2008-01-31 2012-11-21 株式会社日立製作所 鉄道車両駆動装置
WO2010026786A1 (ja) * 2008-09-03 2010-03-11 三菱電機株式会社 電力供給制御システムおよび電力供給制御方法
JP2012040955A (ja) 2010-08-19 2012-03-01 Toshiba Corp 電気鉄道用電力システム
JP2012197055A (ja) 2011-03-23 2012-10-18 Hitachi Ltd 鉄道車両の駆動システム
DE102011075218A1 (de) * 2011-05-04 2012-11-08 Siemens Aktiengesellschaft Verfahren zum Betreiben spurgebundener Fahrzeuge
EP2662822B1 (en) 2011-07-25 2019-11-27 SK Telecom. Co., Ltd. System for managing vehicle energy, and method and apparatus for same
JP6082937B2 (ja) * 2012-11-30 2017-02-22 株式会社日立製作所 電鉄き電線の制御装置およびシステム
EP2899056B1 (en) * 2014-01-23 2020-04-08 Mitsubishi Electric R&D Centre Europe B.V. Method and a device for controlling the voltage of a catenary supplying electric power to rolling stock
WO2015118574A1 (ja) * 2014-02-07 2015-08-13 三菱電機株式会社 列車エネルギー制御システム、地上装置、車上装置
US10351018B2 (en) * 2015-02-19 2019-07-16 Mitsubishi Electric Corporation Station-building power-supply device and method of calculating regeneration determining voltage value
EP3085570B1 (en) * 2015-04-20 2019-12-04 ALSTOM Transport Technologies An electrical power supply system for an electrically propelled vehicle and methods of controlling such an electrical power supply system
WO2016189715A1 (ja) * 2015-05-27 2016-12-01 三菱電機株式会社 電圧制御装置および電圧計測装置
US20170197518A1 (en) * 2016-01-12 2017-07-13 Ford Global Technologies, Llc Recovering Braking Energy Via Dynamic Mobile Wireless Power Transfer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304989A (ja) * 2003-04-01 2004-10-28 Hitachi Ltd エネルギ送受制御システム及び鉄道車両駆動システム、並びに鉄道車両
JP2008148531A (ja) * 2006-12-13 2008-06-26 Toshiba Corp 電気鉄道システム
JP2012175803A (ja) * 2011-02-22 2012-09-10 Hitachi Ltd 電力蓄積手段を備える鉄道システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3103676A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017121835A (ja) * 2016-01-05 2017-07-13 株式会社東芝 列車蓄電池制御装置、方法及びプログラム
JP2017147786A (ja) * 2016-02-15 2017-08-24 株式会社東芝 異常診断装置、方法、及びプログラム
JP2022032366A (ja) * 2020-08-11 2022-02-25 トヨタ自動車株式会社 貨物輸送システム、制御装置、及び貨物輸送方法

Also Published As

Publication number Publication date
US10507739B2 (en) 2019-12-17
JPWO2015118574A1 (ja) 2017-03-23
EP3103676A4 (en) 2017-09-20
CN105980199B (zh) 2017-11-14
JP6112234B2 (ja) 2017-04-12
CN105980199A (zh) 2016-09-28
EP3103676B1 (en) 2020-09-16
US20160347204A1 (en) 2016-12-01
EP3103676A1 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6112234B2 (ja) 列車エネルギー制御システム、地上装置、車上装置
US11142088B2 (en) Vehicle control system and method
CN109715433B (zh) 用于给电池驱动式车辆充电的方法
JP5992604B2 (ja) ハイブリッド電気車両のエネルギー管理システムおよび燃料節約方法
CN103223874B (zh) 电动车充电减少设备和方法
CN111776024B (zh) 一种辅助停车区位置确定方法和相关装置
US10406937B2 (en) Electric vehicle charger and charging method
KR101776008B1 (ko) 급속 충전을 통한 정거장 간 전동차 운행시스템
WO2012174009A2 (en) System and method for controlling and powering a vehicle
CN111619369A (zh) 用于采矿运输卡车的所有电气操作的系统和方法
JP2003134604A (ja) 鉄道車両
JP4907262B2 (ja) 電気車両の制御装置
WO2010100776A1 (ja) 架線レス交通車両の充電方法及び充電システム
JP4156426B2 (ja) エネルギ送受制御システム及び鉄道車両駆動システム、並びに鉄道車両
JP4709654B2 (ja) 交通システム
CN104379397B (zh) 铁道系统
JP5190883B2 (ja) 架線電圧補償車
US10647203B2 (en) Vehicle battery charging system
JP2016158375A (ja) 電池駆動システム及び電池駆動方法
EP4299358A1 (en) A method for charging an electric vehicle in a charging station system
US20240181910A1 (en) Method for charging a battery of an electric vehicle at a charging station
EP4382344A1 (en) A method for charging a battery of an electric vehicle at a charging station
US20220402399A1 (en) Vehicle control system and method
JP2016201948A (ja) 蓄電装置および充放電制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881944

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560850

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15116717

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014881944

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014881944

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE