WO2015115621A1 - 通信制御方法、マスタ基地局、セカンダリ基地局、及びユーザ端末 - Google Patents

通信制御方法、マスタ基地局、セカンダリ基地局、及びユーザ端末 Download PDF

Info

Publication number
WO2015115621A1
WO2015115621A1 PCT/JP2015/052764 JP2015052764W WO2015115621A1 WO 2015115621 A1 WO2015115621 A1 WO 2015115621A1 JP 2015052764 W JP2015052764 W JP 2015052764W WO 2015115621 A1 WO2015115621 A1 WO 2015115621A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
secondary base
user terminal
handover
communication control
Prior art date
Application number
PCT/JP2015/052764
Other languages
English (en)
French (fr)
Inventor
真人 藤代
童 方偉
ヘンリー チャン
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2015560053A priority Critical patent/JP6082129B2/ja
Priority to EP15743524.9A priority patent/EP3101949B1/en
Publication of WO2015115621A1 publication Critical patent/WO2015115621A1/ja
Priority to US15/009,441 priority patent/US9867107B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/26Reselection being triggered by specific parameters by agreed or negotiated communication parameters
    • H04W36/28Reselection being triggered by specific parameters by agreed or negotiated communication parameters involving a plurality of connections, e.g. multi-call or multi-bearer connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/2592Translation of Internet protocol [IP] addresses using tunnelling or encapsulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00695Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using split of the control plane or user plane
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/165Performing reselection for specific purposes for reducing network power consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present invention relates to a communication control method, a master base station, a secondary base station, and a user terminal used in a mobile communication system.
  • 3GPP 3rd Generation Partnership Project
  • a specific base station for example, a small cell base station
  • a general base station for example, a macrocell base station
  • a dual connection system is scheduled to be introduced after Release 12 (see Non-Patent Document 1).
  • the user terminal establishes connections with a plurality of base stations (general base stations and specific base stations) simultaneously. Since the user terminal is assigned radio resources from each base station, the throughput is expected to be improved.
  • the double connection method may be referred to as inter-base station carrier aggregation (inter-eNB CA).
  • only one base station among the plurality of base stations that establish a connection with the user terminal establishes an RRC connection with the user terminal.
  • master base station among the plurality of base stations that establish a connection with the user terminal establishes an RRC connection with the user terminal.
  • secondary base stations among the plurality of base stations provide additional radio resources to the user terminal without establishing an RRC connection with the user terminal.
  • the user terminal in the RRC connected state performs handover as it moves.
  • an object of the present invention is to provide a communication control method, a master base station, a secondary base station, and a user terminal that realize efficient handover in a double connection scheme.
  • the communication control method supports a double connection scheme using a master base station that establishes an RRC connection with a user terminal and a secondary base station that provides additional radio resources to the user terminal.
  • a communication control method in a mobile communication system In the communication control method, a handover command for instructing the handover is issued from the master base station when performing handover of the user terminal related to the master base station after starting communication of the dual connection scheme. Transmitting to the user terminal. In the step of transmitting the handover command, the master base station transmits the handover command including secondary base station information regarding the setting of the secondary base station to the user terminal.
  • the secondary base station information is information for setting release of the setting of the secondary base station in the user terminal.
  • the handover command including the secondary base station information is configured by one RRC reconfiguration message.
  • the master base station is a source master base station that is a source of the handover.
  • the handover is an inter-base station handover from the source master base station to a target base station.
  • the user terminal that has received the secondary base station information together with the handover command releases the setting of the secondary base station according to the secondary base station information, and the target according to the handover command.
  • the method further includes establishing a new RRC connection with the base station.
  • the source master base station when performing the handover, transmits a handover request to the target base station, and the target base station approves the handover request.
  • the source master base station receives a handover acknowledgment from the target base station, and the source master base station requests a resource release request to the secondary base station in response to the reception of the handover acknowledgment. Further comprising:
  • the handover command including the secondary base station information is transmitted to the user terminal.
  • the communication control method when performing the handover, further includes a step in which the source master base station transmits a handover request including information on the secondary base station to the target base station.
  • the communication control method includes a step in which the target base station transmits a switching request for moving a data path from the source master base station to the target base station to a core network; A station receiving an acknowledgment to the switching request from the core network, and in response to receiving the acknowledgment, the target base station sends a context release request for requesting release of context information of the user terminal. Transmitting to the source master base station.
  • the communication control method may be configured such that the source master base station performs the handover between the secondary base station and the user terminal when the handover is determined or when a handover acknowledgment is received from the target base station.
  • the method further includes the step of determining whether to release the connection between the two.
  • the target base station sets a data path between the source / master base station and a core network, and a data path between the secondary base station and the core network.
  • the method further includes a step of transmitting a path switching request for collectively switching to the target base station to the core network.
  • the secondary base station information is information for setting maintenance of a connection between the secondary base station and the user terminal.
  • the user terminal that has received the secondary base station information together with the handover command maintains a connection with the secondary base station according to the secondary base station information, and a target according to the handover command.
  • the method further includes establishing a new RRC connection with the base station.
  • the communication control method transmits information indicating that the handover is performed while maintaining a connection between the secondary base station and the user terminal from the source master base station to a target base station. Further comprising the step of:
  • the communication control method receives information indicating that the master base station corresponding to the user terminal is switched from the source master base station to a target base station from the source master base station to the secondary base. The method further includes transmitting to the station.
  • the communication control method determines whether or not a double connection method using a data path structure in which a data path between the secondary base station and a core network passes through the master base station is possible. Whether to perform the handover by releasing the connection between the secondary base station and the user terminal, or whether to perform the handover while maintaining the connection between the secondary base station and the user terminal.
  • the method further includes a step of determining.
  • the said communication control method is based on whether the serving gateway which accommodates a target base station, and the serving gateway which accommodates the said secondary base station correspond, The said secondary base station, the said user terminal, And determining whether to perform the handover by releasing the connection between the secondary base station and the handover while maintaining the connection between the secondary base station and the user terminal.
  • the master base station performs dual connection communication with the user terminal together with the secondary base station.
  • the master base station transmits a handover command for instructing the handover to the user terminal when performing handover of the user terminal associated with the master base station after starting communication of the dual connection scheme A transmission unit.
  • the transmission unit transmits the handover command including secondary base station information related to the setting of the secondary base station.
  • the user terminal performs dual connection communication with the master base station and the secondary base station.
  • the user terminal receives a handover command for instructing the handover from the master base when performing handover of the user terminal associated with the master base station after starting communication of the dual connection scheme It has a receiving part.
  • the receiving unit receives the handover command including secondary base station information related to the setting of the secondary base station.
  • a communication control method supports a double connection scheme using a master base station that establishes an RRC connection with a user terminal and a secondary base station that provides additional radio resources to the user terminal.
  • a communication control method in a mobile communication system when starting the communication of the double connection method, when switching the secondary base station from the source secondary base station to the target secondary base station, the target secondary base station and the user terminal.
  • the establishment setting information for adding the setting for the connection between the master base station and the user terminal is transmitted.
  • the master base station in the step of transmitting the establishment setting information, releases release setting information for releasing a setting for connection between the source / secondary base station and the user terminal. It transmits to the said user terminal with setting information.
  • the master base station transmits one RRC reconfiguration message including the release setting information and the establishment setting information to the user terminal.
  • the master base station includes a secondary base station release process between the master base station and the source secondary base station, and a secondary base station between the master base station and the target secondary base station. After the base station addition process is completed, the establishment setting information is transmitted to the user terminal.
  • the communication control method includes a step of transmitting an “SN Status Transfer” message from the source secondary base station to the target secondary base station via the master base station; Transferring the data of the user terminal from the source secondary base station to the target secondary base station via the master base station.
  • the communication control method includes a step of transmitting a first replacement request for replacing the secondary base station from the master base station to the source secondary base station, and the first replacement request.
  • the source secondary base station that has received the second transmission request for replacing the secondary base station to the target secondary base station, and the target secondary base station that has received the second replacement request.
  • a secondary base station configured to set radio resources for the user terminal in response to receiving the second replacement request; and resource setting information for the user terminal from the target secondary base station to the master Transmitting to the base station.
  • the source secondary base station transmits a replacement request for replacing the secondary base station to the target secondary base station, and the replacement request is received.
  • the target secondary base station sets radio resources for the user terminal in response to receiving the replacement request; and resource setting information for the user terminal from the target secondary base station to the master Transmitting to the base station.
  • the master base station transmits the establishment setting information to the user terminal in response to reception of the resource setting information from the target / secondary base station. To do.
  • the said communication control method WHEREIN The said user terminal which received the said setting information performs the random access with respect to the said target secondary base station based on the said setting information, The said user terminal, The target secondary base station that detects the synchronization further transmits a replacement completion notification indicating the replacement completion of the secondary base station to the master base station.
  • the master base station performs dual connection communication with the user terminal together with the secondary base station.
  • the master base station switches the secondary base station from a source / secondary base station to a target / secondary base station after starting communication in the double connection method, the target / secondary base station, the user terminal, A transmission unit configured to transmit establishment setting information for adding a setting for connection between the user terminals to the user terminal.
  • the user terminal performs dual connection communication with the master base station and the secondary base station.
  • the user terminal switches the secondary base station from the source / secondary base station to the target / secondary base station after starting communication in the double connection method
  • the user terminal and the user terminal A receiving unit for receiving, from the master base station, establishment setting information for adding a setting for connection between the master base stations.
  • a communication control method supports a double connection method using a master base station that establishes an RRC connection with a user terminal and a secondary base station that provides additional radio resources to the user terminal.
  • a communication control method in a mobile communication system the communication control device makes a determination on the dual connection method based on whether a serving gateway that accommodates the master base station matches a serving gateway that accommodates the secondary base station. Steps to perform.
  • the communication control method further includes a step in which the master base station and / or the secondary base station transmits identification information of a serving gateway accommodating the base station to the communication control device.
  • the double connection method includes a first double connection method for establishing a data path between each of the master base station and the secondary base station and one serving gateway. Yes.
  • the communication control device does not apply the first double connection method when a serving gateway that accommodates the master base station does not match a serving gateway that accommodates the secondary base station. Judge.
  • the master base station performs dual connection communication with the user terminal together with the secondary base station.
  • the master base station includes a transmission unit that transmits a request message for requesting resource preparation or change for the dual connection to the secondary base station via the X2 interface.
  • the transmission unit transmits the request message including identification information of a serving gateway connected to the master base station via an S1 interface.
  • the identification information is an S1 tunnel endpoint ID (S1-TEID) of the serving gateway.
  • the identification information is an IP address of the serving gateway.
  • the secondary base station performs dual connection communication with the user terminal together with the master base station.
  • the secondary base station includes a receiving unit that receives a request message for requesting resource preparation or change for the double connection for the user terminal from the master base station via the X2 interface.
  • the receiving unit receives the request message including identification information of a serving gateway connected to the master base station via an S1 interface.
  • FIG. 6A shows a data path configuration
  • FIG. 6B shows a protocol stack configuration.
  • FIG. 7A shows a data path configuration
  • FIG. 7B shows a protocol stack configuration.
  • FIG. 7A shows a data path configuration
  • FIG. 7B shows a protocol stack configuration.
  • FIG. 7A shows a data path configuration
  • FIG. 7B shows a protocol stack configuration.
  • FIG. 7A shows a data path configuration
  • FIG. 7B shows a protocol stack configuration.
  • FIG. 7A shows a data path configuration
  • FIG. 7B shows a protocol stack configuration.
  • FIG. 7A shows a data path configuration
  • FIG. 7B shows a protocol stack configuration.
  • FIG. 7A shows a data path configuration
  • FIG. 7B shows a protocol stack configuration.
  • FIG. 7A shows a data path configuration
  • FIG. 7B shows a protocol stack configuration.
  • FIG. 7A shows a data path configuration
  • FIG. 7B shows a protocol stack configuration.
  • FIG. 7A shows a data path configuration
  • FIG. 7B shows a protocol stack configuration.
  • FIG. 7A
  • the communication control method supports a double connection scheme using a master base station that establishes an RRC connection with a user terminal and a secondary base station that provides additional radio resources to the user terminal.
  • a method in a mobile communication system a handover for instructing the handover is performed when a handover of the user terminal is performed from a source master base station to a target master base station after starting communication in the dual connection scheme. Transmitting a command from the source master base station to the user terminal.
  • the source master base station transmits secondary base station information related to the setting of the secondary base station to the user terminal together with the handover command.
  • the source master base station transmits one RRC reconfiguration message including the handover command and the secondary base station information to the user terminal.
  • the secondary base station information is information for setting release of a connection between the secondary base station and the user terminal.
  • the communication control method is such that the user terminal that has received the secondary base station information together with the handover command establishes a connection with the secondary base station according to the secondary base station information.
  • the method further comprises establishing a new RRC connection with the target master base station in response to the handover command while releasing.
  • the communication control method is such that when the source master base station determines the handover or receives a handover acknowledgment from the target master base station, the secondary base station The method further comprises the step of determining whether to release the connection between the station and the user terminal.
  • the communication control method is such that the target master base station has a data path between the source master base station and a core network, and the secondary base station and the core network. And a step of transmitting to the core network a path switching request for collectively switching the data paths between and to the target master base station.
  • the secondary base station information is information for setting maintenance of a connection between the secondary base station and the user terminal.
  • the user terminal that has received the secondary base station information together with the handover command establishes a connection with the secondary base station according to the secondary base station information. And maintaining a new RRC connection with the target master base station in response to the handover command while maintaining.
  • the communication control method receives information indicating that the handover is performed while maintaining a connection between the secondary base station and the user terminal from the source / master base station.
  • the method further includes a step of transmitting to the target master base station.
  • the communication control method includes information indicating that the master base station corresponding to the user terminal is switched from the source master base station to the target master base station. -It further has the step which transmits to the said secondary base station from a master base station.
  • the communication control method determines whether a double connection method using a data path structure in which a data path between the secondary base station and a core network passes through the master base station is possible. Whether to perform the handover by releasing the connection between the secondary base station and the user terminal, or whether to perform the handover while maintaining the connection between the secondary base station and the user terminal.
  • the method further includes a step of determining.
  • the communication control method is based on whether the serving gateway that accommodates the target master base station matches the serving gateway that accommodates the secondary base station, and the secondary base station and the The method further includes the step of determining whether to perform the handover by releasing the connection with the user terminal, or to perform the handover while maintaining the connection between the secondary base station and the user terminal.
  • the communication control method supports a double connection method using a master base station that establishes an RRC connection with a user terminal and a secondary base station that provides additional radio resources to the user terminal.
  • a method in a mobile communication system when starting the communication of the double connection method, when switching the secondary base station from the source secondary base station to the target secondary base station, the target secondary base station and the user terminal Transmission of establishment setting information for setting establishment of a connection between the master base station and the user terminal.
  • the master base station in the step of transmitting the establishment setting information, sets release setting information for setting release of a connection between the source / secondary base station and the user terminal to the establishment setting information. Together with the user terminal.
  • the master base station in the step of transmitting the release setting information, transmits one RRC reconfiguration message including the release setting information and the establishment setting information to the user terminal.
  • the master base station performs a secondary base station release process between the master base station and the source secondary base station, and the master base station and the target secondary base station. After the secondary base station addition process between and is completed, the establishment setting information is transmitted to the user terminal.
  • the master base station executes at least a part of the secondary base station release process and at least a part of the secondary base station addition process in parallel.
  • the communication control method includes transmitting a first replacement request for replacing the secondary base station from the master base station to the source secondary base station,
  • the source / secondary base station that has received the first replacement request transmits a second replacement request for replacing the secondary base station to the target / secondary base station, and the second replacement request.
  • the received target secondary base station sets radio resources for the user terminal in response to receiving the second replacement request, and sets resource setting information for the user terminal to the target secondary base station. Transmitting from the base station to the master base station.
  • the source / secondary base station transmits a replacement request for replacing the secondary base station to the target / secondary base station
  • the target secondary base station that has received the replacement request sets a radio resource for the user terminal in response to the reception of the replacement request, and sets resource setting information for the user terminal to the target secondary Transmitting from the base station to the master base station.
  • the master base station in the step of transmitting the establishment setting information, performs the establishment setting in response to reception of the resource setting information from the target / secondary base station. Information is transmitted to the user terminal.
  • the user terminal that has received the establishment setting information performs random access to the target secondary base station based on the establishment setting information, and the user terminal
  • the target secondary base station that detects the synchronization with the base station further transmits a replacement completion notification indicating completion of replacement of the secondary base station to the master base station.
  • the communication control method supports a double connection scheme using a master base station that establishes an RRC connection with a user terminal and a secondary base station that provides additional radio resources to the user terminal.
  • the communication control device makes a determination on the dual connection method based on whether a serving gateway that accommodates the master base station matches a serving gateway that accommodates the secondary base station. Steps to perform.
  • the communication control method further includes a step in which the master base station and / or the secondary base station transmits identification information of a serving gateway accommodating the base station to the communication control apparatus.
  • the double connection method includes a first double connection method in which a data path is established between each of the master base station and the secondary base station and one serving gateway.
  • the communication control device does not apply the first double connection method when a serving gateway that accommodates the master base station does not match a serving gateway that accommodates the secondary base station.
  • FIG. 1 is a configuration diagram of an LTE system according to the first embodiment.
  • the LTE system includes a UE (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a user terminal.
  • the UE 100 is a mobile communication device, and performs radio communication with a cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a user data routing function, a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • the MME performs various mobility controls for the UE 100.
  • the S-GW controls user data transfer.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes a plurality of antennas 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit.
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the radio transceiver 110 converts the baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal (received signal) and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain location information indicating the geographical location of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes a plurality of antennas 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit. Further, the memory 230 may be integrated with the processor 240, and this set (that is, a chip set) may be used as the processor.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the radio transceiver 210 converts the baseband signal (transmission signal) output from the processor 240 into a radio signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal (received signal) and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of UE100 and the physical layer of eNB200, user data and a control signal are transmitted via a physical channel.
  • the MAC layer performs priority control of data, retransmission processing by hybrid ARQ (HARQ), random access procedure at the time of establishing RRC connection, and the like.
  • HARQ hybrid ARQ
  • the MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme) and an allocation resource block to the UE 100.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, user data and control signals are transmitted via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected state, and otherwise, the UE 100 is in the RRC idle state.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • the LTE system supports a double connection method.
  • the dual connection method is scheduled to be introduced after Release 12.
  • the UE 100 establishes connections with a plurality of eNBs 200 at the same time. Since radio resources are allocated from each eNB 200 to the UE 100, an improvement in throughput is expected.
  • the double connection method may be referred to as inter-eNB 200 carrier aggregation (inter-eNB CA).
  • FIG. 5 is a diagram for explaining the outline of the double connection method.
  • the master eNB (MeNB) 200 ⁇ / b> M among the plurality of eNBs 200 that establish a connection with the UE 100 establishes an RRC connection with the UE 100.
  • the secondary eNB (SeNB) 200S among the plurality of eNBs 200 provides additional radio resources to the UE 100 without establishing an RRC connection with the UE 100.
  • the MeNB 200M establishes not only the user plane connection but also the control plane connection with the UE 100.
  • SeNB200S establishes a user plane connection with UE100, without establishing a control plane connection with UE100.
  • An Xn interface is set between the MeNB 200M and the SeNB 200S. The Xn interface is an X2 interface or a new interface.
  • the UE 100 can perform carrier aggregation using N cells managed by the MeNB 200M and M cells managed by the SeNB 200S at the same time.
  • the maximum number of serving cells of the UE 100 that is, the maximum number of (N + M) is, for example, 5.
  • the group consisting of N cells managed by the MeNB 200M is referred to as a master cell group (MCG).
  • MCG master cell group
  • SCG secondary cell group
  • a special cell in which the PUCCH of the UE 100 is provided is set in the SCG. The special cell performs a part of the function of the primary cell (PCell) in the carrier aggregation.
  • FIGS. 6 and 7 are diagrams for explaining a configuration method of a user data transfer path (data path) in the dual connection method.
  • data path There are mainly two types of user plane architectures (UP architectures) that constitute user data transfer paths (data paths) in the dual connection method.
  • UP architectures user plane architectures
  • FIG. 6 shows a first UP architecture (also referred to as UP architecture “1A”).
  • UP architecture “1A” UP architecture “1A”.
  • an S1-U interface between the MeNB 200M and the S-GW 300U and an S1-U interface between the SeNB 200S and the S-GW 300U are used.
  • the EPS bearer # 1 between the UE 100 and the P-GW passes through the S1-U interface between the MeNB 200M and the S-GW 300U.
  • the EPS bearer # 2 between the UE 100 and the P-GW passes through the S1-U interface between the SeNB 200S and the S-GW 300U.
  • the data path between the SeNB 200S and the S-GW 300U does not pass through the MeNB 200M.
  • each of the MeNB 200M and the SeNB 200S performs processing of each layer of PDCP, RLC, and MAC.
  • FIG. 7 shows a second UP architecture (also referred to as UP architecture “3C”).
  • the EPS bearer # 2 between the UE 100 and the P-GW is divided in the MeNB 200M, and one of the divided bearers (split bearer) passes through the SeNB 200S. It terminates in UE 100, and the other split (split bearer) terminates in UE 100 without going through SeNB 200S.
  • the data path between the SeNB 200S and the S-GW 300U passes through the MeNB 200M.
  • FIG. 3C UP architecture
  • processing of each layer is performed by the PDCP of the MeNB 200M, the RLC and the MAC of the SeNB 200S.
  • the MeNB 200M may be in charge of processing up to RLC (or a partial function of RLC).
  • a scenario is mainly assumed in which the master cell is a macro cell and the secondary cell is a cell (small cell) having a narrower coverage than the macro cell.
  • the small cell is, for example, a pico cell or a femto cell, and has a coverage at least partially overlapping the coverage of the macro cell.
  • FIG. 8 is a diagram showing an operating environment according to the first embodiment.
  • the UE 100 is located in an overlapping region of the coverage of the macro cell 1 and the coverage of the small cell, and performs communication in a double connection scheme by a combination of the macro cell 1 (MeNB 200M1) and the small cell (SeNB 200S) ing.
  • the small cell is located near the boundary between the two macro cells 1 and 2.
  • UE100 is moving toward the macro cell 2 (MeNB200M2). Therefore, the UE 100 needs to be handed over from the MeNB 200M1 (source) to the MeNB 200M2 (target).
  • the MeNB 200M1 is referred to as a source MeNB (S-MeNB)
  • the MeNB 200M2 is referred to as a target MeNB (T-MeNB).
  • FIG. 9 is a sequence diagram showing a basic sequence when the UE 100 is handed over from the S-MeNB 200M1 to the T-MeNB 200M2.
  • the UE 100 performs communication in the double connection scheme with the S-MeNB 200M1 and the SeNB 200S (S101).
  • the release procedure (S104 to S113) of the SeNB 200S is performed.
  • a handover procedure (S114 to S124) from the S-MeNB 200M1 to the T-MeNB 200M2 is performed.
  • an addition procedure (S125 to S137) of the SeNB 200S is performed.
  • the S-MeNB 200M1 determines the handover of the UE 100 to the T-MeNB 200M2.
  • the S-MeNB 200M1 determines release of the SeNB resource corresponding to the UE 100.
  • the S-MeNB 200M1 transmits a SeNB resource release request (SeNB Release Request) corresponding to the UE 100 to the SeNB 200S.
  • the SeNB 200S releases SeNB resources in response to the release request.
  • the SeNB 200S transmits a response to the release request (SeNB Release Response) to the T-MeNB 200M2.
  • the SeNB 200S transmits a switching request (Path Switch Request) for moving the bearer from the SeNB 200S to the S-MeNB 200M1 to the MME 300C.
  • the MME 300C transmits an affirmative response to the switching request to the SeNB 200S.
  • the SeNB 200S performs a data transfer process of the UE 100 on the S-MeNB 200M1.
  • step S112 the S-MeNB 200M1 transmits an RRC reconfiguration message (RRC Connection Reconfiguration) for releasing the SeNB 200S to the UE 100.
  • UE100 releases the setting which concerns on SeNB200S.
  • step S113 the UE 100 transmits an RRC reconfiguration completion notification (RRC Connection Reconfiguration Complete) to the S-MeNB 200M1.
  • step S114 the S-MeNB 200M1 transmits a handover request to the T-MeNB 200M2.
  • the T-MeNB 200M2 determines whether to accept the handover request.
  • step S116 the T-MeNB 200M2 transmits a handover acknowledgment (Handover Request Acknowledge) to the S-MeNB 200M1.
  • step S117 the S-MeNB 200M1 transmits an RRC reconfiguration message for handover to the UE 100.
  • the SeNB 200S performs the data transfer process of the UE 100 on the T-MeNB 200M2.
  • step S120 the UE 100 performs random access to the T-MeNB 200M2 based on the RRC reconfiguration message, and synchronizes with the T-MeNB 200M2.
  • step S121 the UE 100 transmits an RRC reconfiguration completion notification to the T-MeNB 200M2.
  • step S122 the T-MeNB 200M2 transmits a switching request for moving the data path from the S-MeNB 200M1 to the T-MeNB 200M2 to the MME 300C.
  • step S123 the MME 300C transmits an affirmative response to the switching request to the SeNB 200S.
  • step S124 the T-MeNB 200M2 transmits a UE context release request to the S-MeNB 200M1.
  • step S125 the UE 100 transmits a measurement report to the T-MeNB 200M2.
  • step S126 the T-MeNB 200M2 determines to add a SeNB resource based on a measurement report or the like.
  • step S127 the T-MeNB 200M2 transmits an SeNB resource allocation request (SeNB Addition / Modification Request) to the SeNB 200S.
  • SeNB 200S performs radio resource setting when approving the request.
  • step S129 the SeNB 200S transmits a radio resource setting notification (SeNB Addition / Modification Command) to the T-MeNB 200M2.
  • the T-MeNB 200M2 performs the data transfer process of the UE 100 to the SeNB 200S.
  • step S132 the T-MeNB 200M2 transmits an RRC reconfiguration message for adding the SeNB 200S to the UE 100.
  • UE100 starts application of the radio
  • step S133 the UE 100 transmits an RRC reconfiguration completion notification (RRC Connection Reconfiguration Complete) to the T-MeNB 200M2.
  • step S134 the UE 100 performs random access to the SeNB 200S based on the RRC reconfiguration message, and synchronizes with the SeNB 200S.
  • step S135 the SeNB 200S that has detected the synchronization with the UE 100 transmits a notification (SeNB Addition / Modification Complete) that the radio resource setting can be used to the T-MeNB 200M2.
  • step S136 the T-MeNB 200M2 transmits a switching request for moving the bearer from the S-MeNB 200M1 to the SeNB 200S to the MME 300C.
  • step S137 the MME 300C transmits an acknowledgment to the switching request to the SeNB 200S.
  • RRC reconfiguration RRC Connection Reconfiguration
  • SeNB 200S release procedure the handover procedure
  • SeNB 200S addition procedure RRC reconfiguration (RRC Connection Reconfiguration) for the UE 100 is performed in each of the SeNB 200S release procedure, the handover procedure, and the SeNB 200S addition procedure.
  • RRC reconfiguration S112 for releasing the SeNB 200S is performed.
  • S117 the handover procedure from the S-MeNB 200M1 to the T-MeNB 200M2
  • RRC reconfiguration for handover S117
  • addition procedure of SeNB200S RRC resetting for the addition of SeNB200S (S132) is performed.
  • signaling with the core network may occur in each of the SeNB 200S release procedure, the handover procedure, and the SeNB 200S addition procedure.
  • signaling S108, S109
  • S-MeNB 200M1 the release procedure of the SeNB 200S
  • signaling (S122, S123) for switching the data path from the S-MeNB 200M1 to the T-MeNB 200M2 occurs.
  • the above-described increase in signaling can be suppressed by improving the handover sequence between the MeNBs 200M in the double connection method.
  • an improved handover sequence will be described.
  • FIG. 10 is a sequence diagram showing an operation pattern 1 according to the first embodiment. In the following, differences from the basic sequence will be mainly described.
  • the UE 100 performs communication in a double connection scheme with the S-MeNB 200M1 and the SeNB 200S (S201).
  • the S-MeNB 200M1 determines the handover of the UE 100 to the T-MeNB 200M2 based on the measurement report received (S202) from the UE 100.
  • the S-MeNB 200M1 may determine whether to release the connection between the SeNB 200S and the UE 100 when determining handover.
  • step S204 the S-MeNB 200M1 transmits a handover request to the T-MeNB 200M2.
  • the T-MeNB 200M2 determines whether the handover request is approved.
  • step S206 the T-MeNB 200M2 transmits a handover acknowledgment (Handover Request Acknowledge) to the S-MeNB 200M1.
  • the T-MeNB 200M2 includes, in the handover acknowledgment, the RRC container in which the SeNB setting is not performed.
  • the S-MeNB 200M1 may determine whether to release the connection between the SeNB 200S and the UE 100 when receiving a handover acknowledgment from the T-MeNB 200M2.
  • the S-MeNB 200M1 and the SeNB 200S perform a SeNB 200S release procedure (steps S207 to S212).
  • the release procedure is the same as the basic sequence.
  • step S213 the S-MeNB 200M1 transmits an RRC reconfiguration message including a handover command for instructing handover to the UE 100.
  • the S-MeNB 200M1 transmits information (SeNB remove) for setting the release of the connection between the SeNB 200S and the UE 100 to the UE 100 together with a handover command.
  • SeNB remove corresponds to secondary base station information related to the setting of SeNB 200S. It is preferable that the S-MeNB 200M1 transmits one RRC reconfiguration message including the handover command and the SeNB remove to the UE 100. Thereby, since the RRC reconfiguration message for only releasing SeNB200S becomes unnecessary, RRC reconfiguration can be reduced by one time compared with the basic sequence.
  • the UE 100 that has received the SeNB information together with the handover command releases the connection with the SeNB 200S according to the SeNB remove and synchronizes with the T-MeNB 200M2 according to the handover command (S216), and establishes a new RRC connection (S217). )
  • the T-MeNB 200M2 switches the data path between the S-MeNB 200M1 and the S-GW 300U and the data path (bearer) between the SeNB 200S and the S-GW 300U collectively to the T-MeNB 200M2.
  • a path switching request is transmitted to the MME 300C (S218).
  • bearer information of the S-MeNB 200M1 is included in the above-described handover request (S204) or other message.
  • the T-MeNB 200M2 can identify the bearer to be switched based on the bearer information included in the handover request.
  • the MME 300C In response to the path switching request, the MME 300C collectively switches the data path between the S-MeNB 200M1 and the S-GW 300U and the data path (bearer) between the SeNB 200S and the S-GW 300U to the T-MeNB 200M2. Perform path switching. Thereby, in the case of the first UP architecture, signaling for moving the bearer from the SeNB 200S to the S-MeNB 200M1 becomes unnecessary.
  • the addition procedure (steps S211 to S233) of the SeNB 200S is the same as the basic sequence.
  • FIG. 11 is a sequence diagram showing an operation pattern 2 according to the first embodiment.
  • the UE 100 performs communication in a double connection scheme with the S-MeNB 200M1 and the SeNB 200S (S301).
  • the S-MeNB 200M1 determines the handover of the UE 100 to the T-MeNB 200M2 based on the measurement report received (S302) from the UE 100. Further, the S-MeNB 200M1 determines whether or not to release the connection between the SeNB 200S and the UE 100 when determining handover. In the operation pattern 2, the S-MeNB 200M1 can determine a handover (DC HO: Dual Connectivity HandOver) maintaining the SeNB 200S. After determining the handover maintaining the SeNB 200S, the following operation is performed.
  • DC HO Dual Connectivity HandOver
  • the S-MeNB 200M1 transmits a handover request to the T-MeNB 200M2.
  • the S-MeNB 200M1 includes information (SeNB Information) indicating that the handover is performed while maintaining the connection between the SeNB 200S and the UE 100 in the handover request.
  • SeNB Information includes information (eNB ID, cell ID, etc.) related to SeNB 200S.
  • an element included in SeNB Addition / Modification eg UE capabilities and the radio resource configuration of the UE
  • the S-MeNB 200M1 may hold the RRC container received from the SeNB 200S during SeNB Addition before this sequence, and include the RRC container in the handover request.
  • the RRC container can be used, for example, in step S311 described later.
  • step S305 the T-MeNB 200M2 determines whether to accept the handover request.
  • the T-MeNB 200M2 may determine including acceptance of the SeNB Addition.
  • step S306 the T-MeNB 200M2 transmits a handover acknowledgment to the S-MeNB 200M1.
  • the handover acknowledgment in step S306 may be a normal handover acknowledgment, or may be omitted when it is transmitted again in step S312 described later.
  • the handover acknowledgment in step S306 may be a simplified version of a normal handover acknowledgment (for example, a flag indicating that only HO has been accepted provisionally).
  • information indicating that “there is a resource shortage and the SeNB resource needs to be added” may be included (available in step S307 described later).
  • step S307 the S-MeNB 200M1 that has received the handover acknowledgment determines to maintain the SeNB resource.
  • the S-MeNB 200M1 transmits a request (SeNB Release Addition / Modification Request) for changing / changing the MeNB to the SeNB 200S.
  • the S-MeNB 200M1 includes information (MeNB change) indicating that the SeNB switches to the T-MeNB 200M2 in the request.
  • the MeNB change includes information (eNB ID, cell ID, etc.) regarding the T-MeNB 200M2. If SeNB related setting information is included in the handover request in Step S304 (that is, the T-MeNB can already set SeNB), Step S308 may be a simple Release (however, information related to MeNB change is transmitted). )
  • step S309 the SeNB 200S performs radio resource release / change when approving the request from the S-MeNB 200M1.
  • step S310 the SeNB 200S transmits a response to the release / change request (SeNB Release Response) to the S-MeNB 200M1.
  • step S311 the SeNB 200S transmits a radio resource setting notification (SeNB Addition / Modification Request / Command) to the T-MeNB 200M2 based on the MeNB change received from the S-MeNB 200M1.
  • SeNB related setting information is included in the handover request in step S304 (that is, the T-MeNB can already set SeNB)
  • step S311 may be notified in the reverse direction or may be omitted.
  • the T-MeNB 200M2 transmits a handover acknowledgment including the SeNB radio resource (SeNB resource) setting to the S-MeNB 200M1.
  • the T-MeNB 200M2 may include the SeNB resource setting in another message and transmit it to the S-MeNB 200M1.
  • step S313 the S-MeNB 200M1 transmits an RRC reconfiguration message including the SeNB resource configuration and the handover command from the T-MeNB 200M2 to the UE 100.
  • SeNB resource setting is corresponded to the information which sets maintenance of the connection between SeNB200S and UE100.
  • the UE100 starts application of the SeNB resource setting.
  • the UE 100 is synchronized with the SeNB 200S, random access (synchronization) with respect to the SeNB 200S can be omitted. Further, information indicating that random access (synchronization) is omitted may be included in the RRC reconfiguration message.
  • the SeNB 200S performs the data transfer process of the UE 100 to the T-MeNB 200M2.
  • step S316 the UE 100 performs random access to the T-MeNB 200M2 based on the RRC reconfiguration message, and synchronizes with the T-MeNB 200M2.
  • step S317 the UE 100 transmits an RRC reconfiguration completion notification to the T-MeNB 200M2.
  • step S3108 the T-MeNB 200M2 transmits to the MME 300C a path switching request for switching the data path between the S-MeNB 200M1 and the S-GW 300U to the T-MeNB 200M2.
  • operation pattern 2 since SeNB 200S is maintained, bearer switching of SeNB 200S does not occur even in the case of the first UP architecture.
  • the handover acknowledgment is transmitted twice from the T-MeNB 200M2 to the S-MeNB 200M1 (S306, S312), but it may be performed only once (S312).
  • FIG. 12 is a diagram showing an operation environment according to the second embodiment.
  • a plurality of small cells 1 and 2 are provided in one macro cell.
  • UE100 is located in the overlap area
  • UE100 is moving toward the small cell 2 (SeNB200S2).
  • the SeNB corresponding to the UE 100 is switched from the S-SeNB 200S1 to the T-SeNB 200S2.
  • the SeNB 200S1 is referred to as a source SeNB (S-SeNB)
  • the SeNB 200S2 is referred to as a target SeNB (T-SeNB).
  • FIG. 13 is a sequence diagram showing an operation pattern 1 according to the second embodiment.
  • the UE 100 performs communication in the double connection scheme with the MeNB 200M and the S-SeNB 200S1 (S401).
  • step S402 the UE 100 transmits a measurement report to the MeNB 200M.
  • the MeNB 200M determines release and allocation of SeNB resources corresponding to the UE 100 based on a measurement report or the like.
  • SeNB resource release (Remove) and allocation (Add) may be performed in parallel. That is, the MeNB 200M executes in parallel at least a part of the SeNB release process (Remove) and at least a part of the SeNB addition process (Add).
  • step S404 the MeNB 200M transmits a SeNB resource release request corresponding to the UE 100 to the S-SeNB 200S1.
  • step S405 the S-SeNB 200S1 releases the SeNB resource in response to the release request.
  • step S406 the S-SeNB 200S1 transmits a response to the release request (SeNB Release Response) to the MeNB 200M.
  • step S407 the S-SeNB 200S1 transmits a switching request for moving a bearer from the S-SeNB 200S1 to the MeNB 200M to the MME 300C.
  • step S408 the MME 300C transmits an affirmative response to the switching request to the S-SeNB 200S1.
  • steps S409 and S410 the S-SeNB 200S1 performs the data transfer process of the UE 100 to the MeNB 200M.
  • step S411 the MeNB 200M transmits an SeNB resource allocation request to the T-SeMB 200S2.
  • the T-SeMB 200S2 performs radio resource setting when approving the request.
  • T-SeMB200S2 transmits the notification of a radio
  • the MeNB 200M performs the data transfer process of the UE 100 on the T-SeMB 200S2.
  • the MeNB 200M transmits, to the UE 100, an RRC reconfiguration message including establishment setting information (T-SeNB addition) for setting establishment of a connection between the T-SeNB 200S2 and the UE 100.
  • T-SeNB addition includes T-SeMB200S2 radio resource settings.
  • the MeNB 200M may further include release setting information (S-SeNB remove) for setting the release of the connection between the S-SeNB 200S1 and the UE 100 in the RRC reconfiguration message.
  • the MeNB 200M after completing the SeNB release process between the MeNB 200M and the S-SeNB 200S1, and the SeNB addition process between the MeNB 200M and the T-SeNB 200S2, completes the establishment setting information (T -Send SeNB addition) to UE100.
  • step S4108 the UE 100 performs random access to the T-SeMB 200S2 based on the RRC reconfiguration message, and synchronizes with the T-SeMB 200S2.
  • step S419 the T-SeMB 200S2 that has detected the synchronization with the UE 100 transmits a notification to the effect that the radio resource setting can be used to the MeNB 200M. Note that step S419 may be omitted.
  • step S420 the MeNB 200M transmits a switching request for moving the bearer from the MeNB 200M to the T-SeMB 200S2 to the MME 300C.
  • step S421 the MME 300C transmits an acknowledgment to the switching request to the MeNB 200M. Note that step S420 may be omitted.
  • FIG. 14 is a sequence diagram showing an operation pattern 2 according to the second embodiment.
  • the UE 100 performs communication in the double connection scheme with the MeNB 200M and the S-SeNB 200S1 (S501).
  • step S502 the UE 100 transmits a measurement report to the MeNB 200M.
  • the MeNB 200M determines the replacement of the SeNB resource from the S-SeNB 200S1 to the T-SeMB 200S2 based on the measurement report or the like.
  • the MeNB 200M transmits a first replacement request (SeNB Swap Request) for replacing the SeNB to the S-SeNB 200S1.
  • the first replacement request is for requesting the release of the S-SeNB 200S1 and the addition of the T-SeNB 200S2.
  • the first replacement request includes information regarding the T-SeNB 200S2 (eNB ID, cell ID) and information regarding the MeNB 200M (eNB ID, cell ID).
  • step S505 the S-SeNB 200S1 releases SeNB resources in response to the first replacement request.
  • step S506 the S-SeNB 200S1 transmits a response to the first replacement request (SeNB Swap Response) to the MeNB 200M.
  • the S-SeNB 200S1 transmits a second replacement request (SeNB Swap Request) for replacing the SeNB to the T-SeNB 200S2.
  • the second replacement request is for requesting addition of the T-SeNB 200S2.
  • the second replacement request includes information on the MeNB 200M (eNB ID, cell ID).
  • step S508 the T-SeNB 200S2 that has received the second replacement request sets SeNB resources (radio resources) for the UE 100.
  • step S509 the T-SeNB 200S2 transmits a SeNB resource setting notification (SeNB Addition / Modification Command) to the MeNB 200M.
  • SeNB resource setting notification SeNB Addition / Modification Command
  • step S511 the T-SeNB 200S2 transmits to the MME 300C a switching request for moving the bearer from the S-SeNB 200S1 to the T-SeMB 200S2.
  • step S512 the MME 300C transmits an affirmative response to the switching request to the T-SeMB 200S2.
  • steps S514 and S515 the S-SeNB 200S1 performs data transfer of the UE 100 to the T-SeMB 200S2.
  • the MeNB 200M that has received the SeNB resource setting notification from the T-SeMB 200S2 performs RRC reconfiguration including establishment setting information (T-SeNB addition) for setting the connection between the T-SeNB 200S2 and the UE 100 in step S513.
  • a message is transmitted to UE100.
  • T-SeNB addition includes T-SeMB200S2 radio resource settings (resource setting information).
  • the MeNB 200M may further include release setting information (S-SeNB remove) for setting the release of the connection between the S-SeNB 200S1 and the UE 100 in the RRC reconfiguration message.
  • step S516 the UE 100 performs random access to the T-SeMB 200S2 based on the RRC reconfiguration message, and synchronizes with the T-SeMB 200S2.
  • steps S517 and S5108 the T-SeMB 200S2 that has detected the synchronization with the UE 100 transmits a replacement completion notification (Swap Complete) to the MeNB 200M indicating that the radio resource setting can be used.
  • a replacement completion notification Swap Complete
  • FIG. 15 is a sequence diagram showing an operation pattern 3 according to the second embodiment.
  • the UE 100 performs communication in the double connection scheme with the MeNB 200M and the S-SeNB 200S1 (S601).
  • differences from the operation pattern 2 will be mainly described.
  • the UE 100 may transmit channel state information (CSI) to the S-SeNB 200S1.
  • CSI channel state information
  • step S603 the UE 100 transmits a measurement report to the MeNB 200M.
  • the MeNB 200M may transmit the measurement report received from the UE 100 to the S-SeNB 200S1.
  • the S-SeNB 200S1 determines the replacement of the SeNB resource from the S-SeNB 200S1 to the T-SeMB 200S2 based on the measurement report, CSI, and the like. Further, the S-SeNB 200S1 may negotiate with the MeNB 200M for its “release”. Further, the S-SeNB 200S1 releases SeNB resources.
  • the S-SeNB 200S1 transmits a replacement request (SeNB Swap Request) for replacing the SeNB to the T-SeNB 200S2.
  • the replacement request is for requesting addition of the T-SeNB 200S2.
  • the replacement request includes information on the MeNB 200M (eNB ID, cell ID).
  • step S607 the T-SeNB 200S2 that has received the replacement request sets SeNB resources (radio resources) for the UE 100.
  • step S608 the T-SeNB 200S2 transmits a SeNB resource setting notification (SeNB Addition / Modification Command) to the MeNB 200M.
  • SeNB Addition / Modification Command SeNB Addition / Modification Command
  • FIG. 16 is a diagram illustrating an operation scenario 1 according to the third embodiment.
  • the configuration of the EPC 20 is also considered in the operation scenario according to the first embodiment.
  • MeNB200M1 and SeNB200S are accommodated in the same S-GW300U1, and MeNB200M1 is accommodated in another S-GW300U2. That is, each of the MeNB 200M1 and the SeNB 200S has an S1 interface with the S-GW 300U1.
  • MeNB200M2 has S1 interface between S-GW300U2.
  • the first UP architecture cannot be applied to the SeNB 200S and the MeNB 200M2, but the second UP architecture can be applied. Further, in such a scenario, when the first UP architecture is assumed, for example, advanced handover control is performed for performing handover between the MeNBs 200M while maintaining the SeNB 200S as in the operation pattern 2 according to the first embodiment. It is not possible.
  • FIG. 17 is a diagram showing an operation scenario 2 according to the third embodiment.
  • the configuration of the EPC 20 is also considered in the operation scenario according to the second embodiment.
  • the MeNB 200M and the SeNB 200S1 are accommodated in the same S-GW 300U1, and the SeNB 200S2 is accommodated in another S-GW 300U2. That is, each of the MeNB 200M and the SeNB 200S1 has an S1 interface with the S-GW 300U1.
  • the SeNB 200S2 has an S1 interface with the S-GW 300U2.
  • the first UP architecture cannot be applied to the MeNB 200M and the SeNB 200S2, but the second UP architecture can be applied. Further, in such a scenario, when the first UP architecture is assumed, advanced handover control such as operation patterns 2 and 3 according to the second embodiment cannot be performed.
  • the said node is communication control apparatuses, such as MeNB200M or SeNB200S. For example, the node determines that the first UP architecture is not applied when the S-GW 300U that accommodates the MeNB 200M does not match the S-GW 300U that accommodates the SeNB 200S.
  • the connection between the SeNB 200S and the UE 100 is released and the handover (basic Sequence) or whether to perform handover (advanced handover) while maintaining the connection between the SeNB 200S and the UE 100.
  • the node releases the connection between the SeNB 200S and the UE 100 based on whether the S-GW 300U that accommodates the MeNB 200M2 and the S-GW 300U that accommodates the SeNB 200S match, and performs handover (basic sequence). It is determined whether to perform a handover (advanced handover) while maintaining a connection between the SeNB 200S and the UE 100.
  • each eNB 200 needs to know the S-GW 300U in which the other eNB 200 is accommodated.
  • the MeNB 200M or the SeNB 200S transmits the identification information of the S-GW 300U accommodating the own eNB to the neighboring eNB.
  • the S-GW 300U accommodating the own eNB is an S-GW 300U having an S1 interface with the own eNB.
  • the identification information of the S-GW 300U is, for example, S-TEID (S-GW ID) or S-GW IP address.
  • FIG. 18 is a diagram illustrating a first operation for transmitting and receiving the identification information of the S-GW 300U between the eNBs 200.
  • the eNB 200a transmits the identification information of the S-GW 300U that accommodates the eNB 200a in the eNB Configuration Update message to the eNB 200b.
  • the eNB Configuration Update message is a message for notifying the setting update of the eNB 200.
  • an X2 Setup message may be used instead of the eNB Configuration Update message.
  • the X2 Setup message is a message for establishing the X2 interface.
  • the identification information of the S-GW 300U is included in “Served Cell Information” of the eNB Configuration Update message.
  • FIG. 19 is a diagram illustrating a second operation for transmitting and receiving the identification information of the S-GW 300U between the eNBs 200.
  • the eNB 200a transmits the identification information of the S-GW 300U that accommodates the eNB 200a in the SeNB Addition / Modification message described above to the eNB 200b.
  • FIG. 20 is a flowchart showing an operation according to the third embodiment.
  • step S701 the node (MeNB 200M or SeNB 200S) determines whether or not the UE 100 is communicating by the double connection method.
  • step S701 NO
  • step S705 it is determined in step S705 that a normal handover is performed.
  • step S702 the node determines whether or not the UE 100 is performing communication using the second UP architecture (UP architecture “3C”).
  • step S703C the second UP architecture
  • step S703 the node determines to perform advanced handover according to the first and second embodiments.
  • step S704 is performed.
  • the node determines whether the S-GW 300U matches or does not match as described above. If it is determined that the S-GWs 300U match (step S704; YES), in step S703, the node determines to perform advanced handover according to the first embodiment and the second embodiment. On the other hand, when it is determined that the S-GWs 300U do not match (step S704; NO), in step S705, the node determines to perform a normal handover.
  • the case of performing the dual connection communication by combining the macro cell and the small cell is exemplified.
  • the present invention is not limited to such a combination, and double connection communication may be performed by a combination of a macro cell and a pico cell, or double connection communication may be performed by a combination of a pico cell and a femto cell.
  • the LTE system is described as an example of the mobile communication system.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • MCG handover and “SCG handover” are adopted, it is first necessary to consider the impact of using these terms.
  • MCG suggests the possibility that both PCell and SCell are configured in UE by intra-eNB carrier aggregation (CA in eNB), and the existing intra-eNB CA procedure allows only PCell handover, so the term “ The use of “MCG handover” can be misleading and can be inconsistent with existing intra-eNB CA handover procedures.
  • the existing intra-eNB CA procedure may mean the possibility of combining DC function and PCell handover. Such a function is not envisioned prior to Release 12, but in order to facilitate the description of this function, the term “PCell handover with DC” is proposed to be used to refer to such a function. Is done. Details of the usefulness of this function will be described later.
  • View 1 MCG handover consisting of both PCell and SCell is not permitted in the existing intra-eNB CA handover procedure.
  • Proposal 1 PCell handover with DC should be used to refer to handover between two MeNBs while the duplex connection is enabled. It is necessary to consider whether such a function is actually necessary.
  • Proposal 2 Special cell handover should be used to refer to handover between two SeNBs during dual connectivity. It is necessary to consider whether such a function is necessary.
  • FIG. 21 shows the target deployment scenario.
  • the high density small cell deployment shown in FIG. 21 is required to support huge traffic in some scenarios (eg, dense cities and large shopping malls).
  • it is appropriate to predict that many small cells are arranged at the boundaries of macro cells see, for example, the upper right macro cell in FIG. 21).
  • View 2 Many small cells can be deployed near the boundary of a macrocell.
  • PCell handover with DC may be useful under the following scenarios: Scenario M1: SeNB is arranged at the cell edge between the source MeNB (S-MeNB) and the target MeNB (T-MeNB). (See Figure 8) Special cell handover may also be useful under the following scenarios: Scenario S2: A source SeNB (S-SeNB) and a target SeNB (T-SeNB) are arranged in the MeNB coverage.
  • Opinion 3 In scenario M1, the current procedure for releasing / adding the same SeNB during PCell handover requires multiple RRC connection reconfigurations and may lead to an increase in RLF / HOF.
  • PCell handover with DC In order to reduce the number of unnecessary RRC connection reconfigurations, an enhanced handover procedure is considered in FIG. This procedure allows the UE to maintain at least a special cell during a PCell handover with DC so that only one RRC connection reconfiguration is required.
  • PCell handover with DC can be realized using one of the following options.
  • the handover request message includes parameters related to the configuration of the existing SeNB so that the T-MeNB can start the SeNB addition procedure for the SeNB.
  • the handover request message includes a simple notification that the handover procedure includes a double connection.
  • the T-MeNB (or may be the SeNB) starts an additional procedure for the SeNB before the handover is completed.
  • the SeNB is released from the S-MeNB after admission control in the T-MeNB and added to the T-MeNB before UE reconfiguration.
  • the T-MeNB then sends an RRC container with both handover and SeNB addition configuration to the S-MeNB, and the final RRC connection reconfiguration is sent to the UE.
  • Proposal 4 It is necessary to decide which of the two options should be used to realize PCell handover with DC.
  • Proposal 5 It is necessary to consider an option to enhance the MeNB handover procedure with double connection with only one RRC connection reconfiguration.
  • the RRC entity with the MeNB does not change for the UE, so the special cell handover is achieved using the SeNB Add / Change and SeNB Release functions in the SeNB Add / Change Request message can do.
  • the SeNB release response message does not include the RRC container, it can be easily reduced, which means that the MeNB does not need to send an RRC reconfiguration message to the UE just for the release of the S-SeNB. Means that. And this is in harmony with the following agreement.
  • the MeNB does not change the content of the RRC configuration provided by the SeNB.
  • -FFS MeNB requests the SeNB to release any serving cell of the UE, and the SeNB creates a container, which leads to the release of the serving cell. Or, whether the MeNB can release the serving cell maintained by the SeNB by itself.
  • the FFS MeNB needs to understand or reject the RRC container received from the SeNB.
  • How to "share" eg L1 processing capacity
  • Another option is to define a new message as a “SeNB exchange request” without an RRC container.
  • either the MeNB or the S-eNB starts an SeNB exchange procedure for notifying another eNB of the handover of the special cell.
  • the T-SeNB may send an add / change command including the RRC container to the MeNB, and then the MeNB may transfer the RRC container to the UE in the RRC connection reconfiguration.
  • Proposal 6 It is necessary to determine whether the SeNB release response should include an RRC container for special cell handover.
  • Option 1 PCell handover is started after SeNB1 is released. This is the same as the current intra-eNB PCell handover procedure. SeNB2 can be added after the handover is completed.
  • Option 2 PCell handover with DC is started while maintaining the SeNB1 configuration. Then, handover of the special cell is separately started from SeNB1 to SeNB2. This option basically assumes that the handover procedures for M1 and S2 are started separately.
  • Option 3 PCell handover with DC and special cell handover are started simultaneously. This requires a parallel handover procedure that combines scenarios M1 and S2.
  • Option 2 and option 3 do not require a separate handover enhancement procedure. Instead, it is sufficient to reuse the handover procedure considered for scenario M1 and scenario S2.
  • the present invention is useful in the mobile radio field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 第1の特徴に係る通信制御方法は、RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式をサポートする移動通信システムにおける方法である。前記通信制御方法は、前記二重接続方式の通信を開始した後、ソース・マスタ基地局からターゲット基地局に対して前記ユーザ端末のハンドオーバを行う場合に、前記ハンドオーバを指示するためのハンドオーバ指令を前記ソース・マスタ基地局から前記ユーザ端末に送信するステップを有する。前記ハンドオーバ指令を送信するステップにおいて、前記ソース・マスタ基地局は、前記セカンダリ基地局の設定に関するセカンダリ基地局情報を前記ハンドオーバ指令と共に前記ユーザ端末に送信する。

Description

通信制御方法、マスタ基地局、セカンダリ基地局、及びユーザ端末
 本発明は、移動通信システムにおいて用いられる通信制御方法、マスタ基地局、セカンダリ基地局、及びユーザ端末に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、一般基地局(例えば、マクロセル基地局)よりもカバレッジの狭い特定基地局(例えば、小セル基地局)を効率的に利用するための検討が進められている。
 また、3GPPでは、リリース12以降において二重接続方式(Dual connectivity)の導入が予定されている(非特許文献1参照)。二重接続方式では、ユーザ端末は、複数の基地局(一般基地局及び特定基地局)との接続を同時に確立する。ユーザ端末には、各基地局から無線リソースが割り当てられるため、スループットの向上が見込まれる。なお、二重接続方式は、基地局間キャリアアグリゲーション(inter-eNB CA)と称されることがある。
 二重接続方式では、ユーザ端末との接続を確立する複数の基地局のうち、1つの基地局(以下、「マスタ基地局」という)のみが当該ユーザ端末とのRRC接続を確立する。これに対し、当該複数の基地局のうち他の基地局(以下、「セカンダリ基地局」という)は、RRC接続をユーザ端末と確立せずに、追加的な無線リソースをユーザ端末に提供する。
3GPP技術報告書 「TR 36.842 V12.0.0」 2014年1月7日
 RRCコネクティッド状態のユーザ端末は、移動に伴ってハンドオーバを行う。
 しかしながら、RRCコネクティッド状態のユーザ端末が二重接続方式の通信を行う場合には、当該ユーザ端末のハンドオーバに係る処理が複雑になるという問題がある。
 そこで、本発明は、二重接続方式において効率的なハンドオーバを実現する通信制御方法、マスタ基地局、セカンダリ基地局、及びユーザ端末を提供することを目的とする。
 第1の特徴に係る通信制御方法は、RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式をサポートする移動通信システムにおける通信制御方法である。前記通信制御方法は、前記二重接続方式の通信を開始した後、前記マスタ基地局と関連する前記ユーザ端末のハンドオーバを行う場合に、前記ハンドオーバを指示するためのハンドオーバ指令を前記マスタ基地局から前記ユーザ端末に送信するステップを有する。前記ハンドオーバ指令を送信するステップにおいて、前記マスタ基地局は、前記セカンダリ基地局の設定に関するセカンダリ基地局情報を含む前記ハンドオーバ指令を前記ユーザ端末に送信する。
 第1の特徴において、前記セカンダリ基地局情報は、前記ユーザ端末における前記セカンダリ基地局の設定の解放を設定する情報である。
 第1の特徴において、前記セカンダリ基地局情報を含む前記ハンドオーバ指令は、1つのRRC再設定メッセージにより構成される。
 第1の特徴において、前記マスタ基地局は、前記ハンドオーバのソースとなるソース・マスタ基地局である。前記ハンドオーバは、前記ソース・マスタ基地局からターゲット基地局への基地局間ハンドオーバである。
 第1の特徴において、前記ハンドオーバ指令と共に前記セカンダリ基地局情報を受信した前記ユーザ端末が、前記セカンダリ基地局情報に応じて前記セカンダリ基地局の設定を解放しつつ、前記ハンドオーバ指令に応じて前記ターゲット基地局との新たなRRC接続を確立するステップをさらに有する。
 第1の特徴において、前記通信制御方法は、前記ハンドオーバを行う場合、前記ソース・マスタ基地局が、前記ターゲット基地局にハンドオーバ要求を送信するステップと、前記ターゲット基地局が前記ハンドオーバ要求を承認した場合、前記ソース・マスタ基地局が、前記ターゲット基地局からハンドオーバ肯定応答を受信するステップと、前記ソース・マスタ基地局が、前記ハンドオーバ肯定応答の受信に応じて、前記セカンダリ基地局にリソース解放要求を送信するステップと、をさらに有する。
 第1の特徴において、前記ソース・マスタ基地局が、前記リソース解放要求を送信した後において、前記セカンダリ基地局情報を含む前記ハンドオーバ指令を前記ユーザ端末に送信する。
 第1の特徴において、前記通信制御方法は、前記ハンドオーバを行う場合、前記ソース・マスタ基地局が、前記セカンダリ基地局に関する情報を含むハンドオーバ要求を前記ターゲット基地局に送信するステップをさらに有する。
 第1の特徴において、前記通信制御方法は、前記ターゲット基地局が、データパスを前記ソース・マスタ基地局から前記ターゲット基地局へ移すための切り替え要求をコアネットワークに送信するステップと、前記ターゲット基地局が、前記切り替え要求に対する肯定応答を前記コアネットワークから受信するステップと、前記ターゲット基地局が、前記肯定応答の受信に応じて、前記ユーザ端末のコンテキスト情報の解放を要求するコンテキスト解放要求を前記ソース・マスタ基地局に送信するステップと、をさらに有する。
 第1の特徴において、前記通信制御方法は、前記ソース・マスタ基地局が、前記ハンドオーバの判断時、又は前記ターゲット基地局からのハンドオーバ肯定応答の受信時に、前記セカンダリ基地局と前記ユーザ端末との間の接続を解放するか否かを判断するステップをさらに有する。
 第1の特徴において、前記通信制御方法は、前記ターゲット基地局が、前記ソース・マスタ基地局とコアネットワークとの間のデータパス、及び前記セカンダリ基地局と前記コアネットワークとの間のデータパスを一括して前記ターゲット基地局に切り替えるためのパス切り替え要求を前記コアネットワークに送信するステップをさらに有する。
 第1の特徴において、前記セカンダリ基地局情報は、前記セカンダリ基地局と前記ユーザ端末との間の接続の維持を設定する情報である。
 第1の特徴において、前記ハンドオーバ指令と共に前記セカンダリ基地局情報を受信した前記ユーザ端末が、前記セカンダリ基地局情報に応じて前記セカンダリ基地局との接続を維持しつつ、前記ハンドオーバ指令に応じてターゲット基地局との新たなRRC接続を確立するステップをさらに有する。
 第1の特徴において、前記通信制御方法は、前記セカンダリ基地局と前記ユーザ端末との間の接続を維持したまま前記ハンドオーバを行うことを示す情報を前記ソース・マスタ基地局からターゲット基地局に送信するステップをさらに有する。
 第1の特徴において、前記通信制御方法は、前記ユーザ端末に対応する前記マスタ基地局を前記ソース・マスタ基地局からターゲット基地局に切り替えることを示す情報を前記ソース・マスタ基地局から前記セカンダリ基地局に送信するステップをさらに有する。
 第1の特徴において、前記通信制御方法は、前記セカンダリ基地局とコアネットワークとの間のデータパスが前記マスタ基地局を経由するデータパス構造を用いる二重接続方式が可能であるか否かに基づいて、前記セカンダリ基地局と前記ユーザ端末との間の接続を解放して前記ハンドオーバを行うか、又は前記セカンダリ基地局と前記ユーザ端末との間の接続を維持したまま前記ハンドオーバを行うかを判断するステップをさらに有する。
 第1の特徴において、前記通信制御方法は、ターゲット基地局を収容するサービングゲートウェイと前記セカンダリ基地局を収容するサービングゲートウェイとが一致するか否かに基づいて、前記セカンダリ基地局と前記ユーザ端末との間の接続を解放して前記ハンドオーバを行うか、又は前記セカンダリ基地局と前記ユーザ端末との間の接続を維持したまま前記ハンドオーバを行うかを判断するステップをさらに有する。
 第2の特徴に係るマスタ基地局は、セカンダリ基地局と共に、二重接続方式の通信をユーザ端末と行う。前記マスタ基地局は、前記二重接続方式の通信を開始した後、前記マスタ基地局と関連する前記ユーザ端末のハンドオーバを行う場合に、前記ハンドオーバを指示するためのハンドオーバ指令を前記ユーザ端末に送信する送信部を有する。前記送信部は、前記セカンダリ基地局の設定に関するセカンダリ基地局情報を含む前記ハンドオーバ指令を送信する。
 第3の特徴に係るユーザ端末は、二重接続方式の通信をマスタ基地局及びセカンダリ基地局と行う。前記ユーザ端末は、前記二重接続方式の通信を開始した後、前記マスタ基地局と関連する前記ユーザ端末のハンドオーバを行う場合に、前記ハンドオーバを指示するためのハンドオーバ指令を前記マスタ基地から受信する受信部を有する。前記受信部は、前記セカンダリ基地局の設定に関するセカンダリ基地局情報を含む前記ハンドオーバ指令を受信する。
 第4の特徴に係る通信制御方法は、RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式をサポートする移動通信システムにおける通信制御方法である。前記通信制御方法は、前記二重接続方式の通信を開始した後、前記セカンダリ基地局をソース・セカンダリ基地局からターゲット・セカンダリ基地局に切り替える場合に、前記ターゲット・セカンダリ基地局と前記ユーザ端末との間の接続のための設定を追加する確立設定情報を前記マスタ基地局から前記ユーザ端末に送信するステップを有する。
 第4の特徴において、前記確立設定情報を送信するステップにおいて、前記マスタ基地局は、前記ソース・セカンダリ基地局と前記ユーザ端末との間の接続のための設定を解放する解放設定情報を前記確立設定情報と共に前記ユーザ端末に送信する。
 第4の特徴において、前記解放設定情報を送信するステップにおいて、前記マスタ基地局は、前記解放設定情報と前記確立設定情報とを含む1つのRRC再設定メッセージを前記ユーザ端末に送信する。
 第4の特徴において、前記マスタ基地局は、前記マスタ基地局と前記ソース・セカンダリ基地局との間のセカンダリ基地局解放処理と、前記マスタ基地局と前記ターゲット・セカンダリ基地局との間のセカンダリ基地局追加処理と、が終了した後に、前記確立設定情報を前記ユーザ端末に送信する。
 第4の特徴において、前記通信制御方法は、前記ソース・セカンダリ基地局から前記ターゲット・セカンダリ基地局に対して、前記マスタ基地局を経由して、「SN Status Transfer」メッセージを送信するステップと、前記ソース・セカンダリ基地局から前記ターゲット・セカンダリ基地局に対して、前記マスタ基地局を経由して、前記ユーザ端末のデータを転送するステップと、をさらに有する。
 第4の特徴において、前記通信制御方法は、前記セカンダリ基地局を交替するための第1の交替要求を前記マスタ基地局から前記ソース・セカンダリ基地局に送信するステップと、前記第1の交替要求を受信した前記ソース・セカンダリ基地局が、前記セカンダリ基地局を交替するための第2の交替要求を前記ターゲット・セカンダリ基地局に送信するステップと、前記第2の交替要求を受信した前記ターゲット・セカンダリ基地局が、前記第2の交替要求の受信に応じて、前記ユーザ端末のための無線リソースを設定するステップと、前記ユーザ端末のためのリソース設定情報を前記ターゲット・セカンダリ基地局から前記マスタ基地局に送信するステップと、をさらに有する。
 第4の特徴において、前記通信制御方法は、前記ソース・セカンダリ基地局が、前記セカンダリ基地局を交替するための交替要求を前記ターゲット・セカンダリ基地局に送信するステップと、前記交替要求を受信した前記ターゲット・セカンダリ基地局が、前記交替要求の受信に応じて、前記ユーザ端末のための無線リソースを設定するステップと、前記ユーザ端末のためのリソース設定情報を前記ターゲット・セカンダリ基地局から前記マスタ基地局に送信するステップと、をさらに有する。
 第4の特徴において、前記確立設定情報を送信するステップにおいて、前記マスタ基地局は、前記ターゲット・セカンダリ基地局からの前記リソース設定情報の受信に応じて、前記確立設定情報を前記ユーザ端末に送信する。
 第4の特徴において、前記通信制御方法は、前記確立設定情報を受信した前記ユーザ端末が、前記確立設定情報に基づいて、前記ターゲット・セカンダリ基地局に対するランダムアクセスを行うステップと、前記ユーザ端末との同期を検出した前記ターゲット・セカンダリ基地局が、前記セカンダリ基地局の交替完了を示す交替完了通知を前記マスタ基地局に送信するステップと、をさらに有する。
 第5の特徴に係るマスタ基地局は、セカンダリ基地局と共に、二重接続方式の通信をユーザ端末と行う。前記マスタ基地局は、前記二重接続方式の通信を開始した後、前記セカンダリ基地局をソース・セカンダリ基地局からターゲット・セカンダリ基地局に切り替える場合に、前記ターゲット・セカンダリ基地局と前記ユーザ端末との間の接続のための設定を追加する確立設定情報を前記ユーザ端末に送信する送信部を有する。
 第6の特徴に係るユーザ端末は、二重接続方式の通信をマスタ基地局及びセカンダリ基地局と行う。前記ユーザ端末は、前記二重接続方式の通信を開始した後、前記セカンダリ基地局をソース・セカンダリ基地局からターゲット・セカンダリ基地局に切り替える場合に、前記ターゲット・セカンダリ基地局と前記ユーザ端末との間の接続のための設定を追加する確立設定情報を前記マスタ基地局から受信する受信部を有する。
 第7の特徴に係る通信制御方法は、RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式をサポートする移動通信システムにおける通信制御方法である。前記通信制御方法は、通信制御装置が、前記マスタ基地局を収容するサービングゲートウェイと前記セカンダリ基地局を収容するサービングゲートウェイとが一致するか否かに基づいて、前記二重接続方式に係る判断を行うステップを有する。
 第7の特徴において、前記通信制御方法は、前記マスタ基地局及び/又は前記セカンダリ基地局が、自基地局を収容するサービングゲートウェイの識別情報を前記通信制御装置に送信するステップをさらに有する。
 第7の特徴において、前記二重接続方式には、前記マスタ基地局及び前記セカンダリ基地局のそれぞれと1つのサービングゲートウェイとの間にデータパスを確立する第1の二重接続方式が含まれている。前記判断を行うステップにおいて、前記通信制御装置は、前記マスタ基地局を収容するサービングゲートウェイと前記セカンダリ基地局を収容するサービングゲートウェイとが一致しない場合に、前記第1の二重接続方式を適用しないと判断する。
 第8の特徴に係るマスタ基地局は、セカンダリ基地局と共に、二重接続方式の通信をユーザ端末と行う。前記マスタ基地局は、前記ユーザ端末について前記二重接続のためのリソース準備又は変更を要求する要求メッセージを、X2インターフェイスを介して前記セカンダリ基地局に送信する送信部を有する。前記送信部は、前記マスタ基地局とS1インターフェイスを介して接続されたサービングゲートウェイの識別情報を含む前記要求メッセージを送信する。
 第8の特徴において、前記識別情報は、前記サービングゲートウェイのS1トンネル・エンドポイントID(S1-TEID)である。
 第8の特徴において、前記識別情報は、前記サービングゲートウェイのIPアドレスである。
 第9の特徴に係るセカンダリ基地局は、マスタ基地局と共に、二重接続方式の通信をユーザ端末と行う。前記セカンダリ基地局は、前記ユーザ端末について前記二重接続のためのリソース準備又は変更を要求する要求メッセージを、X2インターフェイスを介して前記マスタ基地局から受信する受信部を有する。前記受信部は、前記マスタ基地局とS1インターフェイスを介して接続されたサービングゲートウェイの識別情報を含む前記要求メッセージを受信する。
第1実施形態乃至第3実施形態に係るLTEシステムの構成図である。 第1実施形態乃至第3実施形態に係るUEのブロック図である。 第1実施形態乃至第3実施形態に係るeNBのブロック図である。 第1実施形態乃至第3実施形態に係る無線インターフェイスのプロトコルスタック図である。 二重接続方式の概要を説明するための図である。 第1のUPアーキテクチャ(UPアーキテクチャ「1A」)を示す図である。図6Aはデータパス構成を示し、図6Bはプロトコルスタック構成を示す。 第2のUPアーキテクチャ(UPアーキテクチャ「3C」)を示す図である。図7Aはデータパス構成を示し、図7Bはプロトコルスタック構成を示す。 第1実施形態に係る動作環境を示す図である。 基本シーケンスを示すシーケンス図である。 第1実施形態に係る動作パターン1を示すシーケンス図である。 第1実施形態に係る動作パターン2を示すシーケンス図である。 第2実施形態に係る動作環境を示す図である。 第2実施形態に係る動作パターン1を示すシーケンス図である。 第2実施形態に係る動作パターン2を示すシーケンス図である。 第2実施形態に係る動作パターン3を示すシーケンス図である。 第3実施形態に係る動作シナリオ1を示す図である。 第3実施形態に係る動作シナリオ2を示す図である。 第3実施形態に係るS-GW識別情報をeNB間で送受信するための第1の動作を示す図である。 第3実施形態に係るS-GW識別情報をeNB間で送受信するための第2の動作を示す図である。 第3実施形態に係る動作を示すフロー図である。 実施形態の付記に係る図である。 実施形態の付記に係る図である。 実施形態の付記に係る図である。 実施形態の付記に係る図である。 実施形態の付記に係る図である。 実施形態の付記に係る図である。
 [実施形態の概要]
 第1実施形態に係る通信制御方法は、RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式をサポートする移動通信システムにおける方法である。前記通信制御方法は、前記二重接続方式の通信を開始した後、ソース・マスタ基地局からターゲット・マスタ基地局に対して前記ユーザ端末のハンドオーバを行う場合に、前記ハンドオーバを指示するためのハンドオーバ指令を前記ソース・マスタ基地局から前記ユーザ端末に送信するステップを有する。前記ハンドオーバ指令を送信するステップにおいて、前記ソース・マスタ基地局は、前記セカンダリ基地局の設定に関するセカンダリ基地局情報を前記ハンドオーバ指令と共に前記ユーザ端末に送信する。
 第1実施形態では、前記ハンドオーバ指令を送信するステップにおいて、前記ソース・マスタ基地局は、前記ハンドオーバ指令と前記セカンダリ基地局情報とを含む1つのRRC再設定メッセージを前記ユーザ端末に送信する。
 第1実施形態に係る動作パターン1では、前記セカンダリ基地局情報は、前記セカンダリ基地局と前記ユーザ端末との間の接続の解放を設定する情報である。
 第1実施形態に係る動作パターン1では、前記通信制御方法は、前記ハンドオーバ指令と共に前記セカンダリ基地局情報を受信した前記ユーザ端末が、前記セカンダリ基地局情報に応じて前記セカンダリ基地局との接続を解放しつつ、前記ハンドオーバ指令に応じて前記ターゲット・マスタ基地局との新たなRRC接続を確立するステップをさらに有する。
 第1実施形態に係る動作パターン1では、前記通信制御方法は、前記ソース・マスタ基地局が、前記ハンドオーバの判断時、又は前記ターゲット・マスタ基地局からのハンドオーバ肯定応答の受信時に、前記セカンダリ基地局と前記ユーザ端末との間の接続を解放するか否かを判断するステップをさらに有する。
 第1実施形態に係る動作パターン1では、前記通信制御方法は、前記ターゲット・マスタ基地局が、前記ソース・マスタ基地局とコアネットワークとの間のデータパス、及び前記セカンダリ基地局と前記コアネットワークとの間のデータパスを一括して前記ターゲット・マスタ基地局に切り替えるためのパス切り替え要求を前記コアネットワークに送信するステップをさらに有する。
 第1実施形態に係る動作パターン2では、前記セカンダリ基地局情報は、前記セカンダリ基地局と前記ユーザ端末との間の接続の維持を設定する情報である。
 第1実施形態に係る動作パターン2では、前記通信制御方法は、前記ハンドオーバ指令と共に前記セカンダリ基地局情報を受信した前記ユーザ端末が、前記セカンダリ基地局情報に応じて前記セカンダリ基地局との接続を維持しつつ、前記ハンドオーバ指令に応じて前記ターゲット・マスタ基地局との新たなRRC接続を確立するステップをさらに有する。
 第1実施形態に係る動作パターン2では、前記通信制御方法は、前記セカンダリ基地局と前記ユーザ端末との間の接続を維持したまま前記ハンドオーバを行うことを示す情報を前記ソース・マスタ基地局から前記ターゲット・マスタ基地局に送信するステップをさらに有する。
 第1実施形態に係る動作パターン2では、前記通信制御方法は、前記ユーザ端末に対応する前記マスタ基地局を前記ソース・マスタ基地局から前記ターゲット・マスタ基地局に切り替えることを示す情報を前記ソース・マスタ基地局から前記セカンダリ基地局に送信するステップをさらに有する。
 第3実施形態では、前記通信制御方法は、前記セカンダリ基地局とコアネットワークとの間のデータパスが前記マスタ基地局を経由するデータパス構造を用いる二重接続方式が可能であるか否かに基づいて、前記セカンダリ基地局と前記ユーザ端末との間の接続を解放して前記ハンドオーバを行うか、又は前記セカンダリ基地局と前記ユーザ端末との間の接続を維持したまま前記ハンドオーバを行うかを判断するステップをさらに有する。
 第3実施形態では、前記通信制御方法は、前記ターゲット・マスタ基地局を収容するサービングゲートウェイと前記セカンダリ基地局を収容するサービングゲートウェイとが一致するか否かに基づいて、前記セカンダリ基地局と前記ユーザ端末との間の接続を解放して前記ハンドオーバを行うか、又は前記セカンダリ基地局と前記ユーザ端末との間の接続を維持したまま前記ハンドオーバを行うかを判断するステップをさらに有する。
 第2実施形態に係る通信制御方法は、RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式をサポートする移動通信システムにおける方法である。前記通信制御方法は、前記二重接続方式の通信を開始した後、前記セカンダリ基地局をソース・セカンダリ基地局からターゲット・セカンダリ基地局に切り替える場合に、前記ターゲット・セカンダリ基地局と前記ユーザ端末との間の接続の確立を設定する確立設定情報を前記マスタ基地局から前記ユーザ端末に送信するステップを有する。
 第2実施形態では、前記確立設定情報を送信するステップにおいて、前記マスタ基地局は、前記ソース・セカンダリ基地局と前記ユーザ端末との間の接続の解放を設定する解放設定情報を前記確立設定情報と共に前記ユーザ端末に送信する。
 第2実施形態では、前記解放設定情報を送信するステップにおいて、前記マスタ基地局は、前記解放設定情報と前記確立設定情報とを含む1つのRRC再設定メッセージを前記ユーザ端末に送信する。
 第2実施形態に係る動作パターン1では、前記マスタ基地局は、前記マスタ基地局と前記ソース・セカンダリ基地局との間のセカンダリ基地局解放処理と、前記マスタ基地局と前記ターゲット・セカンダリ基地局との間のセカンダリ基地局追加処理と、が終了した後に、前記確立設定情報を前記ユーザ端末に送信する。
 第2実施形態に係る動作パターン1では、前記マスタ基地局は、前記セカンダリ基地局解放処理の少なくとも一部と前記セカンダリ基地局追加処理の少なくとも一部とを並列実行する。
 第2実施形態に係る動作パターン2では、前記通信制御方法は、前記セカンダリ基地局を交替するための第1の交替要求を前記マスタ基地局から前記ソース・セカンダリ基地局に送信するステップと、前記第1の交替要求を受信した前記ソース・セカンダリ基地局が、前記セカンダリ基地局を交替するための第2の交替要求を前記ターゲット・セカンダリ基地局に送信するステップと、前記第2の交替要求を受信した前記ターゲット・セカンダリ基地局が、前記第2の交替要求の受信に応じて、前記ユーザ端末のための無線リソースを設定するステップと、前記ユーザ端末のためのリソース設定情報を前記ターゲット・セカンダリ基地局から前記マスタ基地局に送信するステップと、をさらに有する。
 第2実施形態に係る動作パターン3では、前記通信制御方法は、前記ソース・セカンダリ基地局が、前記セカンダリ基地局を交替するための交替要求を前記ターゲット・セカンダリ基地局に送信するステップと、前記交替要求を受信した前記ターゲット・セカンダリ基地局が、前記交替要求の受信に応じて、前記ユーザ端末のための無線リソースを設定するステップと、前記ユーザ端末のためのリソース設定情報を前記ターゲット・セカンダリ基地局から前記マスタ基地局に送信するステップと、をさらに有する。
 第2実施形態に係る動作パターン2及び3では、前記確立設定情報を送信するステップにおいて、前記マスタ基地局は、前記ターゲット・セカンダリ基地局からの前記リソース設定情報の受信に応じて、前記確立設定情報を前記ユーザ端末に送信する。
 第2実施形態に係る動作パターン2及び3では、前記確立設定情報を受信した前記ユーザ端末が、前記確立設定情報に基づいて、前記ターゲット・セカンダリ基地局に対するランダムアクセスを行うステップと、前記ユーザ端末との同期を検出した前記ターゲット・セカンダリ基地局が、前記セカンダリ基地局の交替完了を示す交替完了通知を前記マスタ基地局に送信するステップと、をさらに有する。
 第3実施形態に係る通信制御方法は、RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式をサポートする移動通信システムにおける方法である。前記通信制御方法は、通信制御装置が、前記マスタ基地局を収容するサービングゲートウェイと前記セカンダリ基地局を収容するサービングゲートウェイとが一致するか否かに基づいて、前記二重接続方式に係る判断を行うステップを有する。
 第3実施形態では、前記通信制御方法は、前記マスタ基地局及び/又は前記セカンダリ基地局が、自基地局を収容するサービングゲートウェイの識別情報を前記通信制御装置に送信するステップをさらに有する。
 第3実施形態では、前記二重接続方式には、前記マスタ基地局及び前記セカンダリ基地局のそれぞれと1つのサービングゲートウェイとの間にデータパスを確立する第1の二重接続方式が含まれる。前記判断を行うステップにおいて、前記通信制御装置は、前記マスタ基地局を収容するサービングゲートウェイと前記セカンダリ基地局を収容するサービングゲートウェイとが一致しない場合に、前記第1の二重接続方式を適用しないと判断する。
 [第1実施形態]
 以下において、本発明をLTEシステムに適用する場合の実施形態を説明する。
 (システム構成)
 図1は、第1実施形態に係るLTEシステムの構成図である。
 図1に示すように、第1実施形態に係るLTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
 UE100は、ユーザ端末に相当する。UE100は、移動型の通信装置であり、セル(サービングセル)との無線通信を行う。UE100の構成については後述する。
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータのルーティング機能、モビリティ制御・スケジューリングのための測定制御機能などを有する。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 EPC20は、コアネットワークに相当する。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御などを行う。S-GWは、ユーザデータの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。
 図2は、UE100のブロック図である。図2に示すように、UE100は、複数のアンテナ101、無線送受信機110、ユーザインターフェイス120、GNSS(Global Navigation Satellite System)受信機130、バッテリ140、メモリ150、及びプロセッサ160を備える。メモリ150及びプロセッサ160は、制御部を構成する。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。無線送受信機110は、プロセッサ160が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160により実行されるプログラム、及びプロセッサ160による処理に使用される情報を記憶する。プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、複数のアンテナ201、無線送受信機210、ネットワークインターフェイス220、メモリ230、及びプロセッサ240を備える。メモリ230及びプロセッサ240は、制御部を構成する。また、メモリ230をプロセッサ240と一体化し、このセット(すなわち、チップセット)をプロセッサとしてもよい。
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。無線送受信機210は、プロセッサ240が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240により実行されるプログラム、及びプロセッサ240による処理に使用される情報を記憶する。プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してユーザデータ及び制御信号が伝送される。
 MAC層は、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びRRC接続確立時のランダムアクセス手順などを行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してユーザデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式)及びUE100への割当リソースブロックを決定するスケジューラを含む。
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してユーザデータ及び制御信号が伝送される。
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態であり、そうでない場合、UE100はRRCアイドル状態である。
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理などを行う。
 (二重接続方式)
 第1実施形態に係るLTEシステムは、二重接続方式をサポートする。二重接続方式は、リリース12以降において導入が予定されている。二重接続方式では、UE100は、複数のeNB200との接続を同時に確立する。UE100には、各eNB200から無線リソースが割り当てられるため、スループットの向上が見込まれる。なお、二重接続方式は、eNB200間キャリアアグリゲーション(inter-eNB CA)と称されることもある。
 図5は、二重接続方式の概要を説明するための図である。
 図5に示すように、二重接続方式では、UE100との接続を確立する複数のeNB200のうち、マスタeNB(MeNB)200Mのみが当該UE100とのRRC接続を確立する。これに対し、当該複数のeNB200のうちセカンダリeNB(SeNB)200Sは、RRC接続をUE100と確立せずに、追加的な無線リソースをUE100に提供する。言い換えると、MeNB200Mは、ユーザプレーン接続だけでなく制御プレーン接続をUE100と確立する。これに対し、SeNB200Sは、制御プレーン接続をUE100と確立せずに、ユーザプレーン接続をUE100と確立する。MeNB200MとSeNB200Sとの間にはXnインターフェイスが設定される。Xnインターフェイスは、X2インターフェイス又は新たなインターフェイスである。
 二重接続方式では、UE100は、MeNB200Mが管理するN個のセル及びSeNB200Sが管理するM個のセルを同時に利用したキャリアアグリゲーションが可能である。二重接続方式においてUE100のサービングセルの最大数、すなわち、(N+M)の最大数は、例えば5である。ここで、MeNB200Mが管理するN個のセルからなるグループは、マスタセルグループ(MCG)と称される。また、SeNB200Sが管理するM個のセルからなるグループは、セカンダリセルグループ(SCG)と称される。SCGには、UE100のPUCCHを設ける特別なセルが設定される。特別なセルは、キャリアアグリゲーションにおけるプライマリセル(PCell)の機能の一部を遂行する。
 図6及び図7は、二重接続方式におけるユーザデータの転送経路(データパス)の構成方式を説明するための図である。二重接続方式におけるユーザデータの転送経路(データパス)を構成するユーザプレーンアーキテクチャ(UPアーキテクチャ)は主に2通り存在する。
 図6は、第1のUPアーキテクチャ(UPアーキテクチャ「1A」とも称される)を示す。図6Aに示すように、第1のUPアーキテクチャでは、MeNB200MとS-GW300Uとの間のS1-Uインターフェイスと、SeNB200SとS-GW300Uとの間のS1-Uインターフェイスと、が利用される。UE100とP-GWとの間のEPSベアラ#1は、MeNB200MとS-GW300Uとの間のS1-Uインターフェイスを経由する。UE100とP-GWとの間のEPSベアラ#2は、SeNB200SとS-GW300Uとの間のS1-Uインターフェイスを経由する。このように、第1のUPアーキテクチャでは、SeNB200SとS-GW300Uとの間のデータパスはMeNB200Mを経由しない。図6Bに示すように、MeNB200M及びSeNB200Sのそれぞれは、PDCP、RLC、MACの各層の処理を行う。
 図7は、第2のUPアーキテクチャ(UPアーキテクチャ「3C」とも称される)を示す。図7Aに示すように、第2のUPアーキテクチャでは、UE100とP-GWとの間のEPSベアラ#2は、MeNB200Mにおいて分割されており、分割された一方(split bearer)はSeNB200Sを経由してUE100で終端し、分割された他方(split bearer)はSeNB200Sを経由せずにUE100で終端する。このように、第2のUPアーキテクチャでは、SeNB200SとS-GW300Uとの間のデータパスはMeNB200Mを経由する。図7Bに示すように、EPSベアラ#2における分割された一方(split bearer)については、MeNB200MのPDCP、SeNB200SのRLC及びMAC、により各層の処理を行う。なお、split bearerについては、RLC(又はRLCの一部機能)までの処理をMeNB200Mが担当してもよい。
 (第1実施形態に係る動作)
 (1)動作シナリオ
 第1実施形態では、マスタセルがマクロセルであり、セカンダリセルがマクロセルよりもカバレッジの狭いセル(小セル)であるシナリオを主として想定する。ここで、小セルは、例えばピコセル又はフェムトセル等であり、マクロセルのカバレッジと少なくとも一部が重複するカバレッジを有する。カバレッジの広いセルをマスタセルとして設定することにより、RRCコネクティッド状態のUE100の移動に対応する、すなわち、モビリティを強化することができる。
 図8は、第1実施形態に係る動作環境を示す図である。
 図8に示すように、UE100は、マクロセル1のカバレッジ及び小セルのカバレッジの重複領域に位置しており、マクロセル1(MeNB200M1)及び小セル(SeNB200S)の組み合わせにより二重接続方式の通信を行っている。小セルは、2つのマクロセル1,2の境界付近に位置する。UE100は、マクロセル2(MeNB200M2)に向けて移動している。よって、MeNB200M1(ソース)からMeNB200M2(ターゲット)へのUE100のハンドオーバが必要になる。以下において、MeNB200M1をソースMeNB(S-MeNB)と称し、MeNB200M2をターゲットMeNB(T-MeNB)と称する。
 図9は、S-MeNB200M1からT-MeNB200M2へのUE100のハンドオーバを行う場合の基本シーケンスを示すシーケンス図である。図9の初期状態において、UE100は、S-MeNB200M1及びSeNB200Sと二重接続方式の通信を行っている(S101)。
 図9に示すように、基本シーケンスでは、S-MeNB200M1がUE100から受信(S102)する測定報告などに基づいてT-MeNB200M2へのUE100のハンドオーバを決定(S103)した後、次の3つの手順を行う。第1に、SeNB200Sの解放手順(S104乃至S113)を行う。第2に、S-MeNB200M1からT-MeNB200M2へのハンドオーバ手順(S114乃至S124)を行う。第3に、SeNB200Sの追加手順(S125乃至S137)を行う。
 詳細には、ステップS103において、S-MeNB200M1は、T-MeNB200M2へのUE100のハンドオーバを決定する。ステップS104において、S-MeNB200M1は、UE100に対応するSeNBリソースの解放を決定する。ステップS105において、S-MeNB200M1は、UE100に対応するSeNBリソースの解放要求(SeNB Release Request)をSeNB200Sに送信する。ステップS106において、SeNB200Sは、解放要求に応じて、SeNBリソースを解放する。ステップS107において、SeNB200Sは、解放要求に対する応答(SeNB Release Response)をT-MeNB200M2に送信する。
 第1のUPアーキテクチャの場合、ステップS108において、SeNB200Sは、ベアラをSeNB200SからS-MeNB200M1へ移すための切り替え要求(Path Switch Request)をMME300Cに送信する。ステップS109において、MME300Cは、切り替え要求に対する肯定応答をSeNB200Sに送信する。ステップS110及びS111において、SeNB200Sは、UE100のデータの転送処理をS-MeNB200M1に対して行う。
 ステップS112において、S-MeNB200M1は、SeNB200Sの解放のためのRRC再設定メッセージ(RRC Connection Reconfiguration)をUE100に送信する。UE100は、SeNB200Sに係る設定を解放する。ステップS113において、UE100は、RRC再設定の完了通知(RRC Connection Reconfiguration Complete)をS-MeNB200M1に送信する。
 ステップS114において、S-MeNB200M1は、ハンドオーバ要求をT-MeNB200M2に送信する。ステップS115において、T-MeNB200M2は、ハンドオーバ要求の承認判断を行う。ステップS116において、T-MeNB200M2は、ハンドオーバ肯定応答(Handover Request Acknowledge)をS-MeNB200M1に送信する。
 ステップS117において、S-MeNB200M1は、ハンドオーバのためのRRC再設定メッセージをUE100に送信する。ステップS118及びS119において、SeNB200Sは、UE100のデータの転送処理をT-MeNB200M2に対して行う。
 ステップS120において、UE100は、RRC再設定メッセージに基づいてT-MeNB200M2へのランダムアクセスを行い、T-MeNB200M2との同期をとる。ステップS121において、UE100は、RRC再設定の完了通知をT-MeNB200M2に送信する。
 ステップS122において、T-MeNB200M2は、データパスをS-MeNB200M1からT-MeNB200M2へ移すための切り替え要求をMME300Cに送信する。ステップS123において、MME300Cは、切り替え要求に対する肯定応答をSeNB200Sに送信する。ステップS124において、T-MeNB200M2は、UEコンテキストの解放要求をS-MeNB200M1に送信する。
 ステップS125において、UE100は、測定報告をT-MeNB200M2に送信する。ステップS126において、T-MeNB200M2は、測定報告などに基づいて、SeNBリソースの追加を決定する。
 ステップS127において、T-MeNB200M2は、SeNBリソースの割り当て要求(SeNB Addition/Modification Request)をSeNB200Sに送信する。ステップS128において、SeNB200Sは、要求を承認する場合に、無線リソース設定を行う。ステップS129において、SeNB200Sは、無線リソース設定の通知(SeNB Addition/Modification Command)をT-MeNB200M2に送信する。
 第1のUPアーキテクチャの場合、ステップS130及びS131において、T-MeNB200M2は、UE100のデータの転送処理をSeNB200Sに対して行う。
 ステップS132において、T-MeNB200M2は、SeNB200Sの追加のためのRRC再設定メッセージをUE100に送信する。UE100は、SeNB200Sの無線リソース設定の適用を開始する。ステップS133において、UE100は、RRC再設定の完了通知(RRC Connection Reconfiguration Complete)をT-MeNB200M2に送信する。
 ステップS134において、UE100は、RRC再設定メッセージに基づいてSeNB200Sへのランダムアクセスを行い、SeNB200Sとの同期をとる。ステップS135において、UE100との同期を検出したSeNB200Sは、無線リソース設定の使用が可能になった旨の通知(SeNB Addition/Modification Complete)をT-MeNB200M2に送信する。
 第1のUPアーキテクチャの場合、ステップS136において、T-MeNB200M2は、ベアラをS-MeNB200M1からSeNB200Sへ移すための切り替え要求をMME300Cに送信する。ステップS137において、MME300Cは、切り替え要求に対する肯定応答をSeNB200Sに送信する。
 このように基本シーケンスでは、SeNB200Sの解放手順、ハンドオーバ手順、SeNB200Sの追加手順のそれぞれにおいて、UE100に対するRRC再設定(RRC Connection Reconfiguration)が行われる。第1に、SeNB200Sの解放手順では、SeNB200Sの解放のためのRRC再設定(S112)が行われる。第2に、S-MeNB200M1からT-MeNB200M2へのハンドオーバ手順では、ハンドオーバのためのRRC再設定(S117)が行われる。第3に、SeNB200Sの追加手順では、SeNB200Sの追加のためのRRC再設定(S132)が行われる。このように、二重接続方式におけるMeNB200M間のハンドオーバでは、合計で3回のRRC再設定が行われると考えられる。よって、無線区間のシグナリングが増大するとともに、ハンドオーバに係る処理時間の増大により、RLF・HOF(hand over failure)が増える。
 また、SeNB200Sの解放手順、ハンドオーバ手順、SeNB200Sの追加手順のそれぞれにおいて、コアネットワークとのシグナリングが発生し得る。第1に、SeNB200Sの解放手順では、上述した第1のUPアーキテクチャの場合に、ベアラをSeNB200SからS-MeNB200M1へ移すためのシグナリング(S108、S109)が発生する。第2に、S-MeNB200M1からT-MeNB200M2へのハンドオーバ手順では、データパスをS-MeNB200M1からT-MeNB200M2へ切り替えるためのシグナリング(S122、S123)が発生する。第3に、SeNB200Sの追加手順では、第1のUPアーキテクチャの場合に、ベアラをS-MeNB200M1からSeNB200Sへ移すためのシグナリング(S136、S137)が発生する。このように、二重接続方式におけるMeNB200M間のハンドオーバでは、最大で3回のコアネットワークとのシグナリングが発生すると考えられる。よって、ネットワーク区間のシグナリングの増大が問題となる。
 第1実施形態では、二重接続方式におけるMeNB200M間のハンドオーバのシーケンスを改良することにより、上述したシグナリングの増大を抑制可能とする。以下において、改良されたハンドオーバシーケンスについて説明する。
 (2)動作パターン1
 図10は、第1実施形態に係る動作パターン1を示すシーケンス図である。以下においては、基本シーケンスとの相違点を主として説明する。図11の初期状態において、UE100は、S-MeNB200M1及びSeNB200Sと二重接続方式の通信を行っている(S201)。
 図10に示すように、ステップS203において、S-MeNB200M1は、UE100から受信(S202)する測定報告などに基づいて、T-MeNB200M2へのUE100のハンドオーバを決定する。動作パターン1では、S-MeNB200M1は、ハンドオーバの判断時に、SeNB200SとUE100との間の接続を解放するか否かを判断してもよい。
 ステップS204において、S-MeNB200M1は、ハンドオーバ要求をT-MeNB200M2に送信する。ステップS205において、T-MeNB200M2は、ハンドオーバ要求の承認判断を行う。ステップS206において、T-MeNB200M2は、ハンドオーバ肯定応答(Handover Request Acknowledge)をS-MeNB200M1に送信する。T-MeNB200M2は、SeNB設定がされていないRRCコンテナをハンドオーバ肯定応答に含める。S-MeNB200M1は、T-MeNB200M2からのハンドオーバ肯定応答の受信時に、SeNB200SとUE100との間の接続を解放するか否かを判断してもよい。
 次に、S-MeNB200M1及びSeNB200Sは、SeNB200Sの解放手順(ステップS207乃至S212)を行う。当該解放手順は、基本シーケンスと同様である。
 ステップS213において、S-MeNB200M1は、ハンドオーバを指示するためのハンドオーバ指令を含むRRC再設定メッセージをUE100に送信する。
 動作パターン1では、S-MeNB200M1は、SeNB200SとUE100との間の接続の解放を設定する情報(SeNB remove)をハンドオーバ指令と共にUE100に送信する。SeNB removeは、SeNB200Sの設定に関するセカンダリ基地局情報に相当する。S-MeNB200M1は、ハンドオーバ指令とSeNB removeとを含む1つのRRC再設定メッセージをUE100に送信することが好ましい。これにより、SeNB200Sの解放だけのためのRRC再設定メッセージが不要となるため、基本シーケンスに比べてRRC再設定を1回分削減することができる。ハンドオーバ指令と共にSeNB情報を受信したUE100は、SeNB removeに応じてSeNB200Sとの接続を解放しつつ、ハンドオーバ指令に応じてT-MeNB200M2との同期をとり(S216)、新たなRRC接続を確立(S217)する。
 また、動作パターン1では、T-MeNB200M2は、S-MeNB200M1とS-GW300Uとの間のデータパス、及びSeNB200SとS-GW300Uとの間のデータパス(ベアラ)を一括してT-MeNB200M2に切り替えるためのパス切り替え要求をMME300Cに送信(S218)する。なお、上述したハンドオーバ要求(S204)又は他のメッセージに、S-MeNB200M1のベアラの情報が含まれていることが好ましい。これにより、T-MeNB200M2は、ハンドオーバ要求に含まれるベアラ情報により、切り替えるベアラを特定できる。
 MME300Cは、パス切り替え要求に応じて、S-MeNB200M1とS-GW300Uとの間のデータパス、及びSeNB200SとS-GW300Uとの間のデータパス(ベアラ)を一括してT-MeNB200M2に切り替えるためのパス切り替えを行う。これにより、第1のUPアーキテクチャの場合に、ベアラをSeNB200SからS-MeNB200M1へ移すためのシグナリングが不要になる。
 SeNB200Sの追加手順(ステップS211乃至S233)については基本シーケンスと同様である。
 (3)動作パターン2
 図11は、第1実施形態に係る動作パターン2を示すシーケンス図である。図11の初期状態において、UE100は、S-MeNB200M1及びSeNB200Sと二重接続方式の通信を行っている(S301)。
 図11に示すように、ステップS303において、S-MeNB200M1は、UE100から受信(S302)する測定報告などに基づいて、T-MeNB200M2へのUE100のハンドオーバを決定する。また、S-MeNB200M1は、ハンドオーバの判断時に、SeNB200SとUE100との間の接続を解放するか否かを判断する。動作パターン2では、S-MeNB200M1は、SeNB200Sを維持したハンドオーバ(DC HO: Dual Connectivity HandOver)を決定可能である。SeNB200Sを維持したハンドオーバを決定した後、次の動作を行う。
 ステップS304において、S-MeNB200M1は、ハンドオーバ要求をT-MeNB200M2に送信する。その際、S-MeNB200M1は、SeNB200SとUE100との間の接続を維持したままハンドオーバを行うことを示す情報(SeNB Information)をハンドオーバ要求に含める。SeNB Informationは、SeNB200Sに関する情報(eNB ID、セルIDなど)を含む。また、SeNB Informationには、SeNB Addition/Modificationに含まれる要素(e.g. UE capabilities and the radio resource configuration of the UE)を入れてもよい。さらに、S-MeNB200M1は、本シーケンス前のSeNB Addition時にSeNB200Sから受け取ったRRCコンテナを保持しておき、当該RRCコンテナをハンドオーバ要求に含めてもよい。当該RRCコンテナは、例えば、後述するステップS311などで利用できる。
 ステップS305において、T-MeNB200M2は、ハンドオーバ要求の承認の判断を行う。ここで、T-MeNB200M2は、SeNB Additionに係る情報がハンドオーバ要求に含まれている場合(つまり、DC HOを示す)は、当該SeNB Additionの受け入れも含めて判断してもよい。
 承認(受け入れ)可の場合、ステップS306において、T-MeNB200M2は、ハンドオーバ肯定応答をS-MeNB200M1に送信する。なお、ステップS306におけるハンドオーバ肯定応答は、通常のハンドオーバ肯定応答でもよく、後述するステップS312で改めて送信される場合には省略してもよい。或いは、ステップS306におけるハンドオーバ肯定応答は、通常のハンドオーバ肯定応答を簡略化したもの(例えば、暫定的にHOのみ受け入れたというフラグ)であってもよい。或いは、「リソースが足りないので、当該HOにはSeNBのリソース追加を要する」という意味の情報(後述するステップS307で利用可)が含まれていてもよい。
 ステップS307において、ハンドオーバ肯定応答を受信したS-MeNB200M1は、SeNBリソースの維持を決定する。ステップS308において、S-MeNB200M1は、MeNBを変更・交替するための要求(SeNB Release Addition/Modification Request)をSeNB200Sに送信する。S-MeNB200M1は、SeNBがT-MeNB200M2に切り替えることを示す情報(MeNB change)を当該要求に含める。MeNB changeは、T-MeNB200M2に関する情報(eNB ID、セルIDなど)を含む。なお、ステップS304でハンドオーバ要求にSeNB関連設定情報が入っていた場合(つまり、既にT-MeNBがSeNBを設定可能な状態)、ステップS308は単なるReleaseで良い(但し、MeNB changeに係る情報は伝達される)。
 ステップS309において、SeNB200Sは、S-MeNB200M1からの要求を承認する場合に、無線リソース解放・変更を行う。ステップS310において、SeNB200Sは、解放・変更要求に対する応答(SeNB Release Response)をS-MeNB200M1に送信する。
 ステップS311において、SeNB200Sは、S-MeNB200M1から受信したMeNB changeに基づいて、無線リソース設定の通知(SeNB Addition/Modification Request/Command)をT-MeNB200M2に送信する。なお、ステップS304でハンドオーバ要求にSeNB関連設定情報が入っていた場合(つまり、既にT-MeNBがSeNBを設定可能な状態)、ステップS311は逆方向の通知でもよいし、省略してもよい。
 ステップS312において、T-MeNB200M2は、SeNBの無線リソース(SeNBリソース)設定を含んだハンドオーバ肯定応答をS-MeNB200M1に送信する。或いは、T-MeNB200M2は、SeNBリソース設定を他のメッセージに含めてS-MeNB200M1に送信してもよい。
 ステップS313において、S-MeNB200M1は、T-MeNB200M2からのSeNBリソース設定とハンドオーバ指令とを含むRRC再設定メッセージをUE100に送信する。SeNBリソース設定は、SeNB200SとUE100との間の接続の維持を設定する情報に相当する。
 UE100は、当該SeNBリソース設定の適用を開始する。ここで、UE100は、SeNB200Sと同期がとれているため、SeNB200Sに対するランダムアクセス(同期)を省略可能である。また、ランダムアクセス(同期)の省略を示す情報がRRC再設定メッセージに含まれていてもよい。
 ステップS314及びS315において、SeNB200Sは、UE100のデータの転送処理をT-MeNB200M2に対して行う。
 ステップS316において、UE100は、RRC再設定メッセージに基づいてT-MeNB200M2へのランダムアクセスを行い、T-MeNB200M2との同期をとる。ステップS317において、UE100は、RRC再設定の完了通知をT-MeNB200M2に送信する。
 ステップS318において、T-MeNB200M2は、S-MeNB200M1とS-GW300Uとの間のデータパスをT-MeNB200M2に切り替えるためのパス切り替え要求をMME300Cに送信する。動作パターン2では、SeNB200Sは維持されるため、第1のUPアーキテクチャの場合でも、SeNB200Sのベアラ切り替えは発生しない。
 このように、動作パターン2では、SeNB200Sを維持したままMeNB200M間でハンドオーバを行うことにより、基本シーケンスに比べてシグナリングを大幅に削減することができる。
 なお、動作パターン2では、T-MeNB200M2からS-MeNB200M1へのハンドオーバ肯定応答の送信が2回(S306、S312)行われているが、1回(S312)のみとしてもよい。
 [第2実施形態]
 以下において、第2実施形態について、第1実施形態との相違点を主として説明する。
 (1)動作シナリオ
 図12は、第2実施形態に係る動作環境を示す図である。
 図12に示すように、第2実施形態では、1つのマクロセル内に複数の小セル1,2が設けられる。UE100は、マクロセルのカバレッジ及び小セル1のカバレッジの重複領域に位置しており、マクロセル(MeNB200M)及び小セル1(SeNB200S1)の組み合わせにより二重接続方式の通信を行っている。UE100は、小セル2(SeNB200S2)に向けて移動している。第2実施形態では、UE100に対応するSeNBをS-SeNB200S1からT-SeNB200S2に切り替える。以下において、SeNB200S1をソースSeNB(S-SeNB)と称し、SeNB200S2をターゲットSeNB(T-SeNB)と称する。
 (1)動作パターン1
 図13は、第2実施形態に係る動作パターン1を示すシーケンス図である。図13の初期状態において、UE100は、MeNB200M及びS-SeNB200S1と二重接続方式の通信を行っている(S401)。
 図13に示すように、ステップS402において、UE100は、測定報告をMeNB200Mに送信する。ステップS403において、MeNB200Mは、測定報告などに基づいて、UE100に対応するSeNBリソースの解放及び割り当てを決定する。動作パターン1では、SeNBリソースの解放(Remove)及び割り当て(Add)を並行して行ってもよい。すなわち、MeNB200Mは、SeNB解放処理(Remove)の少なくとも一部とSeNB追加処理(Add)の少なくとも一部とを並列実行する。
 ステップS404において、MeNB200Mは、UE100に対応するSeNBリソースの解放要求をS-SeNB200S1に送信する。ステップS405において、S-SeNB200S1は、解放要求に応じて、SeNBリソースを解放する。ステップS406において、S-SeNB200S1は、解放要求に対する応答(SeNB Release Response)をMeNB200Mに送信する。
 第1のUPアーキテクチャの場合、ステップS407において、S-SeNB200S1は、ベアラをS-SeNB200S1からMeNB200Mへ移すための切り替え要求をMME300Cに送信する。ステップS408において、MME300Cは、切り替え要求に対する肯定応答をS-SeNB200S1に送信する。ステップS409及びS410において、S-SeNB200S1は、UE100のデータの転送処理をMeNB200Mに対して行う。
 ステップS411において、MeNB200Mは、SeNBリソースの割り当て要求をT-SeMB200S2に送信する。ステップS412において、T-SeMB200S2は、要求を承認する場合に、無線リソース設定を行う。ステップS413において、T-SeMB200S2は、無線リソース設定の通知をMeNB200Mに送信する。
 第1のUPアーキテクチャの場合、ステップS414及びS415において、MeNB200Mは、UE100のデータの転送処理をT-SeMB200S2に対して行う。
 ステップS416において、MeNB200Mは、T-SeNB200S2とUE100との間の接続の確立を設定する確立設定情報(T-SeNB addition)を含むRRC再設定メッセージをUE100に送信する。T-SeNB additionは、T-SeMB200S2の無線リソース設定を含む。また、MeNB200Mは、S-SeNB200S1とUE100との間の接続の解放を設定する解放設定情報(S-SeNB remove)をRRC再設定メッセージにさらに含めてもよい。
 このように、動作パターン1では、MeNB200Mは、MeNB200MとS-SeNB200S1との間のSeNB解放処理と、MeNB200MとT-SeNB200S2との間のSeNB追加処理と、が終了した後に、確立設定情報(T-SeNB addition)をUE100に送信する。
 ステップS418において、UE100は、RRC再設定メッセージに基づいてT-SeMB200S2へのランダムアクセスを行い、T-SeMB200S2との同期をとる。ステップS419において、UE100との同期を検出したT-SeMB200S2は、無線リソース設定の使用が可能になった旨の通知をMeNB200Mに送信する。なお、ステップS419は省略してもよい。
 第1のUPアーキテクチャの場合、ステップS420において、MeNB200Mは、ベアラをMeNB200MからT-SeMB200S2へ移すための切り替え要求をMME300Cに送信する。ステップS421において、MME300Cは、切り替え要求に対する肯定応答をMeNB200Mに送信する。なお、ステップS420は省略してもよい。
 (2)動作パターン2
 図14は、第2実施形態に係る動作パターン2を示すシーケンス図である。図14の初期状態において、UE100は、MeNB200M及びS-SeNB200S1と二重接続方式の通信を行っている(S501)。
 図14に示すように、ステップS502において、UE100は、測定報告をMeNB200Mに送信する。ステップS503において、MeNB200Mは、測定報告などに基づいて、S-SeNB200S1からT-SeMB200S2へのSeNBリソースの交替を決定する。
 ステップS504において、MeNB200Mは、SeNBを交替するための第1の交替要求(SeNB Swap Request)をS-SeNB200S1に送信する。第1の交替要求は、S-SeNB200S1の解放及びT-SeNB200S2の追加を要求するものである。第1の交替要求は、T-SeNB200S2に関する情報(eNB ID、セルID)、MeNB200Mに関する情報(eNB ID、セルID)を含む。
 ステップS505において、S-SeNB200S1は、第1の交替要求に応じて、SeNBリソースを解放する。ステップS506において、S-SeNB200S1は、第1の交替要求に対する応答(SeNB Swap Response)をMeNB200Mに送信する。
 ステップS507において、S-SeNB200S1は、SeNBを交替するための第2の交替要求(SeNB Swap Request)をT-SeNB200S2に送信する。第2の交替要求は、T-SeNB200S2の追加を要求するものである。第2の交替要求は、MeNB200Mに関する情報(eNB ID、セルID)を含む。
 ステップS508において、第2の交替要求を受信したT-SeNB200S2は、UE100のためのSeNBリソース(無線リソース)を設定する。ステップS509において、T-SeNB200S2は、SeNBリソース設定の通知(SeNB Addition/Modification Command)をMeNB200Mに送信する。
 第1のUPアーキテクチャの場合、ステップS511において、T-SeNB200S2は、ベアラをS-SeNB200S1からT-SeMB200S2へ移すための切り替え要求をMME300Cに送信する。ステップS512において、MME300Cは、切り替え要求に対する肯定応答をT-SeMB200S2に送信する。ステップS514及びS515において、S-SeNB200S1は、UE100のデータ転送をT-SeMB200S2に対して行う。
 一方、SeNBリソース設定の通知をT-SeMB200S2から受信したMeNB200Mは、ステップS513において、T-SeNB200S2とUE100との間の接続の確立を設定する確立設定情報(T-SeNB addition)を含むRRC再設定メッセージをUE100に送信する。T-SeNB additionは、T-SeMB200S2の無線リソース設定(リソース設定情報)を含む。また、MeNB200Mは、S-SeNB200S1とUE100との間の接続の解放を設定する解放設定情報(S-SeNB remove)をRRC再設定メッセージにさらに含めてもよい。
 ステップS516において、UE100は、RRC再設定メッセージに基づいてT-SeMB200S2へのランダムアクセスを行い、T-SeMB200S2との同期をとる。ステップS517及びS518において、UE100との同期を検出したT-SeMB200S2は、無線リソース設定の使用が可能になった旨の交替完了通知(Swap Complete)をMeNB200Mに送信する。
 (3)動作パターン3
 図15は、第2実施形態に係る動作パターン3を示すシーケンス図である。図15の初期状態において、UE100は、MeNB200M及びS-SeNB200S1と二重接続方式の通信を行っている(S601)。ここでは、動作パターン2との相違点を主として説明する。
 図15に示すように、ステップS602において、UE100は、チャネル状態情報(CSI)をS-SeNB200S1に送信してもよい。
 ステップS603において、UE100は、測定報告をMeNB200Mに送信する。ステップS604において、MeNB200Mは、UE100から受信した測定報告をS-SeNB200S1に送信してもよい。
 ステップS605において、S-SeNB200S1は、測定報告及びCSIなどに基づいて、S-SeNB200S1からT-SeMB200S2へのSeNBリソースの交替を決定する。また、S-SeNB200S1は、自らの「解放」についてMeNB200Mとネゴシエーションしてもよい。また、S-SeNB200S1は、SeNBリソースを解放する。
 ステップS606において、S-SeNB200S1は、SeNBを交替するための交替要求(SeNB Swap Request)をT-SeNB200S2に送信する。交替要求は、T-SeNB200S2の追加を要求するものである。交替要求は、MeNB200Mに関する情報(eNB ID、セルID)を含む。
 ステップS607において、交替要求を受信したT-SeNB200S2は、UE100のためのSeNBリソース(無線リソース)を設定する。ステップS608において、T-SeNB200S2は、SeNBリソース設定の通知(SeNB Addition/Modification Command)をMeNB200Mに送信する。以降の動作(S609乃至S616)については、動作パターン2と同様である。
 [第3実施形態]
 以下において、第3実施形態について、第1実施形態及び第2実施形態との相違点を主として説明する。
 (1)動作シナリオ
 図16は、第3実施形態に係る動作シナリオ1を示す図である。
 図16に示すように、第3実施形態に係る動作シナリオ1では、第1実施形態に係る動作シナリオにおいてEPC20の構成も考慮する。図16の例では、MeNB200M1及びSeNB200Sは同一のS-GW300U1に収容されており、MeNB200M1は別のS-GW300U2に収容されている。すなわち、MeNB200M1及びSeNB200Sのそれぞれは、S-GW300U1との間にS1インターフェイスを持つ。MeNB200M2は、S-GW300U2との間にS1インターフェイスを持つ。
 このようなシナリオでは、SeNB200S及びMeNB200M2には、第1のUPアーキテクチャを適用することができないが、第2のUPアーキテクチャを適用することはできる。また、このようなシナリオでは、第1のUPアーキテクチャを前提とする場合に、例えば第1実施形態に係る動作パターン2のようなSeNB200Sを維持したままMeNB200M間のハンドオーバを行う高度なハンドオーバ制御を行うことはできない。
 図17は、第3実施形態に係る動作シナリオ2を示す図である。
 図17に示すように、第3実施形態に係る動作シナリオ2では、第2実施形態に係る動作シナリオにおいてEPC20の構成も考慮する。図17の例では、MeNB200M及びSeNB200S1は同一のS-GW300U1に収容されており、SeNB200S2は別のS-GW300U2に収容されている。すなわち、MeNB200M及びSeNB200S1のそれぞれは、S-GW300U1との間にS1インターフェイスを持つ。SeNB200S2は、S-GW300U2との間にS1インターフェイスを持つ。
 このようなシナリオでは、MeNB200M及びSeNB200S2には、第1のUPアーキテクチャを適用することができないが、第2のUPアーキテクチャを適用することはできる。また、このようなシナリオでは、第1のUPアーキテクチャを前提とする場合に、例えば第2実施形態に係る動作パターン2及び3のような高度なハンドオーバ制御を行うことはできない。
 (2)第3実施形態に係る動作
 第3実施形態では、第1実施形態及び第2実施形態に係るハンドオーバ制御において、ハンドオーバ判断(HO decision)又はハンドオーバ承認制御(Admission Control)などを行うノードは、MeNB200Mを収容するS-GW300UとSeNB200Sを収容するS-GW300Uとが一致するか否かに基づいて、二重接続方式に係る判断を行う。当該ノードは、MeNB200M又はSeNB200Sなどの通信制御装置である。例えば、当該ノードは、MeNB200Mを収容するS-GW300UとSeNB200Sを収容するS-GW300Uとが一致しない場合に、第1のUPアーキテクチャを適用しないと判断する。
 また、図16に示すように、第1実施形態を例に挙げると、第2のUPアーキテクチャが可能であるか否かに基づいて、SeNB200SとUE100との間の接続を解放してハンドオーバ(基本シーケンス)を行うか、又はSeNB200SとUE100との間の接続を維持したままハンドオーバ(高度なハンドオーバ)を行うかを判断する。或いは、当該ノードは、MeNB200M2を収容するS-GW300UとSeNB200Sを収容するS-GW300Uとが一致するか否かに基づいて、SeNB200SとUE100との間の接続を解放してハンドオーバ(基本シーケンス)を行うか、又はSeNB200SとUE100との間の接続を維持したままハンドオーバ(高度なハンドオーバ)を行うかを判断する。
 このような判断をMeNB200M又はSeNB200Sが行うためには、各eNB200が他のeNB200を収容するS-GW300Uを把握している必要がある。
 よって、第3実施形態では、MeNB200M又はSeNB200Sは、自eNBを収容するS-GW300Uの識別情報を近隣のeNBに送信する。ここで、自eNBを収容するS-GW300Uとは、自eNBとの間にS1インターフェイスを持つS-GW300Uである。S-GW300Uの識別情報とは、例えばS-TEID(S-GW ID)又はS-GW IP addressである。
 図18は、S-GW300Uの識別情報をeNB200間で送受信するための第1の動作を示す図である。図18に示すように、eNB200aは、eNB200aを収容するS-GW300Uの識別情報をeNB Configuration Updateメッセージに含めてeNB200bに送信する。eNB Configuration Updateメッセージは、eNB200の設定更新を通知するためのメッセージである。なお、eNB Configuration Updateメッセージに代えて、X2 Setupメッセージを使用してもよい。X2 Setupメッセージは、X2インターフェイスを確立するためのメッセージである。例えば、表1に示すように、eNB Configuration Updateメッセージの「Served Cell Information」にS-GW300Uの識別情報含める。
Figure JPOXMLDOC01-appb-T000001
 
 図19は、S-GW300Uの識別情報をeNB200間で送受信するための第2の動作を示す図である。図19及び表2に示すように、eNB200aは、eNB200aを収容するS-GW300Uの識別情報を、上述したSeNB Addition/Modificationメッセージに含めてeNB200bに送信する。
Figure JPOXMLDOC01-appb-T000002
 
 図20は、第3実施形態に係る動作を示すフロー図である。
 図20に示すように、ステップS701において、ノード(MeNB200M又はSeNB200S)は、UE100が二重接続方式で通信しているか否かを判断する。通常の通信を行っている場合(ステップS701;NO)、ステップS705において、通常のハンドオーバを行うと判断する。
 二重接続方式で通信している場合(ステップS701;YES)、ステップS702において、当該ノードは、UE100が第2のUPアーキテクチャ(UPアーキテクチャ「3C」)で通信を行っているか否かを判断する。第2のUPアーキテクチャで通信を行っている場合(ステップS702;YES)、ステップS703において、当該ノードは、第1実施形態及び第2実施形態に係る高度なハンドオーバを行うと判断する。
 これに対し、UE100が第2のUPアーキテクチャで通信を行っていない、すなわち、UE100が第1のUPアーキテクチャ(UPアーキテクチャ「1A」)で通信を行っている場合(ステップS702;NO)、ステップS704において、当該ノードは、上述したようなS-GW300Uの一致/不一致を判断する。S-GW300Uが一致すると判断した場合(ステップS704;YES)、ステップS703において、当該ノードは、第1実施形態及び第2実施形態に係る高度なハンドオーバを行うと判断する。一方、S-GW300Uが一致しないと判断した場合(ステップS704;NO)、ステップS705において、当該ノードは、通常のハンドオーバを行うと判断する。
 [その他の実施形態]
 上述した実施形態では、SeNB間の交替(Swap)について触れたが、MeNB間の交替(Swap)について特に触れなかったが、第1実施形態に係る動作パターン2のシーケンスをMeNB間の交替(Swap)に応用可能である。
 また、上述した実施形態では、マクロセルと小セルとの組み合わせにより二重接続方式の通信を行うケースを例示した。しかしながら、そのような組み合わせに限らず、マクロセルとピコセルとの組み合わせにより二重接続方式の通信を行ってもよく、ピコセルとフェムトセルとの組み合わせにより二重接続方式の通信を行ってもよい。
 また、上述した実施形態では、移動通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 [付記]
 1.はじめに
 本付記では、様々なハンドオーバのシナリオを考慮して、MCGハンドオーバ及びSCGハンドオーバのために必要なメカニズムについて説明する。
 2.用語
 用語「MCGハンドオーバ」及び「SCGハンドオーバ」が採用される前に、まずこれらの用語を使用した場合の影響を考慮する必要がある。MCGは、eNB内キャリアアグリゲーション(eNB内CA)によりPCell及びSCellの両方がUEに設定されている可能性を示唆しており、既存のeNB内CA手順はPCellハンドオーバのみを許容するので、用語「MCGハンドオーバ」の使用は誤解を招く可能性があり、既存のeNB内CAハンドオーバ手順と矛盾し得る。しかしながら、既存のeNB内CA手順は、DC機能とPCellハンドオーバを組み合わせる可能性を意味し得る。そのような機能はリリース12前では想定されていないが、この機能の説明を容易にするために、用語「DCを伴うPCellハンドオーバ」は、このような機能を称するために使用されることが提案される。この機能の有用性についての詳細については後述する。
 見解1:PCell及びSCellの両方からなるMCGハンドオーバは、既存のeNB内CAハンドオーバ手順では許可されていない。
 提案1:DCを伴うPCellハンドオーバは、二重接続が有効化されている間に、2つのMeNB間のハンドオーバを称するために使用されるべきである。そのような機能が実際に必要かどうかは検討が必要である。
 同様に、2つのSeNB間のハンドオーバを記載するために、「SCGハンドオーバ」の代わりに、「特別セルのハンドオーバ」を使用することが提案される。これは、2つのMeNB間のハンドオーバと一貫性のある手順を提供するであろう。
 提案2:特別セルのハンドオーバは、二重接続性の間における2つのSeNB間のハンドオーバを称するために使用されるべきである。それは、そのような機能が必要かどうかは検討が必要である。
 3.ハンドオーバのシナリオ
 対象とする展開シナリオを図21に示す。図21に示す高密度の小セル展開は、いくつかのシナリオ(例えば、密集した都市や大型ショッピングモール)において巨大なトラフィックをサポートするために必要とされる。特に、高密度の小セル展開では、マクロセルの境界に多くの小セルが配置されることを予測することが妥当である(例えば、図21における右上マクロセルを参照)。
 見解2:多くの小セルは、マクロセルの境界付近に展開され得る。
 見解2の結果として、二重接続を伴うハンドオーバ手順は、考慮から除外されるべきではない。具体的には、DCを伴うPCellハンドオーバが次のシナリオ下で有用であり得る:
 ・シナリオM1:SeNBがソースMeNB(S-MeNB)とターゲットMeNB(T-MeNB)との間のセル端に配置される。(図8参照)
 また、特別セルのハンドオーバは、次のシナリオ下で有用であり得る:
 ・シナリオS2:ソースSeNB(S-SeNB)及びターゲットSeNB(T-SeNB)がMeNBのカバレッジ内に配置される。(図12参照)
 最後に、DCを伴うPCellハンドオーバと特別セルのハンドオーバとの組み合わせは、次のような状況の下で有用であり得る:
 ・シナリオM3:SeNB(SeNB1)がS-MeNBのカバレッジ内に配置され、隣接SeNB(SeNB2)がT-MeNBのカバレッジ内に配置される。なお、MeNB間のセル端とSeNB間のセル端とが同じ領域である。(図22参照)
 提案3:二重接続を伴う3つのハンドオーバシナリオを考慮に入れるべきである。
 4.可能なハンドオーバ手順
 4.1.DCを伴うPCellハンドオーバ
 4.1.1.シナリオM1
 4.1.1.1.現在のハンドオーバ手順に関する問題
 シナリオM1のための二重接続を伴う現在のハンドオーバ手順の単純な応用を図23に示す。このハンドオーバ手順は、二重接続のためのハンドオーバを完了するために3つのRRC接続再構成メッセージが必要とされていると仮定する。1つはSeNBの解放であり、1つはMeNBハンドオーバであり、1つは同一SeNBの追加である。このハンドオーバ手順のためのRRC接続再構成メッセージ数の増加は、RLF/HOFの発生及びスループット劣化をもたらし得る。
 見解3:シナリオM1では、PCellハンドオーバ中に同一SeNBを解放・追加するする現在の手順は、複数のRRC接続再構成を必要とし、RLF/HOFの増加につながる可能性がある。
 4.1.1.2.DCを伴うPCellハンドオーバの詳細
 不要なRRC接続再構成の数を減らすために、強化されたハンドオーバ手順が図24で検討される。この手順は、1つのみのRRC接続再構成が必要とされるように、UEがDCを伴うPCellハンドオーバの間に少なくとも特別セルを維持することを可能とする。DCを伴うPCellハンドオーバが以下の選択肢の1つを使用して実現することができる。
 選択肢1:T-MeNBがSeNBに対してSeNB追加手順を開始することができるように、ハンドオーバ要求メッセージが、既存SeNBの設定(configurations)に関連するパラメータを含む。
 選択肢2:ハンドオーバ要求メッセージが、ハンドオーバ手順が二重接続を含むことの簡単な通知を含む。T-MeNB(又はSeNBであり得る)がハンドオーバ完了前にSeNBに対して追加手順を開始する。
 いずれかの選択肢でも、T-MeNBにおけるアドミッション制御の後に、SeNBが、S-MeNBから解放され、UEの再構成の前にT-MeNBに追加されているものとする。その後、T-MeNBは、ハンドオーバ及びSeNB追加の両方の構成を伴うRRCコンテナをS-MeNBに送信し、最終的なRRC接続再構成がUEに送信される。
 見解4:強化されたDC手順を伴うPCellハンドオーバは、RRC接続再構成メッセージの数を減らし、UEはSCG設定を維持することを可能にする。
 提案4:DCを伴うPCellハンドオーバを実現するために2つの選択肢のどちらを使用すべきかを決定する必要がある。
 提案5:1つのみのRRC接続再構成で二重接続を伴うMeNBハンドオーバ手順を強化するためのオプションを検討する必要がある。
 4.2.特別セルのハンドオーバ
 4.2.1.シナリオS2
 特別セルのハンドオーバの概念は新しいが、図25に示すように、現在のハンドオーバ手順とSeNB追加/変更/解放手順を使用して実現することができる。
 DCを伴うPCellハンドオーバとは対照的に、MeNBとのRRCエンティティはUEのために変わらないので、SeNB追加/変更要求メッセージにおけるSeNB追加/変更及びSeNB解放の機能を用いて特別セルのハンドオーバを実現することができる。図25に基づき、2つのRRC接続再構成メッセージが必要とされている。しかしながら、SeNB解放応答メッセージがRRCコンテナを含まない場合はそれを容易に削減することができ、それは、MeNBがS-SeNBの解放のためにだけにUEにRRC再構成メッセージを送信する必要がないことを意味する。そして、これは下記の合意と調和する。
 5)MeNBは、SeNBが提供するRRC構成の内容を変更しない。-FFS MeNBがUEのいずれかのサービングセルを解放することをSeNBに要求し、SeNBがコンテナを作成し、それがサービングセルの解放につながるか。又は、MeNBは、自身で、SeNBに維持されているサービングセルを解放することができるかどうか。-FFS MeNBがSeNBから受信したRRCコンテナを理解又は拒否する必要があるかどうか。-FFS MeNBとSeNBとでどのように「共有」(例えばL1処理能力)するか。
 見解5:SeNB解放応答メッセージ内にRRCコンテナが含まれていない場合、特別セルのハンドオーバに使用されるRRC接続再構成メッセージの数を削減することができる。
 他の選択肢は、RRCコンテナの無い「SeNB交換要求」として新しいメッセージを定義することである。図26を参照すると、MeNB又はS-eNBの何れかが、特別セルのハンドオーバを他のeNBに知らせるためのSeNB交換手順を開始する。eNB間の調整が完了した後、T-SeNBは、RRCコンテナを含む追加/変更コマンドをMeNBに送信し、その後、MeNBは、RRCコンテナをRRC接続再構成内でUEに転送し得る。
 提案6:SeNB解放応答が特別セルのハンドオーバのためのRRCコンテナを含むべきかどうかを決定する必要がある。
 4.3.シナリオM3
 このシナリオでは、MeNB及びSeNBの両方のセル端が同じ領域にある。考慮すべき3つの選択肢がある。
 選択肢1:SeNB1の解放後にPCellハンドオーバが開始される。これは、現在のeNB内PCellハンドオーバ手順と同じである。SeNB2はハンドオーバの完了後に追加することができる。
 選択肢2:SeNB1構成を維持しつつDCを伴うPCellハンドオーバが開始される。そして、特別セルのハンドオーバは別途SeNB1からSeNB2に開始される。この選択肢は、基本的には、M1とS2のためのハンドオーバ手順を別々に開始すると想定している。
 選択肢3:DCを伴うPCellハンドオーバ及び特別セルのハンドオーバを同時に開始する。これは、シナリオM1及びS2を組み合わせたパラレルハンドオーバ手順を必要とする。
 選択肢2及び選択肢3では、別個のハンドオーバ強化の手順が必要とされない。その代わりに、シナリオM1及びシナリオS2について検討されるハンドオーバ手順を再利用することで十分である。
 見解6:シナリオM1及びS2のための強化されたハンドオーバ手順がシナリオM3のために適用可能であり得る。シナリオM3のために別個に強化された手順は必要とされない。
 5.ハンドオーバシナリオのその他の制約
 二重接続用Xnの機能は、既存のX2インターフェイス上で実現される。したがって、強化された二重接続の手順は、S1インターフェイス上で適用されない。二重接続を伴うハンドオーバについては、S1ハンドオーバ手順が完了する前にSeNBがUEから解放されるべきである。
 見解7:二重接続のための強化されたハンドオーバ手順は、X2インターフェイス上で適用可能であるべきである。
 [相互参照]
 米国仮出願第61/934350号(2014年1月31日出願)の全内容が、参照により本願明細書に組み込まれている。
 本発明は、移動無線分野において有用である。

Claims (37)

  1.  RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式をサポートする移動通信システムにおける通信制御方法であって、
     前記二重接続方式の通信を開始した後、前記マスタ基地局と関連する前記ユーザ端末のハンドオーバを行う場合に、前記ハンドオーバを指示するためのハンドオーバ指令を前記マスタ基地局から前記ユーザ端末に送信するステップを有し、
     前記ハンドオーバ指令を送信するステップにおいて、前記マスタ基地局は、前記セカンダリ基地局の設定に関するセカンダリ基地局情報を含む前記ハンドオーバ指令を前記ユーザ端末に送信することを特徴とする通信制御方法。
  2.  前記セカンダリ基地局情報は、前記ユーザ端末における前記セカンダリ基地局の設定の解放を設定する情報であることを特徴とする請求項1に記載の通信制御方法。
  3.  前記セカンダリ基地局情報を含む前記ハンドオーバ指令は、1つのRRC再設定メッセージにより構成されることを特徴とする請求項2に記載の通信制御方法。
  4.  前記マスタ基地局は、前記ハンドオーバのソースとなるソース・マスタ基地局であり、
     前記ハンドオーバは、前記ソース・マスタ基地局からターゲット基地局への基地局間ハンドオーバであることを特徴とする請求項2に記載の通信制御方法。
  5.  前記ハンドオーバ指令と共に前記セカンダリ基地局情報を受信した前記ユーザ端末が、前記セカンダリ基地局情報に応じて前記セカンダリ基地局の設定を解放しつつ、前記ハンドオーバ指令に応じて前記ターゲット基地局との新たなRRC接続を確立するステップをさらに有することを特徴とする請求項4に記載の通信制御方法。
  6.  前記ハンドオーバを行う場合、前記ソース・マスタ基地局が、前記ターゲット基地局にハンドオーバ要求を送信するステップと、
     前記ターゲット基地局が前記ハンドオーバ要求を承認した場合、前記ソース・マスタ基地局が、前記ターゲット基地局からハンドオーバ肯定応答を受信するステップと、
     前記ソース・マスタ基地局が、前記ハンドオーバ肯定応答の受信に応じて、前記セカンダリ基地局にリソース解放要求を送信するステップと、をさらに有することを特徴とする請求項4に記載の通信制御方法。
  7.  前記ソース・マスタ基地局が、前記リソース解放要求を送信した後において、前記セカンダリ基地局情報を含む前記ハンドオーバ指令を前記ユーザ端末に送信することを特徴とする請求項6に記載の通信制御方法。
  8.  前記ハンドオーバを行う場合、前記ソース・マスタ基地局が、前記セカンダリ基地局に関する情報を含むハンドオーバ要求を前記ターゲット基地局に送信するステップをさらに有することを特徴とする請求項4に記載の通信制御方法。
  9.  前記ターゲット基地局が、データパスを前記ソース・マスタ基地局から前記ターゲット基地局へ移すための切り替え要求をコアネットワークに送信するステップと、
     前記ターゲット基地局が、前記切り替え要求に対する肯定応答を前記コアネットワークから受信するステップと、
     前記ターゲット基地局が、前記肯定応答の受信に応じて、前記ユーザ端末のコンテキスト情報の解放を要求するコンテキスト解放要求を前記ソース・マスタ基地局に送信するステップと、をさらに有することを特徴とする請求項4に記載の通信制御方法。
  10.  前記ソース・マスタ基地局が、前記ハンドオーバの判断時、又は前記ターゲット基地局からのハンドオーバ肯定応答の受信時に、前記セカンダリ基地局と前記ユーザ端末との間の接続を解放するか否かを判断するステップをさらに有することを特徴とする請求項4に記載の通信制御方法。
  11.  前記ターゲット基地局が、前記ソース・マスタ基地局とコアネットワークとの間のデータパス、及び前記セカンダリ基地局と前記コアネットワークとの間のデータパスを一括して前記ターゲット基地局に切り替えるためのパス切り替え要求を前記コアネットワークに送信するステップをさらに有することを特徴とする請求項4に記載の通信制御方法。
  12.  前記セカンダリ基地局情報は、前記セカンダリ基地局と前記ユーザ端末との間の接続の維持を設定する情報であることを特徴とする請求項1に記載の通信制御方法。
  13.  前記ハンドオーバ指令と共に前記セカンダリ基地局情報を受信した前記ユーザ端末が、前記セカンダリ基地局情報に応じて前記セカンダリ基地局との接続を維持しつつ、前記ハンドオーバ指令に応じてターゲット基地局との新たなRRC接続を確立するステップをさらに有することを特徴とする請求項12に記載の通信制御方法。
  14.  前記セカンダリ基地局と前記ユーザ端末との間の接続を維持したまま前記ハンドオーバを行うことを示す情報を前記ソース・マスタ基地局からターゲット基地局に送信するステップをさらに有することを特徴とする請求項12に記載の通信制御方法。
  15.  前記ユーザ端末に対応する前記マスタ基地局を前記ソース・マスタ基地局からターゲット基地局に切り替えることを示す情報を前記ソース・マスタ基地局から前記セカンダリ基地局に送信するステップをさらに有することを特徴とする請求項12に記載の通信制御方法。
  16.  前記セカンダリ基地局とコアネットワークとの間のデータパスが前記マスタ基地局を経由するデータパス構造を用いる二重接続方式が可能であるか否かに基づいて、前記セカンダリ基地局と前記ユーザ端末との間の接続を解放して前記ハンドオーバを行うか、又は前記セカンダリ基地局と前記ユーザ端末との間の接続を維持したまま前記ハンドオーバを行うかを判断するステップをさらに有することを特徴とする請求項1に記載の通信制御方法。
  17.  ターゲット基地局を収容するサービングゲートウェイと前記セカンダリ基地局を収容するサービングゲートウェイとが一致するか否かに基づいて、前記セカンダリ基地局と前記ユーザ端末との間の接続を解放して前記ハンドオーバを行うか、又は前記セカンダリ基地局と前記ユーザ端末との間の接続を維持したまま前記ハンドオーバを行うかを判断するステップをさらに有することを特徴とする請求項1に記載の通信制御方法。
  18.  セカンダリ基地局と共に、二重接続方式の通信をユーザ端末と行うマスタ基地局であって、
     前記二重接続方式の通信を開始した後、前記マスタ基地局と関連する前記ユーザ端末のハンドオーバを行う場合に、前記ハンドオーバを指示するためのハンドオーバ指令を前記ユーザ端末に送信する送信部を有し、
     前記送信部は、前記セカンダリ基地局の設定に関するセカンダリ基地局情報を含む前記ハンドオーバ指令を送信することを特徴とするマスタ基地局。
  19.  二重接続方式の通信をマスタ基地局及びセカンダリ基地局と行うユーザ端末であって、
     前記二重接続方式の通信を開始した後、前記マスタ基地局と関連する前記ユーザ端末のハンドオーバを行う場合に、前記ハンドオーバを指示するためのハンドオーバ指令を前記マスタ基地から受信する受信部を有し、
     前記受信部は、前記セカンダリ基地局の設定に関するセカンダリ基地局情報を含む前記ハンドオーバ指令を受信することを特徴とするユーザ端末。
  20.  RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式をサポートする移動通信システムにおける通信制御方法であって、
     前記二重接続方式の通信を開始した後、前記セカンダリ基地局をソース・セカンダリ基地局からターゲット・セカンダリ基地局に切り替える場合に、前記ターゲット・セカンダリ基地局と前記ユーザ端末との間の接続のための設定を追加する確立設定情報を前記マスタ基地局から前記ユーザ端末に送信するステップを有することを特徴とする通信制御方法。
  21.  前記確立設定情報を送信するステップにおいて、前記マスタ基地局は、前記ソース・セカンダリ基地局と前記ユーザ端末との間の接続のための設定を解放する解放設定情報を前記確立設定情報と共に前記ユーザ端末に送信することを特徴とする請求項20に記載の通信制御方法。
  22.  前記解放設定情報を送信するステップにおいて、前記マスタ基地局は、前記解放設定情報と前記確立設定情報とを含む1つのRRC再設定メッセージを前記ユーザ端末に送信することを特徴とする請求項21に記載の通信制御方法。
  23.  前記マスタ基地局は、前記マスタ基地局と前記ソース・セカンダリ基地局との間のセカンダリ基地局解放処理と、前記マスタ基地局と前記ターゲット・セカンダリ基地局との間のセカンダリ基地局追加処理と、が終了した後に、前記確立設定情報を前記ユーザ端末に送信することを特徴とする請求項20に記載の通信制御方法。
  24.  前記ソース・セカンダリ基地局から前記ターゲット・セカンダリ基地局に対して、前記マスタ基地局を経由して、「SN Status Transfer」メッセージを送信するステップと、
     前記ソース・セカンダリ基地局から前記ターゲット・セカンダリ基地局に対して、前記マスタ基地局を経由して、前記ユーザ端末のデータを転送するステップと、をさらに有することを特徴とする請求項20に記載の通信制御方法。
  25.  前記セカンダリ基地局を交替するための第1の交替要求を前記マスタ基地局から前記ソース・セカンダリ基地局に送信するステップと、
     前記第1の交替要求を受信した前記ソース・セカンダリ基地局が、前記セカンダリ基地局を交替するための第2の交替要求を前記ターゲット・セカンダリ基地局に送信するステップと、
     前記第2の交替要求を受信した前記ターゲット・セカンダリ基地局が、前記第2の交替要求の受信に応じて、前記ユーザ端末のための無線リソースを設定するステップと、
     前記ユーザ端末のためのリソース設定情報を前記ターゲット・セカンダリ基地局から前記マスタ基地局に送信するステップと、
    をさらに有することを特徴とする請求項20に記載の通信制御方法。
  26.  前記ソース・セカンダリ基地局が、前記セカンダリ基地局を交替するための交替要求を前記ターゲット・セカンダリ基地局に送信するステップと、
     前記交替要求を受信した前記ターゲット・セカンダリ基地局が、前記交替要求の受信に応じて、前記ユーザ端末のための無線リソースを設定するステップと、
     前記ユーザ端末のためのリソース設定情報を前記ターゲット・セカンダリ基地局から前記マスタ基地局に送信するステップと、
    をさらに有することを特徴とする請求項20に記載の通信制御方法。
  27.  前記確立設定情報を送信するステップにおいて、前記マスタ基地局は、前記ターゲット・セカンダリ基地局からの前記リソース設定情報の受信に応じて、前記確立設定情報を前記ユーザ端末に送信することを特徴とする請求項25に記載の通信制御方法。
  28.  前記確立設定情報を受信した前記ユーザ端末が、前記確立設定情報に基づいて、前記ターゲット・セカンダリ基地局に対するランダムアクセスを行うステップと、
     前記ユーザ端末との同期を検出した前記ターゲット・セカンダリ基地局が、前記セカンダリ基地局の交替完了を示す交替完了通知を前記マスタ基地局に送信するステップと、
    をさらに有することを特徴とする請求項25に記載の通信制御方法。
  29.  セカンダリ基地局と共に、二重接続方式の通信をユーザ端末と行うマスタ基地局であって、
     前記二重接続方式の通信を開始した後、前記セカンダリ基地局をソース・セカンダリ基地局からターゲット・セカンダリ基地局に切り替える場合に、前記ターゲット・セカンダリ基地局と前記ユーザ端末との間の接続のための設定を追加する確立設定情報を前記ユーザ端末に送信する送信部を有することを特徴とするマスタ基地局。
  30.  二重接続方式の通信をマスタ基地局及びセカンダリ基地局と行うユーザ端末であって、
     前記二重接続方式の通信を開始した後、前記セカンダリ基地局をソース・セカンダリ基地局からターゲット・セカンダリ基地局に切り替える場合に、前記ターゲット・セカンダリ基地局と前記ユーザ端末との間の接続のための設定を追加する確立設定情報を前記マスタ基地局から受信する受信部を有することを特徴とするユーザ端末。
  31.  RRC接続をユーザ端末と確立するマスタ基地局と、追加的な無線リソースを前記ユーザ端末に提供するセカンダリ基地局と、を用いる二重接続方式をサポートする移動通信システムにおける通信制御方法であって、
     通信制御装置が、前記マスタ基地局を収容するサービングゲートウェイと前記セカンダリ基地局を収容するサービングゲートウェイとが一致するか否かに基づいて、前記二重接続方式に係る判断を行うステップを有することを特徴とする通信制御方法。
  32.  前記マスタ基地局及び/又は前記セカンダリ基地局が、自基地局を収容するサービングゲートウェイの識別情報を前記通信制御装置に送信するステップをさらに有することを特徴とする請求項31に記載の通信制御方法。
  33.  前記二重接続方式には、前記マスタ基地局及び前記セカンダリ基地局のそれぞれと1つのサービングゲートウェイとの間にデータパスを確立する第1の二重接続方式が含まれており、
     前記判断を行うステップにおいて、前記通信制御装置は、前記マスタ基地局を収容するサービングゲートウェイと前記セカンダリ基地局を収容するサービングゲートウェイとが一致しない場合に、前記第1の二重接続方式を適用しないと判断することを特徴とする請求項31に記載の通信制御方法。
  34.  セカンダリ基地局と共に、二重接続方式の通信をユーザ端末と行うマスタ基地局であって、
     前記ユーザ端末について前記二重接続のためのリソース準備又は変更を要求する要求メッセージを、X2インターフェイスを介して前記セカンダリ基地局に送信する送信部を有し、
     前記送信部は、前記マスタ基地局とS1インターフェイスを介して接続されたサービングゲートウェイの識別情報を含む前記要求メッセージを送信することを特徴とするマスタ基地局。
  35.  前記識別情報は、前記サービングゲートウェイのS1トンネル・エンドポイントID(S1-TEID)であることを特徴とする請求項34に記載のマスタ基地局。
  36.  前記識別情報は、前記サービングゲートウェイのIPアドレスであることを特徴とする請求項34に記載のマスタ基地局。
  37.  マスタ基地局と共に、二重接続方式の通信をユーザ端末と行うセカンダリ基地局であって、
     前記ユーザ端末について前記二重接続のためのリソース準備又は変更を要求する要求メッセージを、X2インターフェイスを介して前記マスタ基地局から受信する受信部を有し、
     前記受信部は、前記マスタ基地局とS1インターフェイスを介して接続されたサービングゲートウェイの識別情報を含む前記要求メッセージを受信することを特徴とするセカンダリ基地局。
PCT/JP2015/052764 2014-01-31 2015-01-30 通信制御方法、マスタ基地局、セカンダリ基地局、及びユーザ端末 WO2015115621A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015560053A JP6082129B2 (ja) 2014-01-31 2015-01-30 マスタ基地局、セカンダリ基地局、及びプロセッサ
EP15743524.9A EP3101949B1 (en) 2014-01-31 2015-01-30 Master base station and secondary base station for dual connectivity with a user terminal that exchange identification information of a serving gateway connected with the master base station
US15/009,441 US9867107B2 (en) 2014-01-31 2016-01-28 Communication control method, master base station, secondary base station, and user terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461934350P 2014-01-31 2014-01-31
US61/934,350 2014-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/009,441 Continuation US9867107B2 (en) 2014-01-31 2016-01-28 Communication control method, master base station, secondary base station, and user terminal

Publications (1)

Publication Number Publication Date
WO2015115621A1 true WO2015115621A1 (ja) 2015-08-06

Family

ID=53757188

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/052764 WO2015115621A1 (ja) 2014-01-31 2015-01-30 通信制御方法、マスタ基地局、セカンダリ基地局、及びユーザ端末
PCT/JP2015/052780 WO2015115629A1 (ja) 2014-01-31 2015-01-30 通信制御方法、マスタ基地局、セカンダリ基地局、及びユーザ端末

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052780 WO2015115629A1 (ja) 2014-01-31 2015-01-30 通信制御方法、マスタ基地局、セカンダリ基地局、及びユーザ端末

Country Status (4)

Country Link
US (2) US9867107B2 (ja)
EP (2) EP3101948B1 (ja)
JP (5) JPWO2015115629A1 (ja)
WO (2) WO2015115621A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130852A1 (ja) * 2016-01-25 2017-08-03 京セラ株式会社 無線端末及び基地局
WO2017171506A1 (en) * 2016-04-01 2017-10-05 Samsung Electronics Co., Ltd. Method and enb equipment for supporting seamless handover
CN107277879A (zh) * 2016-04-01 2017-10-20 北京三星通信技术研究有限公司 一种支持无缝切换的方法及基站设备
JP2018503332A (ja) * 2015-01-26 2018-02-01 華為技術有限公司Huawei Technologies Co.,Ltd. ハンドオーバー装置および方法
JP2018507649A (ja) * 2015-03-04 2018-03-15 クゥアルコム・インコーポレイテッドQualcomm Incorporated デュアルリンクハンドオーバー
JPWO2017078057A1 (ja) * 2015-11-04 2018-08-23 三菱電機株式会社 通信システム
WO2021156952A1 (ja) * 2020-02-04 2021-08-12 株式会社Nttドコモ 端末、無線通信方法及び基地局
JP2021532669A (ja) * 2018-07-26 2021-11-25 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. サービングノード更新方法及び機器

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160129836A (ko) * 2014-03-06 2016-11-09 엘지전자 주식회사 무선 통신 시스템에서 핸드오버를 수행하는 방법 및 장치
KR101871090B1 (ko) * 2014-03-10 2018-06-25 닛본 덴끼 가부시끼가이샤 Dc (이중 접속성) 를 위한 장치, 시스템 및 방법
EP2919519B1 (en) * 2014-03-14 2022-07-06 HTC Corporation Connection modification method applicable to user equipment and base station
US10201032B2 (en) * 2014-03-19 2019-02-05 Lg Electronics Inc. Method and apparatus for transmitting information on serving gateway for supporting small cell mobility in wireless communication system
EP2922344B1 (en) * 2014-03-19 2021-04-21 Alcatel Lucent Switching of uplink user plane termination point of a serving gateway for a bearer in dual connectivity operation
EP4266795A3 (en) 2014-03-20 2023-12-06 Mitsubishi Electric Corporation Communication system, communication terminal and base station
CN104936174B (zh) * 2014-03-21 2019-04-19 上海诺基亚贝尔股份有限公司 在基于用户平面1a架构的双连接情形下更新密钥的方法
US10149212B2 (en) * 2014-05-08 2018-12-04 Telefonaktiebolaget Lm Ericsson (Publ) Triggering performance level re-configuration in radio base stations
GB2528913B (en) * 2014-08-04 2017-03-01 Samsung Electronics Co Ltd Signalling in dual connectivity mobile communication networks
JP5852193B1 (ja) * 2014-08-06 2016-02-03 株式会社Nttドコモ ユーザ装置
HUE047983T2 (hu) * 2014-08-06 2020-05-28 Ntt Docomo Inc Felhasználói készülék
EP3241384B1 (en) 2014-12-30 2019-07-24 LG Electronics Inc. Method and apparatus for performing inter-menb handover without senb change in a wireless communication system
JP6406431B2 (ja) * 2015-03-25 2018-10-17 日本電気株式会社 通信装置、通信システム、制御方法
WO2016173217A1 (zh) 2015-04-27 2016-11-03 华为技术有限公司 一种数据传输方法、装置及系统
US11178558B2 (en) * 2015-05-22 2021-11-16 Parallel Wireless, Inc. Wireless backhaul resiliency
CN107925931B (zh) 2015-07-31 2021-08-03 日本电气株式会社 基站及其方法
WO2017022167A1 (ja) * 2015-07-31 2017-02-09 日本電気株式会社 基地局装置及びその方法
US11310852B2 (en) * 2015-08-11 2022-04-19 Nec Corporation Apparatus and method related to dual connectivity
EP3340683B1 (en) 2015-11-06 2022-06-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for anchor replacement
WO2017170158A1 (ja) * 2016-03-31 2017-10-05 京セラ株式会社 通信方法及び通信装置
CN108781371B (zh) * 2016-04-01 2021-02-09 华为技术有限公司 一种无线资源管理方法和装置
WO2017198898A1 (en) * 2016-05-17 2017-11-23 Nokia Technologies Oy Path switch method between lte and 5g node
US10251099B2 (en) * 2016-07-22 2019-04-02 Lg Electronics Inc. Method and apparatus for enhancing inter-MeNB handover without SeNB change in wireless communication system
CN107708104B (zh) * 2016-08-03 2022-03-01 中兴通讯股份有限公司 辅基站变更的方法及装置
US10952117B2 (en) 2016-08-12 2021-03-16 Lg Electronics Inc. Method for changing serving cell in wireless communication system and apparatus therefor
US10582523B2 (en) 2016-08-13 2020-03-03 Qualcomm Incorporated Method and apparatus for secondary base station mobility
US10856354B2 (en) 2016-10-07 2020-12-01 Ntt Docomo, Inc. Radio communication system, network device, and radio communication method
CN108207010B (zh) * 2016-12-20 2022-07-26 中兴通讯股份有限公司 一种无线链路管理的方法及装置、系统
CN110493849B (zh) * 2016-12-30 2020-11-10 华为技术有限公司 一种双连接方法、接入网设备和计算机可读存储介质
US11184785B2 (en) * 2017-03-17 2021-11-23 Qualcomm Incorporated Radio measurement and configuration
US10757621B2 (en) * 2017-03-22 2020-08-25 Ofinno, Llc Conditional handover execution
US10512036B2 (en) 2017-03-22 2019-12-17 Ofinno, Llc Secondary base station change
WO2018182240A1 (ko) * 2017-03-25 2018-10-04 엘지전자 주식회사 무선 통신 시스템에서 lte/nr 인터워킹을 위한 절차를 향상시키는 방법 및 장치
RU2742348C1 (ru) * 2017-05-12 2021-02-05 Нокиа Текнолоджиз Ой Функция и сигнализация разбиения сеанса протокольных блоков данных
CN109246723B (zh) * 2017-06-15 2020-04-07 维沃移动通信有限公司 一种非连续接收参数的配置方法、终端及网络侧设备
WO2018228560A1 (en) * 2017-06-16 2018-12-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for measurement report
KR102401279B1 (ko) 2017-08-21 2022-05-25 삼성전자 주식회사 무선 통신 네트워크에서 통신 방법 및 이를 위한 시스템
KR102402652B1 (ko) * 2017-08-22 2022-05-26 삼성전자 주식회사 무선 통신 시스템에서 장치, 기지국 및 이의 제어 방법
KR102381577B1 (ko) * 2017-08-22 2022-04-01 삼성전자 주식회사 무선 통신 시스템에서 단말, 기지국 및 이의 제어 방법
EP3685626A1 (en) * 2017-09-20 2020-07-29 Nokia Technologies Oy Method, apparatus and computer program related to secondary cell group reactivation in multi-radio access technology-dual connectivity
CN109548042B (zh) * 2017-09-22 2023-11-17 中兴通讯股份有限公司 一种网络切片配置方法及装置
EP3697131A4 (en) * 2017-11-14 2020-10-28 Huawei Technologies Co., Ltd. SWITCHING PROCESS AND DEVICE
CN109963315B (zh) * 2017-12-25 2020-08-04 中国移动通信集团公司 一种辅基站分配方法及装置
CN111935808B (zh) * 2018-05-07 2022-02-18 Oppo广东移动通信有限公司 一种悬挂rrc连接的方法及装置、计算机存储介质
CN110536487B (zh) * 2018-05-25 2021-12-10 华为技术有限公司 一种数据传输方法及装置
WO2019223767A1 (zh) * 2018-05-25 2019-11-28 华为技术有限公司 一种数据传输方法及装置
WO2019240770A1 (en) * 2018-06-12 2019-12-19 Nokia Technologies Oy Two-step addition of a primary-secondary cell, pscell, in a multi-connected handover
JP7341135B2 (ja) * 2018-06-19 2023-09-08 三菱電機株式会社 ユーザ装置、基地局および通信システム
US11071025B2 (en) * 2018-06-29 2021-07-20 FG Innovation Company Limited Cell handover with minimum mobility interruption
US11395197B2 (en) * 2018-08-21 2022-07-19 Nokia Technologies Oy Dual connectivity handover
US11950146B2 (en) * 2018-09-27 2024-04-02 Apple Inc. PDCP and ROHC handling for multi-connectivity handover
US10716037B2 (en) * 2018-10-11 2020-07-14 International Business Machines Corporation Assessment of machine learning performance with limited test data
CN111107591B (zh) * 2018-10-26 2021-11-02 大唐移动通信设备有限公司 一种进行切换的方法及设备
WO2020087318A1 (en) 2018-10-31 2020-05-07 Chongqing University Of Posts And Telecommunications Systems and methods for a handover
US11006342B2 (en) 2018-11-12 2021-05-11 Qualcomm Incorporated Handover techniques in wireless communications
US10667192B1 (en) * 2018-11-12 2020-05-26 Qualcomm Incorporated Handover techniques in wireless communications
FR3088792A1 (fr) 2018-11-19 2020-05-22 Orange Gestion de transfert intercellulaire sans latence pour terminal mobile à attachement multiple
BR112021014140A2 (pt) * 2019-02-11 2021-09-21 Telefonaktiebolaget Lm Ericsson (Publ) Método para operar um primeiro nó de rede de acesso por rádio, primeiro nó de rede de acesso por rádio, programa de computador, e, produto de programa de computador
EP3925287A1 (en) * 2019-02-11 2021-12-22 Nokia Technologies Oy Enhanced mobility in cellular deployments with network slicing
JP6870022B2 (ja) * 2019-03-28 2021-05-12 シャープ株式会社 端末装置、方法、および、集積回路
CN112702768A (zh) * 2019-10-22 2021-04-23 中国移动通信有限公司研究院 双连接切换方法、装置、基站及终端

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260098A1 (en) * 2009-04-10 2010-10-14 Qualcomm Incorporated Header compression for ip relay nodes
JP5123274B2 (ja) * 2009-11-02 2013-01-23 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び無線基地局
US8787242B2 (en) * 2009-11-06 2014-07-22 Qualcomm Incorporated Header compression for relay nodes
CN102118817A (zh) * 2009-12-30 2011-07-06 中兴通讯股份有限公司 一种基站间移动性参数协商方法及系统
JP2012009945A (ja) * 2010-06-22 2012-01-12 Sharp Corp 無線通信システム、基地局装置および通信方法
US20110310791A1 (en) * 2010-06-22 2011-12-22 Qualcomm Incorporated Automatic neighbor relation (anr) functions for relay nodes, home base stations, and related entities
US9408125B2 (en) * 2012-07-05 2016-08-02 Qualcomm Incorporated Aggregation of data bearers for carrier aggregation
EP2876935A4 (en) 2012-07-18 2015-08-26 Nec Corp RADIO BASE STATION, MOBILE COMMUNICATION SYSTEM, TAX PROCEDURE FOR TRANSFER AND PROGRAM
US9750069B2 (en) * 2012-10-05 2017-08-29 Nec Corporation Radio communication system, base station, mobile station, communication control method, and computer readable medium
US20150365984A1 (en) * 2013-01-11 2015-12-17 Lg Electronics Inc. Method and apparatus for transmitting indication in wireless communication system
US9848322B2 (en) * 2013-01-17 2017-12-19 Intel IP Corporation Method, apparatus and system for managing bearers in a wireless communication system
KR101568310B1 (ko) * 2013-02-01 2015-11-12 주식회사 케이티 스몰 셀 환경에서의 사용자 플레인 데이터 전송 방법 및 장치
CN105230077B (zh) * 2013-04-12 2020-02-21 诺基亚通信公司 用于pdcp操作的装置、方法以及用户设备
WO2015009075A1 (en) * 2013-07-17 2015-01-22 Lg Electronics Inc. Method and apparatus for performing handover procedure for dual connectivity in wireless communication system
CN104581843B (zh) * 2013-10-21 2018-07-03 宏达国际电子股份有限公司 用于无线通信系统的网络端的处理交递方法及其通信装置
US9538575B2 (en) * 2014-01-30 2017-01-03 Sharp Kabushiki Kaisha Systems and methods for dual-connectivity operation

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
3GPP TECHNICAL REPORT ''TR 36.842 V12.0.0, 7 January 2014 (2014-01-07)
BLACKBERRY UK LIMITED: "Further Discussion on U- Plane Protocol Architecture Design Options", 3GPP TSG-RAN WG2 MEETING #83BIS R2-133332, 27 September 2013 (2013-09-27), XP050718993 *
CATT: "Consideration of MCG hanover for Dual Connectivity", 3GPP TSG-RAN WG2 MEETING #85 R2- 140189, 29 January 2014 (2014-01-29), XP050737419 *
CMCC: "Handling of MeNB HO and SeNB change for dual connectivity operation", 3GPP TSG-RAN WG2 MEETING #85 R2-140135, 27 January 2014 (2014-01-27), XP050737380 *
ERICSSON: "Signalling procedures for dual connectivity", 3GPP TSG-RAN WG2 MEETING #84 R2- 134219, 1 November 2013 (2013-11-01), XP050736966 *
INTEL CORPORATION: "SeNB switching procedure in dual connectivity", 3GPP TSG-RAN WG2 MEETING #85 R2-140258, 30 January 2014 (2014-01-30), XP050737483 *
KYOCERA: "Handover enhancements with dual connectivity", 3GPP TSG-RAN WG2 MEETING #85 R2- 140698, 1 February 2014 (2014-02-01), XP050737820 *
ZTE CORPORATION: "Analysis on the Solutions for the Prioritized Scenarios of MeNB Handover", 3GPP TSG-RAN WG3 MEETING #83 R3-140053, 29 January 2014 (2014-01-29), XP055215880 *
ZTE CORPORATION: "Signalling flows of solution 1A", 3GPP TSG-RAN WG3 MEETING #82 R3-132204, 1 November 2013 (2013-11-01), XP050738263 *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503332A (ja) * 2015-01-26 2018-02-01 華為技術有限公司Huawei Technologies Co.,Ltd. ハンドオーバー装置および方法
US10873889B2 (en) 2015-01-26 2020-12-22 Huawei Technologies Co., Ltd. Handover apparatus and method
US10362519B2 (en) 2015-01-26 2019-07-23 Huawei Technologies Co., Ltd. Handover apparatus and method
US11805460B2 (en) 2015-03-04 2023-10-31 Qualcomm Incorporated Dual link handover
JP2018507649A (ja) * 2015-03-04 2018-03-15 クゥアルコム・インコーポレイテッドQualcomm Incorporated デュアルリンクハンドオーバー
US10869241B2 (en) 2015-03-04 2020-12-15 Qualcomm Incorporated Dual link handover
JP2020010355A (ja) * 2015-03-04 2020-01-16 クゥアルコム・インコーポレイテッドQualcomm Incorporated デュアルリンクハンドオーバー
JP2022082748A (ja) * 2015-11-04 2022-06-02 三菱電機株式会社 移動端末装置
JP7321322B2 (ja) 2015-11-04 2023-08-04 三菱電機株式会社 移動端末装置
JPWO2017078057A1 (ja) * 2015-11-04 2018-08-23 三菱電機株式会社 通信システム
JP7182874B2 (ja) 2015-11-04 2022-12-05 三菱電機株式会社 通信システム
JPWO2017130852A1 (ja) * 2016-01-25 2018-11-22 京セラ株式会社 無線端末及び基地局
US11252618B2 (en) 2016-01-25 2022-02-15 Kyocera Corporation Radio terminal and base station capable of handover without performing RACH handover
JP2019024211A (ja) * 2016-01-25 2019-02-14 京セラ株式会社 無線端末及び基地局
WO2017130852A1 (ja) * 2016-01-25 2017-08-03 京セラ株式会社 無線端末及び基地局
US10772013B2 (en) 2016-01-25 2020-09-08 Kyocera Corporation Radio terminal and base station
JP6405476B2 (ja) * 2016-01-25 2018-10-17 京セラ株式会社 無線端末及び基地局
EP3420754A4 (en) * 2016-04-01 2019-01-02 Samsung Electronics Co., Ltd. Method and enb equipment for supporting seamless handover
US11617115B2 (en) 2016-04-01 2023-03-28 Samsung Electronics Co., Ltd. Method and eNB equipment for supporting seamless handover
CN107277879B (zh) * 2016-04-01 2021-06-04 北京三星通信技术研究有限公司 一种支持无缝切换的方法及基站设备
KR102282308B1 (ko) * 2016-04-01 2021-07-28 삼성전자 주식회사 끊김없는 핸드오버를 지원하는 방법 및 enb 장치
WO2017171506A1 (en) * 2016-04-01 2017-10-05 Samsung Electronics Co., Ltd. Method and enb equipment for supporting seamless handover
CN113423124A (zh) * 2016-04-01 2021-09-21 北京三星通信技术研究有限公司 一种支持无缝切换的方法及基站设备
CN113423124B (zh) * 2016-04-01 2023-10-13 北京三星通信技术研究有限公司 一种支持无缝切换的方法及基站设备
JP2019516265A (ja) * 2016-04-01 2019-06-13 サムスン エレクトロニクス カンパニー リミテッド シームレスのハンドオーバーをサポートする方法及びenb装置
US20190116536A1 (en) 2016-04-01 2019-04-18 Samsung Electronics Co., Ltd Method and enb equipment for supporting seamless handover
CN107277879A (zh) * 2016-04-01 2017-10-20 北京三星通信技术研究有限公司 一种支持无缝切换的方法及基站设备
US11457391B2 (en) 2016-04-01 2022-09-27 Samsung Electronics Co., Ltd. Method and eNB equipment for supporting seamless handover
KR20180123061A (ko) * 2016-04-01 2018-11-14 삼성전자주식회사 끊김없는 핸드오버를 지원하는 방법 및 enb 장치
US11683736B2 (en) 2016-04-01 2023-06-20 Samsung Electronics Co., Ltd. Method and eNB equipment for supporting seamless handover
US10805852B2 (en) 2016-04-01 2020-10-13 Samsung Electronics Co., Ltd. Method and eNB equipment for supporting seamless handover
US11553401B2 (en) 2018-07-26 2023-01-10 Vivo Mobile Communication Co., Ltd. Serving node update method and device
JP7108126B2 (ja) 2018-07-26 2022-07-27 維沃移動通信有限公司 サービングノード更新方法及び機器
JP2021532669A (ja) * 2018-07-26 2021-11-25 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. サービングノード更新方法及び機器
US11800434B2 (en) 2018-07-26 2023-10-24 Vivo Mobile Communication Co., Ltd. Serving node update method and device
WO2021156952A1 (ja) * 2020-02-04 2021-08-12 株式会社Nttドコモ 端末、無線通信方法及び基地局

Also Published As

Publication number Publication date
US20160227459A1 (en) 2016-08-04
EP3101948A4 (en) 2017-08-02
EP3101949A1 (en) 2016-12-07
JP2016213881A (ja) 2016-12-15
US20160337925A1 (en) 2016-11-17
JP6082129B2 (ja) 2017-02-15
JP6130565B2 (ja) 2017-05-17
EP3101949A4 (en) 2017-08-02
JP2016213880A (ja) 2016-12-15
WO2015115629A1 (ja) 2015-08-06
JP2017108422A (ja) 2017-06-15
US9867107B2 (en) 2018-01-09
EP3101949B1 (en) 2019-06-19
JP6105184B1 (ja) 2017-03-29
JPWO2015115621A1 (ja) 2017-03-23
EP3101948B1 (en) 2019-07-17
JPWO2015115629A1 (ja) 2017-03-23
US9699702B2 (en) 2017-07-04
EP3101948A1 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6105184B1 (ja) マスタ基地局、セカンダリ基地局、及びプロセッサ
JP6262917B2 (ja) ハンドオーバ手順を制御するための方法及び基地局
JP6030264B1 (ja) 通信制御方法、マスタ基地局及びセカンダリ基地局
JP6280669B1 (ja) 基地局、方法、及びシステム
JP6272444B2 (ja) 通信方法、基地局、及びプロセッサ
JP6886400B2 (ja) 通信制御方法、基地局、及びユーザ端末
JP6488238B2 (ja) 移動通信システム、無線通信装置、ネットワーク装置、及び無線端末
JP6971148B2 (ja) ネットワーク装置及び基地局
WO2015125716A1 (ja) 移動体通信システム、基地局、及びユーザ端末
WO2016167212A1 (ja) 基地局及び通信制御方法
US9991997B2 (en) Mobile communication system, specific base station, and user terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743524

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015743524

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015743524

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015560053

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE