WO2015115537A1 - 樹脂組成物、樹脂組成物を用いた半導体装置の製造方法、及び固体撮像素子 - Google Patents

樹脂組成物、樹脂組成物を用いた半導体装置の製造方法、及び固体撮像素子 Download PDF

Info

Publication number
WO2015115537A1
WO2015115537A1 PCT/JP2015/052505 JP2015052505W WO2015115537A1 WO 2015115537 A1 WO2015115537 A1 WO 2015115537A1 JP 2015052505 W JP2015052505 W JP 2015052505W WO 2015115537 A1 WO2015115537 A1 WO 2015115537A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
meth
adhesive layer
acrylate
Prior art date
Application number
PCT/JP2015/052505
Other languages
English (en)
French (fr)
Inventor
禎明 加藤
美華 木村
綾 池田
真二郎 藤井
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020167016142A priority Critical patent/KR102272146B1/ko
Priority to US15/114,983 priority patent/US9920227B2/en
Priority to JP2015560007A priority patent/JP6610263B2/ja
Priority to CN201580005756.8A priority patent/CN105934478B/zh
Publication of WO2015115537A1 publication Critical patent/WO2015115537A1/ja
Priority to US15/926,552 priority patent/US10808150B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present disclosure relates to a resin composition, a method for manufacturing a semiconductor device using the resin composition, and a solid-state imaging element.
  • CMOS Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Semiconductor
  • image sensors are formed by a sensor unit (imaging pixel unit) in which a plurality of pixels are two-dimensionally arranged on one semiconductor chip, and a peripheral circuit unit arranged outside the sensor unit.
  • CMOS image sensor As the structure of a CMOS image sensor, a “front surface irradiation type” structure and a “back surface irradiation type” structure are known (see, for example, Patent Documents 1 and 2).
  • CMOS image sensor of Patent Document 1 light incident from the outside passes through the glass substrate and the cavity (cavity), enters each microlens, and is collected by the microlens, and then the color filter layer. And passes through the wiring layer and enters the photodiode. The light incident on the photodiode is photoelectrically converted to generate a signal charge, and an electric signal is generated from the signal charge, whereby image data is acquired.
  • CMOS image sensor of Patent Document 2 a photodiode is formed on one surface of a semiconductor substrate, and a color filter layer and a microlens are disposed on the one surface.
  • a glass substrate is disposed above the microlens via an adhesive layer and a cavity.
  • a wiring layer is provided on the other surface of the semiconductor substrate. According to this back-illuminated structure, light incident on the microlens is received by the light receiving unit without passing through the wiring layer, so that attenuation of light by the wiring layer is avoided and the light receiving sensitivity is increased.
  • an adhesive layer provided on the outer peripheral side so as not to cover the microlens on a silicon substrate having a microlens and a cavity (cavity) surrounded by the adhesive layer A structure in which a glass substrate is formed via a low refractive index layer filled in (see Patent Document 3).
  • the refractive index of the low refractive material used is 1.4 or less. Although the optical loss due to the refractive index difference is reduced, it cannot be sufficiently suppressed.
  • high-reliability sensors for in-vehicle use or indoor / outdoor monitoring or security use require high-temperature transparency.
  • Medical sensors and the like require boiling or autoclaving and sterilization treatment, and are required to maintain transparency at high temperatures. That is, in the future, demand for CMOS image sensors that are required to have high functions at high temperatures is expected. Therefore, the transparent filling material capable of suppressing light loss and maintaining high transparency regardless of the temperature environment is expected to be applied to applications that require long-time operation in a harsh environment.
  • the present disclosure has been made in view of such circumstances, and by increasing the transparency and refractive index of the resin filled in the cavity portion, light loss can be sufficiently eliminated, and transparency is high even at high temperatures. It aims at providing the resin composition maintained.
  • the present disclosure is a resin composition
  • a resin composition comprising (a) an acrylic polymer, (b) a compound having at least one (meth) acryloyl group, and (c) a polymerization initiator, wherein (a) the component and (b And a resin composition having an absolute value of a difference in refractive index at 100 ° C. with respect to the component of 0.031 or less.
  • these components may be simply referred to as (a) component, (b) component, (c) component and the like.
  • an adhesive layer can be formed on the entire surface of a semiconductor substrate such as a silicon substrate by providing adhesiveness to the transparent resin filling the cavity portion.
  • good properties as a transparent adhesive that is, transparency and refractive index are high even after curing, and transparency can be maintained even at high temperatures.
  • the present inventors consider the reason why the resin composition of the present disclosure is excellent in transparency as follows. That is, when the component (a) and the component (b) are mixed and dissolved in the component (a) and the component (b), and filled and cured between glass and silicon, the difference in refractive index between the two is the predetermined value. By using the combination in the range, it is possible to sufficiently suppress the occurrence of light scattering between the two, and as a result, excellent transparency can be maintained without becoming cloudy as a solution state.
  • the inventors consider the reason why light scattering occurs as follows.
  • the component (b) When the resin composition containing the component (a) and the component (b) is cured, the component (b) generates a polymer by a polymerization reaction of the acryloyl group (for example, radical polymerization).
  • the polymer derived from the component (a) and the component (b) forms a sea-island structure, and light scattering occurs at the boundary between the sea and the island (light does not pass straight through).
  • the cured film is turbid and looks like rubbed glass.
  • the refractive index difference between the component (a) and the component (b) is within the predetermined range, light scattering is unlikely to occur at the boundary between the sea and the island, sufficiently high transparency can be maintained, and light loss can be suppressed. it can. Furthermore, according to the resin composition of the present disclosure, sufficiently high transparency can be maintained even when exposed to high temperatures.
  • the resin composition preferably further contains (d) an antioxidant.
  • the acrylic polymer may contain at least one structural unit represented by the following general formula (I).
  • A represents an alicyclic group having 5 to 22 carbon atoms which may have a substituent, and R represents a hydrogen atom or a methyl group.
  • the acrylic polymer may contain at least one structural unit represented by the following general formula (II).
  • Y represents a linear or branched alkyl group having 1 to 10 carbon atoms which may have a substituent, and R represents a hydrogen atom or a methyl group.
  • the acrylic polymer may contain at least one structural unit represented by the following general formula (III).
  • Z represents a group containing at least one functional group selected from the group consisting of a carboxyl group, a hydroxyl group, an acid anhydride group, an amino group, an amide group, an epoxy group and a nitrile group.
  • R represents a hydrogen atom or a methyl group.
  • the present disclosure also provides the above-described resin composition for optical parts.
  • the resin composition described above has a higher refractive index than air, has high transparency and refractive index even after curing, and can maintain transparency even at high temperatures. Therefore, it can be used for optical parts, and in that case, a particularly excellent effect can be exhibited.
  • the present disclosure includes a step of forming an adhesive layer made of the above resin composition on a semiconductor substrate, a step of sandwiching the adhesive layer between the semiconductor substrate and the transparent substrate, and press-bonding the semiconductor substrate and the transparent substrate. And a step of curing the adhesive layer. Since the resin composition described above has an excellent function as an adhesive and is highly transparent even after curing, it exhibits a particularly excellent effect by using the resin composition in the manufacturing process of a semiconductor device, The characteristics of the obtained semiconductor device are also improved.
  • the present disclosure includes a semiconductor substrate having a light receiving portion on the upper surface, an adhesive layer provided on the semiconductor substrate so as to cover the light receiving portion, a transparent substrate bonded to the semiconductor substrate by the adhesive layer,
  • the adhesive layer is provided with the above-mentioned resin composition, and provides a solid-state image sensor. Since the solid-state imaging device having such a configuration uses the above-described resin composition, the solid-state imaging device has an adhesive layer provided on the outer peripheral side so as not to cover the microlens. In addition to a configuration in which the resin composition is filled in the enclosed cavity, a configuration in which an adhesive layer formed of the resin composition is formed on the entire surface of the substrate can be employed.
  • the transparent resin that fills the cavity portion is provided with adhesiveness so that the adhesive layer can be formed on the entire surface of the semiconductor substrate such as a silicon substrate, and the transparent adhesive is provided. It is possible to provide a resin composition that has good properties as an agent, that is, has high transparency even after curing, and can maintain sufficiently high transparency even when exposed to high temperatures.
  • FIG. 2 is a cross-sectional view taken along line A-A ′ shown in FIG. 1. It is sectional drawing which shows the other example of the solid-state image sensor which concerns on this embodiment. It is sectional drawing which illustrates a noncavity structure. It is sectional drawing which illustrates a cavity structure. It is process drawing which shows an example of the manufacturing method of the solid-state image sensor which has a cavity structure. It is process drawing which shows an example of the manufacturing method of the solid-state image sensor which has a non-cavity structure. It is process drawing which shows the other example of the manufacturing method of the solid-state image sensor which has a noncavity structure.
  • (meth) acryloyl group means “acryloyl group” or a “methacryloyl group” corresponding thereto.
  • transmission means that interaction between the resin composition and visible light hardly occurs, and electromagnetic wave absorption and scattering hardly occur.
  • index of “transparency” a transmittance in which the intensity ratio between incident light and transmitted light is expressed as a percentage is used, but it can also be determined by visual observation of turbidity.
  • the electromagnetic wave corresponding to visible light has a lower limit of approximately 400 nm and an upper limit of approximately 760 nm according to the definition of JIS Z8120.
  • the term “layer” includes a structure formed in a part in addition to a structure formed in the entire surface when viewed in plan.
  • process is not only an independent process, but even if it cannot be clearly distinguished from other processes, if the intended purpose of the process is achieved, Included in the term.
  • numerical ranges indicated by using “to” indicate ranges including numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or lower limit value of a numerical range of a certain step may be replaced with the upper limit value or lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • refractive index refers to “relative refractive index” which is the refractive index of the evaluation sample when the refractive index of air is 1.000.
  • substituted refers to, for example, a halogen atom such as a fluorine atom or a chlorine atom, an alkyl group, an allyl group, an ether group, an ester group, a carboxy group, a cyano group, or the like.
  • the resin composition according to the present embodiment contains (a) an acrylic polymer, (b) a compound having at least one (meth) acryloyl group, and (c) a polymerization initiator.
  • the absolute value of the difference in refractive index between the component (a) and the component (b) at 100 ° C. is 0.031 or less, more preferably 0.030 or less, and 0.028 More preferably, it is as follows.
  • the absolute value of the difference in refractive index at 10 ° C. between the component (a) and the component (b) is preferably 0.030 or less, more preferably 0.025 or less, and 0.020. More preferably, it is as follows.
  • the absolute value of the difference in refractive index between the component (a) and the component (b) at 60 ° C. may be 0.026 or less, preferably 0.024 or less, More preferably, it is 0.022 or less.
  • the absolute value of the difference in refractive index at 10 ° C. between the component (a) and the component (b) is preferably 0.030 or less, more preferably 0.025 or less, and 0.020. More preferably, it is as follows.
  • the (a) acrylic polymer used in the present embodiment means one obtained by polymerizing one kind of acrylic monomer having one (meth) acryloyl group in the molecule, or one obtained by copolymerizing two or more kinds.
  • a compound having two or more (meth) acryloyl groups in the molecule, or a polymerizable compound having no (meth) acryloyl group (acrylonitrile, styrene, vinyl acetate) A compound having one polymerizable unsaturated bond in the molecule such as ethylene and propylene, and a compound having two or more polymerizable unsaturated bonds in the molecule such as divinylbenzene) copolymerized with an acrylic monomer.
  • the acrylic polymer used in this embodiment has 30 to 100% by mass of an acrylic monomer having one (meth) acryloyl group in the molecule based on the total amount of the acrylic polymer. And preferably 50 to 100% by mass.
  • the component (a) preferably includes an alicyclic group or a structural unit having a linear or branched alkyl group structure, and is represented by the structural unit represented by the general formula (I) or the general formula (II). More preferably, the structural unit is included.
  • the component (a) preferably includes a structural unit having an alicyclic group, and more preferably includes a structural unit represented by the above general formula (I). This tends to further improve the heat resistance.
  • the component (a) preferably includes a structural unit having a functional group, and more preferably includes a structural unit represented by the general formula (III).
  • a structural unit having a functional group preferably includes a structural unit represented by the general formula (III).
  • Z may be a glycidyl group.
  • Z is a glycidyl group, the adhesiveness at the time of reflow is improved, and peeling at the time of reflow can be further suppressed.
  • the content of the structural unit represented by the general formula (III) in which Z is a glycidyl group is preferably 30% by mass or less, based on the total amount of the component (a), and preferably 2 to 25% by mass. More preferably, the content is 4 to 20% by mass. When the content is 30% by mass or less, the transparency is improved and the warpage of the wafer due to the stress in the manufacturing process can be further suppressed.
  • the method for introducing the functional group into the acrylic polymer is not particularly limited, but the functional group-containing monomer having a functional group is not limited to suspension polymerization, which is also called bead polymerization, granular polymerization, pearl polymerization, or the like, but is also solution polymerization or bulk polymerization.
  • the functional group can be introduced into the acrylic polymer by random copolymerization by an existing method such as precipitation polymerization or emulsion polymerization. Among these, it is preferable to apply the suspension polymerization method from the viewpoint of high molecular weight at low cost.
  • Suspension polymerization is performed by adding a suspending agent in an aqueous solvent.
  • the suspending agent include water-soluble polymers such as polyvinyl alcohol, methylcellulose, and polyacrylamide, and poorly soluble inorganic substances such as calcium phosphate and magnesium pyrophosphate.
  • nonionic water-soluble polymers such as polyvinyl alcohol are preferable.
  • the water-soluble polymer is preferably used in an amount of 0.01 to 1 part by mass with respect to 100 parts by mass of the total amount of monomers.
  • polymerization initiators In the polymerization reaction, commonly used polymerization initiators, chain transfer agents and the like may be used. As a polymerization initiator, the same thing as the (c) polymerization initiator mentioned later is mentioned.
  • chain transfer agent examples include thiols such as n-octyl mercaptan.
  • the functional group-containing monomer is at least one group selected from the group consisting of a carboxyl group, an acid anhydride group, a hydroxyl group, an amino group, an amide group, a phosphoric acid group, a cyano group, a maleimide group, and an epoxy group in the molecule. And at least one polymerizable carbon-carbon double bond.
  • the functional group is an amino group, an amide group, a phosphate group, a cyano group, a maleimide from the viewpoint of avoiding problems such as gelation in a varnish state, nozzles during use, that is, pinhole generation during spin coating, etc. It is preferably at least one selected from the group consisting of a group and an epoxy group.
  • the said functional group is at least 1 sort (s) chosen from the group which consists of a carboxyl group, an acid anhydride group, a hydroxyl group, a phosphoric acid group, and an epoxy group from a viewpoint which prevents coloring more highly.
  • the functional group is more preferably a phosphoric acid group or an epoxy group, and even more preferably an epoxy group.
  • the functional group contains an epoxy group, the adhesion of an inorganic material such as metal or glass to the substrate can be further improved.
  • carboxyl group-containing monomers such as (meth) acrylic acid and itaconic acid, acid anhydride group-containing monomers such as maleic anhydride, (meth) acrylic acid-2-hydroxymethyl, Hydroxyl-containing single monomers such as (meth) acrylic acid-2-hydroxyethyl, (meth) acrylic acid-2-hydroxypropyl, N-methylyl (meth) acrylamide, o-hydroxystyrene, m-hydroxystyrene, p-hydroxystyrene , Amino group-containing monomers such as diethylaminoethyl (meth) acrylate, phosphate group-containing monomers such as 2- (meth) acryloyloxyethyl acid phosphate, vinyl cyanide compounds such as (meth) acrylonitrile, N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, Ni-propylmaleimide N-substitute
  • a glycidyl group-containing monomer such as glycidyl (meth) acrylate.
  • the glycidyl group-containing (meth) acrylic polymer obtained by using such a monomer is preferably compatible with the acrylic monomer or oligomer.
  • the glycidyl group-containing (meth) acrylic polymer may be synthesized by a conventional method, or a commercially available product may be obtained. Examples of commercially available products include HTR-860P-3 (Nagase ChemteX Corporation, trade name).
  • Such an acrylic polymer is preferable in that it exhibits more excellent crack resistance, adhesion, and heat resistance, and is preferable in terms of ensuring storage stability.
  • the amount of the structural unit having the functional group is preferably 0.5 to 6.0% by mass, more preferably 0.5 to 5.0% by mass based on the total amount of the acrylic polymer. It is particularly preferably 0.8 to 5.0% by mass. When the amount of the structural unit having a functional group is within this range, the adhesive force can be improved and gelation can be suppressed.
  • the structural unit having a nitrogen atom-containing group is preferably 5% by mass or less, more preferably 3% by mass or less, and more preferably 1% by mass or less of the entire acrylic polymer. More preferably, it is particularly preferable that no structural unit having a nitrogen atom-containing group is contained.
  • the nitrogen atom-containing group include an amino group, an amide group, a cyano group, and a maleimide group.
  • the structural unit having a nitrogen atom-containing group include structural units derived from monomers containing a nitrogen atom among the functional group-containing monomers listed above, and vinyl cyanide such as (meth) acrylonitrile. Compounds.
  • Examples of monomers other than the functional group-containing monomer used when synthesizing the acrylic polymer according to this embodiment include methyl (meth) acrylate, ethyl (meth) acrylate, and n- (meth) acrylate.
  • the content of monomers other than these functional group-containing monomers is not particularly limited, but the Tg of the component (a) used in the resin composition according to this embodiment is in the range of ⁇ 50 to 50 ° C.
  • a monomer glycidyl methacrylate is 2.5% by mass
  • methyl methacrylate is 43.5% by mass
  • ethyl acrylate is 18.5% by mass
  • butyl acrylate By using 35.5% by mass of Tg, the component (a) which is a glycidyl group-containing acrylic polymer can be synthesized at a Tg of 12 ° C.
  • (meth) acrylic acid esters are preferably used because they easily synthesize the component (a) without gelation.
  • (meth) acrylic acid esters ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate are excellent in copolymerizability with a functional group-containing monomer. Further preferred.
  • the component (a) preferably contains a structural unit having an alicyclic or heterocyclic structure.
  • Examples of the alicyclic or heterocyclic structure-containing monomer used in producing an acrylic polymer containing a structural unit having an alicyclic or heterocyclic structure are represented by the following general formula (1). Can be mentioned. [In the formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alicyclic group or a heterocyclic group, X represents an alkylene group having 1 to 6 carbon atoms, and n represents 0 to An integer of 10 is shown. When n is an integer of 2 or more, a plurality of Xs may be the same or different from each other.
  • an alicyclic group is a group having a structure in which carbon atoms are bonded in a ring
  • a heterocyclic group is a group having a structure in which a carbon atom and one or more heteroatoms are bonded in a ring.
  • R 2 for example, those represented by the following formula (2).
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; 11 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a structure represented by OR 12 , and R 12 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • Examples of the compound represented by the general formula (1) include cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, and tricyclo [5.2.1.0 2,6 ] decyl (meth) acrylate.
  • the content of these alicyclic or heterocyclic structure-containing monomers is not particularly limited.
  • tricyclo [5.2.1.0 2,6 ] deca-8-yl acrylate (FA- 513A, manufactured by Hitachi Chemical Co., Ltd., trade name), 25.8 mass%, butyl acrylate 20 mass%, butyl methacrylate 31.1 mass%, 2-ethylhexyl methacrylate 18.6 mass%, and methacryl
  • the mixing ratio is determined in consideration of the Tg of the acrylic polymer, and the Tg is preferably ⁇ 50 ° C. or higher. This is because when the Tg is ⁇ 50 ° C. or higher, the tackiness of the resin composition in the B-stage state is appropriate, and problems in handling are unlikely to occur.
  • the polymerization method is not particularly limited, and methods such as pearl polymerization, solution polymerization, and suspension polymerization are used. be able to.
  • the weight average molecular weight of the acrylic polymer according to this embodiment is preferably 100,000 to 3,000,000, and more preferably 120,000 to 2,000,000. When the weight average molecular weight is within this range, the strength, flexibility, and tackiness when sheet-like or film-like are appropriate, and the circuit filling property of the wiring can be ensured because the flow property is appropriate.
  • the weight average molecular weight is a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve as described in the examples.
  • the amount of the acrylic polymer component containing the structural unit having a functional group is preferably 10 to 400 parts by mass with respect to 100 parts by mass of the following (b) compound having at least one (meth) acryloyl group.
  • the amount used is more preferably 15 to 350 parts by mass, and particularly preferably 20 to 300 parts by mass.
  • the content of the component (a) is preferably 35 to 80 parts by mass, and more preferably 40 to 75 parts by mass with respect to 100 parts by mass as the total of the components (a) and (b). More preferably, it is 45 to 70 parts by mass.
  • Transparency and reflow resistance improve because content of a component is 35 mass parts or more. Further, even when applied to a thin adherend (for example, a thinned wafer), warpage can be further suppressed. Moreover, peeling at the time of reflow can be suppressed because content of (a) component is 80 mass parts or less, and adhesiveness improves. Moreover, workability (dicing property) when the substrate and the cured product of the resin composition are separated into individual pieces is improved.
  • the compound having at least one (meth) acryloyl group according to this embodiment is not particularly limited, and examples of the monofunctional (meth) acrylic monomer include the acrylic monomers exemplified in the component (a). It is done.
  • the polyfunctional (meth) acrylic monomer a polyfunctional (meth) acrylic monomer having an alicyclic skeleton, a polyfunctional (meth) acrylic monomer having an aliphatic skeleton, and a polyfunctional (meth) acrylic monomer having a dioxane glycol skeleton.
  • Examples thereof include a functional (meth) acryl monomer and a polyfunctional (meth) acryl monomer having a functional group.
  • polyfunctional refers to a (meth) acryloyl group, and means that the compound has at least two (meth) acryloyl groups.
  • a polyfunctional (meth) acrylic monomer having an alicyclic skeleton and a polyfunctional (meth) acrylic monomer having a dioxane glycol skeleton are preferable.
  • polyfunctional (meth) acrylic monomer examples include the following (meth) acrylic monomers having two (meth) acryloyl groups.
  • Examples of the (meth) acrylic monomer having two (meth) acryloyl groups include cyclohexane-1,4-dimethanol di (meth) acrylate, cyclohexane-1,3-dimethanol di (meth) acrylate, tricyclodecane dimethylol di ( (Meth) acrylate (for example, Nippon Kayaku Co., Ltd., KAYARAD R-684, tricyclodecane dimethylol diacrylate, etc.), tricyclodecane dimethanol di (meth) acrylate (for example, Shin-Nakamura Chemical Co., Ltd., A-DCP) , Tricyclodecane dimethanol diacrylate, etc.), dioxane glycol di (meth) acrylate (for example, Nippon Kayaku Co., Ltd., KAYARAD R-604, dioxane glycol diacrylate, Shin-Nakamura Chemical Co., Ltd., A-DOG, dioxane
  • dioxane glycol diacrylate or tricyclodecane dimethanol diacrylate is more preferable from the viewpoint of further improving the transparency of the cured product.
  • polyfunctional (meth) acrylic monomer a (meth) acrylic monomer having three (meth) acryloyl groups such as pentaerythritol tri (meth) acrylate and ethylene oxide-modified isocyanuric acid tri (meth) acrylate
  • acrylic monomers having 6 (meth) acryloyl groups such as dipentaerythritol hexaacrylate.
  • (c) Polymerization initiator for example, (c1) a thermal polymerization initiator, (c2) a photopolymerization initiator, or both can be used. From the viewpoint of more uniformly proceeding the curing reaction of the resin composition according to this embodiment and further improving the adhesive strength, it is more preferable to contain (c1) a thermal polymerization initiator.
  • t-hexyl peroxypivalate perhexyl PV, trade name: 1 hour half-life temperature 71.3 ° C., 10 hour half-life temperature 53.2 ° C.
  • dilauroyl peroxide Perhexyl L, trade name: 1 hour half-life temperature 79.3 ° C., 10 hour half-life temperature 61.6 ° C.
  • di (3,5,5-trimethylhexanoyl) peroxide Perroyl 355, trade name; 1 hour)
  • 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate Perocta O, trade name; 1-hour half-life Temperature 84.4 ° C., 10-hour half-life temperature 65.3 ° C., t-butyl peroxy-2-ethylhexanoate (Perbutyl O,
  • thermal polymerization initiators can be used singly or in combination of two or more.
  • an organic peroxide is preferable from the viewpoint that the effect of improving the physical properties of the cured product is greater, and the handleability and curability of the shelf life, pot life, etc. of the resin composition are preferable. From the viewpoint of maintaining a better balance, an organic peroxide having a 10-hour half-life temperature of 90 to 150 ° C. is more preferable.
  • the amount of component (c1) is preferably 0.1 to 30 parts by weight, more preferably 0.2 to 20 parts by weight, and still more preferably with respect to 100 parts by weight of the total amount of components (a) and (b). Is 0.5 to 10 parts by mass.
  • the half-life temperature of the organic peroxide is measured as follows.
  • An organic peroxide solution adjusted to 0.1 mol / L using benzene as a solvent is sealed in a glass tube subjected to nitrogen substitution. This is immersed in a thermostat set at a predetermined temperature and thermally decomposed.
  • the decomposition of an organic peroxide in a dilute solution can be treated approximately as a primary reaction, so the amount of decomposed organic peroxide is x (mol / L), the decomposition rate constant is k (1 / h), When time is t (h) and the initial concentration of organic peroxide is a (mol / L), the following formulas (1) and (2) are established.
  • suitable organic peroxides include dicumyl peroxide (Perk Mill D) and n-butyl 4,4-bis (t-butyl peroxy) valerate (Perhexa V). It is done.
  • the thermal polymerization initiator exhibits excellent heat resistance, peeling resistance and stress relaxation in combination with the component (a) and the component (b), and can further improve the reliability of the optical component.
  • Photoinitiators include acyl phosphine oxides, oxime esters, aromatic ketones, quinones, benzoin ether compounds, benzyl derivatives, 2,4,5-triarylimidazole dimers, acridine derivatives, coumarins Compounds, N-phenylglycine derivatives, and the like.
  • the photoinitiator (c2) used by this embodiment may be synthesize
  • acylphosphine oxides and oxime esters are preferable from the viewpoint of improving photocurability, increasing sensitivity, and further improving transparency of the cured film.
  • a photoinitiator (c2) can be used individually by 1 type or in combination of 2 or more types.
  • acylphosphine oxide examples include bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (IRGACURE-819, BASF, trade name), 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (LUCIRIN). TPO, BASF, trade name) and the like.
  • oxime esters examples include 1,2-octanedione-1- [4- (phenylthio) phenyl-2- (O-benzoyloxime)] (IRGACURE-OXE01, BASF Corporation, trade name), 1- [9-ethyl -6- (2-Methylbenzoyl) -9H-carbazol-3-yl] ethanone-1- (O-acetyloxime) (IRGACURE-OXE02, trade name of BASF), 1-phenyl-1,2-propanedione -2- [o- (ethoxycarbonyl) oxime] (Quantacure-PDO, Nippon Kayaku Co., Ltd., trade name) and the like.
  • Aromatic ketones include benzophenone, N, N, N ′, N′-tetramethyl-4,4′-phenone (Michler ketone), N, N, N ′, N′-tetraethyl-4,4′-diaminobenzophenone 4-methoxy-4'-dimethylaminobenzophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one (IRGACURE-651, BASF, trade name), 2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl) -butan-1-one (IRGACURE-369, BASF, trade name), 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one (IRGACURE-907, trade name of BASF), 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-pro And pionyl) -benzyl] phenyl ⁇ -2-methyl-propan
  • Examples of quinones include 2-ethylanthraquinone, phenanthrenequinone, 2-tert-butylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2-phenylanthraquinone, 2,3-diphenylanthraquinone, Examples include 1-chloroanthraquinone, 2-methylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthraquinone, 2-methyl-1,4-naphthoquinone, and 2,3-dimethylanthraquinone.
  • benzoin ether compound examples include benzoin methyl ether, benzoin ethyl ether, and benzoin phenyl ether.
  • benzyl derivative examples include benzoin compounds such as benzoin, methylbenzoin, and ethylbenzoin, as well as benzyldimethyl ketal.
  • the 2,4,5-triarylimidazole dimer includes 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) Imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) ) -4,5-diphenylimidazole dimer and the like.
  • the 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer includes 2- (2-chlorophenyl) -1- [2- (2-chlorophenyl) -4,5-diphenyl-1,3-diazole -2-yl] -4,5-diphenylimidazole and the like.
  • acridine derivative examples include 9-phenylacridine, 1,7-bis (9,9'-acridinyl) heptane and the like.
  • Examples of coumarin compounds include 7-amino-4-methylcoumarin, 7-dimethylamino-4-methylcoumarin, 7-diethylamino-4-methylcoumarin, 7-methylamino-4-methylcoumarin, and 7-ethylamino-4.
  • N-phenylglycine derivatives include N-phenylglycine, N-phenylglycine butyl ester, Np-methylphenylglycine, Np-methylphenylglycine methyl ester, N- (2,4-dimethylphenyl) glycine, N-methoxyphenylglycine and the like can be mentioned.
  • the amount of the (c2) photopolymerization initiator is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total amount of the components (a) and (b). More preferably, it is 0.75 to 5 parts by mass.
  • the resin composition according to the present embodiment can be made into a varnish by dissolving or dispersing optional components described below in an organic solvent as necessary. .
  • paintability to a base material can be improved and workability
  • operativity can be made favorable.
  • the organic solvent used for forming the varnish is not particularly limited as long as it can uniformly stir, mix, dissolve, knead, or disperse the components to be the resin composition, and conventionally known ones can be used.
  • the organic solvent to be used is not particularly limited, and examples thereof include alcohols, ethers, ketones, amides, aromatic hydrocarbons, esters, and nitriles. Specific examples include low boiling point solvents such as diethyl ether, acetone, methanol, tetrahydrofuran, hexane, ethyl acetate, ethanol, methyl ethyl ketone, and 2-propanol in consideration of volatility at low temperatures.
  • high boiling point solvents such as cyclohexanone, dimethylacetamide, butyl cellosolve, dimethyl sulfoxide, propylene glycol monomethyl ether acetate, N-methyl-2-pyrrolidone, and ⁇ -butyrolactone.
  • These organic solvents can be used individually by 1 type or in combination of 2 or more types.
  • propylene glycol monomethyl ether acetate methyl ethyl ketone, cyclohexanone, etc. because of its excellent solubility and fast drying speed.
  • the amount of the organic solvent used in the resin composition according to the present embodiment is determined by the viscosity when the varnish is used, and is not particularly limited. It is used in the range of 5 to 95% by mass, more preferably 10 to 90% by mass.
  • An antioxidant can be added to the resin composition according to the present embodiment as necessary.
  • examples of the antioxidant used in the present embodiment include phenol-based antioxidants and thioether-based antioxidants.
  • the amount of the antioxidant used in the resin composition according to this embodiment is 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components (a), (b) and (c). preferable.
  • a coupling agent can be added to the resin composition according to the present embodiment.
  • the coupling agent used is not particularly limited, and various types such as a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a zirconate coupling agent, and a zircoaluminate coupling agent are used. .
  • Silane coupling agents include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyl-tris (2-methoxyethoxy) ) Silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, methyltri (methacryloxyethoxy) silane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyl Triethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldime
  • Titanate coupling agents include isopropyltriisostearoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, isopropyltris (dioctylpyrophosphate) titanate, tetraisopropylbis (dioctylphosphite) titanate, tetraoctylbis (ditridecylphosphite) titanate Tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, Isopropyldimethacrylisostearoyl titanate, isopropyl (dioctyl phosphate) tita Over
  • Examples of the aluminum coupling agent include acetoalkoxyaluminum diisopropionate.
  • zirconate coupling agent examples include tetrapropyl zirconate, tetrabutyl zirconate, tetra (triethanolamine) zirconate, tetraisopropyl zirconate, zirconium acetylacetonate acetylacetone zirconium butyrate, and zirconium stearate butyrate.
  • zircoaluminate coupling agent examples include compounds represented by the following general formula (6).
  • R ′ represents a carboxyl group or an amino group.
  • Examples of the compound in which R ′ is a carboxyl group include Mansheim CPG-carboxyzircoaluminate, and examples of the compound in which R ′ is an amino group include Mansheim APO-X-aminozircoaluminate solution. Available from Rhône Poulenc.
  • the blending amount of the coupling agent is preferably 0.1 to 20 parts by mass, particularly preferably 1 to 15 parts by mass with respect to 100 parts by mass of the total amount of the components (a), (b) and (c). If the blending ratio is 0.1 parts by mass or more, the adhesive strength tends to be further improved, and if it is 20 parts by mass or less, the volatile content is less and voids tend not to occur in the cured product. .
  • silane coupling agent that is highly effective in terms of improving the bonding or wettability of the interface between materials.
  • the resin composition according to the present embodiment may further contain a filler as necessary.
  • the filler include inorganic fillers and organic fillers, and inorganic fillers are preferable from the viewpoint of improving heat resistance or thermal conductivity, or adjusting melt viscosity or imparting thixotropic properties.
  • the inorganic filler is not particularly limited, and includes aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, titanium oxide, zirconium oxide, Examples thereof include cerium oxide, zinc oxide, aluminum borate whisker, boron nitride, crystalline silica, amorphous silica, and antimony oxide. These can be used alone or in combination of two or more.
  • aluminum oxide, aluminum nitride, boron nitride, crystalline silica, amorphous silica and the like are preferable.
  • aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, crystalline silica, amorphous Silica etc. are preferable.
  • the blending amount of the filler is preferably 3% by mass or less based on the entire resin composition excluding the solvent.
  • a physical shearing force is applied by a reiki machine, a three roll, a ball mill, a bead mill, etc. It is preferable to use after sufficiently dispersing so that there is no next aggregated particle.
  • the above dispersion methods can be used in combination.
  • the mixing time can be shortened by mixing the filler and the low molecular weight material in advance and then blending the high molecular weight material.
  • the resin composition according to the present embodiment may further include a moisture absorbent such as calcium oxide and magnesium oxide, a fluorosurfactant, a nonionic surfactant, a wetting improver such as a higher fatty acid, silicone oil, and the like as necessary.
  • a moisture absorbent such as calcium oxide and magnesium oxide
  • fluorosurfactant such as calcium oxide and magnesium oxide
  • nonionic surfactant such as a nonionic surfactant
  • a wetting improver such as a higher fatty acid, silicone oil, and the like
  • An anti-foaming agent, an ion trapping agent such as an inorganic ion exchanger, or the like can be added as appropriate, alone or in combination.
  • the nitrogen content is preferably 8% by mass or less, and more preferably 5% by mass or less. By setting the nitrogen content in this range, it is preferable because coloring derived from nitrogen oxides can be further suppressed.
  • the method for manufacturing a semiconductor device includes a step of forming an adhesive layer (hereinafter, also referred to as “adhesive resin layer”) made of the resin composition according to the present embodiment on a semiconductor substrate (adhesive layer forming step). ), And a step of pressing the semiconductor substrate and the transparent substrate (crimping step) between the semiconductor substrate and the transparent substrate, and a step of curing the adhesive layer (curing step).
  • an adhesive layer hereinafter, also referred to as “adhesive resin layer”
  • crimping step between the semiconductor substrate and the transparent substrate
  • curing step curing the adhesive layer
  • Adhesive layer forming process As the adhesive layer forming step, a method of applying the resin composition according to this embodiment on a semiconductor substrate or a method of attaching a film-like resin composition to a semiconductor substrate can be employed.
  • the semiconductor substrate may be either a semiconductor wafer or a semiconductor element (semiconductor chip).
  • Examples of the method for applying the resin composition include a dispensing method, a spin coating method, a die coating method, a knife coating method, and the like, and a spin coating method particularly suitable for applying a composition containing a high molecular weight compound. Or the die-coating method is preferable.
  • a film-form resin composition is demonstrated below.
  • the resin composition according to the present embodiment is uniformly coated on a support film, and the film is heated by heating at a temperature of 60 to 200 ° C. for 0.1 to 30 minutes under conditions where the solvent used is sufficiently volatilized.
  • the resin composition is formed.
  • the solvent amount of the resin composition, the viscosity, and the initial coating thickness are used so that the film-like resin composition has a desired thickness. Adjusting the gap), adjusting the drying temperature, air volume, etc.
  • the support film preferably has flatness.
  • a smoothing agent may be used to improve workability.
  • fine unevenness may be transferred to the adhesive to lower the flatness. Therefore, it is preferable to use a support film that does not use a smoothing agent or a support film that contains few smoothing agents.
  • a support film such as a polyethylene film is preferable in terms of excellent flexibility, but it is preferable to appropriately select the thickness and density of the support film so that roll marks and the like are not transferred to the adhesive layer surface during lamination.
  • the adhesive layer formed on the semiconductor substrate is dried by heating as desired.
  • the drying temperature there are no particular restrictions on the drying temperature, but when dissolved or dispersed in a solvent to form a varnish, it is 20-60 ° C. lower than the boiling point of the solvent used. It is preferable in the sense that does not make. For these reasons, it is more preferable that the temperature be lower by 25 to 55 ° C. than the boiling point of the solvent used, and it is even more preferable that the temperature be lower by 30 to 50 ° C. than the boiling point of the solvent used.
  • the time for performing the above-mentioned heat drying is not particularly limited as long as the solvent used is sufficiently volatilized and the component (c) does not substantially generate radicals. Heat for 1 to 90 minutes.
  • substantially no radicals means that radicals are not generated at all or very little if any, and even if the polymerization reaction does not proceed or proceeds temporarily, It means that it does not affect the physical properties of the agent layer.
  • drying under reduced pressure is preferable because the residual amount of the solvent can be reduced while suppressing generation of radicals from the component (c) due to heating.
  • the transparent substrate is pressure-bonded onto the adhesive layer.
  • the said heat drying can be abbreviate
  • the adhesive layer is cured.
  • the curing method include a method of curing by heat or light or heat and light, and it is particularly preferable to cure by heat.
  • the thermal curing (curing) for 1 to 2 hours while selecting the temperature and gradually increasing the temperature.
  • Heat curing is preferably performed at 100 to 200 ° C.
  • the crimping process and the curing process are not necessarily independent processes, and curing may be performed simultaneously while performing the crimping.
  • the Tg of the cured product of the adhesive layer according to this embodiment having the above composition is preferably ⁇ 10 ° C. or higher, more preferably 0 ° C. or higher.
  • the elastic modulus at 25 ° C. of the cured product of the adhesive layer according to this embodiment is preferably 0.01 GPa or more, more preferably 0.1 GPa or more, and further preferably 0.5 GPa or more.
  • the upper limit value of the elastic modulus at 25 ° C. is not particularly limited, but is preferably 10 GPa or less from a practical viewpoint.
  • the optical component according to the present embodiment has a non-cavity structure using the above-described resin composition.
  • a back-illuminated structure of a solid-state imaging device will be described with reference to the drawings as the case may be.
  • FIG. 1 is a plan view showing an example of a solid-state imaging device according to the present embodiment.
  • the CMOS image sensor 1 according to the present embodiment includes a sensor unit 3 (also referred to as “light receiving unit 3”) in which a plurality of microlenses 12 are arranged in a central region. Further, there is a peripheral circuit unit 4 in which a circuit is formed around the sensor unit 3. A glass substrate 5 is provided so as to cover at least the sensor unit 3.
  • FIG. 2 is a cross-sectional view taken along line A-A ′ shown in FIG.
  • a plurality of photodiodes 10 are formed on one surface of the silicon substrate 2.
  • a color filter 11 is provided on the upper surface of the photodiode 10 so as to cover at least the photodiode 10, and a microlens 12 is formed on the upper surface of the color filter 11.
  • the color filter 11 is provided for each photodiode 10, and each microlens 12 is provided at a position corresponding to each color filter 11.
  • the adhesive layer 6 formed from the resin composition according to the present embodiment is formed on the entire surface of the silicon substrate 2 on which the microlenses 12 are provided, and on the surface of the adhesive layer 6.
  • a glass substrate 5 is provided. By having such a structure, the structure has no cavity portion (non-cavity structure).
  • a wiring layer 8 is disposed on the other surface of the silicon substrate 2, and solder balls 9 are provided on the lower surface of the wiring layer 8.
  • FIG. 3 is a cross-sectional view showing another example of the solid-state imaging device according to the present embodiment.
  • a frame-like adhesive layer 7 provided on the outer peripheral side so as not to cover the microlens 12 is provided on the surface of the silicon substrate 2 on which the microlens 12 is provided.
  • a glass substrate 5 is disposed on the upper surface of the adhesive layer 7.
  • a portion surrounded by the silicon substrate 2, the frame-like adhesive layer 7 and the glass substrate 5 is filled with an adhesive layer 6 formed from the resin composition according to the present embodiment, and has a non-cavity structure.
  • the adhesive layer 6 serves as an adhesive for bonding the silicon substrate 2 and the glass substrate 5, and fills the cavity portion to fill the microlens 12 and the color filter 11. Also, it plays a role as a sealing material for sealing the photodiode 10.
  • a rib having adhesiveness (hereinafter also simply referred to as “rib”) is formed so as to surround the light receiving portion, and then a transparent sealing material is used so as to seal the light receiving portion. It was filled and a transparent substrate (for example, glass or the like) was adhered.
  • a transparent substrate for example, glass or the like
  • an adhesive rib (frame-shaped adhesive layer 7) is formed, and then the adhesive layer 6 is formed by filling the cavity composition with the resin composition according to the present embodiment.
  • the non-cavity structure produced in this way can sufficiently provide adhesion even at portions other than the ribs, and a more reliable non-cavity structure can be obtained.
  • the silicon substrate 2 and the transparent glass substrate 5 are bonded via the adhesive layer 6 formed from the resin composition according to the present embodiment without providing ribs. ing.
  • the resin composition according to the present embodiment can function as an adhesive and a sealing material.
  • the non-cavity structure shown in FIG. 2 does not require ribs, and the non-cavity structure can be easily produced.
  • facilities such as a printing machine, an exposure machine, and a developing machine necessary for forming the rib are not necessary.
  • FIG. 4 and FIG. 5 are diagrams for explaining the reflection at the interface due to the refractive index difference of the cavity portion in the non-cavity structure and the cavity structure, respectively.
  • FIGS. 6 and 7 are process diagrams illustrating a method for manufacturing a solid-state imaging device having a cavity structure and a non-cavity structure, respectively.
  • the left side of FIGS. 6 and 7 is a schematic perspective view of each process, and the right side is a corresponding schematic end view.
  • a process is required. That is, the resin layer 24 is formed on the substrate 22 (a), and the resin layer 24 is exposed and developed to form ribs (b).
  • FIGS. 6 and 7 show a method in which the resin layer 24 is formed on the substrate 22 and then sealed with the glass substrate 26. However, after the resin layer 24 is formed on the glass substrate 26, the resin layer 24 is sealed with the substrate 22. You may stop.
  • Examples of a method for producing a solid-state imaging device having a non-cavity structure using the resin composition according to the present embodiment include methods as shown in FIGS.
  • FIG. 8 shows a method of dicing after laminating a resin composition according to the present embodiment in the form of a sheet or film on a wafer together with a glass substrate, and curing the resin.
  • the film-shaped resin composition 34 formed on the support film 36 is affixed on the glass substrate 32 using the roller 38 (A).
  • the film-like resin composition 34 on which the glass substrate 32 is laminated is pressure-bonded to the substrate 42 on which the sensor 44 is mounted (B). This is diced for each sensor (C) to obtain a solid-state imaging device (D).
  • D solid-state imaging device
  • the sensor 44 mounted the film-form resin composition 34 formed on the support film 36.
  • FIG. After pressure bonding to the substrate 42, the support film 36 may be peeled off and the glass substrate 32 may be pressure bonded.
  • the resin composition which concerns on this embodiment has high transparency, airtightness, and a high refractive index after hardening, in addition to the function as an adhesive agent, it can have the function of a glass substrate. For this reason, as shown in FIG. 9, it can also be set as the solid-state image sensor which is not sealed with the glass substrate (refer FIG. 16).
  • FIG. 10 the film-shaped resin composition 34 on which the glass substrate 32 is laminated is separated into pieces on the support base 40 in advance, and the separated film-shaped resin composition 34 is placed on the sensor 44. You may take the method of laminating.
  • FIG. 11 shows a method in which a liquid resin composition according to the present embodiment is applied onto a glass substrate by spin coating or the like, B-staged, laminated on a wafer, and the resin is cured and diced.
  • the resin composition 34 is applied on the glass substrate 32 (A), and this is heated to form a B-stage (B).
  • the B-staged resin composition 34 is pressure-bonded to the substrate 42 on which the sensor 44 is mounted (C), and this is diced (D) to obtain a solid-state imaging device.
  • a weir 46 for holding the resin composition 34 on the substrate 42 may be provided on the outer periphery as in the case of FIG.
  • the resin composition 34 and the glass substrate 32 which have been B-staged, are preliminarily separated on a support base 40, and the resin composition is separated into pieces.
  • a method of laminating the object 34 and the glass substrate 32 on the sensor 44 may be adopted.
  • FIG. 13 shows a method in which a resin composition is applied on a wafer, B-staged on the wafer, then sealed with a glass substrate, and the resin is cured and diced. Specifically, after providing a weir 46 for fastening the resin composition 34 on the outer periphery of the substrate 42 on which the sensor 44 is mounted, the resin composition 34 is applied (A). This is heated to be B-staged (B), and the singulated glass substrate 32 is mounted on the B-staged resin composition (C), and this is diced (D), A solid-state image sensor is obtained.
  • FIG. 14 and 15 are diagrams showing an example of a method for applying a liquid resin composition onto a chip on which a sensor is mounted.
  • a weir 46 is provided on the outer periphery of a chip 48 on which a sensor 44 is mounted (A)
  • a resin composition 34 is applied on the sensor 44 (B)
  • C A solid-state imaging device is obtained.
  • the resin composition 34 may be applied only to the sensor 44 portion and then sealed with the glass substrate 32. 14 and 15, the method using a liquid resin composition has been described, but a film-like resin composition can also be used in the same manner as described above.
  • FIG. 17 is a cross-sectional view showing an example of a back-illuminated solid-state imaging device having a conventional cavity structure.
  • the adhesive is formed into a frame shape using photolithography, printing method, dispensing method, etc., and then the glass substrate and the silicon substrate are bonded through the obtained frame-like adhesive.
  • the resin composition as in the present disclosure is unnecessary, but on the other hand, a frame-like adhesive is required.
  • the non-cavity structure using the resin composition according to the present embodiment has the following merits compared to the conventional cavity structure.
  • the non-cavity structure In the cavity structure, if there is a scratch on the glass substrate, image quality may be degraded due to light scattering, reflection or diffraction.
  • the interface refractive index difference is reduced, and light scattering, reflection, diffraction, and the like are suppressed, thereby improving image quality degradation due to scratches on the glass substrate. be able to.
  • the adhesive layer in the non-cavity structure needs to be transparent, but the adhesive area between the adhesive layer and the glass substrate is wide, compared with the cavity structure in which the glass substrate is bonded only by the frame-like adhesive layer. There is little variation in stress in the element due to the adhesive, and peeling and deformation of the adhesive are reduced.
  • the non-cavity structure according to the present embodiment has an advantage that an inexpensive glass can be used because ⁇ rays can be absorbed in the adhesive layer.
  • the CMOS image sensor according to the present embodiment is built in, for example, an in-vehicle, medical, surveillance camera, mobile phone, or the like.
  • the CMOS image sensor is mounted on a mother board such as an in-vehicle, medical, surveillance camera, or mobile phone via a solder ball, and an optical lens is disposed above the sensor, that is, on the glass substrate side.
  • a method of injecting the liquid resin composition between a wafer or a chip and a glass substrate may be used.
  • a transparent substrate for example, in the above-described embodiment, an example in which a glass substrate is used as a transparent substrate has been shown, but the present invention is not limited to this, and a transparent substrate having necessary strength, rigidity, and light transmittance. If it is.
  • the resin composition according to the present embodiment has high transparency, airtightness, and high refractive index even after thermosetting, for example, the solid-state imaging device according to the present embodiment is illustrated in FIG. Thus, it is not necessary to seal using transparent substrates, such as a glass substrate.
  • component (a) component The weight average molecular weight of component (a) was converted from a calibration curve using standard polystyrene by gel permeation chromatography (GPC). The calibration curve was approximated by a cubic equation using a standard polystyrene kit PStQuick series C (Tosoh Corporation, trade name). The GPC conditions are shown below.
  • A-2) An acrylic polymer (a-2) was obtained by the same method as (a-1) except that 3% by mass of acrylonitrile (AN) was added to the monomer mixture.
  • A-3) An acrylic polymer (a-3) was obtained by the same method as (a-1) except that glycidyl methacrylate (GMA) was not used.
  • Examples 1 to 14 and Comparative Examples 1 to 3 The obtained acrylic polymers (a-1) to (a-4) and the following components were blended in the blending ratio (parts by mass) shown in Table 1 to obtain a resin composition.
  • Table 1 the number of each component excluding the organic solvent indicates the mass part of the solid content.
  • solid content as used in this specification refers to the non volatile matter except the volatile substances, such as water and a solvent, of a resin composition. That is, it refers to components other than the solvent that remains without being volatilized in the drying step, and includes liquid, water tank-like and wax-like substances at room temperature around 25 ° C.
  • the refractive index at each temperature of component (a) and component (b) was measured by the following method, and the absolute value of the difference in refractive index at each temperature was determined.
  • the results are shown in Table 2.
  • 18 to 21 show graphs showing the results of measuring the refractive indexes of the components (a) and (b) at each temperature for Examples 1, 5, 6 and Comparative Example 2. -When the refractive index at room temperature was measured about the resin composition of Example 1 and 4 by the method similar to the refractive index measuring method of the following (a) component, they were 1.494 and 1.493, respectively.
  • ⁇ (A) Component (polymer) refractive index measurement method The polymer is diluted with a PGMEA solvent to prepare a varnish, and applied to a release PET film (Film Vina 38E-0010GC, manufactured by Fujimori Kogyo Co., Ltd.) using an applicator, dried at 100 ° C./10 minutes, and a film thickness of 100 ⁇ m. A polymer film was prepared. The obtained polymer film was peeled off from the PET film and placed on the main prism of a multiwavelength Abbe refractometer ("DR-M2" manufactured by Atago Co., Ltd.), and the refractive index at each temperature was measured using daylighting glass. . A monobromonaphthalene solution was used as the buffer.
  • DR-M2 multiwavelength Abbe refractometer
  • component (b) When the component (b) is solid: A varnish obtained by diluting the component (b) with a PGMEA solvent is prepared, and applied to a release PET film (Film Vineer 38E-0010GC, manufactured by Fujimori Kogyo Co., Ltd.) using an applicator. The resin film having a thickness of 100 ⁇ m was prepared by drying at a temperature of 10 ° C. for 10 minutes.
  • the obtained resin film was peeled off from the PET film, placed on the main prism of a multi-wavelength Abbe refractometer ("DR-M2" manufactured by Atago Co., Ltd.), and the refractive index at each temperature was measured using daylighting glass. .
  • a multi-wavelength Abbe refractometer (“DR-M2" manufactured by Atago Co., Ltd.)
  • the refractive index at each temperature was measured using daylighting glass. .
  • the component (b) is a combination of a plurality of compounds
  • the main prism of the Abbe refractometer is confirmed by mixing and dissolving, and confirming that there is no residue or separation. A droplet was dropped onto the substrate and sandwiched between sub prisms, and the refractive index was measured.
  • Refractive index ⁇ (preparation amount of monomer A ⁇ refractive index of monomer A) + (preparation amount of monomer B ⁇ refractive index of monomer B) ⁇ / total amount of preparation amounts of monomers A and B
  • a 4.0 cm ⁇ 5.0 cm ⁇ 120 to 170 ⁇ m (actual measurement 140 to 160 ⁇ m) glass substrate (MATSUNAMI MICRO COVER GLASS 40 mm ⁇ 50 mm TICHKNESS No. 1; Matsunami Glass Kogyo Co., Ltd., trade name) was attached to obtain a test substrate having a three-layer structure of glass substrate / adhesive layer / glass substrate.
  • the obtained adhesive layer of the test substrate was cured at 200 ° C. for 2 hours to obtain a test specimen for measurement.
  • the transmittance of the test piece for measurement was measured at a wavelength of 400 nm using a spectrophotometer U4100 (Hitachi, Ltd., trade name: start 800 nm, end 300 nm, scan speed 600 nm / min, sampling interval 1.0 nm).
  • permeability numerical value of glass simple substance (for 2 sheets) was used for the baseline. Based on the measurement results, evaluation was performed according to the following criteria. The results are shown in Table 2.
  • D The transmittance at a wavelength of 400 nm is less than 90%.
  • permeability was measured at wavelength 589nm using the spectrophotometer U4100 (Hitachi Ltd., brand name; start 800nm, end 300nm, scanning speed 600nm / min, sampling interval 1.0nm).
  • permeability numerical value of glass simple substance (for 2 sheets) was used for the baseline. Based on the measurement results, evaluation was performed according to the following criteria. The results are shown in Table 2.
  • SYMBOLS 1 Solid-state image sensor, 2 ... Silicon substrate, 3 ... Sensor part, light-receiving part, 4 ... Peripheral circuit part 5, 26, 32 ... Glass substrate, 6 ... Adhesive layer, 7 ... Frame-like adhesive layer, 8 ... Wiring layer, 9, 28 ... solder ball, 10 ... photodiode, 11 ... color filter, 12 ... micro lens, 20 ... cavity, 22, 42 ... substrate, 24 ... resin layer, 34 ... adhesive composition, 36 ... support film, 38 ... roller, 40 ... support base, 44 ... sensor, 46 ... weir, 48 ... chip.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 (a)アクリル重合体、(b)少なくとも1つの(メタ)アクリロイル基を有する化合物、及び(c)重合開始剤を含有する樹脂組成物であって、(a)アクリル重合体と(b)少なくとも1つの(メタ)アクリロイル基を有する化合物との100℃における屈折率差の絶対値が0.031以下である樹脂組成物。

Description

樹脂組成物、樹脂組成物を用いた半導体装置の製造方法、及び固体撮像素子
 本開示は、樹脂組成物、樹脂組成物を用いた半導体装置の製造方法、及び固体撮像素子に関する。
 近年、デジタルスチルカメラ及びカメラ付携帯電話の普及に伴い、固体撮像デバイスも低消費電力化及び小型化が進んでおり、従来のCCD(Charge Coupled Device、電荷結合素子)イメージセンサの他に、CMOS(Complementary Metal Oxide Semiconductor、相補型金属酸化膜半導体)イメージセンサが用いられるようになっている。これらイメージセンサは、1つの半導体チップに複数の画素が2次元的に配列されたセンサ部(撮像画素部)と、センサ部の外側に配置された周辺回路部とから形成されている。
 CMOSイメージセンサの構造としては、「表面照射型」構造及び「裏面照射型」構造が知られている(例えば、特許文献1、2を参照)。特許文献1の表面照射型CMOSイメージセンサにおいては、外部から入射した光は、ガラス基板及びキャビティ(空洞)を通過して各マイクロレンズに入射し、マイクロレンズによって集光された後、カラーフィルタ層及び配線層を通過して、フォトダイオードに入射する。そしてこのフォトダイオードに入射した光が光電変換されて信号電荷が発生し、この信号電荷から電気信号が生成されることにより、画像データが取得される。
 一方、特許文献2の裏面照射型CMOSイメージセンサにおいては、半導体基板の一方の面にフォトダイオードが形成されており、この一方の面上にカラーフィルタ層及びマイクロレンズが配置されている。マイクロレンズの上方には接着剤層及びキャビティ(空洞)を介してガラス基板が配置されている。一方、半導体基板の他方の面上に配線層が設けられている。この裏面照射型構造によると、マイクロレンズに入射した光が、配線層を通ることなく受光部で受光されるため、配線層による光の減衰が回避され、受光感度が高められる。
 また、裏面照射型CMOSイメージセンサとしては、マイクロレンズを備えるシリコン基板上に、マイクロレンズを覆わないように外周側の部分に設けられた接着剤層及び当該接着剤層によって囲まれたキャビティ(空洞)に充填された低屈折率層を介してガラス基板が形成された構造が開示されている(特許文献3を参照)。
特開2007-281375号公報 特開2005-142221号公報 特開2010-40621号公報
 ところで、例えば、特許文献2に記載されるようなキャビティ(空洞)を有する裏面照射型CMOSイメージセンサにおいては、通常ガラス基板の屈折率はnD=1.47程度、キャビティ部分の空気の屈折率はnD=1.00程度、マイクロレンズはnD=1.60程度と、各層における屈折率の差が大きいことから、入射した光が界面で反射し、光損失が発生するという問題を有する。特許文献3に記載のキャビティ部分を低屈折率層で充填した構造(ノンキャビティ構造)を有する裏面照射型CMOSイメージセンサにおいても、用いられている低屈折材料の屈折率は1.4以下であり、屈折率差による光損失は低減されるものの、十分に抑制することはできない。
 また、車載用途又は屋内外の監視若しくはセキュリティー用途等の高信頼性センサにおいては、高温での透明性が求められる。医療用のセンサ等では、煮沸又はオートクレーブでの滅菌消毒処理が必要であり、高温での透明性維持が求められる。すなわち、今後、高温で高い機能を求められるCMOSイメージセンサの需要が見込まれる。したがって、光損失を抑制でき、かつ、温度環境に因らず高い透明性を維持できる透明充填材料は、過酷環境での長時間動作を求められる用途への展開が期待される。
 しかしながら、本発明者らが鋭意検討した結果、一般的に透明とされる樹脂材料でも、高温では透明性を失うことがあることが分かった。すなわち、室温(例えば25℃)では透明性を有しているように見える樹脂材料を、高温(100℃)に曝した場合、透明性を失うことがあると判明した。
 本開示は、このような事情に鑑みてなされたものであり、上記キャビティ部分に充填する樹脂の透明性及び屈折率を高くすることで、光損失を十分に解消でき、かつ高温でも透明性が維持される樹脂組成物を提供することを目的とする。
 本開示は、(a)アクリル重合体、(b)少なくとも1つの(メタ)アクリロイル基を有する化合物、及び(c)重合開始剤を含有する樹脂組成物であって、(a)成分と(b)成分との100℃における屈折率差の絶対値が0.031以下である樹脂組成物を提供する。なお、本明細書において、これらの成分は、単に(a)成分、(b)成分、(c)成分等と称することがある。
 本開示の樹脂組成物によれば、キャビティ部分に充填する透明樹脂に接着性を具備させることで、接着剤層をシリコン基板等の半導体基板上の全面に形成する構成とすることを可能としつつ、且つ透明接着剤としての良好な特性、すなわち、硬化後も透明性及び屈折率が高く、かつ、高温でも透明性が維持することができる。
 本開示の樹脂組成物が透明性に優れる理由について、本発明者らは以下のように考える。すなわち、(a)成分及び(b)成分において、(a)成分と(b)成分を混合及び溶解し、ガラスとシリコンとの間に充填及び硬化させた際、両者の屈折率差が上記所定の範囲となる組み合わせを用いることで、それぞれの両者の間で、光の散乱が生じることを充分に抑えられるため、結果として、溶液状態として濁らずに、優れる透明性を維持することができる。
 また、光の散乱が起こる理由として、発明者らは以下のように考える。
 (a)成分及び(b)成分を含有する樹脂組成物を硬化させると、(b)成分は、アクリロイル基の重合反応(例えば、ラジカル重合)により、重合物を生成する。このとき、(a)成分と(b)成分由来の重合物は、海島構造を形成し、海と島の境界部分で光の散乱が発生する(光がまっすぐ透過しない)と考えられる。このとき、硬化膜には、濁りが発生していて、擦りガラスのように見えることが確認できる。
 (a)成分及び(b)成分の屈折率差が上記所定の範囲であると、海と島の境界面で光散乱が生じにくく、十分に高い透明性を維持でき、光損失を抑えることができる。さらに、本開示の樹脂組成物によれば、高温に晒した場合であっても、十分に高い透明性を維持できる。
 この要因を調査した結果、後述する実施例及び比較例におけるグラフで示すとおり、高温で樹脂組成物成分中の屈折率の差が大きくなることが要因であることが分かった。
 樹脂組成物は、さらに(d)酸化防止剤を含有することが好ましい。これによって、樹脂組成物の熱時の劣化による着色を抑制し、熱時の透明性を向上させることができる。
 (a)アクリル重合体は、下記一般式(I)で表される構造単位を少なくとも1種含んでもよい。
Figure JPOXMLDOC01-appb-C000004
[式(I)中、Aは置換基を有していてもよい炭素数5~22の脂環基を示し、Rは水素原子又はメチル基を示す。]
 (a)アクリル重合体は、下記一般式(II)で表される構造単位を少なくとも1種を含んでもよい。
Figure JPOXMLDOC01-appb-C000005
[式(II)中、Yは置換基を有していてもよい炭素数1~10の直鎖又は分岐アルキル基を示し、Rは水素原子又はメチル基を示す。]
 (a)アクリル重合体は、下記一般式(III)で表される構造単位を少なくとも1種含んでもよい。
Figure JPOXMLDOC01-appb-C000006
[式(III)中、Zはカルボキシル基、ヒドロキシル基、酸無水物基、アミノ基、アミド基、エポキシ基及びニトリル基からなる群より選ばれる少なくとも1種の官能基を含む基を示す。Rは水素原子又はメチル基を示す。]
 また、本開示は、光学部品用である上述した樹脂組成物を提供する。上述した樹脂組成物は、空気よりも大きな屈折率を有し、硬化後も透明性及び屈折率が高く、かつ、高温でも透明性が維持することができる。したがって、光学部品用として使用することが可能であり、その際に特に優れた効果を発揮できる。
 さらに、本開示は、半導体基板上に上述の樹脂組成物からなる接着剤層を形成する工程と、接着剤層を半導体基板と透明基板とで挟み、該半導体基板及び該透明基板を圧着する工程と、接着剤層を硬化する工程と、を備える、半導体装置の製造方法を提供する。上述した樹脂組成物は、接着剤としての優れた機能を具備し、硬化後も透明性が高いことから、半導体装置の製造工程において当該樹脂組成物を用いることで特に優れた効果を発揮し、得られる半導体装置の特性も良好となる。
 さらに、本開示は、上面に受光部が設けられた半導体基板と、半導体基板上に受光部を覆うように設けられた接着剤層と、接着剤層によって半導体基板に接着された透明基板と、を備える固体撮像素子であって、該接着剤層は、上述の樹脂組成物から形成される、固体撮像素子を提供する。このような構成を有する固体撮像素子は、上述した樹脂組成物を用いていることから、マイクロレンズを覆わないように外周側の部分に設けられた接着剤層を有し、当該接着剤層によって囲まれたキャビティ(空洞)に当該樹脂組成物を充填する構成とするものの他、当該樹脂組成物により形成される接着剤層を基板上の全面に形成する構成とするものも採用可能となる。
 本開示によれば、キャビティ部分に充填する透明樹脂に接着性を具備させることで、接着剤層をシリコン基板等の半導体基板上の全面に形成する構成とすることを可能としつつ、且つ透明接着剤としての良好な特性、すなわち、硬化後も透明性が高く、高温に晒した場合であっても十分に高い透明性が維持できる樹脂組成物を提供することができる。
 また、本開示によれば、上記のような樹脂組成物を用いた半導体装置の製造方法、及び当該樹脂組成物から形成される固体撮像素子を提供することができる。
本実施形態に係る固体撮像素子の一例を示す平面図である。 図1に示すA-A’線による断面図である。 本実施形態に係る固体撮像素子の他の例を示す断面図である。 ノンキャビティ構造を例示する断面図である。 キャビティ構造を例示する断面図である。 キャビティ構造を有する固体撮像素子の製造方法の一例を示す工程図である。 ノンキャビティ構造を有する固体撮像素子の製造方法の一例を示す工程図である。 ノンキャビティ構造を有する固体撮像素子の製造方法の他の例を示す工程図である。 ノンキャビティ構造を有する固体撮像素子の製造方法の他の例を示す工程図である。 ノンキャビティ構造を有する固体撮像素子の製造方法の他の例を示す工程図である。 ノンキャビティ構造を有する固体撮像素子の製造方法の他の例を示す工程図である。 ノンキャビティ構造を有する固体撮像素子の製造方法の他の例を示す工程図である。 ノンキャビティ構造を有する固体撮像素子の製造方法の他の例を示す工程図である。 ノンキャビティ構造を有する固体撮像素子の製造方法の他の例を示す工程図である。 ノンキャビティ構造を有する固体撮像素子の製造方法の他の例を示す工程図である。 本実施形態に係る固体撮像素子の他の例を示す断面図である。 従来のキャビティ構造の裏面照射型固体撮像素子の一例を示す断面図である。 実施例1について、(a)成分及び(b)成分の各温度における屈折率を測定した結果を示すグラフである。 実施例5について、(a)成分及び(b)成分の各温度における屈折率を測定した結果を示すグラフである。 実施例6について、(a)成分及び(b)成分の各温度における屈折率を測定した結果を示すグラフである。 比較例2について、(a)成分及び(b)成分の各温度における屈折率を測定した結果を示すグラフである。
 以下、本開示の好適な実施形態について説明するが、本開示はこれらの実施形態に何ら限定されるものではない。なお、本明細書において「(メタ)アクリロイル基」とは、「アクリロイル基」又はそれに対応する「メタクリロイル基」を意味する。(メタ)アクリレート等の他の類似表現についても同様である。
 また、本明細書において「透明性」とは、樹脂組成物と可視光線との間に相互作用が起こりにくく、電磁波の吸収及び散乱が生じにくいことを意味する。「透明性」の指標としては、入射光と透過光の強度比を百分率で表した透過率を用いるが、目視による濁りの観察等によっても判断できる。透過率は対象とする光の波長によって異なるが、本明細書では可視光線を対象とする。可視光線に相当する電磁波とは、JIS Z8120の定義により、下界はおおよそ400nm、上界はおおよそ760nmである。
 また、本明細書において、「層」との語は、平面視したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。
 また、本明細書において、「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば、本用語に含まれる。
 また、本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。また、本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本明細書において「屈折率」とは、空気の屈折率を1.000とした場合の、評価サンプルの屈折率である「相対屈折率」を指す。
 また、本明細書において、「置換基」とは、例えば、フッ素原子、塩素原子等のハロゲン原子、アルキル基、アリル基、エーテル基、エステル基、カルボキシ基、シアノ基等を示す。
<樹脂組成物>
 本実施形態に係る樹脂組成物は、(a)アクリル重合体、(b)少なくとも1つの(メタ)アクリロイル基を有する化合物、及び、(c)重合開始剤、を含有する。
 本開示の一形態においては、(a)成分と(b)成分との100℃における屈折率差の絶対値が0.031以下であり、0.030以下であることがより好ましく、0.028以下であることが更に好ましい。本形態においては、(a)成分と(b)成分との10℃における屈折率差の絶対値が0.030以下であることが好ましく、0.025以下であることがより好ましく、0.020以下であることが更に好ましい。
 本開示の他の形態においては、(a)成分と(b)成分との60℃における屈折率差の絶対値が0.026以下であってもよく、0.024以下であることが好ましく、0.022以下であることが更に好ましい。本形態においては、(a)成分と(b)成分との10℃における屈折率差の絶対値が0.030以下であることが好ましく、0.025以下であることがより好ましく、0.020以下であることが更に好ましい。
<(a)アクリル重合体>
 本実施形態で用いられる(a)アクリル重合体とは、(メタ)アクリロイル基を分子内に1つ有するアクリルモノマーを1種で重合したもの又は2種以上組み合わせて共重合したものをいう。なお、本発明の効果を損なわない範囲であれば、(メタ)アクリロイル基を分子内に2個以上有する化合物、又は(メタ)アクリロイル基を有していない重合性化合物(アクリロニトリル、スチレン、酢酸ビニル、エチレン、プロピレン等の重合性不飽和結合を分子内に1個有する化合物、ジビニルベンゼン等の重合性不飽和結合を分子内に2個以上有する化合物)を、アクリルモノマーと共重合させたものであってもよい。このような観点から、本実施形態で用いられるアクリル重合体は、(メタ)アクリロイル基を分子内に1つ有するアクリルモノマーを、アクリル重合体の総量を基準として30~100質量%有していると好ましく、50~100質量%有しているとより好ましい。
 (a)成分は、脂環基又は直鎖若しくは分岐アルキル基構造を有する構造単位を含むことが好ましく、上記一般式(I)で表される構造単位又は上記一般式(II)で表される構造単位を含むことがより好ましい。これにより、樹脂組成物中での短波長(特に、波長400nm)の光吸収が抑えられるため、より高い透明性が得られる傾向にある。
 また、(a)成分は脂環基を有する構造単位を含むことが好ましく、上記一般式(I)で表される構造単位を含むことがより好ましい。これにより、耐熱性が更に向上する傾向にある。
 (a)成分は、官能基を有する構造単位を含むことが好ましく、上記一般式(III)で表される構造単位を含むことがより好ましい。これにより、低弾性率による優れた応力緩和性、耐クラック性、接着性及び耐熱性を発現することができる。
 上記一般式(III)で表される構造単位において、Zはグリシジル基であってもよい。Zがグリシジル基であると、リフロー時の接着性が向上し、リフロー時の剥離をより抑制できる。
 Zがグリシジル基である、一般式(III)で表される構造単位の含有量は、(a)成分の総量を基準として、30質量%以下であることが好ましく、2~25質量%であることがより好ましく、4~20質量%であることが更に好ましい。この含有量が、30質量%以下であることで、透明性が向上し、製造工程における応力に起因するウェハの反りをより抑制できる。
 官能基をアクリル重合体に導入する方法は特に限定されないが、官能基を有する官能基含有単量体を、ビーズ重合、粒状重合、パール重合等とも呼ばれる懸濁重合の他、溶液重合、塊状重合、沈殿重合、乳化重合などの既存の方法でランダム共重合させることにより、官能基をアクリル重合体に導入することができる。中でも、低コストで高分子量化可能な点で、懸濁重合法を適用することが好ましい。
 懸濁重合は、水性溶媒中で懸濁剤を添加して行う。懸濁剤としてはポリビニルアルコール、メチルセルロース、ポリアクリルアミド等の水溶性高分子、リン酸カルシウム、ピロリン酸マグネシウム等の難溶性無機物質などがあり、中でもポリビニルアルコール等の非イオン性の水溶性高分子が好ましい。非イオン性の水溶性高分子を用いた場合には、得られたアクリル共重合体内にイオン性不純物が残留する可能性が低い点で好ましい。水溶性高分子は、単量体の総量100質量部に対して0.01~1質量部使用することが好ましい。
 また、重合反応においては、一般的に用いられる重合開始剤、連鎖移動剤等を使用してもよい。重合開始剤としては、後述する(c)重合開始剤と同様のものが挙げられる。連鎖移動剤としては、n-オクチルメルカプタン等のチオール類などを挙げることができる。
 官能基含有単量体は、分子内にカルボキシル基、酸無水物基、水酸基、アミノ基、アミド基、リン酸基、シアノ基、マレイミド基及びエポキシ基からなる群より選ばれる少なくとも1種の基と、少なくとも1つの重合性の炭素-炭素二重結合とを有することが好ましい。
 上記官能基は、ワニス状態でのゲル化、使用時のノズル等のつまり、スピンコート時のピンホール発生などの問題を回避する観点から、アミノ基、アミド基、リン酸基、シアノ基、マレイミド基及びエポキシ基からなる群より選ばれる少なくとも1種であることが好ましい。また、上記官能基は、着色をより高度に防止する観点からは、カルボキシル基、酸無水物基、水酸基、リン酸基及びエポキシ基からなる群より選ばれる少なくとも1種であることが好ましい。さらに、これら両方の観点から、上記官能基は、リン酸基又はエポキシ基であることがより好ましく、エポキシ基であることが更に好ましい。官能基がエポキシ基を含むことで、金属、ガラス等の無機材質の基板への密着性を更に向上させることができる。
 官能基含有単量体として、(メタ)アクリル酸、イタコン酸等のカルボキシル基含有単量体、無水マレイン酸等の酸無水物基含有単量体、(メタ)アクリル酸-2-ヒドロキシメチル、(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル、N-メチリル(メタ)アクリルアミド、o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレン等の水酸基含有単量体、(メタ)アクリル酸ジエチルアミノエチル等のアミノ基含有単量体、2-(メタ)アクリロイルオキシエチルアシッドフォスフェート等のリン酸基含有単量体、(メタ)アクリロニトリル等のシアン化ビニル化合物、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-i-プロピルマレイミド、N-ブチルマレイミド、N-i-ブチルマレイミド、N-t-ブチルマレイミド、N-ラウリルマレイミド、N-シクロヘキシルマレイミド、N-ベンジルマレイミド、N-フェニルマレイミド等のN-置換マレイミド類、(メタ)アクリル酸グリシジル、α-エチルアクリル酸グリシジル、α-n-プロピルアクリル酸グリシジル、(メタ)アクリル酸-3,4-エポキシブチル、(メタ)アクリル酸-4,5-エポキシペンチル、(メタ)アクリル酸-6,7-エポキシヘプチル、(メタ)アクリル酸-3-メチル-3,4-エポキシブチル、(メタ)アクリル酸-4-メチル-4,5-エポキシペンチル、(メタ)アクリル酸-5-メチル-5,6-エポキシヘキシル、(メタ)アクリル酸-β-メチルグリシジル、α-エチルアクリル酸-β-メチルグリシジル等のエポキシ基含有単量体などを使用することができる。これらは1種を単独で又は2種以上を併用して使用することができる。
 この中で、(メタ)アクリル酸グリシジル等のグリシジル基含有単量体を使用することが特に好ましい。さらに、このような単量体を使用することによって得られる、例えば、グリシジル基含有(メタ)アクリル重合体は、アクリル単量体又はオリゴマーと相溶であることが好ましい。グリシジル基含有(メタ)アクリル重合体は、常法によって合成してもよく、市販品を入手してもよい。市販品としては、HTR-860P-3(ナガセケムテックス株式会社、商品名)等が挙げられる。このようなアクリル重合体は、より優れた耐クラック性、接着性及び耐熱性を発現する点で好ましく、また保存安定性を確保する点で好ましい。
 上記官能基を有する構造単位の量は、アクリル重合体の総量を基準として0.5~6.0質量%であることが好ましく、0.5~5.0質量%であることがより好ましく、0.8~5.0質量%であることが特に好ましい。官能基を有する構造単位の量がこの範囲にあると、接着力を向上させることができるとともに、ゲル化を抑制することができる。
 また、本実施形態に係るアクリル重合体は、窒素原子含有基を有する構造単位がアクリル重合体全体の5質量%以下であると好ましく、3質量%以下であるとより好ましく、1質量%以下であると更に好ましく、窒素原子含有基を有する構造単位を含まないことが特に好ましい。上記窒素原子含有基としては、アミノ基、アミド基、シアノ基、マレイミド基等が挙げられる。また、窒素原子含有基を有する構造単位としては、上記に列挙した官能基含有単量体のうち、窒素原子を含む単量体由来の構造単位が挙げられ、(メタ)アクリロニトリル等のシアン化ビニル化合物が挙げられる。
 本実施形態に係るアクリル重合体を合成する際に使用する官能基含有単量体以外の単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ナフチル等の(メタ)アクリル酸エステル類、α-メチルスチレン、α-エチルスチレン、α-フルオロスチレン、α-クロルスチレン、α-ブロモスチレン、フルオロスチレン、クロロスチレン、ブロモスチレン、メチルスチレン、メトキシスチレン、スチレン等の芳香族ビニル化合物、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸トリメチルヘキシル、(メタ)アクリル酸ノルボルニル、(メタ)アクリル酸ノルボルニルメチル、(メタ)アクリル酸フェニルノルボルニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ボルニル、(メタ)アクリル酸メンチル、(メタ)アクリル酸フェンチル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカ-8-イル、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカ-4-メチル、(メタ)アクリル酸シクロデシル等の脂環式単量体などが挙げられる。これらは1種を単独で又は2種以上を併用して使用することができる。
 これらの官能基含有単量体以外の単量体の含有量は、特に制限はないが、本実施形態に係る樹脂組成物に用いられる(a)成分のTgが-50~50℃の範囲となるように調整されることが好ましく、例えば、単量体として、メタクリル酸グリシジルを2.5質量%、メタクリル酸メチルを43.5質量%、アクリル酸エチルを18.5質量%及びアクリル酸ブチルを35.5質量%用いることで、Tgが12℃で、グリシジル基含有アクリル重合体である(a)成分を合成できる。
 官能基含有単量体以外の単量体の中で、(メタ)アクリル酸エステル類は、ゲル化せずに(a)成分を合成しやすくなるので、好ましく用いられる。(メタ)アクリル酸エステル類の中で、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシルは、官能基含有単量体との共重合性に優れるため、更に好ましい。
 (a)成分は脂環式又は複素環式構造を有する構造単位を含むことが好ましい。脂環式又は複素環式構造を有する構造単位を含むアクリル重合体を製造する際に用いられる脂環式又は複素環式構造含有単量体としては、例えば、下記一般式(1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000007
[式(1)中、Rは水素原子又はメチル基を示し、Rは脂環式基又は複素環式基を示し、Xは炭素数1~6のアルキレン基を示し、nは0~10の整数を示す。nが2以上の整数であるとき、複数存在するXは互いに同一であっても異なっていてもよい。ここで脂環式基とは、炭素原子が環状に結合した構造を有する基であり、複素環式基とは、炭素原子及び1以上のヘテロ原子が環状に結合した構造を有する基である。]
 Rとしては、例えば、下記式(2)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000008
[式(2)中、R、R、R、R、R、R、R及びR10はそれぞれ独立に、水素原子又は炭素数1~4のアルキル基を示し、R11は水素原子、炭素数1~4のアルキル基、又はOR12で示される構造を示し、R12は水素原子又は炭素数1~8のアルキル基を示す。]
 一般式(1)で表される化合物としては、例えば、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート及びトリシクロ[5.2.1.02,6]デシル(メタ)アクリレートが挙げられる。
 これらの脂環式又は複素環式構造含有単量体の含有量は、特に制限はないが、例えば、アクリル酸トリシクロ[5.2.1.02,6]デカ-8-イル(FA-513A、日立化成株式会社製、商品名)を25.8質量%、アクリル酸ブチルを20質量%、メタクリル酸ブチルを31.1質量%、メタクリル酸2-エチルヘキシルを18.6質量%、及びメタクリル酸グリシジルを4.5質量%用いることで、重量平均分子量が10万以上の、脂環式骨格及びグリシジル基を含有したアクリル重合体を合成できる。
 官能基含有単量体を組み合わせて使用する場合の混合比率は、アクリル重合体のTgを考慮して決定し、Tgは-50℃以上であることが好ましい。Tgが-50℃以上であると、Bステージ状態での樹脂組成物のタック性が適切であり、取り扱い性に問題を生じにくいからである。
 上記単量体を重合させて、官能基を有する構造単位を含むアクリル重合体を製造する場合、その重合方法としては特に制限はなく、パール重合、溶液重合、懸濁重合等の方法を使用することができる。
 本実施形態に係るアクリル重合体の重量平均分子量は、10万~300万であることが好ましく、12万~200万であることがより好ましい。重量平均分子量がこの範囲であると、シート状又はフィルム状としたときの強度、可撓性、及びタック性が適当であり、また、フロー性が適当なため配線の回路充填性が確保できる。なお、本実施形態において、重量平均分子量とは実施例で説明するようにゲルパーミュエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレン検量線を用いて換算した値を示す。
 官能基を有する構造単位を含むアクリル重合体成分の使用量は、下記(b)少なくとも1つの(メタ)アクリロイル基を有する化合物100質量部に対して、10~400質量部が好ましい。この範囲にあると、より良好な貯蔵弾性率を示し、成型時のフロー性抑制が確保でき、且つ高温での取り扱い性も向上させることができる。このような観点から、上記使用量は、15~350質量部がより好ましく、20~300質量部が特に好ましい。
 (a)成分の含有量は、(a)成分と(b)成分との総量100質量部に対して、35~80質量部であることが好ましく、40~75質量部であることがより好ましく、45~70質量部であることが更に好ましい。(a)成分の含有量が35質量部以上であることで、透明性及び耐リフロー性(耐クラック性)が向上する。また、薄い被着体(例えば、薄型化したウェハ)に適用した場合でも反りをより抑制できる。また、(a)成分の含有量が80質量部以下であることで、リフロー時の剥離を抑制することができ、接着性が向上する。また、基板と樹脂組成物の硬化物とを個片化する際の、加工性(ダイシング性)が向上する。
<(b)少なくとも1つの(メタ)アクリロイル基を有する化合物>
 本実施形態に係る少なくとも1つの(メタ)アクリロイル基を有する化合物としては、特に限定されず、単官能(メタ)アクリル単量体としては、上記(a)成分で例示したアクリル単量体が挙げられる。また、多官能(メタ)アクリル単量体としては脂環式骨格を有する多官能(メタ)アクリル単量体、脂肪族骨格を有する多官能(メタ)アクリル単量体、ジオキサングリコール骨格を有する多官能(メタ)アクリル単量体、官能基を有する多官能(メタ)アクリル単量体等が挙げられる。なお、ここでの「多官能」とは、(メタ)アクリロイル基についていうものであり、化合物中に少なくとも2以上の(メタ)アクリロイル基を有することを意味する。
 硬化物の透明性をより向上させる観点からは、脂環式骨格を有する多官能(メタ)アクリル単量体及びジオキサングリコール骨格を有する多官能(メタ)アクリル単量体が好ましい。一方、硬化物のクラック及び基材からの剥離をより抑制する観点からは、脂肪族骨格を有する多官能(メタ)アクリル単量体を用いることが好ましい。
 多官能(メタ)アクリル単量体としては、下記の(メタ)アクリロイル基を2つ有する(メタ)アクリル単量体を挙げることができる。
 (メタ)アクリロイル基を2つ有する(メタ)アクリル単量体としては、シクロヘキサン-1,4-ジメタノールジ(メタ)アクリレート、シクロヘキサン-1,3-ジメタノールジ(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレート(例えば、日本化薬株式会社、KAYARAD R-684、トリシクロデカンジメチロールジアクリレート等)、トリシクロデカンジメタノールジ(メタ)アクリレート(例えば、新中村化学工業株式会社、A-DCP、トリシクロデカンジメタノールジアクリレート等)、ジオキサングリコールジ(メタ)アクリレート(例えば、日本化薬株式会社、KAYARAD R-604、ジオキサングリコールジアクリレート、新中村化学工業株式会社、A-DOG、ジオキサングリコールジアクリレート等)、ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、エチレンオキサイド変性1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、(ポリ)エチレンオキサイド変性ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート(好ましくはポリエチレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、より好ましくはエチレンオキサイド5~15モル変性ビスフェノールA型ジ(メタ)アクリレート)、(ポリ)エチレンオキサイド変性リン酸ジ(メタ)アクリレート等を挙げることができる。
 上記の中では、硬化物の透明性をより向上させる観点から、ジオキサングリコールジアクリレート又はトリシクロデカンジメタノールジアクリレートがより好ましい。
 また、多官能(メタ)アクリル単量体としては、ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性イソシアヌル酸トリ(メタ)アクリレート等の(メタ)アクリロイル基を3つ有する(メタ)アクリル単量体、ジペンタエリスリトールヘキサアクリレート等の(メタ)アクリロイル基を6つ有する(メタ)アクリル単量体を挙げることもできる。
<(c)重合開始剤>
 本実施形態に係る(c)重合開始剤としては、例えば、(c1)熱重合開始剤又は(c2)光重合開始剤、若しくはその両方を用いることができる。本実施形態に係る樹脂組成物の硬化反応がより均一に進行し、接着強度が更に向上する観点で、(c1)熱重合開始剤を含有することがより好ましい。
 (c1)熱重合開始剤としては、t-ヘキシルパーオキシピバレート(パーヘキシルPV、商品名;1時間半減期温度71.3℃、10時間半減期温度53.2℃)、ジラウロイルパーオキサイド(パーヘキシルL、商品名;1時間半減期温度79.3℃、10時間半減期温度61.6℃)、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド(パーロイル355、商品名;1時間半減期温度76.8℃、10時間半減期温度59.4℃)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノアート(パーオクタO、商品名;1時間半減期温度84.4℃、10時間半減期温度65.3℃)、t-ブチルパーオキシ-2-エチルヘキサノアート(パーブチルO、商品名;1時間半減期温度92.1℃、10時間半減期温度72.1℃)、ベンゾイルパーオキサイド+水(ナイパーBW、商品名;1時間半減期温度92.0℃、10時間半減期温度73.6℃)、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン(パーヘキサTMH、商品名;1時間半減期温度106.4℃、10時間半減期温度86.7℃)、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン(パーヘキサHC、商品名;1時間半減期温度107.3℃、10時間半減期温度87.1℃)、t-ヘキシルパーオキシイソプロピルモノカルボネート(パーヘキシルI、商品名;1時間半減期温度114.6℃、10時間半減期温度95.0℃)、t-ブチルパーオキシイソプロピルモノカルボネート(パーブチルI、商品名;1時間半減期温度118.4℃、10時間半減期温度98.7℃)、ジクミルパーオキサイド(パークミルD、商品名;1時間半減期温度135.7℃、10時間半減期温度116.4℃)、n-ブチル4,4-ビス(t-ブチルパーオキシ)バレレート(パーヘキサV、商品名;1時間半減期温度126.5℃、10時間半減期温度104.5℃)等の有機過酸化物、2,2’-アゾビスイソブチロニトリル、1,1’-(シクロヘキサン-1,1-カルボニトリル)-2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物などが挙げられる。
 これらの熱重合開始剤は、1種を単独で又は2種以上を組み合わせて使用することができる。
 これらの熱重合開始剤の中でも、硬化物の物性特性を向上する効果がより大きいとの観点から、有機過酸化物が好ましく、樹脂組成物のシェルフライフ、ポットライフ等の取り扱い性と硬化性のより良好なバランスを保つ観点から、10時間半減期温度が90~150℃である有機過酸化物がより好ましい。
 (c1)成分の配合量は、(a)成分と(b)成分の総量100質量部に対して、好ましくは0.1~30質量部、より好ましくは0.2~20質量部、更に好ましくは0.5~10質量部である。
 なお、有機過酸化物の半減期温度は、以下のようにして測定される。
 ベンゼンを溶媒として使用し、0.1mol/Lに調整した有機過酸化物溶液を、窒素置換を行ったガラス管中に密封する。これを所定温度にセットした恒温槽に浸し、熱分解させる。一般的に希薄溶液中の有機過酸化物の分解は近似的に一次反応として取り扱うことができるので、分解有機過酸化物量をx(mol/L)、分解速度定数をk(1/h)、時間をt(h)、有機過酸化物初期濃度をa(mol/L)とすると、下記式(1)及び式(2)が成立する。
 dx/dt=k(a-x)・・・(1)
 ln{a/(a-x)}=kt・・・(2)
 半減期は分解により有機過酸化物濃度が初期の半分に減ずるまでの時間であるから、半減期をt1/2で示し式(2)のxにa/2を代入すれば、下記式(3)のようになる。
 kt1/2=ln2・・・(3)
 したがって、ある一定温度で熱分解させ、時間(t)とln{a/(a-x)}の関係をプロットし、得られた直線の傾きからkを求めることで、式(3)からその温度における半減期(t1/2)を求めることができる。
 一方、分解速度定数kに関しては、頻度因子をA(1/h)、活性化エネルギーをE(J/mol)、気体定数をR(8.314J/mol・K)、絶対温度をT(K)とすれば、下記式(4)が成立する。
 lnk=lnA-ΔE/RT ・・・(4)
式(3)及び式(4)よりkを消去すると、
 ln(t1/2)=ΔE/RT-ln(A/2)・・・(5)
で表されるので、数点の温度についてt1/2を求め、ln(t1/2)と1/Tの関係をプロットし得られた直線からt1/2=1hにおける温度(1時間半減期温度)が求められる。10時間半減期温度も、t1/2=10hとした場合の温度を求めることで得られる。
 上記で挙げた熱重合開始剤の中でも好適な有機過酸化物としては、ジクミルパーオキサイド(パークミルD)、n-ブチル4,4-ビス(t-ブチルパーオキシ)バレレート(パーヘキサV)が挙げられる。
 なお、熱重合開始剤は、(a)成分及び(b)成分との組み合わせにおいて優れた耐熱性、耐剥離性及び応力緩和を発揮して、光学部品の信頼性をより向上させることができる。
 (c2)光重合開始剤としては、アシルフォスフィンオキサイド、オキシムエステル類、芳香族ケトン、キノン類、ベンゾインエーテル化合物、ベンジル誘導体、2,4,5-トリアリールイミダゾール二量体、アクリジン誘導体、クマリン系化合物、N-フェニルグリシン誘導体等が挙げられる。なお、本実施形態で用いる光重合開始剤(c2)は、常法によって合成してもよく、市販のものを入手してもよい。
 これらの中でも、光硬化性の向上、高感度化及び硬化膜の透明性を更に向上させる観点から、アシルフォスフィンオキサイド、オキシムエステル類が好ましい。
 なお、光重合開始剤(c2)は、1種を単独で又は2種以上を組み合わせて使用することができる。
 アシルフォスフィンオキサイドとしては、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(IRGACURE-819、BASF社、商品名)、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド(LUCIRIN TPO、BASF社、商品名)等が挙げられる。
 オキシムエステル類としては、1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル-2-(O-ベンゾイルオキシム)](IRGACURE-OXE01、BASF社、商品名)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチルオキシム)(IRGACURE-OXE02、BASF社、商品名)、1-フェニル-1,2-プロパンジオン-2-[o-(エトキシカルボニル)オキシム](Quantacure-PDO、日本化薬株式会社、商品名)等が挙げられる。
 芳香族ケトンとしては、ベンゾフェノン、N,N,N’,N’-テトラメチル-4,4’-フェノン(ミヒラーケトン)、N,N,N’,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(IRGACURE-651、BASF社、商品名)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン(IRGACURE-369、BASF社、商品名)、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン(IRGACURE-907、BASF社、商品名)、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン(IRGACURE-127、BASF社、商品名)等が挙げられる。
 キノン類としては、2-エチルアントラキノン、フェナントレンキノン、2-tert-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、2-メチル-1,4-ナフトキノン、2,3-ジメチルアントラキノン等が挙げられる。
 ベンゾインエーテル化合物としては、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等が挙げられる。
 ベンジル誘導体としては、ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物の他、ベンジルジメチルケタールなどが挙げられる。
 2,4,5-トリアリールイミダゾール二量体としては、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等が挙げられる。2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体としては、2-(2-クロロフェニル)-1-[2-(2-クロロフェニル)-4,5-ジフェニル-1,3-ジアゾール-2-イル]-4,5-ジフェニルイミダゾール等が挙げられる。
 アクリジン誘導体としては、9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等が挙げられる。
 クマリン系化合物としては、7-アミノ-4-メチルクマリン、7-ジメチルアミノ-4-メチルクマリン、7-ジエチルアミノ-4-メチルクマリン、7-メチルアミノ-4-メチルクマリン、7-エチルアミノ-4-メチルクマリン、7-ジメチルアミノシクロペンタ[c]クマリン、7-アミノシクロペンタ[c]クマリン、7-ジエチルアミノシクロペンタ[c]クマリン、4,6-ジメチル-7-エチルアミノクマリン、4,6-ジエチル-7-エチルアミノクマリン、4,6-ジメチル-7-ジエチルアミノクマリン、4,6-ジメチル-7-ジメチルアミノクマリン、4,6-ジエチル-7-エチルアミノクマリン、4,6-ジエチル-7-ジメチルアミノクマリン、2,3,6,7,10,11-ヘキサンヒドロ-1H,5H-シクロペンタ[3,4][1]ベンゾピラノ-[6,7,8-ij]キノリジン12(9H)-オン、7-ジエチルアミノ-5’,7’-ジメトキシ-3,3’-カルボニルビスクマリン、3,3’-カルボニルビス[7-(ジエチルアミノ)クマリン]、7-ジエチルアミノ-3-チエノキシルクマリン等が挙げられる。
 N-フェニルグリシン誘導体としては、N-フェニルグリシン、N-フェニルグリシンブチルエステル、N-p-メチルフェニルグリシン、N-p-メチルフェニルグリシンメチルエステル、N-(2,4-ジメチルフェニル)グリシン、N-メトキシフェニルグリシン等が挙げられる。
 (c2)光重合開始剤の配合量は、(a)成分と(b)成分の総量100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.5~10質量部、更に好ましくは0.75~5質量部である。配合量を上記範囲とすることで、硬化物の発泡、濁り、着色及びクラックをより高度に防止することができる。
<有機溶媒>
 本実施形態に係る樹脂組成物は、(a)、(b)及び(c)成分以外に、必要に応じて後述の任意成分を、有機溶媒に溶解又は分散してワニス状とすることができる。これにより、基材への塗布性を向上させ、作業性を良好にすることができる。
 ワニス状にするために用いる有機溶媒としては、樹脂組成物となる成分を均一に撹拌混合、溶解、混練又は分散できるものであれば制限はなく、従来公知のものを使用することができる。用いる有機溶媒としては、特に制限されないが、アルコール系、エーテル系、ケトン系、アミド系、芳香族炭化水素系、エステル系、ニトリル系等が挙げられる。具体的には、低温での揮発性等を考慮して、ジエチルエーテル、アセトン、メタノール、テトラヒドロフラン、ヘキサン、酢酸エチル、エタノール、メチルエチルケトン、2-プロパノール等の低沸点溶媒が挙げられる。また、塗膜安定性を向上させる等の目的で、トルエン、メチルイソブチルケトン、1-ブタノール、2-メトキシエタノール、2-エトキシエタノール、キシレン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、シクロヘキサノン、ジメチルアセトアミド、ブチルセロソルブ、ジメチルスルホキシド、プロピレングリコールモノメチルエーテルアセテート、N-メチル-2-ピロリドン、γ-ブチロラクトン等の高沸点溶媒が挙げられる。これらの有機溶媒は、1種を単独で又は2種以上を併用して用いることができる。
 これらの中でも、溶解性に優れ、乾燥速度が速いことから、プロピレングリコールモノメチルエーテルアセテート、メチルエチルケトン、シクロヘキサノン等を使用することが好ましい。
 本実施形態に係る樹脂組成物に用いられる有機溶媒の量は、ワニス状態にしたときの粘度等によって決定されるもので、特に制限はないが、樹脂組成物全体に対して、概ね、好ましくは5~95質量%、より好ましくは10~90質量%の範囲で用いられる。
<(d)酸化防止剤>
 本実施形態に係る樹脂組成物には、必要に応じて酸化防止剤を添加することができる。本実施形態に用いられる酸化防止剤としては、フェノール系酸化防止剤、チオエーテル系酸化防止剤等が挙げられる。
 本実施形態に係る樹脂組成物に用いられる酸化防止剤の量は、(a)、(b)及び(c)成分の総量100質量部に対して、0.01~10質量部であることが好ましい。
<カップリング剤>
 本実施形態に係る樹脂組成物には、カップリング剤(密着助剤)を添加することができる。用いられるカップリング剤としては特に制限はなく、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコネート系カップリング剤、ジルコアルミネート系カップリング剤等の各種のものが用いられる。
 シランカップリング剤としては、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニル-トリス(2-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、メチルトリ(メタクリロキシエトキシ)シラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、3-(4,5-ジヒドロイミダゾリル)プロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン、メチルトリグリシドキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、トリメチルシリルイソシアネート、ジメチルシリルイソシアネート、フェニルシリルトリイソシアネート、テトライソシアネートシラン、メチルシリルトリイソシアネート、ビニルシリルトリイソシアネート、エトキシシラントリイソシアネート等が挙げられる。
 チタネート系カップリング剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピル(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N-アミノエチルアミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネート等が挙げられる。
 アルミニウム系カップリング剤としては、アセトアルコキシアルミニウムジイソプロピオネート等が挙げられる。
 ジルコネート系カップリング剤としては、テトラプロピルジルコネート、テトラブチルジルコネート、テトラ(トリエタノールアミン)ジルコネート、テトライソプロピルジルコネート、ジルコニウムアセチルアセトネートアセチルアセトンジルコニウムブチレート、ステアリン酸ジルコニウムブチレート等が挙げられる。
 ジルコアルミネート系カップリング剤は、例えば、下記一般式(6)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
[式(6)中、R’はカルボキシル基又はアミノ基を示す。]
 上記R’がカルボキシル基である化合物としては、マンシェム CPG-カルボキシジルコアルミネート等があり、また、R’がアミノ基である化合物としては、マンシェム APO-X-アミノジルコアルミネート溶液等が挙げられ、それぞれローヌプーランク社より入手可能である。
 カップリング剤の配合量は、(a)、(b)及び(c)成分の総量100質量部に対して、0.1~20質量部が好ましく、1~15質量部が特に好ましい。この配合割合が0.1質量部以上であれば、接着強度をより向上させる傾向にあり、20質量部以下であれば、揮発分がより少なく、硬化物中にボイドが生じにくくなる傾向がある。
 これらのカップリング剤の中では、材料間の界面の結合又は濡れ性をよくする意味で効果が高いシランカップリング剤を選択することが好ましい。
<充填剤>
 本実施形態に係る樹脂組成物には、更に必要に応じて充填剤を含有してもよい。充填剤の種類としては、無機フィラー、有機フィラー等が挙げられるが、耐熱性若しくは熱伝導性を向上させる、又は溶融粘度の調整若しくはチキソトロピック性を付与する観点から、無機フィラーが好ましい。
 無機フィラーとしては、特に制限はなく、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、酸化チタン、酸化ジルコニウム、酸化セリウム、酸化亜鉛、ホウ酸アルミウイスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ、アンチモン酸化物等が挙げられる。これらは1種を単独で又は2種以上を併用して使用することができる。
 熱伝導性向上のためには、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、結晶性シリカ、非晶性シリカ等が好ましい。溶融粘度の調整又はチキソトロピック性の付与には、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、結晶性シリカ、非晶性シリカ等が好ましい。
 透明性及び作業性を更に向上させる観点から、充填剤の配合量は、溶媒を除く樹脂組成物全体の3質量%以下であることが好ましい。
 本実施形態に係る樹脂組成物に充填剤を添加した際のワニスの製造には、分散性を考慮して、ライカイ機、3本ロール、ボールミル、ビーズミル等によって物理的なせん断力を与え、二次凝集した粒子がないように充分に分散させた後に使用するのが好ましい。上記の分散方法は、組み合わせて使用することができる。
 また、充填剤と低分子量物を予め混合した後、高分子量物を配合することによって、混合する時間を短縮することが可能になる。
 各々の成分を均一に撹拌混合する方法については、特に制限はないが、デゾルバー、スタテックミキサー、ホモジナイザー、超音波ホモジナイザー、ペイントシェーカー、ボールミル、プラネタリーミキサー、ミックスローター、万能撹拌機等の自転公転式撹拌機の他、ライカイ機、3本ロール等の混練装置などを用いる方法が挙げられ、適宜、組み合わせて用いることができる。ワニス状とした後は、ワニス中の気泡を除去することが好ましい。この意味で、自転公転式撹拌機は、混合及び溶解と気泡の除去とを同時に行うことができるため好適に用いられる。
 本実施形態に係る樹脂組成物には、更に必要に応じて酸化カルシウム、酸化マグネシウム等の吸湿剤、フッ素系界面活性剤、ノニオン系界面活性剤、高級脂肪酸等の濡れ向上剤、シリコーン油等の消泡剤、無機イオン交換体等のイオントラップ剤などを単独又は数種類組み合わせて、適宜添加することができる。
 なお、本実施形態に係る溶媒を除いた樹脂組成物全体において、窒素含有率は8質量%以下であることが好ましく、5質量%以下であることがより好ましい。窒素含有率をこの範囲とすることにより、窒素酸化物由来の着色がより高度に抑えられるため好ましい。
<半導体装置の製造方法>
 本実施形態に係る半導体装置の製造方法は、半導体基板上に本実施形態に係る樹脂組成物からなる接着剤層(以下、「接着樹脂層」ともいう)を形成する工程(接着剤層形成工程)と、接着剤層を半導体基板と透明基板とで挟み、該半導体基板及び該透明基板を圧着する工程(圧着工程)と、接着剤層を硬化する工程(硬化工程)と、を備える。
(接着剤層形成工程)
 接着剤層形成工程としては、本実施形態に係る樹脂組成物を半導体基板上に塗布する方法、又はフィルム状の樹脂組成物を半導体基板に貼り付ける方法を採用することができる。半導体基板は、半導体ウェハ及び半導体素子(半導体チップ)のいずれであってもよい。
 樹脂組成物を塗布する方法としては、ディスペンス法、スピンコート法、ダイコート法、ナイフコート法等の手法が挙げられるが、特に高分子量の化合物を含有する組成物の塗布に適しているスピンコート法又はダイコート法が好ましい。
 フィルム状の樹脂組成物を貼り付ける方法を採用する場合、充分な濡れ広がりを確保するため、0~90℃の範囲でラミネートすることが好ましい。また、均一に貼り付けるため、ロールラミネートすることが好ましい。
 フィルム状樹脂組成物の製造方法を以下に説明する。本実施形態に係る樹脂組成物を、支持フィルム上に均一に塗布し、使用した溶媒が充分に揮散する条件、例えば、60~200℃の温度で0.1~30分間加熱することにより、フィルム状の樹脂組成物を形成する。このとき、フィルム状の樹脂組成物が所望の厚さとなるように、樹脂組成物の溶媒量、粘度、塗布初期の厚さ(ダイコーター、コンマコーター等のコーターを用いる場合は、コーターと支持フィルムのギャップを調整する)、乾燥温度、風量等を調整する。
 支持フィルムは、平坦性を有することが好ましい。例えば、PETフィルムのような支持フィルムは静電気による密着が高いため、作業性を向上させるために平滑剤を使用している場合がある。平滑剤の種類及び温度によっては、接着剤に微妙な凹凸を転写し平坦性を下げる場合がある。したがって、平滑剤を使用していない支持フィルム又は平滑剤の少ない支持フィルムを使用することが好ましい。また、ポリエチレンフィルム等の支持フィルムは柔軟性に優れる点で好ましいが、ラミネート時にロール痕等が接着剤層表面に転写しないよう、支持フィルムの厚さ及び密度を適宜選択することが好ましい。
(圧着工程)
 続いて、半導体基板上に形成された接着剤層を所望により加熱乾燥する。乾燥する温度には、特に制限はないが、溶媒に溶解又は分散してワニス状とした場合には、使用した溶媒の沸点よりも20~60℃低くすることが、乾燥時に溶媒の発泡による気泡を作らない意味で好ましい。このような理由で、使用した溶媒の沸点よりも25~55℃低くすることがより好ましく、使用した溶媒の沸点よりも30~50℃低くすることが更に好ましい。
 また、溶媒に溶解又は分散してワニス状とした場合には、特に溶媒の残存量をできるだけ少なくすることが、硬化後の溶媒の発泡による気泡を作らない点で好ましい。
 上記の加熱乾燥を行う時間は、使用した溶媒が充分に揮散する条件且つ(c)成分が実質的にラジカルを発生しない条件であれば特に制限はないが、通常40~100℃で、0.1~90分間加熱して行う。なお、「実質的にラジカルを発生しない」とは、ラジカルが全く発生しないか、又は発生したとしてもごくわずかであることをいい、これにより重合反応が進行しないか、仮に進行したとしても上記接着剤層の物性に影響を及ぼさない程度のものであることをいう。また、減圧条件下で乾燥することで、加熱による(c)成分からのラジカル発生を抑制しつつ、溶剤の残存量を少なくすることができるため好ましい。
 接着剤層を加熱硬化させる際の発泡により、はんだリフロー時に接着剤層が剥離することを抑制する観点から、接着剤層の内部又は表面に存在する、例えば、残存溶媒、低分子量不純物、反応生成物、分解生成物、材料由来の水分、表面吸着水等の揮発成分は、充分に少なくすることが好ましい。
 加熱乾燥後、接着剤層上に透明基板を圧着する。
 なお、上記加熱乾燥は、接着剤層形成工程においてフィルム状の樹脂組成物を貼り付ける方法を採用した場合には、省略することができる。
(硬化工程)
 接着剤層を介して半導体基板と透明基板とを圧着した後、接着剤層を硬化させる。硬化方法は、熱若しくは光又は熱及び光により硬化させる方法が挙げられるが、特に、熱により硬化させることが好ましい。
 接着剤層の硬化物を形成する硬化工程において、熱硬化(キュア)は、温度を選択して段階的に昇温しながら1~2時間実施することが好ましい。熱硬化は100~200℃で行うことが好ましい。
 なお、圧着工程及び硬化工程は、必ずしも独立した工程である必要はなく、圧着を行いながら同時に硬化を行ってもよい。
<接着剤層の硬化物の物性>
 以上の組成を有する本実施形態に係る接着剤層の硬化物のTgは、好ましくは-10℃以上、より好ましくは0℃以上である。
 また、本実施形態に係る接着剤層の硬化物の25℃における弾性率は、好ましくは0.01GPa以上、より好ましくは0.1GPa以上、更に好ましくは0.5GPa以上である。なお、25℃における弾性率の上限値は、特に限定されないが、実用的な観点から、好ましくは10GPa以下である。
<光学部品>
 本実施形態に係る光学部品は、上述の樹脂組成物を用いたノンキャビティ構造を有するものである。以下、本実施形態に係る光学部品の一例として、固体撮像素子の裏面照射型構造について、場合により図面を参照しながら説明する。
 図1は、本実施形態に係る固体撮像素子の一例を示す平面図である。図1に示すように、本実施形態に係るCMOSイメージセンサ1は、中央部の領域にマイクロレンズ12が複数配置されたセンサ部3(「受光部3」ともいう。)を有する。また、センサ部3の周辺には、回路が形成されている周辺回路部4が存在する。また、少なくともセンサ部3を覆うようにガラス基板5が設けられている。
 図2は、図1に示すA-A’線による断面図である。図2に示すように、シリコン基板2の一方の面上にフォトダイオード10が複数形成されている。また、フォトダイオード10の上面には、少なくともフォトダイオード10を覆うようにカラーフィルタ11が設けられ、該カラーフィルタ11の上面にマイクロレンズ12が形成される。カラーフィルタ11は、フォトダイオード10ごとに設けられており、各マイクロレンズ12は各カラーフィルタ11に対応する位置に設けられている。また、本実施形態に係る樹脂組成物から形成される接着剤層6は、シリコン基板2上のマイクロレンズ12が設けられている面上の全面に形成され、該接着剤層6の面上にガラス基板5が設けられている。このような構造を有することによりキャビティ部分がない構造(ノンキャビティ構造)となっている。一方、シリコン基板2の他方の面には、配線層8が配置され、配線層8の下面にはんだボール9が設けられている。
 図3は、本実施形態に係る固体撮像素子の他の例を示す断面図である。図3では、シリコン基板2上のマイクロレンズ12が設けられている面上に、該マイクロレンズ12を覆わないように外周側の部分に設けられた額縁状接着剤層7が設けられ、額縁状接着剤層7の上面にガラス基板5が配置されている。シリコン基板2、該額縁状接着剤層7及びガラス基板5によって囲まれた部分には本実施形態に係る樹脂組成物から形成される接着剤層6が充填されており、ノンキャビティ構造となっている。図3の実施形態に係る固体撮像素子において接着剤層6は、シリコン基板2及びガラス基板5を接着するための接着剤としての役割の他、キャビティ部分を充填してマイクロレンズ12、カラーフィルタ11及びフォトダイオード10を封止する封止材としての役割も担う。
 従来のノンキャビティ構造は受光部を囲うように接着性を有するリブ(以下、単に「リブ」ともいう。)を形成し、その後、受光部を封止するように透明性を有する封止材を充填し、透明性を有する基板(例えば、ガラス等)を接着していた。図3のノンキャビティ構造では接着性を有するリブ(額縁状接着剤層7)を形成し、その後、キャビティ部分に本実施形態に係る樹脂組成物を充填することで接着剤層6を形成する。このように作製されたノンキャビティ構造は、リブ以外の部分でも充分に接着性を付与することができ、より信頼性の高いノンキャビティ構造を得ることができる。一方で、図2のノンキャビティ構造では、リブを設けずに本実施形態に係る樹脂組成物から形成される接着剤層6を介してシリコン基板2と透明性を有するガラス基板5とを接着している。これは本実施形態に係る樹脂組成物が接着剤及び封止材として機能することができるためである。この場合、図2に示すノンキャビティ構造は、図3に示すノンキャビティ構造と比較すると、リブの形成が不要となり、簡便にノンキャビティ構造を作製することができる。また、リブを形成するために必要な印刷機、露光機、現像機等の設備も不要である。
 図4及び図5は、それぞれノンキャビティ構造とキャビティ構造でのキャビティ部分の屈折率差による界面の反射を説明した図である。ガラス基板5の屈折率をnD=1.47程度、キャビティ部分の空気層20の屈折率をnD=1.00程度、マイクロレンズ12の屈折率をnD=1.60程度、接着剤層6の屈折率をnD=1.50程度とすると、図4のノンキャビティ構造は、図5のキャビティ構造と比較して、界面反射による光損失が8%程度低くなると試算される。また、本実施形態において使用される樹脂組成物の屈折率は一般的にnD=1.50付近の値である。
 図6及び図7は、それぞれキャビティ構造、ノンキャビティ構造を有する固体撮像素子の製造方法を例示した工程図である。図6及び図7の左側は各工程の概略斜視図であり、右側は対応する概略端面図である。図6に示す既存のリブ形成プロセスにおいては、(a)樹脂形成(ラミネート、スピンコート)、(b)露光及び現像、(c)ガラス封止、(d)樹脂硬化及び(e)ダイシングの各工程が必要である。すなわち、基板22上に樹脂層24を形成し(a)、樹脂層24を露光及び現像することにより、リブを形成する(b)。これをガラス基板26により封止し(c)、樹脂層を硬化するとともに、必要に応じてバックグラインド(BG)加工、シリコン貫通電極(TSV)加工、及びはんだボール28搭載を行い(d)、ダイシングする(e)ことにより、キャビティ構造を有する固体撮像素子を得る。これに対し、図7に示す全面封止プロセスでは、リブの形成工程を経る必要がないことから、上記のうち露光及び現像の工程が不要となり、シリコン基板上に接着剤を形成後、すぐにガラス基板で封止することができる。その後ダイシング等により個片化することができる。
 図6及び図7では、樹脂層24を基板22上に形成した後に、ガラス基板26により封止する方法を示したが、ガラス基板26上に、樹脂層24を形成した後に、基板22により封止してもよい。
 本実施形態に係る樹脂組成物を用いてノンキャビティ構造を有する固体撮像素子を製造する方法としては、例えば図8~図15に示すような方法が挙げられる。
 図8は、シート状又はフィルム状とした本実施形態に係る樹脂組成物を、ガラス基板とともにウェハ上にラミネートし、樹脂を硬化させた後、ダイシングする方法を示す。具体的には、ガラス基板32上に、ローラー38を用いて、支持フィルム36上に形成されたフィルム状樹脂組成物34を貼り付ける(A)。支持フィルム36を剥がした後に、ガラス基板32が積層されたフィルム状樹脂組成物34を、センサ44が搭載された基板42に圧着する(B)。これを各センサ毎にダイシングして(C)、固体撮像素子を得る(D)。
 なお、図8においては、フィルム状樹脂組成物34を予めガラス基板32上に貼り付ける方法について説明したが、支持フィルム36上に形成されたフィルム状樹脂組成物34を、センサ44が搭載された基板42に圧着した後に、支持フィルム36を剥がして、ガラス基板32を圧着してもよい。
 また、本実施形態に係る樹脂組成物は硬化後も高い透明性、気密性及び高屈折率を有するため、接着剤としての機能に加えて、ガラス基板の機能を併せ持ち得る。このため、図9に示すように、ガラス基板で封止されていない固体撮像素子とすることもできる(図16参照)。
 さらに、図10に示すように、ガラス基板32が積層されたフィルム状樹脂組成物34を、支持台40上で予め個片化し、個片化されたフィルム状樹脂組成物34をセンサ44上にラミネートする方法をとってもよい。
 図11は、液状とした本実施形態に係る樹脂組成物をスピンコート法等によってガラス基板上に塗布し、B-ステージ化させた後ウェハ上にラミネートし、樹脂を硬化させてダイシングする方法を示す。具体的には、ガラス基板32上に樹脂組成物34を塗布し(A)、これを加熱することによりB-ステージ化する(B)。B-ステージ化した樹脂組成物34を、センサ44が搭載された基板42に圧着し(C)、これをダイシングすることにより(D)、固体撮像素子を得る。
 なお、樹脂組成物を塗布する際には、図13の場合と同様に、外周部に、樹脂組成物34を基板42上に留めるための堰46を設けてもよい。
 また、図12に示すように、ウェハ上にラミネートする前に、B-ステージ化させた上記樹脂組成物34及びガラス基板32を支持台40上で予め個片化し、個片化された樹脂組成物34及びガラス基板32をセンサ44上にラミネートする方法をとってもよい。
 図13は、ウェハ上に樹脂組成物を塗布し、ウェハ上でB-ステージ化させた後、ガラス基板により封止させ、樹脂を硬化させてダイシングする方法を示す。具体的には、センサ44が搭載された基板42の外周部に、樹脂組成物34を留めるための堰46を設けた後に、樹脂組成物34を塗布する(A)。これを加熱することによりB-ステージ化し(B)、個片化されたガラス基板32をB-ステージ化された樹脂組成物上に搭載し(C)、これをダイシングすることにより(D)、固体撮像素子を得る。
 図8~図13では、樹脂組成物をウェハ上に形成した後に、個片化する方法を示したが、ウェハを個片化したチップ上に、樹脂組成物を形成してもよい。
 図14及び図15は、センサが搭載されたチップ上に液状の樹脂組成物を塗布する方法の一例を示す図である。図14においては、センサ44が搭載されたチップ48の外周部に堰46を設け(A)、センサ44上に樹脂組成物34を塗布し(B)、ガラス基板32で封止することにより(C)、固体撮像素子を得る。
 図15に示すように、堰46を設けずに、センサ44部分のみに樹脂組成物34を塗布した後にガラス基板32で封止してもよい。
 なお、図14及び図15では、液状の樹脂組成物を用いる方法について説明したが、上記と同様にフィルム状樹脂組成物を用いることもできる。
 図17は、従来のキャビティ構造の裏面照射型固体撮像素子の一例を示す断面図である。図17におけるシリコン基板2上には、額縁状接着剤層7及びガラス基板5によって囲まれたキャビティ(空洞)20が存在する。
 このように従来のキャビティ構造では、接着剤をフォトリソグラフィー、印刷法、ディスペンス法等を用いて額縁状に形成し、その後、得られた額縁状接着剤を介してガラス基板とシリコン基板とを接着する必要がある。そのため、キャビティ構造では、本開示のような樹脂組成物は不要であるが、一方で額縁状接着剤が必要となる。
 本実施形態に係る樹脂組成物を使用したノンキャビティ構造では、従来のキャビティ構造と比較して以下のようなメリットがある。
 キャビティ構造では、ガラス基板に傷が存在すると、光の散乱、反射、回折等による画質低下が起こる可能性がある。この点、本実施形態に係るノンキャビティ構造を採用することによって、界面屈折率差が低減し、光の散乱、反射、回折等が抑制されることから、ガラス基板の傷による画質低下を改善することができる。
 キャビティ構造では、マイクロレンズ部分、ガラス基板等に付着した異物も画質低下の原因となる。これは、接着剤を形成してからガラス基板を接着するまでの間、キャビティ部分がむき出しになっていることによる。この点についても、本実施形態に係るノンキャビティ構造とすることで、むき出しになっている時間が減り、異物の付着は低減される。
 また、ノンキャビティ構造における接着剤層は、透明である必要があるが、接着剤層とガラス基板との接着面積が広く、ガラス基板が額縁状接着剤層のみによって接着されるキャビティ構造と比較すると接着剤による素子内での応力にバラツキが少なく、接着剤の剥離、変形等が低減される。
 さらに、キャビティ構造では、ガラスから出るα線をマイクロレンズが受光することで画質が低下する可能性があり、通常高価な高純度ガラスを使用しなければならない。一方、本実施形態に係るノンキャビティ構造では、接着剤層においてα線を吸収することができることから、安価なガラスを使用することができるといったメリットもある。
 本実施形態に係るCMOSイメージセンサは、例えば、車載、医療、監視カメラ、携帯電話等に内蔵される。この場合、CMOSイメージセンサは、車載、医療、監視カメラ、携帯電話等のマザーボードにはんだボールを介して搭載され、センサの上方、すなわちガラス基板側には光学レンズが配置される。
 以上、実施形態を説明したが、本発明は実施形態に限定されるものではない。例えば、上述の各実施形態に関して、当業者が適宜、構成要素の追加、削除若しくは設計変更を行ったもの、又は工程の追加、省略若しくは条件変更を行ったものも、本発明の趣旨に反しない限り、本発明の範囲に包含される。
 例えば、液状とした本実施形態に係る樹脂組成物を用いて光学部材を製造する場合、ウェハ又はチップとガラス基板との間に当該液状とした樹脂組成物を注入する方法を用いてもよい。
 また、例えば、上述の実施形態においては、透明基材としてガラス基材を用いる例を示したが、本発明はこれに限定されず、必要な強度、剛性及び光透過率を具備する透明基材であればよい。
 また、上述のとおり本実施形態に係る樹脂組成物は、熱硬化後においても高い透明性、気密性及び高屈折率を有するため、例えば、本実施形態に係る固体撮像素子は、図16に示すように、ガラス基板等の透明基材を用いて封止しなくともよい。
 以下、実施例により本開示の目的及び利点を更に詳細に説明するが、本開示はこれらの実施例に限定されるものではない。すなわち、これらの実施例において列挙される特定の材料及びその量並びに他の諸条件及び詳細によって、本開示を不当に制限するものではないと解釈すべきである。
((a)成分)
 (a)成分の重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレンキットPStQuickシリーズ C(東ソー株式会社、商品名)を用いて3次式で近似した。GPCの条件を以下に示す。
  ポンプ:L6000 Pump(株式会社日立製作所、商品名)
  検出器:L3300 RI Monitor(株式会社日立製作所、商品名)
  カラム:Gelpack GL-S300MDT-5(計2本)(株式会社日立ハイテクノロジーズ、商品名)
  カラムサイズ:直径8mm×300mm
  溶離液:DMF/THF(質量比1/1)+LiBr・HO 0.03mol/l+HPO 0.06mol/l
  試料濃度:0.1質量%
  流量:1ml/min
  測定温度:40℃
<アクリル重合体((a)成分)の合成>
(a-1)
 アクリル酸トリシクロ[5.2.1.02,6]デカ-8-イル(FA-513A、日立化成株式会社、商品名)300g、アクリル酸ブチル(BA)350g、メタクリル酸ブチル(BMA)300g、メタクリル酸グリシジル(GMA)50g及びメタクリル酸2-エチルヘキシル(2EHMA)50gを混合し、単量体混合物を得た。得られた単量体混合物に、ジラウロイルパーオキサイド5g及び連鎖移動剤としてn-オクチルメルカプタン0.45gを更に溶解させて、混合液とした。
 撹拌機及びコンデンサを備えた5Lのオートクレーブに懸濁剤としてポリビニルアルコール0.44g及びイオン交換水2000gを加えた。更に撹拌しながら上記混合液を加え、撹拌回転数250min-1、窒素雰囲気下において60℃で5時間、次いで90℃で2時間重合させ、樹脂粒子を得た(重合率は、質量法で99%であった。)。この樹脂粒子を水洗、脱水及び乾燥することによりアクリル重合体(a-1)を得た。得られた(a-1)の重量平均分子量はMw=48万であった。
(a-2)
 単量体混合物にアクリロニトリル(AN)3質量%を追加した以外は、(a-1)と同様の方法によって、アクリル重合体(a-2)を得た。得られた(a-2)の重量平均分子量はMw=38万であった。
(a-3)
 メタクリル酸グリシジル(GMA)を使用しなかった以外は(a-1)と同様の方法によって、アクリル重合体(a-3)を得た。得られた(a-3)の重量平均分子量はMw=52万であった。
(a-4)
 メタクリル酸グリシジル(GMA)の仕込み量を4.4倍量(220g)、他の単量体のそれぞれの仕込み量を重量換算で16%減少させた以外は(a-1)と同様の方法によって、アクリル重合体(a-4)を得た。得られた(a-4)の重量平均分子量はMw=49万であった。
(実施例1~14及び比較例1~3)
 得られたアクリル重合体(a-1)~(a-4)及び下記成分を表1に示した配合割合(質量部)で配合し、樹脂組成物を得た。なお、表1において、有機溶媒を除く各成分の数字は固形分の質量部を示している。なお、本明細書でいう固形分とは、樹脂組成物の水、溶媒等の揮発する物質を除いた不揮発分を指す。すなわち、乾燥工程で揮発せずに残る溶媒以外の成分を指し、25℃付近の室温で液状、水飴状及びワックス状のものも含む。
((b)成分)
・NKエステルA-DOG(新中村化学工業株式会社、商品名;ジオキサングリコールジアクリレート)
・NKエステルA-DCP(新中村化学工業株式会社、商品名;トリシクロデカンジメタノールジアクリレート)
・ファンクリルFA-513AS(日立化成株式会社、商品名;ジシクロペンタニルアクリレ-ト)
・ACMO(KJケミカルズ、商品名;アクリロイルモルフォリン)
・ファンクリルFA-117A(日立化成株式会社、商品名;イソステアリルアクリレート)
・ファンクリルFA-321M(日立化成株式会社、商品名;エチレンオキサイド変性ビスフェノ-ルAジメタクリレ-ト)
・アロニックスM-313(東亞合成、商品名;イソシアヌル酸エチレンオキサイド変性ジアクリレート)
・NKエステルA-DPH 新中村化学工業株式会社、商品名;ジペンタエリスリトールヘキサアクリレート
((c)成分)
・パークミルD(日油株式会社、商品名;ジクミルパーオキサイド、1時間半減期温度135.7℃、10時間半減期温度116.4℃)
(密着助剤)
・KBM-503(信越化学工業株式会社、商品名;シランカップリング剤、メタクリル酸3-(トリメトキシシリル)プロピル)
((d)成分)
・アデカスタブAO-80(株式会社ADEKA、商品名;ヒンダードフェノール系酸化防止剤、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸](2,4,8,10-テトラオキサスピロ[5.5]ウンデカン-3,9-ジイル)ビス(2,2-ジメチル-2,1-エタンジイル))
(溶剤)
・PGMEA(関東化学株式会社、化学物質名;プロピレングリコール1-モノメチルエーテル2-アセタート)
<屈折率の測定>
・屈折計としては、臨界角の位置をとらえて屈折率を求める「アッベ屈折計」を用い、波長589nm(ナトリウムのD線)における屈折率を求めた。
・全ての測定は透過式で行った。
・10℃、25℃、60℃における屈折率は、屈折計付属の恒温水槽の温度を調整して、測定した。なお、測定サンプルを「アッベ屈折計」に取り付けた後、少なくとも30分静置した後に、測定した。
・100℃における屈折率は、10℃、25℃、60℃の3点から線形近似により理論値として算出した。
・具体的には、下記の方法で(a)成分及び(b)成分の各温度における屈折率を測定した上で、各温度における屈折率の差の絶対値を求めた。その結果を表2に示す。
・実施例1、5、6及び比較例2について、(a)成分及び(b)成分の各温度における屈折率を測定した結果を示すグラフを、図18~21に示す。
・下記(a)成分の屈折率測定方法と同様の方法で、実施例1及び4の樹脂組成物について室温での屈折率を測定したところ、それぞれ1.494及び1.493であった。
<(a)成分(ポリマー)の屈折率測定方法>
 ポリマーをPGMEA溶剤で希釈してワニスを調製し、アプリケーターを用いて、離型PETフィルム(藤森工業株式会社製 フィルムバイナ38E-0010GC)に塗布し、100℃/10分乾燥させて、膜厚100μmのポリマーフィルムを作製した。得られたポリマーフィルムをPETフィルムから剥がして、多波長アッベ屈折計(株式会社アタゴ製「DR-M2」)の主プリズム上に置き、採光ガラスを用いて、各温度での屈折率を測定した。
 緩衝液としてはモノブロモナフタレン溶液を用いた。
<(b)成分の屈折率測定方法>
・(b)成分が液体の場合
 多波長アッベ屈折率計の主プリズム上に、(b)成分の液滴を落とし、副プリズムで挟み込んで屈折率を測定した。
・(b)成分が固体の場合
 (b)成分をPGMEA溶剤で希釈したワニスを調製し、アプリケーターを用いて、離型PETフィルム(藤森工業株式会社製 フィルムバイナ38E-0010GC)に塗布し、100℃/10分乾燥させ、膜厚100μmの樹脂フィルムを作製した。得られた樹脂フィルムをPETフィルムから剥がして、多波長アッベ屈折計(株式会社アタゴ製「DR-M2」)の主プリズム上に置き、採光ガラスを用いて、各温度での屈折率を測定した。
・(b)成分が複数の化合物の組み合わせの場合
 組み合わせる(b)成分が全て常温で液体である場合、混合溶解し、溶け残り又は分離がないことを確認の上、アッベ屈折率計の主プリズム上に液滴を落とし、副プリズムで挟み込んで屈折率を測定した。
 組み合わせる(b)成分が全て常温で固体である場合、PGMEA溶剤で希釈したワニスを調製し、上述の「(b)成分が固体の場合」と同様に屈折率を測定した。
 なお、複数の(b)成分を組み合わせたときの屈折率は、理論計算からも算出することができる。
屈折率={(モノマーAの仕込み量×モノマーAの屈折率)+(モノマーBの仕込み量×モノマーBの屈折率)}/モノマーA及びBの仕込み量の総量
(硬化膜透過率@400nm)
 実施例及び比較例で得られた樹脂組成物を、4.0cm×5.0cm×120~170μm(実測140~160μm)のガラス基板(MATSUNAMI MICRO COVER GLASS 40mm×50mm THICKNESS No.1;松浪硝子工業株式会社、商品名)上にスピンコーターを用いて均一に塗布し、100℃のホットプレートで10分間乾燥し、乾燥後の膜厚50μmの接着剤層を形成した。この接着剤層に、90℃でロールラミネータを使用して4.0cm×5.0cm×120~170μm(実測140~160μm)のガラス基板(MATSUNAMI MICRO COVER GLASS 40mm×50mm THICKNESS No.1;松浪硝子工業株式会社、商品名)を貼付し、ガラス基板/接着剤層/ガラス基板の3層構造の試験基板を得た。得られた試験基板の接着剤層を200℃で2時間硬化して測定用試験片を得た。
 この測定用試験片について、分光光度計U4100(株式会社日立製作所、商品名;開始800nm、終了300nm、スキャンスピード600nm/min、サンプリング間隔1.0nm)を用いて波長400nmで透過率を測定した。なお、ベースラインにはガラス単体(2枚分)の透過率数値を用いた。測定結果を基に、下記の判断基準に従って評価した。その結果を、表2に示す。
A:波長400nmにおける透過率が99%以上。
B:波長400nmにおける透過率が95%以上99%未満。
C:波長400nmにおける透過率が90%以上95%未満。
D:波長400nmにおける透過率が90%未満。
(硬化膜透過率@589nm)
 上記測定用試験片について、分光光度計U4100(株式会社日立製作所、商品名;開始800nm、終了300nm、スキャンスピード600nm/min、サンプリング間隔1.0nm)を用いて波長589nmで透過率を測定した。なお、ベースラインにはガラス単体(2枚分)の透過率数値を用いた。測定結果を基に、下記の判断基準に従って評価した。その結果を、表2に示す。
A:波長589nmにおける透過率が99%以上。
B:波長589nmにおける透過率が95%以上99%未満。
C:波長589nmにおける透過率が90%以上95%未満。
D:波長589nmにおける透過率が90%未満。
(常温、60℃、100℃での目視観察)
 上記測定用試験片の常温(25℃)での着色を目視で判断した。また、上記測定用試験片を60℃又は100℃に加熱したホットプレートに置き、1分経過後の硬化膜の着色を目視で判断した。その結果を、表2に示す。
A:目視で透明である、あるいは、判断がつかない程度の濁り
B:目視で白濁が認められた
C:著しい白濁が認められた
(耐リフロー剥離性)
 上記透過率試験に用いた測定用試験片を、260℃の熱板上で30秒間放置した後、室温(25℃)に戻して5分間保持する操作を行い、試験基板の外観を目視にて観察し、下記の基準に基づいて耐リフロー剥離性を評価した。その結果を、表2に示す。
A:全く変化が見られず、ボイドの拡張又は剥離クラックがない。
B:ボイド、剥離、クラックのうちいずれか1つが確認される。
C:ボイド、剥離、クラックのうち2つ以上が確認される。
D:全面剥離が発生する。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 1…固体撮像素子、2…シリコン基板、3…センサ部、受光部、4…周辺回路部、5、26、32…ガラス基板、6…接着剤層、7…額縁状接着剤層、8…配線層、9、28…はんだボール、10…フォトダイオード、11…カラーフィルタ、12…マイクロレンズ、20…キャビティ(空洞)、22、42…基板、24…樹脂層、34…接着剤組成物、36…支持フィルム、38…ローラー、40…支持台、44…センサ、46…堰、48…チップ。

Claims (8)

  1.  (a)アクリル重合体、
     (b)少なくとも1つの(メタ)アクリロイル基を有する化合物、及び
     (c)重合開始剤、
    を含有する樹脂組成物であって、
     前記(a)アクリル重合体と前記(b)少なくとも1つの(メタ)アクリロイル基を有する化合物との100℃における屈折率差の絶対値が0.031以下である樹脂組成物。
  2.  さらに(d)酸化防止剤を含有する、請求項1に記載の樹脂組成物。
  3.  前記(a)アクリル重合体が、下記一般式(I)で表される構造単位を少なくとも1種含む、請求項1又は2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、Aは置換基を有していてもよい炭素数5~22の脂環基を示し、Rは水素原子又はメチル基を示す。]
  4.  前記(a)アクリル重合体が、下記一般式(II)で表される構造単位を少なくとも1種を含む、請求項1~3のいずれか一項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    [式(II)中、Yは置換基を有していてもよい炭素数1~10の直鎖又は分岐アルキル基を示し、Rは水素原子又はメチル基を示す。]
  5.  前記(a)アクリル重合体が、下記一般式(III)で表される構造単位を少なくとも1種含む、請求項1~4のいずれか一項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    [式(III)中、Zはカルボキシル基、ヒドロキシル基、酸無水物基、アミノ基、アミド基、エポキシ基及びニトリル基からなる群より選ばれる少なくとも1種の官能基を含む基を示す。Rは水素原子又はメチル基を示す。]
  6.  光学部品用である、請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  半導体基板上に請求項1~6のいずれか一項に記載の樹脂組成物からなる接着剤層を形成する工程と、
     前記接着剤層を前記半導体基板と透明基板とで挟み、該半導体基板及び該透明基板を圧着する工程と、
     接着剤層を硬化する工程と、
     を備える、半導体装置の製造方法。
  8.  上面に受光部が設けられた半導体基板と、
     前記半導体基板上に前記受光部を覆うように設けられた接着剤層と、
     前記接着剤層によって前記半導体基板に接着された透明基板と、
     を備える固体撮像素子であって、
     前記接着剤層は、請求項1~6のいずれか一項に記載の樹脂組成物から形成される、固体撮像素子。
PCT/JP2015/052505 2014-01-29 2015-01-29 樹脂組成物、樹脂組成物を用いた半導体装置の製造方法、及び固体撮像素子 WO2015115537A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167016142A KR102272146B1 (ko) 2014-01-29 2015-01-29 수지 조성물, 수지 조성물을 사용한 반도체 장치의 제조 방법, 및 고체 촬상 소자
US15/114,983 US9920227B2 (en) 2014-01-29 2015-01-29 Resin composition, method for manufacturing semiconductor device using resin composition, and solid-state imaging element
JP2015560007A JP6610263B2 (ja) 2014-01-29 2015-01-29 半導体装置の製造方法及び固体撮像素子
CN201580005756.8A CN105934478B (zh) 2014-01-29 2015-01-29 树脂组合物、使用了树脂组合物的半导体装置的制造方法、以及固体摄像元件
US15/926,552 US10808150B2 (en) 2014-01-29 2018-03-20 Resin composition, method for manufacturing semiconductor device using resin composition, and solid-state imaging element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-014861 2014-01-29
JP2014-014863 2014-01-29
JP2014014863 2014-01-29
JP2014014861 2014-01-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/114,983 A-371-Of-International US9920227B2 (en) 2014-01-29 2015-01-29 Resin composition, method for manufacturing semiconductor device using resin composition, and solid-state imaging element
US15/926,552 Continuation US10808150B2 (en) 2014-01-29 2018-03-20 Resin composition, method for manufacturing semiconductor device using resin composition, and solid-state imaging element

Publications (1)

Publication Number Publication Date
WO2015115537A1 true WO2015115537A1 (ja) 2015-08-06

Family

ID=53757108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052505 WO2015115537A1 (ja) 2014-01-29 2015-01-29 樹脂組成物、樹脂組成物を用いた半導体装置の製造方法、及び固体撮像素子

Country Status (6)

Country Link
US (2) US9920227B2 (ja)
JP (1) JP6610263B2 (ja)
KR (1) KR102272146B1 (ja)
CN (1) CN105934478B (ja)
TW (1) TWI660023B (ja)
WO (1) WO2015115537A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169889A1 (ja) * 2016-03-31 2017-10-05 ソニー株式会社 カメラモジュール、およびカメラモジュールの製造方法、撮像装置、および電子機器
CN109563194A (zh) * 2016-08-10 2019-04-02 日产化学株式会社 压印材料
WO2020149207A1 (ja) * 2019-01-17 2020-07-23 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
US10947326B2 (en) 2015-07-29 2021-03-16 Showa Denko Materials Co., Ltd. Adhesive composition, cured article, semiconductor device, and production method for same
WO2023058413A1 (ja) * 2021-10-07 2023-04-13 ソニーセミコンダクタソリューションズ株式会社 半導体装置および電子機器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107793807B (zh) * 2016-09-02 2021-03-30 Jsr株式会社 组合物、硬化膜、有机el元件及液晶显示元件
US11460712B2 (en) 2017-01-30 2022-10-04 Sony Semiconductor Solutions Corporation Camera module, method of manufacturing the same, and electronic apparatus
WO2018179095A1 (ja) * 2017-03-28 2018-10-04 日立化成株式会社 転写型感光性フィルム、硬化膜パターンの形成方法、硬化膜及びタッチパネル
US10297627B1 (en) * 2017-11-08 2019-05-21 Omnivision Technologies, Inc. Chip scale package for an image sensor
CN107863363A (zh) * 2017-11-20 2018-03-30 苏州晶方半导体科技股份有限公司 芯片的封装结构及其制作方法
CN107994045B (zh) * 2017-12-29 2021-05-18 苏州晶方半导体科技股份有限公司 影像传感芯片的封装结构及其制作方法
WO2020089960A1 (ja) * 2018-10-29 2020-05-07 オリンパス株式会社 撮像装置、内視鏡、および、撮像装置の製造方法
CA3152145A1 (en) * 2019-09-27 2021-04-01 Frauke Henning Silicone (meth)acrylates, process for their preparation and their use in curable compositions
US12094986B1 (en) 2021-08-25 2024-09-17 Apple Inc. Quantum-efficiency enhanced optical detector pixel having one or more optical scattering structures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302870A (ja) * 2000-04-25 2001-10-31 Jsr Corp El表示素子の隔壁形成用感放射線性樹脂組成物、隔壁およびel表示素子
JP2011169828A (ja) * 2010-02-19 2011-09-01 Jsr Corp バイオチップにおける隔壁の製造方法、感放射線性組成物、バイオチップ用隔壁、バイオチップの製造方法及びバイオチップ
JP2012058725A (ja) * 2010-08-10 2012-03-22 Jsr Corp 感放射線性樹脂組成物、硬化膜、硬化膜の形成方法、カラーフィルタ及びカラーフィルタの形成方法
JP2013122577A (ja) * 2011-11-09 2013-06-20 Sumitomo Chemical Co Ltd 着色感光性樹脂組成物

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202335A (ja) * 1990-11-29 1992-07-23 Sekisui Chem Co Ltd 光硬化性被覆用シート
EP1150165A1 (en) * 2000-04-25 2001-10-31 JSR Corporation Radiation sensitive resin composition for forming barrier ribs for an el display element, barrier ribs and el display element
JP4046067B2 (ja) 2003-11-04 2008-02-13 ソニー株式会社 固体撮像素子の製造方法
SG151269A1 (en) * 2004-03-19 2009-04-30 Sumitomo Bakelite Co Resin composition and semiconductor device produced by using the same
TWI387631B (zh) 2004-05-18 2013-03-01 Hitachi Chemical Co Ltd 黏著片與使用此黏著片之半導體裝置以及其製造方法
JP4453008B2 (ja) 2004-11-12 2010-04-21 日立化成工業株式会社 光半導体封止用熱硬化性樹脂組成物、その硬化物及び光半導体
JP2006193660A (ja) 2005-01-14 2006-07-27 Hitachi Chem Co Ltd 樹脂組成物及びこれを用いた光学部材
JP4947905B2 (ja) * 2005-02-04 2012-06-06 株式会社日本触媒 光半導体封止用樹脂組成物
JP5283305B2 (ja) * 2005-02-25 2013-09-04 三菱レイヨン株式会社 金属化処理用アンダーコート層形成用被覆組成物
JP2007142207A (ja) * 2005-11-18 2007-06-07 Matsushita Electric Ind Co Ltd 固体撮像装置及びその製造方法
JP5000940B2 (ja) 2006-01-13 2012-08-15 リンテック株式会社 偏光板用粘着剤、粘着シート、粘着剤付き偏光板及びその製造方法、並びに光学フィルム及びその製造方法
JP4923689B2 (ja) 2006-04-11 2012-04-25 ソニー株式会社 固体撮像装置、及び固体撮像装置の製造方法
US7569864B2 (en) 2006-05-03 2009-08-04 Atomic Energy Council-Institute Of Nuclear Energy Research Silicon-rich-oxide white light photodiode
AU2007273571B2 (en) * 2006-07-10 2011-10-27 Nippon Kayaku Kabushiki Kaisha Ultraviolet-curable resin composition and use thereof
WO2008020570A1 (fr) * 2006-08-18 2008-02-21 Toray Industries, Inc. Film de résine acrylique
JP4991421B2 (ja) 2007-07-13 2012-08-01 リンテック株式会社 粘着剤、粘着シート及び粘着剤付き光学フィルム
KR101352359B1 (ko) 2007-07-23 2014-01-23 삼성디스플레이 주식회사 엑스선 검출기 및 그 제조 방법
CN101681047B (zh) 2007-08-31 2012-10-03 夏普株式会社 液晶显示装置和电子设备
KR101023837B1 (ko) 2008-01-11 2011-03-22 주식회사 엘지화학 점착제 조성물, 상기를 포함하는 편광판 및 액정표시장치
JP5417776B2 (ja) 2008-05-20 2014-02-19 日立化成株式会社 光学用樹脂組成物及びこれを用いた光学用樹脂材料
JP2010040621A (ja) 2008-08-01 2010-02-18 Toshiba Corp 固体撮像デバイス及びその製造方法
WO2010024087A1 (ja) * 2008-08-27 2010-03-04 日立化成工業株式会社 感光性接着剤組成物、並びにそれを用いたフィルム状接着剤、接着シート、接着剤パターン、接着剤層付半導体ウェハ及び半導体装置
JP5336816B2 (ja) * 2008-10-29 2013-11-06 三菱レイヨン株式会社 水性被覆材およびエマルションの製造方法
JP2010114390A (ja) * 2008-11-10 2010-05-20 Panasonic Corp 半導体装置および半導体装置の製造方法
JP2010132801A (ja) 2008-12-05 2010-06-17 Mitsubishi Rayon Co Ltd 熱硬化性樹脂組成物、その硬化物、光学部材ならびに光半導体、およびそれらの製造方法
JP5444738B2 (ja) 2009-02-02 2014-03-19 住友ベークライト株式会社 半導体装置
JP2011140626A (ja) * 2009-12-08 2011-07-21 Sumitomo Chemical Co Ltd 押出導光板用メタクリル樹脂組成物及びそれより構成される導光板
JP5580643B2 (ja) * 2010-04-01 2014-08-27 株式会社日本触媒 負の固有複屈折を有する熱可塑性樹脂組成物、位相差フィルムおよび画像表示装置
CN102375340A (zh) * 2010-08-10 2012-03-14 Jsr株式会社 放射线敏感性树脂组合物、固化膜、固化膜的形成方法、滤色器以及滤色器的形成方法
JP2012053229A (ja) * 2010-08-31 2012-03-15 Hitachi Chem Co Ltd 感光性樹脂組成物、感光性樹脂ワニス、感光性樹脂フィルム、感光性樹脂硬化物、及び可視光導光路
JP5685149B2 (ja) 2010-10-25 2015-03-18 富士フイルム株式会社 半硬化物、硬化物およびそれらの製造方法、光学部品、硬化樹脂組成物
WO2012077613A1 (ja) 2010-12-06 2012-06-14 日本合成化学工業株式会社 粘着剤組成物、粘着剤、およびそれを用いてなる粘着シート
WO2012077806A1 (ja) 2010-12-10 2012-06-14 日立化成工業株式会社 光学用粘着材樹脂組成物、光学用粘着材シート、画像表示装置、光学用粘着材シートの製造方法及び画像表示装置の製造方法
JP2012167174A (ja) 2011-02-14 2012-09-06 Lintec Corp 接着剤組成物、接着シートおよび半導体装置の製造方法
IN2013MN02445A (ja) * 2011-07-01 2015-06-12 Asahi Kasei Chemicals Corp
US20140221568A1 (en) * 2011-07-20 2014-08-07 Nippon Shokubai Co., Ltd. Molding material
JP5838668B2 (ja) * 2011-09-02 2016-01-06 三菱レイヨン株式会社 微細凹凸構造を表面に有する物品、および保護フィルム付き物品
CN104039913B (zh) 2011-11-02 2017-08-22 汉高知识产权控股有限责任公司 用于电子部件的粘合剂
JP5909078B2 (ja) * 2011-11-09 2016-04-26 日本化薬株式会社 紫外線硬化型樹脂組成物、硬化物及び物品
JP2013118230A (ja) 2011-12-01 2013-06-13 Canon Inc 固体撮像装置
US8614482B2 (en) 2011-12-30 2013-12-24 Force Mos Technology Co., Ltd. Semiconductor power device having improved termination structure for mask saving
JP2013184996A (ja) 2012-03-06 2013-09-19 Hitachi Chemical Co Ltd 光学材料用樹脂組成物及びその硬化物
JP5919041B2 (ja) 2012-03-12 2016-05-18 株式会社マンダム 毛髪処理剤キット、及び毛髪の処理方法
JP5921970B2 (ja) * 2012-06-21 2016-05-24 日東電工株式会社 熱伝導性粘着組成物
JP5988889B2 (ja) 2013-02-15 2016-09-07 リンテック株式会社 粘着性組成物、粘着剤および粘着シート
MY176995A (en) 2013-07-05 2020-08-31 Lintec Corp Dicing sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302870A (ja) * 2000-04-25 2001-10-31 Jsr Corp El表示素子の隔壁形成用感放射線性樹脂組成物、隔壁およびel表示素子
JP2011169828A (ja) * 2010-02-19 2011-09-01 Jsr Corp バイオチップにおける隔壁の製造方法、感放射線性組成物、バイオチップ用隔壁、バイオチップの製造方法及びバイオチップ
JP2012058725A (ja) * 2010-08-10 2012-03-22 Jsr Corp 感放射線性樹脂組成物、硬化膜、硬化膜の形成方法、カラーフィルタ及びカラーフィルタの形成方法
JP2013122577A (ja) * 2011-11-09 2013-06-20 Sumitomo Chemical Co Ltd 着色感光性樹脂組成物

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10947326B2 (en) 2015-07-29 2021-03-16 Showa Denko Materials Co., Ltd. Adhesive composition, cured article, semiconductor device, and production method for same
WO2017169889A1 (ja) * 2016-03-31 2017-10-05 ソニー株式会社 カメラモジュール、およびカメラモジュールの製造方法、撮像装置、および電子機器
US10750060B2 (en) 2016-03-31 2020-08-18 Sony Corporation Camera module, method of manufacturing camera module, imaging apparatus, and electronic apparatus
US11595551B2 (en) 2016-03-31 2023-02-28 Sony Corporation Camera module, method of manufacturing camera module, imaging apparatus, and electronic apparatus
CN109563194A (zh) * 2016-08-10 2019-04-02 日产化学株式会社 压印材料
CN109563194B (zh) * 2016-08-10 2021-06-22 日产化学株式会社 压印材料
WO2020149207A1 (ja) * 2019-01-17 2020-07-23 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
US12085842B2 (en) 2019-01-17 2024-09-10 Sony Semiconductor Solutions Corporation Imaging device and electronic apparatus for flare reduction in an on-chip lens array
WO2023058413A1 (ja) * 2021-10-07 2023-04-13 ソニーセミコンダクタソリューションズ株式会社 半導体装置および電子機器

Also Published As

Publication number Publication date
US20160355709A1 (en) 2016-12-08
TW201538656A (zh) 2015-10-16
US20180208807A1 (en) 2018-07-26
KR20160113584A (ko) 2016-09-30
CN105934478A (zh) 2016-09-07
JP6610263B2 (ja) 2019-11-27
CN105934478B (zh) 2020-01-14
US9920227B2 (en) 2018-03-20
US10808150B2 (en) 2020-10-20
TWI660023B (zh) 2019-05-21
KR102272146B1 (ko) 2021-07-01
JPWO2015115537A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6610263B2 (ja) 半導体装置の製造方法及び固体撮像素子
JP6477504B2 (ja) 接着剤組成物、接着剤組成物を用いた半導体装置の製造方法、及び固体撮像素子
WO2017018459A1 (ja) 接着剤組成物、硬化物、半導体装置及びその製造方法
JP6393994B2 (ja) 接着剤組成物、接着剤組成物を用いた電子部材、及び半導体装置の製造方法
WO2015115552A1 (ja) 接着剤組成物、接着剤組成物から得られる樹脂硬化物、接着剤組成物を用いた半導体装置の製造方法、及び固体撮像素子
JP2018016757A (ja) 樹脂組成物、半導体装置の製造方法及び固体撮像素子
JP7176229B2 (ja) 樹脂組成物、硬化物、半導体装置及びその製造方法
JP7119578B2 (ja) 樹脂組成物、硬化物、半導体装置及びその製造方法
JP7192249B2 (ja) 樹脂組成物、硬化物、半導体装置及びその製造方法
JP2021086886A (ja) 半導体装置
JP2021085938A (ja) 半導体装置及びその製造方法、樹脂組成物セット、並びに、樹脂組成物
JP2018002948A (ja) 樹脂組成物、硬化物、半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560007

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167016142

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15114983

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15742965

Country of ref document: EP

Kind code of ref document: A1