WO2015113469A1 - 一种激光退火匀光装置 - Google Patents

一种激光退火匀光装置 Download PDF

Info

Publication number
WO2015113469A1
WO2015113469A1 PCT/CN2015/070747 CN2015070747W WO2015113469A1 WO 2015113469 A1 WO2015113469 A1 WO 2015113469A1 CN 2015070747 W CN2015070747 W CN 2015070747W WO 2015113469 A1 WO2015113469 A1 WO 2015113469A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser annealing
laser
cylindrical
cylindrical mirrors
homogenizing
Prior art date
Application number
PCT/CN2015/070747
Other languages
English (en)
French (fr)
Inventor
徐建旭
兰艳平
Original Assignee
上海微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备有限公司 filed Critical 上海微电子装备有限公司
Priority to KR1020167022637A priority Critical patent/KR101918252B1/ko
Priority to JP2016549057A priority patent/JP6531107B2/ja
Priority to SG11201606160RA priority patent/SG11201606160RA/en
Priority to EP15742551.3A priority patent/EP3101463A4/en
Publication of WO2015113469A1 publication Critical patent/WO2015113469A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0966Cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/62Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape

Definitions

  • the present invention relates to the field of semiconductors and liquid crystals, and more particularly to a laser annealing homogenizing device.
  • annealing methods include electron beam, flash lamp, continuous incoherent illumination, and graphite heating.
  • the electron beam is evenly distributed than the laser energy, and can process the wide band gap semiconductor.
  • the depth of the annealing layer can be controlled by changing the electron energy.
  • the disadvantage is that vacuum is required.
  • the electron beam for solid phase annealing is superior to the laser, but requires a high concentration of electroactive dopant.
  • Laser annealing is more suitable for liquid phase annealing, because photons are absorbed on the surface to ensure precise control of penetration depth before fusion, while electron penetration is deep and difficult to control shallow; conventional furnace heating annealing, even at up to Annealing at 1150 degrees still can not completely eliminate the crystal defects, laser annealing can completely eliminate the defects, especially the nanosecond pulse laser annealing is the best, continuous wave laser annealing is suitable for large-area processing, can be amorphous The layer is transformed into a single crystal structure, but a small amount of defects may remain; other methods are low in cost, and laser annealing is not recommended when the requirements are met, when the performance requirements are high, local localization and thin layer high concentration electroactive doping and complex Laser technology has obvious advantages in structural semiconductor annealing, including high activation efficiency and improved surface roughness.
  • laser annealing has the advantages of high activation rate and small damage to the device. In the future, it will replace traditional annealing in the fields of IGBT, TFT, CIS (image sensor) and other fields, and the demand will increase rapidly.
  • the uniformity of the device after laser annealing is directly related to the performance of the device.
  • the shaping and homogenization of the laser beam play a key role in the uniformity of the annealing. Due to the coherence of the laser, interference during the homogenization process seriously affects the uniformity of the beam, so interference in the optical system needs to be eliminated.
  • the first method of interference elimination is to use the irregular reflection and refraction of the light beam to converge the light again, and to modulate the three-color laser signal by the area array spatial modulator to realize the laser color video display and completely eliminate the interference. Stripes for clear images, but the typical application scenario for this method is laser development, and is not suitable for strong lasers, nor for scenes that form a specific illumination field of view;
  • the laser annealing homogenizing device is composed of a de-interference system 10 and a lens array 20, the interference cancellation system 10 is composed of a plurality of transparent glass plates 11, and the lens array 20 is composed of a plurality of A cylindrical mirror 21 of equal length, wherein the width of the transparent glass plate 11 is the same as the width of the cylindrical mirror 21, and the difference in length between the two adjacent transparent glass plates 11 in the optical axis direction (ie, the direction of the arrow in the figure) is greater than The coherence length of the laser (not shown) and the difference in length between adjacent glass plates 11 are the same.
  • each laser light passing through each of the transparent glass plates 11 becomes a portion of the length of the transparent glass plate 11 (that is, in the direction of the arrow). Therefore, each laser light generates an optical path difference of a distance longer than the coherence length, and the influence of coherence disappears.
  • the interference does not interfere with each other, so the transparent glass plate 11 acts to eliminate interference, and the cylindrical mirror 21 functions as a uniform light, but in this method, the size of the transparent glass plate 11 and the cylindrical mirror 21 is relatively small (the size of the incident surface) About 0.5mm), in addition to interference, it may cause diffraction, which seriously affects the uniform light effect; the transparent glass plate 11 and the cylindrical mirror 21 are separated, and the construction in the optical system is complicated, so that the two must be strictly corresponding to ensure relative Tilting and eccentricity are difficult, and the accuracy is required, which increases the cost.
  • the invention provides a laser annealing homogenizing device to solve the above problems of the homogenizing system in the prior laser annealing device.
  • the present invention provides a laser annealing homogenizing apparatus for use in a laser annealing apparatus, the laser annealing apparatus including a laser for emitting a laser beam, the laser annealing homogenizing apparatus including a plurality of columns a mirror, the radius of curvature of the plurality of cylindrical mirrors is the same, each cylindrical mirror has the same size in a plane of curvature, and the length of each cylindrical mirror in the direction of propagation of the beam is different, and each of the two cylindrical mirrors is in the beam The difference in length in the direction of propagation is greater than the coherence length of the laser.
  • the laser annealing device further comprises a collimation system, a beam expanding system and a focusing system.
  • the laser annealing device is arranged in sequence along the optical path propagation direction as a laser, a collimation system, a beam expanding system, a laser annealing homogenizing device, and a focusing system, and the laser beam emitted by the laser is converted into parallel light by the collimating system. Then, the beam is expanded to a desired size by a beam expanding system, and then homogenized by the laser annealing homogenizing device, and finally the desired spot is formed by the focusing system.
  • the difference in length of each of the two cylindrical mirrors in the direction of propagation of the light beam is a fixed value.
  • the difference in length of each of the two cylindrical mirrors in the direction of propagation of the beam is different.
  • the number of cylindrical mirrors and the size of the cylindrical mirror in the plane of curvature are determined by the diameter of the beam incident on the laser annealing homogenizer.
  • the number of the cylindrical mirrors is 5-7.
  • the cylindrical mirror has a radius of curvature of 100 mm to 200 mm.
  • the cylindrical mirror has a diameter of 4 mm to 10 mm in the direction of curvature.
  • the cylindrical mirror is fabricated by an optical cold working method.
  • the present invention has the following advantages:
  • the invention adopts a large-sized cylindrical mirror with different lengths instead of the combination of the transparent glass plate and the cylindrical mirror in the prior art, and can also eliminate the interference and homogenize the beam;
  • the invention adopts a large-sized cylindrical mirror to avoid the occurrence of diffraction phenomenon, thereby preventing the diffraction from affecting the uniform light effect;
  • the cylindrical mirror Since the cylindrical mirror has a large size, it can be processed by an ordinary optical cold working method, which reduces the processing difficulty of the component and further reduces the cost.
  • FIG. 1 is a schematic structural view of a homogenizing system in a conventional laser annealing device
  • FIG. 2 is a schematic structural view of a laser annealing homogenizing device according to Embodiment 1 of the present invention
  • Figure 3 is a left side view of Figure 2;
  • FIG. 4 is a schematic structural view of a laser annealing homogenizing device according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural view of a laser annealing apparatus according to an embodiment of the present invention.
  • FIG. 6 is a view showing an X-direction energy distribution of a spot obtained by a laser annealing and homogenizing device according to an embodiment of the present invention
  • FIG. 7 is a view showing the energy distribution in the Y direction of the spot obtained by the laser annealing and homogenizing device according to an embodiment of the present invention.
  • the laser annealing and homogenizing device 500 provided by the present invention is applied to a laser annealing device, and includes a plurality of cylindrical mirrors 510.
  • the radius of curvature of the plurality of cylindrical mirrors 510 are the same, and each cylindrical mirror is 510 is the same size in the plane of curvature, that is, the dimensions of the respective cylindrical mirrors 510 are the same on the light incident surface (ie, the X-direction width is the same and the Y-direction height is the same), and the propagation of each cylindrical mirror 510 in the beam is performed.
  • the length in the direction Z is different, and the difference in length of each of the two cylindrical mirrors 510 in the direction of propagation of the beam is greater than the coherence length of the laser 100 (shown in Fig. 5) of the laser annealing apparatus.
  • the invention adopts a large-sized cylindrical mirror 510 with different lengths instead of the combination of the transparent glass plate and the cylindrical mirror in the prior art, and can also eliminate the interference and homogenize the beam, and also eliminate the uniformity caused by diffraction.
  • the problem is not ideal, and the construction of the optical system is reduced, and the cost is reduced.
  • the laser annealing apparatus further includes a laser 100, a collimation system 200, a beam expanding system, and a focusing system 600.
  • the laser annealing apparatus is arranged in sequence along the optical path propagation direction as a laser 100.
  • a collimation system 200, a beam expanding system, a laser annealing homogenizing device 500, and a focusing system 600 the light beam emitted by the laser 100 is converted into parallel light by the collimating system 200, and then expanded by a beam expanding system to a desired beam
  • the size is then homogenized by the laser annealing homogenizer 500, and finally focused by the focusing system 600 on the image surface to form a desired spot.
  • the beam expanding system comprises a first beam expanding device 300 and a second beam expanding device 400.
  • the difference in length of each of the two cylindrical mirrors 510 in the direction of propagation of the light beam is a fixed value.
  • the adjacent two cylindrical mirrors 510 are in the direction of propagation of the light beam.
  • the difference in length is d.
  • the present invention is not limited to the arrangement in which the top-down cylindrical mirror 510 is sequentially increased as shown in FIG. 2, and may be other arrangements.
  • the number of the cylindrical mirrors 510 is 5-7.
  • the 5 to 7 cylindrical mirrors 510 form a cylindrical mirror array, and the light beam is divided into small portions.
  • the light emitted through the cylindrical mirror 510 has a certain divergence angle, and the divided light passes through the rear focusing system 600, and each The small parts are then superimposed to homogenize the beam to form a uniform spot of a specific size.
  • the beam passes through the cylindrical mirror 510 of different lengths, and the difference in length of each of the two cylindrical mirrors 510 is greater than the coherence length of the laser 100, resulting in an optical path difference greater than the coherence length and the optical path difference is not constant, and the interference must be broken.
  • the condition of a constant phase difference eliminates interference and achieves a better homogenizing beam effect.
  • the radius of curvature of the cylindrical mirror 510 is 100 mm to 200 mm, and is adjusted according to the size of the focused spot to be finally obtained.
  • the cylindrical mirror 510 has a larger diameter in the direction of curvature. That is, the height in the Y direction is about 4 mm to 10 mm.
  • the size of the curvature of the cylindrical mirror 510 can be matched;
  • the dimension, i.e., the width of the X-direction is equal to the diameter of the incident beam, and thus the dimensions of both directions of the cylindrical mirror 510 can be determined by the beam diameter of the incident cylindrical mirror array.
  • each column The curvature of the mirror 510 is determined according to the size of the focused spot that is ultimately desired, and matches the dimensions of the cylindrical mirror 510 in both directions.
  • the cylindrical mirror 510 has a large diameter in the direction of the curvature, it can be processed by an ordinary optical cold working method, which reduces the processing difficulty of the component and greatly reduces the cost.
  • the energy distribution is as shown in FIG. 6 , that is, the laser annealing light homogenizing device 500 does not change the energy distribution of the laser beam, and is still Gaussian distribution; and in the Y direction in which the two-dimensional spot is shaped by the cylindrical mirror 510 (i.e., the direction of curvature of the cylindrical mirror 510), the energy distribution is as shown in Fig. 7, that is, the uniformity of the cylindrical mirror 510 After the light and the interference are eliminated, the energy distribution of the laser beam is changed to be evenly distributed in the flat top. Therefore, the laser annealing and homogenizing device 500 provided by the present invention has a good effect of homogenizing the light beam.
  • the difference between this embodiment and Embodiment 1 is that the difference in length of each of the two cylindrical mirrors 510 in the direction of propagation of the light beam is different, that is, the length is not fixed.
  • two The length difference of adjacent cylindrical mirrors 510 in the direction of propagation of the light beam is a1, a2, a3, a4, a5, a6 from top to bottom, and a1 ⁇ a2 ⁇ a3 ⁇ a4 ⁇ a5 ⁇ a6, this implementation
  • the same example can destroy the conditions that produce interference, thereby eliminating interference and achieving a better effect of homogenizing the beam.
  • the present invention provides a laser annealing homogenizing device 500 for use in a laser annealing apparatus, including a laser 100 that emits a laser beam, and a plurality of cylindrical mirrors 510, the curvature of the plurality of cylindrical mirrors 510.
  • the radii are all the same, the dimensions of the respective cylindrical mirrors 510 are the same in the plane of the curvature, and the lengths of the respective cylindrical mirrors 510 in the direction of propagation of the light beams are different, and the length difference of each of the two cylindrical mirrors 510 in the propagation direction of the light beams is greater than The coherence length of the laser 100.
  • a large-sized cylindrical mirror 510 having different lengths is used instead of the combination of the transparent glass plate and the cylindrical mirror in the prior art, and the effect of eliminating interference and homogenizing the light beam can be achieved, and diffraction-induced
  • the problem of poor uniformity is reduced, and the difficulty of building an optical system is reduced, and the cost is reduced.

Abstract

一种激光退火匀光装置(500),应用于一激光退火装置中,激光退火装置包括用于发射激光光束的一激光器(100),激光退火匀光装置(500)包括若干柱面镜(510),若干柱面镜(510)的曲率半径均相同,各个柱面镜(510)在曲率所在平面的尺寸相同,且各个柱面镜(510)在光束的传播方向上的长度不同,每两个柱面镜(510)在光束的传播方向上的长度差大于激光器的相干长度。采用长度不同的大尺寸的柱面镜(510)代替了现有技术中透明玻璃板(11)与柱面镜(21)组合的方式,同样能够实现消除干涉和匀化光束的作用,同时还消除了衍射引起的匀光效果不理想的问题,且减少了光学系统的搭建难度,以及降低了成本。

Description

一种激光退火匀光装置 技术领域
本发明涉及半导体、液晶领域,尤其涉及一种激光退火匀光装置。
背景技术
在半导体、液晶领域中,为了提高载流子的迁移率,需要对掺杂后的器件进行退火。传统的退火方法有电子束、闪光灯、连续不相干光照和石墨加热等。电子束比激光能量分布均匀,能处理宽带隙半导体,通过改变电子能量可控制退火层深度,缺点是需要真空;固相退火用电子束比激光优越,但是要求高浓度电活性掺杂物质,需液相退火时用激光退火更适宜,这是由于光子在表面被吸收可保证精确控制熔前穿透深度,而电子穿透较深,难以进行浅层控制;传统的炉子加热退火,即使在高达1150度下退火,仍不能彻底消除结晶缺陷,激光退火则能比较彻底地消除缺陷,特别是纳秒级脉冲激光退火的效果最佳,连续波激光退火则适用于大面积处理,能将非晶层转变成为单晶结构,但可能残存少量缺陷;其他方法成本较低,在能满足要求时,不推荐使用激光退火,当性能要求高,局部定域和薄层高浓度电活性掺杂以及复杂结构半导体退火时,采用激光技术具有明显优势,包括激活效率高、改善表面粗糙度、降低杂质浓度、退火背面的温度较低而不损伤器件等。激光退火相对于传统退火具有激活率高、对器件损伤小等优点,在未来将在IGBT、TFT、CIS(像传感器)等领域部分替代传统退火,需求量将快速增长。
激光退火后的器件的均匀性直接与器件的性能相关,退火过程中,激光束的整形和匀光对退火的均匀性起到非常关键的作用。由于激光的相干性,在匀光过程中干涉严重影响光束的均匀性,所以在光学系统中需要消除干涉。
第一种消干涉方法,是利用光束无规则的反射和折射,光线再会聚,以面阵空间调制器调制三色激光信号,实现激光彩色视频显示,完全消除干涉 条纹,获得清晰图像,但这种方法的典型应用场景是激光显影技术,且对于强激光不适用,对于形成特定照明视场的场景也不适用;
另一种消除干涉的方法如图1所示,激光退火匀光装置由消干涉系统10和透镜阵列20组成,所述消干涉系统10由多个透明玻璃板11组成,透镜阵列20由多个长度相等的柱面镜21组成,其中,透明玻璃板11的宽度与柱面镜21的宽度相同,两个相邻的透明玻璃板11在光轴方向(即图中箭头方向)的长度差大于激光器(图中未示出)的相干长度,且相邻两个玻璃板11之间的长度差相同。通过各透明玻璃板11的激光的光路变成所述透明玻璃板11的长度(即沿箭头方向)部分,所以,各个激光产生比相干长度长的距离的光程差,相干性的影响消失,相互不产生干涉,故透明玻璃板11产生消干涉的作用,柱面镜21起到匀光的作用,但是这种方法中,透明玻璃板11和柱面镜21的尺寸比较小(入射面尺寸约为0.5mm),除了干涉,还可能引起衍射,严重影响匀光效果;透明玻璃板11和柱面镜21分离,在光学系统中的搭建比较复杂,要使二者严格对应,保证相对的倾斜和偏心比较困难,而且对精度要求较高,增加了成本。
发明内容
本发明提供一种激光退火匀光装置,以解决现有的激光退火装置中匀光系统的上述问题。
为解决上述技术问题,本发明提供一种激光退火匀光装置,应用于一激光退火装置中,所述激光退火装置包括用于发射激光光束的一激光器,所述激光退火匀光装置包括若干柱面镜,所述若干柱面镜的曲率半径均相同,各个柱面镜在曲率所在平面的尺寸相同,且各个柱面镜在光束的传播方向上的长度不同,每两个柱面镜在光束的传播方向上的长度差大于所述激光器的相干长度。
较佳地,所述激光退火装置还包括准直系统、扩束系统以及聚焦系统, 所述激光退火装置的排列顺序沿光路传播方向依次为激光器、准直系统、扩束系统、激光退火匀光装置以及聚焦系统,所述激光器发出的激光光束经所述准直系统变为平行光,再经过扩束系统将光束扩大到所需尺寸,再经所述激光退火匀光装置匀光,最终经所述聚焦系统形成所需的光斑。
较佳地,每两个柱面镜在光束的传播方向上的长度差为固定值。
较佳地,每两个柱面镜在光束的传播方向上的长度差值均不同。
较佳地,所述柱面镜的数量和所述柱面镜在曲率所在平面的尺寸由入射至所述激光退火匀光装置的光束直径来决定。
较佳地,所述柱面镜的数量为5~7根。
较佳地,所述柱面镜的曲率半径为100mm~200mm。
较佳地,所述柱面镜在曲率所在方向的口径为4mm~10mm。
较佳地,所述柱面镜采用光学冷加工方法加工制造。
与现有技术相比,本发明具有以下优点:
1.本发明采用长度不同的大尺寸的柱面镜代替了现有技术中透明玻璃板与柱面镜组合的方式,同样能够实现消除干涉和匀化光束的作用;
2.本发明采用大尺寸的柱面镜,能够避免出现衍射现象,进而避免衍射影响匀光效果;
3.现有技术中的透明玻璃板和柱面镜分离,在光学系统中的搭建比较复杂,二者需严格对应,而本发明中则无需上述对应过程,降低了光学系统的搭建难度,且节约了成本;
4.由于所述柱面镜尺寸较大,采用普通的光学冷加工方法加工制造即可,降低了元件的加工难度,且进一步降低了成本。
附图说明
图1为现有的激光退火装置中匀光系统的结构示意图;
图2为本发明实施例1的激光退火匀光装置的结构示意图;
图3为图2的左视图;
图4为本发明实施例2的激光退火匀光装置的结构示意图;
图5为本发明一具体实施方式的激光退火装置的结构示意图;
图6为本发明一具体实施方式的激光退火匀光装置得到的光斑X方向能量分布图;
图7为本发明一具体实施方式的激光退火匀光装置得到的光斑Y方向能量分布图。
图1中:10-消干涉系统、11-透明玻璃板、20-透镜阵列、21-柱面镜;
图2-5中:100-激光器、200-准直系统、300-第一扩束装置、400-第二扩束装置、500-激光退火匀光装置、510-柱面镜、600-聚焦系统。
具体实施方式
为使本发明的上述目的、特征和优点能够更加清晰易懂,下面结合附图对本发明的具体实施方式做详细的说明。需说明的是,本发明附图均采用简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
请参考图2和图3,本发明提供的激光退火匀光装置500,应用于激光退火装置中,包括若干柱面镜510,所述若干柱面镜510的曲率半径均相同,各个柱面镜510在曲率所在平面的尺寸相同,也就是说,所述各个柱面镜510在光入射面的尺寸相同(即X向宽度相同和Y向高度相同),且各个柱面镜510在光束的传播方向Z向上的长度不同,每两个柱面镜510在光束的传播方向上的长度差大于所述激光退火装置的激光器100(如图5所示)的相干长度。本发明采用长度不同的大尺寸的柱面镜510代替了现有技术中透明玻璃板与柱面镜组合的方式,同样能够实现消除干涉和匀化光束的作用,还消除了衍射引起的匀光效果不理想的问题,且减少了光学系统的搭建难度,以及降低了成本。
较佳的,请重点参考图5,所述激光退火装置还包括激光器100、准直系统200、扩束系统以及聚焦系统600,所述激光退火装置的排列顺序沿光路传播方向依次为激光器100、准直系统200、扩束系统、激光退火匀光装置500以及聚焦系统600,所述激光器100发出的光束经所述准直系统200变为平行光,再经过扩束系统将光束扩大到所需尺寸,再经所述激光退火匀光装置500匀光,最终经所述聚焦系统600,在像面上聚焦形成所需的光斑。
较佳的,所述扩束系统包括第一扩束装置300和第二扩束装置400。
实施例1
较佳的,请重点参考图2,每两个柱面镜510在光束的传播方向上的长度差为固定值,本实施例中,相邻两个柱面镜510在光束的传播方向上的长度差均为d,当然,本发明不限于图2中所示的从上至下柱面镜510依次增长的排列方式,也可以是其他排列方式。
较佳的,所述柱面镜510的数量为5~7根。这5~7根柱面镜510组成柱面镜阵列,将光束分割成小部分,经过柱面镜510出射的光具有一定的发散角,这些被分割的光再经过后面的聚焦系统600,每个小部分再叠加起来,起到匀化光束的作用,形成特定尺寸的均匀光斑。光束经过不同长度的柱面镜510,且每两个柱面镜510的长度差大于所述激光器100的相干长度,导致光程差大于相干长度且光程差不恒定,破坏了产生干涉必须有恒定的相位差这一条件,从而消除了干涉,达到更好的匀化光束的效果。
较佳的,所述柱面镜510的曲率半径为100mm~200mm,根据最终想要得到的聚焦光斑的尺寸进行调整,较佳的,所述柱面镜510在曲率所在方向的口径较大,即Y向的高度,约为4mm~10mm,根据进入柱面镜阵列的光斑直径大小,以及所用柱面镜510的个数,可以匹配出柱面镜510曲率方向的尺寸大小;另一个方向的尺寸即X向的宽度等于入射光束的直径,因此,柱面镜510的两个方向的尺寸均可由入射柱面镜阵列的光束直径确定。而每个柱 面镜510的曲率根据最终想要得到的聚焦光斑的尺寸确定,并与柱面镜510的两个方向的尺寸相匹配。
较佳的,因所述柱面镜510在曲率所在方向的口径较大,可采用普通的光学冷加工方法加工制造,降低了元件的加工难度,大大降低了成本。
请重点参考图6和图7,在最终成像的二维光斑未被整形的X方向上,能量的分布如图6所示,即激光退火匀光装置500没有改变激光光束的能量分布,仍为高斯分布;而在二维的光斑被柱面镜510整形的Y方向上(即柱面镜510的曲率方向),能量的分布如图7所示,也就是说,经过柱面镜510的匀光和消除干涉后,改变了激光光束的能量分布,为平顶均匀分布,由此可知,本发明提供的激光退火匀光装置500具有良好的匀化光束的效果。
实施例2
请重点参考图4,本实施例与实施例1的区别点在于:每两个柱面镜510在光束的传播方向上的长度差值均不同,即为不固定长度,本实施例中,两个相邻的柱面镜510在光束的传播方向上的长度差从上至下依次为a1、a2、a3、a4、a5、a6,且a1≠a2≠a3≠a4≠a5≠a6,本实施例同样能够破坏产生干涉的条件,从而消除干涉,达到更好的匀化光束的效果。
综上所述,本发明提供的一种激光退火匀光装置500,应用于激光退火装置中,包括发射激光光束的激光器100,还包括若干柱面镜510,所述若干柱面镜510的曲率半径均相同,各个柱面镜510在曲率所在平面的尺寸相同,且各个柱面镜510在光束的传播方向上的长度不同,每两个柱面镜510在光束的传播方向上的长度差大于所述激光器100的相干长度。本发明中,采用长度不同的大尺寸的柱面镜510代替了现有技术中透明玻璃板与柱面镜组合的方式,同样能够实现消除干涉和匀化光束的作用,还消除了衍射引起的匀光效果不理想的问题,且减少了光学系统的搭建难度,以及降低了成本。
显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包括这些改动和变型在内。

Claims (9)

  1. 一种激光退火匀光装置,应用于一激光退火装置中,所述激光退火装置包括用于发射激光光束的一激光器,其特征在于,所述激光退火匀光装置包括若干柱面镜,所述若干柱面镜的曲率半径均相同,各个柱面镜在曲率所在平面的尺寸相同,且各个柱面镜在光束的传播方向上的长度不同,每两个柱面镜在光束的传播方向上的长度差大于所述激光器的相干长度。
  2. 如权利要求1所述的激光退火匀光装置,其特征在于,所述激光退火装置还包括准直系统、扩束系统以及聚焦系统,所述激光退火装置的排列顺序沿光路传播方向依次为激光器、准直系统、扩束系统、激光退火匀光装置以及聚焦系统,所述激光器发出的激光光束经所述准直系统变为平行光,再经过扩束系统将光束扩大到所需尺寸,再经所述激光退火匀光装置匀光,最终经所述聚焦系统形成所需的光斑。
  3. 如权利要求2所述的激光退火匀光装置,其特征在于,每两个柱面镜在光束的传播方向上的长度差为固定值。
  4. 如权利要求2所述的激光退火匀光装置,其特征在于,每两个柱面镜在光束的传播方向上的长度差值均不同。
  5. 如权利要求2所述的激光退火匀光装置,其特征在于,所述柱面镜的数量和所述柱面镜在曲率所在平面的尺寸由入射至所述激光退火匀光装置的光束直径来决定。
  6. 如权利要求1所述的激光退火匀光装置,其特征在于,所述柱面镜的数量为5~7根。
  7. 如权利要求1所述的激光退火匀光装置,其特征在于,所述柱面镜的曲率半径为100mm~200mm。
  8. 如权利要求1所述的激光退火匀光装置,其特征在于,所述柱面镜在曲率所在方向的口径为4mm~10mm。
  9. 如权利要求1所述的激光退火匀光装置,其特征在于,所述柱面镜采用光学冷加工方法加工制造。
PCT/CN2015/070747 2014-01-29 2015-01-15 一种激光退火匀光装置 WO2015113469A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167022637A KR101918252B1 (ko) 2014-01-29 2015-01-15 레이저 어닐링 도징 장치
JP2016549057A JP6531107B2 (ja) 2014-01-29 2015-01-15 レーザアニールのためのビームホモジナイザ
SG11201606160RA SG11201606160RA (en) 2014-01-29 2015-01-15 Beam homogenizer for laser annealing
EP15742551.3A EP3101463A4 (en) 2014-01-29 2015-01-15 Laser annealing dodging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410043852.9 2014-01-29
CN201410043852.9A CN104808343B (zh) 2014-01-29 2014-01-29 一种激光退火匀光装置

Publications (1)

Publication Number Publication Date
WO2015113469A1 true WO2015113469A1 (zh) 2015-08-06

Family

ID=53693308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070747 WO2015113469A1 (zh) 2014-01-29 2015-01-15 一种激光退火匀光装置

Country Status (7)

Country Link
EP (1) EP3101463A4 (zh)
JP (1) JP6531107B2 (zh)
KR (1) KR101918252B1 (zh)
CN (1) CN104808343B (zh)
SG (1) SG11201606160RA (zh)
TW (1) TWI584904B (zh)
WO (1) WO2015113469A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646716A (zh) * 2017-02-14 2017-05-10 山西大学 空间堆叠型光束分布式相位延迟器及其散斑消除方法
JP2018195676A (ja) * 2017-05-16 2018-12-06 株式会社ブイ・テクノロジー レーザアニール装置及びレーザアニール方法
CN111383916A (zh) * 2018-12-28 2020-07-07 上海微电子装备(集团)股份有限公司 一种SiC基底的激光退火装置
CN111061062B (zh) * 2020-01-09 2021-05-11 山西大学 一种激光散斑的抑制元件和抑制方法
CN116184681B (zh) * 2023-04-27 2023-08-04 成都莱普科技股份有限公司 二氧化碳激光的光束整形设备以及光束整形方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006007691U1 (de) * 2006-05-13 2006-08-24 Coherent Lambda Physik Gmbh Vorrichtung zur Homogenisierung von Laserstrahlung
CN101356624A (zh) * 2006-01-13 2009-01-28 株式会社Ihi 激光退火方法以及激光退火装置
CN102057467A (zh) * 2008-06-12 2011-05-11 株式会社Ihi 激光退火方法以及激光退火装置
CN102326169A (zh) * 2009-02-23 2012-01-18 立体光子国际有限公司 用于相干照明成像系统的散斑噪声减小
CN102576152A (zh) * 2009-07-31 2012-07-11 卡尔蔡司激光器材有限责任公司 产生处理基底的光束的光学系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721583B2 (ja) * 1985-01-22 1995-03-08 株式会社ニコン 露光装置
US5963305A (en) * 1996-09-12 1999-10-05 Canon Kabushiki Kaisha Illumination system and exposure apparatus
US6898216B1 (en) * 1999-06-30 2005-05-24 Lambda Physik Ag Reduction of laser speckle in photolithography by controlled disruption of spatial coherence of laser beam
US6069739A (en) * 1998-06-30 2000-05-30 Intel Corporation Method and lens arrangement to improve imaging performance of microlithography exposure tool
TW523791B (en) * 2000-09-01 2003-03-11 Semiconductor Energy Lab Method of processing beam, laser irradiation apparatus, and method of manufacturing semiconductor device
JP3969197B2 (ja) * 2002-06-06 2007-09-05 石川島播磨重工業株式会社 レーザ照射装置
JP2004200497A (ja) * 2002-12-19 2004-07-15 Sony Corp 光照射装置及びレーザアニール装置
US7521651B2 (en) * 2003-09-12 2009-04-21 Orbotech Ltd Multiple beam micro-machining system and method
JP4291230B2 (ja) * 2004-08-06 2009-07-08 株式会社日本製鋼所 結晶化膜の形成方法及びその装置
DE102006047941B4 (de) * 2006-10-10 2008-10-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Homogenisierung von Strahlung mit nicht regelmäßigen Mikrolinsenarrays
WO2008114502A1 (ja) * 2007-03-19 2008-09-25 Panasonic Corporation レーザ照明装置及び画像表示装置
JP2008294186A (ja) * 2007-05-24 2008-12-04 Shimadzu Corp 結晶化装置および結晶化方法
TW201001555A (en) * 2008-06-17 2010-01-01 Ihi Corp Laser anneal method and laser anneal device
CN104752267B (zh) * 2013-12-31 2018-04-27 上海微电子装备(集团)股份有限公司 一种激光退火装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101356624A (zh) * 2006-01-13 2009-01-28 株式会社Ihi 激光退火方法以及激光退火装置
DE202006007691U1 (de) * 2006-05-13 2006-08-24 Coherent Lambda Physik Gmbh Vorrichtung zur Homogenisierung von Laserstrahlung
CN102057467A (zh) * 2008-06-12 2011-05-11 株式会社Ihi 激光退火方法以及激光退火装置
CN102326169A (zh) * 2009-02-23 2012-01-18 立体光子国际有限公司 用于相干照明成像系统的散斑噪声减小
CN102576152A (zh) * 2009-07-31 2012-07-11 卡尔蔡司激光器材有限责任公司 产生处理基底的光束的光学系统

Also Published As

Publication number Publication date
TW201540408A (zh) 2015-11-01
JP2017510975A (ja) 2017-04-13
KR20160111467A (ko) 2016-09-26
JP6531107B2 (ja) 2019-06-12
CN104808343B (zh) 2018-03-30
SG11201606160RA (en) 2016-09-29
CN104808343A (zh) 2015-07-29
EP3101463A1 (en) 2016-12-07
EP3101463A4 (en) 2017-01-18
TWI584904B (zh) 2017-06-01
KR101918252B1 (ko) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2015113469A1 (zh) 一种激光退火匀光装置
JP5437079B2 (ja) レーザアニール方法及び装置
EP3121836B1 (en) Laser annealing device, method for fabricating polycrystalline silicon film, and polycrystalline silicon film fabricated by using same
US9633845B2 (en) Method of manufacturing a substrate having a crystallized layer and a laser crystallizing apparatus for the same
KR101227803B1 (ko) 감소된 간섭을 갖는 균질화기
TW201350237A (zh) 雷射加工裝置及雷射加工方法
JP2004153150A (ja) 表示装置の基板の製造方法及び結晶化装置
US10896817B2 (en) Laser irradiation apparatus, thin film transistor, and method of manufacturing thin film transistor
KR102369090B1 (ko) 레이저 장치
JP2008218741A (ja) レーザーアニール装置及びレーザーアニール方法
JPH10256179A (ja) レーザー光の照射装置及びレーザー光の照射方法
US10840095B2 (en) Laser irradiation device, thin-film transistor and thin-film transistor manufacturing method
KR101865224B1 (ko) 레이저 결정화 장치 및 레이저 결정화 방법
KR101928264B1 (ko) 레이저빔 성형 장치
US8853062B2 (en) Laser crystallization apparatus and laser crystallization method using the apparatus
KR20210113479A (ko) 실리콘 결정화 장치
JP2006080205A (ja) レーザ加工装置及びレーザ加工方法
JP6155767B2 (ja) パターン位相差フィルムの製造方法及びパターン位相差フィルムの露光装置
KR20210059131A (ko) 레이저 결정화 장치
KR20210016226A (ko) 복굴절 프리즘을 이용한 레이저 빔 균질화기 및 이를 포함하는 레이저 열처리 장치
JP2000031083A (ja) レーザー光照射装置
JP2018133417A (ja) レーザ照明装置及びラインビームレーザ照射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016549057

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167022637

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015742551

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015742551

Country of ref document: EP