WO2015111640A1 - ボレート系塩基発生剤および該塩基発生剤を含有する塩基反応性組成物 - Google Patents

ボレート系塩基発生剤および該塩基発生剤を含有する塩基反応性組成物 Download PDF

Info

Publication number
WO2015111640A1
WO2015111640A1 PCT/JP2015/051593 JP2015051593W WO2015111640A1 WO 2015111640 A1 WO2015111640 A1 WO 2015111640A1 JP 2015051593 W JP2015051593 W JP 2015051593W WO 2015111640 A1 WO2015111640 A1 WO 2015111640A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
general formula
represented
alkyl group
Prior art date
Application number
PCT/JP2015/051593
Other languages
English (en)
French (fr)
Inventor
信彦 酒井
康佑 簗場
Original Assignee
和光純薬工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 和光純薬工業株式会社 filed Critical 和光純薬工業株式会社
Priority to KR1020167021497A priority Critical patent/KR102343473B1/ko
Priority to JP2015559097A priority patent/JP6428646B2/ja
Priority to ES15741026T priority patent/ES2709023T3/es
Priority to CN201580005279.5A priority patent/CN106414461B/zh
Priority to EP15741026.7A priority patent/EP3098226B1/en
Priority to US15/114,048 priority patent/US10100070B2/en
Publication of WO2015111640A1 publication Critical patent/WO2015111640A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/26Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one amino group bound to the carbon skeleton, e.g. lysine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/02Guanidine; Salts, complexes or addition compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/04Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to acyclic carbon atoms of a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/16Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/18Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/20Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups containing any of the groups, X being a hetero atom, Y being any atom, e.g. acylguanidines
    • C07C279/24Y being a hetero atom
    • C07C279/26X and Y being nitrogen atoms, i.e. biguanides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/28Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/44Nitrogen atoms not forming part of a nitro radical
    • C07D233/50Nitrogen atoms not forming part of a nitro radical with carbocyclic radicals directly attached to said nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/062Organo-phosphoranes without P-C bonds
    • C07F9/065Phosphoranes containing the structure P=N-
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5337Phosphine oxides or thioxides containing the structure -C(=X)-P(=X) or NC-P(=X) (X = O, S, Se)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/572Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom
    • C07F9/65848Cyclic amide derivatives of acids of phosphorus, in which two nitrogen atoms belong to the ring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a base generator used in the resist field and the like, and more specifically, a borate compound having a property of generating a strong base such as guanidines, biguanides, phosphazenes, phosphoniums, and the like. And a base-reactive composition containing the base generator.
  • Polymers are used in, for example, electronic parts, optical products, molding materials for optical parts, layer forming materials, or adhesives.
  • the polymer (resin) is produced by using a polymerization initiator to form a polymer chain by bonding polymer precursors (monomers) or by a crosslinking reaction that links the polymer chains together.
  • the physical and chemical properties are often different from the polymer precursor (monomer).
  • curing Forming a structure in which molecules are linked two-dimensionally or three-dimensionally by this polymerization reaction or crosslinking reaction is called curing.
  • polymerization is sensitive to light (active energy rays) such as infrared rays, visible rays, ultraviolet rays, and X-rays.
  • Curing with an initiator hereinafter sometimes abbreviated as photocuring
  • curing with a heat-sensitive polymerization initiator hereinafter sometimes abbreviated as thermal curing
  • Polymerization initiators used in curing can be roughly divided into three groups, radical generators, acid generators, and base generators, depending on the active species generated.
  • a radical generator is a polymerization initiator that generates radical species when irradiated with light (active energy rays) or heated, and has been widely used in the past, but radical species are deactivated by oxygen in the air and polymerize. There is a drawback that the reaction is inhibited and the reaction is suppressed. For this reason, when using a radical generating agent, special devices such as blocking oxygen in the air are required.
  • the acid generator is a polymerization initiator that generates acid upon irradiation with light (active energy rays) or heating, it is not inhibited by oxygen, and therefore a wide variety of acid generators have been put into practical use since the latter half of the 1990s. Has been.
  • the generated acid may remain in the system even after curing, and the cured film after curing the curable composition containing the acid generator is denatured by the effect of the remaining acid and the film performance deteriorates.
  • the problem of corrosiveness to the metal wiring on the semiconductor substrate due to acid and the like has been pointed out.
  • the base generator since the base generator generates a base by irradiation with light (active energy rays) or heating, it is not affected by oxygen in the air, and corrosion when the acid generator described above is used. In recent years, research and development have been actively conducted because it is difficult to cause problems such as property and problems of denaturation of cured films.
  • Non-Patent Document 1 a method for applying a photosensitive composition containing a photobase generator to a photoresist material or a photocuring material. For example, utilizing the fact that a compound having an epoxy group undergoes a crosslinking reaction by the action of a base and cures, amines are generated in the epoxy resin by irradiation with light (active energy rays), and then the epoxy resin is removed by heat treatment. A method of curing has been proposed (for example, Non-Patent Document 1).
  • a weak base such as a primary amine or a secondary amine requires a long time for reaction with an epoxy group, and a high temperature is required to increase the curing rate. It was necessary to perform a heat treatment or the like below. It is also possible to increase the curing speed by using a polyfunctionalized primary amine or secondary amine and increasing the crosslink density. There is a possibility that the solubility may be greatly lowered by this latentization. As described above, when the base generated from the base generator is a weak base, there is a problem in that the epoxy compound cannot be easily and efficiently cured.
  • epoxy-based compounds can be used.
  • the compound can be cured, especially when used in combination with crosslinkers having acidic protons (for example, polyfunctional carboxylic acids, polyfunctional phenols, polyfunctional thiols, polyfunctional ⁇ -ketoesters, etc.) It has been reported that epoxy compounds can be cured.
  • Non-Patent Document 3 Non-Patent Document 4
  • Non-Patent Document 5 Non-Patent Document 5
  • a compound composed of a carboxylic acid and an amine that are decarboxylated by irradiation with light (active energy rays) for example, Patent Document 3
  • a benzoic acid compound that is cyclically esterified by irradiation with light (active energy rays) for example, Patent Document 4
  • 1,1,3,3-tetramethylguanidine TMG
  • Tetraphenylborate system that generates strong bases such as guanidine and phosphazene such as ene (TBD), 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene (MTBD)
  • TMD 1,1,3,3-tetramethylguanidine
  • phosphazene such as ene
  • MTBD dec-5-ene
  • Compound for example, Non-Patent Document 6
  • Non-Patent Document 7 compounds that generate biguanides as organic strong bases having higher basicity than amidine and guanidine are also known (for example, Patent Document 5, Non-Patent Document 8, Non-Patent Document 9), and such biguanides are generated.
  • Patent Document 6 An example in which the compound to be used is used for epoxy curing is also reported (for example, Patent Document 6).
  • Patent Document 7 and Patent Document 8 There are also known examples in which a compound obtained by salt formation of a thermally decomposable compound and a biguanide is applied as a thermosetting catalyst.
  • the base generators described above can generate strong bases, they are generally solid, and most of them have a problem that their solubility in organic solvents is not sufficient.
  • a base generator composed of a carboxylic acid and an amine depending on the combination, there are oily compounds that do not cause a problem of solubility in organic solvents. There was a problem that the property was inferior.
  • the present inventors can generate strong bases (biguanides), have high solubility in various organic solvents and base-reactive compounds, and have a specific structure as a base generator having high heat resistance.
  • a base generator composed of carboxylic acid and biguanide is reported (Patent Document 9).
  • the base generator described in Patent Document 9 since the anion portion is a carboxylic acid, the base generator is mixed with a base-reactive compound such as an epoxy compound due to the nucleophilicity of the carboxylic acid. If stored, the carboxylic acid moiety of the base generator may react with the base-reactive compound. For this reason, a base-reactive composition in which the base generator and a base-reactive compound such as an epoxy compound are mixed in advance starts to cure during storage, and should be stored stably for a long period of time. There is a problem that is difficult. In addition, in order to prevent curing during storage, when the base generator and the base-reactive compound are stored separately, both must be combined and used immediately before performing the curing operation.
  • a base-reactive compound such as an epoxy compound
  • the present invention has been made in view of the above situation, and generates strong bases (guanidines, biguanides, phosphazenes or phosphoniums) by operations such as irradiation with light (active energy rays) or heating, and epoxy. Even when it is stored for a long time in a state of being mixed with a base-reactive compound such as a base compound, the compound has high storage stability without reacting with the base-reactive compound, a base generator comprising these, and The object is to provide a base-reactive composition containing a base generator and a base-reactive compound.
  • the present invention has the following configuration.
  • a compound represented by the general formula (A) (hereinafter sometimes abbreviated as a compound of the present invention).
  • R 1 is an alkyl group having 1 to 12 carbon atoms; substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms
  • R 2 to R 4 are each independently substituted with an alkyl group having 1 to 12 carbon atoms; a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • An arylalkynyl group having 8 to 16 carbon atoms which may be substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms
  • Z + represents an ammonium cation having a guanidinium group, a biguanidinium group or a phosphazenium group, or a phosphonium cation.
  • a base generator comprising the compound represented by the general formula (A). (Hereinafter, it may be abbreviated as the base generator of the present invention.)
  • a base-reactive composition comprising a base generator and a base-reactive compound comprising the compound represented by the general formula (A). (Hereinafter, it may be abbreviated as the base-reactive composition of the present invention.)
  • the compound of the present invention is obtained by forming a salt with a borate anion having a specific structure and a cation having strong basicity such as guanidines, biguanides, phosphazenes, phosphoniums, and the like (light (active energy ray))
  • a strong base can be generated by an operation such as irradiation or heating. Since these compounds have low nucleophilicity of the borate portion of the anion, they do not easily react with base-reactive compounds such as epoxy compounds.
  • the base generator comprising the compound of the present invention does not react with the base-reactive compound even when stored for a long time in a state of being mixed with a base-reactive compound such as an epoxy compound, There is an effect of having high storage stability.
  • the base-reactive composition of the present invention can be stored in a stable state without degrading the performance as a base-reactive composition even when stored for a long time, and when performing a curing operation , Using a strong base (guanidines, biguanides, phosphazenes or phosphoniums) generated from a base generator as an initiator, it is possible to effectively proceed with curing of the base-reactive compound in the composition. .
  • a strong base guanidines, biguanides, phosphazenes or phosphoniums
  • the active energy ray means not only the electromagnetic wave having a wavelength in the visible region (visible light) but also the electromagnetic wave having the wavelength in the ultraviolet region (ultraviolet ray) and the electromagnetic wave having a wavelength in the infrared region, unless the wavelength is specified.
  • electromagnetic waves having wavelengths in the non-visible region such as X-rays are included.
  • a base generator that is sensitive to active energy rays a base generator that generates a base upon irradiation with active energy rays
  • active energy rays having wavelengths of 365 nm, 405 nm, and 436 nm may be referred to as i-line, h-line, and g-line, respectively.
  • R 1 is an alkyl group having 1 to 12 carbon atoms; substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms
  • R 2 to R 4 are each independently substituted with an alkyl group having 1 to 12 carbon atoms; a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • An arylalkynyl group having 8 to 16 carbon atoms which may be substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms
  • Z + represents an ammonium cation having a guanidinium group, a biguanidinium group or a phosphazenium group, or a phosphonium cation.
  • the alkyl group having 1 to 12 carbon atoms represented by R 1 in the general formula (A) may be linear, branched or cyclic, and is preferably a linear one.
  • the alkyl groups having 1 to 12 carbon atoms those having 1 to 8 carbon atoms are preferable, those having 1 to 6 carbon atoms are more preferable, and those having 1 to 4 carbon atoms are more preferable.
  • Specific examples of such alkyl groups include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, n-pentyl group.
  • alkyl groups an alkyl group having 1 to 8 carbon atoms is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • a linear alkyl group having 1 to 4 carbon atoms is particularly preferable, and an n-butyl group is most preferable.
  • the alkyl group having 1 to 12 carbon atoms represented by R 2 to R 4 in the general formula (A) may be linear, branched or cyclic, and in particular, linear Is preferred.
  • those having 4 to 12 carbon atoms are preferable, those having 4 to 8 carbon atoms are more preferable, and those having 4 to 6 carbon atoms are more preferable.
  • Specific examples of such an alkyl group include those similar to the specific examples of the alkyl group having 1 to 12 carbon atoms represented by R 2 to R 4 in the general formula (A).
  • alkyl groups an alkyl group having 4 to 12 carbon atoms is preferable, and an alkyl group having 4 to 8 carbon atoms is more preferable, and an alkyl group having 4 to 6 carbon atoms is more preferable.
  • a straight-chain alkyl group having 4 to 6 carbon atoms is particularly preferable, and an n-butyl group is most preferable.
  • an alkyl group having 1 to 6 carbon atoms substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms represented by R 1 and R 2 to R 4 in formula (A)
  • the arylalkynyl group having 8 to 16 carbon atoms in the “optionally substituted arylalkynyl group having 8 to 16 carbon atoms” the aryl group portion may be monocyclic or condensed polycyclic, Monocyclic ones are preferred. Further, the alkynyl group moiety may be either linear or branched, and among them, a linear one is preferable.
  • arylalkynyl group examples include, for example, phenylethynyl group, 3-phenyl-1-propyn-1-yl group, 3-phenyl-2-propyn-1-yl group (3-phenylpropargyl group), 4-phenyl-1-butyn-1-yl group, 4-phenyl-2-butyn-1-yl group, 4-phenyl-3-butyn-1-yl group, 3-phenyl-1-butyn-1-yl group Group, 4-phenyl-3-butyn-2-yl group, 5-phenyl-1-pentyn-1-yl group, 5-phenyl-2-pentyn-1-yl group, 5-phenyl-3-pentyne-1 -Yl group, 5-phenyl-4-pentyn-1-yl group, 4-phenyl-1-pentyn-1-yl group, 4-phenyl-2-pentyn-1-yl group, 3-phenyl-1-pentyne
  • a phenylalkynyl group having 8 to 12 carbon atoms is more preferable.
  • phenylethynyl group 3-phenyl-1-propyn-1-yl group, 3-phenyl-2-propyne- 1-yl group (3-phenylpropargyl group), 4-phenyl-1-butyn-1-yl group, 4-phenyl-2-butyn-1-yl group, 4-phenyl-3-butyn-1-yl group 5-phenyl-1-pentyn-1-yl group, 5-phenyl-2-pentyn-1-yl group, 5-phenyl-3-pentyn-1-yl group, 5-phenyl-4-pentyn-1- Yl group, 6-phenyl-1-hexyn-1-yl group, 6-phenyl-2-hexyn-1-yl group, 6-phenyl-3-hexyn-1-yl group, 6-
  • a phenylethynyl group is more preferable.
  • the number of carbon atoms of the arylalkynyl group shown here means the number of carbon atoms constituting the arylalkynyl group, and the number of carbon atoms constituting the substituent is the number of carbon atoms in the arylalkynyl group having 8 to 16 carbon atoms. It is not included in the number of carbon atoms indicated by “ ⁇ 16”.
  • halogen atom an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms represented by R 1 and R 2 to R 4 in formula (A)
  • halogen atom in the “optionally substituted arylalkynyl group having 8 to 16 carbon atoms” include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • an alkyl group having 1 to 6 carbon atoms substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms represented by R 1 and R 2 to R 4 in formula (A)
  • the alkyl group having 1 to 6 carbon atoms in the “optionally substituted arylalkynyl group having 8 to 16 carbon atoms” may be linear, branched or cyclic, and in particular, linear Are preferred. Of the alkyl groups having 1 to 6 carbon atoms, those having 1 to 4 carbon atoms are preferable, and those having 1 to 2 carbon atoms are more preferable.
  • alkyl groups include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, n-pentyl group.
  • alkyl groups an alkyl group having 1 to 4 carbon atoms is preferable, and an alkyl group having 1 to 2 carbon atoms is more preferable, and a methyl group is more preferable among them.
  • alkoxy group having 1 to 6 carbon atoms in the “optionally substituted arylalkynyl group having 8 to 16 carbon atoms” may be linear, branched or cyclic, and in particular, linear Are preferred.
  • alkoxy groups having 1 to 6 carbon atoms those having 1 to 4 carbon atoms are preferable, and those having 1 to 2 carbon atoms are more preferable.
  • alkoxy groups include, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, cyclobutoxy group, n -Pentyloxy group, isopentyloxy group, sec-pentyloxy group, tert-pentyloxy group, neopentyloxy group, 2-methylbutoxy group, 1,2-dimethylpropoxy group, 1-ethylpropoxy group, cyclopentyloxy group N-hexyloxy group, isohexyloxy group, sec-hexyloxy group, tert-hexyloxy group, neohexyloxy group, 2-methylpentyloxy group, 1,2-dimethylbutoxy group, 2,3-dimethylbutoxy Group, 1-ethylbutoxy group, cyclohexyloxy group and the like.
  • alkyl group having 1 to 6 carbon atoms substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms represented by R 1 and R 2 to R 4 in formula (A)
  • the alkylthio group having 1 to 6 carbon atoms in the “optionally substituted arylalkynyl group having 8 to 16 carbon atoms” may be linear, branched or cyclic, and in particular, linear Are preferred. Of the alkylthio groups having 1 to 6 carbon atoms, those having 1 to 4 carbon atoms are preferable, and those having 1 to 2 carbon atoms are more preferable.
  • alkylthio group examples include, for example, methylthio group, ethylthio group, n-propylthio group, isopropylthio group, n-butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group, cyclobutylthio group N-pentylthio group, isopentylthio group, sec-pentylthio group, tert-pentylthio group, neopentylthio group, 2-methylbutylthio group, 1,2-dimethylpropylthio group, 1-ethylpropylthio group, cyclopentyl Thio group, n-hexylthio group, isohexylthio group, sec-hexylthio group, tert-hexylthio group, neohexylthio group, 2-methylpentylthio
  • Lucio group an alkylthio group having 1 to 4 carbon atoms is preferable, and an alkylthio group having 1 to 2 carbon atoms is more preferable, and among them, a methylthio group is more preferable.
  • Examples of the number of substituents on the arylalkynyl group having 8 to 16 carbon atoms described above include integers of 0 (unsubstituted) to 9, preferably 0 (unsubstituted) to 5, more preferably 1 to 3, Is more preferable.
  • the position of the substituent may be any of the ortho, meta, and para positions. In particular, the ortho position or the para position is more preferable, and the para position is more preferable.
  • the position of the above-mentioned naphthylalkynyl group in the substituent may be any of 1 to 8 positions, and preferably 1 to 4 positions.
  • the position of the substituent in the anthracenyl alkynyl group may be any of 1 to 10 positions, The 1st to 4th positions are preferred.
  • the position of the substituent in the anthracenylalkynyl group may be either the 1-8th position or the 10th position, The 10th position is preferred.
  • the alkenyl group having 2 to 12 carbon atoms represented by R 1 may be linear, branched or cyclic, and is preferably linear.
  • the alkenyl groups having 2 to 12 carbon atoms those having 2 to 6 carbon atoms are preferable, and those having 2 to 3 carbon atoms are more preferable.
  • Specific examples of such an alkenyl group include a vinyl group, a 1-propenyl group, a 2-propenyl group (aryl group), an isopropenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, and an isobutenyl group.
  • an alkenyl group having 2 to 6 carbon atoms is preferable, and an alkenyl group having 2 to 3 carbon atoms is more preferable.
  • R 2 to R 4 in the general formula (A), which is substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • a halogen atom an alkyl group having 1 to 6 carbon atoms
  • an alkoxy group having 1 to 6 carbon atoms or an alkylthio group having 1 to 6 carbon atoms.
  • aryl group having 6 to 14 carbon atoms in the “optional aryl group having 6 to 14 carbon atoms” include, for example, a phenyl group, a naphthyl group, an anthracenyl group and the like, and among them, a phenyl group is preferable.
  • the number of carbon atoms of the aryl group shown here means the number of carbon atoms constituting the aryl group, and the number of carbon atoms constituting the substituent is “6 to 14 carbon atoms” in the aryl group having 6 to 14 carbon atoms. It is not included in the number of carbon atoms indicated by.
  • R 2 to R 4 Represented by R 2 to R 4 in the general formula (A), which is substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • halogen atom in the “aryl group having 6 to 14 carbon atoms” may be “halogen atom, alkyl group having 1 to 6 carbon atoms” represented by R 1 and R 2 to R 4 in formula (A), Specific examples of the halogen atom in the “alkoxy group having 1 to 6 carbon atoms or the arylalkynyl group having 8 to 16 carbon atoms which may be substituted with an alkylthio group having 1 to 6 carbon atoms” may be mentioned.
  • R 2 to R 4 in the general formula (A), which is substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • a halogen atom an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • Specific examples of the alkyl group having 1 to 6 carbon atoms in the “aryl group having 6 to 14 carbon atoms” may include “halogen atom, carbon number 1 represented by R 1 and R 2 to R 4 in formula (A)”.
  • alkyl group having 6 to 6 carbon atoms alkoxy group having 1 to 6 carbon atoms, or arylalkynyl group having 8 to 16 carbon atoms which may be substituted with alkylthio group having 1 to 6 carbon atoms.
  • R 2 to R 4 in the general formula (A), which is substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • a halogen atom an alkyl group having 1 to 6 carbon atoms
  • an alkoxy group having 1 to 6 carbon atoms may include “halogen atom, carbon number 1 represented by R 1 and R 2 to R 4 in formula (A)”.
  • an alkyl group having 6 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an arylalkynyl group having 8 to 16 carbon atoms which may be substituted with an alkylthio group having 1 to 6 carbon atoms The same thing as the specific example of these is mentioned, The specific example of a preferable alkoxy group is also the same.
  • R 2 to R 4 in the general formula (A), which is substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • a halogen atom an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • Specific examples of the alkylthio group having 1 to 6 carbon atoms in the “aryl group having 6 to 14 carbon atoms” may include “halogen atom and carbon number 1 represented by R 1 and R 2 to R 4 in formula (A)”.
  • alkyl group having 6 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms, or the arylalkynyl group having 8 to 16 carbon atoms which may be substituted with an alkylthio group having 1 to 6 carbon atoms”.
  • the specific example of a preferable alkylthio group is also the same.
  • R 2 to R 4 in the general formula (A), which is substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • the number of substituents on the aryl group having 6 to 14 carbon atoms in “an aryl group having 6 to 14 carbon atoms” may be an integer of 0 (unsubstituted) to 9, preferably 0 (unsubstituted) to 5 0 (unsubstituted) to 3 is more preferable, 0 (unsubstituted) to 1 is more preferable, and 0 (unsubstituted) is particularly preferable.
  • R 2 to R 4 in the general formula (A), which is substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • the position of the substituent on the aryl group having 6 to 14 carbon atoms in the “optional aryl group having 6 to 14 carbon atoms” differs depending on whether the aryl group is a phenyl group, a naphthyl group, or an anthracenyl group. Specific examples of groups are also different.
  • R 2 to R 4 Represented by R 2 to R 4 in the general formula (A), which is substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • the position of the substituent when the aryl group having 6 to 14 carbon atoms is a phenyl group in “an aryl group having 6 to 14 carbon atoms” may be any of the ortho, meta, and para positions. The position or the para position is more preferable, and the para position is more preferable among them.
  • R 2 to R 4 in the general formula (A), which is substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • the position of the bond in the case where the aryl group having 6 to 14 carbon atoms is a naphthyl group in “an aryl group having 6 to 14 carbon atoms” may be either the 1-position or the 2-position.
  • the position of the substituent in the naphthyl group described above may be any of 1 to 8 positions, and more preferably 1 to 4 positions.
  • R 2 to R 4 Represented by R 2 to R 4 in the general formula (A), which is substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • the position of the bond may be 1-position, 2-position or 9-position. Is preferred.
  • the bonding position of the bond in the above-described anthracenyl group is 1-position or 2-position
  • the position of the substituent in the anthracenyl group may be any of 1 to 10 positions, and preferably 1 to 4 positions. .
  • the position of the substituent in the anthracenyl group may be 1-8 position or 10 position, and 10 position is preferable.
  • the N-alkyl-substituted pyrrolyl group represented by R 2 to R 4 in the general formula (A) represents a group in which a nitrogen atom in the pyrrolyl group is substituted with an alkyl group. In addition, it may be branched or cyclic, and among them, a linear one is preferable. Of the alkyl groups having 1 to 6 carbon atoms, those having 1 to 4 carbon atoms are preferable, and those having 1 to 2 carbon atoms are more preferable. Specific examples of such an alkyl group include “halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms” represented by R 1 and R 2 to R 4 in formula (A).
  • Specific examples include the same.
  • N-alkyl-substituted pyrrolyl group represented by R 2 to R 4 in formula (A) include, for example, N-methylpyrrolyl group, N-ethylpyrrolyl group, Nn-propylpyrrolyl group, N-isopropylpyrrolyl group.
  • Nn-butylpyrrolyl group N-isobutylpyrrolyl group, N-sec-butylpyrrolyl group, N-tert-butylpyrrolyl group, N-cyclobutylpyrrolyl group, Nn-pentylpyrrolyl group, N- Isopentylpyrrolyl group, N-sec-pentylpyrrolyl group, N-tert-pentylpyrrolyl group, N-neopentylpyrrolyl group, N-2-methylbutylpyrrolyl group, N-1,2-dimethylpropyl Pyrrolyl group, N-1-ethylpropylpyrrolyl group, N-cyclopentylpyrrolyl group, Nn-hexylpyrrolyl group, N-isohexylpyrrolyl group, N-sec- Xylpyrrolyl group, N-tert-hexylpyrrolyl group, N-n-n
  • N-alkyl-substituted pyrrolyl groups substituted with an alkyl group having 1 to 4 carbon atoms are preferable, and among them, substituted with a linear alkyl group having 1 to 4 carbon atoms.
  • the N-alkyl-substituted pyrrolyl group is more preferable, and among them, the N-methylpyrrolyl group is more preferable.
  • arylalkynyl group having 8 to 16 carbon atoms in the “optionally substituted arylalkynyl group having 8 to 16 carbon atoms” is one or more substituents (halogen atom, alkyl group having 1 to 6 carbon atoms, 1 to 6 or an alkylthio group having 1 to 6 carbon atoms) is preferable.
  • a halogen atom an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or carbon More preferably, one of the alkylthio groups having 1 to 6 is substituted at one site, and among them, one having 1 site substituted with an alkyl group having 1 to 6 carbon atoms is more preferable. Is preferable.
  • a halogen atom an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms represented by R 1 and R 2 to R 4 in formula (A)
  • a halogen atom an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and an alkylthio group having 1 to 6 carbon atoms.
  • a phenylalkynyl group having 8 to 12 carbon atoms which may be substituted with any substituent selected from the group consisting of these groups is preferred, and among them, it may be substituted with any substituent selected from the substituents
  • a good phenylethynyl group is more preferable, and among them, a phenylethynyl group in which one position selected from any one of the substituents is substituted is further preferable, In particular, a phenylethynyl group in which one place is substituted with an alkyl group having 1 to 6 carbon atoms is particularly preferable.
  • arylalkynyl groups include unsubstituted carbon number such as phenylethynyl group, 3-phenylpropynyl group, 4-phenylbutynyl group, 5-phenylpentynyl group, 6-phenylhexynyl group and the like.
  • arylalkynyl groups for example, o-fluorophenylethynyl group, m-fluorophenylethynyl group, p-fluorophenylethynyl group, o-chlorophenylethynyl group, m-chlorophenylethynyl group, p-chlorophenylethynyl group, o- Bromophenylethynyl group, m-bromophenylethynyl group, p-bromophenylethynyl group, o-iodophenylethynyl group, m-iodophenylethynyl group, p-iodophenylethynyl group, 2,3- Difluorophenylethynyl group, 3,4-difluorophenylethini Group, 2,4-difluorophenylethyl group
  • An arylalkynyl group having 8 to 16 carbon atoms substituted with an alkyl group for example, o-methoxyphenylethynyl group, m-methoxyphenylethynyl group, p-methoxyphenylethynyl group, p-ethoxyphenylethynyl group, p-propoxyphenyl Ethynyl group, p-butoxyphenylethynyl group, p-pentyloxyphenylethynyl group, p-hexyloxyphenylethynyl group, 2,3-dimethoxyphenylethynyl group, 3,4-dimethoxyphenylethynyl group, 2,4-dimethoxyphenyl Ethynyl group, 2,6-dimethoxyphenylethynyl group, 2,3,4-trimethoxyphenylethynyl group, 2,3,5-trime
  • an arylalkynyl group having 8 to 16 carbon atoms substituted with an alkylthio group is substituted with an alkylthio group.
  • the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms, and the alkylthio group having 1 to 6 carbon atoms substituted on the arylalkynyl group having 8 to 16 carbon atoms are The specific examples are not limited to normal-forms, and include branched or cyclo-forms such as sec-forms, tert-forms, iso-forms, and neo-forms.
  • R 2 to R 4 in the general formula (A), which is substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • the aryl group having 6 to 14 carbon atoms in the “optional aryl group having 6 to 14 carbon atoms” is preferably unsubstituted.
  • a halogen atom an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms represented by R 1 and R 2 to R 4 in formula (A)
  • the "optionally selected aryl group having 6 to 14 carbon atoms” it is composed of a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and an alkylthio group having 1 to 6 carbon atoms.
  • a phenyl group which may be substituted with any substituent selected from the group is preferable, and among them, an unsubstituted phenyl group is more preferable.
  • an aryl group include unsubstituted aryl groups having 6 to 14 carbon atoms such as a phenyl group, a naphthyl group, and an anthracenyl group; for example, an o-fluorophenyl group, an m-fluorophenyl group, and a p-fluoro group.
  • An aryl group having 6 to 14 carbon atoms substituted by an alkoxy group having 1 to 6 carbon atoms for example, o-methylthiophenyl group, m-methylthiophenyl group, p-methylthio Phenyl group, p-ethylthiophenyl group, p-propylthiophenyl group, p-butylthiophenyl group, p-pentylthiophenyl group, p-hexylthiophenyl group, 2,3-dimethylthiophenyl group, 3,4 -Dimethylthiophenyl group, 2,4-dimethylthiophenyl group, 2,6-dimethylthiophenyl group, 2,3,4-trimethylthiophenyl group, 2,3,5-trimethylthiophenyl group, 2,3, 6-trimethylthiophenyl group, 2,4,5-trimethylthiophenyl group, 2,4,6-trimethylthiophenyl group, 2,5,6-
  • the alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms, and the alkylthio group having 1 to 6 carbon atoms substituted on the aryl group having 6 to 14 carbon atoms are normal.
  • -It is not limited to isomers, and branched or cyclic isomers such as sec-isomer, tert-isomer, iso-isomer, neo-isomer, etc. are also included in the above-mentioned specific examples.
  • R 1 in the general formula (A) is an alkyl group having 1 to 12 carbon atoms and a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • An optionally substituted phenylalkynyl group having 8 to 12 carbon atoms is preferred. Further, among these, it is substituted with an alkyl group having 1 to 12 carbon atoms and a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an alkylthio group having 1 to 6 carbon atoms.
  • a phenylethynyl group among which an alkyl group having 1 to 6 carbon atoms and a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms. More preferred is a phenylethynyl group substituted at one site by any one of the above.
  • R 2 to R 4 are all the same alkyl group having 4 to 12 carbon atoms; halogen atom, alkyl group having 1 to 6 carbon atoms, 1 to 6 carbon atoms Or a phenylalkynyl group having 8 to 12 carbon atoms which may be substituted with an alkylthio group having 1 to 6 carbon atoms; a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms Or a phenyl group optionally substituted with an alkylthio group having 1 to 6 carbon atoms; a furanyl group; a thienyl group; and an N-alkyl-substituted pyrrolyl group.
  • R 2 to R 4 are all substituted with the same halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, or alkylthio group having 1 to 6 carbon atoms.
  • phenyl group which may be a phenyl group; furanyl; thienyl; more preferably and N- alkyl-substituted pyrrolyl group, among others, of all the R 2 ⁇ R 4 the same, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a carbon
  • phenyl group which may be substituted with an alkoxy group having 1 to 6 carbon atoms or an alkylthio group having 1 to 6 carbon atoms is more preferable.
  • an unsubstituted phenyl group in which R 2 to R 4 are all the same is particularly preferable. preferable.
  • R 1 to R 4 in the general formula (A) examples include those listed in Table 1 below.
  • the functional group A has 8 to 16 carbon atoms which may be substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • the functional group B is a carbon atom optionally substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • ammonium cation or phosphonium cation having a guanidinium group, a biguanidinium group or a phosphazenium group” represented by Z + in the general formula (A) include, for example, a guanidinium group represented by the following general formula (B 1 ).
  • R 5 to R 8 and R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an amino group, and R 9 represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms
  • R 5 and R 6 and / or R 7 and R 10 may form an alkylene group having 2 to 4 carbon atoms. However, the number of hydrogen atoms in R 5 to R 10 is 0 to 2. )
  • R 11 to R 15 and R 18 each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms
  • R 16 and R 17 each independently represents a hydrogen atom
  • Substituted with a 12 alkyl group or a nitro group an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, or a dialkylamino group having 2 to 12 carbon atoms
  • R 16 and R 17 may form an alkylene group having 2 to 4 carbon atoms, provided that the number of hydrogen atoms in R 11 to R 18 is 0 to 2.
  • R 19 represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms
  • Q 1 to Q 3 each independently represents a group represented by the following general formula (b 2 ) or (b 3 ).
  • Q 1 and Q 2 represent a cyclic structure represented by the following general formula (b 4 ). However, the number of hydrogen atoms bonded to the nitrogen atom in the formula is 1 to 5.
  • R 20 and R 21 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 20 and R 21 form an alkylene group having 2 to 4 carbon atoms. May be good.
  • R 22 to R 27 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 28 and R 29 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • Q 4 to Q 9 each independently represent a group represented by the general formula (b 2 ) or (b 3 ), provided that the number of hydrogen atoms bonded to the nitrogen atom in the formula is 0-4.
  • R 30 represents a hydrogen atom or a group represented by the general formula (b 2 ) or (b 3 )
  • R 31 to R 36 each independently represents a hydrogen atom or a group having 1 to 6 carbon atoms.
  • R 32 , R 33 and R 35 may form a C 3-10 alkylene chain which may contain a nitrogen atom, provided that it is bonded to the nitrogen atom in the formula
  • the number of hydrogen atoms to be performed is 0-4.
  • Q 10 to Q 13 each independently represent a group represented by the following general formula (b 5 ) or (b 6 ). However, the number of hydrogen atoms bonded to the nitrogen atom in the formula is 0-4.
  • R 37 to R 42 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 43 to R 46 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 12 carbon atoms represented by R 5 to R 10 in the general formula (B 1 ) may be linear, branched or cyclic. Those are preferred. Of the alkyl groups having 1 to 12 carbon atoms, those having 1 to 6 carbon atoms are preferred, and those having 1 to 4 carbon atoms are more preferred. Specific examples of such an alkyl group include those similar to the specific examples of the alkyl group having 1 to 12 carbon atoms represented by R 1 in the general formula (A), and among them, those having 1 to 6 carbon atoms. Among these, an alkyl group having 1 to 4 carbon atoms is more preferable, and a linear alkyl group having 1 to 4 carbon atoms is more preferable, and a methyl group is particularly preferable.
  • alkylene group having 2 to 4 carbon atoms in the case where “R 5 and R 6 and / or R 7 and R 10 form an alkylene group having 2 to 4 carbon atoms” in the general formula (B 1 ),
  • These may be either linear or branched, and specifically include, for example, an ethylene group, trimethylene group, propylene group, tetramethylene group, 1-methyltrimethylene group, 2-methyltrimethylene group, 1 , 2-dimethylethylene group, 1,1-dimethylethylene group, ethylethylene group, etc., among which trimethylene group is preferred.
  • R 5 and R 6 form an alkylene group having 2 to 4 carbon atoms, the alkylene group and —N ⁇ C—N bonded to the alkylene group And forms a 5- to 7-membered cyclic structure with the group.
  • cyclic structure examples include, for example, imidazoline ring, 1,4,5,6-tetrahydropyrimidine ring, 4-methylimidazoline ring, 5-methylimidazoline ring, 1,3-diaza-2-cycloheptene ring, 1, 5,6-trihydro-4-methylpyrimidine ring, 1,4,6-trihydro-5-methylpyrimidine ring, 1,4,5-trihydro-6-methylpyrimidine ring, 4-ethylimidazoline ring, 5-ethylimidazoline Ring, 4,4-dimethylimidazoline ring, 4,5-dimethylimidazoline ring and 5,5-dimethylimidazoline ring.
  • 1,4,5,6-tetrahydropyrimidine ring is preferable.
  • R 7 and R 10 form an alkylene group having 2 to 4 carbon atoms, the alkylene group and —N—C—N bonded to the alkylene group And forms a 5- to 7-membered cyclic structure with the group.
  • cyclic structure examples include imidazolidine ring, hexahydropyrimidine ring, 4-methylimidazolidine ring, 1,3-diazacycloheptane ring, 1,3,5,6-tetrahydro-4-methylpyrimidine, for example. Ring, 1,3,4,6-tetrahydro-5-methylpyrimidine ring, 4-ethylimidazolidine ring, 4,4-dimethylimidazolidine ring, 4,5-dimethylimidazolidine ring, and among them, More preferred is a hexahydropyrimidine ring.
  • the number of hydrogen atoms in R 5 to R 10 is 0 to 2
  • a group represented by R 5 to R 10 in R 5 to R 10 is a hydrogen atom. This means that the number of R's is 0-2.
  • the number of hydrogen atoms is an integer of 0 to 2, preferably 1 to 2, and more preferably 1.
  • alkyl group having 1 to 12 carbon atoms represented by R 11 to R 15 and R 18 in the general formula (B 2 ) include 1 carbon atom represented by R 5 to R 10 in the general formula (B 1 ).
  • Specific examples of the alkyl group of ⁇ 12 are the same, and specific examples of the preferable alkyl group are the same.
  • the alkyl group having 1 to 12 carbon atoms represented by R 16 and R 17 in the general formula (B 2 ) may be linear, branched or cyclic. Among them, branched or An annular one is preferred. Of the alkyl groups having 1 to 12 carbon atoms, those having 1 to 8 carbon atoms are preferred, and those having 1 to 6 carbon atoms are more preferred. Specific examples of such an alkyl group include those similar to the specific examples of the alkyl group having 1 to 12 carbon atoms represented by R 1 in the general formula (A), and among them, those having 1 to 8 carbon atoms. Of these, an alkyl group having 1 to 6 carbon atoms is more preferable, and an isopropyl group and a cyclohexyl group are more preferable.
  • R 16 and R 17 in the general formula (B 2 ) “nitro group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylthio group having 1 to 6 carbon atoms, or 2 to Specific examples of the aryl group having 6 to 14 carbon atoms in the “aryl group having 6 to 14 carbon atoms optionally substituted with 12 dialkylamino groups” include, for example, a phenyl group, a naphthyl group, an anthracenyl group, and the like. Of these, a phenyl group is preferred.
  • the number of carbon atoms of the aryl group shown here means the number of carbon atoms constituting the aryl group, and the number of carbon atoms constituting the substituent is “6 to 14 carbon atoms” in the aryl group having 6 to 14 carbon atoms. It is not included in the number of carbon atoms indicated by.
  • R 16 and R 17 in the general formula (B 2 ) “nitro group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylthio group having 1 to 6 carbon atoms, or 2 to Specific examples of the alkyl group having 1 to 6 carbon atoms in the “aryl group having 6 to 14 carbon atoms which may be substituted with 12 dialkylamino groups” include R 1 and R 2 to R 4 in the general formula (A).
  • An arylalkynyl group having 8 to 16 carbon atoms which may be substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms
  • a linear or branched alkyl group having 1 to 6 carbon atoms is preferable, and a straight chain having 1 to 4 carbon atoms is preferred. Chain or minute Jo alkyl group is preferable, an isopropyl group is particularly preferred.
  • R 16 and R 17 in the general formula (B 2 ) “nitro group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylthio group having 1 to 6 carbon atoms, or 2 to Specific examples of the alkoxy group having 1 to 6 carbon atoms in the “aryl group having 6 to 14 carbon atoms which may be substituted with 12 dialkylamino groups” include R 1 and R 2 to R 4 in the general formula (A).
  • An arylalkynyl group having 8 to 16 carbon atoms which may be substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms
  • specific examples of preferred alkoxy groups include the same.
  • R 16 and R 17 in the general formula (B 2 ) “nitro group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylthio group having 1 to 6 carbon atoms, or 2 to Specific examples of the alkylthio group having 1 to 6 carbon atoms in the “aryl group having 6 to 14 carbon atoms optionally substituted with 12 dialkylamino groups” include R 1 and R 2 to R 4 in the general formula (A).
  • An arylalkynyl group having 8 to 16 carbon atoms which may be substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms
  • specific examples of preferred alkylthio groups include the same.
  • dialkylamino group having 2 to 12 carbon atoms represents an amino group having two alkyl groups having 1 to 6 carbon atoms, which may be the same or different, as substituents.
  • R 16 and R 17 in the general formula (B 2 ) “nitro group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylthio group having 1 to 6 carbon atoms, or 2 to Specific examples of the alkyl group having 1 to 6 carbon atoms constituting the dialkylamino group having 2 to 12 carbon atoms in the “aryl group having 6 to 14 carbon atoms optionally substituted with 12 dialkylamino groups” Represented by R 1 and R 2 to R 4 in (A) “substituted by a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms. Specific examples of the alkyl group having 1 to 6 carbon atoms in the “optionally selected arylalkynyl group having 8 to 16 carbon atoms” may be mentioned, and specific examples of preferable alkyl group having
  • R 16 and R 17 in the general formula (B 2 ) “nitro group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylthio group having 1 to 6 carbon atoms, or 2 to
  • the dialkylamino group having 2 to 12 carbon atoms in the “aryl group having 6 to 14 carbon atoms which may be substituted with 12 dialkylamino groups” means two alkyl groups having 1 to 6 carbon atoms constituting the dialkylamino group. Those having the same group are preferred.
  • dialkylamino groups a dialkylamino group having the same alkyl group having 1 to 6 carbon atoms as a substituent is preferable, and a dialkylamino group having the same alkyl group having 1 to 4 carbon atoms as a substituent is more preferable.
  • An alkylamino group having the same linear alkyl group having 1 to 4 carbon atoms as a substituent is more preferable, and an N, N-dimethylamino group and an N, N-diethylamino group are particularly preferable.
  • the alkyl group as a substituent of the dialkylamino group is not limited to the normal-form, but is branched or cyclo-form such as sec-form, tert-form, iso-form, neo-form, etc.
  • a dialkylamino group having such a cyclic alkyl group as a substituent is also included in the above specific examples.
  • R 16 and R 17 in the general formula (B 2 ) “nitro group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylthio group having 1 to 6 carbon atoms, or 2 to
  • the number of substituents on the aryl group having 6 to 14 carbon atoms in the “aryl group having 6 to 14 carbon atoms optionally substituted with 12 dialkylamino groups” includes integers of 0 (unsubstituted) to 9 1 to 5 is preferable, 1 to 3 is more preferable, and 1 to 2 is particularly preferable.
  • R 16 and R 17 in the general formula (B 2 ) “nitro group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylthio group having 1 to 6 carbon atoms, or 2 to
  • the position of the substituent on the aryl group having 6 to 14 carbon atoms in the “aryl group having 6 to 14 carbon atoms optionally substituted with 12 dialkylamino groups” is represented by R 2 to R 4 in the general formula (A).
  • alkyl group having 1 to 6 carbon atoms alkoxy group having 1 to 6 carbon atoms, or aryl group having 6 to 14 carbon atoms which may be substituted with an alkylthio group having 1 to 6 carbon atoms
  • alkyl group having 6 to 14 carbon atoms which may be substituted with an alkylthio group having 1 to 6 carbon atoms
  • R 16 and R 17 in the general formula (B 2 ) “nitro group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylthio group having 1 to 6 carbon atoms, or 2 to As the “aryl group having 6 to 14 carbon atoms which may be substituted with 12 dialkylamino groups”, those substituted are preferable.
  • Examples of the substituted aryl group having 6 to 14 carbon atoms include a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, and 2 to It may be substituted with at least one kind of substituent selected from 12 dialkylamino groups, and may be substituted with two or more kinds of substituents. Among them, those substituted with only a nitro group or only an alkyl group having 1 to 6 carbon atoms are more preferable.
  • R 16 and R 17 in the general formula (B 2 ) “nitro group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylthio group having 1 to 6 carbon atoms, or 2 to Among the aryl groups having 6 to 14 carbon atoms which may be substituted with 12 dialkylamino groups, a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, 6 is preferably a phenyl group optionally substituted by any substituent selected from the group consisting of an alkylthio group having 6 and a dialkylamino group having 2 to 12 carbon atoms, and among them, any one selected from the substituents More preferred are phenyl groups that are substituted with only one type of substituent, especially phenyl groups that are substituted at one or two sites only with a nitro group or an alkyl group having 1 to 6 carbon atoms. Is prefer
  • R 16 and R 17 in the general formula (B 2 ) “nitro group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylthio group having 1 to 6 carbon atoms, or 2 to Specific examples of the “aryl group having 6 to 14 carbon atoms which may be substituted with 12 dialkylamino groups” include an unsubstituted aryl group having 6 to 14 carbon atoms such as a phenyl group, a naphthyl group and an anthracenyl group; For example, o-nitrophenyl group, m-nitrophenyl group, p-nitrophenyl group, 2,4-dinitrophenyl group, 2,6-dinitrophenyl group, 1- (2-nitro) naphthyl group, 2- (1- An aryl group having 6 to 14 carbon atoms substituted with a nitro group such as a nitro) naphthyl group or a 9- (10-nitro)
  • aryl groups having 6 to 14 carbon atoms for example, o- (N, N-dimethylamino) phenyl group, m- (N, N-dimethylamino) phenyl group, p- (N, N-dimethylamino) ) Phenyl group, p- (N, N-diethylamino) phenyl group, p- (N, N-dipropylamino) phenyl group, p- (N, N-dibutylamino) phenyl group, p- (N, N- Dipentylamino) phenyl group, p- (N, N-dihexylamino) phenyl group, 2,4-di (N, N-dimethylamino) phenyl group, 2,6-di (N, N-dimethylamino) phenyl group 1- [2- (N, N-dimethylamino)
  • an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and an alkylthio group having 1 to 6 carbon atoms substituted on an aryl group having 6 to 14 carbon atoms and
  • the two alkyl groups having 1 to 6 carbon atoms in the dialkylamino group having 2 to 12 carbon atoms substituted on the aryl group having 6 to 14 carbon atoms are not limited to normal-forms, but are sec-forms and tert-forms.
  • branched examples such as iso-forms and neo-forms or cyclic forms such as cyclo-forms are also included in the above-mentioned specific examples.
  • alkylene group having 2 to 4 carbon atoms in the case where “R 16 and R 17 form an alkylene group having 2 to 4 carbon atoms” in the general formula (B 2 ) include those represented by the general formula (B 1 ), the same as the specific examples of the alkylene group having 2 to 4 carbon atoms in the case where “R 5 and R 6 and / or R 7 and R 10 form an alkylene group having 2 to 4 carbon atoms” Among them, an ethylene group which is a linear alkylene group having 2 carbon atoms is preferable.
  • R 16 and R 17 form an alkylene group having 2 to 4 carbon atoms, the alkylene group and —N ⁇ C—N bonded to the alkylene group And forms a 5- to 7-membered cyclic structure with the group.
  • cyclic structure examples include, for example, imidazoline ring, 1,4,5,6-tetrahydropyrimidine ring, 4-methylimidazoline ring, 5-methylimidazoline ring, 1,3-diaza-2-cycloheptene ring, 1, 5,6-trihydro-4-methylpyrimidine ring, 1,4,6-trihydro-5-methylpyrimidine ring, 1,4,5-trihydro-6-methylpyrimidine ring, 4-ethylimidazoline ring, 5-ethylimidazoline Ring, 4,4-dimethylimidazoline ring, 4,5-dimethylimidazoline ring, and 5,5-dimethylimidazoline ring.
  • imidazoline ring is preferable.
  • the number of hydrogen atoms is an integer of 0 to 2, and 0 or 2 is more preferable.
  • the alkyl group having 1 to 12 carbon atoms represented by R 19 in the general formula (B 3 ) may be linear, branched or cyclic, and in particular, branched or cyclic. Is preferred. Of the alkyl groups having 1 to 12 carbon atoms, those having 1 to 8 carbon atoms are preferred, and those having 1 to 4 carbon atoms are more preferred. Specific examples of such an alkyl group include those similar to the specific examples of the alkyl group having 1 to 12 carbon atoms represented by R 1 in the general formula (A), and in particular, those having 1 to 8 carbon atoms. An alkyl group is preferable, and an alkyl group having 1 to 4 carbon atoms is preferable, and among them, a tert-butyl group is more preferable.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 1 to 5, preferably 1 to 3, and more preferably 1. Note that the number of hydrogen atoms shown here is always 1 or more because the nitrogen atom in the general formula (B 3 ) already contains one hydrogen atom.
  • alkyl group having 1 to 6 carbon atoms represented by R 20 to R 29 in the general formulas (b 2 ), (b 3 ), and (b 4 ) include R 1 and R 2 in the general formula (A).
  • R 4 which is optionally substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • Specific examples of the alkyl group having 1 to 6 carbon atoms in the “arylalkynyl group” are exemplified, and preferred examples of the preferred alkyl group are also the same.
  • alkylene group having 2 to 4 carbon atoms in the case where “R 20 and R 21 form an alkylene group having 2 to 4 carbon atoms” in the general formula (b 2 ) include those represented by the general formula (B 1 ), the same as the specific examples of the alkylene group having 2 to 4 carbon atoms in the case where “R 5 and R 6 and / or R 7 and R 10 form an alkylene group having 2 to 4 carbon atoms” Among them, a tetramethylene group is preferable.
  • R 20 and R 21 form an alkylene group having 2 to 4 carbon atoms
  • the alkylene group and the nitrogen atom bonded to the alkylene group are 3 Forms a ⁇ 5-membered ring structure.
  • cyclic structure examples include, for example, aziridine ring, azetidine ring, 2-methylaziridine ring, pyrrolidine ring, 2-methylazetidine ring, 3-methylazetidine ring, 2-ethylaziridine ring, 2,2-dimethyl
  • aziridine ring and a 2,3-dimethylaziridine ring examples include an aziridine ring and a 2,3-dimethylaziridine ring, and among them, a pyrrolidine ring is preferable.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 0 to 4, preferably 0 to 2, and more preferably 0.
  • alkyl group having 1 to 6 carbon atoms represented by R 31 to R 36 in the general formula (B 5 ) include “halogen atom” represented by R 1 and R 2 to R 4 in the general formula (A). 1 to 6 carbon atoms in an “alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an arylalkynyl group having 8 to 16 carbon atoms which may be substituted with an alkylthio group having 1 to 6 carbon atoms”.
  • the same thing as the specific example of an alkyl group is mentioned, The specific example of a preferable alkyl group is also the same.
  • R 31 and R 32 , R 34 and R 35 and / or R 35 and R 36 form an alkylene group having 2 to 4 carbon atoms.
  • specific examples of the alkylene group specific examples of the alkylene group having 2 to 4 carbon atoms in the case where “R 20 and R 21 form an alkylene group having 2 to 4 carbon atoms” in the general formula (b 2 )
  • the same thing as an example is mentioned, The specific thing of a preferable alkylene group is also the same.
  • R 31 and R 32 , R 32 and R 33 , R 34 and R 35 , R 35 and R 36 and / or R 33 and R 36 and / or an alkylene group having 2 to 4 carbon atoms Specific examples of alkylene groups having 2 to 4 carbon atoms when R 32 and R 33 and / or R 35 and R 36 form an alkylene group having 2 to 4 carbon atoms Is an alkylene having 2 to 4 carbon atoms when “R 5 and R 6 and / or R 7 and R 10 form an alkylene group having 2 to 4 carbon atoms” in the general formula (B 1 ).
  • the same thing as the specific example of group is mentioned, The specific example of a preferable alkylene group is also the same.
  • cyclic structure examples include, for example, aziridine ring, azetidine ring, 2-methylaziridine ring, pyrrolidine ring, 2-methylazetidine ring, 3-methylazetidine ring, 2-ethylaziridine ring, 2,2-dimethyl
  • aziridine ring and a 2,3-dimethylaziridine ring examples include an aziridine ring and a 2,3-dimethylaziridine ring, and among them, a pyrrolidine ring is preferable.
  • R 32 and R 33 form an alkylene group having 2 to 4 carbon atoms, the alkylene group and —N—P—N bonded to the alkylene group And forms a 5- to 7-membered cyclic structure with the group.
  • cyclic structure examples include, for example, tetrahydro-2H-1,3,2-diazaphosphoryl ring (1,3-diaza-2-phosphacyclopentane ring), hexahydro-1,3,2-diazaphosphorin ring (1,3-diaza-2-phosphacyclohexane ring), 1,3-diaza-4-methyl-2-phosphacyclopentane ring, 1,3-diaza-2-phosphacycloheptane ring, 1,3 -Diaza-4-methyl-2-phosphacyclopentane ring, 1,3-diaza-5-methyl-2-phosphacyclohexane ring, 1,3-diaza-4-ethyl-2-phosphacyclopentane ring, , 3-diaza-4,4-dimethyl-2-phosphacyclopentane ring and 1,3-diaza-4,5-dimethyl-2-phosphacyclopentane ring.
  • R 34 and R 35 form an alkylene group having 2 to 4 carbon atoms
  • the alkylene group and the nitrogen atom bonded to the alkylene group are 3 Forms a ⁇ 5-membered ring structure.
  • cyclic structure when R 31 and R 32 in the general formula (B 5 ) form an alkylene group having 2 to 4 carbon atoms, the alkylene group is bonded to the alkylene group.
  • R 31 and R 32 in the general formula (B 5 ) form an alkylene group having 2 to 4 carbon atoms, the alkylene group is bonded to the alkylene group.
  • Specific examples of the 3- to 5-membered cyclic structure formed with the nitrogen atom to be formed are exemplified, and preferred specific examples of the cyclic structure are also exemplified.
  • R 35 and R 36 form an alkylene group having 2 to 4 carbon atoms, the alkylene group and —N—P—N bonded to the alkylene group And forms a 5- to 7-membered cyclic structure with the group.
  • cyclic structure when R 32 and R 33 in the general formula (B 5 ) form an alkylene group having 2 to 4 carbon atoms, the alkylene group is bonded to the alkylene group.
  • R 32 and R 33 in the general formula (B 5 ) form an alkylene group having 2 to 4 carbon atoms, the alkylene group is bonded to the alkylene group.
  • Specific examples of the 5- to 7-membered cyclic structure formed by the —N—P—N— group are the same, and specific examples of the preferable cyclic structure are also the same.
  • R 33 and R 36 form an alkylene group having 2 to 4 carbon atoms
  • the alkylene group and the nitrogen atom bonded to the alkylene group are 3 Forms a ⁇ 5-membered ring structure.
  • cyclic structure when R 31 and R 32 in the general formula (B 5 ) form an alkylene group having 2 to 4 carbon atoms, the alkylene group is bonded to the alkylene group.
  • R 31 and R 32 in the general formula (B 5 ) form an alkylene group having 2 to 4 carbon atoms, the alkylene group is bonded to the alkylene group.
  • Specific examples of the 3- to 5-membered cyclic structure formed with the nitrogen atom to be formed are exemplified, and preferred specific examples of the cyclic structure are also exemplified.
  • R 47 to R 49 each independently represents an alkylene group having 1 to 3 carbon atoms, and Y represents a carbon atom or a nitrogen atom.
  • Examples of the alkylene group having 1 to 3 carbon atoms represented by R 47 to R 49 in the general formula (b 7 ) include a methylene group, an ethylene group, a trimethylene group, and a propylene group. Among them, an ethylene group is preferable.
  • R 47 to R 49 are all preferably the same alkylene group having 1 to 3 carbon atoms.
  • Y in the general formula (b 7 ) is preferably a nitrogen atom.
  • a preferred combination of R 47 to R 49 and Y in the general formula (b 7 ) is one in which R 47 to R 49 are all the same alkylene group having 1 to 3 carbon atoms, and Y is a nitrogen atom. .
  • a bicycloalkane ring is formed with the group represented by
  • bicycloalkane ring examples include, for example, 2,4,6,7-tetraaza-1-phosphabicyclo [2.2.2] octane ring, 2,5,7,8-tetraaza-1-phospha Bicyclo [3.2.2] nonane ring, 2,6,7-triaza-1-phosphabicyclo [2.2.2] octane ring, 2,5,8,9-tetraaza-1-phosphabicyclo [ 3.3.2] Decane ring, 2,5,8,9-tetraaza-1-phosphabicyclo [3.3.3] undecane ring, 2,6,9,10-tetraaza-1-phosphabicyclo [ 4.3.3] Dodecane ring, 2,8,9-triaza-1-phosphabicyclo [3.3.3] undecane ring, 2,6,10,11-tetraaza-1-phosphabicyclo [4.
  • tridecane ring 2,6,10,11-tetraaza
  • Examples include 1-phosphabicyclo [4.4.4] tetradecane ring and 2,10,11-triaza-1-phosphabicyclo [4.4.4] tetradecane ring.
  • 2,5,8 , 9-tetraaza-1-phosphabicyclo [3.3.3] undecane ring is preferred.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 0 to 4, preferably 0 to 2, and more preferably 0.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 0 to 4, preferably 0 to 2, and more preferably 0.
  • alkyl group having 1 to 6 carbon atoms represented by R 37 to R 46 in the general formulas (b 5 ) and (b 6 ) include those represented by R 1 and R 2 to R 4 in the general formula (A).
  • Specific examples of the alkyl group having 1 to 6 carbon atoms are the same, and specific examples of preferable alkyl groups are also the same.
  • an ammonium cation having a guanidinium group, a biguanidinium group or a phosphazenium group represented by Z + , or a phosphonium cation includes an ammonium cation having a guanidinium group represented by the general formula (B 1 ), the general formula An ammonium cation having a biguanidinium group represented by (B 2 ), an ammonium cation having a phosphazenium group represented by the general formula (B 3 ) or (B 4 ), and the general formula (B 5 ) or (B 6 ) more preferably phosphonium cation represented in, among this, the general formula of ammonium cation having a guanidinium group represented by (B 1), ammonium cation having a Biguanijiumu group represented by the general formula (B 2), and, prior to Phosphonium cations is more preferably represented by the general formula (B 6).
  • R 5 in the general formula (B 1 ) is more preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an alkylene group having 2 to 4 carbon atoms formed by R 5 and R 6 , Among them, it is more preferable that R 5 and R 6 form an alkylene group having 2 to 4 carbon atoms.
  • R 6 in the general formula (B 1 ) is more preferably an alkyl group having 1 to 12 carbon atoms and an alkylene group having 2 to 4 carbon atoms formed by R 5 and R 6, and among them, More preferably, R 5 and R 6 form an alkylene group having 2 to 4 carbon atoms.
  • R 7 and R 10 in the general formula (B 1 ) are more preferably an alkyl group having 1 to 12 carbon atoms and an alkylene group having 2 to 4 carbon atoms formed by R 7 and R 10 , Among these, it is more preferable that R 7 and R 10 form an alkylene group having 2 to 4 carbon atoms.
  • R 8 in the general formula (B 1 ) a hydrogen atom and an alkyl group having 1 to 12 carbon atoms are more preferable, and among them, a hydrogen atom is more preferable.
  • R 9 in the general formula (B 1 ) is more preferably a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
  • R 5 to R 7 and R 9 each independently represents an alkyl group having 1 to 12 carbon atoms, and R 8 represents a hydrogen atom.
  • R 5 to R 7 each independently represents an alkyl group having 1 to 12 carbon atoms, R 8 and R 9 represent a hydrogen atom; R 5 and R 6 and R 7 and and independently by the R 10, to form an alkylene group having a carbon number of 2 ⁇ 4, R 8 represents hydrogen atom, R 9 is combined represent an alkyl group having 1 to 12 carbon atoms; and R 5 and R 6 and R 7 and R 10 each independently form a C 2 to C 4 alkylene group, and R 8 and R 9 represent a hydrogen atom.
  • R 5 and R 6 and R 7 and R 10 each independently A combination which forms an alkylene group having 2 to 4 prime atoms, R 8 represents a hydrogen atom and R 9 represents an alkyl group having 1 to 12 carbon atoms; and R 5 and R 6 and R 7 and R 10 And a combination in which each independently forms an alkylene group having 2 to 4 carbon atoms, and R 8 and R 9 represent a hydrogen atom.
  • R 11 to R 14 in the general formula (B 2 ) are more preferably an alkyl group having 1 to 12 carbon atoms.
  • R 15 and R 18 in the general formula (B 2 ) are more preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 16 and R 17 in formula (B 2 ) are each an alkyl group having 1 to 12 carbon atoms; a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
  • R 11 to R 18 in the general formula (B 2 ) each independently represents an alkyl group having 1 to 12 carbon atoms, and R 15 and R 18 Wherein R 11 to R 15 and R 18 each independently represents an alkyl group having 1 to 12 carbon atoms, and R 16 and R 17 are alkylene groups having 2 to 4 carbon atoms.
  • R 11 to R 14 each independently represents an alkyl group having 1 to 12 carbon atoms
  • R 15 and R 18 represent a hydrogen atom
  • R 16 and R 17 each independently And a carbon number that may be substituted with a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, or a dialkylamino group having 2 to 12 carbon atoms.
  • R 11 ⁇ R 14 are each independently represent an alkyl group having 1 to 12 carbon atoms
  • R 15 and R 18 represents hydrogen atom, either R 16 or R 17
  • One of these represents an alkyl group having 1 to 12 carbon atoms, and the other represents a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, or 2 carbon atoms.
  • Combinations representing aryl groups having 6 to 14 carbon atoms which may be substituted with ⁇ 12 dialkylamino groups may be mentioned.
  • R 19 in the general formula (B 3 ) is more preferably an alkyl group having 1 to 12 carbon atoms.
  • the Q 1 ⁇ Q 3 in the general formula (B 3), the same all Q 1 ⁇ Q 3, represents a group represented by formula (b 2) or (b 3), and, Q 1 and Q 2 represents a cyclic structure represented by the general formula (b 4 ), and Q 3 represents a group represented by the general formula (b 2 ) or (b 3 ), more preferably Q 2 It is more preferable that all of 1 to Q 3 represent the same group represented by the general formula (b 2 ) or (b 3 ).
  • R 20 and R 21 in the general formula (b 2 ) are more preferably those having an alkyl group having 1 to 6 carbon atoms and an alkylene group having 2 to 4 carbon atoms formed by R 20 and R 21 .
  • R 19 represents an alkyl group having 1 to 12 carbon atoms
  • Q 1 to Q 3 are all represented by the general formula (b 2 )
  • R 19 represents an alkyl group having 1 to 12 carbon atoms, Q 1 and Q 2 represent a cyclic structure represented by the general formula (b 4 ), and Q 3 represents combinations represent a group represented by the general formula (b 3) and the like.
  • Q 4 ⁇ Q 9 in the general formula (B 4) Q 4 ⁇ Q 9 are all combinations represents a group represented by the general formula (b 2); and Q 4 ⁇ Q 9 are all And those representing the group represented by the general formula (b 3 ), and a combination in which all of Q 4 to Q 9 represent the group represented by the general formula (b 2 ) is preferable.
  • R 30 in the general formula (B 5 ) is more preferably a hydrogen atom or a group represented by the general formula (b 3 ).
  • R 31 , R 34 and R 36 in the general formula (B 5 ) are more preferably a hydrogen atom and an alkyl group having 1 to 6 carbon atoms.
  • R 32 , R 33 and R 35 in the general formula (B 5 ) R 32 and R 33 form an alkylene group having 2 to 4 carbon atoms, and R 35 represents an alkyl group having 1 to 6 carbon atoms. More preferably, those represented by R 32 , R 33 and R 35 form an alkylene chain having 3 to 10 carbon atoms which may contain a nitrogen atom.
  • R 30 represents a hydrogen atom
  • R 31 , R 34 and R 36 each independently represents an alkyl group having 1 to 12 carbon atoms.
  • R 32 , R 33 and R 35 form a C 3-10 alkylene chain which may contain a nitrogen atom
  • R 30 is represented by the general formula (b 3 ) represents a group, independently R 31 and R 35 each represents an alkyl group having 1 to 6 carbon atoms, with the R 32 and R 33, may form an alkylene group having a carbon number of 2 ⁇ 4, R 34 and R Examples include combinations in which 36 represents a hydrogen atom.
  • Q 10 to Q 13 in the general formula (B 6 ) are more preferably those in which Q 10 to Q 13 all represent the same group represented by the general formula (b 5 ) or (b 6 ), Among them, it is more preferable that Q 10 to Q 13 are all the same and represent the group represented by the general formula (b 6 ).
  • R 37 to R 46 in the general formulas (b 5 ) and (b 6 ) are more preferably an alkyl group having 1 to 6 carbon atoms.
  • the combinations of Q 10 to Q 13 in the general formula (B 6 ) are all combinations in which Q 10 to Q 13 all represent groups represented by the general formula (b 5 ); and all of Q 10 to Q 13 are And those representing the group represented by the general formula (b 6 ). Among them, a combination in which all of Q 10 to Q 13 represent the group represented by the general formula (b 6 ) is preferable. .
  • borate anion in the compound represented by the general formula (A) of the present invention include anions represented by the following formulas (A-1) to (A-32).
  • the “borate anion” represents an anion moiety composed of a boron anion and a group represented by R 1 to R 4 bonded to the boron anion in the compound represented by the general formula (A). ing.
  • ammonium cation having a guanidinium group, a biguanidinium group or a phosphazenium group represented by Z + in the general formula (A), or a phosphonium cation include cations represented by the following formulas (B-1) to (B-18): Is mentioned.
  • More preferable specific examples of the compound represented by the general formula (A) of the present invention include a compound represented by the following general formula (A ′).
  • R 1 ′ is an alkyl group having 1 to 12 carbon atoms; substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms
  • R 2 ′ represents an optionally substituted phenylalkynyl group having 8 to 12 carbon atoms; an alkenyl group having 2 to 12 carbon atoms; a 2-furylethynyl group; a 2-thiophenylethynyl group; or a 2,6-dithianyl group.
  • R 4 ′ are all the same, a phenyl group optionally substituted by a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms; furanyl group; a thienyl group; represents or N- alkyl-substituted pyrrolyl group
  • Z '+ is represented by the following general formula (B 1' ammonium cation having a guanidinium group represented by), represented by the following general formula (B 2 ') Ammonium cation having that Biguanijiumu group, phosphonium represented by the following general formula (B 3 ') or (B 4') with an ammonium cation or the following general formula having a phosphazenium groups represented (B 5 ') or (B 6') Represents a cation.
  • R 5 ′ to R 10 ′ each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and R 5 ′ and R 6 ′ and / or R 7 ′ and R 10 ′ And an alkylene group having 2 to 4 carbon atoms may be formed, provided that the number of hydrogen atoms in R 5 ′ to R 10 ′ is 1 or 2.
  • R 11 ′ to R 14 ′ each independently represents an alkyl group having 1 to 12 carbon atoms, and R 15 ′ and R 18 ′ each independently represent a hydrogen atom or a C 1-12 carbon atom
  • R 16 ′ and R 17 ′ each independently represents an alkyl group having 1 to 12 carbon atoms or a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, Represents a phenyl group optionally substituted by an alkylthio group having 1 to 6 carbon atoms or a dialkylamino group having 2 to 12 carbon atoms, and R 16 ′ and R 17 ′ form an alkylene group having 2 to 4 carbon atoms. May be.
  • R 19 ′ represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms
  • Q 1 ′ to Q 3 ′ are all the same, and represented by the following general formula (b 2 ′) or (b 3 ′) Or a cyclic structure represented by the following general formula (b 4 ′) by Q 1 ′ and Q 2 ′.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is 1 to 3.
  • R 20 ′ and R 21 ′ each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 20 ′ and R 21 ′ form an alkylene group having 2 to 4 carbon atoms) You may do it.
  • R 22 ′ to R 27 ′ each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 28 ′ and R 29 ′ each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 30 ′ represents a hydrogen atom or a group represented by the above general formula (b 2 ′) or (b 3 ′)
  • R 31 ′ to R 36 ′ each independently represents a hydrogen atom or carbon
  • Represents an alkyl group of 1 to 6, or R 31 ′ and R 32 ′, R 32 ′ and R 33 ′, R 34 ′ and R 35 ′, R 35 ′ and R 36 ′, and / or R 33 ′ and R 36 ′ may form an alkylene group having 2 to 4 carbon atoms
  • R 32 ′, R 33 ′ and R 35 ′ may contain a nitrogen atom and may have 3 to 10 carbon atoms.
  • a chain may be formed, provided that the number of hydrogen atoms bonded to the nitrogen atom in the formula is 0 to 2.
  • Q 10 ′ to Q 13 ′ each independently represent a group represented by the following general formula (b 5 ′) or (b 6 ′). However, the number of hydrogen atoms bonded to the nitrogen atom in the formula is 0-2.
  • R 37 ′ to R 42 ′ each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 43 ′ to R 46 ′ each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • Specific examples of the functional groups (R 1 ′ to R 46 ′ and Q 1 ′ to Q 13 ′) in the general formulas (A ′) to (b 6 ′) include general formulas (A) to (b 6 ). Examples thereof are the same as the specific examples of the corresponding functional groups (R 1 to R 46 and Q 1 to Q 13 ) described in the above, and preferable specific examples are also the same. However, the functional groups described below are different from the corresponding functional groups described in the general formulas (A) to (b 6 ).
  • R 1 ′ represented by the general formula (A ′) may be substituted with a “halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • a “halogen atom” an alkyl group having 1 to 6 carbon atoms
  • an alkoxy group having 1 to 6 carbon atoms or an alkylthio group having 1 to 6 carbon atoms.
  • the alkynyl group portion may be either linear or branched. Those are preferred.
  • phenylalkynyl group examples include, for example, phenylethynyl group, 3-phenyl-1-propyn-1-yl group, 3-phenyl-2-propyn-1-yl group (3-phenylpropargyl group), 4 -Phenyl-1-butyn-1-yl group, 4-phenyl-2-butyn-1-yl group, 4-phenyl-3-butyn-1-yl group, 3-phenyl-1-butyn-1-yl group 4-phenyl-3-butyn-2-yl group, 5-phenyl-1-pentyn-1-yl group, 5-phenyl-2-pentyn-1-yl group, 5-phenyl-3-pentyne-1- Yl group, 5-phenyl-4-pentyn-1-yl group, 4-phenyl-1-pentyn-1-yl group, 4-phenyl-2-pentyn-1-yl group, 3-phenyl-1-pentyn
  • phenylalkynyl groups for example, phenylethynyl group, 3-phenyl-1-propyn-1-yl group, 3-phenyl-2-propyn-1-yl group (3-phenylpropargyl group), 4-phenyl -1-butyn-1-yl group, 4-phenyl-2-butyn-1-yl group, 4-phenyl-3-butyn-1-yl group, 5-phenyl-1-pentyn-1-yl group, 5 -Phenyl-2-pentyn-1-yl group, 5-phenyl-3-pentyn-1-yl group, 5-phenyl-4-pentyn-1-yl group, 6-phenyl-1-hexyn-1-yl group 6-phenyl-2-hexyn-1-yl group, 6-phenyl-3-hexyn-1-yl group, 6-phenyl-4-hexyn-1-yl group, 6-phenyl-5-hexyn-1-yl
  • the number of carbon atoms of the phenylalkynyl group shown here means the number of carbon atoms constituting the phenylalkynyl group, and the number of carbon atoms constituting the substituent is “carbon number 8 in the phenylalkynyl group having 8 to 12 carbon atoms”. It is not included in the number of carbon atoms indicated by “ ⁇ 12”.
  • R 1 ′ represented by the general formula (A ′) may be substituted with a “halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • the phenylalkynyl group having 8 to 12 carbon atoms in the “preferable phenylalkynyl group having 8 to 12 carbon atoms” includes one or more substituents (halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms). Or an alkylthio group having 1 to 6 carbon atoms) is preferable.
  • a halogen atom an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms is preferable.
  • those in which one site is substituted with any one of the alkylthio groups are more preferable, and those in which one site is substituted with an alkyl group having 1 to 6 carbon atoms are more preferable.
  • R 1 ′ represented by the general formula (A ′) may be substituted with a “halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • phenylalkynyl group having 8 to 12 carbon atoms include “halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms” represented by R 1 in the general formula (A), Or “halogen atom, alkyl group having 1 to 6 carbon atoms, carbon number 1” described in the specific example of “arylalkynyl group having 8 to 16 carbon atoms which may be substituted with an alkylthio group having 1 to 6 carbon atoms”. And a specific example of the “alkenyl group having 8 to 12 carbon atoms which may be substituted with an alkoxy group having 6 to 6 carbon atoms or an alkylthio group having 1 to 6 carbon atoms”.
  • phenylalkynyl groups preferred examples are “a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms represented by R 1 in formula (A)”.
  • a more preferred specific example is “a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a carbon number of 1 represented by R 1 in the general formula (A).
  • Halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms described in the specific examples of “arylalkynyl group having 8 to 16 carbon atoms which may be substituted with 6 to 6 alkylthio groups” And a specific example of a phenylethynyl group substituted at one position by any one of a group or an alkylthio group having 1 to 6 carbon atoms ”.
  • phenylalkynyl groups more preferred specific examples are “a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a carbon number of 1 represented by R 1 in the general formula (A)”.
  • a halogen atom an alkyl group having 1 to 6 carbon atoms
  • an alkoxy group having 1 to 6 carbon atoms or a carbon number of 1 represented by R 1 in the general formula (A)
  • Phenylethynyl group substituted at one position by an alkyl group having 1 to 6 carbon atoms described in the specific example of “arylalkynyl group having 8 to 16 carbon atoms which may be substituted with 6 to 6 alkylthio groups” The thing similar to the specific example of "is mentioned.
  • R 1 ′ in the general formula (A ′) is an alkyl group having 1 to 12 carbon atoms and a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio having 1 to 6 carbon atoms.
  • a phenylalkynyl group having 8 to 12 carbon atoms which may be substituted with a group is more preferable. Among them, an alkyl group having 1 to 12 carbon atoms and a halogen atom, an alkyl group having 1 to 6 carbon atoms, and 1 to 6 carbon atoms.
  • phenylethynyl groups optionally substituted with an alkoxy group of 1 to 6 carbon atoms, and among them, alkyl groups of 1 to 6 carbon atoms, halogen atoms, and alkyl groups of 1 to 6 carbon atoms.
  • Particularly preferred is a phenylethynyl group substituted at one position by any one of an alkoxy group having 1 to 6 carbon atoms or an alkylthio group having 1 to 6 carbon atoms.
  • R 2 ′ to R 4 ′ in general formula (A ′) are all the same, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and A phenyl group which may be substituted with an alkylthio group having 1 to 6 carbon atoms is more preferable, and among them, an unsubstituted phenyl group in which R 2 to R 4 are all the same is more preferable.
  • halogen atom alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, or alkylthio group having 1 to 6 carbon atoms
  • R 2 ′ to R 4 ′ alkylthio group having 1 to 6 carbon atoms
  • the phenyl group in the “optionally phenyl group” is preferably unsubstituted.
  • halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, or alkylthio group having 1 to 6 carbon atoms represented by R 2 ′ to R 4 ′ in formula (A ′)
  • optionally substituted phenyl group include “halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms” represented by R 2 to R 4 in formula (A),
  • halogen atom, alkyl group having 1 to 6 carbon atoms, 1 to 6 carbon atoms described in the specific example of “aryl group having 6 to 14 carbon atoms which may be substituted with an alkylthio group having 1 to 6 carbon atoms”
  • phenyl group optionally substituted with 6 alkoxy groups or alkylthio groups having 1 to 6 carbon atoms are examples of “phenyl group optionally substituted with 6 alkoxy groups or alkylthio groups having 1 to 6 carbon atoms
  • an unsubstituted phenyl group is preferable.
  • R 1 ′ to R 4 ′ in the general formula (A ′) examples include combinations described in Table 2 below.
  • the functional group C has 8 to 12 carbon atoms which may be substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • the functional group D is a phenyl optionally substituted by a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms. Represents a group.
  • R 5 ′ to R 10 ′ in formula (B 1 ′) the number of hydrogen atoms is 1 or 2, and 1 is preferable.
  • Specific examples of the “phenyl group optionally substituted with a dialkylamino group having 2 to 12” include “nitro group, alkyl having 1 to 6 carbon atoms” represented by R 16 and R 17 in the general formula (B 2 ).
  • a group, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms or a dialkylamino group having 2 to 12 carbon atoms are examples of “a group, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms or a dialkylamino group having 2 to 12 carbon atoms”.
  • alkyl group having 1 to 6 carbon atoms As described in “nitro group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylthio group having 1 to 6 carbon atoms, or dialkylamino group having 2 to 12 carbon atoms” Feni The same as the specific examples of the “ru group”.
  • phenyl groups include “nitro group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, carbon number represented by R 16 and R 17 in formula (B 2 )”.
  • aryl group having 6 to 14 carbon atoms which may be substituted with 1 to 6 alkylthio groups or dialkylamino groups having 2 to 12 carbon atoms
  • Specific examples of a phenyl group substituted with at least one substituent selected from an alkyl group, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, or a dialkylamino group having 2 to 12 carbon atoms " The same thing is mentioned.
  • phenyl groups more preferred specific examples are “nitro groups, alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, carbon atoms represented by R 16 and R 17 in formula (B 2 )”. “Nitro group alone or carbon number 1 to 1” described in the specific example of “C6-C14 aryl group optionally substituted by alkylthio group having 1 to 6 carbon atoms or dialkylamino group having 2 to 12 carbon atoms” Examples thereof are the same as the specific examples of “phenyl group substituted only with 6 alkyl groups”.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 1 to 3, and 1 is preferable. Note that the number of hydrogen atoms shown here is always 1 or more because the nitrogen atom in the general formula (B 3 ′) already contains one hydrogen atom.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 0 to 2, and 0 is preferable.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 0 to 2, and 0 is preferable.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 0 to 2, and 0 is preferable.
  • Examples of the ammonium cation having a phosphazenium group represented by the general formula (B 3 ) or (B 4 ) or the phosphonium cation represented by the general formula (B 5 ) or (B 6 ) include those represented by the general formula (B 1 ′).
  • ammonium cation having the guanidinium group shown the ammonium cation having the guanidinium group shown by the general formula (B 2 ′), and the phosphonium cation shown by the general formula (B 6 ′) are more preferable.
  • R 5' and R 6 'R 5 in the general formula (B 1)' that form an alkylene group of R 6 'and out 2 to 4 carbon atoms is more preferable.
  • R 7' and R 10 'R 7 in the general formula (B 1)' that form an alkylene group of R 10 'and de-having 2-4 carbon atoms is more preferable.
  • R 8 ′ in the general formula (B 1 ′) a hydrogen atom is more preferable.
  • R 9 ′ in the general formula (B 1 ′) a hydrogen atom and an alkyl group having 1 to 6 carbon atoms are more preferable.
  • R 5 ′ to R 9 ′ in the general formula (B 1 ′) each independently represents an alkyl group having 1 to 12 carbon atoms
  • R 8 In which R 5 ′ to R 7 ′ each independently represent an alkyl group having 1 to 12 carbon atoms, and R 8 ′ and R 9 ′ represent a hydrogen atom R 5 ′ and R 6 ′ and R 7 ′ and R 10 ′ each independently form an alkylene group having 2 to 4 carbon atoms, R 8 ′ represents a hydrogen atom, and R 9 ′ represents A combination representing an alkyl group having 1 to 12 carbon atoms; and R 5 ′ and R 6 ′ and R 7 ′ and R 10 ′ each independently form an alkylene group having 2 to 4 carbon atoms; Examples include combinations in which 8 ′ and R 9 ′ represent a hydrogen atom, among which R 5 ′ and R 6 ′ and R 7 ′ and R 10 ′ and each independently form an alkylene group having 2 to 4 carbon atoms; Examples include combinations in which
  • R 11 ′ to R 14 ′ in the general formula (B 2 ′) are more preferably an alkyl group having 1 to 6 carbon atoms.
  • R 15 ′ and R 18 ′ in the general formula (B 2 ′) are more preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 16 ′ and R 17 ′ in the general formula (B 2 ′) include a phenyl group substituted with an alkyl group having 1 to 6 carbon atoms, only a nitro group, or only an alkyl group having 1 to 6 carbon atoms, and R 16 It is more preferable that 'and R 17 ' form an alkylene group having 2 to 4 carbon atoms.
  • R 11 ′ to R 18 ′ in the general formula (B 2 ′) are each independently an alkyl group having 1 to 12 carbon atoms.
  • R 11 ′ to R 15 ′ and R 18 ′ each independently represents an alkyl group having 1 to 12 carbon atoms, and
  • R 16 ′ And R 17 ′ form an alkylene group having 2 to 4 carbon atoms;
  • R 11 ′ to R 14 ′ each independently represents an alkyl group having 1 to 12 carbon atoms, and R 15 ′ and R 18 ′ represents a hydrogen atom
  • R 16 ′ and R 17 ′ each independently represents a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio having 1 to 6 carbon atoms.
  • Combinations represents the phenyl group; independently is and R 11 ' ⁇ R 14' each represent an alkyl group having 1 to 12 carbon atoms, R 15 'and R 18' represents hydrogen atom, R Any one of 16 ′ and R 17 ′ represents an alkyl group having 1 to 12 carbon atoms, and the other is a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, And a combination representing a phenyl group optionally substituted with an alkylthio group having 6 or a dialkylamino group having 2 to 12 carbon atoms.
  • R 19 ′ in the general formula (B 3 ′) a hydrogen atom and an alkyl group having 1 to 8 carbon atoms are more preferable, and an alkyl group having 1 to 8 carbon atoms is more preferable.
  • Q 1 ′ to Q 3 ′ in the general formula (B 3 ′) are the same as those represented by the general formula (b 2 ′) or (b 3 ′), in which Q 1 ′ to Q 3 ′ are all the same. More preferred.
  • R 20 ′ and R 21 ′ in the general formula (b 2 ′) are alkyl groups having 1 to 6 carbon atoms, and R 20 ′ and R 21 ′ forming an alkylene group having 2 to 4 carbon atoms. Is more preferable.
  • R 22 ′ to R 29 ′ in general formulas (b 3 ′) and (b 4 ′) are more preferably alkyl groups having 1 to 6 carbon atoms.
  • R 19 ′ represents an alkyl group having 1 to 12 carbon atoms, and Q 1 ′ to Q 3 ′ are all A combination representing a group represented by the general formula (b 2 ′);
  • R 19 ′ represents an alkyl group having 1 to 12 carbon atoms, and all of Q 1 ′ to Q 3 ′ are represented by the general formula (b 3 A combination represented by a group represented by ');
  • R 19 ' represents an alkyl group having 1 to 12 carbon atoms, and Q 1 'and Q 2 ' represent a cyclic group represented by the general formula (b 4 ')
  • Q 3 ′ represents a group represented by the above general formula (b 2 ′); and
  • Q 4 ′ to Q 9 ′ in the general formula (B 4 ′) are more preferably groups represented by the general formula (b 2 ′) in which Q 4 ′ to Q 9 ′ are all the same.
  • Examples of combinations of Q 4 ′ to Q 9 ′ in the general formula (B 4 ′) include combinations in which Q 4 ′ to Q 9 ′ all represent groups represented by the general formula (b 2 ); and Q 4 ' ⁇ Q 9' are all combinations representing the group represented by formula (b 3). Among them, Q 4 ' ⁇ Q 9' are all represented by the general formula (b 2) Combinations representing such groups are preferred.
  • R 30 ′ in the general formula (B 5 ′) is more preferably a hydrogen atom or a group represented by the general formula (b 3 ′).
  • R 31 ′, R 34 ′ and R 36 ′ in the general formula (B 5 ′) are more preferably a hydrogen atom and an alkyl group having 1 to 6 carbon atoms.
  • R 32 ′, R 33 ′ and R 35 ′ in the general formula (B 5 ′) form an alkylene group having 2 to 4 carbon atoms, and R 35 ′ has a carbon number Those representing an alkyl group of 1 to 6 and those forming an alkylene chain of 3 to 10 carbon atoms which may contain a nitrogen atom with R 32 ′, R 33 ′ and R 35 ′ More preferred.
  • R 30 ′ represents a hydrogen atom
  • R 31 ′, R 34 ′ and R 36 ′ each independently represents 1 carbon atom.
  • R 32 ′, R 33 ′ and R 35 ′ form an alkylene chain of 3 to 10 carbon atoms which may contain a nitrogen atom
  • R 30 ′ Represents a group represented by the general formula (b 3 ′)
  • R 31 ′ and R 35 ′ each independently represents an alkyl group having 1 to 6 carbon atoms
  • R 32 ′ and R 33 ′ Examples thereof include an alkylene group having 2 to 4 carbon atoms in which R 34 ′ and R 36 ′ represent a hydrogen atom.
  • Q 10 ′ to Q 13 ′ in the general formula (B 6 ′) represent groups represented by the general formula (b 5 ′) or (b 6 ′), in which Q 10 ′ to Q 13 ′ are all the same.
  • a combination is more preferable, and among them, a combination representing a group represented by the general formula (b 6 ′) in which Q 10 ′ to Q 13 ′ are all the same is more preferable.
  • R 37 ′ to R 46 ′ in general formulas (b 5 ′) and (b 6 ′) are more preferably alkyl groups having 1 to 6 carbon atoms.
  • Examples of the combination of Q 10 ′ to Q 13 ′ in the general formula (B 6 ′) include combinations in which Q 10 ′ to Q 13 ′ all represent groups represented by the general formula (b 5 ′); and Q 10 ' ⁇ Q 13' are all, the general formula (b 6 ') with include combinations represents a group represented, inter alia, Q 10' ⁇ Q 13 'are all, the general formula (b 6' ) Is preferred.
  • borate anion in the compound represented by the general formula (A ′) include the formulas (A-1), (A-2), (A-3), (A-4), (A— 5), (A-6), (A-7), (A-8), (A-9), (A-10), (A-14), (A-15), (A-18) , (A-19), (A-20), (A-21), (A-25), (A-26), (A-27) and (A-28).
  • Examples thereof include cations represented by the above formulas (B-1) to (B-18).
  • More preferable specific examples of the compound represented by the general formula (A ′) of the present invention include compounds represented by the following general formula (A ′′).
  • R 1 ′′ is substituted with an alkyl group having 1 to 12 carbon atoms or a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms.
  • R 2 ′′ to R 4 ′′ are all the same halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
  • Z ′′ + represents an ammonium cation having a guanidinium group represented by the following general formula (B 1 ′′), and a biguanidinium represented by the following general formula (B 2 ′′). It represents an ammonium cation having a group or a phosphonium cation represented by the following general formula (B 6 ′′).
  • R 9 ′′ represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
  • R 11 ′′ to R 14 ′′ each independently represents an alkyl group having 1 to 12 carbon atoms, and R 15 ′′ and R 18 ′′ each independently represent a hydrogen atom or 1 to 12 carbon atoms
  • R 16 ′′ and R 17 ′′ each independently represents an alkyl group having 1 to 12 carbon atoms or a phenyl group substituted with only a nitro group or only an alkyl group having 1 to 6 carbon atoms; R 16 ′′ and R 17 ′′ may form an alkylene group having 2 to 4 carbon atoms.
  • Q 10 ′′ to Q 13 ′′ all represent the same groups represented by the following general formula (b 5 ′′) or (b 6 ′′).
  • R 37 ′′ to R 42 ′′ each independently represents an alkyl group having 1 to 6 carbon atoms.
  • R 43 ′′ to R 46 ′′ each independently represents an alkyl group having 1 to 6 carbon atoms
  • Specific examples of the functional groups (R 1 ′′ to R 46 ′′ and Q 10 ′′ to Q 13 ′′) in the general formulas (A ′′) to (b 6 ′′) include general formulas (A) to (b 6 ). Examples thereof are the same as the specific examples of the corresponding functional groups (R 1 to R 46 and Q 1 to Q 13 ) described in the above, and preferable specific examples are also the same.
  • one is substituted with any one of a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio group having 1 to 6 carbon atoms. More preferred are those having one place substituted with an alkyl group having 1 to 6 carbon atoms.
  • halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, or alkylthio group having 1 to 6 carbon atoms represented by R 1 ′′ in formula (A ′′)
  • Specific examples of “good phenylethynyl group” include “halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms” represented by R 1 in formula (A).
  • arylalkynyl group having 8 to 16 carbon atoms which may be substituted with an alkylthio group “halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, Or the same thing as the specific example of the phenylethynyl group which may be substituted by the C1-C6 alkylthio group is mentioned.
  • phenylalkynyl groups preferred examples are “a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms represented by R 1 in formula (A)”.
  • a more preferred specific example is “a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a carbon number of 1 represented by R 1 in the general formula (A).
  • a halogen atom an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a carbon number of 1 represented by R 1 in the general formula (A).
  • Phenylethynyl group substituted at one position by an alkyl group having 1 to 6 carbon atoms described in the specific example of “arylalkynyl group having 8 to 16 carbon atoms which may be substituted with 6 to 6 alkylthio groups” The thing similar to the specific example of "is mentioned.
  • halogen atom alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, or alkylthio group having 1 to 6 carbon atoms, represented by R 2 ′′ to R 4 ′′ in general formula (A ′′)
  • the phenyl group in the “optionally phenyl group” is preferably unsubstituted.
  • halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, or alkylthio group having 1 to 6 carbon atoms represented by R 2 ′′ to R 4 ′′ in general formula (A ′′)
  • optionally substituted phenyl group include “a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkyl group having 1 to 6 carbon atoms” represented by R 2 ′ to R 4 ′ in formula (A ′).
  • alkoxy group or phenyl group optionally substituted with an alkylthio group having 1 to 6 carbon atoms can be mentioned, and preferred examples thereof can also be the same.
  • R 1 ′′ in the general formula (A ′′) is an alkyl group having 1 to 6 carbon atoms and a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkylthio having 1 to 6 carbon atoms. More preferred is a phenylethynyl group substituted at one site by any one of the groups.
  • R 2 ′′ to R 4 ′′ in the general formula (A ′′) an unsubstituted phenyl group in which R 2 ′′ to R 4 ′′ are all the same is more preferable.
  • R 1 ′′ represents an alkyl group having 1 to 12 carbon atoms
  • R 2 ′′ to R 4 ′′ are all the same halogen atom
  • R 1 ′′ is a halogen atom
  • all of R 2 ′′ to R 4 ′′ are Examples thereof include combinations that represent the same halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms,
  • R 9 ′′ in the general formula (B 1 ′′) is more preferably a hydrogen atom and an alkyl group having 1 to 6 carbon atoms.
  • R 11 ′′ to R 14 ′′ in the general formula (B 2 ′′) an alkyl group having 1 to 6 carbon atoms is more preferable.
  • R 15 ′′ and R 18 ′′ in the general formula (B 2 ′′) are more preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 16 ′′ and R 17 ′′ in the general formula (B 2 ′′) are substituted at 1 to 2 places with an alkyl group having 1 to 6 carbon atoms, only a nitro group, or only an alkyl group having 1 to 6 carbon atoms. It is more preferable that the phenyl group and R 11 ′′ and R 12 ′′ form an alkylene group having 2 to 4 carbon atoms.
  • R 11 ′′ to R 18 ′′ in the general formula (B 2 ′′) each independently represents an alkyl group having 1 to 12 carbon atoms. represents, R 15 “and R 18" are combined represent a hydrogen atom; and R 11 " ⁇ R 15" and R 18 "are each independently an alkyl group having 1 to 12 carbon atoms, R 16 ”And R 17 ′′ form an alkylene group having 2 to 4 carbon atoms; R 11 ′′ to R 14 ′′ each independently represents an alkyl group having 1 to 12 carbon atoms, R 15 ′′ and A combination wherein R 18 ′′ represents a hydrogen atom and R 16 ′′ and R 17 ′′ each independently represent a phenyl group substituted with only a nitro group or only an alkyl group having 1 to 6 carbon atoms; and R 11 " ⁇ 14 "each independently represent an alkyl group having 1 to 12 carbon atoms, R 15 'and R 18' represents hydrogen
  • R 37 ′′ to R 46 ′′ in the general formulas (b 5 ′′) and (b 6 ′′) are more preferably alkyl groups having 1 to 6 carbon atoms.
  • borate anion in the compound represented by the general formula (A ′′) include the formulas (A-1), (A-2), (A-3), (A-4), (A— 5), (A-6), (A-7), (A-14), (A-15), (A-18), (A-19), (A-20), (A-21) , (A-25), (A-26), (A-27) and (A-28), and among these, the above formulas (A-1) and (A-19) An anion represented by is preferable.
  • Specific examples of the ammonium cation or the phosphonium cation represented by the general formula (B 6 ′′) include the formulas (B-2), (B-3), (B-4), (B-5), ( B-6), (B-15), (B-16), (B-17) and (B-18) include cations.
  • the above formulas (B-2), (B B-4), (B-5), (B-6), (B-16), (B-17) and cations represented by (B-18) are preferred.
  • an ammonium cation having a guanidinium group, a biguanidinium group or a phosphazenium group, or a phosphonium cation combined with an anion selected from the formulas (A-1) to (A-30) are preferably selected from the cations represented by the above formulas (B-1) to (B-18).
  • an ammonium cation having a guanidinium group, a biguanidinium group or a phosphazenium group, or a phosphonium cation, which is combined with an anion selected from the above formulas (A-1) to (A-30), is represented by the above formulas (B-1) to (B
  • Specific examples of the compound represented by the general formula (A) which is a cation selected from -18) include, for example, the following formulas (1), (2), (3), (4), (5), ( Examples thereof include compounds represented by 6), (7), (8) and (9).
  • the compound represented by the general formula (A) is represented by the general formula (III) by reacting, for example, an organic borane compound represented by the general formula (I) with an organolithium compound represented by the general formula (II). What is necessary is just to synthesize
  • halide ion represented by Xa- in the general formula (IV) include a chloride ion, a bromide ion, an iodide ion, and the like. Among these, a chloride ion is preferable.
  • the organic borane compound represented by the general formula (I) may be a commercially available product or a compound appropriately synthesized by a method known per se.
  • Specific examples of the organic borane compound represented by the general formula (I) include triphenylborane, trinaphthylborane, trianthracenylborane, tri (p-fluorophenyl) borane, tri (p-chlorophenyl) borane, tri ( p-bromophenyl) borane, tri (p-iodophenyl) borane, tri (p-methylphenyl) borane, tri (p-ethylphenyl) borane, tri (p- (n-propyl) phenyl) borane, tri ( p-isopropylphenyl) borane, tri (p- (n-butyl) phenyl) boran
  • the organolithium compound represented by the general formula (II) according to the method for producing the compound represented by the general formula (A) of the present invention may be a commercially available product or a compound appropriately synthesized by a method known per se.
  • Specific examples of the organic lithium compound represented by the general formula (II) include methyl lithium, ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, isobutyl lithium, sec-butyl lithium, tert-butyl lithium, Cyclobutyl lithium, n-pentyl lithium, isopentyl lithium, sec-pentyl lithium, tert-pentyl lithium, neopentyl lithium, 2-methylbutyl lithium, 1,2-dimethylpropyl lithium, 1-ethylpropyl lithium, cyclopentyl lithium, n-hexyllithium, isohexyllithium, sec-hexyllithium, tert-hex
  • Specific examples of the compound represented by the general formula (IV) according to the method for producing the compound represented by the general formula (A) of the present invention include, for example, an ammonium salt having a guanidinium group represented by the following general formula (B 1 ), An ammonium salt having a biguanidinium group represented by the following general formula (B 2 ), an ammonium salt having a phosphazenium group represented by the following general formula (B 3 ) or (B 4 ), the following general formula (B 5 ) or (B 6 ) Phosphonium salt.
  • R 5 to R 10 and X a- are the same as described above, provided that the number of hydrogen atoms in R 5 to R 10 is 0 to 2.
  • R 11 to R 18 and X a- are the same as described above, provided that the number of hydrogen atoms in R 11 to R 18 is 0 to 2.
  • R 30 to R 36 and X a- are the same as described above, provided that the number of hydrogen atoms bonded to the nitrogen atom in the formula is 0 to 4.
  • the number of hydrogen atoms is an integer of 0 to 2, preferably 1 to 2, and more preferably 1.
  • the number of hydrogen atoms is an integer of 0 to 2, and 0 or 2 is more preferable.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 1 to 5, preferably 1 to 3, and more preferably 1. Note that the number of hydrogen atoms shown here is always 1 or more because the nitrogen atom in the general formula (B 3 -X a ) already contains one hydrogen atom.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 0 to 4, preferably 0 to 2, and more preferably 0.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 0 to 4, preferably 0 to 2, and more preferably 0.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 0 to 4, preferably 0 to 2, and more preferably 0.
  • ammonium salt having a guanidinium group represented by the general formula (B 1 -X a ) a commercially available one or a compound appropriately synthesized by a method known per se may be used.
  • Specific examples of the ammonium cation in the ammonium salt having a guanidinium group represented by the general formula (B 1 -X a ) include cations represented by the above formulas (B-1) to (B-3).
  • Ammonium salt having Biguanijiumu group represented by the general formula (B 2 -X a) may be used those appropriately synthesized by the method described below.
  • Specific examples of the ammonium cation in the ammonium salt having a biguanidinium group represented by the general formula (B 2 -X a ) include the formulas (B-4) to (B-6), (B-17) and (B -18) and the like.
  • Ammonium salt having a phosphazenium groups represented by the general formula (B 3 -X a) may be used those appropriately synthesized by the method described below.
  • Specific examples of the ammonium cation in the ammonium salt having a phosphazenium group represented by the general formula (B 3 -X a ) include the cations represented by the formulas (B-7) to (B-11).
  • Ammonium salt having a phosphazenium groups represented by the general formula (B 4 -X a) may be used those appropriately synthesized by the method described below.
  • Specific examples of the ammonium cation in the ammonium salt having a phosphazenium group represented by the general formula (B 4 -X a ) include a cation represented by the formula (B-12).
  • the phosphonium salt represented by the general formula (B 5 -X a ) may be appropriately synthesized by the method described later.
  • Specific examples of the phosphonium cation in the phosphonium salt represented by the general formula (B 5 -X a ) include cations represented by the above formulas (B-13) and (B-14).
  • Phosphonium salt represented by the general formula (B 6 -X a) may be used those appropriately synthesized by the method described below.
  • Specific examples of the phosphonium cation in the phosphonium salt represented by the general formula (B 6 -X a ) include cations represented by the above formulas (B-15) and (B-16).
  • the amount of the organolithium compound represented by the general formula (II) described above may be an amount generally used in this field. For example, it is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to 2 equivalents relative to the number of moles of the organic borane compound represented by the general formula (I). is there.
  • the amount of the organic lithium compound used is extremely small, the yield of the compound represented by the general formula (III) may be reduced.
  • the amount of the carbodiimide used is very large, there arises a problem that economic efficiency is impaired.
  • the amount of the compound represented by the general formula (IV) described above is usually an amount generally used in this field. Without limitation, for example, it is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to 2 equivalents relative to the number of moles of the compound represented by the general formula (III).
  • the amount of the compound represented by the general formula (IV) is extremely small, the yield of the compound represented by the general formula (V) may be reduced.
  • the usage-amount of the compound shown by general formula (IV) is very much, problems, such as impairing economical efficiency, arise.
  • the series of reactions shown in the above scheme [i] may be performed in the absence of a solvent, in an organic solvent or in water.
  • organic solvent include, but are not limited to, any organic solvent that does not react with the organic borane compound, the organic lithium compound, and the compounds represented by the general formulas (III) and (IV).
  • hexane, heptane, octane Aliphatic hydrocarbon solvents such as benzene, toluene, ethynyltoluene, xylene and other aromatic hydrocarbon solvents such as dichloromethane, trichloromethane (chloroform), halogen solvents such as tetrachloromethane (carbon tetrachloride),
  • ether solvents such as diethyl ether, diisopropyl ether, methyl tert-butyl ether, cyclopentyl methyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, such as ethylene glycol dimethyl ether, propylene glycol dimethyl ether.
  • Glycol ether solvents such as chill ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, such as ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, Glycol ether acetates such as diethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate Solvent, such as 2-propanone (acetone), 2 Ketone solvents such as butanone (ethyl methyl ketone) and 4-methyl-2-pentanone (methyl isobutyl ketone), such as ethyl acetate, acetic acid
  • the amount of the organic solvent described above is not particularly limited as long as it is generally used in this field.
  • the organic borane compound represented by the general formula (I) or the general formula (III) can be used.
  • the amount is usually 0.01 to 500 mL, preferably 0.1 to 100 mL, relative to 1 mmol of the compound.
  • reaction temperature in the reaction between the organoborane compound represented by the general formula (I) and the organolithium compound represented by the general formula (II) is such that the organoborane compound and the organolithium compound react efficiently.
  • reaction temperature in the reaction of the compound represented by the general formula (III) and the compound represented by the general formula (IV) is the same as that of the compound represented by the general formula (III) and the general formula (IV). It is desirable to set the temperature so that the compound shown can react efficiently and the compound shown by the general formula (A) can be obtained in good yield. Specifically, for example, it is usually ⁇ 20 to 150 ° C., preferably 0 to 80 ° C.
  • the pressure at the time of the series of reactions shown in the above scheme [i] is not particularly limited as long as the series of reactions is carried out without delay, and may be performed at normal pressure, for example.
  • the reaction time in the series of reactions shown in the scheme [i] is the organic borane compound, the organic lithium compound, the types of the compounds represented by the general formulas (III) and (IV), the amount of the compound used, the organic solvent It may be affected by the presence or absence and type, reaction temperature, reaction pressure, and the like. For this reason, the desired reaction time cannot be generally stated, but is usually, for example, 1 minute to 24 hours, preferably 3 minutes to 12 hours.
  • a series of products after the reaction in the method for producing a compound represented by the general formula (A) of the present invention can be isolated by a general post-treatment operation and a purification operation usually performed in this field.
  • a polar solvent such as water
  • a polar solvent such as water
  • the aqueous layer is extracted by adding to the system, and in the reaction of the compound represented by the general formula (III) and the compound represented by the general formula (IV), a nonpolar solvent such as ethyl acetate is added to the reaction system.
  • the organic layer is extracted, and after the extraction, the resulting reaction solution is concentrated under reduced pressure to isolate the product. Further, if necessary, the product may be isolated by performing recrystallization, distillation, column chromatography, etc. on the residue obtained by filtering or washing the reaction solution or concentrating the reaction solution.
  • the compound represented by the general formula (B 2 -X a ) according to the above-described method for producing the compound represented by the general formula (A) of the present invention is produced, for example, by the method shown in the following scheme [ii]. Can do. That is, of the general formula (B 2 -X a) a compound represented by, R 15 and R 18 in the general formula (B 2 -X a) is a hydrogen atom, and the number of carbon atoms in the R 16 and R 17
  • the compound having no alkylene group of 2 to 4 (a compound represented by the following general formula (B 2a -X a )) is, for example, a guanidine or guanidine derivative represented by the general formula (V) and a general formula (VI)
  • a compound represented by the general formula (VII) is obtained by reacting the carbodiimide derivative shown, and then a compound represented by the general formula (VII) and a hydrogen halide represented by the general formula (VIII) are reacted.
  • a compound represented by either one of R 15 or R 18 in the general formula (B 2 -X a) is other than hydrogen atom, the other is a hydrogen atom
  • a compound in which R 16 and R 17 do not form an alkylene group having 2 to 4 carbon atoms (a compound represented by the following general formula (B 2b -X a )) can be synthesized by, for example, the method described above.
  • the compound represented by the formula (VII) is reacted with an alkyl halide represented by the general formula (IX) in the presence of a base to obtain a compound represented by the general formula (X), and then the general formula (X) And may be synthesized by reacting the compound represented by general formula (VIII) with a hydrogen halide represented by the general formula (VIII).
  • a compound represented by the compound R 15 and R 18 is other than hydrogen atom in (i) the general formula (B 2 -X a), or, (ii) General In the formula (B 2 -X a ), R 16 and R 17 form an alkylene group having 2 to 4 carbon atoms (compound represented by the following general formula (B 2c -X a )), for example, What is necessary is just to synthesize
  • R 11a to R 14a each independently represents an alkyl group having 1 to 12 carbon atoms
  • R 16a and R 17a each independently represents an alkyl group having 1 to 12 carbon atoms or a nitro group.
  • R 15b and R 18b each independently represents an alkyl group having 1 to 12 carbon atoms
  • R 16b and R 17b each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
  • an alkyl group having 1 to 6 carbon atoms or substituted with a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, or a dialkylamino group having 2 to 12 carbon atoms.
  • R 15c and R 18c each independently represents an alkyl group having 1 to 12 carbon atoms, and, R 15c and R 18c are each independently An alkyl group having 1 to 12 carbon atoms or a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, or a dialkylamino group having 2 to 12 carbon atoms
  • each of R 15c and R 18c independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and R 16c and R 17c form an alkylene group having 2 to 4 carbon atoms
  • X a and X b each independently represent a halogen atom, and R 11 to R 14 and X a- Provided that in General Formulas (VII), (X) and (B 2b -X a ),
  • Specific examples of 15c to R 18c ) include those similar to the specific examples of the corresponding functional groups (R 11 to R 18 ) described in formula (B 2 ), and preferred specific examples are also the same. Things.
  • the number of hydrogen atoms is an integer of 0 to 1, and 0 is preferable.
  • halogen atom represented by X a in the general formula (VIII) specifically, for example, a chlorine atom, a bromine atom, an iodine atom, among them, a chlorine atom is preferable.
  • halogen atom represented by Xb in the general formula (IX) include a chlorine atom, a bromine atom, and an iodine atom, and among them, an iodine atom is preferable.
  • the number of hydrogen atoms is an integer of 0 to 1, with 0 being preferred.
  • the number of hydrogen atoms is an integer of 0 to 1, and 0 is preferable.
  • the number of hydrogen atoms is an integer of 0 to 2, preferably 0 to 1, and more preferably 0.
  • the guanidine derivative represented by the general formula (V) relating to the method for producing the compound represented by the general formula (B 2 -X a ) described above may be a commercially available product or a compound synthesized appropriately by a method known per se.
  • Specific examples of the guanidine derivative represented by the general formula (V) include 1,1,3,3-tetramethylguanidine, 1,1,3,3-tetraethylguanidine, 1,1,3,3-tetra.
  • the carbodiimide derivative represented by the general formula (VI) relating to the method for producing the compound represented by the general formula (B 2 -X a ) described above may be a commercially available product or a compound synthesized appropriately by a method known per se.
  • Examples of the carbodiimide derivative represented by the general formula (VI) include N, N′-dialkylcarbodiimide, N, N′-diarylcarbodiimide which may have a substituent on the aryl group, and a substituent on the aryl group.
  • N, N′-dialkylcarbodiimide examples include, for example, N, N′-dimethylcarbodiimide, N, N′-diethylcarbodiimide, N, N′-di (n-propyl) carbodiimide, and N, N′-diisopropyl.
  • N, N′-diarylcarbodiimide optionally having a substituent on the aryl group
  • R 16d and R 17d represents an alkyl group having 1 to 12 carbon atoms, and the other is a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, This represents an aryl group having 6 to 14 carbon atoms which may be substituted with an alkylthio group having 1 to 6 carbon atoms or a dialkylamino group having 2 to 12 carbon atoms.
  • alkyl group having 1 to 12 carbon atoms represented by R 16d and R 17d in the general formula (VI-d) include 1 to 12 carbon atoms represented by R 16 and R 17 in the general formula (B 2 ).
  • a preferable example is also the same.
  • R 16d and R 17d in the general formula (VI-d) “nitro group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylthio group having 1 to 6 carbon atoms, or carbon number 2
  • aryl group having 6 to 14 carbon atoms which may be substituted with a dialkylamino group having ⁇ 12
  • a“ nitro group having 1 carbon atom represented by R 16 and R 17 in the general formula (B 2 ) nitro group, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylthio group having 1 to 6 carbon atoms, or carbon number 2
  • R 16d and R 17d in the general formula (VI-d) include an alkyl group having 1 to 12 carbon atoms and a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and 1 to 6 alkylthio groups or phenyl groups which may be substituted with a C2-C12 dialkylamino group are more preferable.
  • a C1-C12 alkyl group and a nitro group alone or a C1-C6 alkyl group are more preferable. More preferred are phenyl groups substituted only with groups.
  • Specific examples of the compound represented by the general formula (VI-d) include, for example, N-hexyl-N′-phenylcarbodiimide, N-hexyl-N ′-(2-nitrophenyl) carbodiimide, and N-hexyl-N′-.
  • the alkyl group in N-alkyl-N′-arylcarbodiimide and the alkyl group that is a substituent on the aryl group in N-alkyl-N′-arylcarbodiimide are limited to normal-forms.
  • those having a branched alkyl group such as a sec-isomer, tert-isomer, iso-isomer, neo-isomer, etc., or a cyclic alkyl group such as a cyclo-isomer are also included in the above specific examples.
  • the hydrogen halide represented by the general formula (VIII) relating to the method for producing the compound represented by the general formula (B 2 -X a ) described above may be a commercially available product or a compound appropriately synthesized by a method known per se. Good.
  • Specific examples of the hydrogen halide represented by the general formula (VIII) include hydrogen chloride, hydrogen bromide, hydrogen iodide and the like.
  • alkyl halide represented by the general formula (IX) relating to the method for producing the compound represented by the general formula (B 2 -X a ) described above, a commercially available product or a compound appropriately synthesized by a method known per se can be used. Good.
  • Specific examples of the alkyl halide represented by the general formula (IX) include methyl chloride, methyl bromide, methyl iodide, ethyl chloride, ethyl bromide, ethyl iodide, propyl chloride, propyl bromide, propyl iodide.
  • the alkyl group in the alkyl halide is not limited to the normal-form, but is branched such as sec-form, tert-form, iso-form, neo-form, or cyclic form such as cyclo-form. Examples of alkyl groups are also included in the specific examples described above.
  • Specific examples of the compound represented by the general formula (XI) include 1-chloro-N, N, N ′, N′-tetramethylaminoimine chloride, 1-chloro-N, N, N ′, N′— Tetraethylaminoimine chloride, 1-chloro-N, N, N ′, N′-tetra-n-propylaminoimine chloride, 1-chloro-N, N′-diisopropyl-N, N′-dimethylaminoimine chloride, 1 -Chloro-N, N'-diethyl-N, N'-diisopropylaminoimine chloride, 1-chloro-N, N, N ', N'-tetraisopropylaminoimine chloride, 1-chloro-N, N'-di -Tert-butyl-N, N'-dimethylaminoimine chloride, 1-chloro-N, N'-ethyl-N, N'-d
  • Specific examples of the base used in the reaction of reacting the compound represented by the general formula (VII) with the alkyl halide represented by the general formula (IX) to obtain the compound represented by the general formula (X) include: Alkali metal hydrides such as sodium hydride and potassium hydride, such as sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, lithium-tert-butoxide, sodium-tert-butoxide, potassium-tert-butoxide, etc.
  • Alkali metal alkoxides such as n-butyl lithium, sec-butyl lithium, tert-butyl lithium, n-hexyl lithium and other organic lithium compounds such as sodium hydroxide, potassium hydroxide and other alkali metal hydroxides such as sodium carbonate Alkaline gold carbonate, potassium carbonate, cesium carbonate, etc. Salts such as triethylamine, pyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU), 1,5-diazabicyclo [4.3.0] non-5-ene (DBN), etc.
  • DBU 1,8-diazabicyclo [5.4.0] undec-7-ene
  • DBN 1,5-diazabicyclo [4.3.0] non-5-ene
  • Tertiary amines such as metal amides such as lithium diisopropylamide (LDA), lithium hexamethyldisilazane (LHMDS), sodium hexamethyldisilazane (NaHMDS), potassium hexamethyldisilazane (KHMDS), among others,
  • metal amides such as lithium diisopropylamide (LDA), lithium hexamethyldisilazane (LHMDS), sodium hexamethyldisilazane (NaHMDS), potassium hexamethyldisilazane (KHMDS), among others
  • LDA lithium diisopropylamide
  • LHMDS lithium hexamethyldisilazane
  • NaHMDS sodium hexamethyldisilazane
  • KHMDS potassium hexamethyldisilazane
  • alkali metal hydrides such as sodium hydride and potassium hydride are preferred.
  • this base one type of base may be used alone
  • the amount of the carbodiimide derivative represented by the general formula (VI) described above may be an amount generally used in this field.
  • the amount of the carbodiimide derivative used is extremely small, the yield of the compound represented by the general formula (VII) may be reduced.
  • the amount of the carbodiimide derivative used is very large, there arises a problem that economic efficiency is impaired.
  • the amount of the hydrogen halide represented by the general formula (VIII) described above is usually an amount generally used in this field.
  • the amount of the hydrogen halide used is extremely small, the yield of the compound represented by the general formula (B 2a -X a ) or the general formula (B 2b -X a ) may be reduced.
  • the amount of the hydrogen halide used is very large, there arises a problem that the economy is impaired.
  • the alkyl halide represented by the general formula (IX) is used in an amount generally used in this field.
  • the amount of the alkyl halide used is extremely small, the yield of the compound represented by the general formula (X) may be reduced.
  • the amount of the alkyl halide used is very large, there arises a problem that economic efficiency is impaired.
  • the amount of the base used in the reaction for obtaining the compound represented by the general formula (X) is generally used in this field.
  • the amount is not particularly limited as long as the amount is, for example, 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to 4 mols relative to the number of moles of the compound represented by the general formula (VII). 2 equivalents.
  • the amount of the compound represented by the general formula (XI) described above may be an amount generally used in this field. There is no particular limitation, and for example, it is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to 2 equivalents relative to the number of moles of guanidine or guanidine derivative represented by formula (V). is there.
  • the amount of the compound represented by the general formula (XI) is extremely small, the yield of the compound represented by the general formula (B 2c -X a ) may be reduced.
  • the usage-amount of the compound shown by general formula (XI) is very large, problems, such as impairing economical efficiency, arise.
  • the series of reactions shown in the above scheme [ii] may be performed in the absence of a solvent or in an organic solvent.
  • the organic solvent include the guanidine or guanidine derivatives, carbodiimide derivatives, hydrogen halides, alkyl halides, compounds represented by the general formulas (VII), (X) and (XI), and organics that do not react with a base. If it is a solvent, there will be no restriction
  • this organic solvent one type of organic solvent may be used alone, or two or more types of organic solvents may be used in combination. Moreover, what is necessary is just to use a commercially available organic solvent.
  • the amount of the organic solvent used is not particularly limited as long as it is generally used in this field.
  • guanidine or a guanidine derivative represented by the general formula (V) or a general formula (VII) is used.
  • the amount is usually 0.01 to 500 mL, preferably 0.1 to 100 mL, relative to 1 mmol of the compound or the compound represented by the general formula (X).
  • reaction temperature in the reaction of the guanidine or guanidine derivative represented by the general formula (V) and the carbodiimide derivative represented by the general formula (VI) is such that the guanidine or guanidine derivative and the carbodiimide derivative react efficiently.
  • reaction temperature in the reaction of the compound represented by the general formula (VII) or the general formula (X) with the hydrogen halide represented by the general formula (VIII) is the above general formula (VII) or the general formula
  • the temperature is set so that the compound represented by (X) and the hydrogen halide react efficiently, and the compound represented by the general formula (B 2a -X a ) or the general formula (B 2b -X a ) can be obtained with good yield. It is desirable to do. Specifically, for example, it is usually ⁇ 20 to 150 ° C., preferably 0 to 80 ° C.
  • reaction temperature in the reaction between the compound represented by the general formula (VII) and the alkyl halide represented by the general formula (IX) is the same as the compound represented by the general formula (VII), the alkyl halide, and the like. Is preferably set to a temperature at which the compound represented by the general formula (X) can be obtained in a high yield. Specifically, for example, it is usually ⁇ 20 to 150 ° C., preferably 0 to 80 ° C.
  • reaction temperature in the reaction of the guanidine or guanidine derivative represented by the general formula (V) with the compound represented by the general formula (XI) is represented by the guanidine or guanidine derivative and the general formula (XI). It is desirable to set the temperature so that the compound reacts efficiently and the compound represented by the general formula (B 2c -X a ) can be obtained in good yield. Specifically, for example, it is usually 0 to 200 ° C., preferably 20 to 150 ° C.
  • the pressure during the series of reactions shown in the above scheme [ii] is not particularly limited as long as the series of reactions is carried out without delay, and may be performed at normal pressure, for example.
  • the reaction time in the series of reactions shown in the scheme [ii] is represented by the guanidine or guanidine derivative, carbodiimide derivative, hydrogen halide, alkyl halide, general formulas (VII), (X) and (XI). It may be affected by the type of compound and base, the amount of such compound and base used, the presence or absence and type of organic solvent, the reaction temperature, the pressure during the reaction, and the like. For this reason, the desired reaction time cannot be generally stated, but is usually, for example, 1 minute to 24 hours, preferably 3 minutes to 12 hours.
  • the series of products after the reaction shown in the above scheme [ii] can be isolated by general post-treatment operations and purification operations usually performed in this field.
  • Specific examples of the isolation method include, for example, a reaction of guanidine or a guanidine derivative represented by the general formula (V) with a carbodiimide derivative represented by the general formula (VI) or a general formula (VII) as necessary.
  • a nonpolar solvent such as hexane is added to the reaction system, and after cooling, the resulting crystals are collected by filtration to obtain a simple product. Can be separated.
  • a polar solvent such as acetone is added to the reaction system to remove the deposited salt
  • the product can be isolated by concentrating the organic layer under reduced pressure. Furthermore, the product may be isolated by performing recrystallization, distillation, column chromatography, etc. on the residue obtained by filtering or washing the reaction solution or concentrating the reaction solution, if necessary.
  • the compound represented by the general formula (VI-d), which is one of the specific examples of the compound represented by the general formula (VI) in the scheme [ii], is represented by the following scheme [ii-i], for example. It can be manufactured by the method shown. That is, for example, an alkylamine represented by the general formula (VI-a) and an aryl isothiocyanate represented by the general formula (VI-b) are reacted to obtain a thiourea derivative represented by the general formula (VI-c), The desulfurization reaction may be performed.
  • R 16e and R 17e each independently represents an alkyl group having 1 to 12 carbon atoms
  • R 16f and R 17f each independently represent a nitro group, an alkyl group having 1 to 6 carbon atoms
  • carbon represents an aryl group having 6 to 14 carbon atoms which may be substituted with an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms or a dialkylamino group having 2 to 12 carbon atoms, wherein R 16d and R 17d are The same as above.
  • R 16e and R 17e in the general formula (VI-d) are the same as the specific examples of the alkyl group having 1 to 12 carbon atoms represented by R 16 and R 17 in the general formula (B 2 ). The same can be mentioned as preferred specific examples.
  • R 16f and R 17f in the general formula (VI-d) include a “nitro group, an alkyl group having 1 to 6 carbon atoms, a carbon number of 1 represented by R 16 and R 17 in the general formula (B 2 )”.
  • R 16f and R 17f in the general formula (VI-d) include a “nitro group, an alkyl group having 1 to 6 carbon atoms, a carbon number of 1 represented by R 16 and R 17 in the general formula (B 2 )”.
  • R 16d is an alkyl group having 1 to 12 carbon atoms
  • R 17d is a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms
  • aryl group having 6 to 14 carbon atoms which may be substituted with an alkylthio group having 1 to 6 carbon atoms or a dialkylamino group having 2 to 12 carbon atoms
  • the reaction proceeds with the structure shown above.
  • R 16d in the general formulas (VI-c) and (VI-d) is R 16e in the general formula (VI-a), and R 17d in the general formulas (VI-c) and (VI-d). Is R 17f in formula (VI-a).
  • R 16d in the general formula (VI-d) is a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, or a dialkyl having 2 to 12 carbon atoms.
  • R 17d is an alkyl group having 1 to 12 carbon atoms
  • the compounds represented by the general formulas (VI-a) and (VI-b) The reaction proceeds with the structure shown in the lower part of the figure.
  • R 16d in the general formulas (VI-c) and (VI-d) is R 16f in the general formula (VI-a), and R 17d in the general formulas (VI-c) and (VI-d). Is R 17e in formula (VI-a).
  • the alkylamine represented by the general formula (VI-a) relating to the method for producing the compound represented by the general formula (VI-d) described above may be a commercially available product or a compound appropriately synthesized by a method known per se.
  • Specific examples of the alkylamine represented by the general formula (VI-a) include, for example, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, cyclobutylamine.
  • N-pentylamine isopentylamine, sec-pentylamine, tert-pentylamine, neopentylamine, (2-methylbutyl) amine, (1,2-dimethylpropyl) amine, (1-ethylpropyl) amine, cyclopentyl Amine, n-hexylamine, isohexylamine, sec-hexylamine, tert-hexylamine, neohexylamine, (2-methylpentyl) amine, (1,2-dimethylbutyl) amine, (2,3-dimethylbutyl) ) Amine, (1-ethylbutyl) Amine, cyclohexylamine, and the like.
  • the aryl isothiocyanate represented by the general formula (VI-b) relating to the method for producing the compound represented by the general formula (VI-d) described above may be a commercially available product or a compound appropriately synthesized by a method known per se. Good.
  • aryl isothiocyanate represented by the general formula (VI-b) include, for example, phenyl isothiocyanate, 2-nitrophenyl isothiocyanate, 3-nitrophenyl isothiocyanate, 4-nitrophenyl isothiocyanate, 2, isothiocyanate 2, 4-dinitrophenyl, 2,6-dinitrophenyl isothiocyanate, 2-methylphenyl isothiocyanate, 3-methylphenyl isothiocyanate, 4-methylphenyl isothiocyanate, 4-ethylphenyl isothiocyanate, 4-n-propylphenyl isothiocyanate , 4-isopropylphenyl isothiocyanate, 4-n-butylphenyl isothiocyanate, 4-n-pentylphenyl isothiocyanate, 4-n-hexylphenyl isothiocyanate, isothiocyanate 2,3-dimethylpheny
  • the amount of aryl isothiocyanate represented by the general formula (VI-b) is not particularly limited as long as it is generally used in this field. For example, it is represented by the general formula (VI-a).
  • the amount is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to 2 equivalents relative to the number of moles of alkylamine.
  • the yield of the thiourea derivative represented by the general formula (VI-c) may be reduced.
  • the amount of aryl isothiocyanate used is very large, problems such as loss of economic efficiency arise.
  • the desulfurization reaction in the above-described method for producing the compound represented by the general formula (VI-d) may be appropriately performed by a method known per se.
  • the thiourea derivative represented by the general formula (VI-c) A compound represented by the general formula (VI-d) may be obtained by reacting an amine such as triethylamine and a halogen atom such as iodine.
  • the amount of amine used is not particularly limited as long as it is generally used in this field, and for example, relative to the number of moles of the thiourea derivative represented by the general formula (VI-c).
  • the amount is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 2 to 3 equivalents.
  • the yield of the compound represented by the general formula (VI-d) may be reduced.
  • the amount of the amine used is very large, there arises a problem that economic efficiency is impaired.
  • the amount of halogen atom to be used is not particularly limited as long as it is generally used in this field.
  • the halogen atom is used in the mol number of the thiourea derivative represented by the general formula (VI-c).
  • it is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to 2 equivalents.
  • the amount of the halogen atom used is extremely small, the yield of the compound represented by the general formula (VI-d) may be reduced.
  • the amount of the halogen atom used is very large, there arises a problem that economic efficiency is impaired.
  • the series of reactions shown in the above scheme [ii-i] may be performed in the absence of a solvent or in an organic solvent.
  • the organic solvent are not particularly limited as long as the organic solvent does not react with the alkylamine, the aryl isothiocyanate, the thiourea derivative, and the compound represented by the general formula (VI-d).
  • the scheme [i] The thing similar to the specific example of the organic solvent shown is mentioned.
  • this organic solvent one type of organic solvent may be used alone, or two or more types of organic solvents may be used in combination.
  • what is necessary is just to use a commercially available organic solvent.
  • the amount of the organic solvent used is not particularly limited as long as it is generally used in this field.
  • the alkylamine represented by the general formula (VI-a) or the general formula (VI-c) The amount is usually 0.01 to 500 mL, preferably 0.1 to 100 mL, with respect to 1 mmol of the thiourea derivative represented by formula (1).
  • reaction temperature in the reaction of the alkylamine represented by the general formula (VI-a) and the aryl isothiocyanate represented by the general formula (VI-b) is such that the alkylamine and the aryl isothiocyanate are efficient. It is desirable to set the temperature so that it reacts well and the thiourea derivative represented by the general formula (VI-c) is obtained in good yield. Specifically, for example, it is usually 0 to 200 ° C., preferably 20 to 150 ° C.
  • the temperature during the desulfurization reaction for the thiourea derivative represented by the general formula (VI-c) is desirably set to a temperature at which the compound represented by the general formula (VI-c) can be obtained in a high yield. . Specifically, for example, it is usually 0 to 200 ° C., preferably 20 to 150 ° C.
  • the pressure during the series of reactions shown in the above scheme [ii-i] is not particularly limited as long as the series of reactions is carried out without delay, and may be performed at normal pressure, for example.
  • the reaction time in the series of reactions shown in the above scheme [ii-i] is the kind of alkylamine, aryl isothiocyanate, thiourea derivative and compound represented by the general formula (VI-d), the amount used, and the organic solvent. It may be affected by the presence / absence and type, reaction temperature, reaction pressure, and the like. For this reason, the desired reaction time cannot be generally stated, but is usually, for example, 1 minute to 24 hours, preferably 3 minutes to 12 hours.
  • the series of products after the reaction shown in the above scheme [ii-i] can be isolated by general post-treatment operations and purification operations usually performed in this field. Furthermore, the product may be isolated by performing recrystallization, distillation, column chromatography, etc. on the residue obtained by filtering or washing the reaction solution or concentrating the reaction solution, if necessary.
  • the compound represented by the general formula (B 3 -X a ) according to the method for producing the compound represented by the general formula (A) of the present invention described above is produced by, for example, the method shown in the following scheme [iii]. Can do. That is, among the compounds represented by the general formula (B 3 -X a), a general formula (B 3 -X a) in Q 1 ⁇ Q 3 is Formula (b 2), and, R 19 is 3 A compound representing an alkyl group having a secondary alkyl as a binding site (a compound represented by the following general formula (B 3a -X a )) is represented by, for example, a phosphine represented by the general formula (XII) and the general formula (XIII).
  • R 19a represents a C 4-12 alkyl group having tertiary alkyl as a binding site
  • R 19b represents a carbon atom having a hydrogen atom or primary or secondary alkyl as a binding site.
  • R 19c represents an alkyl group having 1 to 12 carbon atoms
  • Q 1a to Q 3a and Q 1c-1 to Q 1c-9 each independently represent the above general formula (b 2 )
  • X a and X a- are the same as defined above, except that in the above general formulas (XII), (XIV) and (XVIII), the number of hydrogen atoms bonded to the nitrogen atom in the formula is 0
  • the general formulas (XV), (B 3a -X a ), (B 3b -X a ) and (B 2c -X a ) the number of hydrogen atoms bonded to the nitrogen atom in the formula is 1 to 5)
  • the binding site is a tertiary alkyl.
  • a branched one is preferable, and specifically, for example, tert-butyl group, tert-pentyl group, tert-hexyl group, 3-methylpentan-3-yl group, tert-heptyl group, 3-methylhexane-3- Yl group, 3-ethylpentan-3-yl group, tert-octyl group, 3 -Methylheptan-3-yl group, 3-ethylhexane-3-yl group, 2,4,4-trimethylpentan-2-yl group, tert-nonyl group, tert-decyl group, tert-undecyl group, tert- Examples include dodecyl group, adamantyl group, etc.
  • the alkyl group having 1 to 12 carbon atoms having a primary or secondary alkyl represented by R 19b as the binding site is a primary or secondary alkyl group having a binding site. As long as it is linear, branched or cyclic.
  • An alkyl group having 1 to 8 carbon atoms at the binding site is preferable, and among them, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a cyclobutyl group, etc.
  • An alkyl group having 1 to 4 carbon atoms having primary or secondary alkyl as a binding site is more preferable, and a straight chain having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, or an n-butyl group.
  • a chain alkyl group is more preferable, and a methyl group is particularly preferable among them.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 0 to 4, preferably 0 to 2, and more preferably 0.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 1 to 5, and preferably 1 to 3 1 is more preferable. Note that the number of hydrogen atoms shown here is always 1 because the nitrogen atoms in the general formulas (XV) and (B 3a -X a ) to (B 2c -X a ) already contain one hydrogen atom. That's it.
  • R 19a in the general formulas (XIII), (XIV), and (B 3a -X a ) is more preferably a C 4-8 alkyl group having a tertiary alkyl as a binding site.
  • R 19b in the general formulas (XVI) and (B 3b -X a ) is more preferably a C 1-12 alkyl group having a primary or secondary alkyl as a binding site.
  • R 19c in the general formulas (XVII), (XVIII) and (B 3c -X a ) is more preferably an alkyl group having 1 to 8 carbon atoms.
  • the phosphine represented by the general formula (XII) relating to the method for producing the compound represented by the general formula (B 3 -X a ) described above may be a commercially available product or a phosphine appropriately synthesized by a method known per se.
  • phosphine represented by the general formula (XII) include tris (dimethylamino) phosphine, tris (diethylamino) phosphine, tris (di-n-propylamino) phosphine, tris (diisopropylamino) phosphine, tris (di -N-Butylamino) phosphine, Tris (diisobutylamino) phosphine, Tris (di-sec-butylamino) phosphine, Tris (di-tert-butylamino) phosphine, Tris (dicyclobutylamino) phosphine, Tris (N- Aziridinyl) phosphine, tris (N-azetidinyl) phosphine, tris (N-pyrrolidinyl) phosphine, 2-diethylamino-1-methyl
  • the alkyl azide represented by the general formula (XIII) relating to the method for producing the compound represented by the general formula (B 3 -X a ) described above may be a commercially available product or a compound appropriately synthesized by a method known per se. .
  • alkyl azide represented by the general formula (XIII) include tert-butyl azide, tert-pentyl azide, tert-hexyl azide, 3-methylpentane-3-yl azide, tert-heptyl azide, 3-methylhexane-3- Ilazazide, 3-ethylpentane-3-yl azide, tert-octyl azide, 3-methylheptane-3-yl azide, 3-ethylhexane-3-yl azide, 2,4,4-trimethylpentan-2-yl azide, tert-nonyl azide Tert-decyl azide, tert-undecyl azide, tert-dodecyl azide, adamantyl azide and the like.
  • the alkyl halide represented by the general formula (XVI) relating to the method for producing the compound represented by the above general formula (B 3 -X a ) may be a commercially available product or a compound appropriately synthesized by a method known per se. Good.
  • Specific examples of the alkyl halide represented by the general formula (XVI) include methyl chloride, methyl bromide, methyl iodide, ethyl chloride, ethyl bromide, ethyl iodide, propyl chloride, propyl bromide and propyl iodide.
  • the alkyl group in the halogenated alkyl is not limited to the normal-form, but is a branched alkyl group such as a sec-form, iso-form, or neo-form, or a cyclic alkyl group such as a cyclo-form.
  • a branched alkyl group such as a sec-form, iso-form, or neo-form
  • a cyclic alkyl group such as a cyclo-form.
  • the binding site is tertiary alkyl, such as the tert-form.
  • the compound represented by the general formula (XVII) relating to the method for producing the compound represented by the general formula (B 3 -X a ) described above may be a commercially available product or a compound appropriately synthesized by a method known per se.
  • Examples of the compound represented by the general formula (XVII) include P, P-dichloro-N-methylphosphineimide, P, P-dichloro-N-ethylphosphineimide, P, P-dichloro-Nn-propylphosphineimide.
  • the amount of the alkyl azide represented by the general formula (XIII) described above may be an amount generally used in this field. For example, it is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, and more preferably 1 to 2 equivalents relative to the number of moles of the phosphine represented by the general formula (XII).
  • the amount of the alkyl azide used is extremely small, the yield of the compound represented by the general formula (XIV) may be reduced.
  • the amount of the alkyl azide used is very large, there arises a problem that economic efficiency is impaired.
  • the amount of the hydrogen halide represented by the general formula (VIII) described above is usually an amount generally used in this field.
  • the amount of the hydrogen halide used is extremely small, the yield of the compound represented by the general formula (B 3a -X a ) or the general formula (B 3b -X a ) may decrease.
  • the amount of the hydrogen halide used is very large, there arises a problem that the economy is impaired.
  • the amounts of trimethylsilyl azide and methanol used in the reaction for obtaining the phosphazene represented by the general formula (XV) are usually used in this field.
  • the amount is not particularly limited as long as it is generally used, and for example, generally 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, relative to the number of moles of the phosphine represented by the general formula (XII). More preferably, it is 1 to 2 equivalents.
  • the amounts of trimethylsilyl azide and methanol used are extremely small, the yield of the phosphazene may be reduced.
  • the amounts of trimethylsilyl azide and methanol used are very large, problems such as loss of economic efficiency arise.
  • the alkyl halide represented by the general formula (XVI) is used in an amount generally used in this field.
  • the amount of the alkyl halide used is extremely small, the yield of the compound represented by the general formula (X) may be reduced.
  • the amount of the alkyl halide used is very large, there arises a problem that economic efficiency is impaired.
  • the amount of the phosphazene represented by the general formula (XV) used in the reaction for obtaining the compound represented by the general formula (XVIII) is usually The amount is not particularly limited as long as it is generally used in this field.
  • the amount is usually 2.6 to 30 equivalents, preferably 2.8 to the mol number of the compound represented by the general formula (XVII). 10 equivalents, more preferably 3-4 equivalents.
  • the amount of the phosphazene used is very small, the yield of the compound represented by the general formula (XVIII) may be reduced.
  • the series of reactions shown in the above scheme [iii] is usually performed in an appropriate organic solvent.
  • the organic solvent include organic solvents that do not react with the compounds represented by the phosphine, alkyl azide, hydrogen halide, trimethylsilyl azide, methanol, phosphazene, alkyl halide, general formulas (XVII) and (XVIII). If it is, there will be no restriction
  • this organic solvent one type of organic solvent may be used alone, or two or more types of organic solvents may be used in combination. Moreover, what is necessary is just to use a commercially available organic solvent.
  • the amount of the organic solvent used is not particularly limited as long as it is generally used in this field.
  • a phosphine represented by the general formula (XII) a compound represented by the general formula (XIV)
  • the amount is usually 0.01 to 500 mL, preferably 0.1 to 100 mL, relative to 1 mmol of the phosphazene represented by the general formula (XV) or the compound represented by the general formula (XVIII).
  • reaction temperature in the reaction of the phosphine represented by the general formula (XII) and the alkyl azide represented by the general formula (XIII) is such that the phosphine and the alkyl azide react efficiently, and the general formula (XIV It is desirable to set the temperature so that the compound represented by Specifically, for example, it is usually ⁇ 20 to 150 ° C., preferably 0 to 80 ° C.
  • reaction temperature in the reaction of the compound represented by the general formula (XIV) or the general formula (XVIII) with the hydrogen halide represented by the general formula (VIII) is the above general formula (XIV) or the general formula
  • the temperature is set such that the compound represented by (XVIII) and the hydrogen halide react efficiently, and the compound represented by the general formula (B 3a -X a ) or the general formula (B 3c -X a ) can be obtained in good yield. It is desirable to do. Specifically, for example, it is usually ⁇ 20 to 150 ° C., preferably 0 to 80 ° C.
  • reaction temperature in the reaction of the phosphine represented by the general formula (XII) with trimethylsilyl azide may be any temperature generally used in refluxing operations in this field. It is desirable to set the temperature so that trimethylsilylazide reacts efficiently and the phosphazene represented by the general formula (XV) can be obtained in good yield. Specifically, for example, it is usually 50 to 300 ° C., preferably 100 to 200 ° C.
  • reaction temperature in the reaction between the compound obtained by the reaction of phosphine and trimethylsilyl azide and methanol is such that the compound obtained by the reaction of phosphine and trimethylsilyl azide and methanol are the same. It is desirable to set the temperature so that it reacts efficiently and the phosphazene represented by the general formula (XV) can be obtained in a high yield. Specifically, for example, it is usually ⁇ 20 to 150 ° C., preferably 0 to 80 ° C.
  • reaction temperature in the reaction between the phosphazene represented by the general formula (XV) and the alkyl halide represented by the general formula (XVI) is such that the phosphazene and the alkyl halide react efficiently. It is desirable to set the temperature at which the compound represented by (B 3b -X a ) can be obtained with good yield. Specifically, for example, it is usually 0 to 200 ° C., preferably 20 to 150 ° C.
  • reaction temperature in the reaction between the phosphazene represented by the general formula (XV) and the compound represented by the general formula (XVII) is such that the phosphazene and the compound represented by the general formula (XVII) react efficiently.
  • the pressure at the time of the series of reactions shown in the above scheme [iii] is not particularly limited as long as the series of reactions is carried out without delay, and may be performed at normal pressure, for example.
  • the reaction time in the series of reactions shown in the above scheme [iii] is the phosphine, alkyl azide, hydrogen halide, trimethyl azide, methanol, phosphazene, alkyl halide, general formulas (XVII) and (XVIII). It may be affected by the type of compound shown, the amount of such compound used, the type of organic solvent, the reaction temperature, the pressure during the reaction, and the like. For this reason, the desired reaction time cannot be generally stated, but is usually, for example, 1 minute to 24 hours, preferably 3 minutes to 12 hours.
  • the series of products after the reaction shown in the above scheme [iii] can be isolated by general post-treatment operations and purification operations usually performed in this field.
  • a nonpolar solvent such as diethyl ether or methylene chloride
  • the organic layer is concentrated under reduced pressure, whereby the product is simply obtained. Can be separated.
  • the product may be isolated by performing recrystallization, distillation, column chromatography, etc. on the residue obtained by filtering or washing the reaction solution or concentrating the reaction solution.
  • the compound represented by the general formula (B 4 -X a ) according to the above-described method for producing the compound represented by the general formula (A) of the present invention is produced, for example, by the method shown in the following scheme [iv].
  • the compound represented by the general formula (XXI) may be obtained and further synthesized by reacting the compound represented by the general formula (XXI) with the compound represented by the general formula (XXII).
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 0 to 4, preferably 0 to 2, and more preferably 0.
  • phosphine represented by the general formula (XIX) according to the method for producing the compound represented by the general formula (B 4 -X a ) described above include tris (dimethylamino) phosphine, tris (diethylamino) phosphine, tris ( Di-n-propylamino) phosphine, tris (diisopropylamino) phosphine, tris (di-n-butylamino) phosphine, tris (diisobutylamino) phosphine, tris (di-sec-butylamino) phosphine, tris (di-tert -Butylamino) phosphine, tris (dicyclobutylamino) phosphine and the like.
  • the phosphine represented by the general formula (XIX) may be a commercially available one or a compound appropriately synthesized by a
  • Specific examples of the compound represented by the general formula (XX) according to the method for producing the compound represented by the above general formula (B 4 -X a ) include dichloro (dimethylamino) phosphine, dichloro (diethylamino) phosphine, dichloro ( Di-n-propylamino) phosphine, dichloro (diisopropylamino) phosphine, dichloro (di-n-butylamino) phosphine, dichloro (diisobutylamino) phosphine, dichloro (di-sec-butylamino) phosphine, dichloro (di-tert -Butylamino) phosphine, dichloro (dicyclobutylamino) phosphine, dichlorophosphineiminotris (dimethylamino) phosphorane, dichlorophosphineiminotris
  • Specific examples of the compounds represented by the general formulas (XXII-Q 8 ) and (XXII-Q 9 ) according to the method for producing the compound represented by the general formula (B 4 -X a ) include dimethylamine, diethylamine, Di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, di-tert-butylamine, dicyclobutylamine, tris (dimethylamino) phosphinimine, tris (diethylamino) phosphinimine, Tris (di-n-propylamino) phosphinimine, tris (diisopropylamino) phosphinimine, tris (di-n-butylamino) phosphinimine, tris (diisobutylamino) phosphinimine, tris (di-sec-butyla
  • the amount of trimethylsilyl azide used in the reaction for obtaining the compound represented by the general formula (XXI) is generally used in this field.
  • the amount of the phosphine is not particularly limited as long as it is an amount, for example, usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to the mol number of the phosphine represented by the general formula (XIX). ⁇ 2 equivalents.
  • the amount of trimethylsilyl azide used is extremely small, the yield of the compound represented by the general formula (XXI) may be reduced.
  • the amount of the trimethylsilyl azide used is very large, there arises a problem that economic efficiency is impaired.
  • the amount of the compound represented by the general formula (XX) described above is usually an amount generally used in this field.
  • it is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to 2 equivalents relative to the number of moles of the phosphine represented by the general formula (XIX).
  • the amount of the compound represented by the general formula (XX) is extremely small, the yield of the compound represented by the compound represented by the general formula (XXI) may be reduced.
  • the usage-amount of the compound shown by the said general formula (XX) is very much, problems, such as impairing economical efficiency, arise.
  • the amount of the compound represented by the general formula (XXII-Q 8 ) described above is usually an amount generally used in this field. As long as it is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to 2 equivalents relative to the number of moles of the compound represented by the general formula (XXI). is there.
  • the amount of the compound represented by the general formula (XXII-Q 8 ) is extremely small, the yield of the compound represented by the compound represented by the general formula (B 4 -X a ) may be reduced.
  • the amount of the compound represented by the general formula (XXII-Q 8 ) is very large, there arises a problem that economic efficiency is impaired.
  • the amount of the compound represented by the general formula (XXII-Q 9 ) described above is usually an amount generally used in this field. As long as it is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to 2 equivalents relative to the number of moles of the compound represented by the general formula (XXI). is there.
  • the amount of the compound represented by the general formula (XXII-Q 9 ) is extremely small, the yield of the compound represented by the compound represented by the general formula (B 4 -X a ) may be reduced.
  • the amount of the compound represented by the general formula (XXII-Q 9 ) is very large, there arises a problem that the economy is impaired.
  • the amount of each of the compounds represented by the general formulas (XXII-Q 8 ) and (XXII-Q 9 ) is the same as the amount of the compound represented by the above general formula (XXII-Q 8 ).
  • the preferable usage amount is also the same.
  • the series of reactions shown in the above scheme [iv] may be performed in the absence of a solvent or in an organic solvent.
  • the organic solvent are not particularly limited as long as the organic solvent does not react with the compounds represented by the phosphine, trimethylsilyl azide, general formulas (XX), (XXII-Q 8 ) and (XXII-Q 9 ).
  • the same organic solvent as shown in the above scheme [i] can be used.
  • one type of organic solvent may be used alone, or two or more types of organic solvents may be used in combination.
  • what is necessary is just to use a commercially available organic solvent.
  • the amount of the organic solvent used is not particularly limited as long as it is generally used in this field.
  • a phosphine represented by the general formula (XIX) or a compound represented by the general formula (XXI) The amount is usually 0.01 to 500 mL, preferably 0.1 to 100 mL per 1 mmol.
  • reaction temperature in the reaction of the phosphine represented by the general formula (XIX) with trimethylsilyl azide may be any temperature generally used in refluxing operations in this field. It is desirable to set the temperature so that trimethylsilylazide reacts efficiently and the product is obtained in good yield. Specifically, for example, it is usually 50 to 300 ° C., preferably 100 to 200 ° C.
  • reaction temperature is the compound obtained by the reaction of the phosphine with trimethylsilyl azide. It is desirable to set the temperature at which the compound represented by formula (XX) reacts efficiently and the compound represented by formula (XXI) is obtained in good yield. Specifically, for example, it is usually ⁇ 20 to 150 ° C., preferably 0 to 80 ° C.
  • reaction temperature in the reaction of the compound represented by the general formula (XXI) and the compound represented by the general formula (XXII-Q 8 ) or (XXII-Q 9 ) is represented by the general formula (XXI).
  • a compound represented by the general formula (XXII-Q 8 ) or (XXII-Q 9 ) can be efficiently reacted, and the compound represented by the general formula (B 4 -X a ) can be obtained at a temperature at which the compound can be obtained in good yield. It is desirable to set. Specifically, for example, it is usually ⁇ 20 to 150 ° C., preferably 0 to 80 ° C.
  • the pressure at the time of the series of reactions shown in the above scheme [iv] is not particularly limited as long as the series of reactions is carried out without delay, and may be performed at normal pressure, for example.
  • the reaction time in the series of reactions shown in the above scheme [iv] depends on the types of the phosphine, trimethylsilyl azide, the compounds represented by the general formulas (XX), (XXII-Q 8 ) and (XXII-Q 9 ). It may be affected by the amount of compound used, the type of organic solvent, the reaction temperature, the pressure during the reaction, and the like. For this reason, the desired reaction time cannot be generally stated, but is usually 1 minute to 24 hours, preferably 3 minutes to 12 hours, for example.
  • the series of products after the reaction shown in the above scheme [iv] can be isolated by general post-treatment operations and purification operations usually performed in this field. Further, if necessary, the product may be isolated by performing recrystallization, distillation, column chromatography, etc. on the residue obtained by filtering or washing the reaction solution or concentrating the reaction solution.
  • the compound represented by the general formula (B 5 -X a ) according to the above-described method for producing the compound represented by the general formula (A) of the present invention is produced, for example, by the method shown in the following scheme [v].
  • Can do That is, of the general formula (B 5 -X a) a compound represented by represents a group R 30 in the general formula (B 5 -X a) is shown the general formula (b 3), R 32, R 33 and in the R 35, (a compound represented by the following general formula (B 5a -X a)) compounds which do not form an alkylene chain of contain an ⁇ carbon atoms 5 be 10 nitrogen atoms, for example the general formula ( It may be synthesized by reacting a phosphine represented by XXIII) with a phosphonium azide represented by the general formula (XXIV).
  • a compound having an alkylene chain of 5 to 10 carbon atoms which may contain a nitrogen atom, together with R 32 , R 33 and R 35 in the general formula (B 5 -X a ) (the following general formula ( B 5b -X a ) is obtained by adding diethylamine to phosphorus trihalide represented by the general formula (XXV) to obtain a compound represented by the general formula (XXVI).
  • a compound represented by the general formula (XXVII) may be synthesized.
  • R 22 to R 27 , R 31 to R 36 , R 47 to R 49 , X a and Y are the same as described above, provided that the above general formulas (B 5a -X a ) and (B 5b -X a ), the number of hydrogen atoms bonded to the nitrogen atom in the formula is 0-4.
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 0 to 4, preferably 0 to 2, more preferably 0 preferable.
  • the phosphine represented by the general formula (XXIII) relating to the method for producing the compound represented by the general formula (B 5 -X a ) described above may be a commercially available product or one appropriately synthesized by a method known per se.
  • Specific examples of the phosphine represented by the general formula (XXIII) are the same as the specific examples of the phosphine represented by the general formula (XII) according to the method for producing the compound represented by the general formula (B 3 -X a ). Is mentioned.
  • the phosphonium azide represented by the general formula (XXIV) relating to the method for producing the compound represented by the general formula (B 5 -X a ) described above may be a commercially available product or one appropriately synthesized by a method known per se.
  • Specific examples of the phosphonium azide represented by the general formula (XXIV) include tris (dimethylamino) phosphonium azido chloride, tris (diethylamino) phosphonium azido chloride, tris (di-n-propylamino) phosphonium azido chloride, tris (diisopropyl).
  • Amino) phosphonium azido chloride tris (di-n-butylamino) phosphonium azide chloride, tris (diisobutylamino) phosphonium azido chloride, tris (di-sec-butylamino) phosphonium azido chloride, tris (di-tert-butylamino) Examples thereof include phosphonium azido chloride and tris (dicyclobutylamino) phosphonium azido chloride.
  • the phosphorus trihalide represented by the general formula (XXV) relating to the method for producing the compound represented by the general formula (B 5 -X a ) described above may be a commercially available product or a compound appropriately synthesized by a method known per se. That's fine.
  • Specific examples of the phosphorus trihalide represented by the general formula (XXV) include phosphorus trichloride, phosphorus tribromide, phosphorus triiodide and the like.
  • the compound represented by the general formula (XXVII) relating to the method for producing the compound represented by the general formula (B 5 -X a ) described above may be a commercially available product or a compound appropriately synthesized by a method known per se.
  • Specific examples of the compound represented by the general formula (XXVII) include tris (2- (N-methylamino) ethyl) amine, tris (2- (N-ethylamino) ethyl) amine, tris (2- (N -N-propylamino) ethyl) amine, tris (2- (N-isopropylamino) ethyl) amine, tris (2- (Nn-butylamino) ethyl) amine, tris (2- (N-isobutylamino) Ethyl) amine, tris (2- (N-sec-butylamino) ethyl) amine, tris (2- (tert-but
  • the amount of the phosphonium azide represented by the general formula (XXIV) described above may be an amount generally used in this field. For example, it is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to 2 equivalents with respect to the number of moles of the phosphine represented by the general formula (XXIII).
  • the amount of the phosphonium azide used is extremely small, the yield of the compound represented by the compound represented by the general formula (B 5a -X a ) may be lowered.
  • problems, such as impairing economical efficiency arise.
  • the amount of diethylamine used in the reaction for obtaining the compound represented by the general formula (XXVI) is generally used in this field.
  • the amount is not particularly limited, for example, generally 3.6 to 30 equivalents, preferably 3.8 to 10 equivalents, more preferably the number of moles of phosphorus trihalide represented by the general formula (XXV). Is 4 to 5 equivalents.
  • the amount of diethylamine used is extremely small, the yield of the compound represented by the general formula (XXVI) may be reduced.
  • the amount of diethylamine used is very large, problems such as loss of economic efficiency arise.
  • the amount of the compound represented by the general formula (XXVII) described above is usually an amount generally used in this field. There is no particular limitation, and for example, it is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to 2 equivalents, relative to the number of moles of the compound represented by the general formula (XXVI).
  • the amount of the compound represented by the general formula (XXVII) is extremely small, the yield of the compound represented by the compound represented by the general formula (B 5b -X a ) may be reduced.
  • the usage-amount of the compound shown by the said general formula (XXVII) is very much, problems, such as impairing economical efficiency, arise.
  • the series of reactions shown in the scheme [v] may be performed in the absence of a solvent or in an organic solvent.
  • the organic solvent are not particularly limited as long as the organic solvent does not react with the phosphine, phosphorus trihalide, diethylamine, the compounds represented by the general formulas (XXIV) and (XXVII), and the scheme [i]
  • the thing similar to the specific example of the organic solvent shown by these is mentioned.
  • this organic solvent one type of organic solvent may be used alone, or two or more types of organic solvents may be used in combination.
  • what is necessary is just to use a commercially available organic solvent.
  • the amount of the organic solvent used is not particularly limited as long as it is generally used in this field.
  • phosphine represented by the general formula (XXIII) trihalogen represented by the general formula (XXV)
  • the amount is usually 0.01 to 500 mL, preferably 0.1 to 100 mL, relative to 1 mmol of the compound represented by general formula (XXVI).
  • reaction temperature in the reaction of the phosphine represented by the general formula (XXIII) and the compound represented by the general formula (XXIV) is usually a temperature generally used for refluxing in this field.
  • the temperature is preferably set to a temperature at which the phosphine and the compound represented by the general formula (XXIV) react efficiently and the compound represented by the general formula (B 5a -X a ) can be obtained in a high yield. Specifically, for example, it is usually ⁇ 20 to 150 ° C., preferably 0 to 80 ° C.
  • reaction temperature in the reaction of phosphorus trihalide and diethylamine represented by the general formula (XXV) is a compound represented by the general formula (XXVI) in which the phosphorus trihalide and diethylamine react efficiently. It is desirable to set the temperature so that can be obtained with good yield. Specifically, for example, it is usually ⁇ 100 to 50 ° C., preferably ⁇ 80 to 20 ° C.
  • reaction temperature in the reaction of the compound represented by the general formula (XXVI) and the compound represented by the general formula (XXVII) is represented by the compound represented by the general formula (XXVI) and the general formula (XXVII). It is desirable to set the temperature so that the compound represented by the general formula (B 5b -X a ) can be obtained with good yield. Specifically, for example, it is usually ⁇ 20 to 150 ° C., preferably 0 to 80 ° C.
  • the pressure at the time of the series of reactions shown in the above scheme [v] is not particularly limited as long as the series of reactions is carried out without delay, and may be performed at normal pressure, for example.
  • the reaction time in the series of reactions shown in the scheme [v] is the phosphine, phosphorus trihalide, diethylamine, the types of the compounds represented by the general formulas (XXIV) and (XXVII), the amount of the compound used, the organic It may be affected by the type of solvent, reaction temperature, pressure during reaction, etc. For this reason, the desired reaction time cannot be generally stated, but is usually, for example, 1 minute to 24 hours, preferably 3 minutes to 12 hours.
  • the series of products after the reaction shown in the above scheme [v] can be isolated by general post-treatment operations and purification operations usually performed in this field. Further, if necessary, the product may be isolated by performing recrystallization, distillation, column chromatography, etc. on the residue obtained by filtering or washing the reaction solution or concentrating the reaction solution.
  • the compound represented by the general formula (B 6 -X a ) according to the above-described method for producing the compound represented by the general formula (A) of the present invention is produced, for example, by the method shown in the following scheme [vi].
  • the number of hydrogen atoms bonded to the nitrogen atom in the formula is an integer of 0 to 4, preferably 0 to 2, and more preferably 0.
  • the phosphorus pentahalide represented by the general formula (XXVIII) relating to the method for producing the compound represented by the general formula (B 6 -X a ) described above, a commercially available one or a compound appropriately synthesized by a method known per se is used. That's fine.
  • Specific examples of the phosphorus pentahalide represented by the general formula (XXVIII) include phosphorus pentachloride, phosphorus pentabromide, phosphorus pentaiodide and the like.
  • the compound represented by the general formula (XXIX) relating to the method for producing the compound represented by the general formula (B 6 -X a ) described above may be a commercially available product or a compound appropriately synthesized by a method known per se.
  • Specific examples of the compound represented by the general formula (XXIX) include 1,1,3,3-tetramethylguanidine, 1,1,3,3-tetraethylguanidine, 1,1,3,3-tetra-n.
  • the amount of the compound represented by the general formula (XXIX-Q 10 ) described above is usually an amount generally used in this field. As long as it is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to 2 equivalents relative to the number of moles of the compound represented by the general formula (XXVIII). is there.
  • the amount of the compound represented by the general formula (XXIX-Q 10 ) is extremely small, the yield of the compound represented by the compound represented by the general formula (B 6 -X a ) may be reduced.
  • the amount of the compound represented by the general formula (XXIX-Q 10 ) is very large, there arises a problem that economic efficiency is impaired.
  • the amount of the compound represented by the general formula (XXIX-Q 11 ) described above is usually an amount generally used in this field. As long as it is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to 2 equivalents relative to the number of moles of the compound represented by the general formula (XXVIII). is there.
  • the amount of the compound represented by the general formula (XXIX-Q 11 ) is extremely small, the yield of the compound represented by the compound represented by the general formula (B 6 -X a ) may be reduced.
  • the amount of the compound represented by the general formula (XXIX-Q 11 ) is very large, there arises a problem that economic efficiency is impaired.
  • the amount of the compound represented by the general formula (XXIX-Q 12 ) described above is usually an amount generally used in this field. As long as it is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to 2 equivalents relative to the number of moles of the compound represented by the general formula (XXVIII). is there.
  • the amount of the compound represented by the general formula (XXIX-Q 12 ) is extremely small, the yield of the compound represented by the compound represented by the general formula (B 6 -X a ) may be reduced.
  • the amount of the compound represented by the general formula (XXIX-Q 12 ) is very large, there arises a problem that economic efficiency is impaired.
  • the amount of the compound represented by the general formula (XXIX-Q 13 ) described above is usually an amount generally used in this field. As long as it is usually 0.8 to 10 equivalents, preferably 0.9 to 5 equivalents, more preferably 1 to 2 equivalents relative to the number of moles of the compound represented by the general formula (XXVIII). is there.
  • the amount of the compound represented by the general formula (XXIX-Q 13 ) is extremely small, the yield of the compound represented by the compound represented by the general formula (B 6 -X a ) may be reduced.
  • the amount of the compound represented by the general formula (XXIX-Q 13 ) is very large, there arises a problem that economic efficiency is impaired.
  • the amount of each of the compounds represented by the general formulas (XXIX-Q 10 ) to (XXIX-Q 13 ) is the same as the amount of the compound represented by the general formula (XXIX-Q 10 ) described above.
  • the preferable usage amount is also the same.
  • the series of reactions shown in the above scheme [vi] may be performed in the absence of a solvent or in an organic solvent.
  • the organic solvent are not particularly limited as long as the organic solvent does not react with the phosphorus pentahalide and the compounds represented by the general formulas (XXIX-Q 10 ) to (XXIX-Q 13 ). Examples thereof are the same as the specific examples of the organic solvent represented by i].
  • this organic solvent one type of organic solvent may be used alone, or two or more types of organic solvents may be used in combination. Moreover, what is necessary is just to use a commercially available organic solvent.
  • the amount of the organic solvent used is not particularly limited as long as it is generally used in this field.
  • the amount of the organic solvent is usually 0.8 with respect to 1 mmol of phosphorus pentahalide represented by the general formula (XXVIII). 01 to 500 mL, preferably 0.1 to 100 mL.
  • reaction temperature in the reaction with the phosphorus pentahalide represented by the general formula (XXVIII) and the compounds represented by the general formulas (XXIX-Q 10 ) to (XXIX-Q 13 ) is the above pentahalogenation.
  • the temperature is set so that phosphorus and the compounds represented by the general formulas (XXIX-Q 10 ) to (XXIX-Q 13 ) react efficiently and the compound represented by the general formula (B 6 -X a ) can be obtained in a high yield. It is desirable to do.
  • the phosphorus pentahalide and the compound represented by the general formulas (XXIX-Q 10 ) to (XXIX-Q 13 ) are mixed at usually ⁇ 50 to 50 ° C., preferably ⁇ 30 to 0 ° C. Thereafter, the reaction may be allowed to proceed at 50 to 200 ° C., preferably 100 to 180 ° C.
  • the pressure during the series of reactions shown in the above scheme [vi] is not particularly limited as long as the series of reactions is carried out without delay, and may be performed at normal pressure, for example.
  • the reaction time in the series of reactions shown in the above scheme [vi] is the phosphorus pentahalide, the types of compounds represented by the general formulas (XXIX-Q 10 ) to (XXIX-Q 13 ), and the amount of such compounds used. It may be affected by the type of organic solvent, the reaction temperature, the pressure during the reaction, and the like. For this reason, the desired reaction time cannot be generally stated, but is usually 1 minute to 24 hours, preferably 3 minutes to 12 hours, for example.
  • the series of products after the reaction shown in the above scheme [vi] can be isolated by general post-treatment operations and purification operations usually performed in this field.
  • the isolation method for example, if necessary, sodium methoxide is added to the reaction system, the volatile component is distilled off in a vacuum, and then the residue is dissolved in methylene chloride and filtered through sodium.
  • the product can be isolated by finally evaporating the solvent under vacuum. Further, if necessary, the product may be isolated by performing recrystallization, distillation, column chromatography, etc. on the residue obtained by filtering or washing the reaction solution or concentrating the reaction solution.
  • the base generator of the present invention comprises the compound represented by the general formula (A).
  • the base generator is irradiated with light (active energy rays) such as ultraviolet rays, visible rays, infrared rays, and X-rays or heated. Is generated.
  • the base generator of the present invention When the base generator of the present invention generates a base by irradiation with light (active energy rays), the base generator of the present invention is particularly preferably irradiated by active energy rays having a wavelength of 100 to 780 nm, preferably 200 to 450 nm. A base can be generated. Since the base generator of the present invention has an absorption wavelength region having a high molar extinction coefficient in a wavelength range of 200 to 450 nm, it can efficiently generate a base. In addition, the base generator of the present invention is preferably one that absorbs at least one active energy ray of i-line, h-line, and g-line among the above wavelength regions from the viewpoint of versatility.
  • the base generator of the present invention When the base generator of the present invention generates a base by heating, the base generator of the present invention can generate a base by heat energy generated by heating at 150 to 400 ° C., preferably 250 to 350 ° C.
  • the base generator of the present invention preferably has a temperature (hereinafter sometimes abbreviated as 5% weight reduction temperature) when heated to 5% by weight when heated to 150% or more.
  • 5% weight reduction temperature a temperature (hereinafter sometimes abbreviated as 5% weight reduction temperature) when heated to 5% by weight when heated to 150% or more.
  • baking or the like may be performed, but when the 5% weight loss temperature of the base generator is high, the baking temperature is set high. Therefore, after baking, for example, the residual organic solvent contained in the base-reactive composition of the present invention described later can be minimized. Thereby, the deterioration of the contrast between the exposed part (cured part) and the unexposed part (uncured part) due to the residual organic solvent can be suppressed.
  • the base generator of the present invention may contain additives such as a sensitizer, a cross-linking agent, and an organic solvent as long as the object and effect of the present invention are not hindered. May be included.
  • additives such as one kind of additive may be used alone, or two or more kinds of additives may be used in combination.
  • what is necessary is just to use what was synthesize
  • the base-reactive composition of the present invention comprises the base generator of the present invention and a base-reactive compound.
  • the base-reactive compound contained in the base-reactive composition of the present invention reacts by the action of a strong base (guanidines, biguanides, phosphazenes or phosphoniums) generated by the base generator of the present invention, and crosslinks.
  • a strong base guanidines, biguanides, phosphazenes or phosphoniums
  • the base-reactive compound include, for example, an epoxy compound having at least one epoxy group, such as a silicon compound having at least one alkoxysilyl group, silanol group, etc., such as at least one isocyanate group.
  • examples thereof include isocyanate compounds having the following, for example, polyamic acid compounds having at least one amide bond.
  • one type of base-reactive compound may be used alone, or two or more types of base-reactive compounds may be used in combination.
  • the epoxy compound may be any of a monomer, an oligomer, or a polymer. Specifically, for example, diglycidyl ether, ethylene glycol diglycidyl ether, spiro glycol diglycidyl ether, diethylene glycol diglycidyl.
  • Such an epoxy compound may be halogenated or hydrogenated.
  • Such epoxy compounds also include the derivatives of the specific examples described above.
  • one type of epoxy-type compound may be used independently, and 2 or more types of epoxy-type compounds may be used in combination.
  • what is necessary is just to use what was synthesize
  • the weight average molecular weight when the epoxy compound (epoxy resin) is an oligomer or polymer is a viewpoint of the heat resistance of the base-reactive composition of the present invention, coating properties, solubility in organic solvents, solubility in developer, and the like. Therefore, it is preferably 100 to 30,000, more preferably 200 to 20,000. When the weight average molecular weight is less than 100, the strength of the cured film or molded product obtained from the base-reactive composition of the present invention may be insufficient.
  • the weight average molecular weight is a value measured by gel permeation chromatography and converted to standard polystyrene.
  • the silicon-based compound may be any of a monomer, an oligomer, or a polymer.
  • Specific examples include an alkoxysilane compound and a silane coupling agent.
  • Specific examples of the alkoxysilane compound include, for example, trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, tetramethoxysilane, trimethylethoxysilane, dimethyldiethoxysilane, methyltriethoxysilane, tetraethoxysilane, diphenyldimethoxysilane, phenyl Trimethoxysilane, diphenyldiethoxysilane, phenyltriethoxysilane, hexyltrimethoxysilane, tetrapropoxysilane, tetrabutoxysilane, poly-3- (methyldimethoxysilane) propyl methacrylate, poly-3- (methyldiethoxy
  • alkoxysilane compound one kind of alkoxysilane compound may be used alone, or two or more kinds of alkoxysilane compounds may be used in combination.
  • what is necessary is just to use what was synthesize
  • silane coupling agent examples include vinyl silane, acrylic silane, epoxy silane, amino silane, and the like.
  • vinyl silane examples include vinyl trichlorosilane, vinyl tris ( ⁇ -methoxyethoxy) silane, vinyl triethoxy silane, vinyl trimethoxy silane and the like.
  • acrylic silane examples include ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, and the like.
  • epoxy silane examples include ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and the like. .
  • aminosilane examples include N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltrimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane and the like can be mentioned.
  • silane coupling agent other than the above examples include ⁇ -mercaptopropyltrimethoxysilane, ⁇ -chloropropylmethyldimethoxysilane, ⁇ -chloropropylmethyldiethoxysilane and the like.
  • silane coupling agent one kind of silane coupling agent may be used alone, or two or more kinds of silane coupling agents may be used in combination.
  • silane coupling agent one kind of silane coupling agent may be used alone, or two or more kinds of silane coupling agents may be used in combination.
  • what is necessary is just to use what was synthesize
  • the weight average molecular weight in the case where the silicon compound (silicon resin) is an oligomer or polymer is a viewpoint of the heat resistance, coatability, solubility in organic solvent, solubility in developer, etc. of the base-reactive composition of the present invention. Therefore, it is preferably 100 to 30,000, more preferably 200 to 20,000. When the weight average molecular weight is less than 100, the strength of the cured film or molded product obtained from the base-reactive composition of the present invention may be insufficient.
  • the weight average molecular weight is a value measured by gel permeation chromatography and converted to standard polystyrene.
  • the isocyanate-based compound may be any of a monomer, an oligomer, and a polymer. Specifically, for example, a monomeric isocyanate-based compound, a dimer isocyanate-based compound, and the like. Etc.
  • the isocyanate compound include, for example, toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, m-xylylene diisocyanate, hexahydro-m-xylylene diisocyanate.
  • isocyanate compound one type of isocyanate compound may be used alone, or two or more types of isocyanate compounds may be used in combination.
  • Such an isocyanate compound may be a commercially available compound or a compound synthesized appropriately by a method known per se.
  • the weight average molecular weight is 100 from the viewpoint of the heat resistance of the base-reactive composition of the present invention, the coating property, the solubility in an organic solvent, the solubility in a developer, and the like. Is preferably from 30,000 to 30,000, more preferably from 200 to 20,000. When the weight average molecular weight is less than 100, the strength of the cured film or molded product obtained from the base-reactive composition of the present invention may be insufficient.
  • the weight average molecular weight is a value measured by gel permeation chromatography and converted to standard polystyrene.
  • polyamic acid compound examples include per se known polyamic acid compounds (polyamic acid resins) obtained by a reaction between an acid anhydride and a diamine.
  • polyamic acid resins polyamic acid resins obtained by a reaction between an acid anhydride and a diamine.
  • preferred polyamic acid compounds include pyromellitic dianhydride, naphthalene tetracarboxylic dianhydride, biphenyl ether tetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, cyclopentane tetracarboxylic acid Anhydride, cyclohexanetetracarboxylic dianhydride, 4- (1,2-dicarboxyethyl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dianhydride, 5- (1,2 Polyamic acid obtained by reacting tetracarboxylic dianhydride such as -
  • Such polyamic acid compounds also include the derivatives of the specific examples described above.
  • this polyamic acid type compound one type of polyamic acid type compound may be used alone, or two or more types of polyamic acid type compounds may be used in combination.
  • what is necessary is just to use what was synthesize
  • the weight average molecular weight of the polyamic acid-based compound should be 100 to 30,000 from the viewpoints of heat resistance, coating properties, solubility in organic solvents, solubility in developer, and the like of the base-reactive composition of the present invention. Is more preferable, and 200 to 20,000 is more preferable. When the weight average molecular weight is less than 100, the strength of the cured film or molded product obtained from the base-reactive composition of the present invention may be insufficient. On the other hand, when the weight average molecular weight exceeds 30,000, not only the viscosity of the polyamic acid compound itself is increased and the solubility is deteriorated, but also the cured film surface is uniform and the film thickness is constant. May be difficult to obtain.
  • the weight average molecular weight is a value measured by gel permeation chromatography and converted to standard polystyrene.
  • the content of the base generator of the present invention contained in the base-reactive composition of the present invention is not particularly limited as long as it is an amount generally used in this field.
  • the amount is usually 0.1 to 100% by weight, preferably 1 to 50% by weight, and more preferably 5 to 30% by weight.
  • the base reactive composition of the present invention may be insufficiently cured.
  • the content of the base generator is very large, there arises a problem that the economy is impaired.
  • a sensitizer may be added in order to expand the photosensitive wavelength region and increase sensitivity.
  • the sensitizer is not particularly limited as long as it is a sensitizer generally used in this field.
  • Preferred examples of the sensitizer include benzophenone, p, p′-tetramethyldiaminobenzophenone, p, p′-tetraethyldiaminobenzophenone, ketoprofen, 2- (9-oxoxanthen-2-yl) propionic acid, 2-chlorothioxanthone, 2-isopropylthioxanthone, 2,4-diethylthioxanthone, anthrone, benzanthrone, 3-methyl-1,3-diaza-1,9-benzanthrone, 9-ethoxyanthracene, 9,10-diphenylanthracene 1,2-benzanthracene, anthracene, pyrene, perylene, phenothiazine, benzophenoxazine, benzyl, acridine, acridine orange, acridine yellow, acridone, oxazine,
  • one kind of sensitizer may be used alone, or two or more kinds of sensitizers may be used in combination.
  • what is necessary is just to use what was synthesize
  • the content of the sensitizer contained in the base-reactive composition of the present invention is not particularly limited as long as it is an amount generally used in this field. What is necessary is just to determine suitably with a base reactive compound, the required sensitivity, etc. More specifically, when a sensitizer is included, the content of the sensitizer is preferably 1 to 30% by mass with respect to the whole base-reactive composition, and among them, 1 to 20 More preferably, it is% by weight. When the content of the sensitizer is less than 1% by mass, the sensitivity may not be sufficiently increased. On the other hand, if the content of the sensitizer exceeds 30% by mass, it may be excessive to increase the sensitivity.
  • the base-reactive composition of the present invention preferably further contains a thiol compound or an acid anhydride as a crosslinking agent.
  • the thiol compound When used in combination with an epoxy compound, the thiol compound acts as a crosslinking agent that reacts with the epoxy group in the epoxy compound to cure the epoxy compound.
  • the thiol compound may be any of a monomer, an oligomer or a polymer, but it is preferable to use a thiol compound having two or more thiol groups.
  • thiol compounds in view of reactivity and ease of handling, pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate) ), Tris [(3-mercaptopropionyloxy) ethyl] isocyanurate is preferred.
  • a thiol compound one kind of thiol compound may be used alone, or two or more kinds of thiol compounds may be used in combination.
  • Such thiol-based compounds may be commercially available or those appropriately synthesized by a method known per se.
  • the weight average molecular weight is 100 from the viewpoint of the heat resistance of the base-reactive composition of the present invention, the coating property, the solubility in an organic solvent, the solubility in a developer, and the like. Is preferably from 10,000 to 10,000, more preferably from 200 to 5,000. When the weight average molecular weight is less than 100, the strength of the cured film or molded product obtained from the base-reactive composition of the present invention may be insufficient.
  • the weight average molecular weight is a value measured by gel permeation chromatography and converted to standard polystyrene.
  • An acid anhydride acts as a cross-linking agent that reacts with an epoxy group in an epoxy compound and cures the epoxy compound when used in combination with an epoxy compound or the like.
  • the acid anhydride may be any of a monomer, an oligomer or a polymer, and preferred specific examples of the acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, and methyltetrahydrophthalic anhydride.
  • Acid monofunctional acid anhydrides such as methylhexahydrophthalic anhydride, methyl nadic anhydride, dodecyl succinic anhydride, chlorendic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bis (an Hydrotrimate), bifunctional acid anhydrides such as methylcyclohexene tetracarboxylic acid anhydride, and free acid anhydrides such as trimet acid anhydride and polyazeline acid anhydride.
  • an acid anhydride one type of acid anhydride may be used alone, or two or more types of acid anhydrides may be used in combination.
  • what is necessary is just to use what was synthesize
  • the weight average molecular weight is 100 to 10 from the viewpoint of the heat resistance, coating property, solubility in organic solvents, solubility in developer, etc. of the base-reactive composition of the present invention. , 000 is preferable, and 200 to 5,000 is more preferable.
  • the weight average molecular weight is less than 100, the strength of the cured film or molded product obtained from the base-reactive composition of the present invention may be insufficient.
  • the weight average molecular weight exceeds 10,000, not only the viscosity of the acid anhydride itself is increased and the solubility is deteriorated, but also the cured film surface is uniform and the film thickness is constant. There is a risk that it will be difficult.
  • the weight average molecular weight is a value measured by gel permeation chromatography and converted to standard polystyrene.
  • the content of the acid anhydride is, for example, equivalent of an acid anhydride group (equivalent of —C ( ⁇ O) OC ( ⁇ O) —group) / epoxy group to an epoxy compound in a base-reactive compound. It is preferable that the ratio is equivalent to 0.3 / 2.7 to 2.0 / 1.0, and in particular, the ratio is 0.5 / 2.5 to 1.5 / 1.5. It is more preferable to do so.
  • the base-reactive composition of the present invention is suppressed in shrinkage during curing due to homopolymerization with only the base-reactive compound, and has dimensional stability. Can be increased.
  • the flexibility of the resin after curing, water resistance, chemical resistance, adhesion between the resin and the substrate, and inhibition of curing by oxygen Resistance etc. can be improved.
  • a composition containing an organic solvent may be desirable.
  • an organic solvent in the base-reactive composition, coatability can be improved and workability is improved.
  • the organic solvent is not particularly limited as long as it is an organic solvent generally used in this field.
  • organic solvent examples include saturated or unsaturated aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, decane, tetrahydronaphthalene, menthane, squalane, such as benzene, toluene, ethylbenzene, Aromatic hydrocarbon solvents such as styrene, xylene, diethylbenzene, and trimethylbenzene, such as halogen solvents such as dichloromethane, trichloromethane (chloroform), tetrachloromethane (carbon tetrachloride), such as diethyl ether, di-n-propyl ether Diisopropyl ether, methyl-tert-butyl ether, di-n-butyl ether, di-tert-butyl ether, cyclopentyl methyl ether, te
  • the content of the organic solvent contained in the base-reactive composition of the present invention is not particularly limited as long as it is generally used in this field, for example, on a predetermined substrate. What is necessary is just to select suitably so that it may apply
  • the base-reactive composition of the present invention includes, for example, fillers, pigments, dyes, leveling agents, antifoaming agents, antistatic agents, as long as the objects and effects of the present invention are not hindered. It may contain additives such as a pH adjuster, a dispersant, a dispersion aid, a surface modifier, a plasticizer, a plastic accelerator, a sagging inhibitor, and a curing accelerator. As such additives, one kind of additive may be used alone, or two or more kinds of additives may be used in combination. In addition, what is necessary is just to use what was synthesize
  • the composition is dissolved in an organic solvent to prepare a coating solution, and the prepared coating solution is applied to an appropriate solid surface such as a substrate. And dried to form a coating film.
  • the formed coating film is subjected to pattern exposure to generate a base, and then subjected to heat treatment under predetermined conditions to polymerize the base-reactive compound contained in the base-reactive composition. It is only necessary to encourage a reaction.
  • the base-reactive composition of the present invention contains the base generator of the present invention, the polymerization reaction proceeds even at room temperature when irradiated with active energy rays. It is preferable to perform a heat treatment.
  • the baking (heating) treatment conditions are irradiation (exposure) energy, type of strong base (guanidine, biguanide, phosphazene or phosphonium) generated from the base generator used, epoxy compound, silicon compound.
  • the baking (heating) temperature is preferably within the range of 50 ° C to 150 ° C, and preferably within the range of 60 ° C to 130 ° C. Is more preferable.
  • the baking (heating) time is preferably 10 seconds to 60 minutes, more preferably 60 seconds to 30 minutes.
  • a baking method, an active energy ray irradiation method, a developing method, etc., performed at the time of forming the pattern a method known per se may be appropriately employed. Good.
  • the base-reactive composition of the present invention described above contains the base generator of the present invention and a base-reactive compound, and is generated from the base generator by operations such as irradiation with light (active energy rays) and heating.
  • the strong base (guanidines, biguanides, phosphazenes or phosphoniums) is used as an initiator to cause the polymerization reaction of the base-reactive compound, and not only the curing of the base-reactive compound proceeds effectively but also the curing operation. Even if it is stored for a long time without performing it, it is possible to store it in a stable state without degrading the performance.
  • the base-reactive composition of the present invention exhibiting such effects can be suitably used for, for example, a curing material, a resist material (pattern forming material) and the like.
  • a molded body formed after curing operation is used as a member in a field where characteristics such as heat resistance, dimensional stability, and insulation are effective, for example, Paints, printing inks, color filters, films for flexible displays, semiconductor devices, electronic parts, interlayer insulation films, wiring coating films, optical circuits, optical circuit parts, antireflection films, holograms, optical members or building materials Widely used as components, printed materials, color filters, films for flexible displays, semiconductor devices, electronic components, interlayer insulation films, wiring coating films, optical circuits, optical circuit components, antireflection films, holograms, optical members Or a building member etc. are provided.
  • the base-reactive composition of the present invention when used as a resist material (pattern forming material), the pattern formed after the pattern forming operation has heat resistance and insulating properties.
  • the pattern formed after the pattern forming operation has heat resistance and insulating properties. -Filters, flexible display films, electronic parts, semiconductor devices, interlayer insulation films, wiring coating films, optical circuits, optical circuit parts, antireflection films, and other optical or electronic members that can be used effectively it can.
  • R 1-a represents an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 2 to 12 carbon atoms
  • R 2-a to R 4-a each independently represents a halogen atom
  • Z + is the same as defined above.
  • each functional group in R 1-a to R 4-a in general formula (Aa) includes specific examples of the corresponding functional groups described in R 1 to R 4 in general formula (A). The thing similar to an example is mentioned, A preferable specific example is also the same.
  • R 1-a is more preferably an alkyl group having 1 to 12 carbon atoms.
  • R 2-a to R 4-a in the general formula (Aa) all of R 2-a to R 4-a are the same halogen atom, alkyl group having 1 to 6 carbon atoms, More preferred is an alkoxy group having 6 or a phenyl group optionally substituted with an alkylthio group having 1 to 6 carbon atoms.
  • R 1-a represents an alkyl group having 1 to 12 carbon atoms
  • R 2-a to R 4-a each represents Independently, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 14 carbon atoms which may be substituted with an alkylthio group having 1 to 6 carbon atoms A certain combination
  • R 1-a represents an alkenyl group having 2 to 12 carbon atoms
  • R 2-a to R 4-a each independently represents a halogen atom, an alkyl group having 1 to 6 carbon atoms, or 1 carbon atom.
  • 6 to 14 aryl groups which may be substituted with 1 to 6 alkoxy groups or an alkylthio group having 1 to 6 carbon atoms.
  • borate anion in the compound represented by the general formula (Aa) include the formulas (A-1) to (A-7), (A-17), (A-18) and (A -32).
  • the radical generator of the present invention is composed of the compound represented by the general formula (Aa) of the present invention.
  • a radical is generated by heating.
  • the radical generator of the present invention When the radical generator of the present invention generates radicals by irradiation with light (active energy rays), the radical generator of the present invention is particularly effective when irradiated with active energy rays having a wavelength of 100 to 780 nm, preferably 200 to 450 nm. A radical can be generated. Since the radical generator of the present invention has an absorption wavelength region having a high molar extinction coefficient in the wavelength range of 200 to 450 nm, it can efficiently generate radicals. In addition, the radical generator of the present invention is preferably one that absorbs at least one active energy ray of i-line, h-line, and g-line in the above wavelength region from the viewpoint of versatility.
  • the radical generator of the present invention can also be used as a radical generator in a resist remover in the semiconductor surface treatment step. If a composition containing the radical generator of the present invention is used, an antireflection film It is possible to efficiently remove the residue of the resist layer and the residue of the antireflection film layer remaining by processing the semiconductor surface to which the layer is applied.
  • the radical generator of the present invention may be used in accordance with, for example, the contents described in WO2009 / 110582. May be selected as appropriate according to the description of the publication.
  • radical generator of the present invention can also be used as a catalyst in a carbon-carbon bond forming reaction using a radical reaction.
  • the radical generator of the present invention may be used in accordance with, for example, the contents described in JP-A-11-5033. And the like may be appropriately selected in accordance with the contents of the publication.
  • the radical generator of the present invention irradiates light (active energy rays) such as ultraviolet rays, visible rays, infrared rays, and X-rays in the presence of a thiol compound and a compound having a carbon-carbon double bond. By heating or heating, successive polymerization can proceed to form a polythioether.
  • light active energy rays
  • ultraviolet rays visible rays
  • infrared rays infrared rays
  • X-rays X-rays
  • the thiol compound is not particularly limited as long as it is a compound generally used in this field.
  • Preferable specific examples of the thiol-based compound include those similar to the specific examples of the thiol-based compound used in the above-described base-reactive composition of the present invention.
  • a thiol compound one kind of thiol compound may be used alone, or two or more kinds of thiol compounds may be used in combination.
  • what is necessary is just to use what was synthesize
  • Specific examples of the compound having a carbon-carbon double bond are not particularly limited as long as it is a compound generally used in this field.
  • JP-A-2014-28938, JP-A-2007-291313 In addition to those described in Japanese Patent Publication No.
  • Maleimide derivatives such as 4-phenylene trimaleimide, 4,4'-bismaleimide diphenylmethane, 1,2-bismaleimide ethane, 1,6-bismaleimide hexane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane
  • the radical reactive composition of the present invention comprises the radical generator and radical reactive compound of the present invention.
  • the radical reactive compound contained in the radical reactive composition of the present invention is not particularly limited as long as it is a compound that undergoes a polymerization reaction by the action of radicals generated by the radical generator and cures.
  • the radical reactive compound may be a compound having at least one radically polymerizable ethylenically unsaturated bond.
  • radical reactive compound examples include acrylate, methacrylate, arylate, itaconic acid, Unsaturated carboxylic acid such as crotonic acid, isocrotonic acid, maleic acid, ester, urethane, amide, amide anhydride, acid amide, acrylonitrile, styrene, unsaturated polyester, unsaturated polyether, unsaturated polyamide, unsaturated polyurethane And the like, and the like.
  • one type of radical reactive compound may be used alone, or two or more types of radical reactive compounds may be used in combination.
  • the acrylate may be any of a monomer, an oligomer, or a polymer. Specifically, for example, monofunctional alkyl acrylates, monofunctional ether group acrylates, monofunctional carboxyl acrylates, difunctional acrylates, Trifunctional or higher acrylates and the like can be mentioned. Such acrylates may be halogenated or hydrogenated. Such acrylates also include the derivatives of the specific examples described above. In addition, this acrylate may be used individually by 1 type of acrylate, and may be used combining 2 or more types of acrylate. Moreover, what is necessary is just to use what was synthesize
  • the monofunctional alkyl acrylates include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, isoamyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, decyl acrylate, lauryl acrylate, stearyl acrylate, Examples include isobornyl acrylate, cyclohexyl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, and benzyl acrylate.
  • the monofunctional ether-containing acrylates include 2-methoxyethyl acrylate, 1,3-butylene glycol methyl ether acrylate, butoxyethyl acrylate, methoxytriethylene glycol acrylate, methoxypolyethylene glycol # 400 acrylate, methoxydipropylene Glycol acrylate, methoxytripropylene glycol acrylate, methoxy polypropylene glycol acrylate, ethoxydiethylene glycol acrylate, ethyl carbitol acrylate, 2-ethylhexyl carbitol acrylate, tetrahydrofurfuryl acrylate, phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, phenoxy polyethylene glycol acrylate Rate, cresyl polyethylene glycol acrylate, p- nonyl phenoxyethyl acrylate, p- nonylphenoxy polyethylene glycol acrylate, cres
  • monofunctional carboxyl-containing acrylates include ⁇ -carboxyethyl acrylate, succinic acid monoacryloyloxyethyl ester, ⁇ -carboxypolycaprolactone monoacrylate, 2-acryloyloxyethyl hydrogen phthalate, 2-acryloyloxypropyl hydrogen phthalate. 2-acryloyloxypropyl hexahydrohydrogen phthalate, 2-acryloyloxypropyl tetrahydrohydrogen phthalate, and the like.
  • monofunctional acrylates not included in the above monofunctional alkyl acrylates, monofunctional ether-containing acrylates and monofunctional carboxyl acrylates include N, N-dimethylaminoethyl acrylate, N, N— Examples thereof include dimethylaminopropyl acrylate, morpholinoethyl acrylate, trimethylsiloxyethyl acrylate, diphenyl-2-acryloyloxyethyl phosphate, 2-acryloyloxyethyl acid phosphate, and caprolactone-modified 2-acryloyloxyethyl acid phosphate.
  • bifunctional acrylates include 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, Polyethylene glycol # 200 diacrylate, polyethylene glycol # 300 diacrylate, polyethylene glycol # 400 diacrylate, polyethylene glycol # 600 acrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, tetrapropylene glycol diacrylate, polypropylene glycol # 400 di Acrylate, polypropylene glycol # 700 diacrylate Neopentyl glycol diacrylate, neopentyl glycol PO modified diacrylate, hydroxypivalic acid neopentyl glycol ester diacrylate, caprolactone adduct diacrylate of hydroxypivalic acid neopentyl glycol ester, 1,6-hexane
  • trifunctional or higher acrylates include glycerin PO modified triacrylate, trimethylolpropane triacrylate, trimethylolpropane EO modified triacrylate, trimethylolpropane PO modified triacrylate, isocyanuric acid EO modified triacrylate, isocyanuric acid.
  • EO-modified ⁇ -caprolactone-modified triacrylate 1,3,5-triacryloylhexahydro-s-triazine, pentaerythritol triacrylate, dipentaerythritol triacrylate tripropionate, pentaerythritol tetraacrylate, dipentaerythritol tetraacrylate, di Pentaerythritol pentaacrylate monopropionate, dipentaerythritol hexaacrylate, tet Methylol methane tetraacrylate, oligoester tetraacrylate, tris (acryloyloxy) phosphate, and the like.
  • the weight average molecular weight is 100 to 30,000 from the viewpoints of heat resistance, coating property, solubility in organic solvents, solubility in developer, and the like of the base-reactive composition of the present invention. Preferably, it is more preferably 200 to 20,000.
  • the weight average molecular weight is less than 100, the strength of the cured film or molded product obtained from the radical composition may be insufficient.
  • the weight average molecular weight exceeds 30,000, not only the viscosity of the alkylate itself is increased and the solubility is deteriorated, but also the cured film surface is uniform and the film thickness is constant. May become difficult.
  • the weight average molecular weight is a value measured by gel permeation chromatography and converted to standard polystyrene.
  • the methacrylate may be any of a monomer, an oligomer or a polymer. Specifically, for example, a monofunctional alkyl methacrylate, a monofunctional ether group methacrylate, a monofunctional carboxyl methacrylate, a bifunctional methacrylate, And trifunctional or higher methacrylates. Such methacrylates may be halogenated or hydrogenated. Such methacrylates also include the derivatives of the specific examples described above. In addition, this kind of methacrylate may be used individually by 1 type of methacrylate, and may be used combining 2 or more types of methacrylate. Moreover, what is necessary is just to use what was synthesize
  • monofunctional alkyl methacrylates include methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, butyl methacrylate, isoamyl methacrylate, hexyl methacrylate, 2-hexyl methacrylate, 2-ethylhexyl methacrylate, octyl methacrylate, decyl methacrylate, lauryl.
  • Examples include methacrylate, stearyl methacrylate, isobornyl methacrylate, cyclohexyl methacrylate, dicyclopentenyl methacrylate, dicyclopentenyloxyethyl methacrylate, and benzyl methacrylate.
  • monofunctional ether-containing methacrylates include 2-methoxyethyl methacrylate, 1,3-butylene glycol methyl ether methacrylate, butoxyethyl methacrylate, methoxytriethylene glycol methacrylate, methoxypolyethylene glycol # 400 methacrylate, methoxydipropylene.
  • Glycol methacrylate methoxytripropylene glycol methacrylate, methoxy polypropylene glycol methacrylate, ethoxydiethylene glycol methacrylate, 2-ethylhexyl carbitol methacrylate, tetrahydrofurfuryl methacrylate, phenoxyethyl methacrylate, phenoxy diethylene glycol methacrylate, phenoxy polyethylene glycol methacrylate Over DOO, cresyl polyethylene glycol methacrylate, p- nonyl phenoxyethyl methacrylate, p- nonylphenoxy polyethylene glycol methacrylate, glycidyl methacrylate and the like.
  • the monofunctional carboxyl-containing methacrylates include ⁇ -carboxyethyl methacrylate, succinic acid monomethacryloyloxyethyl ester, ⁇ -carboxypolycaprolactone monomethacrylate, 2-methacryloyloxyethyl hydrogen phthalate, and 2-methacryloyloxypropyl hydrogen phthalate.
  • monofunctional methacrylates not included in the monofunctional alkyl methacrylates, monofunctional ether-containing methacrylates and monofunctional carboxyl-containing methacrylates include dimethylaminomethyl methacrylate, N, N-dimethylaminoethyl methacrylate. N, N-dimethylaminopropyl methacrylate, morpholinoethyl methacrylate, trimethylsiloxyethyl methacrylate, diphenyl-2-methacryloyloxyethyl phosphate, 2-methacryloyloxyethyl acid phosphate, caprolactone-modified-2-methacryloyloxyethyl acid phosphate, etc. .
  • bifunctional methacrylates include 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, Polyethylene glycol # 200 dimethacrylate, polyethylene glycol # 300 dimethacrylate, polyethylene glycol # 400 dimethacrylate, polyethylene glycol # 600 dimethacrylate, dipropylene glycol dimethacrylate, tripropylene glycol dimethacrylate, tetrapropylene glycol dimethacrylate, polypropylene glycol # 400 Dimethacrylate, polypropylene Recall # 700 dimethacrylate, neopentyl glycol dimethacrylate, neopentyl glycol PO modified dimethacrylate, hydroxypivalic acid neopentyl glycol ester dimethacryl
  • trifunctional or higher acrylates include glycerin PO-modified trimethacrylate, trimethylolethane trimethacrylate, trimethylolpropane trimethacrylate, trimethylolpropane EO modified trimethacrylate, trimethylolpropane PO modified trimethacrylate, isocyanuric acid EO.
  • trimethacrylate isocyanuric acid EO modified ⁇ -caprolactone modified trimethacrylate, 1,3,5-limethacryloylhexahydro-s-triazine, pentaerythritol trimethacrylate, dipentaerythritol trimethacrylate tripropionate, pentaerythritol tetramethacrylate, di Pentaerythritol pentamethacrylate monopropionate, dipentaerythritol hexa Methacrylate, tetramethylolmethane tetramethacrylate, oligoester tetramethacrylate, tris (methacryloyloxy) phosphate, and the like.
  • the weight average molecular weight is from 100 to 30,000 from the viewpoints of heat resistance, coating properties, solubility in organic solvents, solubility in developer, and the like of the base-reactive composition of the present invention. Preferably, it is more preferably 200 to 20,000.
  • the weight average molecular weight is less than 100, the strength of the cured film or molded product obtained from the radical reactive composition may be insufficient.
  • the weight average molecular weight exceeds 30,000, not only the viscosity of the methacrylate itself is increased and the solubility is deteriorated, but also the cured film surface is homogeneous and the film thickness is constant. May be difficult.
  • the weight average molecular weight is a value measured by gel permeation chromatography and converted to standard polystyrene.
  • the arylate may be any of a monomer, an oligomer or a polymer, and specific examples thereof include allyl glycidyl ether, diallyl phthalate, triallyl trimellitate, isocyanuric acid triarylate and the like. Such arylates may be halogenated or hydrogenated. Such arylates also include the derivatives of the specific examples described above. In addition, as for this arylate, one type of arylate may be used alone, or two or more types of arylates may be used in combination. Such arylates may be commercially available or those appropriately synthesized by a method known per se.
  • the weight average molecular weight is 100 to 30,000 from the viewpoints of heat resistance, coating properties, solubility in organic solvents, solubility in developer, and the like of the base-reactive composition of the present invention. Preferably, it is more preferably 200 to 20,000.
  • the weight average molecular weight is less than 100, the strength of the cured film or molded product obtained from the radical reactive composition may be insufficient.
  • the weight average molecular weight exceeds 30,000, not only the viscosity of the arylate itself is increased and the solubility is deteriorated, but also the cured film surface is uniform and the film thickness is constant. May be difficult.
  • the weight average molecular weight is a value measured by gel permeation chromatography and converted to standard polystyrene.
  • the acid amide may be any of a monomer, an oligomer or a polymer. Specifically, for example, acrylamide, N-methylolacrylamide, diacetoneacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, N-isopropylacrylamide, acryloylmorpholine, methacrylamide, N-methylolmethacrylamide, diacetone methacrylamide, N, N-dimethylmethacrylamide, N, N-diethylmethacrylamide, N-isopropylmethacrylamide, methacryloylmorpholine, etc. .
  • Such acid amides may be halogenated or hydrogenated.
  • Such acid amides also include the derivatives of the specific examples described above.
  • one type of acid amide may be used alone, or two or more types of acid amides may be used in combination.
  • Such acid amides may be commercially available or those appropriately synthesized by a method known per se.
  • the weight average molecular weight is from 100 to 30, from the viewpoints of heat resistance, coating properties, solubility in organic solvents, solubility in developer, and the like of the base-reactive composition of the present invention. 000 is preferable, and 200 to 20,000 is more preferable.
  • the weight average molecular weight is less than 100, the strength of the cured film or molded product obtained from the radical reactive composition may be insufficient.
  • the weight average molecular weight exceeds 30,000, not only the viscosity of the acid amide itself is increased and the solubility is deteriorated, but also the cured film surface is uniform and the film thickness is constant. May become difficult.
  • the weight average molecular weight is a value measured by gel permeation chromatography and converted to standard polystyrene.
  • the styrenes may be any of monomers, oligomers or polymers. Specifically, for example, styrene, p-methylstyrene, p-methoxystyrene, p-tert-butoxystyrene, p-tert-butoxycarbonyl Examples include styrene, p-tert-butoxycarbonyloxystyrene, 2,4-diphenyl-4-methyl-1-pentene, and the like. Such styrenes may be halogenated or hydrogenated. Such styrenes also include the derivatives of the specific examples described above.
  • one kind of styrenes may be used alone, or two or more kinds of styrenes may be used in combination.
  • Such styrenes may be commercially available or those appropriately synthesized by a method known per se.
  • the weight average molecular weight is from 100 to 30, from the viewpoints of heat resistance, coating properties, solubility in organic solvents, solubility in developer, and the like of the base-reactive composition of the present invention. 000 is preferable, and 200 to 20,000 is more preferable.
  • the weight average molecular weight is less than 100, the strength of the cured film or molded product obtained from the radical reactive composition may be insufficient.
  • the weight average molecular weight exceeds 30,000, not only the viscosity of the styrenes itself is increased and the solubility is deteriorated, but also the cured film surface is uniform and the film thickness is constant. May become difficult.
  • the weight average molecular weight is a value measured by gel permeation chromatography and converted to standard polystyrene.
  • vinyl compounds not included in the unsaturated carboxylic acid, acid amide and styrene include vinyl acetate, vinyl monochloroacetate, vinyl benzoate, vinyl pivalate, vinyl butyrate, vinyl laurate, divinyl adipate, Examples thereof include vinyl methacrylate, vinyl crotonic acid, vinyl 2-ethylhexanoate, N-vinyl carbazole, N-vinyl pyrrolidone and the like.
  • the weight average molecular weight is from 100 to 30, from the viewpoints of heat resistance, coating properties, solubility in organic solvents, solubility in developer, and the like of the base-reactive composition of the present invention. 000 is preferable, and 200 to 20,000 is more preferable.
  • the weight average molecular weight is less than 100, the strength of the cured film or molded product obtained from the radical reactive composition may be insufficient.
  • the weight average molecular weight exceeds 30,000, not only the viscosity of the vinyl compound itself is increased and the solubility is deteriorated, but also the cured film surface is uniform and the film thickness is constant. May become difficult.
  • the weight average molecular weight is a value measured by gel permeation chromatography and converted to standard polystyrene.
  • the content of the radical generator of the present invention contained in the radical reactive composition is not particularly limited as long as it is an amount generally used in this field.
  • the content of the radical reactive compound is based on the weight of the radical reactive compound. On the other hand, it is usually 0.1 to 100% by weight, preferably 1 to 50% by weight, more preferably 5 to 30% by weight.
  • the radical reactive composition may be insufficiently cured.
  • the content of the radical generator of the present invention is very large, problems such as loss of economic efficiency arise.
  • a sensitizer may be added to expand the photosensitive wavelength region and increase sensitivity.
  • the sensitizer is not particularly limited as long as it is a sensitizer generally used in this field.
  • Preferable specific examples of the sensitizer include those similar to the specific examples of the sensitizer used in the above-described base-reactive composition of the present invention.
  • one kind of sensitizer may be used alone, or two or more kinds of sensitizers may be used in combination.
  • what is necessary is just to use what was synthesize
  • the content of the sensitizer contained in the radical-reactive composition is not particularly limited as long as it is an amount generally used in this field, and the radical generator or radical reaction to be used. May be appropriately determined depending on the active compound and the required sensitivity. More specifically, when a sensitizer is included, the content of the sensitizer is preferably 1 to 30% by mass with respect to the whole base-reactive composition, and among them, 1 to 20 More preferably, it is% by weight. When the content of the sensitizer is less than 1% by mass, the sensitivity may not be sufficiently increased. On the other hand, if the content of the sensitizer exceeds 30% by mass, it may be excessive to increase the sensitivity.
  • a composition containing an organic solvent may be desirable.
  • an organic solvent in the radical-reactive composition, coatability can be improved and workability is improved.
  • the organic solvent is not particularly limited as long as it is an organic solvent generally used in this field.
  • Preferable specific examples of the organic solvent include those similar to the specific examples of the organic solvent used in the above-described base-reactive composition of the present invention.
  • one type of organic solvent may be used alone, or two or more types of organic solvents may be used in combination.
  • what is necessary is just to use a commercially available organic solvent.
  • the content of the organic solvent contained in the radical reactive composition is not particularly limited as long as it is generally used in this field.
  • a radical reaction is performed on a predetermined substrate.
  • it may be appropriately selected so that it is uniformly applied.
  • 0.01 g of the radical reactive composition it is usually 0.01 -50 mL, preferably 0.05-30 mL, more preferably 0.1-10 mL.
  • the radical reactive composition includes, for example, pigments; dyes; cuprons, N-nitrosophenylhydroxylamine aluminum salts, p-methoxyphenol, Polymerization inhibitors such as hydroquinone, alkyl-substituted hydroquinone, catechol, tert-butylcatechol, phenothiazine; amines such as N-phenylglycine, triethanolamine, N, N-diethylaniline, thiols, disulfides, thiones, O -Acylthiohydroxamate, N-alkyloxypyridinethiones curing accelerators and chain transfer catalysts; oxygen scavengers and reducing agents such as phosphines, phosphonates and phosphites; antifoggants; antifading agents; antihalation agents; fluorescence Brightener; Surfactant; Colorant Plasticizers; Flame retardants; Antioxidants; Ultraviolureas, phenol, phenol, ter
  • the composition is dissolved in an organic solvent to prepare a coating solution, and the prepared coating solution is applied to an appropriate solid surface such as a substrate. And dried to form a coating film. Then, the formed coating film may be subjected to pattern exposure to generate radicals so as to promote the polymerization reaction of the radical reactive compound contained in the radical reactive composition.
  • a method for applying the radical reactive composition of the present invention to the substrate a method for irradiating active energy rays, a developing method, etc., which are performed at the time of forming the above-mentioned pattern, a method known per se may be appropriately employed.
  • the radical reactive composition of the present invention is cured by a “hybrid curing reaction” that combines a radical curing reaction and an anion curing reaction. It is possible. That is, since the radical generator of the present invention can generate a radical and a base simultaneously, for example, by irradiation with active energy rays or heating, when the base reactive compound is contained in the radical reactive composition of the present invention, Two curing reactions are simultaneously carried out: a radical curing reaction by a radical generated from the radical generator of the present invention and a radical reactive compound, and an anion curing reaction by a base and a base reactive compound generated from the radical generator of the present invention. It is possible.
  • a coating solution is prepared by dissolving a composition containing the radical generator, radical reactive compound and base reactive compound of the present invention in an organic solvent.
  • the coating solution is applied to an appropriate solid surface such as a substrate and dried to form a coating film.
  • the formed coating film is subjected to pattern exposure to simultaneously generate radicals and bases, and subjected to heat treatment under a predetermined condition to perform radical curing reaction in the radical reactive compound and in the base reactive compound. What is necessary is just to promote an anion hardening reaction simultaneously.
  • the radical reactive compound, base reactive compound, organic solvent and other coexisting substances in the hybrid curing reaction described above are not particularly limited as long as they are generally used in this field, and the present invention described above.
  • the base-reactive composition and the radical-reactive composition of the present invention may be appropriately selected.
  • a method for applying the radical reactive composition of the present invention to the substrate a method for irradiating active energy rays, a developing method, etc., which are performed at the time of forming the above-mentioned pattern, a method known per se may be appropriately employed.
  • the radical reactive composition of the present invention described above contains the radical generator of the present invention and a radical reactive compound, and is generated from the radical generator by operations such as irradiation with light (active energy rays) and heating. It is possible to cause the polymerization reaction of the radical reactive compound using the radical thus generated as an initiator, and to effectively cure the radical reactive compound.
  • the radical-reactive composition of the present invention exhibiting such effects can be suitably used for, for example, a curing material, a resist material (pattern forming material), and the like.
  • a molded article formed after the curing operation is used as a member in a field where characteristics such as heat resistance, dimensional stability, and insulation are effective, such as Paints, printing inks, color filters, films for flexible displays, semiconductor devices, electronic parts, interlayer insulation films, wiring coating films, optical circuits, optical circuit parts, antireflection films, holograms, optical members or building materials Widely used as components, printed materials, color filters, films for flexible displays, semiconductor devices, electronic components, interlayer insulation films, wiring coating films, optical circuits, optical circuit components, antireflection films, holograms, optical members Or a building member etc. are provided.
  • the base-reactive composition of the present invention when used as a resist material (pattern forming material), the pattern formed after the pattern forming operation has heat resistance and insulating properties.
  • the pattern formed after the pattern forming operation has heat resistance and insulating properties. -Filters, flexible display films, electronic parts, semiconductor devices, interlayer insulation films, wiring coating films, optical circuits, optical circuit parts, antireflection films, and other optical or electronic members that can be used effectively it can.
  • Synthesis Example 1 Synthesis of 1,2-diisopropyl-4,4,5,5-tetramethylbiguanide 11.9 g (10.3 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) 1,1,3,3-tetramethylguanidine N, N′-diisopropylcarbodiimide (13.1 g, 10.3 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) was added to the mixture, and the mixture was stirred with heating at 100 ° C. for 2 hours.
  • Synthesis Example 2 Synthesis of 1,2-dicyclohexyl-4,4,5,5-tetramethylbiguanide carbonate 12.1 g of 1,1,3,3-tetramethylguanidine (106 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) N, N′-dicyclohexylcarbodiimide (10.9 g, 53 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) was added to the mixture, and the mixture was stirred with heating at 100 ° C. for 2 hours.
  • Synthesis Example 5 Synthesis of lithium tolueneethynyltriphenylborate 20 mL of THF was added to 1.16 g (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of 4-ethynyltoluene and cooled to 5 ° C., and 1.6 M of n-butyllithium was obtained. 6.25 mL (10 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred at 5 ° C. for 0.5 hour. Subsequently, 2.42 g (10 mmol; manufactured by Sigma-Aldrich Co.) of triphenylborane was added and reacted at room temperature for 1 hour.
  • Synthesis Example 7 Synthesis of 1-cyclohexyl-3- (4-nitrophenyl) carbodiimide 40 mL of acetonitrile was added to 10.0 g (55.5 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of 4-nitrophenyl isothiocyanate, and the mixture was heated to 5 ° C. When cooled, 5.50 g (55.5 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) of cyclohexylamine was added and stirred for 1 hour. After completion of the reaction, the resulting thiourea crystals were collected by filtration to isolate 14.75 g (42.6 mmol).
  • thiourea (5.0 g, 17.9 mmol) was suspended in ethyl acetate, and triethylamine (3.62 g, 35.8 mmol; manufactured by Wako Pure Chemical Industries, Ltd.) and iodine (2.50 g, 19.7 mmol; Wako Jun) Yakuhin Kogyo Co., Ltd.) was added and stirred at 25 ° C. for 1 hour. After completion of the reaction, the resulting crystals were filtered and purified by silica gel column chromatography to obtain 1.17 g of 1-cyclohexyl-3- (4-nitrophenyl) carbodiimide (light yellow oil, yield: 27%). .
  • Synthesis Example 8 Synthesis of 1-cyclohexyl-3- (4-nitrophenyl) -4,4,5,5-tetramethylbiguanide 1,1,3,3-tetramethylguanidine 0.55 g (4.8 mmol; Wako Pure) 20 mL of toluene and 1.17 g (4.8 mmol) of 1-cyclohexyl-3- (4-nitrophenyl) carbodiimide obtained in Synthesis Example 7 were added to Yakuhin Kogyo Co., Ltd., and the mixture was stirred at 25 ° C. for 1 hour.
  • Example 2 Synthesis of 1,2-diisopropyl-4,4,5,5-tetramethylbiguanidinium triphenyl (n-butyl) borate (compound represented by the formula (2)) 1 obtained in Synthesis Example 1 , 2-diisopropyl-4,4,5,5-tetramethylbiguanide 1.32 g (5.0 mmol) is dissolved in 2 mL of 10% hydrochloric acid, and 20% aqueous solution of lithium triphenyl (n-butyl) borate is added to the solution. 65 g (5.0 mmol; manufactured by Hokuko Chemical Co., Ltd.) was added and stirred at room temperature for 30 minutes.
  • Example 4 1,3-Dimethyl-2- (N ′, N ′, N ′′, N ′′ -tetramethylguanidino) -4,5-dihydro-3H-imidazolium triphenyl (n-butyl) borate (formula ( 4) Synthesis of 1,3-dimethyl-2- (N ′, N ′, N ′′, N ′′ -tetramethylguanidino) -4,5-dihydro-3H— obtained in Synthesis Example 3 1.23 g (5.0 mmol) of imidazolium chloride is added to 7.65 g (5.0 mmol; manufactured by Hokuko Chemical Co., Ltd.) of a 20% lithium triphenyl (n-butyl) borate aqueous solution, and stirred at room temperature for 30 minutes.
  • Example 5 Synthesis of tetrakis (tetramethylguanidino) phosphonium triphenyl (n-butyl) borate (compound represented by the formula (5)) 2.61 g of tetrakis (tetramethylguanidino) phosphonium chloride obtained in Synthesis Example 4 (5 0.0 mmol) was added to 7.65 g (5.0 mmol; manufactured by Hokuko Chemical Co., Ltd.) of a 20% lithium triphenyl (n-butyl) borate aqueous solution and stirred at room temperature for 30 minutes.
  • Example 6 Synthesis of 1,2-diisopropyl-4,4,5,5-tetramethylbiguanidinium tolueneethynyltriphenylborate (compound represented by the formula (6)) 1,2-obtained in Synthesis Example 1
  • Diisopropyl-4,4,5,5-tetramethylbiguanide (0.48 g, 2.0 mmol) was dissolved in 1 mL of 10% hydrochloric acid, and 0.72 g of lithium tolueneethynyl triphenylborate obtained in Synthesis Example 5 ( 2.0 mmol) was added and stirred at room temperature for 30 minutes.
  • Example 7 Synthesis of tetrakis (tetramethylguanidino) phosphonium tolueneethynyltriphenylborate (compound represented by formula (7)) 1.04 g (2.0 mmol) of tetrakis (tetramethylguanidino) phosphonium chloride obtained in Synthesis Example 3 was added to 0.82 g (2.2 mmol) of lithium tolueneethynyltriphenylborate obtained in Synthesis Example 4 and stirred at room temperature for 30 minutes. After completion of the reaction, the reaction solution was extracted by adding ethyl acetate.
  • Example 8 Synthesis of 1,2-bis (2,6-diisopropylphenyl) -4,4,5,5-tetramethylbiguanidinium triphenyl (n-butyl) borate (compound represented by the formula (8)) To 3.0 mL of 36.5% hydrochloric acid, 3.00 g (6.28 mmol) of 1,2-bis (2,6-diisopropylphenyl) -4,4,5,5-tetramethylbiguanide obtained in Synthesis Example 6 was added.
  • Example 9 Synthesis of 1-cyclohexyl-3- (4-nitrophenyl) -4,4,5,5-tetramethylbiguanidinium triphenyl (n-butyl) borate (compound represented by the formula (9)) Synthesis 1.73 g (4.8 mmol) of 1-cyclohexyl-3- (4-nitrophenyl) -4,4,5,5-tetramethylbiguanide obtained in Example 8 was dissolved in 0.49 mL of 36.5% hydrochloric acid. Then, 7.0 g (4.8 mmol; manufactured by Hokuko Chemical Co., Ltd.) of a 20% lithium triphenyl (n-butyl) borate solution was added to the solution, and the mixture was stirred at room temperature for 1 hour.
  • “++” indicates that the compound (base generator) is dissolved when the addition amount of the organic solvent or the base-reactive compound is less than 1 mL, and “+” indicates that the compound (base generator) is dissolved in the range of 1 mL to less than 5 mL.
  • the case where the compound (base generator) was dissolved in 5 mL to less than 10 mL was evaluated as “ ⁇ ”, and the case where the compound (base generator) was dissolved in 10 mL or more was evaluated as “ ⁇ ”.
  • the solubility results are shown in Table 3.
  • the obtained sample was bar-coated on a glass plate and irradiated with ultraviolet light (active energy) for 30 seconds using an ultraviolet irradiation light source device REX-250 (manufactured by Asahi Spectrometer Co., Ltd.) having a specific exposure intensity to the coating film and a filter BP365.
  • the film was cured by heating at 90 ° C. for 5 minutes.
  • the hardness of the coating film was evaluated by a pencil hardness test method. When the hardness was 4H or more, “ ⁇ ”, when the unexposed portion and the exposed portion were cured simultaneously, “X”, when it could not be evaluated because it did not dissolve “ -"
  • Table 5 The evaluation results are shown in Table 5.
  • the ultraviolet irradiation light source device REX-250 (manufactured by Asahi Spectroscopy) irradiates light (active energy rays) having a wavelength of 240 to 440 nm.
  • the filter BP365 absorbs light (active energy ray) having a wavelength of less than 365 nm and transmits only light (active energy ray) having a wavelength of 365 nm or more.
  • cyclohexanecarboxylate (trade name: CEL2021P; manufactured by Daicel Corporation), pentaerythritol tetrakis (3-mercaptobutyrate) (trade name: KarenzMT (registered trademark) PE1 ; Showa Denko Co., Ltd.) 100 mg.
  • the obtained sample was bar-coated on a glass plate and irradiated with ultraviolet light (active energy) for 30 seconds using an ultraviolet irradiation light source device REX-250 (manufactured by Asahi Spectrometer Co., Ltd.) having a specific exposure intensity to the coating film and a filter BP365.
  • the film was cured by heating at 120 ° C.
  • the hardness of the coating film was evaluated by a pencil hardness test method. When the hardness was 4H or more, “ ⁇ ”, when the unexposed portion and the exposed portion were cured simultaneously, “X”, when it could not be evaluated because it did not dissolve “ -” The evaluation results are shown in Table 6.
  • the base generators of Comparative Examples 5 and 6 are difficult to store for a long time in a state where they are mixed with the base-reactive compound, and both must be blended and used immediately before curing. It was found to be a bad compound (base generator).
  • the compounds (base generators) obtained in Comparative Examples 1 to 4 and 10 are compounds (base generators) having low solubility in general-purpose epoxy monomers such as epoxy oligomers having an aromatic ring and alicyclic epoxy monomers. I found out.
  • the compound (base generator) obtained in Comparative Example 7 has a cation structure in which the number of hydrogen atoms in R 11 to R 18 in the general formula (B 2 ) is 3 or more, the compound (base generator) It was found that the basicity of the base generated from) was low and the reaction between the base-reactive compound such as epoxy and the polyfunctional thiol could not be accelerated efficiently. Since the compounds (base generators) obtained in Comparative Examples 8 and 9 do not have a substituent on guanidine, they generally have low solubility, such as organic solvents and epoxies commonly used in this field. It was found that the compound (base generator) has poor versatility that cannot be dissolved in the base-reactive compound.
  • the obtained sample was bar-coated on a glass plate, and the coating film was irradiated with ultraviolet rays (active energy rays) for 60 seconds using an ultraviolet irradiation light source device REX-250 (manufactured by Asahi Spectroscopic Co., Ltd.) and filter BP405. Then, the coating film was cured by heating at 120 ° C. for 7 minutes. The hardness of the coating film was evaluated by a pencil hardness test method.
  • the filter BP405 absorbs light (active energy rays) having a wavelength of less than 405 nm and transmits only light (active energy rays) having a wavelength of 405 nm or more.
  • the compound of the present invention (base generator) can be used in combination with an acid anhydride as a crosslinking agent.
  • the compounds (base generators) obtained in Comparative Examples 1 to 4 and 8 to 10 are low solubility compounds (base generators) for general-purpose epoxy monomers such as epoxy oligomers having an aromatic ring. It turns out that there is.
  • the compound (base generator) obtained in Comparative Examples 5 and 6 is heated at 120 ° C. after exposure, curing proceeds simultaneously in the exposed area and the unexposed area, and the contrast between the exposed area and the unexposed area is obtained. Therefore, it was found that the acid anhydride cannot be used as a cross-linking agent, and the versatility is poor.
  • the compound (base generator) obtained in Comparative Example 7 has a cation structure in which the number of hydrogen atoms in R 11 to R 18 in the general formula (B 2 ) is 3 or more, the compound (base) It was found that the basicity of the base generated from the generator was low and the reaction between the base-reactive compound such as epoxy and the acid anhydride could not be accelerated efficiently.
  • Experimental Example 6 Examination of sensitizer
  • the compound obtained in Example 1 was used as a base generator, various sensitizers shown in Tables 9 and 10 below were used as sensitizers, and filters
  • the exposure evaluation was performed in the same manner as in Experimental Example 3 except that BP365, BP405, or BP435 was used as a filter.
  • the hardness of the coating film was evaluated by a pencil hardness test method. When the hardness was 4H or more, “ ⁇ ” was given, and when the hardness was less than 4H (curing did not occur), “X” was given. Table 9 shows the evaluation results.
  • the filter BP435 absorbs light (active energy ray) having a wavelength of less than 435 nm and transmits only light (active energy ray) having a wavelength of 435 nm or more.
  • the compound (base generator) of the present invention increases the photosensitivity at a long wavelength by using various sensitizers in combination.
  • various sensitizers shown in Table 9 were used in combination with the compounds represented by the above formulas (201) and (202), they showed no photosensitivity at long wavelengths and no sensitizing action. Therefore, it was found that the compound (base generator) of the present invention can increase the photosensitivity at a long wavelength by using various sensitizers in combination, and is a useful compound (base generator).
  • the borate type photobase generator in JP2003-212856 and WO2009 / 122664 in which a sensitizing unit is introduced into the cation moiety, the solubility generally tends to be poor, and it should be dissolved directly in the monomer. It was difficult.
  • the borate type photobase generator has an increased molecular weight due to the introduction of a sensitizing group, and the amount of base occupying per molecule is reduced. There is a problem that equimolar sensitizing groups remain in the system and inhibit light transmission to the deep part of the film.
  • the borate photobase generator since the borate photobase generator is limited in the skeleton that can be introduced as a sensitizer unit, it is difficult to use an ionic sensitizer such as a dye skeleton together.
  • the compound of the present invention (base generator) can not only contain a borate unit and a sensitizer at an arbitrary ratio, but also generate a conventional photobase that already absorbs at a long wavelength. Since an agent can also be used in combination, it has been found that it is possible to generate two different types of bases in the system. It has also been found that since a dye having a complicated structure can be used in combination, the photosensitive wavelength can be extended to the visible light region and the infrared region. In addition, when some dyes are used as sensitizers, there is an effect of decoloring by light, and hardening to the deep part can be expected.
  • the film was cured.
  • the hardness of the coating film was evaluated by a pencil hardness test method. When the hardness was 4H or more, “ ⁇ ” was given, and when the hardness was less than 4H (curing did not occur), “X” was given. The evaluation results are shown in Table 11.
  • the sample was bar-coated on a glass plate, and the coating film was irradiated with ultraviolet rays (active energy rays) for 10 seconds using an ultraviolet irradiation light source device REX-250 (manufactured by Asahi Spectrometer Co., Ltd.) and filter BP365, and at room temperature.
  • the coating was cured.
  • the hardness of the coating film was evaluated by a pencil hardness test method, the hardness was 3H or more.
  • pentaerythritol triacrylate (trade name: Light Acrylate PE-3A; manufactured by Kyoeisha Chemical Co., Ltd.) ) 100 mg, and 141 mg of pentaerythritol tetrakis (3-mercaptobutyrate) (trade name: KarenzMT (registered trademark) PE1; manufactured by Showa Denko KK).
  • the sample was bar-coated on a glass plate, and the coating film was irradiated with ultraviolet rays (active energy rays) for 10 seconds using an ultraviolet irradiation light source device REX-250 (manufactured by Asahi Spectroscopic Co., Ltd.) and filter BP365, and then 80 ° C.
  • the coating was cured by heating for 10 minutes.
  • the hardness of the coating film was evaluated by a pencil hardness test method, the hardness was 3H or more.
  • the arylalkynyl compound of the present invention can be applied to anion UV curing by Michael addition reaction of thiol and acrylate. Therefore, the arylalkynyl compound of the present invention can perform an anion curing reaction with thiol and acrylate without causing a radical polymerization reaction with the acrylate alone as in Experimental Example 7 by performing UV irradiation.
  • the reaction rate of acrylate and thiol can be adjusted to 1: 1.
  • the arylalkynyl compound of the present invention since the arylalkynyl compound of the present invention selectively generates only a base by UV irradiation, it can be applied to anion UV curing in which the reaction rate of acrylate and thiol, which has been difficult to control conventionally, is adjusted to 1: 1. is there.
  • Such UV curable resin of acrylate and thiol contains thiol, so that the dimensional stability, flexibility, water resistance, chemical resistance, and adhesion between the resin and the substrate are better than the cured resin of acrylate alone.
  • Various properties such as resistance to resistance to curing inhibition by oxygen are generally high and can be useful materials.
  • the polyfunctional allyl compound that is the starting material is generally difficult to obtain, whereas in the Michael addition reaction between acrylate and thiol, It is also preferable from the viewpoint of creating a new material that the polyfunctional acrylate as a starting material is easily available.
  • the compound represented by the general formula (A) of the present invention and the base generator of the present invention are strong bases (guanidines, biguanides, phosphazenes or phosphoniums) by operations such as irradiation with light (active energy rays) and heating.
  • bases guanidines, biguanides, phosphazenes or phosphoniums
  • the nucleophilicity of the borate part of the anion is low, when the compound (base generator) and a base-reactive composition such as an epoxy compound are mixed and stored for a long period of time Even so, it does not react with the base-reactive compound.
  • the compound represented by the general formula (A) of the present invention and the base generator of the present invention can store a composition containing the compound (base generator) and the base-reactive compound for a long period of time. It is useful as a base generator that does not deteriorate its performance and can have high storage stability.
  • the base-reactive composition of the present invention contains the base generator of the present invention as described above.
  • a strong base (guanidines) generated from the base generator in the composition is used.
  • Biguanides, phosphazenes or phosphoniums can be used as an initiator to effectively cure the base-reactive compound, and even when stored for a long period of time as a base-reactive composition It can be stored in a stable state without degrading performance, and is useful for optical materials such as paints, printing inks, dental materials, resists, and electronic materials, and electronic materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Materials For Photolithography (AREA)
  • Epoxy Resins (AREA)

Abstract

 エポキシ系化合物等の塩基反応性化合物と混合した状態で長期間保存した場合でも、該塩基反応性化合物と反応することがなく、保存安定性の高い組成物とすることができ、かつ、光(活性エネルギー線)の照射や加熱により強塩基(グアニジン類、ビグアニド類、ホスファゼン類またはホスホニウム類)を発生することのできる化合物、これらを含んでなる塩基発生剤および当該塩基発生剤と塩基反応性化合物を含有する塩基反応性組成物を提供することを課題とする。 本発明は、一般式(A)で示される化合物、当該化合物を含んでなる塩基発生剤、当該塩基発生剤および塩基反応性化合物を含有することを特徴とする塩基反応性組成物等に関する。(式中、Rは、アルキル基;ハロゲン原子、アルキル基、アルコキシ基、もしくはアルキルチオ基で置換されていてもよいアリールアルキニル基;アルケニル基;2-フリルエチニル基;2-チオフェニルエチニル基;または2,6-ジチアニル基を表し、R~Rはそれぞれ独立して、アルキル基;ハロゲン原子、アルキル基、アルコキシ基、もしくはアルキルチオ基で置換されていてもよいアリールアルキニル基;ハロゲン原子、アルキル基、アルコキシ基、もしくはアルキルチオ基で置換されていてもよいアリール基;フラニル基;チエニル基;またはN-アルキル置換ピロリル基を表し、Zは、グアニジニウム基、ビグアニジウム基またはホスファゼニウム基を有するアンモニウムカチオン、あるいはホスホニウムカチオンを表す。)

Description

ボレート系塩基発生剤および該塩基発生剤を含有する塩基反応性組成物
 本発明は、レジスト分野などで使用される塩基発生剤等に関するものであり、さらに詳しくは、グアニジン類、ビグアニド類、ホスファゼン類、ホスホニウム類などの強塩基を発生する性質を有するボレート系化合物、これらを含んでなる塩基発生剤および該塩基発生剤を含有する塩基反応性組成物に関する。
 高分子(樹脂)は、例えば、電子部品、光学製品、光学部品の成形材料、層形成材料または接着剤などに用いられている。高分子(樹脂)は、重合開始剤を使用することにより、高分子前駆体(モノマー)同士を結合させて高分子鎖を形成する重合反応や、高分子鎖同士を連結させる架橋反応によって生成され、その物理的および化学的性質は高分子前駆体(モノマー)と異なる場合が多い。
 この重合反応や架橋反応により分子が2次元的あるいは3次元的に連結した構造を形成することを硬化といい、例えば赤外線、可視光線、紫外線、X線等の光(活性エネルギー線)感受性の重合開始剤による硬化(以下、光硬化と略記する場合がある。)や、熱感受性の重合開始剤による硬化(以下、熱硬化と略記する場合がある。)等が知られている。
 硬化において使用される重合開始剤は、発生する活性種によりラジカル発生剤、酸発生剤、塩基発生剤の3つのグループに大別することができる。ラジカル発生剤は、光(活性エネルギー線)の照射や加熱によりラジカル種を発生する重合開始剤で従来から広く用いられているものではあるが、ラジカル種は空気中の酸素によって失活し、重合反応が阻害され反応が抑制されるという欠点がある。このため、ラジカル発生剤を使用する際には、空気中の酸素を遮断するなどの特別な工夫が必要とされている。酸発生剤は、光(活性エネルギー線)の照射や加熱により酸を発生する重合開始剤であるため、酸素による阻害を受けないことから、90年代後半から多種多様の酸発生剤が実用に供されている。しかしながら、発生する酸が硬化後においても系内に残存する場合があり、酸発生剤を含む硬化性組成物を硬化した後の硬化膜が残存する酸の影響により変性して膜性能が低下するなどの問題や酸による半導体基板上の金属配線に対する腐食性の問題が指摘されている。これに対し、塩基発生剤は、光(活性エネルギー線)の照射や加熱によって塩基を発生するものであるため、空気中の酸素の阻害を受けず、上述した酸発生剤を用いた場合の腐食性の問題や硬化膜の変性の問題等を生じにくいことから、近年その研究開発が盛んに行われている。
 最近では、光塩基発生剤を含有する感光性組成物を、フォトレジスト材料や光硬化材料等へ応用する技術が検討されている。例えばエポキシ基を有する化合物が、塩基の作用により架橋反応を起こして硬化することを利用し、光(活性エネルギー線)の照射によってアミン類をエポキシ樹脂内で発生させ、次いで加熱処理によってエポキシ樹脂を硬化させる方法が提案されている(例えば非特許文献1)。
 塩基発生剤から発生するアミン類によってエポキシ系化合物を硬化させる場合、1級アミンや2級アミンのような弱塩基では、エポキシ基との反応に長時間を要し、硬化速度を高めるために高温下で加熱処理などを行う必要があった。また、多官能基化された1級アミンまたは2級アミンを用い、架橋密度を上げることによって、硬化速度を高めることも可能ではあるが、全てのアミンに対し塩形成を行うことでアミンを潜在化(保護)する必要があり、この潜在化によって溶解性が大幅に低下するおそれがあった。このように、塩基発生剤から発生する塩基が弱塩基である場合、エポキシ系化合物の硬化を簡便かつ効率的に行うことができないという問題があった。
 これに対し、3級アミン、アミジン、グアニジン、ホスファゼン等の強塩基のアミン類を発生させる塩基発生剤の場合には、これらのアミン類が触媒として機能しやすいため、比較的少ない量でもエポキシ系化合物を硬化させることができ、とくに酸性プロトンを有する架橋剤(例えば多官能カルボン酸、多官能フェノール、多官能チオール、多官能β-ケトエステル等)を併用した場合には、低温条件下で迅速にエポキシ系化合物を硬化させることができることが報告されている。
 このようなアミン類の塩基発生剤として、従来、例えば光(活性エネルギー線)の照射により、3級アミン、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)等のアミジン、イミダゾール、ピリジンなどを発生させる、アミンイミド系化合物(例えば特許文献1)、アンモニウムボレート系化合物(例えば特許文献2、非特許文献2、非特許文献3、非特許文献4、非特許文献5)等の光塩基発生剤が知られている。また、例えば光(活性エネルギー線)の照射により脱炭酸するカルボン酸とアミン類とからなる化合物(例えば特許文献3)、光(活性エネルギー線)の照射により環状エステル化する安息香酸系化合物(例えば特許文献4)、光(活性エネルギー線)の照射により、1,1,3,3-テトラメチルグアニジン(TMG)、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD)等のグアニジン、ホスファゼンなどの強塩基を発生させる、テトラフェニルボレート系化合物(例えば非特許文献6)、光(活性エネルギー線)の照射により、2,8,9-トリイソプロピル-2,5,8,9-テトラアザ-1-ホスファビシクロ[3.3.3]ウンデカン等の強塩基であるプロアザホスファトランを発生させる、テトラアリールボレート系化合物(例えば非特許文献7)の例も知られている。さらに、アミジンやグアニジンよりも塩基性の高い有機強塩基としてビグアニド類を発生させる化合物も知られており(例えば特許文献5、非特許文献8、非特許文献9)、このようなビグアニド類を発生させる化合物をエポキシ硬化用途に用いている例も報告されている(例えば特許文献6)。また、熱分解性化合物とビグアニド類とを塩形成させて得た化合物を、熱硬化触媒として応用されている例も知られている(例えば特許文献7、特許文献8)。
 しかしながら、上述した塩基発生剤は、強塩基を発生させることができるものの、概して固体である場合が多く、その大部分は有機溶剤に対する溶解性が十分ではないという問題点があった。また、例えばカルボン酸とアミン類とからなる塩基発生剤の場合、これらの組み合わせによっては、有機溶剤に対する溶解性の問題が生じない油状の化合物も存在するが、概してそのような塩基発生剤は耐熱性が劣るという問題点があった。
 そこで、本発明者らは、強塩基(ビグアニド類)を発生させることができ、かつ、種々の有機溶剤および塩基反応性化合物に対する溶解性が高く、高耐熱性を有する塩基発生剤として、特定構造のカルボン酸とビグアニド類とからなる塩基発生剤を報告している(特許文献9)。
特開2012-131936号公報 WO2010-095390号公報 特開2011-236416号公報 特開2012-250969号公報 米国特許第2,768,205号公報 米国特許第3,261,809号公報 特開平9-278378号公報 特開平9-292712号公報 特願2013-137489号
J. Polym. Sci., Part A: Polym. Chem., 32, 1793 (1994) J. Am. Chem. Soc., 117, 11369-11370 (1995) Macromolecules, 31, 951-954 (1998) Macromolecules, 31, 6476-6480 (1998) Macromolecules, 32, 328-330 (1999) J. Am. Chem. Soc., 130, 8130 (2008) J. Photopolym. Sci. Tech., 25, 497-499 (2012) Tetraedron Lett., 39, 2743 (1998) Chem. Ber., 117, 1900-1912 (1984)
 しかしながら、特許文献9に記載の塩基発生剤は、アニオン部分がカルボン酸であるため、該カルボン酸の求核性により、当該塩基発生剤をエポキシ系化合物等の塩基反応性化合物に混合した状態で保存しておくと、当該塩基発生剤のカルボン酸部分が塩基反応性化合物と反応してしまう場合があった。このため、当該塩基発生剤とエポキシ系化合物等の塩基反応性化合物とをあらかじめ混合させた塩基反応性組成物は、保存中に硬化が開始してしまい、長期間安定して保存しておくことが難しいという問題がある。また、この保存中の硬化を防ぐために、該塩基発生剤と塩基反応性化合物とを別々に保存した場合、硬化操作を行う直前に両者を配合し速やかに使用しなければならず、利便性が悪いという問題がある。このような状況から、塩基発生剤と塩基反応性化合物とを混合した状態で長期間保存していても、その性能が低下することなく高い保存安定性を備えた組成物を得ることのできる塩基発生剤の開発が望まれている。
 本発明は、上記した状況に鑑みなされたものであり、光(活性エネルギー線)の照射や加熱等の操作により強塩基(グアニジン類、ビグアニド類、ホスファゼン類またはホスホニウム類)を発生するとともに、エポキシ系化合物等の塩基反応性化合物と混合した状態で長期間保存した場合であっても、塩基反応性化合物と反応することなく、保存安定性の高い化合物、これらを含んでなる塩基発生剤および当該塩基発生剤と塩基反応性化合物を含有する塩基反応性組成物を提供することにある。
 本発明は、以下の構成よりなる。
 (1)一般式(A)で示される化合物(以下、本発明の化合物と略記する場合がある)。
Figure JPOXMLDOC01-appb-I000021
(式中、Rは、炭素数1~12のアルキル基;ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基;炭素数2~12のアルケニル基;2-フリルエチニル基;2-チオフェニルエチニル基;または2,6-ジチアニル基を表し、R~Rはそれぞれ独立して、炭素数1~12のアルキル基;ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基;ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基;フラニル基;チエニル基;またはN-アルキル置換ピロリル基を表し、Zは、グアニジニウム基、ビグアニジウム基またはホスファゼニウム基を有するアンモニウムカチオン、あるいはホスホニウムカチオンを表す。)
 (2)上記一般式(A)で示される化合物を含んでなる塩基発生剤。(以下、本発明の塩基発生剤と略記する場合がある。)
 (3)上記一般式(A)で示される化合物を含んでなる塩基発生剤および塩基反応性化合物を含有することを特徴とする塩基反応性組成物。(以下、本発明の塩基反応性組成物と略記する場合がある。)
 本発明の化合物は、特定構造を持つボレート系アニオンとグアニジン類、ビグアニド類、ホスファゼン類、ホスホニウム類などの強塩基性を有するカチオンとで塩を形成させたものであり、光(活性エネルギー線)の照射や加熱等の操作により強塩基を発生させることができる。これらの化合物は、アニオンのボレート部分の求核性が低いため、エポキシ系化合物等の塩基反応性化合物と反応しにくい。このため、本発明の化合物を含んでなる塩基発生剤は、エポキシ系化合物等の塩基反応性化合物と混合した状態で長期間保存した場合であっても、塩基反応性化合物と反応することなく、高い保存安定性を有するという効果を奏する。
 本発明の塩基反応性組成物は、長期間保存していても塩基反応性組成物としての性能を低下させず、安定した状態で保存することができ、かつ、硬化操作を行った際には、塩基発生剤から発生した強塩基(グアニジン類、ビグアニド類、ホスファゼン類またはホスホニウム類)を開始剤として、組成物中の塩基反応性化合物の硬化を効果的に進行することができるという効果を奏する。
 本発明において、活性エネルギー線とは、波長を特定した場合を除き、可視領域の波長の電磁波(可視光線)のみならず、例えば紫外領域の波長の電磁波(紫外線)、赤外領域の波長の電磁波(赤外線)、X線等の非可視領域の波長の電磁波が含まれる。本発明においては、活性エネルギー線に感受性の塩基発生剤(活性エネルギー線の照射によって塩基を発生する塩基発生剤)を光塩基発生剤と称する場合がある。また、波長365nm、405nm、436nmの活性エネルギー線をそれぞれ、i線、h線、g線と表記する場合がある。
-本発明の化合物-
 本発明の化合物は、下記一般式(A)で示されるものである。
Figure JPOXMLDOC01-appb-I000022
(式中、Rは、炭素数1~12のアルキル基;ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基;炭素数2~12のアルケニル基;2-フリルエチニル基;2-チオフェニルエチニル基;または2,6-ジチアニル基を表し、R~Rはそれぞれ独立して、炭素数1~12のアルキル基;ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基;ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基;フラニル基;チエニル基;またはN-アルキル置換ピロリル基を表し、Zは、グアニジニウム基、ビグアニジウム基またはホスファゼニウム基を有するアンモニウムカチオン、あるいはホスホニウムカチオンを表す。)
 一般式(A)におけるRで示される炭素数1~12のアルキル基としては、直鎖状、分枝状もしくは環状のいずれであってもよく、なかでも、直鎖状のものが好ましい。また、炭素数1~12のアルキル基のうち、炭素数1~8のものが好ましく、炭素数1~6のものがより好ましく、炭素数1~4のものがさらに好ましい。このようなアルキル基の具体例としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、ネオヘキシル基、2-メチルペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、シクロヘキシル基、n-ヘプチル基、イソヘプチル基、sec-ヘプチル基、tert-ヘプチル基、ネオヘプチル基、シクロヘプチル基、n-オクチル基、イソオクチル基、sec-オクチル基、tert-オクチル基、ネオオクチル基、2-エチルヘキシル基、シクロオクチル基、n-ノニル基、イソノニル基、sec-ノニル基、tert-ノニル基、ネオノニル基、シクロノニル基、n-デシル基、イソデシル基、sec-デシル基、tert-デシル基、ネオデシル基、シクロデシル基、n-ウンデシル基、シクロウンデシル基、n-ドデシル基、シクロドデシル基、ノニルボニル基(ノルボルナン-χ-イル基)、ボルニル基(ボルナン-χ-イル基)、メンチル基(メンタ-χ-イル基)、アダマンチル基、デカヒドロナフチル基等が挙げられる。これらのアルキル基の中でも、炭素数1~8のアルキル基が好ましく、なかでも、炭素数1~6のアルキル基がより好ましく、なかでも、炭素数1~4のアルキル基がさらに好ましく、そのなかでも、炭素数1~4の直鎖状のアルキル基が特に好ましく、なかでも、n-ブチル基が最も好ましい。
 一般式(A)におけるR~Rで示される炭素数1~12のアルキル基としては、直鎖状、分枝状もしくは環状のいずれであってもよく、なかでも、直鎖状のものが好ましい。また、炭素数1~12のアルキル基のうち、炭素数4~12のものが好ましく、炭素数4~8のものがより好ましく、炭素数4~6のものがさらに好ましい。このようなアルキル基の具体例としては、一般式(A)におけるR~Rで示される炭素数1~12のアルキル基の具体例と同様のものが挙げられる。このアルキル基のなかでも、炭素数4~12のアルキル基が好ましく、なかでも、炭素数4~8のアルキル基がより好ましく、なかでも、炭素数4~6のアルキル基がさらに好ましく、その中でも、炭素数4~6の直鎖状のアルキル基が特に好ましく、なかでも、n-ブチル基が最も好ましい。
 一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数8~16のアリールアルキニル基は、アリール基部分が単環式もしくは縮合多環式のいずれであってもよく、なかでも、単環式のものが好ましい。また、アルキニル基部分が直鎖状もしくは分枝状のいずれであってもよく、なかでも、直鎖状のものが好ましい。このようなアリールアルキニル基の具体例としては、例えばフェニルエチニル基、3-フェニル-1-プロピン-1-イル基、3-フェニル-2-プロピン-1-イル基(3-フェニルプロパルギル基)、4-フェニル-1-ブチン-1-イル基、4-フェニル-2-ブチン-1-イル基、4-フェニル-3-ブチン-1-イル基、3-フェニル-1-ブチン-1-イル基、4-フェニル-3-ブチン-2-イル基、5-フェニル-1-ペンチン-1-イル基、5-フェニル-2-ペンチン-1-イル基、5-フェニル-3-ペンチン-1-イル基、5-フェニル-4-ペンチン-1-イル基、4-フェニル-1-ペンチン-1-イル基、4-フェニル-2-ペンチン-1-イル基、3-フェニル-1-ペンチン-1-イル基、5-フェニル-3-ペンチン-2-イル基、5-フェニル-4-ペンチン-2-イル基、5-フェニル-4-ペンチン-3-イル基、4-フェニル-3-メチル-1-ブチン-1-イル基、4-フェニル-2-メチル-3-ブチン-1-イル基、3-フェニル-3-メチル-1-ブチン-1-イル基、6-フェニル-1-ヘキシン-1-イル基、6-フェニル-2-ヘキシン-1-イル基、6-フェニル-3-ヘキシン-1-イル基、6-フェニル-4-ヘキシン-1-イル基、6-フェニル-5-ヘキシン-1-イル基、5-フェニル-1-ヘキシン-1-イル基、5-フェニル-2-ヘキシン-1-イル基、5-フェニル-3-ヘキシン-1-イル基、5-フェニルー4-ヘキシン-1-イル基、5-フェニル-3-ヘキシン-2-イル基、3-フェニル-1-ヘキシン-1-イル基、3-フェニル-2-ヘキシン-1-イル基、6-フェニル-3-ヘキシン-2-イル基、6-フェニル-4-ヘキシン-2-イル基、6-フェニル-4-ヘキシン-3-イル基、6-フェニル-5-ヘキシン-2-イル基、6-フェニル-5-ヘキシン-3-イル基、6-フェニル-5-ヘキシン-4-イル基、5-フェニル-3-ヘキシン-2-イル基、4-フェニル-4-メチル-1-ペンチン-1-イル基、4-フェニル-3-メチル-1-ペンチン-1-イル基、4-フェニル-4-メチル-2-ペンチン-1-イル基、3-フェニル-3-メチル-2-ペンチン-1-イル基、4-フェニル-3-メチル-1-ペンチン-1-イル基、1-ナフチルエチニル基、2-ナフチルエチニル基、3-(1-ナフチル)-1-プロピン-1-イル基、3-(2-ナフチル)-1-プロピン-1-イル基、4-(1-ナフチル)-1-ブチン-1-イル基、4-(2-ナフチル)-1-ブチン-1-イル基、5-(1-ナフチル)-1-ペンチン-1-イル基、5-(2-ナフチル)-1-ペンチン-1-イル基、6-(1-ナフチル)-1-ヘキシン-1-イル基、6-(2-ナフチル)-1-ヘキシン-1-イル基、9-アントラセニルエチニル基等が挙げられる。これらのアリールアルキニル基の中でも、炭素数8~12のフェニルアルキニル基がより好ましく、なかでも、例えばフェニルエチニル基、3-フェニル-1-プロピン-1-イル基、3-フェニル-2-プロピン-1-イル基(3-フェニルプロパルギル基)、4-フェニル-1-ブチン-1-イル基、4-フェニル-2-ブチン-1-イル基、4-フェニル-3-ブチン-1-イル基、5-フェニル-1-ペンチン-1-イル基、5-フェニル-2-ペンチン-1-イル基、5-フェニル-3-ペンチン-1-イル基、5-フェニル-4-ペンチン-1-イル基、6-フェニル-1-ヘキシン-1-イル基、6-フェニル-2-ヘキシン-1-イル基、6-フェニル-3-ヘキシン-1-イル基、6-フェニル-4-ヘキシン-1-イル基、6-フェニル-5-ヘキシン-1-イル基等の、アルキニル基部分が直鎖状であり、その末端にフェニル基が結合している炭素数8~12のフェニルアルキニル基がより好ましく、そのなかでも、フェニルエチニル基がさらに好ましい。なお、ここで示されるアリールアルキニル基の炭素数は、当該アリールアルキニル基を構成する炭素数を意味し、置換基を構成する炭素数は、炭素数8~16のアリールアルキニル基における「炭素数8~16」で示される炭素数に含まないものとする。
 一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」におけるハロゲン原子としては、具体的には、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数1~6のアルキル基としては、直鎖状、分枝状もしくは環状のいずれであってもよく、なかでも、直鎖状のものが好ましい。また、炭素数1~6のアルキル基のうち、炭素数1~4のものが好ましく、炭素数1~2のものがより好ましい。このようなアルキル基の具体例としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、ネオヘキシル基、2-メチルペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、シクロヘキシル基等が挙げられる。これらのアルキル基のなかでも、炭素数1~4のアルキル基が好ましく、なかでも、炭素数1~2のアルキル基がより好ましく、その中でも、メチル基がさらに好ましい。
 一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数1~6のアルコキシ基としては、直鎖状、分枝状もしくは環状のいずれであってもよく、なかでも、直鎖状のものが好ましい。また、炭素数1~6のアルコキシ基のうち、炭素数1~4のものが好ましく、炭素数1~2のものがより好ましい。このようなアルコキシ基の具体例としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、シクロブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、sec-ペンチルオキシ基、tert-ペンチルオキシ基、ネオペンチルオキシ基、2-メチルブトキシ基、1,2-ジメチルプロポキシ基、1-エチルプロポキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、sec-ヘキシルオキシ基、tert-ヘキシルオキシ基、ネオヘキシルオキシ基、2-メチルペンチルオキシ基、1,2-ジメチルブトキシ基、2,3-ジメチルブトキシ基、1-エチルブトキシ基、シクロヘキシルオキシ基等が挙げられる。これらのアルコキシ基のなかでも、炭素数1~4のアルコキシ基が好ましく、なかでも、炭素数1~2のアルコキシ基がより好ましく、その中でも、メトキシ基がさらに好ましい。
 一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数1~6のアルキルチオ基としては、直鎖状、分枝状もしくは環状のいずれであってもよく、なかでも、直鎖状のものが好ましい。また、炭素数1~6のアルキルチオ基のうち、炭素数1~4のものが好ましく、炭素数1~2のものがより好ましい。このようなアルキルチオ基の具体例としては、例えばメチルチオ基、エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、n-ブチルチオ基、イソブチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、シクロブチルチオ基、n-ペンチルチオ基、イソペンチルチオ基、sec-ペンチルチオ基、tert-ペンチルチオ基、ネオペンチルチオ基、2-メチルブチルチオ基、1,2-ジメチルプロピルチオ基、1-エチルプロピルチオ基、シクロペンチルチオ基、n-ヘキシルチオ基、イソヘキシルチオ基、sec-ヘキシルチオ基、tert-ヘキシルチオ基、ネオヘキシルチオ基、2-メチルペンチルチオ基、1,2-ジメチルブチルチオ基、2,3-ジメチルブチルチオ基、1-エチルブチルチオ基、シクロヘキシルチオ基等の炭素数1~6のアルキルチオ基が挙げられる。これらのアルキルチオ基のなかでも、炭素数1~4のアルキルチオ基が好ましく、なかでも、炭素数1~2のアルキルチオ基がより好ましく、その中でも、メチルチオ基がさらに好ましい。
 一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数8~16のアリールアルキニル基に置換する置換基(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基)は、該アリールアルキニル基上のアリール基部分にのみ置換する。
 上述した炭素数8~16のアリールアルキニル基上の置換基の数は、0(無置換)~9の整数が挙げられ、0(無置換)~5が好ましく、1~3がより好ましく、1がさらに好ましい。
 一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数8~16のアリールアルキニル基上の置換基の位置は、当該アリールアルキニル基がフェニルアルキニル基、ナフチルアルキニル基、アントラセニルアルキニル基のいずれであるかにより異なり、好ましいアリールアルキニル基の具体例も異なる。
 一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数8~16のアリールアルキニル基がフェニルアルキニル基である場合の置換基の位置は、オルト位、メタ位またはパラ位のいずれでもよく、なかでも、オルト位またはパラ位がより好ましく、そのなかでも、パラ位がさらに好ましい。
 一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数8~16のアリールアルキニル基がナフチルアルキニル基である場合のアルキニル基の結合位置は、1位または2位のいずれでもよい。
 上述したナフチルアルキニル基の置換基における位置は、1~8位のいずれでもよく、なかでも、1~4位が好ましい。
 一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数8~16のアリールアルキニル基がアントラセニルアルキニル基である場合のアルキニル基の結合位置は、1位、2位または9位のいずれでもよく、なかでも、9位が好ましい。
 上述したアントラセニルアルキニル基におけるアルキニル基の結合位置が1位または2位であるである場合、該アントラセニルアルキニル基における置換基の位置は、1~10位のいずれでもよく、なかでも、1~4位が好ましい。
 上述したアントラセニルアルキニル基におけるアルキニル基の結合位置が9位であるである場合、該アントラセニルアルキニル基における置換基の位置は、1~8位または10位のいずれでもよく、なかでも、10位が好ましい。
 一般式(A)におけるRで示される炭素数2~12のアルケニル基としては、直鎖状、分枝状もしくは環状のいずれであってもよく、なかでも、直鎖状のものが好ましい。また、炭素数2~12のアルケニル基のうち、炭素数2~6のものが好ましく、炭素数2~3のものがより好ましい。このようなアルケニル基の具体例としては、例えばビニル基、1-プロペニル基、2-プロペニル基(アリール基)、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、イソブテニル基、メタリル基(2-メチルアリール基)、プレニル基(ジメチルアリール基)、イソペンテニル基、シクロペンテニル基、n-ヘキセニル基、シクロヘキセニル基、n-ヘプテニル基、n-オクテニル基、n-ノネニル基、n-デセニル基、n-ウンデセニル基、n-ドデセニル基等が挙げられ、なかでも、炭素数2~6のアルケニル基が好ましく、その中でも、炭素数2~3のアルケニル基がより好ましい。
 一般式(A)におけるR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基としては、具体的には、例えばフェニル基、ナフチル基、アントラセニル基等が挙げられ、なかでも、フェニル基が好ましい。なお、ここで示されるアリール基の炭素数は、当該アリール基を構成する炭素数を意味し、置換基を構成する炭素数は、炭素数6~14のアリール基における「炭素数6~14」で示される炭素数に含まないものとする。
 一般式(A)におけるR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基」におけるハロゲン原子の具体例としては、一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」におけるハロゲン原子の具体例と同様のものが挙げられる。
 一般式(A)におけるR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基」における炭素数1~6のアルキル基の具体例としては、一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数1~6のアルキル基の具体例と同様のものが挙げられ、好ましいアルキル基の具体例も同様のものが挙げられる。
 一般式(A)におけるR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基」における炭素数1~6のアルコキシ基の具体例としては、一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数1~6のアルコキシ基の具体例と同様のものが挙げられ、好ましいアルコキシ基の具体例も同様のものが挙げられる。
 一般式(A)におけるR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基」における炭素数1~6のアルキルチオ基の具体例としては、一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数1~6のアルキルチオ基の具体例と同様のものが挙げられ、好ましいアルキルチオ基の具体例も同様のものが挙げられる。
 一般式(A)におけるR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基上の置換基の数は、0(無置換)~9の整数が挙げられ、0(無置換)~5が好ましく、0(無置換)~3がより好ましく、0(無置換)~1がさらに好ましく、0(無置換)が特に好ましい。
 一般式(A)におけるR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基上の置換基の位置は、当該アリール基がフェニル基、ナフチル基、アントラセニル基のいずれであるかにより異なり、好ましいアリール基の具体例も異なる。
 一般式(A)におけるR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基がフェニル基である場合の置換基の位置は、オルト位、メタ位またはパラ位のいずれでもよく、なかでも、オルト位またはパラ位がより好ましく、そのなかでも、パラ位がさらに好ましい。
 一般式(A)におけるR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基がナフチル基である場合の結合手の位置は、1位または2位のいずれでもよい。
 上述したナフチル基における置換基の位置は、1~8位のいずれでもよく、なかでも、1~4位がより好ましい。
 一般式(A)におけるR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基がアントラセニル基である場合の結合手の位置は、1位、2位または9位のいずれでもよく、なかでも、9位が好ましい。
 上述したアントラセニル基における結合手の結合位置が1位または2位であるである場合、該アントラセニル基における置換基の位置は、1~10位のいずれでもよく、なかでも、1~4位が好ましい。
 上述したアントラセニル基における結合手の結合位置が9位であるである場合、該アントラセニル基における置換基の位置は、1~8位または10位のいずれでもよく、なかでも、10位が好ましい。
 一般式(A)におけるR~Rで示されるN-アルキル置換ピロリル基とは、ピロリル基中の窒素原子がアルキル基で置換されているものを表し、該アルキル基としては、直鎖状、分枝状もしくは環状のいずれであってもよく、なかでも、直鎖状のものが好ましい。また、炭素数1~6のアルキル基のうち、炭素数1~4のものが好ましく、炭素数1~2のものがより好ましい。このようなアルキル基の具体例としては、一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数1~6のアルキル基の具体例と同様のものが挙げられ、好ましいアルキル基の具体例も同様のものが挙げられる。
 一般式(A)におけるR~Rで示されるN-アルキル置換ピロリル基の具体例としては、例えばN-メチルピロリル基、N-エチルピロリル基、N-n-プロピルピロリル基、N-イソプロピルピロリル基、N-n-ブチルピロリル基、N-イソブチルピロリル基、N-sec-ブチルピロリル基、N-tert-ブチルピロリル基、N-シクロブチルピロリル基、N-n-ペンチルピロリル基、N-イソペンチルピロリル基、N-sec-ペンチルピロリル基、N-tert-ペンチルピロリル基、N-ネオペンチルピロリル基、N-2-メチルブチルピロリル基、N-1,2-ジメチルプロピルピロリル基、N-1-エチルプロピルピロリル基、N-シクロペンチルピロリル基、N-n-ヘキシルピロリル基、N-イソヘキシルピロリル基、N-sec-ヘキシルピロリル基、N-tert-ヘキシルピロリル基、N-ネオヘキシルピロリル基、N-2-メチルペンチルピロリル基、N-1,2-ジメチルブチルピロリル基、N-2,3-ジメチルブチルピロリル基、N-1-エチルブチルピロリル基、N-シクロヘキシルピロリル基等が挙げられる。これらのN-アルキル置換ピロリル基のなかでも、炭素数1~4のアルキル基で置換されたN-アルキル置換ピロリル基が好ましく、なかでも、炭素数1~4の直鎖状のアルキル基で置換されたN-アルキル置換ピロリル基がより好ましく、その中でも、N-メチルピロリル基がさらに好ましい。
 一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数8~16のアリールアルキニル基は、1つ以上の置換基(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基)で置換されているものが好ましく、なかでも、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基のいずれか1つで1箇所が置換されているものがより好ましく、そのなかでも、炭素数1~6のアルキル基で1箇所が置換されているものがさらに好ましい。
 一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」のなかでも、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、および炭素数1~6のアルキルチオ基からなる群から選ばれるいずれかの置換基で置換されていてもよい炭素数8~12のフェニルアルキニル基が好ましく、そのなかでも、該置換基から選ばれるいずれかの置換基で置換されていてもよいフェニルエチニル基がより好ましく、さらに、そのなかでも、該置換基から選ばれるいずれか1つで1箇所が置換されているフェニルエチニル基がさらに好ましく、なかでも、炭素数1~6のアルキル基で1箇所が置換されているフェニルエチニル基が特に好ましい。このようなアリールアルキニル基の具体例としては、例えばフェニルエチニル基、3-フェニルプロピニル基、4-フェニルブチニル基、5-フェニルペンチニル基、6-フェニルヘキシニル基等の無置換の炭素数8~16のアリールアルキニル基;例えばo-フルオロフェニルエチニル基、m-フルオロフェニルエチニル基、p-フルオロフェニルエチニル基、o-クロロフェニルエチニル基、m-クロロフェニルエチニル基、p-クロロフェニルエチニル基、o-ブロモフェニルエチニル基、m-ブロモフェニルエチニル基、p-ブロモフェニルエチニル基、o-ヨ-ドフェニルエチニル基、m-ヨ-ドフェニルエチニル基、p-ヨ-ドフェニルエチニル基、2,3-ジフルオロフェニルエチニル基、3,4-ジフルオロフェニルエチニル基、2,4-ジフルオロフェニルエチニル基、2,6-ジフルオロフェニルエチニル基、2,3-ジクロロフェニルエチニル基、3,4-ジクロロフェニルエチニル基、2,4-ジクロロフェニルエチニル基、2,6-ジクロロフェニルエチニル基、2,3-ジブロモフェニルエチニル基、3,4-ジブロモフェニルエチニル基、2,4-ジブロモフェニルエチニル基、2,6-ジブロモフェニルエチニル基、2,3-ジヨ-ドフェニルエチニル基、3,4-ジヨ-ドフェニルエチニル基、2,4-ジヨ-ドフェニルエチニル基、2,6-ジヨードフェニルエチニル基、2,3,4-トリフルオロフェニルエチニル基、2,3,5-トリフルオロフェニルエチニル基、2,3,6-トリフルオロフェニルエチニル基、2,4,5-トリフルオロフェニルエチニル基、2,4,6-トリフルオロフェニルエチニル基、2,5,6-トリフルオロフェニルエチニル基、2,3,4-トリクロロフェニルエチニル基、2,3,5-トリクロロフェニルエチニル基、2,3,6-トリクロロフェニルエチニル基、2,4,5-トリクロロフェニルエチニル基、2,4,6-トリクロロフェニルエチニル基、2,5,6-トリクロロフェニルエチニル基、2,3,4-トリブロモフェニルエチニル基、2,3,5-トリブロモフェニルエチニル基、2,3,6-トリブロモフェニルエチニル基、2,4,5-トリブロモフェニルエチニル基、2,4,6-トリブロモフェニルエチニル基、2,5,6-トリブロモフェニルエチニル基、2,3,4-トリヨ-ドフェニルエチニル基、2,3,5-トリヨ-ドフェニルエチニル基、2,3,6-トリヨ-ドフェニルエチニル基、2,4,5-トリヨ-ドフェニルエチニル基、2,4,6-トリヨ-ドフェニルエチニル基、2,5,6-トリヨ-ドフェニルエチニル基、2,3,4,5-テトラフルオロフェニルエチニル基、2,3,4,5-テトラクロロフェニルエチニル基、2,3,4,5-テトラブロモフェニルエチニル基、2,3,4,5-テトラヨ-ドフェニルエチニル基、ペンタフルオロフェニルエチニル基、ペンタクロロフェニルエチニル基、ペンタブロモフェニルエチニル基、ペンタヨ-ドフェニルエチニル基、3-(p-フルオロフェニル)プロピニル基、3-(p-クロロフェニル)プロピニル基、3-(p-ブロモフェニル)プロピニル基、3-(p-ヨ-ドフェニル)プロピニル基、4-(p-フルオロフェニル)ブチニル基、4-(p-クロロフェニル)ブチニル基、4-(p-ブロモフェニル)ブチニル基、4-(p-ヨ-ドフェニル)ブチニル基、5-(p-フルオロフェニル)ペンチニル基、5-(p-クロロフェニル)ペンチニル基、5-(p-ブロモフェニル)ペンチニル基、5-(p-ヨ-ドフェニル)ペンチニル基、6-(p-フルオロフェニル)ヘキシニル基、6-(p-クロロフェニル)ヘキシニル基、6-(p-ブロモフェニル)ヘキシニル基、6-(p-ヨ-ドフェニル)ヘキシニル基、1-(2-フルオロ)ナフチルエチニル基、1-(2-クロロ)ナフチルエチニル基、1-(2-ブロモ)ナフチルエチニル基、1-(2-ヨ-ド)ナフチルエチニル基、2-(1-フルオロ)ナフチルエチニル基、2-(1-クロロ)ナフチルエチニル基、2-(1-ブロモ)ナフチルエチニル基、2-(1-ヨ-ド)ナフチルエチニル基、3-{1-(2-フルオロ)ナフチル}プロピニル基、3-{1-(2-クロロ)ナフチル}プロピニル基、3-{1-(2-ブロモ)ナフチル}プロピニル基、3-{1-(2-ヨ-ド)ナフチル}プロピニル基、3-{2-(1-フルオロ)ナフチル}プロピニル基、3-{2-(1-クロロ)ナフチル}プロピニル基、3-{2-(1-ブロモ)ナフチル}プロピニル基、3-{2-(1-ヨ-ド)ナフチル}プロピニル基、4-{1-(2-フルオロ)ナフチル}ブチニル基、4-{1-(2-クロロ)ナフチル}ブチニル基、4-{1-(2-ブロモ)ナフチル}ブチニル基、4-{1-(2-ヨ-ド)ナフチル}ブチニル基、4-{2-(1-フルオロ)ナフチル}ブチニル基、4-{2-(1-クロロ)ナフチル}ブチニル基、4-{2-(1-ブロモ)ナフチル}ブチニル基、4-{2-(1-ヨ-ド)ナフチル}ブチニル基、5-{1-(2-フルオロ)ナフチル}ペンチニル基、5-{1-(2-クロロ)ナフチル}ペンチニル基、5-{1-(2-ブロモ)ナフチル}ペンチニル基、5-{1-(2-ヨ-ド)ナフチル}ペンチニル基、5-{2-(1-フルオロ)ナフチル}ペンチニル基、5-{2-(1-クロロ)ナフチル}ペンチニル基、5-{2-(1-ブロモ)ナフチル}ペンチニル基、5-{2-(1-ヨ-ド)ナフチル}ペンチニル基、6-{1-(2-フルオロ)ナフチル}ヘキシニル基、6-{1-(2-クロロ)ナフチル}ヘキシニル基、6-{1-(2-ブロモ)ナフチル}ヘキシニル基、6-{1-(2-ヨ-ド)ナフチル}ヘキシニル基、6-{2-(1-フルオロ)ナフチル}ヘキシニル基、6-{2-(1-クロロ)ナフチル}ヘキシニル基、6-{2-(1-ブロモ)ナフチル}ヘキシニル基、6-{2-(1-ヨ-ド)ナフチル}ヘキシニル基、9-(10-フルオロ)アントラセニルエチニル基、9-(10-クロロ)アントラセニルエチニル基、9-(10-ブロモ)アントラセニルエチニル基、9-(10-ヨ-ド)アントラセニルエチニル基等のハロゲン原子で置換されている炭素数8~16のアリールアルキニル基;例えばo-メチルフェニルエチニル基、m-メチルフェニルエチニル基、p-メチルフェニルエチニル基、p-エチルフェニルエチニル基、p-プロピルフェニルエチニル基、p-ブチルフェニルエチニル基、p-ペンチルフェニルエチニル基、p-ヘキシルフェニルエチニル基、2,3-ジメチルフェニルエチニル基、3,4-ジメチルフェニルエチニル基、2,4-ジメチルフェニルエチニル基、2,6-ジメチルフェニルエチニル基、2,3,4-トリメチルフェニルエチニル基、2,3,5-トリメチルフェニルエチニル基、2,3,6-トリメチルフェニルエチニル基、2,4,5-トリメチルフェニルエチニル基、2,4,6-トリメチルフェニルエチニル基、2,5,6-トリメチルフェニルエチニル基、2,3,4,5-テトラメチルフェニルエチニル基、ペンタメチルフェニルエチニル基、3-(p-メチルフェニル)プロピニル基、4-(p-メチルフェニル)ブチニル基、5-(p-メチルフェニル)ペンチニル基、6-(p-メチルフェニル)ヘキシニル基、1-(2-メチル)ナフチルエチニル基、2-(1-メチル)ナフチルエチニル基、3-{1-(2-メチル)ナフチル}プロピニル基、3-{2-(1-メチル)ナフチル}プロピニル基、4-{1-(2-メチル)ナフチル}ブチニル基、4-{2-(1-メチル)ナフチル}ブチニル基、5-{1-(2-メチル)ナフチル}ペンチニル基、5-{2-(1-メチル)ナフチル}ペンチニル基、6-{1-(2-メチル)ナフチル}ヘキシニル基、6-{2-(1-メチル)ナフチル}ヘキシニル基、9-(10-メチル)アントラセニルエチニル基等の炭素数1~6のアルキル基で置換されている炭素数8~16のアリールアルキニル基;例えばo-メトキシフェニルエチニル基、m-メトキシフェニルエチニル基、p-メトキシフェニルエチニル基、p-エトキシフェニルエチニル基、p-プロポキシフェニルエチニル基、p-ブトキシフェニルエチニル基、p-ペンチルオキシフェニルエチニル基、p-ヘキシルオキシフェニルエチニル基、2,3-ジメトキシフェニルエチニル基、3,4-ジメトキシフェニルエチニル基、2,4-ジメトキシフェニルエチニル基、2,6-ジメトキシフェニルエチニル基、2,3,4-トリメトキシフェニルエチニル基、2,3,5-トリメトキシフェニルエチニル基、2,3,6-トリメトキシフェニルエチニル基、2,4,5-トリメトキシフェニルエチニル基、2,4,6-トリメトキシフェニルエチニル基、2,5,6-トリメトキシフェニルエチニル基、2,3,4,5-テトラメトキシフェニルエチニル基、ペンタメトキシフェニルエチニル基、3-(p-メトキシフェニル)プロピニル基、4-(p-メトキシフェニル)ブチニル基、5-(p-メトキシフェニル)ペンチニル基、6-(p-メトキシフェニル)ヘキシニル基、1-(2-メトキシ)ナフチルエチニル基、2-(1-メトキシ)ナフチルエチニル基、3-{1-(2-メトキシ)ナフチル}プロピニル基、3-{2-(1-メトキシ)ナフチル}プロピニル基、4-{1-(2-メトキシ)ナフチル}ブチニル基、4-{2-(1-メトキシ)ナフチル}ブチニル基、5-{1-(2-メトキシ)ナフチル}ペンチニル基、5-{2-(1-メトキシ)ナフチル}ペンチニル基、6-{1-(2-メトキシ)ナフチル}ヘキシニル基、6-{2-(1-メトキシ)ナフチル}ヘキシニル基、9-(10-メトキシ)アントラセニルエチニル基等の炭素数1~6のアルコキシ基で置換されている炭素数8~16のアリールアルキニル基;例えばo-メチルチオフェニルエチニル基、m-メチルチオフェニルエチニル基、p-メチルチオフェニルエチニル基、p-エチルチオフェニルエチニル基、p-プロピルチオフェニルエチニル基、p-ブチルチオフェニルエチニル基、p-ペンチルチオフェニルエチニル基、p-ヘキシルチオフェニルエチニル基、2,3-ジメチルチオフェニルエチニル基、3,4-ジメチルチオフェニルエチニル基、2,4-ジメチルチオフェニルエチニル基、2,6-ジメチルチオフェニルエチニル基、2,3,4-トリメチルチオフェニルエチニル基、2,3,5-トリメチルチオフェニルエチニル基、2,3,6-トリメチルチオフェニルエチニル基、2,4,5-トリメチルチオフェニルエチニル基、2,4,6-トリメチルチオフェニルエチニル基、2,5,6-トリメチルチオフェニルエチニル基、2,3,4,5-テトラメチルチオフェニルエチニル基、ペンタメチルチオフェニルエチニル基、3-(p-メチルチオフェニル)プロピニル基、4-(p-メチルチオフェニル)ブチニル基、5-(p-メチルチオフェニル)ペンチニル基、6-(p-メチルチオフェニル)ヘキシニル基、1-(2-メチル)ナフチルエチニル基、2-(1-メチル)ナフチルエチニル基、3-{1-(2-メチル)ナフチル}プロピニル基、3-{2-(1-メチル)ナフチル}プロピニル基、4-{1-(2-メチル)
ナフチル}ブチニル基、4-{2-(1-メチル)ナフチル}ブチニル基、5-{1-(2-メチル)ナフチル}ペンチニル基、5-{2-(1-メチル)ナフチル}ペンチニル基、6-{1-(2-メチル)ナフチル}ヘキシニル基、6-{2-(1-メチル)ナフチル}ヘキシニル基、9-(10-メチル)アントラセニルエチニル基等の炭素数1~6のアルキルチオ基で置換されている炭素数8~16のアリールアルキニル基が挙げられる。なお、上述の具体例において、炭素数8~16のアリールアルキニル基に置換している炭素数1~6のアルキル基、炭素数1~6のアルコキシ基および炭素数1~6のアルキルチオ基は、normal-体に限定されず、sec-体、tert-体、イソ体、ネオ体等の分枝状もしくはシクロ体のような環状のものも上述の具体例に含まれる。
 一般式(A)におけるR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基は、無置換のものが好ましい。
 一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基」のなかでも、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、および炭素数1~6のアルキルチオ基からなる群から選ばれるいずれかの置換基で置換されていてもよいフェニル基が好ましく、そのなかでも、無置換のフェニル基がより好ましい。このようなアリール基の具体例としては、例えばフェニル基、ナフチル基、アントラセニル基等の無置換の炭素数6~14のアリール基;例えばo-フルオロフェニル基、m-フルオロフェニル基、p-フルオロフェニル基、o-クロロフェニル基、m-クロロフェニル基、p-クロロフェニル基、o-ブロモフェニル基、m-ブロモフェニル基、p-ブロモフェニル基、o-ヨ-ドフェニル基、m-ヨ-ドフェニル基、p-ヨ-ドフェニル基、2,3-ジフルオロフェニル基、3,4-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,6-ジフルオロフェニル基、2,3-ジクロロフェニル基、3,4-ジクロロフェニル基、2,4-ジクロロフェニル基、2,6-ジクロロフェニル基、2,3-ジブロモフェニル基、3,4-ジブロモフェニル基、2,4-ジブロモフェニル基、2,6-ジブロモフェニル基、2,3-ジヨ-ドフェニル基、3,4-ジヨ-ドフェニル基、2,4-ジヨ-ドフェニル基、2,6-ジヨードフェニル基、2,3,4-トリフルオロフェニル基、2,3,5-トリフルオロフェニル基、2,3,6-トリフルオロフェニル基、2,4,5-トリフルオロフェニル基、2,4,6-トリフルオロフェニル基、2,5,6-トリフルオロフェニル基、2,3,4-トリクロロフェニル基、2,3,5-トリクロロフェニル基、2,3,6-トリクロロフェニル基、2,4,5-トリクロロフェニル基、2,4,6-トリクロロフェニル基、2,5,6-トリクロロフェニル基、2,3,4-トリブロモフェニル基、2,3,5-トリブロモフェニル基、2,3,6-トリブロモフェニル基、2,4,5-トリブロモフェニル基、2,4,6-トリブロモフェニル基、2,5,6-トリブロモフェニル基、2,3,4-トリヨ-ドフェニル基、2,3,5-トリヨ-ドフェニル基、2,3,6-トリヨ-ドフェニル基、2,4,5-トリヨ-ドフェニル基、2,4,6-トリヨ-ドフェニル基、2,5,6-トリヨ-ドフェニル基、2,3,4,5-テトラフルオロフェニル基、2,3,4,5-テトラクロロフェニル基、2,3,4,5-テトラブロモフェニル基、2,3,4,5-テトラヨ-ドフェニル基、ペンタフルオロフェニル基、ペンタクロロフェニル基、ペンタブロモフェニル基、ペンタヨ-ドフェニル基、1-(2-フルオロ)ナフチル基、1-(2-クロロ)ナフチル基、1-(2-ブロモ)ナフチル基、1-(2-ヨ-ド)ナフチル基、2-(1-フルオロ)ナフチル基、2-(1-クロロ)ナフチル基、2-(1-ブロモ)ナフチル基、2-(1-ヨ-ド)ナフチル基、9-(10-フルオロ)アントラセニル基、9-(10-クロロ)アントラセニル基、9-(10-ブロモ)アントラセニル基、9-(10-ヨ-ド)アントラセニル基等のハロゲン原子で置換されている炭素数6~14のアリール基;例えばo-メチルフェニル基、m-メチルフェニル基、p-メチルフェニル基、p-エチルフェニル基、p-プロピルフェニル基、p-ブチルフェニル基、p-ペンチルフェニル基、p-ヘキシルフェニル基、2,3-ジメチルフェニル基、3,4-ジメチルフェニル基、2,4-ジメチルフェニル基、2,6-ジメチルフェニル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,5-トリメチルフェニル基、2,4,6-トリメチルフェニル基、2,5,6-トリメチルフェニル基、2,3,4,5-テトラメチルフェニル基、ペンタメチルフェニル基、1-(2-メチル)ナフチル基、2-(1-メチル)ナフチル基、9-(10-メチル)アントラセニル基等の炭素数1~6のアルキル基で置換されている炭素数6~14のアリール基;例えばo-メトキシフェニル基、m-メトキシフェニル基、p-メトキシフェニル基、p-エトキシフェニル基、p-プロポキシフェニル基、p-ブトキシフェニル基、p-ペンチルオキシフェニル基、p-ヘキシルオキシフェニル基、2,3-ジメトキシフェニル基、3,4-ジメトキシフェニル基、2,4-ジメトキシフェニル基、2,6-ジメトキシフェニル基、2,3,4-トリメトキシフェニル基、2,3,5-トリメトキシフェニル基、2,3,6-トリメトキシフェニル基、2,4,5-トリメトキシフェニル基、2,4,6-トリメトキシフェニル基、2,5,6-トリメトキシフェニル基、2,3,4,5-テトラメトキシフェニル基、ペンタメトキシフェニル基、1-(2-メトキシ)ナフチル基、2-(1-メトキシ)ナフチル基、9-(10-メトキシ)アントラセニル基等の炭素数1~6のアルコキシ基で置換されている炭素数6~14のアリール基;例えばo-メチルチオフェニル基、m-メチルチオフェニル基、p-メチルチオフェニル基、p-エチルチオフェニル基、p-プロピルチオフェニル基、p-ブチルチオフェニル基、p-ペンチルチオフェニル基、p-ヘキシルチオフェニル基、2,3-ジメチルチオフェニル基、3,4-ジメチルチオフェニル基、2,4-ジメチルチオフェニル基、2,6-ジメチルチオフェニル基、2,3,4-トリメチルチオフェニル基、2,3,5-トリメチルチオフェニル基、2,3,6-トリメチルチオフェニル基、2,4,5-トリメチルチオフェニル基、2,4,6-トリメチルチオフェニル基、2,5,6-トリメチルチオフェニル基、2,3,4,5-テトラメチルチオフェニル基、ペンタメチルチオフェニル基、1-(2-メチルチオ)ナフチル基、2-(1-メチルチオ)ナフチル基、9-(10-メチルチオ)アントラセニル基等の炭素数1~6のアルキルチオ基で置換されている炭素数6~14のアリール基が挙げられる。なお、上述の具体例において、炭素数6~14のアリール基に置換している炭素数1~6のアルキル基、炭素数1~6のアルコキシ基および炭素数1~6のアルキルチオ基は、normal-体に限定されず、sec-体、tert-体、イソ体、ネオ体等の分枝状もしくはシクロ体のような環状のものも上述の具体例に含まれる。
 一般式(A)におけるRとしては、炭素数1~12のアルキル基およびハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基または炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~12のフェニルアルキニル基が好ましい。さらに、これらのなかでも、炭素数1~12のアルキル基およびハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基または炭素数1~6のアルキルチオ基で置換されていてもよいフェニルエチニル基がより好ましく、なかでも、炭素数1~6のアルキル基およびハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基または炭素数1~6のアルキルチオ基のいずれか1つで1箇所を置換されているフェニルエチニル基がさらに好ましい。
 一般式(A)におけるR~Rとしては、R~Rが全て同一の、炭素数4~12のアルキル基;ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、または炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~12のフェニルアルキニル基;ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、または炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基;フラニル基;チエニル基;およびN-アルキル置換ピロリル基が好ましい。さらに、これらのなかでも、R~Rが全て同一の、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、または炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基;フラニル基;チエニル基;およびN-アルキル置換ピロリル基がより好ましく、なかでも、R~Rが全て同一の、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基または炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基がさらに好ましく、そのなかでも、R~Rが全て同一の、無置換のフェニル基が特に好ましい。
 一般式(A)におけるR~Rの組合せとしては、以下の表1に記載のものが挙げられる。
Figure JPOXMLDOC01-appb-T000023
 表中、官能基Aは、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基を表し、官能基Bは、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基を表す。
 一般式(A)におけるZで示される「グアニジニウム基、ビグアニジウム基またはホスファゼニウム基を有するアンモニウムカチオン、あるいはホスホニウムカチオン」の具体例としては、例えば下記一般式(B)で示されるグアニジニウム基を有するアンモニウムカチオン、下記一般式(B)で示されるビグアニジウム基を有するアンモニウムカチオン、下記一般式(B)または(B)で示されるホスファゼニウム基を有するアンモニウムカチオン、下記一般式(B)または(B)で示されるホスホニウムカチオンが挙げられる。
Figure JPOXMLDOC01-appb-I000024
(式中、R~RおよびR10はそれぞれ独立して、水素原子、炭素数1~12のアルキル基またはアミノ基を表し、Rは、水素原子、炭素数1~12のアルキル基、アミノ基または下記式(b
Figure JPOXMLDOC01-appb-I000025
で示される基を表し、RとRおよび/またはRとR10とで、炭素数2~4のアルキレン基を形成していてもよい。ただし、R~R10のうち水素原子の数は、0~2である。)
Figure JPOXMLDOC01-appb-I000026
(式中、R11~R15及びR18はそれぞれ独立して、水素原子または炭素数1~12のアルキル基を表し、R16及びR17はそれぞれ独立して、水素原子、炭素数1~12のアルキル基またはニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基を表し、R16とR17とで、炭素数2~4のアルキレン基を形成していてもよい。ただし、R11~R18のうち水素原子の数は、0~2である。)
Figure JPOXMLDOC01-appb-I000027
{式中、R19は、水素原子または炭素数1~12のアルキル基を表し、Q~Qはそれぞれ独立して、下記一般式(b)または(b)で示される基を表すか、あるいはQとQとで、下記一般式(b)で示される環状構造を表す。ただし、式中の窒素原子に結合する水素原子の数は、1~5である。
Figure JPOXMLDOC01-appb-I000028
(式中、R20およびR21はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表し、R20とR21とで、炭素数2~4のアルキレン基を形成していてもよい。)
Figure JPOXMLDOC01-appb-I000029
(式中、R22~R27はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表す。)
Figure JPOXMLDOC01-appb-I000030
(式中、R28およびR29はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表す。)}
Figure JPOXMLDOC01-appb-I000031
(式中、Q~Qはそれぞれ独立して、前記一般式(b)または(b)で示される基を表す。ただし、式中の窒素原子に結合する水素原子の数は、0~4である。)
Figure JPOXMLDOC01-appb-I000032
(式中、R30は、水素原子または前記一般式(b)もしくは(b)で示される基を表し、R31~R36はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表し、あるいはR31とR32、R32とR33、R34とR35、R35とR36および/またはR33とR36とで、炭素数2~4のアルキレン基を形成していてもよく、R32、R33およびR35とで、窒素原子を含んでいてもよい炭素数3~10のアルキレン鎖を形成していてもよい。ただし、式中の窒素原子に結合する水素原子の数は、0~4である。)
Figure JPOXMLDOC01-appb-I000033
{式中、Q10~Q13はそれぞれ独立して、下記一般式(b)または(b)で示される基を表す。ただし、式中の窒素原子に結合する水素原子の数は、0~4である。
Figure JPOXMLDOC01-appb-I000034
(式中、R37~R42はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表す。)
Figure JPOXMLDOC01-appb-I000035
(式中、R43~R46はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表す。)}
 一般式(B)におけるR~R10で示される炭素数1~12のアルキル基としては、直鎖状、分枝状もしくは環状のいずれであってもよく、なかでも、直鎖状のものが好ましい。また、炭素数1~12のアルキル基のうち、炭素数1~6のものが好ましく、炭素数1~4のものがより好ましい。このようなアルキル基の具体例としては、一般式(A)におけるRで示される炭素数1~12のアルキル基の具体例と同様のものが挙げられ、そのなかでも、炭素数1~6のアルキル基が好ましく、なかでも、炭素数1~4のアルキル基がより好ましく、なかでも、炭素数1~4の直鎖状のアルキル基がさらに好ましく、そのなかでも、メチル基が特に好ましい。
 一般式(B)における「RとRおよび/またはRとR10とで、炭素数2~4のアルキレン基を形成」している場合の炭素数2~4のアルキレン基としては、直鎖状または分枝状のいずれであってもよく、具体的には、例えばエチレン基、トリメチレン基、プロピレン基、テトラメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、1,2-ジメチルエチレン基、1,1-ジメチルエチレン基、エチルエチレン基等が挙げられ、そのなかでも、トリメチレン基が好ましい。
 一般式(B)において、RとRとで、炭素数2~4のアルキレン基を形成している場合には、当該アルキレン基と、該アルキレン基に結合する-N=C-N-基とで、5~7員環の環状構造を形成する。
 当該環状構造の具体例としては、例えばイミダゾリン環、1,4,5,6-テトラヒドロピリミジン環、4-メチルイミダゾリン環、5-メチルイミダゾリン環、1,3-ジアザ-2-シクロヘプテン環、1,5,6-トリヒドロ-4-メチルピリミジン環、1,4,6-トリヒドロ-5-メチルピリミジン環、1,4,5-トリヒドロ-6-メチルピリミジン環、4-エチルイミダゾリン環、5-エチルイミダゾリン環、4,4-ジメチルイミダゾリン環、4,5-ジメチルイミダゾリン環、5,5-ジメチルイミダゾリン環が挙げられ、そのなかでも、1,4,5,6-テトラヒドロピリミジン環が好ましい。
 一般式(B)において、RとR10とで、炭素数2~4のアルキレン基を形成している場合には、当該アルキレン基と、該アルキレン基に結合する-N-C-N-基とで、5~7員環の環状構造を形成する。
 当該環状構造の具体例としては、例えばイミダゾリジン環、ヘキサヒドロピリミジン環、4-メチルイミダゾリジン環、1,3-ジアザシクロヘプタン環、1,3,5,6-テトラヒドロ-4-メチルピリミジン環、1,3,4,6-テトラヒドロ-5-メチルピリミジン環、4-エチルイミダゾリジン環、4,4-ジメチルイミダゾリジン環、4,5-ジメチルイミダゾリジン環が挙げられ、そのなかでも、ヘキサヒドロピリミジン環がさらに好ましい。
 一般式(B)における「R~R10のうち水素原子の数は、0~2である」とは、R~R10のうち、R~R10で示される基が水素原子であるRの数が、0~2であるということを意味している。
 一般式(B)におけるR~R10のうち、水素原子の数は、0~2の整数であり、1~2が好ましく、1がより好ましい。
 一般式(B)におけるR11~R15およびR18で示される炭素数1~12のアルキル基の具体例としては、一般式(B)におけるR~R10で示される炭素数1~12のアルキル基の具体例と同様のものが挙げられ、好ましいアルキル基の具体例も同様のものが挙げられる。
 一般式(B)におけるR16およびR17で示される炭素数1~12のアルキル基としては、直鎖状、分枝状もしくは環状のいずれであってもよく、なかでも、分枝状もしくは環状のものが好ましい。また、炭素数1~12のアルキル基のうち、炭素数1~8のものが好ましく、炭素数1~6のものがより好ましい。このようなアルキル基の具体例としては、一般式(A)におけるRで示される炭素数1~12のアルキル基の具体例と同様のものが挙げられ、そのなかでも、炭素数1~8のアルキル基が好ましく、なかでも、炭素数1~6のアルキル基がより好ましく、なかでも、イソプロピル基およびシクロヘキシル基がさらに好ましい。
 一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基としては、具体的には、例えばフェニル基、ナフチル基、アントラセニル基等が挙げられ、なかでも、フェニル基が好ましい。なお、ここで示されるアリール基の炭素数は、当該アリール基を構成する炭素数を意味し、置換基を構成する炭素数は、炭素数6~14のアリール基における「炭素数6~14」で示される炭素数に含まないものとする。
 一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」における炭素数1~6のアルキル基の具体例としては、一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数1~6のアルキル基の具体例と同様のものが挙げられ、そのなかでも、炭素数1~6の直鎖状又は分岐状のアルキル基が好ましく、炭素数1~4の直鎖状又は分岐状のアルキル基が好ましく、イソプロピル基が特に好ましい。
 一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」における炭素数1~6のアルコキシ基の具体例としては、一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数1~6のアルコキシ基の具体例と同様のものが挙げられ、好ましいアルコキシ基の具体例も同様のものが挙げられる。
 一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」における炭素数1~6のアルキルチオ基の具体例としては、一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数1~6のアルキルチオ基の具体例と同様のものが挙げられ、好ましいアルキルチオ基の具体例も同様のものが挙げられる。
 一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」の炭素数2~12のジアルキルアミノ基において、ここで示されるジアルキルアミノ基の炭素数2~12は、当該ジアルキルアミノ基を構成する2つのアルキル基の炭素数の合計を意味し、各アルキル基の炭素数はいずれも1~6である。すなわち、当該「炭素数2~12のジアルキルアミノ基」とは、同一でも異なっていてもよい2つの炭素数1~6のアルキル基を置換基として有するアミノ基のことを表す。
 一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」の炭素数2~12のジアルキルアミノ基を構成する炭素数1~6のアルキル基の具体例としては、一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数1~6のアルキル基の具体例と同様のものが挙げられ、好ましいアルキル基の具体例も同様のものが挙げられる。
 一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」における炭素数2~12のジアルキルアミノ基としては、当該ジアルキルアミノ基を構成する2つの炭素数1~6のアルキル基が同一のものが好ましい。具体的には、例えばN,N-ジメチルアミノ基、N,N-エチルメチルアミノ基、N,N-ジエチルアミノ基、N,N-メチルプロピルアミノ基、N,N-エチルプロピルアミノ基、N,N-ブチルメチルアミノ基、N,N-ジプロピルアミノ基、N,N-ブチルエチルアミノ基、N,N-メチルペンチルアミノ基、N,N-ブチルプロピルアミノ基、N,N-エチルペンチルアミノ基、N,N-ヘキシルメチルアミノ基、N,N-ジブチルアミノ基、N,N-プロピルペンチルアミノ基、N,N-エチルヘキシルアミノ基、N,N-ブチルペンチルアミノ基、N,N-ヘキシルプロピルアミノ基、N,N-ジペンチルアミノ基、N,N-ブチルヘキシルアミノ基、N,N-ヘキシルペンチルアミノ基、N,N-ジヘキシルアミノ基等が挙げられる。これらのジアルキルアミノ基のなかでも、同一の炭素数1~6のアルキル基を置換基として有するジアルキルアミノ基が好ましく、同一の炭素数1~4のアルキル基を置換基として有するジアルキルアミノ基がより好ましく、同一の直鎖状の炭素数1~4のアルキル基を置換基として有するアルキルアミノ基がさらに好ましく、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基が特に好ましい。なお、上述の具体例において、ジアルキルアミノ基の置換基であるアルキル基は、normal-体に限定されず、sec-体、tert-体、イソ体、ネオ体等の分枝状もしくはシクロ体のような環状のアルキル基を置換基として有するジアルキルアミノ基も上述の具体例に含まれる。
 一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基上の置換基の数は、0(無置換)~9の整数が挙げられ、1~5が好ましく、1~3がより好ましく、1~2が特に好ましい。
 一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基上の置換基の位置は、一般式(A)におけるR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基」における炭素数6~14のアリール基上の置換基の位置と同様のものが挙げられ、好ましい置換基の位置も同じである。
 一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」としては、置換されているものが好ましい。当該置換されている炭素数6~14のアリール基としては、ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基および炭素数2~12のジアルキルアミノ基から選ばれる少なくとも1種類の置換基で置換されていればよく、2種類以上の置換基で置換されていてもよいが、1種類の置換基のみで置換されているものが好ましく、なかでも、ニトロ基のみ又は炭素数1~6のアルキル基のみで置換されているものがより好ましい。
 一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」のなかでも、ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基および炭素数2~12のジアルキルアミノ基からなる群から選ばれるいずれかの置換基で置換されていてもよいフェニル基が好ましく、そのなかでも、該置換基から選ばれるいずれか1種類の置換基のみでが置換されているフェニル基がより好ましく、なかでも、ニトロ基のみ又は炭素数1~6のアルキル基のみで1~2箇所が置換されているフェニル基がさらに好ましい。
 一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」の具体例としては、例えばフェニル基、ナフチル基、アントラセニル基等の無置換の炭素数6~14のアリール基;例えばo-ニトロフェニル基、m-ニトロフェニル基、p-ニトロフェニル基、2,4-ジニトロフェニル基、2,6-ジニトロフェニル基、1-(2-ニトロ)ナフチル基、2-(1-ニトロ)ナフチル基、9-(10-ニトロ)アントラセニル基等のニトロ基で置換されている炭素数6~14のアリール基;例えばo-メチルフェニル基、m-メチルフェニル基、p-メチルフェニル基、p-エチルフェニル基、p-プロピルフェニル基、p-ブチルフェニル基、p-ペンチルフェニル基、p-ヘキシルフェニル基、2,3-ジメチルフェニル基、3,4-ジメチルフェニル基、2,4-ジメチルフェニル基、2,6-ジメチルフェニル基、2,3-ジエチルフェニル基、3,4-ジエチルフェニル基、2,4-ジエチルフェニル基、2,6-ジエチルフェニル基、2,3-ジプロピルフェニル基、3,4-ジプロピルフェニル基、2,4-ジプロピルフェニル基、2,6-ジプロピルフェニル基、2,3-ジブチルフェニル基、3,4-ジブチルフェニル基、2,4-ジブチルフェニル基、2,6-ジブチルフェニル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,5-トリメチルフェニル基、2,4,6-トリメチルフェニル基、2,5,6-トリメチルフェニル基、2,3,4,5-テトラメチルフェニル基、ペンタメチルフェニル基、1-(2-メチル)ナフチル基、2-(1-メチル)ナフチル基、9-(10-メチル)アントラセニル基等の炭素数1~6のアルキル基で置換されている炭素数6~14のアリール基;例えばo-メトキシフェニル基、m-メトキシフェニル基、p-メトキシフェニル基、p-エトキシフェニル基、p-プロポキシフェニル基、p-ブトキシフェニル基、p-ペンチルオキシフェニル基、p-ヘキシルオキシフェニル基、2,3-ジメトキシフェニル基、3,4-ジメトキシフェニル基、2,4-ジメトキシフェニル基、2,6-ジメトキシフェニル基、2,3,4-トリメトキシフェニル基、2,3,5-トリメトキシフェニル基、2,3,6-トリメトキシフェニル基、2,4,5-トリメトキシフェニル基、2,4,6-トリメトキシフェニル基、2,5,6-トリメトキシフェニル基、2,3,4,5-テトラメトキシフェニル基、ペンタメトキシフェニル基、1-(2-メトキシ)ナフチル基、2-(1-メトキシ)ナフチル基、9-(10-メトキシ)アントラセニル基等の炭素数1~6のアルコキシ基で置換されている炭素数6~14のアリール基;例えばo-メチルチオフェニル基、m-メチルチオフェニル基、p-メチルチオフェニル基、p-エチルチオフェニル基、p-プロピルチオフェニル基、p-ブチルチオフェニル基、p-ペンチルチオフェニル基、p-ヘキシルチオフェニル基、2,3-ジ(メチルチオ)フェニル基、3,4-ジ(メチルチオ)フェニル基、2,4-ジ(メチルチオ)フェニル基、2,6-ジ(メチルチオ)フェニル基、2,3,4-トリ(メチルチオ)フェニル基、2,3,5-トリ(メチルチオ)フェニル基、2,3,6-トリ(メチルチオ)フェニル基、2,4,5-トリ(メチルチオ)フェニル基、2,4,6-トリ(メチルチオ)フェニル基、2,5,6-トリ(メチルチオ)フェニル基、2,3,4,5-テトラ(メチルチオ)フェニル基、ペンタ(メチルチオ)フェニル基、1-(2-メチルチオ)ナフチル基、2-(1-メチルチオ)ナフチル基、9-(10-メチルチオ)アントラセニル基等の炭素数1~6のアルキルチオ基で置換されている炭素数6~14のアリール基;例えば、o-(N,N-ジメチルアミノ)フェニル基、m-(N,N-ジメチルアミノ)フェニル基、p-(N,N-ジメチルアミノ)フェニル基、p-(N,N-ジエチルアミノ)フェニル基、p-(N,N-ジプロピルアミノ)フェニル基、p-(N,N-ジブチルアミノ)フェニル基、p-(N,N-ジペンチルアミノ)フェニル基、p-(N,N-ジヘキシルアミノ)フェニル基、2,4-ジ(N,N-ジメチルアミノ)フェニル基、2,6-ジ(N,N-ジメチルアミノ)フェニル基、1-[2-(N,N-ジメチルアミノ)]ナフチル基、2-[1-(N,N-ジメチルアミノ)]ナフチル基、9-[10-(N,N-ジメチルアミノ)]アントラセニル基等の炭素数2~12のジアルキルアミノ基で置換されている炭素数6~14のアリール基が挙げられる。なお、上述の具体例において、炭素数6~14のアリール基に置換している炭素数1~6のアルキル基、炭素数1~6のアルコキシ基および炭素数1~6のアルキルチオ基、並びに、炭素数6~14のアリール基に置換している炭素数2~12のジアルキルアミノ基における2つの炭素数1~6のアルキル基は、normal-体に限定されず、sec-体、tert-体、イソ体、ネオ体等の分枝状もしくはシクロ体のような環状のものも上述の具体例に含まれる。
 一般式(B)における「R16とR17とで、炭素数2~4のアルキレン基を形成」している場合の炭素数2~4のアルキレン基の具体例としては、一般式(B)における「RとRおよび/またはRとR10とで、炭素数2~4のアルキレン基を形成」している場合の炭素数2~4のアルキレン基の具体例と同様のものが挙げられ、そのなかでも、炭素数2の直鎖状のアルキレン基であるエチレン基が好ましい。
 一般式(B)において、R16とR17とで、炭素数2~4のアルキレン基を形成している場合には、当該アルキレン基と、該アルキレン基に結合する-N=C-N-基とで、5~7員環の環状構造を形成する。
 当該環状構造の具体例としては、例えばイミダゾリン環、1,4,5,6-テトラヒドロピリミジン環、4-メチルイミダゾリン環、5-メチルイミダゾリン環、1,3-ジアザ-2-シクロヘプテン環、1,5,6-トリヒドロ-4-メチルピリミジン環、1,4,6-トリヒドロ-5-メチルピリミジン環、1,4,5-トリヒドロ-6-メチルピリミジン環、4-エチルイミダゾリン環、5-エチルイミダゾリン環、4,4-ジメチルイミダゾリン環、4,5-ジメチルイミダゾリン環、5,5-ジメチルイミダゾリン環が挙げられ、そのなかでも、イミダゾリン環が好ましい。
 一般式(B)における「R11~R18のうち水素原子の数は、0~2である」とは、R11~R18のうち、R11~R18で示される基が水素原子であるRの数が、0~2であるということを意味している。
 一般式(B)におけるR11~R18のうち、水素原子の数は、0~2の整数であり、0または2がより好ましい。
 一般式(B)におけるR19で示される炭素数1~12のアルキル基としては、直鎖状、分枝状もしくは環状のいずれであってもよく、なかでも、分枝状もしくは環状のものが好ましい。また、炭素数1~12のアルキル基のうち、炭素数1~8のものが好ましく、炭素数1~4のものがより好ましい。このようなアルキル基の具体例としては、一般式(A)におけるRで示される炭素数1~12のアルキル基の具体例と同様のものが挙げられ、なかでも、炭素数1~8のアルキル基が好ましく、なかでも、炭素数1~4のアルキル基が好ましく、そのなかでも、tert-ブチル基がさらに好ましい。
 一般式(B)において、式中の窒素原子に結合する水素原子の数は、1~5の整数であり、1~3が好ましく、1がより好ましい。なお、ここで示される水素原子の数は、一般式(B)における窒素原子が既に水素原子を1つ含んでいるため、常に1以上である。
 一般式(b)、(b)および(b)におけるR20~R29で示される炭素数1~6のアルキル基の具体例としては、一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数1~6のアルキル基の具体例と同様のものが挙げられ、好ましいアルキル基の具体例も同様のものが挙げられる。
 一般式(b)における「R20とR21とで、炭素数2~4のアルキレン基を形成」している場合の炭素数2~4のアルキレン基の具体例としては、一般式(B)における「RとRおよび/またはRとR10とで、炭素数2~4のアルキレン基を形成」している場合の炭素数2~4のアルキレン基の具体例と同様のものが挙げられ、そのなかでも、テトラメチレン基が好ましい。
 一般式(b)において、R20とR21とで、炭素数2~4のアルキレン基を形成している場合には、当該アルキレン基と、該アルキレン基に結合する窒素原子とで、3~5員環の環状構造を形成する。
 当該環状構造の具体例としては、例えばアジリジン環、アゼチジン環、2-メチルアジリジン環、ピロリジン環、2-メチルアゼチジン環、3-メチルアゼチジン環、2-エチルアジリジン環、2,2-ジメチルアジリジン環、2,3-ジメチルアジリジン環が挙げられ、そのなかでも、ピロリジン環が好ましい。
 一般式(B)において、式中の窒素原子に結合する水素原子の数は、0~4の整数であり、0~2が好ましく、0がより好ましい。
 一般式(B)におけるR31~R36で示される炭素数1~6のアルキル基の具体例としては、一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数1~6のアルキル基の具体例と同様のものが挙げられ、好ましいアルキル基の具体例も同様のものが挙げられる。
 一般式(B)における「R31とR32、R32とR33、R34とR35、R35とR36および/またはR33とR36とで、炭素数2~4のアルキレン基を形成」している場合の、R31とR32、R34とR35および/またはR35とR36とで炭素数2~4のアルキレン基を形成している場合における炭素数2~4のアルキレン基の具体例としては、一般式(b)における「R20とR21とで炭素数2~4のアルキレン基を形成」している場合の炭素数2~4のアルキレン基の具体例と同様のものが挙げられ、好ましいアルキレン基の具体例も同様のものが挙げられる。
 一般式(B)における「R31とR32、R32とR33、R34とR35、R35とR36および/またはR33とR36とで、炭素数2~4のアルキレン基を形成」している場合の、R32とR33および/またはR35とR36とで炭素数2~4のアルキレン基を形成している場合における炭素数2~4のアルキレン基の具体例としては、一般式(B)における「RとRおよび/またはRとR10とで、炭素数2~4のアルキレン基を形成」している場合の炭素数2~4のアルキレン基の具体例と同様のものが挙げられ、好ましいアルキレン基の具体例も同様のものが挙げられる。
 一般式(B)において、R31とR32とで、炭素数2~4のアルキレン基を形成している場合には、当該アルキレン基と、該アルキレン基に結合する窒素原子とで、3~5員環の環状構造を形成する。
 当該環状構造の具体例としては、例えばアジリジン環、アゼチジン環、2-メチルアジリジン環、ピロリジン環、2-メチルアゼチジン環、3-メチルアゼチジン環、2-エチルアジリジン環、2,2-ジメチルアジリジン環、2,3-ジメチルアジリジン環が挙げられ、そのなかでも、ピロリジン環が好ましい。
 一般式(B)において、R32とR33とで、炭素数2~4のアルキレン基を形成している場合には、当該アルキレン基と、該アルキレン基に結合する-N-P-N-基とで、5~7員環の環状構造を形成する。
 当該環状構造の具体例としては、例えばテトラヒドロ-2H-1,3,2-ジアザホスホ-ル環(1,3-ジアザ-2-ホスファシクロペンタン環)、ヘキサヒドロ-1,3,2-ジアザホスホリン環(1,3-ジアザ-2-ホスファシクロヘキサン環)、1,3-ジアザ-4-メチル-2-ホスファシクロペンタン環、1,3-ジアザ-2-ホスファシクロヘプタン環、1,3-ジアザ-4-メチル-2-ホスファシクロヘキサン環、1,3-ジアザ-5-メチル-2-ホスファシクロヘキサン環、1,3-ジアザ-4-エチル-2-ホスファシクロペンタン環、1,3-ジアザ-4,4-ジメチル-2-ホスファシクロペンタン環、1,3-ジアザ-4,5-ジメチル-2-ホスファシクロペンタン環が挙げられ、そのなかでも、ヘキサヒドロ-1,3,2-ジアザホスホリン環が好ましい。
 一般式(B)において、R34とR35とで、炭素数2~4のアルキレン基を形成している場合には、当該アルキレン基と、該アルキレン基に結合する窒素原子とで、3~5員環の環状構造を形成する。
 当該環状構造の具体例としては、一般式(B)におけるR31とR32とで、炭素数2~4のアルキレン基を形成している場合の、当該アルキレン基と、該アルキレン基に結合する窒素原子とで形成している3~5員環の環状構造の具体例と同様のものが挙げられ、好ましい環状構造の具体例も同様のものが挙げられる。
 一般式(B)において、R35とR36とで、炭素数2~4のアルキレン基を形成している場合には、当該アルキレン基と、該アルキレン基に結合する-N-P-N-基とで、5~7員環の環状構造を形成する。
 当該環状構造の具体例としては、一般式(B)におけるR32とR33とで、炭素数2~4のアルキレン基を形成している場合の、当該アルキレン基と、該アルキレン基に結合する-N-P-N-基とで形成している5~7員環の環状構造の具体例と同様のものが挙げられ、好ましい環状構造の具体例も同様のものが挙げられる。
 一般式(B)において、R33とR36とで、炭素数2~4のアルキレン基を形成している場合には、当該アルキレン基と、該アルキレン基に結合する窒素原子とで、3~5員環の環状構造を形成する。
 当該環状構造の具体例としては、一般式(B)におけるR31とR32とで、炭素数2~4のアルキレン基を形成している場合の、当該アルキレン基と、該アルキレン基に結合する窒素原子とで形成している3~5員環の環状構造の具体例と同様のものが挙げられ、好ましい環状構造の具体例も同様のものが挙げられる。
 一般式(B)における「R32、R33およびR35とで、窒素原子を含んでいてもよい炭素数3~10のアルキレン鎖を形成」している場合の窒素原子を含んでいてもよい炭素数3~10のアルキレン鎖の具体例としては、下記一般式(b)で示されるものが挙げられる。
Figure JPOXMLDOC01-appb-I000036
(式中、R47~R49はそれぞれ独立して、炭素数1~3のアルキレン基を表し、Yは、炭素原子または窒素原子を表す。)
 一般式(b)におけるR47~R49で示される炭素数1~3のアルキレン基としては、メチレン基、エチレン基、トリメチレン基、プロピレン基が挙げられ、なかでも、エチレン基が好ましい。
 一般式(b)におけるR47~R49は全て同一の、炭素数1~3のアルキレン基が好ましい。
 一般式(b)におけるYは、窒素原子が好ましい。
 一般式(b)におけるR47~R49およびYの好ましい組合せは、R47~R49が全て同一の、炭素数1~3のアルキレン基であり、Yが、窒素原子であるものである。
 一般式(B)において、R32、R33およびR35とで、窒素原子を含んでいてもよい炭素数3~10のアルキレン鎖を形成している場合には、当該アルキレン鎖と、該アルキレン鎖に結合する下記式(b
Figure JPOXMLDOC01-appb-I000037
で示される基とで、ビシクロアルカン環を形成する。
 当該ビシクロアルカン環の具体例としては、例えば2,4,6,7-テトラアザ-1-ホスファビシクロ[2.2.2]オクタン環、2,5,7,8-テトラアザ-1-ホスファビシクロ[3.2.2]ノナン環、2,6,7-トリアザ-1-ホスファビシクロ[2.2.2]オクタン環、2,5,8,9-テトラアザ-1-ホスファビシクロ[3.3.2]デカン環、2,5,8,9-テトラアザ-1-ホスファビシクロ[3.3.3]ウンデカン環、2,6,9,10-テトラアザ-1-ホスファビシクロ[4.3.3]ドデカン環、2,8,9-トリアザ-1-ホスファビシクロ[3.3.3]ウンデカン環、2,6,10,11-テトラアザ-1-ホスファビシクロ[4.4.3]トリデカン環、2,6,10,11-テトラアザ-1-ホスファビシクロ[4.4.4]テトラデカン環、2,10,11-トリアザ-1-ホスファビシクロ[4.4.4]テトラデカン環が挙げられ、そのなかでも、2,5,8,9-テトラアザ-1-ホスファビシクロ[3.3.3]ウンデカン環が好ましい。
 一般式(B)において、式中の窒素原子に結合する水素原子の数は、0~4の整数であり、0~2が好ましく、0がより好ましい。
 一般式(B)において、式中の窒素原子に結合する水素原子の数は、0~4の整数であり、0~2が好ましく、0がより好ましい。
 一般式(b)、(b)におけるR37~R46で示される炭素数1~6のアルキル基の具体例としては、一般式(A)におけるRおよびR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」における炭素数1~6のアルキル基の具体例と同様のものが挙げられ、好ましいアルキル基の具体例も同様のものが挙げられる。
 一般式(A)におけるZで示されるグアニジニウム基、ビグアニジウム基またはホスファゼニウム基を有するアンモニウムカチオン、あるいはホスホニウムカチオンとしては、前記一般式(B)で示されるグアニジニウム基を有するアンモニウムカチオン、前記一般式(B)で示されるビグアニジウム基を有するアンモニウムカチオン、前記一般式(B)または(B)で示されるホスファゼニウム基を有するアンモニウムカチオン、および、前記一般式(B)または(B)で示されるホスホニウムカチオンがより好ましく、この中でも、前記一般式(B)で示されるグアニジニウム基を有するアンモニウムカチオン、前記一般式(B)で示されるビグアニジウム基を有するアンモニウムカチオン、および、前記一般式(B)で示されるホスホニウムカチオンがさらに好ましい。
 一般式(B)におけるRとしては、水素原子、炭素数1~12のアルキル基、およびRとRとで炭素数2~4のアルキレン基を形成しているものがより好ましく、そのなかでも、RとRとで炭素数2~4のアルキレン基を形成しているものがさらに好ましい。
 一般式(B)におけるRとしては、炭素数1~12のアルキル基、およびRとRとで炭素数2~4のアルキレン基を形成しているものがより好ましく、そのなかでも、RとRとで炭素数2~4のアルキレン基を形成しているものがさらに好ましい。
 一般式(B)におけるRおよびR10としては、炭素数1~12のアルキル基およびRとR10とで炭素数2~4のアルキレン基を形成しているものがより好ましく、そのなかでも、RとR10とで炭素数2~4のアルキレン基を形成しているものがさらに好ましい。
 一般式(B)におけるRとしては、水素原子および炭素数1~12のアルキル基がより好ましく、そのなかでも、水素原子がさらに好ましい。
 一般式(B)におけるRとしては、水素原子および炭素数1~12のアルキル基がより好ましい。
 一般式(B)におけるR~Rの組合せとしては、R~RおよびRがそれぞれ独立して、炭素数1~12のアルキル基を表し、Rが、水素原子を表している組合せ;R~Rがそれぞれ独立して、炭素数1~12のアルキル基を表し、RおよびRが、水素原子を表している組合せ;RとRおよびRとR10とでそれぞれ独立して、炭素数2~4のアルキレン基を形成し、Rが、水素原子を表し、Rが、炭素数1~12のアルキル基を表している組合せ;ならびにRとRおよびRとR10とでそれぞれ独立して、炭素数2~4のアルキレン基を形成し、RおよびRが、水素原子を表している組合せが挙げられ、なかでも、RとRおよびRとR10とでそれぞれ独立して、炭素数2~4のアルキレン基を形成し、Rが、水素原子を表し、Rが、炭素数1~12のアルキル基を表している組合せ;ならびにRとRおよびRとR10とでそれぞれ独立して、炭素数2~4のアルキレン基を形成し、RおよびRが、水素原子を表している組合せが好ましい。
 一般式(B)におけるR11~R14としては、炭素数1~12のアルキル基がより好ましい。
 一般式(B)におけるR15およびR18としては、水素原子または炭素数1~6のアルキル基がより好ましい。
 一般式(B)におけるR16およびR17としては、炭素数1~12のアルキル基;ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基又は炭素数2~12のジアルキルアミノ基で置換されていてもよいフェニル基;およびR16とR17とで炭素数2~4のアルキレン基を形成しているものがより好ましく、なかでも、炭素数1~12のアルキル基、ニトロ基又は炭素数1~6のアルキル基で置換されているフェニル基およびR16とR17とで炭素数2~4のアルキレン基を形成しているものがさらに好ましい。
 一般式(B)におけるR11~R18の組合せとしては、R11~R14、R16およびR17がそれぞれ独立して、炭素数1~12のアルキル基を表し、R15およびR18が、水素原子を表している組合せ;R11~R15およびR18がそれぞれ独立して、炭素数1~12のアルキル基を表し、R16とR17とで炭素数2~4のアルキレン基を形成している組合せ;R11~R14がそれぞれ独立して、炭素数1~12のアルキル基を表し、R15およびR18が、水素原子を表し、R16およびR17がそれぞれ独立して、ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基又は炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基を表している組合せ;ならびにR11~R14がそれぞれ独立して、炭素数1~12のアルキル基を表し、R15およびR18が、水素原子を表し、R16又はR17のいずれか一方が炭素数1~12のアルキル基を表し、他方が、ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基を表している組合せが挙げられる。
 一般式(B)におけるR19としては、炭素数1~12のアルキル基がより好ましい。
 一般式(B)におけるQ~Qとしては、Q~Qが全て同一の、前記一般式(b)または(b)で示される基を表すもの、および、QとQとで、前記一般式(b)で示される環状構造を表し、Qが上記一般式(b)または(b)で示される基を表すものがより好ましく、なかでも、Q~Qが全て同一の、前記一般式(b)または(b)で示される基を表すものがさらに好ましい。
 一般式(b)におけるR20およびR21としては、炭素数1~6のアルキル基およびR20とR21とで炭素数2~4のアルキレン基を形成しているものがより好ましい。
 一般式(b)、(b)におけるR22~R29としては、炭素数1~6のアルキル基がより好ましい。
 一般式(B)におけるR19およびQ~Qの組合せとしては、R19が、炭素数1~12のアルキル基を表し、Q~Qが全て、前記一般式(b)で示される基を表している組合せ;R19が、炭素数1~12のアルキル基を表し、Q~Qが全て、前記一般式(b)で示される基を表している組合せ;R19が、炭素数1~12のアルキル基を表し、QとQとで、前記一般式(b)で示される環状構造を表し、Qが上記一般式(b)で示される基を表している組合せ;およびR19が、炭素数1~12のアルキル基を表し、QとQとで、前記一般式(b)で示される環状構造を表し、Qが上記一般式(b)で示される基を表している組合せが挙げられる。
 一般式(B)におけるQ~Qとしては、Q~Qが全て同一の、前記一般式(b)で示される基がより好ましい。
 一般式(B)におけるQ~Qの組合せとしては、Q~Qが全て、前記一般式(b)で示される基を表している組合せ;およびQ~Qが全て、前記一般式(b)で示される基を表しているものが挙げられ、なかでも、Q~Qが全て、前記一般式(b)で示される基を表している組合せが好ましい。
 一般式(B)におけるR30としては、水素原子および前記一般式(b)で示される基がより好ましい。
 一般式(B)におけるR31、R34およびR36としては、水素原子および炭素数1~6のアルキル基がより好ましい。
 一般式(B)におけるR32、R33およびR35としては、R32とR33とで、炭素数2~4のアルキレン基を形成し、R35が炭素数1~6のアルキル基を表しているもの、ならびにR32、R33およびR35とで、窒素原子を含んでいてもよい炭素数3~10のアルキレン鎖を形成しているものがより好ましい。
 一般式(B)におけるR30~R36の組合せとしては、R30が、水素原子を表し、R31、R34およびR36がそれぞれ独立して、炭素数1~12のアルキル基を表し、R32、R33およびR35とで、窒素原子を含んでいてもよい炭素数3~10のアルキレン鎖を形成している組合せ;ならびにR30が、前記一般式(b)で示される基を表し、R31およびR35がそれぞれ独立して、炭素数1~6のアルキル基を表し、R32とR33とで、炭素数2~4のアルキレン基を形成し、R34およびR36が、水素原子を表している組合せが挙げられる。
 一般式(B)におけるQ10~Q13としては、Q10~Q13が全て同一の、前記一般式(b)または(b)で示される基を表しているものがより好ましく、なかでも、Q10~Q13が全て同一の、前記一般式(b)で示される基を表しているものがさらに好ましい。
 一般式(b)、(b)におけるR37~R46としては、炭素数1~6のアルキル基がより好ましい。
 一般式(B)におけるQ10~Q13の組合せとしては、Q10~Q13が全て、前記一般式(b)で示される基を表している組合せ;およびQ10~Q13が全て、前記一般式(b)で示される基を表しているものが挙げられ、なかでも、Q10~Q13が全て、前記一般式(b)で示される基を表している組合せが好ましい。
 本発明の前記一般式(A)で示される化合物におけるボレート系アニオンの具体例としては、下記式(A-1)~(A-32)で示されるアニオンが挙げられる。なお、「ボレート系アニオン」とは、前記一般式(A)で示される化合物における、ホウ素アニオンおよび該ホウ素アニオンと結合するR~Rで示される基から構成されるアニオン部分のことを表している。
Figure JPOXMLDOC01-appb-I000038
Figure JPOXMLDOC01-appb-I000039
 一般式(A)におけるZで示されるグアニジニウム基、ビグアニジウム基またはホスファゼニウム基を有するアンモニウムカチオン、あるいはホスホニウムカチオンの具体例としては、下記式(B-1)~(B-18)で示されるカチオンが挙げられる。
Figure JPOXMLDOC01-appb-I000040
 本発明の前記一般式(A)で示される化合物のより好ましい具体例としては、下記一般式(A’)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000041
[式中、R’は、炭素数1~12のアルキル基;ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~12のフェニルアルキニル基;炭素数2~12のアルケニル基;2-フリルエチニル基;2-チオフェニルエチニル基;または2,6-ジチアニル基を表し、R’~R’は全て同一の、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基;フラニル基;チエニル基;またはN-アルキル置換ピロリル基を表し、Z’は、下記一般式(B’)で示されるグアニジニウム基を有するアンモニウムカチオン、下記一般式(B’)で示されるビグアニジウム基を有するアンモニウムカチオン、下記一般式(B’)または(B’)で示されるホスファゼニウム基を有するアンモニウムカチオンもしくは下記一般式(B’)または(B’)で示されるホスホニウムカチオンを表す。
Figure JPOXMLDOC01-appb-I000042
(式中、R’~R10’はそれぞれ独立して、水素原子または炭素数1~12のアルキル基を表し、R’とR’および/またはR’とR10’とで、炭素数2~4のアルキレン基を形成していてもよい。ただし、R’~R10’のうち水素原子の数は、1または2である。)
Figure JPOXMLDOC01-appb-I000043
(式中、R11’~R14’はそれぞれ独立して、炭素数1~12のアルキル基を表し、R15’およびR18’はそれぞれ独立して、水素原子または炭素数1~12のアルキル基を表し、R16’およびR17’はそれぞれ独立して、炭素数1~12のアルキル基またはニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよいフェニル基を表し、R16’とR17’とで、炭素数2~4のアルキレン基を形成していてもよい。)
Figure JPOXMLDOC01-appb-I000044
{式中、R19’は、水素原子または炭素数1~12のアルキル基を表し、Q’~Q’は全て同一の、下記一般式(b’)または(b’)で示される基を表すか、あるいはQ’とQ’とで、下記一般式(b’)で示される環状構造を表す。ただし、式中の窒素原子に結合する水素原子の数は、1~3である。
Figure JPOXMLDOC01-appb-I000045
(式中、R20’およびR21’はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表し、R20’とR21’とで炭素数2~4のアルキレン基を形成していてもよい。)
Figure JPOXMLDOC01-appb-I000046
(式中、R22’~R27’はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表す。)
Figure JPOXMLDOC01-appb-I000047
(式中、R28’およびR29’はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表す。)}
Figure JPOXMLDOC01-appb-I000048
(式中、Q’~Q’は全て同一の、前記一般式(b’)または(b’)で示される基を表す。ただし、式中の窒素原子に結合する水素原子の数は、0~2である。)
Figure JPOXMLDOC01-appb-I000049
(式中、R30’は、水素原子または前記一般式(b’)もしくは(b’)で示される基を表し、R31’~R36’はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表し、あるいはR31’とR32’、R32’とR33’、R34’とR35’、R35’とR36’および/またはR33’とR36’とで、炭素数2~4のアルキレン基を形成していてもよく、R32’、R33’およびR35’とで、窒素原子を含んでいてもよい炭素数3~10のアルキレン鎖を形成していてもよい。ただし、式中の窒素原子に結合する水素原子の数は、0~2である。)
Figure JPOXMLDOC01-appb-I000050
{式中、Q10’~Q13’はそれぞれ独立して、下記一般式(b’)または(b’)で示される基を表す。ただし、式中の窒素原子に結合する水素原子の数は、0~2である。
Figure JPOXMLDOC01-appb-I000051
(式中、R37’~R42’はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表す。)
Figure JPOXMLDOC01-appb-I000052
(式中、R43’~R46’はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表す。)}]
 一般式(A’)~(b’)中の各官能基(R’~R46’およびQ’~Q13’)の具体例としては、一般式(A)~(b)中に記載の対応する各官能基(R~R46およびQ~Q13)の具体例と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。ただし、以下に記載の各官能基は、一般式(A)~(b)中に記載の対応する各官能基とは異なる。
 一般式(A’)におけるR’で示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~12のフェニルアルキニル基」における炭素数8~12のフェニルアルキニル基としては、アルキニル基部分が直鎖状もしくは分枝状のいずれであってもよく、なかでも、直鎖状のものが好ましい。このようなフェニルアルキニル基の具体例として、例えばフェニルエチニル基、3-フェニル-1-プロピン-1-イル基、3-フェニル-2-プロピン-1-イル基(3-フェニルプロパルギル基)、4-フェニル-1-ブチン-1-イル基、4-フェニル-2-ブチン-1-イル基、4-フェニル-3-ブチン-1-イル基、3-フェニル-1-ブチン-1-イル基、4-フェニル-3-ブチン-2-イル基、5-フェニル-1-ペンチン-1-イル基、5-フェニル-2-ペンチン-1-イル基、5-フェニル-3-ペンチン-1-イル基、5-フェニル-4-ペンチン-1-イル基、4-フェニル-1-ペンチン-1-イル基、4-フェニル-2-ペンチン-1-イル基、3-フェニル-1-ペンチン-1-イル基、5-フェニル-3-ペンチン-2-イル基、5-フェニル-4-ペンチン-2-イル基、5-フェニル-4-ペンチン-3-イル基、4-フェニル-3-メチル-1-ブチン-1-イル基、4-フェニル-2-メチル-3-ブチン-1-イル基、3-フェニル-3-メチル-1-ブチン-1-イル基、6-フェニル-1-ヘキシン-1-イル基、6-フェニル-2-ヘキシン-1-イル基、6-フェニル-3-ヘキシン-1-イル基、6-フェニル-4-ヘキシン-1-イル基、6-フェニル-5-ヘキシン-1-イル基、5-フェニル-1-ヘキシン-1-イル基、5-フェニル-2-ヘキシン-1-イル基、5-フェニル-3-ヘキシン-1-イル基、5-フェニル-3-ヘキシン-2-イル基、3-フェニル-1-ヘキシン-1-イル基、3-フェニル-2-ヘキシン-1-イル基、6-フェニル-3-ヘキシン-2-イル基、6-フェニル-4-ヘキシン-2-イル基、6-フェニル-4-ヘキシン-3-イル基、6-フェニル-5-ヘキシン-2-イル基、6-フェニル-5-ヘキシン-3-イル基、6-フェニル-5-ヘキシン-4-イル基、5-フェニル-3-ヘキシン-2-イル基、4-フェニル-4-メチル-1-ペンチン-1-イル基、4-フェニル-3-メチル-1-ペンチン-1-イル基、4-フェニル-4-メチル-2-ペンチン-1-イル基、3-フェニル-3-メチル-2-ペンチン-1-イル基、4-フェニル-3-メチル-1-ブチン-1-イル基等が挙げられる。これらのフェニルアルキニル基のなかでも、例えばフェニルエチニル基、3-フェニル-1-プロピン-1-イル基、3-フェニル-2-プロピン-1-イル基(3-フェニルプロパルギル基)、4-フェニル-1-ブチン-1-イル基、4-フェニル-2-ブチン-1-イル基、4-フェニル-3-ブチン-1-イル基、5-フェニル-1-ペンチン-1-イル基、5-フェニル-2-ペンチン-1-イル基、5-フェニル-3-ペンチン-1-イル基、5-フェニル-4-ペンチン-1-イル基、6-フェニル-1-ヘキシン-1-イル基、6-フェニル-2-ヘキシン-1-イル基、6-フェニル-3-ヘキシン-1-イル基、6-フェニル-4-ヘキシン-1-イル基、6-フェニル-5-ヘキシン-1-イル基等の、アルキニル基部分が直鎖状であり、その末端にフェニル基が結合している炭素数8~12のフェニルアルキニル基が好ましく、そのなかでも、フェニルエチニル基がさらに好ましい。なお、ここで示されるフェニルアルキニル基の炭素数は、当該フェニルアルキニル基を構成する炭素数を意味し、置換基を構成する炭素数は、炭素数8~12のフェニルアルキニル基における「炭素数8~12」で示される炭素数に含まないものとする。
 一般式(A’)におけるR’で示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~12のフェニルアルキニル基」における炭素数8~12のフェニルアルキニル基は、1つ以上の置換基(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基)で置換されているものが好ましく、なかでも、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基のいずれか1つで1箇所が置換されているものがより好ましく、そのなかでも、炭素数1~6のアルキル基で1箇所が置換されているものがさらに好ましい。
 一般式(A’)におけるR’で示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~12のフェニルアルキニル基」の具体例としては、一般式(A)におけるRで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」の具体例中に記載の、「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~12のフェニルアルキニル基」の具体例と同様のものが挙げられる。
 上述したフェニルアルキニル基の中でも好ましい具体例は、一般式(A)におけるRで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」の具体例中に記載の、「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニルエチニル基」の具体例と同様のものが挙げられる。
 上述したフェニルアルキニル基の中でもより好ましい具体例は、一般式(A)におけるRで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」の具体例中に記載の、「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基のいずれか1つで1箇所を置換されているフェニルエチニル基」の具体例と同様のものが挙げられる。
 上述したフェニルアルキニル基の中でもさらに好ましい具体例は、一般式(A)におけるRで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」の具体例中に記載の、「炭素数1~6のアルキル基で1箇所を置換されているフェニルエチニル基」の具体例と同様のものが挙げられる。
 一般式(A’)におけるR’としては、炭素数1~12のアルキル基およびハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基または炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~12のフェニルアルキニル基がより好ましく、なかでも、炭素数1~12のアルキル基およびハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基または炭素数1~6のアルキルチオ基で置換されていてもよいフェニルエチニル基がさらに好ましく、そのなかでも、炭素数1~6のアルキル基およびハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基または炭素数1~6のアルキルチオ基のいずれか1つで1箇所を置換されているフェニルエチニル基が特に好ましい。
 一般式(A’)におけるR’~R’としては、R’~R’が全て同一の、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基および炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基がより好ましく、そのなかでも、R~Rが全て同一の、無置換のフェニル基がさらに好ましい。
 一般式(A’)におけるR’~R’で示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基」におけるフェニル基は、無置換のものが好ましい。
 一般式(A’)におけるR’~R’で示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基」の具体例としては、一般式(A)におけるR~Rで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基」の具体例中に記載の、「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基」の具体例と同様のものが挙げられる。
 上述したフェニル基の中でも、無置換のフェニル基が好ましい。
 一般式(A’)におけるR’~R’の組合せとしては、以下の表2に記載の組合せが挙げられる。
Figure JPOXMLDOC01-appb-T000053
 表中、官能基Cは、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~12のフェニルアルキニル基を表し、官能基Dは、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基を表す。
 一般式(B’)における「R’~R10’のうち水素原子の数は、1または2である」とは、R’~R10’のうち、R’~R10’で示される基が水素原子であるRの数が、1または2であるということを意味している。
 一般式(B’)におけるR’~R10’のうち、水素原子の数は、1または2であり、1が好ましい。
 一般式(B’)におけるR16’およびR17’で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよいフェニル基」の具体例としては、一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」の具体例中に記載の、「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよいフェニル基」の具体例と同様のものが挙げられる。
 上述したフェニル基の中でも好ましい具体例は、一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」の具体例中に記載の、「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基から選ばれる少なくとも1種類の置換基で置換されているフェニル基」の具体例と同様のものが挙げられる。
 上述したフェニル基の中でもより好ましい具体例は、一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」の具体例中に記載の、「ニトロ基のみ又は炭素数1~6のアルキル基のみで置換されているフェニル基」の具体例と同様のものが挙げられる。
 一般式(B’)において、式中の窒素原子に結合する水素原子の数は、1~3の整数であり、1が好ましい。なお、ここで示される水素原子の数は、一般式(B’)における窒素原子が既に水素原子を1つ含んでいるため、常に1以上である。
 一般式(B’)において、式中の窒素原子に結合する水素原子の数は、0~2の整数であり、0が好ましい。
 一般式(B’)において、式中の窒素原子に結合する水素原子の数は、0~2の整数であり、0が好ましい。
 一般式(B’)において、式中の窒素原子に結合する水素原子の数は、0~2の整数であり、0が好ましい。
 一般式(A’)におけるZ’で示される前記一般式(B’)で示されるグアニジニウム基を有するアンモニウムカチオン、前記一般式(B’)で示されるビグアニジウム基を有するアンモニウムカチオン、前記一般式(B)または(B)で示されるホスファゼニウム基を有するアンモニウムカチオンもしくは前記一般式(B)または(B)で示されるホスホニウムカチオンとしては、前記一般式(B’)で示されるグアニジニウム基を有するアンモニウムカチオン、前記一般式(B’)で示されるグアニジウム基を有するアンモニウムカチオンおよび前記一般式(B’)で示されるホスホニウムカチオンがより好ましい。
 一般式(B’)におけるR’およびR’としては、R’とR’とで炭素数2~4のアルキレン基を形成しているものがより好ましい。
 一般式(B’)におけるR’およびR10’としては、R’とR10’とで炭素数2~4のアルキレン基を形成しているものがより好ましい。
 一般式(B’)におけるR’としては、水素原子がより好ましい。
 一般式(B’)におけるR’としては、水素原子および炭素数1~6のアルキル基がより好ましい。
 一般式(B’)におけるR’~R’の組合せとしては、R’~R’およびR’がそれぞれ独立して、炭素数1~12のアルキル基を表し、Rが、水素原子を表しているもの;R’~R’がそれぞれ独立して、炭素数1~12のアルキル基を表し、R’およびR’が、水素原子を表している組合せ;R’とR’およびR’とR10’とでそれぞれ独立して、炭素数2~4のアルキレン基を形成し、R’が、水素原子を表し、R’が、炭素数1~12のアルキル基を表している組合せ;ならびにR’とR’およびR’とR10’とでそれぞれ独立して、炭素数2~4のアルキレン基を形成し、R’およびR’が、水素原子を表している組合せが挙げられ、なかでも、R’とR’およびR’とR10’とでそれぞれ独立して、炭素数2~4のアルキレン基を形成し、R’が、水素原子を表し、R’が、炭素数1~12のアルキル基を表している組合せ;ならびにR’とR’およびR’とR10’とでそれぞれ独立して、炭素数2~4のアルキレン基を形成し、R’およびR’が、水素原子を表している組合せが好ましい。
 一般式(B’)におけるR11’~R14’としては、炭素数1~6のアルキル基がより好ましい。
 一般式(B’)におけるR15’およびR18’としては、水素原子または炭素数1~6のアルキル基がより好ましい。
 一般式(B’)におけるR16’およびR17’としては、炭素数1~6のアルキル基、ニトロ基のみ又は炭素数1~6のアルキル基のみで置換されているフェニル基およびR16’とR17’とで炭素数2~4のアルキレン基を形成しているものがより好ましい。
 一般式(B’)におけるR11’~R18’の組合せとしては、R11’~R14’、R16’およびR17’がそれぞれ独立して、炭素数1~12のアルキル基を表し、R15’およびR18’が、水素原子を表している組合せ;R11’~R15’およびR18’がそれぞれ独立して、炭素数1~12のアルキル基を表し、R16’とR17’とで炭素数2~4のアルキレン基を形成している組合せ;R11’~R14’がそれぞれ独立して、炭素数1~12のアルキル基を表し、R15’およびR18’が、水素原子を表し、R16’およびR17’がそれぞれ独立して、ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基又は炭素数2~12のジアルキルアミノ基で置換されていてもよいフェニル基を表している組合せ;ならびにR11’~R14’がそれぞれ独立して、炭素数1~12のアルキル基を表し、R15’およびR18’が、水素原子を表し、R16’およびR17’のいずれか一方が炭素数1~12のアルキル基を表し、他方が、ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基又は炭素数2~12のジアルキルアミノ基で置換されていてもよいフェニル基を表している組合せが挙げられる。
 一般式(B’)におけるR19’としては、水素原子および炭素数1~8のアルキル基がより好ましく、そのなかでも、炭素数1~8のアルキル基がより好ましい。
 一般式(B’)におけるQ’~Q’としては、Q’~Q’が全て同一の、前記一般式(b’)または(b’)で示される基を表すものがより好ましい。
 一般式(b’)におけるR20’およびR21’としては、炭素数1~6のアルキル基およびR20’とR21’とで炭素数2~4のアルキレン基を形成しているものがより好ましい。
 一般式(b’)、(b’)におけるR22’~R29’としては、炭素数1~6のアルキル基がより好ましい。
 一般式(B’)におけるR19’およびQ’~Q’の組合せとしては、R19’が、炭素数1~12のアルキル基を表し、Q’~Q’が全て、前記一般式(b’)で示される基を表している組合せ;R19’が、炭素数1~12のアルキル基を表し、Q’~Q’が全て、前記一般式(b’)で示される基を表している組合せ;R19’が、炭素数1~12のアルキル基を表し、Q’とQ’とで、前記一般式(b’)で示される環状構造を表し、Q’が上記一般式(b’)で示される基を表しているもの;およびR19’が、炭素数1~12のアルキル基を表し、Q’とQ’とで、前記一般式(b’)で示される環状構造を表し、Q’が上記一般式(b’)で示される基を表している組合せが挙げられる。
 一般式(B’)におけるQ’~Q’としては、Q’~Q’が全て同一の、前記一般式(b’)で示される基がより好ましい。
 一般式(B’)におけるQ’~Q’の組合せとしては、Q’~Q’が全て、前記一般式(b)で示される基を表している組合せ;およびQ’~Q’が全て、前記一般式(b)で示される基を表している組合せが挙げられ、なかでも、Q’~Q’が全て、前記一般式(b)で示される基を表している組合せが好ましい。
 一般式(B’)におけるR30’としては、水素原子および前記一般式(b’)で示される基がより好ましい。
 一般式(B’)におけるR31’、R34’およびR36’としては、水素原子および炭素数1~6のアルキル基がより好ましい。
 一般式(B’)におけるR32’、R33’およびR35’としては、R32’とR33’とで、炭素数2~4のアルキレン基を形成し、R35’が炭素数1~6のアルキル基を表しているもの、ならびにR32’、R33’およびR35’とで、窒素原子を含んでいてもよい炭素数3~10のアルキレン鎖を形成しているものがより好ましい。
 一般式(B’)におけるR30’~R36’の組合せとしては、R30’が、水素原子を表し、R31’、R34’およびR36’がそれぞれ独立して、炭素数1~12のアルキル基を表し、R32’、R33’およびR35’とで、窒素原子を含んでいてもよい炭素数3~10のアルキレン鎖を形成しているもの;ならびにR30’が、前記一般式(b’)で示される基を表し、R31’およびR35’がそれぞれ独立して、炭素数1~6のアルキル基を表し、R32’とR33’とで、炭素数2~4のアルキレン基を形成し、R34’およびR36’が、水素原子を表しているものが挙げられる。
 一般式(B’)におけるQ10’~Q13’としては、Q10’~Q13’が全て同一の、前記一般式(b’)または(b’)で示される基を表す組合せがより好ましく、なかでも、Q10’~Q13’が全て同一の、前記一般式(b’)で示される基を表す組合せがさらに好ましい。
 一般式(b’)、(b’)におけるR37’~R46’としては、炭素数1~6のアルキル基がより好ましい。
 一般式(B’)におけるQ10’~Q13’の組合せとしては、Q10’~Q13’が全て、前記一般式(b’)で示される基を表している組合せ;およびQ10’~Q13’が全て、前記一般式(b’)で示される基を表している組合せが挙げられ、なかでも、Q10’~Q13’が全て、前記一般式(b’)で示される基を表している組合せが好ましい。
 前記一般式(A’)で示される化合物におけるボレート系アニオンの具体例としては、前記式(A-1)、(A-2)、(A-3)、(A-4)、(A-5)、(A-6)、(A-7)、(A-8)、(A-9)、(A-10)、(A-14)、(A-15)、(A-18)、(A-19)、(A-20)、(A-21)、(A-25)、(A-26)、(A-27)および(A-28)で示されるアニオンが挙げられる。
 前記一般式(A’)で示される化合物におけるZ’で示される前記一般式(B’)で示されるグアニジニウム基を有するアンモニウムカチオン、前記一般式(B’)で示されるビグアニジウム基を有するアンモニウムカチオン、前記一般式(B’)または(B’)で示されるホスファゼニウム基を有するアンモニウムカチオンもしくは前記一般式(B’)または(B’)で示されるホスホニウムカチオンの具体例としては、前記式(B-1)~(B-18)で示されるカチオンが挙げられる。
 本発明の前記一般式(A’)で示される化合物のより好ましい具体例としては、下記一般式(A”)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000054
[式中、R”は、炭素数1~12のアルキル基またはハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニルエチニル基を表し、R”~R”は全て同一の、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基を表し、Z”は、下記一般式(B”)で示されるグアニジニウム基を有するアンモニウムカチオン、下記一般式(B”)で示されるビグアニジウム基を有するアンモニウムカチオンまたは下記一般式(B”)で示されるホスホニウムカチオンを表す。
Figure JPOXMLDOC01-appb-I000055
(式中、R”は、水素原子または炭素数1~12のアルキル基を表す。)
Figure JPOXMLDOC01-appb-I000056
(式中、R11”~R14”はそれぞれ独立して、炭素数1~12のアルキル基を表し、R15”およびR18”はそれぞれ独立して、水素原子または炭素数1~12のアルキル基を表し、R16”およびR17”はそれぞれ独立して、炭素数1~12のアルキル基又はニトロ基のみもしくは炭素数1~6のアルキル基のみで置換されているフェニル基を表し、R16”とR17”とで、炭素数2~4のアルキレン基を形成していてもよい。)
Figure JPOXMLDOC01-appb-I000057
{式中、Q10”~Q13”は全て同一の、下記一般式(b”)または(b”)で示される基を表す。
Figure JPOXMLDOC01-appb-I000058
(式中、R37”~R42”はそれぞれ独立して、炭素数1~6のアルキル基を表す。)
Figure JPOXMLDOC01-appb-I000059
(式中、R43”~R46”はそれぞれ独立して、炭素数1~6のアルキル基を表す。)}]
 一般式(A”)~(b”)中の各官能基(R”~R46”およびQ10”~Q13”)の具体例としては、一般式(A)~(b)中に記載の対応する各官能基(R~R46およびQ~Q13)の具体例と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式(A”)におけるR”で示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニルエチニル基」におけるフェニルエチニル基は、置換基(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基)で置換されているものが好ましく、なかでも、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基のいずれか1つで1箇所が置換されているものがより好ましく、そのなかでも、炭素数1~6のアルキル基で1箇所が置換されているものがさらに好ましい。
 一般式(A”)におけるR”で示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニルエチニル基」の具体例としては、一般式(A)におけるRで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」の具体例中に記載の、「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニルエチニル基」の具体例と同様のものが挙げられる。
 上述したフェニルアルキニル基の中でも好ましい具体例は、一般式(A)におけるRで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」の具体例中に記載の、「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基のいずれか1つで1箇所を置換されているフェニルエチニル基」の具体例と同様のものが挙げられる。
 上述したフェニルアルキニル基の中でもより好ましい具体例は、一般式(A)におけるRで示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」の具体例中に記載の、「炭素数1~6のアルキル基で1箇所を置換されているフェニルエチニル基」の具体例と同様のものが挙げられる。
 一般式(A”)におけるR”~R”で示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基」におけるフェニル基は、無置換のものが好ましい。
 一般式(A”)におけるR”~R”で示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基」の具体例としては、一般式(A’)におけるR’~R’で示される「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基」の具体例と同様のものが挙げられ、好ましい具体例も、同様のものが挙げられる。
 一般式(A”)におけるR”としては、炭素数1~6のアルキル基およびハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基または炭素数1~6のアルキルチオ基のいずれか1つで1箇所を置換されているフェニルエチニル基がより好ましい。
 一般式(A”)におけるR”~R”としては、R”~R”が全て同一の、無置換のフェニル基がより好ましい。
 一般式(A”)におけるR”~R”の組合せとしては、R”が、炭素数1~12のアルキル基を表し、R”~R”が全て同一の、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基を表している組合せ;およびR”が、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニルエチニル基を表し、R”~R”が全て同一の、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基を表している組合せが挙げられる。
 一般式(B”)におけるR”としては、水素原子および炭素数1~6のアルキル基がより好ましい。
 一般式(B”)におけるR11”~R14”としては、炭素数1~6のアルキル基がより好ましい。
 一般式(B”)におけるR15”およびR18”としては、水素原子または炭素数1~6のアルキル基がより好ましい。
 一般式(B”)におけるR16”およびR17”としては、炭素数1~6のアルキル基、ニトロ基のみ又は炭素数1~6のアルキル基のみで1~2箇所が置換されているフェニル基およびR11”とR12”とで炭素数2~4のアルキレン基を形成しているものがより好ましい。
 一般式(B”)におけるR11”~R18”の組合せとしては、R11”~R14”、R16”およびR17”がそれぞれ独立して、炭素数1~12のアルキル基を表し、R15”およびR18”が、水素原子を表している組合せ;ならびにR11”~R15”およびR18”がそれぞれ独立して、炭素数1~12のアルキル基を表し、R16”とR17”とで炭素数2~4のアルキレン基を形成している組合せ;R11”~R14”がそれぞれ独立して、炭素数1~12のアルキル基を表し、R15”およびR18”が、水素原子を表し、R16”およびR17”がそれぞれ独立して、ニトロ基のみ又は炭素数1~6のアルキル基のみで置換されているフェニル基を表している組合せ;ならびにR11”~R14”がそれぞれ独立して、炭素数1~12のアルキル基を表し、R15”およびR18”が、水素原子を表し、R16”およびR17”のいずれか一方が炭素数1~12のアルキル基を表し、他方が、ニトロ基のみ又は炭素数1~6のアルキル基のみで置換されているフェニル基を表している組合せが挙げられる。
 一般式(B”)におけるQ10”~Q13”としては、Q10”~Q13”が全て同一の、前記一般式(b”)で示される基を表すものがより好ましい。
 一般式(b”)、(b”)におけるR37”~R46”としては、炭素数1~6のアルキル基がより好ましい。
 一般式(B”)におけるQ10”~Q13”の好ましい組合せとしては、Q10”~Q13”が全て、前記一般式(b”)で示される基を表している組合せ;およびQ10”~Q13”が全て、前記一般式(b”)で示される基を表している組合せが挙げられ、なかでも、Q10”~Q13”が全て、前記一般式(b”)で示される基を表している組合せが好ましい。
 前記一般式(A”)で示される化合物におけるボレート系アニオンの具体例としては、前記式(A-1)、(A-2)、(A-3)、(A-4)、(A-5)、(A-6)、(A-7)、(A-14)、(A-15)、(A-18)、(A-19)、(A-20)、(A-21)、(A-25)、(A-26)、(A-27)および(A-28)で示されるアニオンが挙げられ、これらのなかでも、前記式(A-1)および(A-19)で示されるアニオンが好ましい。
 前記一般式(A”)で示される化合物におけるZ”で示される前記一般式(B”)で示されるグアニジニウム基を有するアンモニウムカチオン、前記一般式(B”)で示されるビグアニジウム基を有するアンモニウムカチオンまたは前記一般式(B”)で示されるホスホニウムカチオンの具体例としては、前記式(B-2)、(B-3)、(B-4)、(B-5)、(B-6)、(B-15)、(B-16)、(B-17)および(B-18)で示されるカチオンが挙げられ、これらのなかでも、前記式(B-2)、(B-4)、(B-5)、(B-6)、(B-16)、(B-17)および(B-18)で示されるカチオンが好ましい。
 前記一般式(A)で示される化合物において、前記式(A-1)~(A-30)から選ばれるアニオンと組み合わせる、グアニジニウム基、ビグアニジウム基またはホスファゼニウム基を有するアンモニウムカチオン、あるいはホスホニウムカチオンとしては、前記式(B-1)~(B-18)で示されるカチオンから選ばれるものが好ましく、なかでも、前記式(B-1)、(B-2)、(B-3)、(B-4)、(B-5)、(B-6)、(B-15)、(B-16)、(B-17)および(B-18)で示されるカチオンがより好ましく、そのなかでも、前記式(B-2)、(B-4)、(B-5)、(B-6)、(B-16)、(B-17)および(B-18)で示されるカチオンがさらに好ましい。
 さらに、前記式(A-1)~(A-30)から選ばれるアニオンと組み合わせる、グアニジニウム基、ビグアニジウム基またはホスファゼニウム基を有するアンモニウムカチオン、あるいはホスホニウムカチオンが、前記式(B-1)~(B-18)から選ばれるカチオンである、前記一般式(A)で示される化合物の具体例としては、例えば下記式(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)および(9)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000060
Figure JPOXMLDOC01-appb-I000061
Figure JPOXMLDOC01-appb-I000062
Figure JPOXMLDOC01-appb-I000063
Figure JPOXMLDOC01-appb-I000064
Figure JPOXMLDOC01-appb-I000065
Figure JPOXMLDOC01-appb-I000066
Figure JPOXMLDOC01-appb-I000067
Figure JPOXMLDOC01-appb-I000068
-本発明の化合物の製造方法-
 上述した本発明の化合物は、例えば以下のスキ-ム[i]に示す方法で製造することができる。すなわち、一般式(A)で示される化合物は、例えば一般式(I)で示される有機ボラン化合物と一般式(II)で示される有機リチウム化合物を反応させて、一般式(III)で示される化合物を得、次いで、当該一般式(III)で示される化合物と一般式(IV)で示される化合物とを反応させることにより合成すればよい。
Figure JPOXMLDOC01-appb-I000069
(上記スキ-ム中、Xa-は、ハロゲン化物イオンを表し、R~RおよびZは、前記に同じ。)
 一般式(IV)におけるXa-で示されるハロゲン化物イオンとしては、具体的には、例えば塩化物イオン、臭化物イオン、ヨウ化物イオン等が挙げられ、なかでも、塩化物イオンが好ましい。
 本発明の一般式(A)で示される化合物の製造方法にかかる一般式(I)で示される有機ボラン化合物は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(I)で示される有機ボラン化合物の具体例としては、トリフェニルボラン、トリナフチルボラン、トリアントラセニルボラン、トリ(p-フルオロフェニル)ボラン、トリ(p-クロロフェニル)ボラン、トリ(p-ブロモフェニル)ボラン、トリ(p-ヨ-ドフェニル)ボラン、トリ(p-メチルフェニル)ボラン、トリ(p-エチルフェニル)ボラン、トリ(p-(n-プロピル)フェニル)ボラン、トリ(p-イソプロピルフェニル)ボラン、トリ(p-(n-ブチル)フェニル)ボラン、トリ(p-イソブチルフェニル)ボラン、トリ(p-(sec-ブチル)フェニル)ボラン、トリ(p-(tert-ブチル)フェニル)ボラン、トリ(p-メトキシフェニル)ボラン、トリ(p-エトキシフェニル)ボラン、トリ(p-(n-プロポキシ)フェニル)ボラン、トリ(p-イソプロポキシフェニル)ボラン、トリ(p-(n-ブトキシ)フェニル)ボラン、トリ(p-イソブトキシフェニル)ボラン、トリ(p-(sec-ブトキシ)フェニル)ボラン、トリ(p-(tert-ブトキシ)フェニル)ボラン、トリ(p-メチルチオフェニル)ボラン、トリ(p-エチルチオフェニル)ボラン、トリ(p-(n-プロピルチオ)フェニル)ボラン、トリ(p-イソプロピルチオフェニル)ボラン、トリ(p-(n-ブチルチオ)フェニル)ボラン、トリ(p-イソブチルチオフェニル)ボラン、トリ(p-(sec-ブチルチオ)フェニル)ボラン、トリ(p-(tert-ブチルチオ)フェニル)ボラン等のトリアリールボラン、n-ブチルジフェニルボラン等のアルキルジアリールボラン、ジ-n-ブチルフェニルボラン等のジアルキルアリールボラン、トリ-n-ブチルボラン、トリ-n-ペンチルボラン、トリ-n-へキシルボラン等のトリアルキルボラン、フェニルエチニルジフェニルボラン等のアリールアルキニルジアリールボラン、ジフェニルエチニルフェニルボラン等のジアリールアルキニルアリールボラン、トリフェニルエチニルボラン等のトリアリールアルキニルボラン、トリフラニルボラン、トリチエニルボラン、トリ(N-メチルピロリル)ボラン等が挙げられる。
 本発明の一般式(A)で示される化合物の製造方法にかかる一般式(II)で示される有機リチウム化合物は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(II)で示される有機リチウム化合物の具体例としては、メチルリチウム、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、イソブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、シクロブチルリチウム、n-ペンチルリチウム、イソペンチルリチウム、sec-ペンチルリチウム、tert-ペンチルリチウム、ネオペンチルリチウム、2-メチルブチルリチウム、1,2-ジメチルプロピルリチウム、1-エチルプロピルリチウム、シクロペンチルリチウム、n-ヘキシルリチウム、イソヘキシルリチウム、sec-ヘキシルリチウム、tert-ヘキシルリチウム、ネオヘキシルリチウム、2-メチルペンチルリチウム、1,2-ジメチルブチルリチウム、2,3-ジメチルブチルリチウム、1-エチルブチルリチウム、シクロヘキシルリチウム等のアルキルリチウム、p-フルオロフェニルエチニルリチウム、p-クロロフェニルエチニルリチウム、p-ブロモフェニルエチニルリチウム、p-ヨ-ドフェニルエチニルリチウム、p-メチルフェニルエチニルリチウム、p-エチルフェニルエチニルリチウム、p-(n-プロピル)フェニルエチニルリチウム、p-イソプロピルフェニルエチニルリチウム、p-(n-ブチル)フェニルエチニルリチウム、p-イソブチルフェニルエチニルリチウム、p-(sec-ブチル)フェニルエチニルリチウム、p-(tert-ブチル)フェニルエチニルリチウム、p-メトキシフェニルエチニルリチウム、p-エトキシフェニルエチニルリチウム、p-(n-プロポキシ)フェニルエチニルリチウム、p-イソプロポキシフェニルエチニルリチウム、p-(n-ブトキシ)フェニルエチニルリチウム、p-イソブトキシフェニルエチニルリチウム、p-(sec-ブトキシ)フェニルエチニルリチウム、p-(tert-ブトキシ)フェニルエチニルリチウム、p-メチルチオフェニルエチニルリチウム、p-エチルチオフェニルエチニルリチウム、p-(n-プロピルチオ)フェニルエチニルリチウム、p-イソプロピルチオフェニルエチニルリチウム、p-(n-ブチルチオ)フェニルエチニルリチウム、p-イソブチルチオフェニルエチニルリチウム、p-(sec-ブチルチオ)フェニルエチニルリチウム、p-(tert-ブチルチオ)フェニルエチニルリチウム等のアリールアルキニルリチウム、ビニルリチウム、1-プロペニルリチウム、2-プロペニルリチウム、イソプロペニルリチウム、1-ブテニルリチウム、2-ブテニルリチウム、3-ブテニルリチウム、イソブテニルリチウム、メタリルリチウム、プレニルリチウム、イソペンテニルリチウム、シクロペンテニルリチウム、n-ヘキセニルリチウム、シクロヘキセニルリチウム等のアルケニルリチウム、2-フリルエチニルリチウム、2-チオフェニルエチニルリチウム、2,6-ジチアニルリチウム等が挙げられる。
 本発明の一般式(A)で示される化合物の製造方法にかかる一般式(IV)で示される化合物の具体例としては、例えば下記一般式(B)で示されるグアニジニウム基を有するアンモニウム塩、下記一般式(B)で示されるビグアニジウム基を有するアンモニウム塩、下記一般式(B)または(B)で示されるホスファゼニウム基を有するアンモニウム塩、下記一般式(B)または(B)で示されるホスホニウム塩が挙げられる。
Figure JPOXMLDOC01-appb-I000070
(式中、R~R10およびXa-は、前記に同じ。ただし、R~R10のうち水素原子の数は、0~2である。)
Figure JPOXMLDOC01-appb-I000071
(式中、R11~R18およびXa-は、前記に同じ。ただし、R11~R18のうち水素原子の数は、0~2である。)
Figure JPOXMLDOC01-appb-I000072
(式中、Q~Q、R19およびXa-は、前記に同じ。ただし、式中の窒素原子に結合する水素原子の数は、1~5である。)
Figure JPOXMLDOC01-appb-I000073
(式中、Q~QおよびXa-は、前記に同じ。ただし、式中の窒素原子に結合する水素原子の数は、0~4である。)
Figure JPOXMLDOC01-appb-I000074
(式中、R30~R36およびXa-は、前記に同じ。ただし、式中の窒素原子に結合する水素原子の数は、0~4である。)
Figure JPOXMLDOC01-appb-I000075
(式中、Q10~Q13およびXa-は、前記に同じ。ただし、式中の窒素原子に結合する水素原子の数は、0~4である。)
 一般式(B-X)におけるR~R10のうち、水素原子の数は、0~2の整数であり、1~2が好ましく、1がより好ましい。
 一般式(B-X)におけるR11~R18のうち、水素原子の数は、0~2の整数であり、0または2がより好ましい。
 一般式(B-X)において、式中の窒素原子に結合する水素原子の数は、1~5の整数であり、1~3が好ましく、1がより好ましい。なお、ここで示される水素原子の数は、一般式(B-X)における窒素原子が既に水素原子を1つ含んでいるため、常に1以上である。
 一般式(B-X)において、式中の窒素原子に結合する水素原子の数は、0~4の整数であり、0~2が好ましく、0がより好ましい。
 一般式(B-X)において、式中の窒素原子に結合する水素原子の数は、0~4の整数であり、0~2が好ましく、0がより好ましい。
 一般式(B-X)において、式中の窒素原子に結合する水素原子の数は、0~4の整数であり、0~2が好ましく、0がより好ましい。
 前記一般式(B-X)で示されるグアニジニウム基を有するアンモニウム塩は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(B-X)で示されるグアニジニウム基を有するアンモニウム塩におけるアンモニウムカチオンの具体例としては、前記式(B-1)~(B-3)で示されるカチオン等が挙げられる。
 前記一般式(B-X)で示されるビグアニジウム基を有するアンモニウム塩は、後述する方法によって適宜合成したものを用いればよい。かかる一般式(B-X)で示されるビグアニジウム基を有するアンモニウム塩におけるアンモニウムカチオンの具体例としては、前記式(B-4)~(B-6)、(B-17)および(B-18)で示されるカチオン等が挙げられる。
 前記一般式(B-X)で示されるホスファゼニウム基を有するアンモニウム塩は、後述する方法によって適宜合成したものを用いればよい。かかる一般式(B-X)で示されるホスファゼニウム基を有するアンモニウム塩におけるアンモニウムカチオンの具体例としては、前記式(B-7)~(B-11)で示されるカチオン等が挙げられる。
 前記一般式(B-X)で示されるホスファゼニウム基を有するアンモニウム塩は、後述する方法によって適宜合成したものを用いればよい。かかる一般式(B-X)で示されるホスファゼニウム基を有するアンモニウム塩におけるアンモニウムカチオンの具体例としては、前記式(B-12)で示されるカチオン等が挙げられる。
 前記一般式(B-X)で示されるホスホニウム塩は、後述する方法によって適宜合成したものを用いればよい。かかる一般式(B-X)で示されるホスホニウム塩におけるホスホニウムカチオンの具体例としては、前記式(B-13)および(B-14)で示されるカチオン等が挙げられる。
 前記一般式(B-X)で示されるホスホニウム塩は、後述する方法によって適宜合成したものを用いればよい。かかる一般式(B-X)で示されるホスホニウム塩におけるホスホニウムカチオンの具体例としては、前記式(B-15)および(B-16)で示されるカチオン等が挙げられる。
 本発明の一般式(A)で示される化合物の製造方法において、上述した一般式(II)で示される有機リチウム化合物の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(I)で示される有機ボラン化合物のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。前記有機リチウム化合物の使用量が極めて少ない場合には、一般式(III)で示される化合物の収率が低下するおそれがある。一方で、前記カルボジイミドの使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 本発明の一般式(A)で示される化合物の製造方法において、上述した一般式(IV)で示される化合物の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(III)で示される化合物のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。一般式(IV)で示される化合物の使用量が極めて少ない場合には、一般式(V)で示される化合物の収率が低下するおそれがある。一方で、一般式(IV)で示される化合物の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 前記スキーム[i]で示される一連の反応は、無溶媒中で行ってもよいし、有機溶媒中または水中で行ってもよい。当該有機溶媒の具体例としては、前記有機ボラン化合物、有機リチウム化合物、一般式(III)および(IV)で示される化合物と反応しない有機溶媒であれば特に制限はなく、例えばヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒、例えばベンゼン、トルエン、エチニルトルエン、キシレン等の芳香族炭化水素系溶媒、例えばジクロロメタン、トリクロロメタン(クロロホルム)、テトラクロロメタン(四塩化炭素)等のハロゲン系溶媒、例えばジエチルエーテル、ジイソプロピルエーテル、メチルtert-ブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、例えばエチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル等のグリコールエーテル系溶媒、例えばエチレングリコールモノエチルエーテルアセテ-ト、ジエチレングリコールモノエチルエーテルアセテ-ト、ジエチレングリコールモノブチルエーテルアセテ-ト、プロピレングリコールモノメチルエーテルアセテ-ト、プロピレングリコールモノエチルエーテルアセテ-ト、ジプロピレングリコールモノメチルエーテルアセテ-ト、ジプロピレングリコールモノエチルエーテルアセテ-ト等のグリコールエーテルアセテ-ト系溶媒、例えば2-プロパノン(アセトン)、2-ブタノン(エチルメチルケトン)、4-メチル-2-ペンタノン(メチルイソブチルケトン)等のケトン系溶媒、例えば酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸イソブチル、酢酸-sec-ブチル、酢酸-tert-ブチル、酪酸エチル、酪酸イソアミル等のエステル系溶媒、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリジノン(N-メチルピロリドン)、1,3-ジメチル-2-イミダゾリジノン(ジメチルエチレン尿素)等のアミド系溶媒、例えばアセトニトリル等のニトリル系溶媒等が挙げられる。なお、かかる有機溶媒は、1種類の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。また、かかる有機溶媒は、市販のものを用いればよい。
 上述した有機溶媒の使用量は、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(I)で示される有機ボラン化合物、あるいは一般式(III)で示される化合物1mmolに対して、通常0.01~500mL、好ましくは0.1~100mLである。
 前記スキーム[i]で示される一連の反応は、以下に示す条件(反応温度、圧力、反応時間)下で行うことが望ましい。
 一般式(I)で示される有機ボラン化合物と一般式(II)で示される有機リチウム化合物との反応における反応時の温度(反応温度)は、前記有機ボラン化合物と有機リチウム化合物とが効率よく反応し、一般式(III)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常-20~150℃、好ましくは0~80℃である。
 一般式(III)で示される化合物と一般式(IV)で示される化合物との反応における反応時の温度(反応温度)は、前記一般式(III)で示される化合物と一般式(IV)で示される化合物とが効率よく反応し、一般式(A)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常-20~150℃、好ましくは0~80℃である。
 前記スキーム[i]で示される一連の反応時の圧力は、一連の反応が滞りなく実施されれば特に制限はなく、例えば常圧で行えばよい。
 前記スキーム[i]で示される一連の反応時の反応時間は、前記有機ボラン化合物、有機リチウム化合物、一般式(III)および(IV)で示される化合物の種類、かかる化合物の使用量、有機溶媒の有無およびその種類、反応温度、反応時の圧力などに影響を受ける場合がある。このため、望ましい反応時間は、一概に言えるものではないが、例えば通常1分~24時間、好ましくは3分~12時間である。
 本発明の一般式(A)で示される化合物の製造方法における反応後の一連の生成物は、通常この分野で行われる一般的な後処理操作及び精製操作により単離することができる。単離方法の具体例としては、例えば必要に応じて、一般式(I)で示される有機ボラン化合物と一般式(II)で示される有機リチウム化合物との反応では、水等の極性溶媒を反応系内に添加して水層を抽出し、一般式(III)で示される化合物と一般式(IV)で示される化合物との反応では、酢酸エチル等の無極性溶媒を反応系内に添加して有機層を抽出し、抽出後、生じた反応液を減圧濃縮することにより生成物を単離することができる。また、必要に応じて、反応液をろ過または洗浄したり、反応液を濃縮して得られた残渣について、再結晶、蒸留、カラムクロマトグラフィ-等を行うことによって生成物を単離してもよい。
 上述した本発明の一般式(A)で示される化合物の製造方法にかかる一般式(B-X)で示される化合物は、例えば以下のスキ-ム[ii]に示す方法で製造することができる。すなわち、一般式(B-X)で示される化合物のうち、一般式(B-X)におけるR15およびR18が水素原子であり、かつ、R16とR17とで炭素数2~4のアルキレン基を形成していない化合物(下記一般式(B2a-X)で示される化合物)は、例えば一般式(V)で示されるグアニジンまたはグアニジン誘導体と一般式(VI)で示されるカルボジイミド誘導体を反応させて、一般式(VII)で示される化合物を得、次いで、当該一般式(VII)で示される化合物と一般式(VIII)で示されるハロゲン化水素とを反応させることにより合成すればよい。また、一般式(B-X)で示される化合物のうち、一般式(B-X)におけるR15またはR18のいずれか一方が水素原子以外であり、他方が水素原子であり、かつ、R16とR17とで炭素数2~4のアルキレン基を形成していない化合物(下記一般式(B2b-X)で示される化合物)は、例えば前記の方法により合成した一般式(VII)で示される化合物を塩基の存在下、一般式(IX)で示されるハロゲン化アルキルと反応させて、一般式(X)で示される化合物を得、次いで、当該一般式(X)で示される化合物と一般式(VIII)で示されるハロゲン化水素とを反応させることにより合成すればよい。また、一般式(B-X)で示される化合物のうち、(i)一般式(B-X)におけるR15およびR18が水素原子以外である化合物、または、(ii)一般式(B-X)におけるR16とR17とで炭素数2~4のアルキレン基を形成している化合物(下記一般式(B2c-X)で示される化合物)は、例えば一般式(V)で示されるグアニジンまたはグアニジン誘導体と一般式(XI)で示される化合物を反応させることにより合成すればよい。
Figure JPOXMLDOC01-appb-I000076
(上記スキ-ム中、R11a~R14aはそれぞれ独立して、炭素数1~12のアルキル基を表し、R16aおよびR17aはそれぞれ独立して、炭素数1~12のアルキル基またはニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基を表し、R15bおよびR18bはそれぞれ独立して、炭素数1~12のアルキル基を表し、R16bおよびR17bはそれぞれ独立して、水素原子、炭素数1~12のアルキル基またはニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基を表し、(i)R15cおよびR18cはそれぞれ独立して、炭素数1~12のアルキル基を表し、かつ、R15cおよびR18cはそれぞれ独立して、炭素数1~12のアルキル基またはニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基を表し、あるいは、(ii)R15cおよびR18cはそれぞれ独立して、水素原子または炭素数1~12のアルキル基を表し、かつ、R16cとR17cとで、炭素数2~4のアルキレン基を形成し、XおよびXはそれぞれ独立して、ハロゲン原子を表し、R11~R14およびXa-は、前記に同じ。ただし、上記一般式(VII)、(X)および(B2b-X)において、R11~R14、R16bおよびR17bのうち水素原子の数は、0~1であり、上記一般式(B2c-X)において、R11c~R15cおよびR18cのうち水素原子の数は、0~2である。)
 一般式(V)~(XI)および(B2a-X)~(B2c-X)中の各官能基(R11a~R14a、R16a、R17a、R15b~R18bおよびR15c~R18c)の具体例としては、一般式(B)中に記載の対応する各官能基(R11~R18)の具体例と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式(VII)におけるR11~R14、R16bおよびR17bのうち、水素原子の数は、0~1の整数であり、0が好ましい。
 一般式(VIII)におけるXで示されるハロゲン原子としては、具体的には、例えば塩素原子、臭素原子、ヨウ素原子等が挙げられ、なかでも、塩素原子が好ましい。
 一般式(IX)におけるXで示されるハロゲン原子としては、具体的には、例えば塩素原子、臭素原子、ヨウ素原子等が挙げられ、なかでも、ヨウ素原子が好ましい。
 一般式(X)におけるR11~R14、R16bおよびR17bのうち、水素原子の数は、0~1の整数であり、0が好ましい。
 一般式(B2b-X)におけるR11~R14、R16bおよびR17bのうち、水素原子の数は、0~1の整数であり、0が好ましい。
 一般式(B2c-X)におけるR11c~R15cおよびR18cのうち、水素原子の数は、0~2の整数であり、0~1が好ましく、0がより好ましい。
 一般式(B-X)におけるR15が水素原子以外であり、かつ、R18が水素原子である場合、一般式(IX)、(X)および(B2b-X)中の上方に示される構造で反応が進行する。一方、一般式(B-X)におけるR15が水素原子であり、かつ、R18が水素原子以外である場合、一般式(IX)、(X)および(B2b-X)中の下方に示される構造で反応が進行する。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(V)で示されるグアニジン誘導体は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(V)で示されるグアニジン誘導体の具体例としては、例えば1,1,3,3-テトラメチルグアニジン、1,1,3,3-テトラエチルグアニジン、1,1,3,3-テトラ-n-プロピルグアニジン、1,1,3,3-テトライソプロピルグアニジン、1,1,3,3-テトラ-n-ブチルグアニジン、1,1,3,3-テトライソブチルグアニジン、1,1,3,3-テトラ-sec-ブチルグアニジン、1,1,3,3-テトラ-tert-ブチルグアニジン、1,1,3,3-テトラシクロブチルグアニジン、1,1,3,3-テトラ-n-ペンチルグアニジン、1,1,3,3-テトライソペンチルグアニジン、1,1,3,3-テトラ-sec-ペンチルグアニジン、1,1,3,3-テトラ-tert-ペンチルグアニジン、1,1,3,3-テトラネオペンチルグアニジン、1,1,3,3-テトラシクロペンチルグアニジン、1,1,3,3-テトラ-n-ヘキシルグアニジン、1,1,3,3-テトライソヘキシルグアニジン、1,1,3,3-テトラ-sec-ヘキシルグアニジン、1,1,3,3-テトラ-tert-ヘキシルグアニジン、1,1,3,3-テトラネオヘキシルグアニジン、1,1,3,3-テトラシクロヘキシルグアニジン、1,1,3,3-テトラ-n-ヘプチルグアニジン、1,1,3,3-テトライソヘプチルグアニジン、1,1,3,3-テトラ-sec-ヘプチルグアニジン、1,1,3,3-テトラ-tert-ヘプチルグアニジン、1,1,3,3-テトラネオヘプチルグアニジン、1,1,3,3-テトラシクロヘプチルグアニジン、1,1,3,3-テトラ-n-オクチルグアニジン、1,1,3,3-テトライソオクチルグアニジン、1,1,3,3-テトラ-sec-オクチルグアニジン、1,1,3,3-テトラ-tert-オクチルグアニジン、1,1,3,3-テトラネオオクチルグアニジン、1,1,3,3-テトラシクロオクチルグアニジン、1,1,3,3-テトラ-n-ノニルグアニジン、1,1,3,3-テトライソノニルグアニジン、1,1,3,3-テトラ-sec-ノニルグアニジン、1,1,3,3-テトラ-tert-ノニルグアニジン、1,1,3,3-テトラネオノニルグアニジン、1,1,3,3-テトラシクロノニルグアニジン、1,1,3,3-テトラ-n-デシルグアニジン、1,1,3,3-テトライソデシルグアニジン、1,1,3,3-テトラ-sec-デシルグアニジン、1,1,3,3-テトラ-tert-デシルグアニジン、1,1,3,3-テトラネオデシルグアニジン、1,1,3,3-テトラシクロデシルグアニジン、1,1,3,3-テトラ-n-ウンデシルグアニジン、1,1,3,3-テトラシクロウンデシルグアニジン、1,1,3,3-テトラ-n-ドデシルグアニジン、1,1,3,3-テトラシクロドデシルグアニジン、1,1,3,3-テトラノルボルニルグアニジン、1,1,3,3-テトラボルニルグアニジン、1,1,3,3-テトラメンチルグアニジン、1,1,3,3-テトラアダマンチルグアニジン、1,1,3,3-テトラ(デカヒドロナフチル)グアニジン等が挙げられる。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(VI)で示されるカルボジイミド誘導体は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(VI)で示されるカルボジイミド誘導体としては、例えばN,N’-ジアルキルカルボジイミド、アリール基上に置換基を有していてもよいN,N’-ジアリールカルボジイミド、アリール基上に置換基を有していてもよいN-アルキル-N’-アリールカルボジイミドなどが挙げられる。
 上記N,N’-ジアルキルカルボジイミドの具体例としては、例えばN,N’-ジメチルカルボジイミド、N,N’-ジエチルカルボジイミド、N,N’-ジ(n-プロピル)カルボジイミド、N,N’-ジイソプロピルカルボジイミド、N-tert-ブチル-N'-エチルカルボジイミド、N,N’-ジ(n-ブチル)カルボジイミド、N,N’-ジイソブチルカルボジイミド、N,N’-ジ(sec-ブチル)カルボジイミド、N,N’-ジ(tert-ブチル)カルボジイミド、N,N’-ジシクロブチルカルボジイミド、N,N’-ジ(n-ペンチル)カルボジイミド、N,N’-ジイソペンチルカルボジイミド、N,N’-ジ(sec-ペンチル)カルボジイミド、N,N’-ジ(tert-ペンチル)カルボジイミド、N,N’-ジネオペンチルカルボジイミド、N,N’-ジ(2-メチルブチル)カルボジイミド、N,N’-ジ(1,2-ジメチルプロピル)カルボジイミド、N,N’-ジ(1-エチルプロピル)カルボジイミド、N,N’-ジシクロペンチルカルボジイミド、N,N’-ジ(n-ヘキシル)カルボジイミド、N,N’-ジイソヘキシルカルボジイミド、N,N’-ジ(sec-ヘキシル)カルボジイミド、N,N’-ジ(tert-ヘキシル)カルボジイミド、N,N’-ジネオヘキシルカルボジイミド、N,N’-ジ(2-メチルペンチル)カルボジイミド、N,N’-ジ(1,2-ジメチルブチル)カルボジイミド、N,N’-ジ(2,3-ジメチルブチル)カルボジイミド、N,N’-ジ(1-エチルブチル)カルボジイミド、N,N’-ジシクロヘキシルカルボジイミド等が挙げられる。
 上記アリール基上に置換基を有していてもよいN,N’-ジアリールカルボジイミドの具体例としては、例えばN,N’-ジフェニルカルボジイミド、N,N’-ビス(2-ニトロフェニル)カルボジイミド、N,N’-ビス(3-ニトロフェニル)カルボジイミド、N,N’-ビス(4-ニトロフェニル)カルボジイミド、N,N’-ビス(2,4-ジニトロフェニル)カルボジイミド、N,N’-ビス(2,6-ジニトロフェニル)カルボジイミド、N,N’-ビス(2-メチルフェニル)カルボジイミド、N,N’-ビス(3-メチルフェニル)カルボジイミド、N,N’-ビス(4-メチルフェニル)カルボジイミド、N,N’-ビス(4-エチルフェニル)カルボジイミド、N,N’-ビス(4-n-プロピルフェニル)カルボジイミド、N,N’-ビス(4-イソプロピルフェニル)カルボジイミド、N,N’-ビス(4-n-ブチルフェニル)カルボジイミド、N,N’-ビス(4-n-ペンチルフェニル)カルボジイミド、N,N’-ビス(4-n-ヘキシルフェニル)カルボジイミド、N,N’-ビス(2,3-ジメチルフェニル)カルボジイミド、N,N’-ビス(3,4-ジメチルフェニル)カルボジイミド、N,N’-ビス(2,4-ジメチルフェニル)カルボジイミド、N,N’-ビス(2,6-ジメチルフェニル)カルボジイミド、N,N’-ビス(2,3-ジエチルフェニル)カルボジイミド、N,N’-ビス(3,4-ジエチルフェニル)カルボジイミド、N,N’-ビス(2,4-ジエチルフェニル)カルボジイミド、N,N’-ビス(2,6-ジエチルフェニル)カルボジイミド、N,N’-ビス{2,3-ジ(n-プロピル)フェニル}カルボジイミド、N,N’-ビス{2,4-ジ(n-プロピル)フェニル}カルボジイミド、N,N’-ビス{3,4-ジ(n-プロピル)フェニル}カルボジイミド、N,N’-ビス{2,6-ジ(n-プロピル)フェニル}カルボジイミド、N,N’-ビス(2,3-ジイソプロピルフェニル)カルボジイミド、N,N’-ビス(3,4-ジイソプロピルフェニル)カルボジイミド、N,N’-ビス(2,4-ジイソプロピルフェニル)カルボジイミド、N,N’-ビス(2,6-ジイソプロピルフェニル)カルボジイミド、N,N’-ビス{2,3-ジ(n-ブチル)フェニル}カルボジイミド、N,N’-ビス{2,4-ジ(n-ブチル)フェニル}カルボジイミド、N,N’-ビス{3,4-ジ(n-ブチル)フェニル}カルボジイミド、N,N’-ビス{2,6-ジ(n-ブチル)フェニル}カルボジイミド、N,N’-ビス(2,3-ジイソブチルフェニル)カルボジイミド、N,N’-ビス(3,4-ジイソブチルフェニル)カルボジイミド、N,N’-ビス(2,4-ジイソブチルフェニル)カルボジイミド、N,N’-ビス(2,6-ジイソブチルフェニル)カルボジイミド、N,N’-ビス{2,3-ジ(sec-ブチル)フェニル}カルボジイミド、N,N’-ビス{2,4-ジ(sec-ブチル)フェニル}カルボジイミド、N,N’-ビス{3,4-ジ(sec-ブチル)フェニル}カルボジイミド、N,N’-ビス{2,6-ジ(sec-ブチル)フェニル}カルボジイミド、N,N’-ビス{2,3-ジ(tert-ブチル)フェニル}カルボジイミド、N,N’-ビス{2,4-ジ(tert-ブチル)フェニル}カルボジイミド、N,N’-ビス{3,4-ジ(tert-ブチル)フェニル}カルボジイミド、N,N’-ビス{2,6-ジ(tert-ブチル)フェニル}カルボジイミド、N,N’-ビス(2,3-ジシクロブチルフェニル)カルボジイミド、N,N’-ビス(3,4-ジシクロブチルフェニル)カルボジイミド、N,N’-ビス(2,4-ジシクロブチルフェニル)カルボジイミド、N,N’-ビス(2,6-ジシクロブチルフェニル)カルボジイミド、N,N’-ビス(4-メトキシフェニル)カルボジイミド、N,N’-ビス(4-メチルチオフェニル)カルボジイミド、N,N’-ビス{4-(N,N-ジメチルアミノ)フェニル}カルボジイミド等が挙げられる。
 上記アリール基上に置換基を有していてもよいN-アルキル-N’-アリールカルボジイミドの具体例としては、例えば下記一般式(VI-d)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000077
(式中、R16dまたはR17dのいずれか一方が、炭素数1~12のアルキル基を表し、他方が、ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基または炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基を表す。)
 一般式(VI-d)におけるR16dおよびR17dで示される炭素数1~12のアルキル基の具体例としては、一般式(B)におけるR16およびR17で示される炭素数1~12のアルキル基の具体例と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式(VI-d)におけるR16dおよびR17dで示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基または炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」の具体例としては、一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基または炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」の具体例と同様のものが挙げられ、好ましいものも同じである。
 一般式(VI-d)におけるR16dおよびR17dとしては、炭素数1~12のアルキル基およびニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基又は炭素数2~12のジアルキルアミノ基で置換されていてもよいフェニル基がより好ましく、なかでも、炭素数1~12のアルキル基およびニトロ基のみ又は炭素数1~6のアルキル基のみで置換されているフェニル基がさらに好ましい。
 一般式(VI-d)で示される化合物の具体例としては、例えばN-ヘキシル-N’-フェニルカルボジイミド、N-ヘキシル-N’-(2-ニトロフェニル)カルボジイミド、N-ヘキシル-N’-(3-ニトロフェニル)カルボジイミド、N-メチル-N’-(4-ニトロフェニル)カルボジイミド、N-エチル-N’-(4-ニトロフェニル)カルボジイミド、N-プロピル-N’-(4-ニトロフェニル)カルボジイミド、N-ブチル-N’-(4-ニトロフェニル)カルボジイミド、N-ペンチル-N’-(4-ニトロフェニル)カルボジイミド、N-ヘキシル-N’-(4-ニトロフェニル)カルボジイミド、N-ヘキシル-N’-(2,4-ジニトロフェニル)カルボジイミド、N-ヘキシル-N’-(2,6-ジニトロフェニル)カルボジイミド、N-ヘキシル-N’-(2-メチルフェニル)カルボジイミド、N-ヘキシル-N’-(3-メチルフェニル)カルボジイミド、N-メチル-N’-(4-メチルフェニル)カルボジイミド、N-エチル-N’-(4-メチルフェニル)カルボジイミド、N-プロピル-N’-(4-メチルフェニル)カルボジイミド、N-ブチル-N’-(4-メチルフェニル)カルボジイミド、N-ペンチル-N’-(4-メチルフェニル)カルボジイミド、N-ヘキシル-N’-(4-メチルフェニル)カルボジイミド、N-ヘキシル-N’-(4-エチルフェニル)カルボジイミド、N-ヘキシル-N’-(4-プロピルフェニル)カルボジイミド、N-ヘキシル-N’-(4-ブチルフェニル)カルボジイミド、N-ヘキシル-N’-(4-ペンチルフェニル)カルボジイミド、N-ヘキシル-N’-(4-ヘキシルフェニル)カルボジイミド、N-ヘキシル-N’-(2,3-ジプロピルフェニル)カルボジイミド、N-ヘキシル-N’-(2,4-ジプロピルフェニル)カルボジイミド、N-ヘキシル-N’-(3,4-ジプロピルフェニル)カルボジイミド、N-ヘキシル-N’-(2,6-ジプロピルフェニル)カルボジイミド、N-ヘキシル-N’-(4-メトキシフェニル)カルボジイミド、N-ヘキシル-N’-(4-メチルチオフェニル)カルボジイミド、N-ヘキシル-N’-{4-(N,N-ジメチルアミノ)フェニル}カルボジイミドが挙げられる。なお、上述の具体例において、N-アルキル-N’-アリールカルボジイミドにおけるアルキル基、および、N-アルキル-N’-アリールカルボジイミドにおけるアリール基上の置換基であるアルキル基は、normal-体に限定されず、sec-体、tert-体、イソ体、ネオ体等の分枝状もしくはシクロ体のような環状のアルキル基のものも上述の具体例に含まれる。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(VIII)で示されるハロゲン化水素は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(VIII)で示されるハロゲン化水素の具体例としては、塩化水素、臭化水素、ヨウ化水素等が挙げられる。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(IX)で示されるハロゲン化アルキルは、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(IX)で示されるハロゲン化アルキルの具体例としては、塩化メチル、臭化メチル、ヨウ化メチル、塩化エチル、臭化エチル、ヨウ化エチル、塩化プロピル、臭化プロピル、ヨウ化プロピル、塩化ブチル、臭化ブチル、ヨウ化ブチル、塩化ペンチル、臭化ペンチル、ヨウ化ペンチル、塩化ヘキシル、臭化ヘキシル、ヨウ化ヘキシル、塩化ヘプチル、臭化ヘプチル、ヨウ化ヘプチル、塩化オクチル、臭化オクチル、ヨウ化オクチル、塩化ノニル、臭化ノニル、ヨウ化ノニル、塩化デシル、臭化デシル、ヨウ化デシル、塩化ウンデシル、臭化ウンデシル、ヨウ化ウンデシル、塩化ドデシル、臭化ドデシル、ヨウ化ドデシル、塩化ノルボルニル、臭化ノルボルニル、ヨウ化ノルボルニル、塩化ボルニル、臭化ボルニル、ヨウ化ボルニル、塩化メンチル、臭化メンチル、ヨウ化メンチル、塩化アダマンチル、臭化アダマンチル、ヨウ化アダマンチル、塩化デカヒドロナフチル、臭化デカヒドロナフチル、ヨウ化デカヒドロナフチル等が挙げられる。なお、上述の具体例において、ハロゲン化アルキルにおけるアルキル基は、normal-体に限定されず、sec-体、tert-体、イソ体、ネオ体等の分枝状もしくはシクロ体のような環状のアルキル基のものも上述の具体例に含まれる。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(XI)で示される化合物は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(XI)で示される化合物の具体例としては、1-クロロ-N,N,N’,N’-テトラメチルアミノイミンクロリド、1-クロロ-N,N,N’,N’-テトラエチルアミノイミンクロリド、1-クロロ-N,N,N’,N’-テトラ-n-プロピルアミノイミンクロリド、1-クロロ-N,N’-ジイソプロピル-N,N’-ジメチルアミノイミンクロリド、1-クロロ-N,N’-ジエチル-N,N’-ジイソプロピルアミノイミンクロリド、1-クロロ-N,N,N’,N’-テトライソプロピルアミノイミンクロリド、1-クロロ-N,N’-ジ-tert-ブチル-N,N’-ジメチルアミノイミンクロリド、1-クロロ-N,N’-エチル-N,N’-ジ-tert-ブチルアミノイミンクロリド、1-クロロ-N,N,N’,N’-テトラ-n-ブチルアミノイミンクロリド、1-クロロ-N,N’-ジシクロへキシル-N,N’-ジメチルアミノイミンクロリド、1-クロロ-N,N’-ジエチル-N,N’-ジシクロへキシルアミノイミンクロリド、2-クロロ-1,3-ジメチルイミダゾリニウムクロリド、2-クロロ-1,3-ジエチルイミダゾリニウムクロリド、2-クロロ-1,3-ジ-n-プロピルイミダゾリニウムクロリド、2-クロロ-1,3-ジイソプロピルイミダゾリニウムクロリド、2-クロロ-1,3-ジ-n-ブチルイミダゾリニウムクロリド、2-クロロ-1,3-ジメチル-4,5,6-トリヒドロピリミジニウムクロリド、2-クロロ-1,3-ジメチル-(1,3-ジアザ-1-シクロヘプテン)クロリド等が挙げられる。
 一般式(VII)で示される化合物と一般式(IX)で示されるハロゲン化アルキルとを反応させて、一般式(X)で示される化合物を得る反応において使用される塩基の具体例としては、例えば水素化ナトリウム、水素化カリウム等のアルカリ金属水素化物、例えばナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウム-tert-ブトキシド、ナトリウム-tert-ブトキシド、カリウム-tert-ブトキシド等のアルカリ金属アルコキシド、例えばn-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、n-ヘキシルリチウム等の有機リチウム化合物、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、例えば炭酸ナトリウム、炭酸カリウム、炭酸セシウム等の炭酸のアルカリ金属塩、例えばトリエチルアミン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)等の3級アミン、例えばリチウムジイソプロピルアミド(LDA)、リチウムヘキサメチルジシラザン(LHMDS)、ナトリウムヘキサメチルジシラザン(NaHMDS)、カリウムヘキサメチルジシラザン(KHMDS)等の金属アミド等が挙げられ、なかでも、例えば水素化ナトリウム、水素化カリウム等のアルカリ金属水素化物が好ましい。なお、かかる塩基は、1種類の塩基を単独で用いてもよいし、2種以上の塩基を組み合わせて用いてもよい。また、かかる塩基は、市販のものを用いればよい。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(VI)で示されるカルボジイミド誘導体の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(V)で示されるグアニジンまたはグアニジン誘導体のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。前記カルボジイミド誘導体の使用量が極めて少ない場合には、一般式(VII)で示される化合物の収率が低下するおそれがある。一方で、前記カルボジイミド誘導体の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(VIII)で示されるハロゲン化水素の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(VII)または一般式(X)で示される化合物のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。前記ハロゲン化水素の使用量が極めて少ない場合には、一般式(B2a-X)または一般式(B2b-X)で示される化合物の収率が低下するおそれがある。一方で、前記ハロゲン化水素の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(IX)で示されるハロゲン化アルキルの使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(VII)で示される化合物のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。前記ハロゲン化アルキルの使用量が極めて少ない場合には、一般式(X)で示される化合物の収率が低下するおそれがある。一方で、前記ハロゲン化アルキルの使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、一般式(X)で示される化合物を得る反応において使用される塩基の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(VII)で示される化合物のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。前記塩基の使用量が極めて少ない場合には、一般式(X)で示される化合物の収率が低下するおそれがある。一方で、前記塩基の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(XI)で示される化合物の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(V)で示されるグアニジンまたはグアニジン誘導体のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。一般式(XI)で示される化合物の使用量が極めて少ない場合には、一般式(B2c-X)で示される化合物の収率が低下するおそれがある。一方で、一般式(XI)で示される化合物の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 前記スキーム[ii]で示される一連の反応は、無溶媒中で行ってもよいし、有機溶媒中で行ってもよい。当該有機溶媒の具体例としては、前記グアニジンまたはグアニジン誘導体、カルボジイミド誘導体、ハロゲン化水素、ハロゲン化アルキル、一般式(VII)、(X)および(XI)で示される化合物、ならびに塩基と反応しない有機溶媒であれば特に制限はなく、前記スキーム[i]で示される有機溶媒の具体例と同様のものが挙げられる。なお、かかる有機溶媒は、1種類の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。また、かかる有機溶媒は、市販のものを用いればよい。
 上述した有機溶媒の使用量は、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(V)で示されるグアニジンまたはグアニジン誘導体、一般式(VII)で示される化合物、あるいは一般式(X)で示される化合物1mmolに対して、通常0.01~500mL、好ましくは0.1~100mLである。
 前記スキーム[ii]で示される一連の反応は、以下に示す条件(反応温度、圧力、反応時間)下で行うことが望ましい。
 一般式(V)で示されるグアニジンまたはグアニジン誘導体と一般式(VI)で示されるカルボジイミド誘導体との反応における反応時の温度(反応温度)は、前記グアニジンまたはグアニジン誘導体とカルボジイミド誘導体とが効率よく反応し、一般式(VII)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常0~200℃、好ましくは20~150℃である。
 一般式(VII)または一般式(X)で示される化合物と一般式(VIII)で示されるハロゲン化水素との反応における反応時の温度(反応温度)は、前記一般式(VII)または一般式(X)で示される化合物とハロゲン化水素とが効率よく反応し、一般式(B2a-X)または一般式(B2b-X)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常-20~150℃、好ましくは0~80℃である。
 一般式(VII)で示される化合物と一般式(IX)で示されるハロゲン化アルキルとの反応における反応時の温度(反応温度)は、前記一般式(VII)で示される化合物とハロゲン化アルキルとが効率よく反応し、一般式(X)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常-20~150℃、好ましくは0~80℃である。
 一般式(V)で示されるグアニジンまたはグアニジン誘導体と一般式(XI)で示される化合物との反応における反応時の温度(反応温度)は、前記グアニジンまたはグアニジン誘導体と一般式(XI)で示される化合物とが効率よく反応し、一般式(B2c-X)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常0~200℃、好ましくは20~150℃である。
 前記スキーム[ii]で示される一連の反応時の圧力は、一連の反応が滞りなく実施されれば特に制限はなく、例えば常圧で行えばよい。
 前記スキーム[ii]で示される一連の反応時の反応時間は、前記グアニジンまたはグアニジン誘導体、カルボジイミド誘導体、ハロゲン化水素、ハロゲン化アルキル、一般式(VII)、(X)および(XI)で示される化合物および塩基の種類、かかる化合物および塩基の使用量、有機溶媒の有無およびその種類、反応温度、反応時の圧力などに影響を受ける場合がある。このため、望ましい反応時間は、一概に言えるものではないが、例えば通常1分~24時間、好ましくは3分~12時間である。
 前記スキーム[ii]で示される反応後の一連の生成物は、通常この分野で行われる一般的な後処理操作及び精製操作により単離することができる。単離方法の具体例としては、例えば必要に応じて、一般式(V)で示されるグアニジンまたはグアニジン誘導体と一般式(VI)で示されるカルボジイミド誘導体との反応あるいは一般式(VII)で示される化合物と一般式(IX)で示されるハロゲン化アルキルとの反応では、ヘキサン等の非極性溶媒を反応系内に添加して、冷却後、生じた結晶を濾取することにより、生成物を単離することができる。また、一般式(V)で示されるグアニジンまたはグアニジン誘導体と一般式(XI)で示される化合物との反応では、アセトン等の極性溶媒を反応系内に添加して、析出した塩を除去し、有機層を減圧濃縮することにより、生成物を単離することができる。さらに、必要に応じて、反応液をろ過または洗浄したり、反応液を濃縮して得られた残渣について、再結晶、蒸留、カラムクロマトグラフィ-等を行うことによって生成物を単離してもよい。
 なお、前記スキーム[ii]における一般式(VI)で示される化合物の具体例の1つである一般式(VI-d)で示される化合物は、例えば以下のスキ-ム[ii-i]に示す方法で製造することができる。すなわち、例えば一般式(VI-a)で示されるアルキルアミンと一般式(VI-b)で示されるイソチオシアン酸アリールを反応させて、一般式(VI-c)で示されるチオウレア誘導体を得、次いで、脱硫反応を行うことにより合成すればよい。
Figure JPOXMLDOC01-appb-I000078
(式中、R16eおよびR17eはそれぞれ独立して、炭素数1~12のアルキル基を表し、R16fおよびR17fはそれぞれ独立して、ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基または炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基を表し、R16dおよびR17dは、前記に同じ。)
 一般式(VI-d)におけるR16eおよびR17eの具体例としては、一般式(B)におけるR16およびR17で示される炭素数1~12のアルキル基の具体例と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式(VI-d)におけるR16fおよびR17fの具体例としては、一般式(B)におけるR16およびR17で示される「ニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基または炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基」の具体例と同様のものが挙げられ、好ましいものも同じである。
 一般式(VI-d)におけるR16dが炭素数1~12のアルキル基であり、かつ、R17dがニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基または炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基である場合、一般式(VI-a)および(VI-b)中の上方に示される構造で反応が進行する。このとき、一般式(VI-c)および(VI-d)におけるR16dは、一般式(VI-a)におけるR16eであり、一般式(VI-c)および(VI-d)におけるR17dは、一般式(VI-a)におけるR17fである。
 一方、一般式(VI-d)におけるR16dがニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基または炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基であり、かつ、R17dが炭素数1~12のアルキル基である場合、一般式(VI-a)および(VI-b)中の下方に示される構造で反応が進行する。このとき、一般式(VI-c)および(VI-d)におけるR16dは、一般式(VI-a)におけるR16fであり、一般式(VI-c)および(VI-d)におけるR17dは、一般式(VI-a)におけるR17eである。
 上述した一般式(VI-d)で示される化合物の製造方法にかかる一般式(VI-a)で示されるアルキルアミンは、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(VI-a)で示されるアルキルアミンの具体例としては、例えばメチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、シクロブチルアミン、n-ペンチルアミン、イソペンチルアミン、sec-ペンチルアミン、tert-ペンチルアミン、ネオペンチルアミン、(2-メチルブチル)アミン、(1,2-ジメチルプロピル)アミン、(1-エチルプロピル)アミン、シクロペンチルアミン、n-ヘキシルアミン、イソヘキシルアミン、sec-ヘキシルアミン、tert-ヘキシルアミン、ネオヘキシルアミン、(2-メチルペンチル)アミン、(1,2-ジメチルブチル)アミン、(2,3-ジメチルブチル)アミン、(1-エチルブチル)アミン、シクロヘキシルアミン等が挙げられる。
 上述した一般式(VI-d)で示される化合物の製造方法にかかる一般式(VI-b)で示されるイソチオシアン酸アリールは、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(VI-b)で示されるイソチオシアン酸アリールの具体例としては、例えばイソチオシアン酸フェニル、イソチオシアン酸2-ニトロフェニル、イソチオシアン酸3-ニトロフェニル、イソチオシアン酸4-ニトロフェニル、イソチオシアン酸2,4-ジニトロフェニル、イソチオシアン酸2,6-ジニトロフェニル、イソチオシアン酸2-メチルフェニル、イソチオシアン酸3-メチルフェニル、イソチオシアン酸4-メチルフェニル、イソチオシアン酸4-エチルフェニル、イソチオシアン酸4-n-プロピルフェニル、イソチオシアン酸4-イソプロピルフェニル、イソチオシアン酸4-n-ブチルフェニル、イソチオシアン酸4-n-ペンチルフェニル、イソチオシアン酸4-n-ヘキシルフェニル、イソチオシアン酸2,3-ジメチルフェニル、イソチオシアン酸3,4-ジメチルフェニル、イソチオシアン酸2,4-ジメチルフェニル、イソチオシアン酸2,6-ジメチルフェニル、イソチオシアン酸2,3-ジエチルフェニル、イソチオシアン酸3,4-ジエチルフェニル、イソチオシアン酸2,4-ジエチルフェニル、イソチオシアン酸2,6-ジエチルフェニル、イソチオシアン酸2,3-ジ(n-プロピル)フェニル、イソチオシアン酸2,4-ジ(n-プロピル)フェニル、イソチオシアン酸3,4-ジ(n-プロピル)フェニル、イソチオシアン酸2,6-ジ(n-プロピル)フェニル、イソチオシアン酸2,3-ジイソプロピルフェニル、イソチオシアン酸3,4-ジイソプロピルフェニル、イソチオシアン酸2,4-ジイソプロピルフェニル、イソチオシアン酸2,6-ジイソプロピルフェニル、イソチオシアン酸2,3-ジ(n-ブチル)フェニル、イソチオシアン酸2,4-ジ(n-ブチル)フェニル、イソチオシアン酸3,4-ジ(n-ブチル)フェニル、イソチオシアン酸2,6-ジ(n-ブチル)フェニル、イソチオシアン酸2,3-ジイソブチルフェニル、イソチオシアン酸3,4-ジイソブチルフェニル、イソチオシアン酸2,4-ジイソブチルフェニル、イソチオシアン酸2,6-ジイソブチルフェニル、イソチオシアン酸2,3-ジ(sec-ブチル)フェニル、イソチオシアン酸2,4-ジ(sec-ブチル)フェニル、イソチオシアン酸3,4-ジ(sec-ブチル)フェニル、イソチオシアン酸2,6-ジ(sec-ブチル)フェニル、イソチオシアン酸2,3-ジ(tert-ブチル)フェニル、イソチオシアン酸2,4-ジ(tert-ブチル)フェニル、イソチオシアン酸3,4-ジ(tert-ブチル)フェニル、イソチオシアン酸2,6-ジ(tert-ブチル)フェニル、イソチオシアン酸2,3-ジシクロブチルフェニル、イソチオシアン酸3,4-ジシクロブチルフェニル、イソチオシアン酸2,4-ジシクロブチルフェニル、イソチオシアン酸2,6-ジシクロブチルフェニル、イソチオシアン酸4-メトキシフェニル、イソチオシアン酸4-メチルチオフェニル、イソチオシアン酸4-(N,N-ジメチルアミノ)フェニル等が挙げられる。
 一般式(VI-b)で示されるイソチオシアン酸アリールの使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(VI-a)で示されるアルキルアミンのmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。当該イソチオシアン酸アリールの使用量が極めて少ない場合には、一般式(VI-c)で示されるチオウレア誘導体の収率が低下するおそれがある。一方で、当該イソチオシアン酸アリールの使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 上述した一般式(VI-d)で示される化合物の製造方法における脱硫反応は、自体公知の方法によって適宜行えばよく、具体的には例えば、一般式(VI-c)で示されるチオウレア誘導体に、トリエチルアミン等のアミンおよびヨウ素等のハロゲン原子を反応させ、一般式(VI-d)で示される化合物を得ればよい。
 前記脱硫反応において、アミンの使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(VI-c)で示されるチオウレア誘導体のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは2~3当量である。当該アミンの使用量が極めて少ない場合には、一般式(VI-d)で示される化合物の収率が低下するおそれがある。一方で、当該アミンの使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 前記脱硫反応において、ハロゲン原子の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(VI-c)で示されるチオウレア誘導体のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。当該ハロゲン原子の使用量が極めて少ない場合には、一般式(VI-d)で示される化合物の収率が低下するおそれがある。一方で、当該ハロゲン原子の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 前記スキーム[ii-i]で示される一連の反応は、無溶媒中で行ってもよいし、有機溶媒中で行ってもよい。当該有機溶媒の具体例としては、前記アルキルアミン、イソチオシアン酸アリール、チオウレア誘導体および一般式(VI-d)で示される化合物と反応しない有機溶媒であれば特に制限はなく、前記スキーム[i]で示される有機溶媒の具体例と同様のものが挙げられる。なお、かかる有機溶媒は、1種類の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。また、かかる有機溶媒は、市販のものを用いればよい。
 上述した有機溶媒の使用量は、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(VI-a)で示されるアルキルアミンまたは一般式(VI-c)で示されるチオウレア誘導体1mmolに対して、通常0.01~500mL、好ましくは0.1~100mLである。
 前記スキーム[ii-i]で示される一連の反応は、以下に示す条件(反応温度、圧力、反応時間)下で行うことが望ましい。
 一般式(VI-a)で示されるアルキルアミンと一般式(VI-b)で示されるイソチオシアン酸アリールとの反応における反応時の温度(反応温度)は、前記アルキルアミンとイソチオシアン酸アリールとが効率よく反応し、一般式(VI-c)で示されるチオウレア誘導体が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常0~200℃、好ましくは20~150℃である。
 一般式(VI-c)で示されるチオウレア誘導体に対する脱硫反応における反応時の温度(反応温度)は、一般式(VI-c)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常0~200℃、好ましくは20~150℃である。
 前記スキーム[ii-i]で示される一連の反応時の圧力は、一連の反応が滞りなく実施されれば特に制限はなく、例えば常圧で行えばよい。
 前記スキーム[ii-i]で示される一連の反応時の反応時間は、前記アルキルアミン、イソチオシアン酸アリール、チオウレア誘導体および一般式(VI-d)で示される化合物の種類、使用量、有機溶媒の有無およびその種類、反応温度、反応時の圧力などに影響を受ける場合がある。このため、望ましい反応時間は、一概に言えるものではないが、例えば通常1分~24時間、好ましくは3分~12時間である。
 前記スキーム[ii-i]で示される反応後の一連の生成物は、通常この分野で行われる一般的な後処理操作及び精製操作により単離することができる。さらに、必要に応じて、反応液をろ過または洗浄したり、反応液を濃縮して得られた残渣について、再結晶、蒸留、カラムクロマトグラフィ-等を行うことによって生成物を単離してもよい。
 上述した本発明の一般式(A)で示される化合物の製造方法にかかる一般式(B-X)で示される化合物は、例えば以下のスキ-ム[iii]に示す方法で製造することができる。すなわち、一般式(B-X)で示される化合物のうち、一般式(B-X)におけるQ~Qが前記一般式(b)であり、かつ、R19が3級アルキルを結合部位に持つアルキル基を表している化合物(下記一般式(B3a-X)で示される化合物)は、例えば一般式(XII)で示されるホスフィンと一般式(XIII)で示されるアルキルアジドを反応させて、一般式(XIV)で示される化合物を得、次いで、当該一般式(XIV)で示される化合物と一般式(VIII)で示されるハロゲン化水素とを反応させることにより合成すればよい。また、一般式(B-X)におけるQ~Qが前記一般式(b)であり、かつ、R19が水素原子または1級もしくは2級アルキルを結合部位に持つアルキル基を表している化合物(下記一般式(B3b-X)で示される化合物)は、例えば一般式(XII)で示されるホスフィンにトリメチルシリルアジドを加えて還流し、次いでメタノ-ルを加えることにより、一般式(XV)で示されるホスファゼンを得、さらに当該一般式(XV)で示されるホスファゼンと一般式(XVI)で示されるハロゲン化アルキルとを反応させることにより合成すればよい。また、一般式(B-X)で示される化合物のうち、一般式(B-X)におけるQ~Qが前記一般式(b)である化合物(下記一般式(B3c-X)で示される化合物)は、例えば前記の方法により合成した一般式(XV)で示されるホスファゼンと一般式(XVII)で示される化合物を反応させて、一般式(XVIII)で示される化合物を得、次いで、当該一般式(XVIII)で示される化合物と一般式(VIII)で示されるハロゲン化水素とを反応させることにより合成すればよい。
Figure JPOXMLDOC01-appb-I000079
(上記スキ-ム中、R19aは、3級アルキルを結合部位に持つ炭素数4~12のアルキル基を表し、R19bは、水素原子または1級もしくは2級アルキルを結合部位に持つ炭素数1~12のアルキル基を表し、R19cは、炭素数1~12のアルキル基を表し、Q1a~Q3aおよびQ1c-1~Q1c-9はそれぞれ独立して、前記一般式(b)を表し、XおよびXa-は、前記に同じ。ただし、上記一般式(XII)、(XIV)および(XVIII)において、式中の窒素原子に結合する水素原子の数は、0~4であり、上記一般式(XV)、(B3a-X)、(B3b-X)および(B2c-X)において、式中の窒素原子に結合する水素原子の数は、1~5である。)
 一般式(XII)~(XVIII)および(B3a-X)~(B2c-X)中の各官能基(R19c、Q1a~Q3aおよびQ1c-1~Q1c-1)の具体例としては、一般式(B)中に記載の対応する各官能基(R19およびQ~Q)の具体例と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式(XIII)、(XIV)および(B3a-X)におけるR19aで示される3級アルキルを結合部位に持つ炭素数4~12のアルキル基としては、結合部位が3級アルキルとなる分岐状のものがよく、具体的には、例えばtert-ブチル基、tert-ペンチル基、tert-ヘキシル基、3-メチルペンタン-3-イル基、tert-ヘプチル基、3-メチルヘキサン-3-イル基、3-エチルペンタン-3-イル基、tert-オクチル基、3
-メチルヘプタン-3-イル基、3-エチルヘキサン-3-イル基、2,4,4-トリメチルペンタン-2-イル基、tert-ノニル基、tert-デシル基、tert-ウンデシル基、tert-ドデシル基、アダマンチル基等が挙げられ、なかでも、tert-ブチル基、tert-ペンチル基、tert-ヘキシル基、3-メチルペンタン-3-イル基、tert-ヘプチル基、3-メチルヘキサン-3-イル基、3-エチルペンタン-3-イル基、tert-オクチル基、3
-メチルヘプタン-3-イル基、3-エチルヘキサン-3-イル基、2,4,4-トリメチルペンタン-2-イル基等の、3級アルキルを結合部位に持つ炭素数4~8のアルキル基が好ましく、その中でも、tert-ブチル基がより好ましい。
 一般式(XVI)および(B3b-X)におけるR19bで示される1級または2級アルキルを結合部位に持つ炭素数1~12のアルキル基としては、結合部位が1級または2級アルキルであれば直鎖状、分枝状もしくは環状のいずれであってもよく、具体的には、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、ネオペンチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、ネオヘキシル基、2-メチルペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、シクロヘキシル基、n-ヘプチル基、イソヘプチル基、sec-ヘプチル基、ネオヘプチル基、シクロヘプチル基、n-オクチル基、イソオクチル基、sec-オクチル基、ネオオクチル基、2-エチルヘキシル基、シクロオクチル基、n-ノニル基、イソノニル基、sec-ノニル基、ネオノニル基、シクロノニル基、n-デシル基、イソデシル基、sec-デシル基、ネオデシル基、シクロデシル基、n-ウンデシル基、シクロウンデシル基、n-ドデシル基、シクロドデシル基等が挙げられる。これらの中でも、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、ネオペンチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、ネオヘキシル基、2-メチルペンチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、シクロヘキシル基、n-ヘプチル基、イソヘプチル基、sec-ヘプチル基、ネオヘプチル基、シクロヘプチル基、n-オクチル基、イソオクチル基、sec-オクチル基、ネオオクチル基、2-エチルヘキシル基、シクロオクチル基等の、1級または2級アルキルを結合部位に持つ炭素数1~8のアルキル基が好ましく、なかでも、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、シクロブチル基等の、1級または2級アルキルを結合部位に持つ炭素数1~4のアルキル基がより好ましく、なかでも、メチル基、エチル基、n-プロピル基、n-ブチル基等の炭素数1~4の直鎖状のアルキル基がさらに好ましく、その中でも、メチル基が特に好ましい。
 一般式(XII)、(XIV)および(XVIII)において、式中の窒素原子に結合する水素原子の数は、0~4の整数であり、0~2が好ましく、0がより好ましい。
 一般式(XV)および(B3a-X)~(B2c-X)において、式中の窒素原子に結合する水素原子の数は、1~5の整数であり、1~3が好ましく、1がより好ましい。なお、ここで示される水素原子の数は、一般式(XV)および(B3a-X)~(B2c-X)における窒素原子が既に水素原子を1つ含んでいるため、常に1以上である。
 一般式(XIII)、(XIV)および(B3a-X)におけるR19aとしては、3級アルキルを結合部位に持つ炭素数4~8のアルキル基がより好ましい。
 一般式(XVI)および(B3b-X)におけるR19bとしては、1級または2級アルキルを結合部位に持つ炭素数1~12のアルキル基がより好ましい。
 一般式(XVII)、(XVIII)および(B3c-X)におけるR19cとしては、炭素数1~8のアルキル基がより好ましい。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(XII)で示されるホスフィンは、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(XII)で示されるホスフィンの具体例としては、トリス(ジメチルアミノ)ホスフィン、トリス(ジエチルアミノ)ホスフィン、トリス(ジ-n-プロピルアミノ)ホスフィン、トリス(ジイソプロピルアミノ)ホスフィン、トリス(ジ-n-ブチルアミノ)ホスフィン、トリス(ジイソブチルアミノ)ホスフィン、トリス(ジ-sec-ブチルアミノ)ホスフィン、トリス(ジ-tert-ブチルアミノ)ホスフィン、トリス(ジシクロブチルアミノ)ホスフィン、トリス(N-アジリジニル)ホスフィン、トリス(N-アゼチジニル)ホスフィン、トリス(N-ピロリジニル)ホスフィン、2-ジエチルアミノ-1-メチル-1,3-ジアザ-2-ホスファシクロヘキサン、2-ジエチチルアミノ-1,3-ジメチル-1,3-ジアザ-2-ホスファシクロヘキサン、2-tert-ブチルアミノ-1-メチル-1,3-ジアザ-2-ホスファシクロヘキサン、2-tert-ブチルアミノ-1,3-ジメチル-1,3-ジアザ-2-ホスファシクロヘキサン等が挙げられる。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(XIII)で示されるアルキルアジドは、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(XIII)で示されるアルキルアジドの具体例としては、tert-ブチルアジド、tert-ペンチルアジド、tert-ヘキシルアジド、3-メチルペンタン-3-イルアジド、tert-ヘプチルアジド、3-メチルヘキサン-3-イルアジド、3-エチルペンタン-3-イルアジド、tert-オクチルアジド、3-メチルヘプタン-3-イルアジド、3-エチルヘキサン-3-イルアジド、2,4,4-トリメチルペンタン-2-イルアジド、tert-ノニルアジド、tert-デシルアジド、tert-ウンデシルアジド、tert-ドデシルアジド、アダマンチルアジド等が挙げられる。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(XVI)で示されるハロゲン化アルキルは、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(XVI)で示されるハロゲン化アルキルの具体例としては、塩化メチル、臭化メチル、ヨウ化メチル、塩化エチル、臭化エチル、ヨウ化エチル、塩化プロピル、臭化プロピル、ヨウ化プロピル、塩化ブチル、臭化ブチル、ヨウ化ブチル、塩化ペンチル、臭化ペンチル、ヨウ化ペンチル、塩化ヘキシル、臭化ヘキシル、ヨウ化ヘキシル、塩化ヘプチル、臭化ヘプチル、ヨウ化ヘプチル、塩化オクチル、臭化オクチル、ヨウ化オクチル、塩化ノニル、臭化ノニル、ヨウ化ノニル、塩化デシル、臭化デシル、ヨウ化デシル、塩化ウンデシル、臭化ウンデシル、ヨウ化ウンデシル、塩化ドデシル、臭化ドデシル、ヨウ化ドデシル等が挙げられる。なお、上述の具体例において、ハロゲン化アルキルにおけるアルキル基は、normal-体に限定されず、sec-体、イソ体、ネオ体等の分枝状もしくはシクロ体のような環状のアルキル基のものも上述の具体例に含まれるが、tert-体のように結合部位が3級アルキルであるものは除かれる。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(XVII)で示される化合物は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(XVII)で示される化合物としては、P,P-ジクロロ-N-メチルホスフィンイミド、P,P-ジクロロ-N-エチルホスフィンイミド、P,P-ジクロロ-N-n-プロピルホスフィンイミド、P,P-ジクロロ-N-イソプロピルホスフィンイミド、P,P-ジクロロ-N-n-ブチルホスフィンイミド、P,P-ジクロロ-N-イソブチルホスフィンイミド、P,P-ジクロロ-N-sec-ブチルホスフィンイミド、P,P-ジクロロ-N-tert-ブチルホスフィンイミド、P,P-ジクロロ-N-シクロブチルホスフィンイミド、P,P-ジクロロ-N-n-ペンチルホスフィンイミド、P,P-ジクロロ-N-イソペンチルホスフィンイミド、P,P-ジクロロ-N-sec-ペンチルホスフィンイミド、P,P-ジクロロ-N-tert-ペンチルホスフィンイミド、P,P-ジクロロ-N-ネオペンチルホスフィンイミド、P,P-ジクロロ-N-2-メチルブチルホスフィンイミド、P,P-ジクロロ-N-1,2-ジメチルプロピルホスフィンイミド、P,P-ジクロロ-N-1-エチルプロピルホスフィンイミド、P,P-ジクロロ-N-シクロペンチルホスフィンイミド、P,P-ジクロロ-N-n-ヘキシルホスフィンイミド、P,P-ジクロロ-N-イソヘキシルホスフィンイミド、P,P-ジクロロ-N-sec-ヘキシルホスフィンイミド、P,P-ジクロロ-N-tert-ヘキシルホスフィンイミド、P,P-ジクロロ-N-ネオヘキシルホスフィンイミド、P,P-ジクロロ-N-2-メチルペンチルホスフィンイミド、P,P-ジクロロ-N-1,2-ジメチルブチルホスフィンイミド、P,P-ジクロロ-N-2,3-ジメチルブチルホスフィンイミド、P,P-ジクロロ-N-1-エチルブチルホスフィンイミド、P,P-ジクロロ-N-シクロヘキシルホスフィンイミド、P,P-ジクロロ-N-n-ヘプチルホスフィンイミド、P,P-ジクロロ-N-イソヘプチルホスフィンイミド、P,P-ジクロロ-N-sec-ヘプチルホスフィンイミド、P,P-ジクロロ-N-tert-ヘプチルホスフィンイミド、P,P-ジクロロ-N-ネオヘプチルホスフィンイミド、P,P-ジクロロ-N-シクロヘプチルホスフィンイミド、P,P-ジクロロ-N-n-オクチルホスフィンイミド、P,P-ジクロロ-N-イソオクチルホスフィンイミド、P,P-ジクロロ-N-sec-オクチルホスフィンイミド、P,P-ジクロロ-N-tert-オクチルホスフィンイミド、P,P-ジクロロ-N-ネオオクチルホスフィンイミド、P,P-ジクロロ-N-2-エチルヘキシルホスフィンイミド、P,P-ジクロロ-N-シクロオクチルホスフィンイミド等が挙げられる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(XIII)で示されるアルキルアジドの使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XII)で示されるホスフィンのmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。前記アルキルアジドの使用量が極めて少ない場合には、一般式(XIV)で示される化合物の収率が低下するおそれがある。一方で、前記アルキルアジドの使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(VIII)で示されるハロゲン化水素の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XIV)または一般式(XVIII)で示される化合物のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。前記ハロゲン化水素の使用量が極めて少ない場合には、一般式(B3a-X)または一般式(B3b-X)で示される化合物の収率が低下するおそれがある。一方で、前記ハロゲン化水素の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、一般式(XV)で示されるホスファゼンを得る反応において使用されるトリメチルシリルアジドおよびメタノ-ルの使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XII)で示されるホスフィンのmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。前記トリメチルシリルアジドおよびメタノ-ルの使用量が極めて少ない場合には、前記ホスファゼンの収率が低下するおそれがある。一方で、前記トリメチルシリルアジドおよびメタノ-ルの使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(XVI)で示されるハロゲン化アルキルの使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XV)で示されるホスファゼンのmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。前記ハロゲン化アルキルの使用量が極めて少ない場合には、一般式(X)で示される化合物の収率が低下するおそれがある。一方で、前記ハロゲン化アルキルの使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、一般式(XVIII)で示される化合物を得る反応において使用される一般式(XV)で示されるホスファゼンの使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XVII)で示される化合物のmol数に対して、通常2.6~30当量、好ましくは2.8~10当量、より好ましくは3~4当量である。前記ホスファゼンの使用量が極めて少ない場合には、一般式(XVIII)で示される化合物の収率が低下するおそれがある。一方で、前記ホスファゼンで示される化合物の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 前記スキーム[iii]で示される一連の反応は、通常適当な有機溶媒中で行われる。当該有機溶媒の具体例としては、前記ホスフィン、アルキルアジド、ハロゲン化水素、トリメチルシリルアジド、メタノ-ル、ホスファゼン、ハロゲン化アルキル、一般式(XVII)および(XVIII)で示される化合物と反応しない有機溶媒であれば特に制限はなく、前記スキーム[i]で示される有機溶媒の具体例と同様のものが挙げられる。なお、かかる有機溶媒は、1種類の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。また、かかる有機溶媒は、市販のものを用いればよい。
 上述した有機溶媒の使用量は、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XII)で示されるホスフィン、一般式(XIV)で示される化合物、一般式(XV)で示されるホスファゼン、あるいは一般式(XVIII)で示される化合物1mmolに対して、通常0.01~500mL、好ましくは0.1~100mLである。
 前記スキーム[iii]で示される一連の反応は、以下に示す条件(反応温度、圧力、反応時間)下で行うことが望ましい。
 一般式(XII)で示されるホスフィンと一般式(XIII)で示されるアルキルアジドとの反応における反応時の温度(反応温度)は、前記ホスフィンとアルキルアジドとが効率よく反応し、一般式(XIV)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常-20~150℃、好ましくは0~80℃である。
 一般式(XIV)または一般式(XVIII)で示される化合物と一般式(VIII)で示されるハロゲン化水素との反応における反応時の温度(反応温度)は、前記一般式(XIV)または一般式(XVIII)で示される化合物とハロゲン化水素とが効率よく反応し、一般式(B3a-X)または一般式(B3c-X)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常-20~150℃、好ましくは0~80℃である。
 一般式(XII)で示されるホスフィンとトリメチルシリルアジドとの反応における反応時の温度(反応温度)は、通常この分野で還流操作を行う際に一般的に用いられる温度であればよく、前記ホスフィンとトリメチルシリルアジドとが効率よく反応し、一般式(XV)で示されるホスファゼンが収率よく得られる温度に設定することが望ましい。具体的には、例えば通常50~300℃、好ましくは100~200℃である。
 前記ホスフィンとトリメチルシリルアジドとの反応で得られた化合物とメタノ-ルとの反応における反応時の温度(反応温度)は、前記ホスフィンとトリメチルシリルアジドとの反応で得られた化合物とメタノ-ルとが効率よく反応し、一般式(XV)で示されるホスファゼンが収率よく得られる温度に設定することが望ましい。具体的には、例えば通常-20~150℃、好ましくは0~80℃である。
 一般式(XV)で示されるホスファゼンと一般式(XVI)で示されるハロゲン化アルキルとの反応における反応時の温度(反応温度)は、前記ホスファゼンとハロゲン化アルキルとが効率よく反応し、一般式(B3b-X)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常0~200℃、好ましくは20~150℃である。
 一般式(XV)で示されるホスファゼンと一般式(XVII)で示される化合物との反応における反応時の温度(反応温度)は、前記ホスファゼンと一般式(XVII)で示される化合物とが効率よく反応し、一般式(XVIII)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常-20~150℃、好ましくは0~80℃である。
 前記スキーム[iii]で示される一連の反応時の圧力は、一連の反応が滞りなく実施されれば特に制限はなく、例えば常圧で行えばよい。
 前記スキーム[iii]で示される一連の反応時の反応時間は、前記ホスフィン、アルキルアジド、ハロゲン化水素、トリメチルアジド、メタノ-ル、ホスファゼン、ハロゲン化アルキル、一般式(XVII)および(XVIII)で示される化合物の種類、かかる化合物の使用量、有機溶媒の種類、反応温度、反応時の圧力などに影響を受ける場合がある。このため、望ましい反応時間は、一概に言えるものではないが、例えば通常1分~24時間、好ましくは3分~12時間である。
 前記スキーム[iii]で示される反応後の一連の生成物は、通常この分野で行われる一般的な後処理操作及び精製操作により単離することができる。単離方法の具体例としては、例えば必要に応じて、反応系内にジエチルエーテル、塩化メチレンの無極性溶媒を反応系内に添加して、有機層を減圧濃縮することにより、生成物を単離することができる。また、必要に応じて、反応液をろ過または洗浄したり、反応液を濃縮して得られた残渣について、再結晶、蒸留、カラムクロマトグラフィ-等を行うことによって生成物を単離してもよい。
 上述した本発明の一般式(A)で示される化合物の製造方法にかかる一般式(B-X)で示される化合物は、例えば以下のスキ-ム[iv]に示す方法で製造することができる。すなわち、一般式(B-X)で示される化合物は、例えば一般式(XIX)で示されるホスフィンにトリメチルシリルアジドを加えて還流し、次いで一般式(XX)で示される化合物を加えることにより、一般式(XXI)で示される化合物を得、さらに当該一般式(XXI)で示される化合物と一般式(XXII)で示される化合物とを反応させることにより合成すればよい。
Figure JPOXMLDOC01-appb-I000080
(上記スキ-ム中、Q~QおよびXは、前記に同じ。ただし、上記一般式(B-X)において、式中の窒素原子に結合する水素原子の数は、0~4である。)
 一般式(B-X)において、式中の窒素原子に結合する水素原子の数は、0~4の整数であり、0~2が好ましく、0がより好ましい。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(XIX)で示されるホスフィンの具体例としては、トリス(ジメチルアミノ)ホスフィン、トリス(ジエチルアミノ)ホスフィン、トリス(ジ-n-プロピルアミノ)ホスフィン、トリス(ジイソプロピルアミノ)ホスフィン、トリス(ジ-n-ブチルアミノ)ホスフィン、トリス(ジイソブチルアミノ)ホスフィン、トリス(ジ-sec-ブチルアミノ)ホスフィン、トリス(ジ-tert-ブチルアミノ)ホスフィン、トリス(ジシクロブチルアミノ)ホスフィン等が挙げられる。なお、かかる一般式(XIX)で示されるホスフィンは、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(XX)で示される化合物の具体例としては、ジクロロ(ジメチルアミノ)ホスフィン、ジクロロ(ジエチルアミノ)ホスフィン、ジクロロ(ジ-n-プロピルアミノ)ホスフィン、ジクロロ(ジイソプロピルアミノ)ホスフィン、ジクロロ(ジ-n-ブチルアミノ)ホスフィン、ジクロロ(ジイソブチルアミノ)ホスフィン、ジクロロ(ジ-sec-ブチルアミノ)ホスフィン、ジクロロ(ジ-tert-ブチルアミノ)ホスフィン、ジクロロ(ジシクロブチルアミノ)ホスフィン、ジクロロホスフィンイミノトリス(ジメチルアミノ)ホスホラン、ジクロロホスフィンイミノトリス(ジエチルアミノ)ホスホラン、ジクロロホスフィンイミノトリス(ジ-n-プロピルアミノ)ホスホラン、ジクロロホスフィンイミノトリス(ジイソプロピルアミノ)ホスホラン、ジクロロホスフィンイミノトリス(ジ-n-ブチルアミノ)ホスホラン、ジクロロホスフィンイミノトリス(ジイソブチルアミノ)ホスホラン、ジクロロホスフィンイミノトリス(ジ-sec-ブチルアミノ)ホスホラン、ジクロロホスフィンイミノトリス(ジ-tert-ブチルアミノ)ホスホラン、ジクロロホスフィンイミノトリス(ジシクロブチルアミノ)ホスホラン等が挙げられる。なお、かかる一般式(XX)で示される化合物は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(XXII-Q)および(XXII-Q)で示される化合物の具体例としては、ジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ジイソブチルアミン、ジ-sec-ブチルアミン、ジ-tert-ブチルアミン、ジシクロブチルアミン、トリス(ジメチルアミノ)ホスフィンイミン、トリス(ジエチルアミノ)ホスフィンイミン、トリス(ジ-n-プロピルアミノ)ホスフィンイミン、トリス(ジイソプロピルアミノ)ホスフィンイミン、トリス(ジ-n-ブチルアミノ)ホスフィンイミン、トリス(ジイソブチルアミノ)ホスフィンイミン、トリス(ジ-sec-ブチルアミノ)ホスフィンイミン、トリス(ジ-tert-ブチルアミノ)ホスフィンイミン、トリス(ジシクロブチルアミノ)ホスフィンイミンが挙げられる。なお、かかる一般式(XXII-Q)および(XXII-Q)で示される化合物は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 一般式(B-X)で示される化合物の製造方法において、一般式(XXI)で示される化合物を得る反応において使用されるトリメチルシリルアジドの使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XIX)で示されるホスフィンのmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。前記トリメチルシリルアジドの使用量が極めて少ない場合には、一般式(XXI)で示される化合物の収率が低下するおそれがある。一方で、前記トリメチルシリルアジドの使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(XX)で示される化合物の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XIX)で示されるホスフィンのmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。一般式(XX)で示される化合物の使用量が極めて少ない場合には、一般式(XXI)で示される化合物で示される化合物の収率が低下するおそれがある。一方で、前記一般式(XX)で示される化合物の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(XXII-Q)で示される化合物の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XXI)で示される化合物のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。一般式(XXII-Q)で示される化合物の使用量が極めて少ない場合には、一般式(B-X)で示される化合物で示される化合物の収率が低下するおそれがある。一方で、前記一般式(XXII-Q)で示される化合物の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(XXII-Q)で示される化合物の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XXI)で示される化合物のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。一般式(XXII-Q)で示される化合物の使用量が極めて少ない場合には、一般式(B-X)で示される化合物で示される化合物の収率が低下するおそれがある。一方で、前記一般式(XXII-Q)で示される化合物の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(B-X)で示される化合物を得る反応では、上記スキーム[iv]中のQとQが同一の官能基を表している場合、一般式(XXII-Q)で示される化合物と一般式(XXII-Q)で示される化合物を同時に加え、一度の反応操作により一般式(B-X)で示される化合物を得てもよい。この場合において、一般式(XXII-Q)および(XXII-Q)で示される化合物のそれぞれの使用量としては、上述した一般式(XXII-Q)で示される化合物の使用量と同様であり、好ましい使用量も同様である。
 前記スキーム[iv]で示される一連の反応は、無溶媒中で行ってもよいし、有機溶媒中で行ってもよい。当該有機溶媒の具体例としては、前記ホスフィン、トリメチルシリルアジド、一般式(XX)、(XXII-Q)および(XXII-Q)で示される化合物と反応しない有機溶媒であれば特に制限はなく、前記スキーム[i]で示される有機溶媒の具体例と同様のものが挙げられる。なお、かかる有機溶媒は、1種類の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。また、かかる有機溶媒は、市販のものを用いればよい。
 上述した有機溶媒の使用量は、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XIX)で示されるホスフィン、あるいは一般式(XXI)で示される化合物1mmolに対して、通常0.01~500mL、好ましくは0.1~100mLである。
 前記スキーム[iv]で示される一連の反応は、以下に示す条件(反応温度、圧力、反応時間)下で行うことが望ましい。
 一般式(XIX)で示されるホスフィンとトリメチルシリルアジドとの反応における反応時の温度(反応温度)は、通常この分野で還流操作を行う際に一般的に用いられる温度であればよく、前記ホスフィンとトリメチルシリルアジドとが効率よく反応し、生成物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常50~300℃、好ましくは100~200℃である。
 前記ホスフィンとトリメチルシリルアジドとの反応で得られた化合物と一般式(XX)で示される化合物との反応における反応時の温度(反応温度)は、前記ホスフィンとトリメチルシリルアジドとの反応で得られた化合物と一般式(XX)で示される化合物とが効率よく反応し、一般式(XXI)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常-20~150℃、好ましくは0~80℃である。
 一般式(XXI)で示される化合物と一般式(XXII-Q)または(XXII-Q)で示される化合物の反応における反応時の温度(反応温度)は、前記一般式(XXI)で示される化合物と一般式(XXII-Q)または(XXII-Q)で示される化合物とが効率よく反応し、一般式(B-X)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常-20~150℃、好ましくは0~80℃である。
 前記スキーム[iv]で示される一連の反応時の圧力は、一連の反応が滞りなく実施されれば特に制限はなく、例えば常圧で行えばよい。
 前記スキーム[iv]で示される一連の反応時の反応時間は、前記ホスフィン、トリメチルシリルアジド、一般式(XX)、(XXII-Q)および(XXII-Q)で示される化合物の種類、かかる化合物の使用量、有機溶媒の種類、反応温度、反応時の圧力などに影響を受ける場合がある。このため、望ましい反応時間は、一概に言えるものではないが、例えば通常1分~24時間、好ましくは3分~12時間である。
 前記スキーム[iv]で示される反応後の一連の生成物は、通常この分野で行われる一般的な後処理操作及び精製操作により単離することができる。また、必要に応じて、反応液をろ過または洗浄したり、反応液を濃縮して得られた残渣について、再結晶、蒸留、カラムクロマトグラフィ-等を行うことによって生成物を単離してもよい。
 上述した本発明の一般式(A)で示される化合物の製造方法にかかる一般式(B-X)で示される化合物は、例えば以下のスキ-ム[v]に示す方法で製造することができる。すなわち、一般式(B-X)で示される化合物のうち、一般式(B-X)におけるR30が前記一般式(b)で示される基を表し、R32、R33およびR35とで、窒素原子を含んでいてもよい炭素数5~10のアルキレン鎖を形成していない化合物(下記一般式(B5a-X)で示される化合物)は、例えば一般式(XXIII)で示されるホスフィンと一般式(XXIV)で示されるホスホニウムアジドを反応させることにより合成すればよい。また、一般式(B-X)におけるR32、R33およびR35とで、窒素原子を含んでいてもよい炭素数5~10のアルキレン鎖を形成している化合物(下記一般式(B5b-X)で示される化合物)は、例えば一般式(XXV)で示される三ハロゲン化リンにジエチルアミンを加えて、一般式(XXVI)で示される化合物を得、さらに当該一般式(XXVI)で示される化合物と一般式(XXVII)で示される化合物を反応させることにより合成すればよい。
Figure JPOXMLDOC01-appb-I000081
(上記スキ-ム中、R22~R27、R31~R36、R47~R49、XおよびYは、前記に同じ。ただし、上記一般式(B5a-X)および(B5b-X)において、式中の窒素原子に結合する水素原子の数は、0~4である。)
 一般式(B5a-X)および(B5b-X)において、式中の窒素原子に結合する水素原子の数は、0~4の整数であり、0~2が好ましく、0がより好ましい。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(XXIII)で示されるホスフィンは、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(XXIII)で示されるホスフィンの具体例としては、一般式(B-X)で示される化合物の製造方法にかかる一般式(XII)で示されるホスフィンの具体例と同様のものが挙げられる。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(XXIV)で示されるホスホニウムアジドは、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(XXIV)で示されるホスホニウムアジドの具体例としては、トリス(ジメチルアミノ)ホスホニウムアジドクロリド、トリス(ジエチルアミノ)ホスホニウムアジドクロリド、トリス(ジ-n-プロピルアミノ)ホスホニウムアジドクロリド、トリス(ジイソプロピルアミノ)ホスホニウムアジドクロリド、トリス(ジ-n-ブチルアミノ)ホスホニウムアジドクロリド、トリス(ジイソブチルアミノ)ホスホニウムアジドクロリド、トリス(ジ-sec-ブチルアミノ)ホスホニウムアジドクロリド、トリス(ジ-tert-ブチルアミノ)ホスホニウムアジドクロリド、トリス(ジシクロブチルアミノ)ホスホニウムアジドクロリド等が挙げられる。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(XXV)で示される三ハロゲン化リンは、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(XXV)で示される三ハロゲン化リンの具体例としては、三塩化リン、三臭化リン、三ヨウ化リン等が挙げられる。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(XXVII)で示される化合物は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(XXVII)で示される化合物の具体例としては、トリス(2-(N-メチルアミノ)エチル)アミン、トリス(2-(N-エチルアミノ)エチル)アミン、トリス(2-(N-n-プロピルアミノ)エチル)アミン、トリス(2-(N-イソプロピルアミノ)エチル)アミン、トリス(2-(N-n-ブチルアミノ)エチル)アミン、トリス(2-(N-イソブチルアミノ)エチル)アミン、トリス(2-(N-sec-ブチルアミノ)エチル)アミン、トリス(2-(tert-ブチルアミノ)エチル)アミン、トリス(2-(シクロブチルアミノ)エチル)アミン、トリス(2-(N-メチルアミノ)メチル)アミン、トリス(2-(N-メチルアミノ)プロピル)アミン、トリス(2-(N-メチルアミノ)エチル)メチル、トリス(2-(N-エチルアミノ)エチル)メチル、トリス(2-(N-n-プロピルアミノ)エチル)メチル、トリス(2-(N-イソプロピルアミノ)エチル)メチル、トリス(2-(N-n-ブチルアミノ)エチル)メチル、トリス(2-(N-イソブチルアミノ)エチル)メチル、トリス(2-(N-sec-ブチルアミノ)エチル)メチル、トリス(2-(tert-ブチルアミノ)エチル)メチル、トリス(2-(シクロブチルアミノ)エチル)メチル、トリス(2-(N-メチルアミノ)メチル)メチル、トリス(2-(N-メチルアミノ)プロピル)メチル等が挙げられる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(XXIV)で示されるホスホニウムアジドの使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XXIII)で示されるホスフィンのmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。前記ホスホニウムアジドの使用量が極めて少ない場合には、一般式(B5a-X)で示される化合物で示される化合物の収率が低下するおそれがある。一方で、前記ホスホニウムアジドの使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、一般式(XXVI)で示される化合物を得る反応において使用されるジエチルアミンの使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XXV)で示される三ハロゲン化リンのmol数に対して、通常3.6~30当量、好ましくは3.8~10当量、より好ましくは4~5当量である。前記ジエチルアミンの使用量が極めて少ない場合には、一般式(XXVI)で示される化合物の収率が低下するおそれがある。一方で、前記ジエチルアミンの使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(XXVII)で示される化合物の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XXVI)で示される化合物のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。一般式(XXVII)で示される化合物の使用量が極めて少ない場合には、一般式(B5b-X)で示される化合物で示される化合物の収率が低下するおそれがある。一方で、前記一般式(XXVII)で示される化合物の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 前記スキーム[v]で示される一連の反応は、無溶媒中で行ってもよいし、有機溶媒中で行ってもよい。当該有機溶媒の具体例としては、前記ホスフィン、三ハロゲン化リン、ジエチルアミン、一般式(XXIV)および(XXVII)で示される化合物と反応しない有機溶媒であれば特に制限はなく、前記スキーム[i]で示される有機溶媒の具体例と同様のものが挙げられる。なお、かかる有機溶媒は、1種類の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。また、かかる有機溶媒は、市販のものを用いればよい。
 上述した有機溶媒の使用量は、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XXIII)で示されるホスフィン、一般式(XXV)で示される三ハロゲン化リン、あるいは一般式(XXVI)で示される化合物1mmolに対して、通常0.01~500mL、好ましくは0.1~100mLである。
 前記スキーム[v]で示される一連の反応は、以下に示す条件(反応温度、圧力、反応時間)下で行うことが望ましい。
 一般式(XXIII)で示されるホスフィンと一般式(XXIV)で示される化合物との反応における反応時の温度(反応温度)は、通常この分野で還流操作を行う際に一般的に用いられる温度であればよく、前記ホスフィンと一般式(XXIV)で示される化合物とが効率よく反応し、一般式(B5a-X)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常-20~150℃、好ましくは0~80℃である。
 一般式(XXV)で示される三ハロゲン化リンとジエチルアミンの反応における反応時の温度(反応温度)は、前記三ハロゲン化リンとジエチルアミンとが効率よく反応し、一般式(XXVI)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常-100~50℃、好ましくは-80~20℃である。
 一般式(XXVI)で示される化合物と一般式(XXVII)で示される化合物の反応における反応時の温度(反応温度)は、前記一般式(XXVI)で示される化合物と一般式(XXVII)で示される化合物とが効率よく反応し、一般式(B5b-X)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常-20~150℃、好ましくは0~80℃である。
 前記スキーム[v]で示される一連の反応時の圧力は、一連の反応が滞りなく実施されれば特に制限はなく、例えば常圧で行えばよい。
 前記スキーム[v]で示される一連の反応時の反応時間は、前記ホスフィン、三ハロゲン化リン、ジエチルアミン、一般式(XXIV)および(XXVII)で示される化合物の種類、かかる化合物の使用量、有機溶媒の種類、反応温度、反応時の圧力などに影響を受ける場合がある。このため、望ましい反応時間は、一概に言えるものではないが、例えば通常1分~24時間、好ましくは3分~12時間である。
 前記スキーム[v]で示される反応後の一連の生成物は、通常この分野で行われる一般的な後処理操作及び精製操作により単離することができる。また、必要に応じて、反応液をろ過または洗浄したり、反応液を濃縮して得られた残渣について、再結晶、蒸留、カラムクロマトグラフィ-等を行うことによって生成物を単離してもよい。
 上述した本発明の一般式(A)で示される化合物の製造方法にかかる一般式(B-X)で示される化合物は、例えば以下のスキ-ム[vi]に示す方法で製造することができる。すなわち、一般式(B-X)で示される化合物は、例えば一般式(XXVIII)で示される五ハロゲン化リンと一般式(XXIX)で示される化合物を反応させることにより合成すればよい。
Figure JPOXMLDOC01-appb-I000082
(上記スキ-ム中、Q10~Q13およびXは、前記に同じ。ただし、上記一般式(B-X)において、式中の窒素原子に結合する水素原子の数は、0~4である。)
 一般式(B-X)において、式中の窒素原子に結合する水素原子の数は、0~4の整数であり、0~2が好ましく、0がより好ましい。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(XXVIII)で示される五ハロゲン化リンは、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(XXVIII)で示される五ハロゲン化リンの具体例としては、五塩化リン、五臭化リン、五ヨウ化リン等が挙げられる。
 上述した一般式(B-X)で示される化合物の製造方法にかかる一般式(XXIX)で示される化合物は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。かかる一般式(XXIX)で示される化合物の具体例としては、1,1,3,3-テトラメチルグアニジン、1,1,3,3-テトラエチルグアニジン、1,1,3,3-テトラ-n-プロピルグアニジン、1,1,3,3-テトライソプロピルグアニジン、1,1,3,3-テトラ-n-ブチルグアニジン、1,1,3,3-テトライソブチルグアニジン、1,1,3,3-テトラ-sec-ブチルグアニジン、1,1,3,3-テトラ-tert-ブチルグアニジン、1,1,3,3-テトラシクロブチルグアニジン等のグアニジン誘導体;トリス(ジメチルアミノ)ホスフィンイミン、トリス(ジエチルアミノ)ホスフィンイミン、トリス(ジ-n-プロピルアミノ)ホスフィンイミン、トリス(ジイソプロピルアミノ)ホスフィンイミン、トリス(ジ-n-ブチルアミノ)ホスフィンイミン、トリス(ジイソブチルアミノ)ホスフィンイミン、トリス(ジ-sec-ブチルアミノ)ホスフィンイミン、トリス(ジ-tert-ブチルアミノ)ホスフィンイミン、トリス(ジシクロブチルアミノ)ホスフィンイミン等のホスフィンイミン誘導体が挙げられる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(XXIXーQ10)で示される化合物の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XXVIII)で示される化合物のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。一般式(XXIXーQ10)で示される化合物の使用量が極めて少ない場合には、一般式(B-X)で示される化合物で示される化合物の収率が低下するおそれがある。一方で、前記一般式(XXIXーQ10)で示される化合物の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(XXIXーQ11)で示される化合物の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XXVIII)で示される化合物のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。一般式(XXIXーQ11)で示される化合物の使用量が極めて少ない場合には、一般式(B-X)で示される化合物で示される化合物の収率が低下するおそれがある。一方で、前記一般式(XXIXーQ11)で示される化合物の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(XXIXーQ12)で示される化合物の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XXVIII)で示される化合物のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。一般式(XXIXーQ12)で示される化合物の使用量が極めて少ない場合には、一般式(B-X)で示される化合物で示される化合物の収率が低下するおそれがある。一方で、前記一般式(XXIXーQ12)で示される化合物の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(XXIXーQ13)で示される化合物の使用量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XXVIII)で示される化合物のmol数に対して、通常0.8~10当量、好ましくは0.9~5当量、より好ましくは1~2当量である。一般式(XXIXーQ13)で示される化合物の使用量が極めて少ない場合には、一般式(B-X)で示される化合物で示される化合物の収率が低下するおそれがある。一方で、前記一般式(XXIXーQ13)で示される化合物の使用量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 一般式(B-X)で示される化合物の製造方法において、上述した一般式(B-X)で示される化合物を得る反応では、上記スキーム[vi]中のQ10~Q13が全て同一の官能基を表している場合、一般式(XXIXーQ10)~(XXIXーQ13)で示される化合物を全て同時に加え、一度の反応操作により一般式(B-X)で示される化合物を得てもよい。この場合において、一般式(XXIXーQ10)~(XXIXーQ13)で示される化合物のそれぞれの使用量としては、上述した一般式(XXIXーQ10)で示される化合物の使用量と同様であり、好ましい使用量も同様である。
 前記スキーム[vi]で示される一連の反応は、無溶媒中で行ってもよいし、有機溶媒中で行ってもよい。当該有機溶媒の具体例としては、前記五ハロゲン化リンおよび一般式(XXIXーQ10)~(XXIXーQ13)で示される化合物と反応しない有機溶媒であれば特に制限はなく、前記スキーム[i]で示される有機溶媒の具体例と同様のものが挙げられる。なお、かかる有機溶媒は、1種類の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。また、かかる有機溶媒は、市販のものを用いればよい。
 上述した有機溶媒の使用量は、通常この分野で一般的に用いられている量であれば特に制限されず、例えば一般式(XXVIII)で示される五ハロゲン化リン1mmolに対して、通常0.01~500mL、好ましくは0.1~100mLである。
 前記スキーム[vi]で示される一連の反応は、以下に示す条件(反応温度、圧力、反応時間)下で行うことが望ましい。
 一般式(XXVIII)で示される五ハロゲン化リンおよび一般式(XXIXーQ10)~(XXIXーQ13)で示される化合物との反応における反応時の温度(反応温度)は、前記五ハロゲン化リンおよび一般式(XXIXーQ10)~(XXIXーQ13)で示される化合物とが効率よく反応し、一般式(B-X)で示される化合物が収率よく得られる温度に設定することが望ましい。具体的には、例えば通常-50~50℃、好ましくは-30~0℃で、前記五ハロゲン化リンと一般式(XXIXーQ10)~(XXIXーQ13)で示される化合物とを混合し、その後、50~200℃、好ましくは100~180℃で、反応を進行させるようにすればよい。
 前記スキーム[vi]で示される一連の反応時の圧力は、一連の反応が滞りなく実施されれば特に制限はなく、例えば常圧で行えばよい。
 前記スキーム[vi]で示される一連の反応時の反応時間は、前記五ハロゲン化リンおよび一般式(XXIXーQ10)~(XXIXーQ13)で示される化合物の種類、かかる化合物の使用量、有機溶媒の種類、反応温度、反応時の圧力などに影響を受ける場合がある。このため、望ましい反応時間は、一概に言えるものではないが、例えば通常1分~24時間、好ましくは3分~12時間である。
 前記スキーム[vi]で示される反応後の一連の生成物は、通常この分野で行われる一般的な後処理操作及び精製操作により単離することができる。単離方法の具体例としては、例えば必要に応じて、反応系内にナトリウムメトキシドを添加して、真空中で揮発成分を留去し、その後残渣を塩化メチレンに溶解し、ナトリウムを通してろ過し、最後に溶媒を真空下で蒸発させることにより、生成物を単離することができる。また、必要に応じて、反応液をろ過または洗浄したり、反応液を濃縮して得られた残渣について、再結晶、蒸留、カラムクロマトグラフィ-等を行うことによって生成物を単離してもよい。
-本発明の塩基発生剤-
 本発明の塩基発生剤は、前記一般式(A)で示される化合物を含んでなるものであり、例えば紫外線、可視光線、赤外線、X線等の光(活性エネルギー線)の照射や加熱によって塩基を発生するものである。
 本発明の塩基発生剤が光(活性エネルギー線)の照射によって塩基を発生させる場合、本発明の塩基発生剤は、とくに波長100~780nm、好ましくは、波長200~450nmの活性エネルギー線の照射によって塩基を発生させることができる。本発明の塩基発生剤は、波長200~450nmの領域において、モル吸光係数の高い吸収波長領域が存在するので、効率的に塩基を発生し得る。また、本発明の塩基発生剤は、上記の波長領域のなかでも、i線、h線、g線の少なくとも1つ以上の活性エネルギー線に吸収を示すものが、汎用性の観点から好ましい。
 本発明の塩基発生剤が加熱によって塩基を発生させる場合、本発明の塩基発生剤は、とくに150~400℃、好ましくは、250~350℃の加熱による熱エネルギーによって塩基を発生させることができる。
 本発明の塩基発生剤は、加熱して初期の重量から5%重量が減少したときの温度(以下、5%重量減少温度と略記する場合がある。)が150℃以上であることが好ましい。本発明の塩基発生剤を用いて硬化膜を作製する場合に、ベ-ク等を行う場合があるが、塩基発生剤の5%重量減少温度が高い場合には、ベ-ク温度を高く設定できるので、ベ-ク後において、例えば後述する本発明の塩基反応性組成物に含有される有機溶剤の残留を極力少なくすることができる。これにより、残留有機溶剤による露光部(硬化部)と未露光部(未硬化部)とのコントラストの悪化を抑制することができる。
 本発明の塩基発生剤は、前記一般式(A)で示される化合物の他にも、本発明の目的および効果を妨げない範囲において、例えば増感剤、架橋剤、有機溶剤等の添加剤を含んでいてもよい。かかる添加剤は、1種類の添加剤を単独で用いてもよいし、2種以上の添加剤を組み合わせて用いてもよい。なお、かかる添加剤は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
-本発明の塩基反応性組成物-
 本発明の塩基反応性組成物は、本発明の塩基発生剤および塩基反応性化合物を含んでなるものである。
 本発明の塩基反応性組成物に含まれる塩基反応性化合物は、本発明の塩基発生剤により発生した強塩基(グアニジン類、ビグアニド類、ホスファゼン類またはホスホニウム類)の作用によって反応し、架橋等により硬化する化合物であれば特に制限はない。当該塩基反応性化合物の具体例としては、例えば少なくとも1つのエポキシ基を有するエポキシ系化合物、例えば少なくとも1つのアルコキシシリル基やシラノ-ル基等を有するケイ素系化合物、例えば少なくとも1つのイソシアネ-ト基を有するイソシアネ-ト系化合物、例えば少なくとも1つのアミド結合を有するポリアミック酸系化合物等が挙げられる。かかる塩基反応性化合物は、1種類の塩基反応性化合物を単独で用いてもよいし、2種以上の塩基反応性化合物を組み合わせて用いてもよい。
 上記エポキシ系化合物(エポキシ系樹脂)としては、モノマー、オリゴマーもしくはポリマーのいずれであってもよく、具体的には、例えばジグリシジルエーテル、エチレングリコールジグリシジルエーテル、スピログリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ブタンジオ-ルジグリシジルエーテル、グリセリンジグリシジルエーテル、グリシジルプロポキシトリメトキシシラン、アリルグリシジルエーテル、ブチルグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオ-ルジグリシジルエーテル、フェニルグリシジルエーテル、クレジルグリシジルエーテル、アルキルフェノ-ルグリシジルエーテル、ビスフェノールA型ジグリシジルエーテル、ビスフェノールF型ジグリシジルエーテル、ビスフェノールAD型ジグリシジルエーテル、ビフェニル型ジグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、脂肪族ジグリシジルエーテル、多官能グリシジルエーテル、3級脂肪酸モノグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリグリシジルメタクリレ-ト、グリセリンポリグリシジルエーテル、ジグリセリンポリグリシジルエーテル、トリメチロ-ルプロパンポリグリシジルエーテル、ソルビト-ルポリグリシジルエーテル等が挙げられる。かかるエポキシ系化合物はハロゲン化されていてもよいし、水素添加されていてもよい。また、かかるエポキシ系化合物は上述した具体例の誘導体も含まれる。なお、かかるエポキシ系化合物は、1種類のエポキシ系化合物を単独で用いてもよいし、2種以上のエポキシ系化合物を組み合わせて用いてもよい。また、かかるエポキシ系化合物は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上記エポキシ系化合物(エポキシ系樹脂)がオリゴマーもしくはポリマーの場合における重量平均分子量は、本発明の塩基反応性組成物の耐熱性、塗布性、有機溶剤に対する溶解性、現像液に対する溶解性などの観点から、100~30,000とすることが好ましく、200~20,000とすることがより好ましい。重量平均分子量が100未満の場合には、本発明の塩基反応性組成物から得られる硬化膜または成形体の強度が不十分となるおそれがある。一方で、重量平均分子量が30,000を超える場合には、上記エポキシ系化合物(エポキシ系樹脂)自体の粘度が上昇して溶解性が悪くなるばかりでなく、硬化膜表面が均質で膜厚が一定のものを得るのが難しくなるおそれがある。なお、重量平均分子量は、ゲルパ-ミエ-ションクロマトグラフィ-で測定し、標準ポリスチレン換算した値である。
 上記ケイ素系化合物(ケイ素系樹脂)としては、モノマー、オリゴマーもしくはポリマーのいずれであってもよく、具体的には、例えばアルコキシシラン化合物やシランカップリング剤等が挙げられる。アルコキシシラン化合物の具体例としては、例えばトリメチルメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、テトラメトキシシラン、トリメチルエトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、テトラエトキシシラン、ジフェニルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジエトキシシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、ポリ-3-(メチルジメトキシシラン)プロピルメタクリレ-ト、ポリ-3-(メチルジエトキシシラン)プロピルメタクリレ-ト、ポリ-3-(トリメトキシシリル)プロピルメタクリレ-ト、ポリ-3-(トリエトキシシリル)プロピルメタクリレ-ト等が挙げられる。かかるアルコキシシラン化合物は、1種類のアルコキシシラン化合物を単独で用いてもよいし、2種以上のアルコキシシラン化合物を組み合わせて用いてもよい。なお、かかるアルコキシシラン化合物は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上記シランカップリング剤の具体例としては、例えばビニルシラン、アクリルシラン、エポキシシラン、アミノシラン等が挙げられる。ビニルシランの具体例としては、例えばビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン等が挙げられる。アクリルシランの具体例としては、例えばγ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン等が挙げられる。エポキシシランの具体例としては、例えばβ-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等が挙げられる。アミノシランの具体例としては、例えばN-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等が挙げられる。上記以外のシランカップリング剤の具体例としては、例えばγ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルメチルジエトキシシシラン等が挙げられる。かかるシランカップリング剤は、1種類のシランカップリング剤を単独で用いてもよいし、2種以上のシランカップリング剤を組み合わせて用いてもよい。なお、かかるシランカップリング剤は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上記ケイ素系化合物(ケイ素系樹脂)がオリゴマーもしくはポリマーの場合における重量平均分子量は、本発明の塩基反応性組成物の耐熱性、塗布性、有機溶剤に対する溶解性、現像液に対する溶解性などの観点から、100~30,000とすることが好ましく、200~20,000とすることがより好ましい。重量平均分子量が100未満の場合には、本発明の塩基反応性組成物から得られる硬化膜または成形体の強度が不十分となるおそれがある。一方で、重量平均分子量が30,000を超える場合には、上記ケイ素系化合物(ケイ素系樹脂)自体の粘度が上昇して溶解性が悪くなるばかりでなく、硬化膜表面が均質で膜厚が一定のものを得るのが難しくなるおそれがある。なお、重量平均分子量は、ゲルパ-ミエ-ションクロマトグラフィ-で測定し、標準ポリスチレン換算した値である。
 上記イソシアネ-ト系化合物の具体例としては、モノマー、オリゴマーもしくはポリマーのいずれであってもよく、具体的には、例えば単量体のイソシアネ-ト系化合物、2量体のイソシアネ-ト系化合物等が挙げられる。イソシアネ-ト系化合物の好ましい具体例としては、例えばトルエン-2,4-ジイソシアネ-ト、トルエン-2,6-ジイソシアネ-ト、m-キシリレンジイソシアネ-ト、ヘキサヒドロ-m-キシリレンジイソシアネ-ト、ヘキサメチレンジイソシアネ-ト、イソホロンジイソシアネ-ト、メチレンジフェニル-4,4'-ジイソシアネ-ト、ポリメチレンポリフェニルポリイソシアネ-ト等が挙げられる。かかるイソシアネ-ト系化合物は、1種類のイソシアネ-ト系化合物を単独で用いてもよいし、2種以上のイソシアネ-ト系化合物を組み合わせて用いてもよい。なお、かかるイソシアネ-ト系化合物は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上記イソシアネ-ト系化合物がオリゴマーもしくはポリマーの場合における重量平均分子量は、本発明の塩基反応性組成物の耐熱性、塗布性、有機溶剤に対する溶解性、現像液に対する溶解性などの観点から、100~30,000とすることが好ましく、200~20,000とすることがより好ましい。重量平均分子量が100未満の場合には、本発明の塩基反応性組成物から得られる硬化膜または成形体の強度が不十分となるおそれがある。一方で、重量平均分子量が30,000を超える場合には、上記イソシアネ-ト系化合物自体の粘度が上昇して溶解性が悪くなるばかりでなく、硬化膜表面が均質で膜厚が一定のものを得るのが難しくなるおそれがある。なお、重量平均分子量は、ゲルパ-ミエ-ションクロマトグラフィ-で測定し、標準ポリスチレン換算した値である。
 上記ポリアミック酸系化合物の具体例としては、酸無水物とジアミンとの反応によって得られる自体公知のポリアミック酸系化合物(ポリアミック酸系樹脂)等が挙げられる。ポリアミック酸系化合物の好ましい具体例としては、例えばピロメリット酸二無水物、ナフタレンテトラカルボン酸二無水物、ビフェニルエーテルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物、4-(1,2-ジカルボキシエチル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸二無水物、5-(1,2-ジカルボキシエチル)-3-メチルシクロヘキサン-1,2-ジカルボン酸二無水物等のテトラカルボン酸二無水物と、フェニレンジアミン、ジアミノビフェニルエーテル、ジアミノベンゾフェノン等のジアミンを反応させて得られるポリアミック酸系化合物(ポリアミック酸系樹脂)が挙げられる。かかるポリアミック酸系化合物はハロゲン化されていてもよいし、水素添加されていてもよい。また、かかるポリアミック酸系化合物は上述した具体例の誘導体も含まれる。なお、かかるポリアミック酸系化合物は、1種類のポリアミック酸系化合物を単独で用いてもよいし、2種以上のポリアミック酸系化合物を組み合わせて用いてもよい。また、かかるポリアミック酸系化合物は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上記ポリアミック酸系化合物の重量平均分子量は、本発明の塩基反応性組成物の耐熱性、塗布性、有機溶剤に対する溶解性、現像液に対する溶解性などの観点から、100~30,000とすることが好ましく、200~20,000とすることがより好ましい。重量平均分子量が100未満の場合には、本発明の塩基反応性組成物から得られる硬化膜または成形体の強度が不十分となるおそれがある。一方で、重量平均分子量が30,000を超える場合には、上記ポリアミック酸系化合物自体の粘度が上昇して溶解性が悪くなるばかりでなく、硬化膜表面が均質で膜厚が一定のものを得るのが難しくなるおそれがある。なお、重量平均分子量は、ゲルパ-ミエ-ションクロマトグラフィ-で測定し、標準ポリスチレン換算した値である。
 本発明の塩基反応性組成物に含まれる本発明の塩基発生剤の含有量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば上記塩基反応性化合物の重量に対して、通常0.1~100重量%、好ましくは1~50重量%、より好ましくは5~30重量%である。上記塩基発生剤の含有量が極めて少ない場合には、本発明の塩基反応性組成物の硬化が不十分となるおそれがある。一方で、上記塩基発生剤の含有量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 本発明の塩基反応性組成物は、感光性樹脂組成物として使用する場合、感光波長領域を拡大して感度を高めるために、増感剤を添加してもよい。当該増感剤としては、通常この分野で一般的に用いられている増感剤であれば特に制限はない。当該増感剤の好ましい具体例としては、例えばベンゾフェノン、p,p'-テトラメチルジアミノベンゾフェノン、p,p'-テトラエチルジアミノベンゾフェノン、ケトプロフェン、2-(9-オキソキサンテン-2-イル)プロピオン酸、2-クロロチオキサントン、2-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、アントロン、ベンズアントロン、3-メチル-1,3-ジアザ-1,9-ベンズアンスロン、9-エトキシアントラセン、9,10-ジフェニルアントラセン、1,2-ベンズアントラセン、アントラセン、ピレン、ペリレン、フェノチアジン、ベンゾフェノキサジン、ベンジル、アクリジン、アクリジンオレンジ、アクリジンイエロー、アクリドン、オキサジン、ベンゾフラビン、リボフラビン、セトフラビン-T、9-フルオレノン、2-ニトロフルオレン、2,3-ベンゾフルオレン、5-ニトロアセナフテン、アセナフレン、アセトフェノン、3,4,5,6-ジベンゾフェナントレン、フェナントレン、1,2-ナフトキノン、フィロキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1,2-ベンズアントラキノン、アントラキノン、メチルベンゾキノン、ベンゾキノン、2-クロロ-4-ニトロアニリン、2,6-ジクロロ-4-ニトロアニリン、N-アセチル-p-ニトロアニリン、p-ニトロアニリン、N-アセチル-4-ニトロ-1-ナフチルアミン、ピクラミド、ジベンザルアセトン、クマリン、3,3'-カルボニル-ビス(5,7-ジメトキシカルボニルクマリン)、N-メチルニフェジピン、フルオレセイン、ロ-ダミン、エオシン、エリスロシン、コロネン、ロ-ズベンガル、マラカイトグリーン、ベーシックブルー7、トルイジンブルー(ベーシックブルー17)、インジゴ、クロロフィル、テトラフェニルポルフィリン、フタロシアニン、トリス(4-ジメチルアミノフェニル)イソプロペニル、フィロキノン、ビス(2,4,6-トリメチルベンゾニル)フェニルホスフィンオキシド、2,4,6-トリアリ-ルピリリウム、4-(1-ナフチルアゾ)ベンゼンスルホン酸ナトリウム、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、1-[(4-フェニルチオ)フェニル]オクタン-1,2-ジオン 2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン O-アセチルオキシム、9-アントリルメチル N,N-ジエチルカルバメート、1-(9,10-ジブトキシアントラセン-2-イル)エチル ピペリジン-1-カルボキシレート、1-(アントラキノン-2-イル)エチル N,N-ジエチル-1-カルバメート、1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム 2-(3-ベンゾイルフェニル)プロピオネート等が挙げられる。かかる増感剤は、1種類の増感剤を単独で用いてもよいし、2種以上の増感剤を組み合わせて用いてもよい。なお、かかる増感剤は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 本発明の塩基反応性組成物に、要すれば含まれる増感剤の含有量としては、通常この分野で一般的に用いられている量であれば特に制限されず、使用する塩基発生剤や塩基反応性化合物、および必要とされる感度などにより適宜決定すればよい。より具体的には、増感剤が含まれる場合には、増感剤の含有量は、塩基反応性組成物全体に対して1~30質量%であることが好ましく、その中でも、1~20重量%であることがより好ましい。増感剤の含有量が1質量%より少ない場合には、感度が十分に高められないことがある。一方で、増感剤の含有量が30質量%を超えると、感度を高めるのに過剰となることがある。
 本発明の塩基反応性組成物には、さらに架橋剤としてチオ-ル系化合物または酸無水物を含有することが望ましい。
 チオ-ル系化合物は、エポキシ系化合物等と併用することにより、エポキシ系化合物におけるエポキシ基と反応して、エポキシ系化合物を硬化させる架橋剤として作用するものである。上記チオ-ル系化合物としては、モノマー、オリゴマーもしくはポリマーのいずれであってもよいが、チオ-ル基を2つ以上有するチオ-ル系化合物を使用することが好ましく、当該チオ-ル系化合物の好ましい具体例としては、例えばエチレングリコールビス(3-メルカプトブチレ-ト)、ブタンジオ-ルビス(3-メルカプトブチレ-ト)、ペンタエリスリト-ルテトラキス(3-メルカプトブチレ-ト)、ジペンタエリスリト-ルヘキサキス(3-メルカプトブチレ-ト)、エチレングリコールビス(3-メルカプトイソブチレ-ト)、ブタンジオ-ルビス(3-メルカプトイソブチレ-ト)、ペンタエリスリト-ルテトラキス(3-メルカプトイソブチレ-ト)、ジペンタエリスリト-ルヘキサキス(3-メルカプトイソブチレ-ト)、トリメチロ-ルプロパントリス(3-メルカプトイソブチレ-ト)、トリス[(3-メルカプトプロピオニルオキシ)エチル]イソシアヌレ-ト、ペンタエリスリト-ルテトラキス(3-メルカプトプロピオネ-ト)、ジペンタエリスリト-ルヘキサ(3-メルカプトプロピオネ-ト)、トリメチロ-ルプロパントリス(3-メルカプトプロピオネ-ト)、ジエチレングリコールビス(3-メルカプトプロピオネ-ト)、ペンタエリスリト-ルテトラキス(3-メルカプトブチレ-ト)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等のチオ-ル基を2~5個有するチオ-ル系化合物、液状ポリメルカプタン、ポリサルファイド等が挙げられる。これらのチオ-ル系化合物のなかでも、反応性等や扱いやすさを考慮すると、ペンタエリスリト-ルテトラキス(3-メルカプトプロピオネ-ト)、ペンタエリスリト-ルテトラキス(3-メルカプトブチレ-ト)、トリス[(3-メルカプトプロピオニルオキシ)エチル]イソシアヌレ-トが好ましい。かかるチオ-ル系化合物は、1種類のチオ-ル系化合物を単独で用いてもよいし、2種以上のチオ-ル系化合物を組み合わせて用いてもよい。なお、かかるチオ-ル系化合物は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上記チオ-ル系化合物がオリゴマーもしくはポリマーの場合における重量平均分子量は、本発明の塩基反応性組成物の耐熱性、塗布性、有機溶剤に対する溶解性、現像液に対する溶解性などの観点から、100~10,000とすることが好ましく、200~5,000とすることがより好ましい。重量平均分子量が100未満の場合には、本発明の塩基反応性組成物から得られる硬化膜または成形体の強度が不十分となるおそれがある。一方で、重量平均分子量が10,000を超える場合には、上記チオ-ル系化合物自体の粘度が上昇して溶解性が悪くなるばかりでなく、硬化膜表面が均質で膜厚が一定のものを得るのが難しくなるおそれがある。なお、重量平均分子量は、ゲルパ-ミエ-ションクロマトグラフィ-で測定し、標準ポリスチレン換算した値である。
 上記チオ-ル系化合物の含有量としては、例えば塩基反応性化合物におけるエポキシ系化合物に対して、チオ-ル基の当量(SH基の当量)/エポキシ基の当量=0.3/1.7~1.7/0.3の比率となるようにすることが好ましく、なかでも、0.8/1.2~1.2/0.8の比率となるようにすることがより好ましい。
 酸無水物は、エポキシ系化合物等と併用することにより、エポキシ系化合物におけるエポキシ基と反応して、エポキシ系化合物を硬化させる架橋剤として作用するものである。上記酸無水物としては、モノマー、オリゴマーもしくはポリマーのいずれであってもよく、当該酸無水物の好ましい具体例としては、例えば無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸、ドデシル無水コハク酸、無水クロレンディック酸等の1官能性酸無水物、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビス(アンヒドロトリメ-ト)、メチルシクロヘキセンテトラカルボン酸無水物等の2官能性酸無水物、無水トリメット酸、ポリアゼライン酸無水物等の遊離酸酸無水物等が挙げられる。かかる酸無水物は、1種類の酸無水物を単独で用いてもよいし、2種以上の酸無水物を組み合わせて用いてもよい。なお、かかる酸無水物は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上記酸無水物がオリゴマーもしくはポリマーの場合における重量平均分子量は、本発明の塩基反応性組成物の耐熱性、塗布性、有機溶剤に対する溶解性、現像液に対する溶解性などの観点から、100~10,000とすることが好ましく、200~5,000とすることがより好ましい。重量平均分子量が100未満の場合には、本発明の塩基反応性組成物から得られる硬化膜または成形体の強度が不十分となるおそれがある。一方で、重量平均分子量が10,000を超える場合には、上記酸無水物自体の粘度が上昇して溶解性が悪くなるばかりでなく、硬化膜表面が均質で膜厚が一定のものを得るのが難しくなるおそれがある。なお、重量平均分子量は、ゲルパ-ミエ-ションクロマトグラフィ-で測定し、標準ポリスチレン換算した値である。
 上記酸無水物の含有量としては、例えば塩基反応性化合物におけるエポキシ系化合物に対して、酸無水物基の当量(-C(=O)OC(=O)-基の当量)/エポキシ基の当量=0.3/2.7~2.0/1.0の比率となるようにすることが好ましく、なかでも、0.5/2.5~1.5/1.5の比率となるようにすることがより好ましい。
 本発明の塩基反応性組成物に上記架橋剤を含有させることにより、本発明の塩基反応性組成物は、塩基反応性化合物のみでの単独重合による硬化時の収縮が抑制され、寸法安定性をより高めることができる。また、本発明の塩基反応性組成物に上記架橋剤を含有させることにより、硬化後の樹脂の柔軟性、耐水性、耐薬品性、樹脂と基材との密着性、酸素による硬化阻害への耐性等を高めることができる。
 本発明の塩基反応性組成物を所定の基材に塗布等する場合にあっては、有機溶剤を含有する組成物が望ましい場合もある。塩基反応性組成物に有機溶剤を含有させることにより、塗布性を高めることができ、作業性が良好となる。当該有機溶剤としては、通常この分野で一般的に用いられている有機溶剤であれば特に制限はない。当該有機溶剤の好ましい具体例としては、例えばペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、テトラヒドロナフタレン、メンタン、スクワラン等の飽和または不飽和の脂肪族炭化水素系溶剤、例えばベンゼン、トルエン、エチルベンゼン、スチレン、キシレン、ジエチルベンゼン、トリメチルベンゼン等の芳香族炭化水素系溶剤、例えばジクロロメタン、トリクロロメタン(クロロホルム)、テトラクロロメタン(四塩化炭素)等のハロゲン系溶剤、例えばジエチルエーテル、ジ-n-プロピルエーテル、ジイソプロピルエーテル、メチル-tert-ブチルエーテル、ジ-n-ブチルエーテル、ジ-tert-ブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等のエーテル系溶剤、例えばメタノ-ル、エタノ-ル、n-プロパノ-ル、イソプロパノ-ル、n-ブタノ-ル、イソブタノ-ル、sec-ブタノ-ル、tert-ブタノ-ル、2-メトキシエタノ-ル等のアルコ-ル系溶剤、例えばエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル等のグリコールエーテル系溶剤、例えばエチレングリコールモノエチルエーテルアセテ-ト、ジエチレングリコールモノエチルエーテルアセテ-ト、ジエチレングリコールモノブチルエーテルアセテ-ト、プロピレングリコールモノメチルエーテルアセテ-ト(PGMEA)、プロピレングリコールモノエチルエーテルアセテ-ト、ジプロピレングリコールモノメチルエーテルアセテ-ト、ジプロピレングリコールモノエチルエーテルアセテ-ト等のグリコールエーテルアセテ-ト系溶剤、例えば2-プロパノン(アセトン)、2-ブタノン(エチルメチルケトン)、ジエチルケトン、4-メチル-2-ペンタノン(メチルイソブチルケトン)、シクロペンタノン、シクロヘキサノン、シクロヘプタノン等のケトン系溶剤、例えば酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸イソブチル、酢酸-sec-ブチル、酢酸-tert-ブチル、酪酸エチル、酪酸イソアミル、乳酸エチル(EL)、乳酸-n-プロピル、乳酸イソプロピル、乳酸イソブチル、乳酸-sec-ブチル、乳酸-tert-ブチル、乳酸イソアミル、γ-プチロラクトン、ステアリン酸ブチル等のエステル系溶剤、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリジノン(N-メチルピロリドン)、1,3-ジメチル-2-イミダゾリジノン(ジメチルエチレン尿素)等のアミド系溶剤、例えばアセトニトリル等のニトリル系溶剤等が挙げられる。なお、かかる有機溶剤は、1種類の有機溶剤を単独で用いてもよいし、2種以上の有機溶剤を組み合わせて用いてもよい。また、かかる有機溶剤は、市販のものを用いればよい。
 本発明の塩基反応性組成物に、要すれば含まれる有機溶剤の含有量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば所定の基材上に塩基反応性組成物を塗布し、塩基反応性組成物による層を形成する際に、均一に塗工されるように適宜選択すればよく、例えば上記塩基反応性化合物1gに対して、通常0.01~50mL、好ましくは0.05~30mL、より好ましくは0.1~10mLである。
 本発明の塩基反応性組成物には、上述した添加剤以外にも、本発明の目的および効果を妨げない範囲において、例えば充填剤、顔料、染料、レベリング剤、消泡剤、帯電防止剤、pH調整剤、分散剤、分散助剤、表面改質剤、可塑剤、可塑促進剤、タレ防止剤、硬化促進剤等の添加剤を含んでいてもよい。かかる添加剤は、1種類の添加剤を単独で用いてもよいし、2種以上の添加剤を組み合わせて用いてもよい。なお、かかる添加剤は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 本発明の塩基反応性組成物を用いてパタ-ンを形成するには、例えば当該組成物を有機溶剤に溶解して塗布液を調製し、調製された塗布液を基板等の適当な固体表面に塗布し、乾燥して塗膜を形成する。そして、形成された塗膜に対して、パタ-ン露光を行って塩基を発生させた後、所定の条件で加熱処理を行って、塩基反応性組成物に含有される塩基反応性化合物の重合反応を促すようにすればよい。
 本発明の塩基反応性組成物は、本発明の塩基発生剤を含有するため、活性エネルギー線を照射すれば、室温でも重合反応は進行するが、重合反応を効率よく進行させるには、ベ-ク(加熱)処理を施すことが好ましい。ベ-ク(加熱)処理の条件は、照射(露光)エネルギー、使用する塩基発生剤から発生する強塩基(グアニジン類、ビグアニド類、ホスファゼン類またはホスホニウム類)の種類、エポキシ系化合物、ケイ素系化合物等の塩基反応性化合物の種類などによって適宜決定すればよいが、ベ-ク(加熱)温度は50℃~150℃の範囲内とすることが好ましく、60℃~130℃の範囲内とすることがより好ましい。また、ベ-ク(加熱)時間は10秒~60分とすることが好ましく、60秒~30分とすることがより好ましい。活性エネルギー線を照射して、要すれば加熱処理を行った後の塗膜が形成された基板を、露光部と未露光部とで溶解度に差を生じる溶媒(現像液)中に浸漬して現像を行ってパタ-ンを得ることができる。
 上述したパタ-ン形成時に行われる、本発明の塩基反応性組成物の基板への塗布方法、ベ-ク方法、活性エネルギー線の照射方法、現像方法等は自体公知の方法を適宜採用すればよい。
 以上説明した本発明の塩基反応性組成物は、本発明の塩基発生剤と塩基反応性化合物を含有することにより、光(活性エネルギー線)の照射や加熱等の操作によって、塩基発生剤から発生した強塩基(グアニジン類、ビグアニド類、ホスファゼン類またはホスホニウム類)を開始剤として、塩基反応性化合物の重合反応を生じ、塩基反応性化合物の硬化が効果的に進行するばかりでなく、硬化操作を行わずに長期間保存しても、性能を低下させず、安定した状態で保存することが可能である。かかる効果を奏する本発明の塩基反応性組成物は、例えば硬化材料やレジスト材料(パタ-ン形成材料)等に好適に用いることができる。
 本発明の塩基反応性組成物を硬化材料に用いた場合、硬化操作後に形成される成形体は、耐熱性、寸法安定性、絶縁性などの特性が有効とされる分野の部材等として、例えば塗料、印刷インキ、カラ-フィルタ-、フレキシブルディスプレ-用フィルム、半導体装置、電子部品、層間絶縁膜、配線被覆膜、光回路、光回路部品、反射防止膜、ホログラム、光学部材または建築材料の構成部材として広く用いられ、印刷物、カラ-フィルタ-、フレキシブルディスプレ-用フィルム、半導体装置、電子部品、層間絶縁膜、配線被覆膜、光回路、光回路部品、反射防止膜、ホログラム、光学部材または建築部材等が提供される。また、本発明の塩基反応性組成物をレジスト材料(パタ-ン形成材料)に用いた場合、パタ-ン形成操作後に形成されたパタ-ン等は、耐熱性および絶縁性を備え、例えばカラ-フィルタ-、フレキシブルディスプレ-用フィルム、電子部品、半導体装置、層間絶縁膜、配線被覆膜、光回路、光回路部品、反射防止膜、その他の光学部材または電子部材として有効に使用することができる。
-本発明の一般式(A-a)で示される化合物-
 下記一般式(A-a)で示される化合物は、本発明の前記一般式(A)で示される化合物のうち、塩基発生剤としての性質と共に、ラジカル発生剤としての性質も有するものである。
Figure JPOXMLDOC01-appb-I000083
(式中、R1-aは、炭素数1~12のアルキル基または炭素数2~12のアルケニル基を表し、R2-a~R4-aはそれぞれ独立して、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基を表し、Zは、前記に同じ。)
 一般式(A-a)中のR1-a~R4-aにおける各官能基の具体例としては、一般式(A)中のR~Rに記載の対応する各官能基の具体例と同様のものが挙げられ、好ましい具体例も同様のものが挙げられる。
 一般式(A-a)におけるR1-aとしては、炭素数1~12のアルキル基がより好ましい。
 一般式(A-a)におけるR2-a~R4-aとしては、R2-a~R4-aが全て同一の、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基がより好ましい。
 一般式(A-a)におけるR1-a~R4-aの組合せとしては、R1-aが、炭素数1~12のアルキル基を表し、R2-a~R4-aがそれぞれ独立して、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基である組合せ;R1-aが、炭素数2~12のアルケニル基を表し、R2-a~R4-aがそれぞれ独立して、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基である組合せが挙げられる。
 前記一般式(A-a)で示される化合物におけるボレート系アニオンの具体例としては、前記式(A-1)~(A-7)、(A-17)、(A-18)および(A-32)で示されるアニオンが挙げられる。
 さらに、前記一般式(A-a)で示される化合物の具体例としては、例えば前記式(1)~(5)で示される化合物が挙げられる。
-本発明のラジカル発生剤-
 本発明のラジカル発生剤は、本発明の前記一般式(A-a)で示される化合物からなるものであり、例えば紫外線、可視光線、赤外線、X線等の光(活性エネルギー線)の照射や加熱によってラジカルを発生するものである。
 本発明のラジカル発生剤が光(活性エネルギー線)の照射によってラジカルを発生させる場合、本発明のラジカル発生剤は、とくに波長100~780nm、好ましくは、波長200~450nmの活性エネルギー線の照射によってラジカルを発生させることができる。本発明のラジカル発生剤は、波長200~450nmの領域において、モル吸光係数の高い吸収波長領域が存在するので、効率的にラジカルを発生し得る。また、本発明のラジカル発生剤は、上記の波長領域のなかでも、i線、h線、g線の少なくとも1つ以上の活性エネルギー線に吸収を示すものが、汎用性の観点から好ましい。
 また、本発明のラジカル発生剤は、半導体の表面処理工程におけるレジスト剥離剤中のラジカル発生剤としても使用することができ、本発明のラジカル発生剤を含有する組成物を用いれば、反射防止膜層等が施された半導体表面を処理して残存したレジスト層の残渣や反射防止膜層の残渣を効率的に取り除くことが可能である。
 このような目的で用いる場合には、たとえばWO2009/110582号公報に記載された内容に準じて、本発明のラジカル発生剤を用いればよく、その使用量やその他共存させる物質やその使用量等についても、当該公報の記載内容に準じて適宜選択すればよい。
 さらに、本発明のラジカル発生剤は、ラジカル反応を用いた炭素-炭素結合形成反応における触媒として使用することも可能である。
 このような目的で用いる場合には、たとえば特開平11-5033号公報に記載された内容に準じて、本発明のラジカル発生剤を用いればよく、その使用量やその他共存させる物質やその使用量等についても、当該公報の記載内容に準じて適宜選択すればよい。
 加えて、本発明のラジカル発生剤は、例えばチオール系化合物と炭素-炭素二重結合を有する化合物の存在下で、紫外線、可視光線、赤外線、X線等の光(活性エネルギー線)を照射することや加熱することにより、逐次重合が進行してポリチオエーテルを形成させることができる。
 上記チオール系化合物としては、通常この分野で一般的に用いられている化合物であれば特に制限はない。当該チオール系化合物の好ましい具体例としては、上述した本発明の塩基反応性組成物において用いられるチオール系化合物の具体例と同様のものが挙げられる。かかるチオール系化合物は、1種類のチオール系化合物を単独で用いてもよいし、2種以上のチオール系化合物を組み合わせて用いてもよい。なお、かかるチオール系化合物は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上記炭素-炭素二重結合を有する化合物の具体例としては、通常この分野で一般的に用いられている化合物であれば特に制限はなく、例えば特開2014-28938号公報、特開2007-291313号公報等に記載のもののほか、例えばN,N'-1,3-フェニレンジマレイミド、N,N'-1,4-フェニレンジマレイミド、N,N',N''-1,3,5-フェニレントリマレイミド、4,4'-ビスマレイミドジフェニルメタン、1,2-ビスマレイミドエタン、1,6-ビスマレイミドヘキサン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン等のマレイミド誘導体;例えば1,3-ブタジエン、1,3-ペンタジエン、1,4-ペンタジエン、イソプレン、1,4-ヘキサジエン、1,5-ヘキサジエン、2,4-ヘキサジエン、2-メチル-1,4-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、1,4-ヘプタジエン、1,5-ヘプタジエン、1,6-ヘプタジエン、2-メチル-1,5-ヘキサジエン、1,7-オクタジエン、2,5-ジメチル-1,5-ヘキサジエン、1,5-シクロオクタジエン、1,8-ノナジエン、1,9-デカジエン、1,10-ウンデカジエン、1,11-ドデカジエン、1,12-トリデカジエン、1,13-テトラデカジエン、テトラアリルオキシエタン、1,3-ジビニルベンゼン、1,4-ジビニルベンゼン、1,3,5-トリビニルベンゼン、1,3-ジイソプロペニルベンゼン、1,4-ジイソプロペニルベンゼン、1,3,5-トリイソプロペニルベンゼン、3,3'-ジビニルビフェニル、3,4'-ジビニルビフェニル、4,4'-ジビニルビフェニル、4,4'-ジイソプロペニルビフェニル、2,6-ジイソプロペニルナフタレン等の二重結合を2つ以上有するオレフィン化合物;例えばジエチレングリコールジアリルエーテル、ジアリルヘキサヒドロフタレート、ジアリルクロレンデート、1,2-ビス(ビニルフェニル)エタン等のアリル基を2つ有する化合物、例えばトリアリルトリメリテート、2,4,6-トリス(アリルオキシ)-1,3,5-トリアジン、イソシアヌル酸トリアリル、リン酸トリアリル、2,4,6-トリス(アリルチオ)-1,3,5-トリアジン等のアリル基を3つ有する化合物、例えばテトラアリルピロメリテート等のアリル基を4つ以上有する化合物等のアリル化合物等が挙げられる。
 上記炭素-炭素二重結合を有する化合物の含有量としては、例えばチオール系化合物におけるチオ-ル基の当量(SH基の当量)/炭素-炭素二重結合の当量=0.3/1.7~1.7/0.3の比率となるようにすることが好ましく、なかでも、0.8/1.2~1.2/0.8の比率となるようにすることがより好ましい。
-本発明のラジカル反応性組成物-
 本発明のラジカル反応性組成物は、本発明のラジカル発生剤およびラジカル反応性化合物を含んでなるものである。
 本発明のラジカル反応性組成物に含まれるラジカル反応性化合物は、前記ラジカル発生剤により発生したラジカルの作用によって重合反応を生じ、硬化する化合物であれば特に制限はない。前記ラジカル反応性化合物としては、少なくとも1つのラジカル重合可能なエチレン性不飽和結合を有する化合物であればよく、当該ラジカル反応性化合物の好ましい具体例としては、例えばアクリレート、メタクリレート、アリレート、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等の不飽和カルボン酸、エステル、ウレタン、アミド、アミド無水物、酸アミド、アクリロ二トリル、スチレン、不飽和ポリエステル、不飽和ポリエーテル、不飽和ポリアミド、不飽和ポリウレタン等のラジカル反応性化合物等が挙げられる。かかるラジカル反応性化合物は、1種類のラジカル反応性化合物を単独で用いてもよいし、2種以上のラジカル反応性化合物を組み合わせて用いてもよい。
 上記アクリレートとしては、モノマー、オリゴマーもしくはポリマーのいずれであってもよく、具体的には、例えば単官能アルキルアクリレート類、単官能含エーテル基アクリレート類、単官能含カルボキシルアクリレート類、二官能アクリレート類、三官能以上のアクリレート類等が挙げられる。かかるアクリレートはハロゲン化されていてもよいし、水素添加されていてもよい。また、かかるアクリレートは上述した具体例の誘導体も含まれる。なお、かかるアクリレートは、1種類のアクリレートを単独で用いてもよいし、2種以上のアクリレートを組み合わせて用いてもよい。また、かかるアクリレートは、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上記単官能アルキルアクリレート類の具体例としては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、イソプロピルアクリレート、ブチルアクリレート、イソアミルアクリレート、ヘキシルアクリレート、2-エチルヘキシルアクリレート、オクチルアクリレート、デシルアクリレート、ラウリルアクリレート、ステアリルアクリレート、イソボルニルアクリレート、シクロヘキシルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ベンジルアクリレート等が挙げられる。
 上記単官能含エーテル基アクリレート類の具体例としては、2-メトキシエチルアクリレート、1,3-ブチレングリコールメチルエーテルアクリレート、ブトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、メトキシポリエチレングリコール#400アクリレート、メトキシジプロピレングリコールアクリレート、メトキシトリプロピレングリコールアクリレート、メトキシポリプロピレングリコールアクリレート、エトキシジエチレングリコールアクリレート、エチルカルビトールアクリレート、2-エチルヘキシルカルビトールアクリレート、テトラヒドロフルフリルアクリレート、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、クレジルポリエチレングリコールアクリレート、p-ノニルフェノキシエチルアクリレート、p-ノニルフェノキシポリエチレングリコールアクリレート、グリシジルアクリレート等が挙げられる。
 上記単官能含カルボキシルアクリレート類の具体例としては、β-カルボキシエチルアクリレート、こはく酸モノアクリロイルオキシエチルエステル、ω-カルボキシポリカプロラクトンモノアクリレート、2-アクリロイルオキシエチルハイドロゲンフタレート、2-アクリロイルオキシプロピルハイドロゲンフタレート、2-アクリロイルオキシプロピルヘキサヒドロハイドロゲンフタレート、2-アクリロイルオキシプロピルテトラヒドロハイドロゲンフタレート等が挙げられる。
 上記単官能アルキルアクリレート類、単官能含エーテル基アクリレート類および単官能含カルボキシルアクリレート類に含まれないその他の単官能アクリレート類の具体例としては、N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノプロピルアクリレート、モルホリノエチルアクリレート、トリメチルシロキシエチルアクリレート、ジフェニル-2-アクリロイルオキシエチルホスフェート、2-アクリロイルオキシエチルアシッドホスフェート、カプロラクトン変性-2-アクリロイルオキシエチルアシッドホスフェート等が挙げられる。
 上記二官能アクリレート類の具体例としては、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコール#200ジアクリレート、ポリエチレングリコール#300ジアクリレート、ポリエチレングリコール#400ジアクリレート、ポリエチレングリコール#600アクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、テトラプロピレングリコールジアクリレート、ポリプロピレングリコール#400ジアクリレート、ポリプロピレングリコール#700ジアクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールPO変性ジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールエステルジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールエステルのカプロラクトン付加物ジアクリレート、1,6-ヘキサンジオールビス(2-ヒドロキシ-3-アクリロイルオキシプロピル)エーテル、ビス(4-アクリロキシポリエトキシフェニル)プロパン、1,9-ノナンジオールジアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールジアクリレートモノステアレート、ペンタエリスリトールジアクリレートモノベンゾエート、ビスフェノールAジアクリレート、EO変性ビスフェノールAジアクリレート、PO変性ビスフェノールAジアクリレート、水素化ビスフェノールAジアクリレート、EO変性水素化ビスフェノールA ジアクリレート、PO変性水素化ビスフェノールAジアクリレート、ビスフェノールFジアクリレート、EO変性ビスフェノールFジアクリレート、PO変性ビスフェノールFジアクリレート、EO変性テトラブロモビスフェノールAジアクリレート、トリシクロデカンジメチロールジアクリレート、イソシアヌル酸EO変性ジアクリレート等が挙げられる。
 上記三官能以上のアクリレート類の具体例としては、グリセリンPO変性トリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンEO変性トリアクリレート、トリメチロールプロパンPO変性トリアクリレート、イソシアヌル酸EO変性トリアクリレート、イソシアヌル酸EO変性ε-カプロラクトン変性トリアクリレート、1,3,5-トリアクリロイルヘキサヒドロ-s-トリアジン、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールトリアクリレートトリプロピオネート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレートモノプロピオネート、ジペンタエリスリトールヘキサアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルテトラアクリレート、トリス(アクリロイルオキシ)ホスフェート等が挙げられる。
 上記アクリレートがオリゴマーもしくはポリマーの場合における重量平均分子量は、本発明の塩基反応性組成物の耐熱性、塗布性、有機溶剤に対する溶解性、現像液に対する溶解性などの観点から、100~30,000とすることが好ましく、200~20,000とすることがより好ましい。重量平均分子量が100未満の場合には、上記ラジカル性組成物から得られる硬化膜または成形体の強度が不十分となるおそれがある。一方で、重量平均分子量が30,000を超える場合には、上記アルキレート自体の粘度が上昇して溶解性が悪くなるばかりでなく、硬化膜表面が均質で膜厚が一定のものを得るのが難しくなるおそれがある。なお、重量平均分子量は、ゲルパ-ミエ-ションクロマトグラフィ-で測定し、標準ポリスチレン換算した値である。
 上記メタクリレートとしては、モノマー、オリゴマーもしくはポリマーのいずれであってもよく、具体的には、例えば単官能アルキルメタクリレート類、単官能含エーテル基メタクリレート類、単官能含カルボキシルメタクリレート類、二官能メタクリレート類、三官能以上のメタクリレート類等が挙げられる。かかるメタクリレートはハロゲン化されていてもよいし、水素添加されていてもよい。また、かかるメタクリレートは上述した具体例の誘導体も含まれる。なお、かかるメタクリレートは、1種類のメタクリレートを単独で用いてもよいし、2種以上のメタクリレートを組み合わせて用いてもよい。また、かかるメタクリレートは、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上記単官能アルキルメタクリレート類の具体例としては、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、イソプロピルメタクリレート、ブチルメタクリレート、イソアミルメタクリレート、ヘキシルメタクリレート、2-ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、オクチルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、ステアリルメタクリレート、イソボルニルメタクリレート、シクロヘキシルメタクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニルオキシエチルメタクリレート、ベンジルメタクリレート等が挙げられる。
 上記単官能含エーテル基メタクリレート類の具体例としては、2-メトキシエチルメタクリレート、1,3-ブチレングリコールメチルエーテルメタクリレート、ブトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、メトキシポリエチレングリコール#400メタクリレート、メトキシジプロピレングリコールメタクリレート、メトキシトリプロピレングリコールメタクリレート、メトキシポリプロピレングリコールメタクリレート、エトキシジエチレングリコールメタクリレート、2-エチルヘキシルカルビトールメタクリレート、テトラヒドロフルフリルメタクリレート、フェノキシエチルメタクリレート、フェノキシジエチレングリコールメタクリレート、フェノキシポリエチレングリコールメタクリレート、クレジルポリエチレングリコールメタクリレート、p-ノニルフェノキシエチルメタクリレート、p-ノニルフェノキシポリエチレングリコールメタクリレート、グリシジルメタクリレート等が挙げられる。
 上記単官能含カルボキシルメタクリレート類の具体例としては、β-カルボキシエチルメタクリレート、こはく酸モノメタクリロイルオキシエチルエステル、ω-カルボキシポリカプロラクトンモノメタクリレート、2-メタクリロイルオキシエチルハイドロゲンフタレート、2 - メタクリロイルオキシプロピルハイドロゲンフタレート、2-メタクリロイルオキシプロピルヘキサヒドロハイドロゲンフタレート、2-メタクリロイルオキシプロピルテトラヒドロハイドロゲンフタレート等が挙げられる。
 上記単官能アルキルメタクリレート類、単官能含エーテル基メタクリレート類および単官能含カルボキシルメタクリレート類に含まれないその他の単官能メタクリレート類の具体例としては、ジメチルアミノメチルメタクリレート、N,N-ジメチルアミノエチルメタクリレート、N,N-ジメチルアミノプロピルメタクリレート、モルホリノエチルメタクリレート、トリメチルシロキシエチルメタクリレート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、カプロラクトン変性-2-メタクリロイルオキシエチルアシッドホスフェート等が挙げられる。
 上記二官能メタクリレート類の具体例としては、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ポリエチレングリコール#200ジメタクリレート、ポリエチレングリコール#300ジメタクリレート、ポリエチレングリコール#400ジメタクリレート、ポリエチレングリコール#600ジメタクリレート、ジプロピレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、テトラプロピレングリコールジメタクリレート、ポリプロピレングリコール#400ジメタクリレート、ポリプロピレングリコール#700ジメタクリレート、ネオペンチルグリコールジメタクリレート、ネオペンチルグリコールPO変性ジメタクリレート、ヒドロキシピバリン酸ネオペンチルグリコールエステルジメタクリレート、ヒドロキシピバリン酸ネオペンチルグリコールエステルのカプロラクトン付加物ジメタクリレート、1,6-ヘキサンジオールビス(2-ヒドロキシ-3-メタクリロイルオキシプロピル)エーテル、1,9-ノナンジオールジメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールジメタクリレートモノステアレート、ペンタエリスリトールジメタクリレートモノベンゾエート、2,2-ビス(4-メタクリロキシポリエトキシフェニル)プロパン、ビスフェノールAジメタクリレート、EO変性ビスフェノールAジメタクリレート、PO変性ビスフェノールAジメタクリレート、水素化ビスフェノールAジメタクリレート、EO変性水素化ビスフェノールAジメタクリレート、PO変性水素化ビスフェノールAジメタクリレート、ビスフェノールFジメタクリレート、EO変性ビスフェノールFジメタクリレート、PO変性ビスフェノールFジメタクリレート、EO変性テトラブロモビスフェノールAジメタクリレート、トリシクロデカンジメチロールジメタクリレート、イソシアヌル酸EO変性ジメタクリレート等が挙げられる。
 上記三官能以上のアクリレート類の具体例としては、グリセリンPO変性トリメタクリレート、トリメチロールエタントリメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパンEO変性トリメタクリレート、トリメチロールプロパンPO変性トリメタクリレート、イソシアヌル酸EO変性トリメタクリレート、イソシアヌル酸EO変性ε-カプロラクトン変性トリメタクリレート、1,3,5-リメタクリロイルヘキサヒドロ-s-トリアジン、ペンタエリスリトールトリメタクリレート、ジペンタエリスリトールトリメタクリレートトリプロピオネート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレートモノプロピオネート、ジペンタエリスリトールヘキサメタクリレート、テトラメチロールメタンテトラメタクリレート、オリゴエステルテトラメタクリレート、トリス(メタクリロイルオキシ)ホスフェート等が挙げられる。
 上記メタクリレートがオリゴマーもしくはポリマーの場合における重量平均分子量は、本発明の塩基反応性組成物の耐熱性、塗布性、有機溶剤に対する溶解性、現像液に対する溶解性などの観点から、100~30,000とすることが好ましく、200~20,000とすることがより好ましい。重量平均分子量が100未満の場合には、上記ラジカル反応性組成物から得られる硬化膜または成形体の強度が不十分となるおそれがある。一方で、重量平均分子量が30,000を超える場合には、上記メタクリレート自体の粘度が上昇して溶解性が悪くなるばかりでなく、硬化膜表面が均質で膜厚が一定のものを得るのが難しくなるおそれがある。なお、重量平均分子量は、ゲルパ-ミエ-ションクロマトグラフィ-で測定し、標準ポリスチレン換算した値である。
 上記アリレートとしては、モノマー、オリゴマーもしくはポリマーのいずれであってもよく、具体的には、例えばアリルグリシジルエーテル、ジアリルフタレート、トリアリルトリメリテート、イソシアヌル酸トリアリレート等が挙げられる。かかるアリレートはハロゲン化されていてもよいし、水素添加されていてもよい。また、かかるアリレートは上述した具体例の誘導体も含まれる。なお、かかるアリレートは、1種類のアリレートを単独で用いてもよいし、2種以上のアリレートを組み合わせて用いてもよい。また、かかるアリレートは、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上記アリレートがオリゴマーもしくはポリマーの場合における重量平均分子量は、本発明の塩基反応性組成物の耐熱性、塗布性、有機溶剤に対する溶解性、現像液に対する溶解性などの観点から、100~30,000とすることが好ましく、200~20,000とすることがより好ましい。重量平均分子量が100未満の場合には、上記ラジカル反応性組成物から得られる硬化膜または成形体の強度が不十分となるおそれがある。一方で、重量平均分子量が30,000を超える場合には、上記アリレート自体の粘度が上昇して溶解性が悪くなるばかりでなく、硬化膜表面が均質で膜厚が一定のものを得るのが難しくなるおそれがある。なお、重量平均分子量は、ゲルパ-ミエ-ションクロマトグラフィ-で測定し、標準ポリスチレン換算した値である。
 上記酸アミドとしては、モノマー、オリゴマーもしくはポリマーのいずれであってもよく、具体的には、例えばアクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-イソプロピルアクリルアミド、アクリロイルモルホリン、メタクリルアミド、N-メチロールメタクリルアミド、ジアセトンメタクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルメタクリルアミド、N-イソプロピルメタクリルアミド、メタクリロイルモルホリン等が挙げられる。かかる酸アミドはハロゲン化されていてもよいし、水素添加されていてもよい。また、かかる酸アミドは上述した具体例の誘導体も含まれる。なお、かかる酸アミドは、1種類の酸アミドを単独で用いてもよいし、2種以上の酸アミドを組み合わせて用いてもよい。また、かかる酸アミドは、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上記酸アミドがオリゴマーもしくはポリマーの場合における重量平均分子量は、本発明の塩基反応性組成物の耐熱性、塗布性、有機溶剤に対する溶解性、現像液に対する溶解性などの観点から、100~30,000とすることが好ましく、200~20,000とすることがより好ましい。重量平均分子量が100未満の場合には、上記ラジカル反応性組成物から得られる硬化膜または成形体の強度が不十分となるおそれがある。一方で、重量平均分子量が30,000を超える場合には、上記酸アミド自体の粘度が上昇して溶解性が悪くなるばかりでなく、硬化膜表面が均質で膜厚が一定のものを得るのが難しくなるおそれがある。なお、重量平均分子量は、ゲルパ-ミエ-ションクロマトグラフィ-で測定し、標準ポリスチレン換算した値である。
 上記スチレン類としては、モノマー、オリゴマーもしくはポリマーのいずれであってもよく、具体的には、例えばスチレン、p-メチルスチレン、p-メトキシスチレン、p-tert-ブトキシスチレン、p-tert-ブトキシカルボニルスチレン、p-tert-ブトキシカルボニルオキシスチレン、2,4-ジフェニル-4-メチル-1-ペンテン等が挙げられる。かかるスチレン類はハロゲン化されていてもよいし、水素添加されていてもよい。また、かかるスチレン類は上述した具体例の誘導体も含まれる。なお、かかるスチレン類は、1種類のスチレン類を単独で用いてもよいし、2種以上のスチレン類を組み合わせて用いてもよい。また、かかるスチレン類は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上記スチレン類がオリゴマーもしくはポリマーの場合における重量平均分子量は、本発明の塩基反応性組成物の耐熱性、塗布性、有機溶剤に対する溶解性、現像液に対する溶解性などの観点から、100~30,000とすることが好ましく、200~20,000とすることがより好ましい。重量平均分子量が100未満の場合には、上記ラジカル反応性組成物から得られる硬化膜または成形体の強度が不十分となるおそれがある。一方で、重量平均分子量が30,000を超える場合には、上記スチレン類自体の粘度が上昇して溶解性が悪くなるばかりでなく、硬化膜表面が均質で膜厚が一定のものを得るのが難しくなるおそれがある。なお、重量平均分子量は、ゲルパ-ミエ-ションクロマトグラフィ-で測定し、標準ポリスチレン換算した値である。
 上記不飽和カルボン酸、酸アミドおよびスチレンに含まれないその他のビニル化合物の具体例としては、酢酸ビニル、モノクロロ酢酸ビニル、安息香酸ビニル、ピバル酸ビニル、酪酸ビニル、ラウリン酸ビニル、アジピン酸ジビニル、メタクリル酸ビニル、クロトン酸ビニル、2-エチルヘキサン酸ビニル、N-ビニルカルバゾール、N-ビニルピロリドン等が挙げられる。
 上記ビニル化合物がオリゴマーもしくはポリマーの場合における重量平均分子量は、本発明の塩基反応性組成物の耐熱性、塗布性、有機溶剤に対する溶解性、現像液に対する溶解性などの観点から、100~30,000とすることが好ましく、200~20,000とすることがより好ましい。重量平均分子量が100未満の場合には、上記ラジカル反応性組成物から得られる硬化膜または成形体の強度が不十分となるおそれがある。一方で、重量平均分子量が30,000を超える場合には、上記ビニル化合物自体の粘度が上昇して溶解性が悪くなるばかりでなく、硬化膜表面が均質で膜厚が一定のものを得るのが難しくなるおそれがある。なお、重量平均分子量は、ゲルパ-ミエ-ションクロマトグラフィ-で測定し、標準ポリスチレン換算した値である。
 上記ラジカル反応性組成物に含まれる本発明のラジカル発生剤の含有量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば上記ラジカル反応性化合物の重量に対して、通常0.1~100重量%、好ましくは1~50重量%、より好ましくは5~30重量%である。本発明のラジカル発生剤の含有量が極めて少ない場合には、上記ラジカル反応性組成物の硬化が不十分となるおそれがある。一方で、本発明のラジカル発生剤の含有量が非常に多い場合には、経済性が損なわれるなどの問題が生じる。
 上記ラジカル反応性組成物は、感光性樹脂組成物として使用する場合、感光波長領域を拡大して感度を高めるために、増感剤を添加してもよい。当該増感剤としては、通常この分野で一般的に用いられている増感剤であれば特に制限はない。当該増感剤の好ましい具体例としては、上述した本発明の塩基反応性組成物において用いられる増感剤の具体例と同様のものが挙げられる。かかる増感剤は、1種類の増感剤を単独で用いてもよいし、2種以上の増感剤を組み合わせて用いてもよい。なお、かかる増感剤は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上記ラジカル反応性組成物に、要すれば含まれる増感剤の含有量としては、通常この分野で一般的に用いられている量であれば特に制限されず、使用するラジカル発生剤やラジカル反応性化合物、および必要とされる感度などにより適宜決定すればよい。より具体的には、増感剤が含まれる場合には、増感剤の含有量は、塩基反応性組成物全体に対して1~30質量%であることが好ましく、その中でも、1~20重量%であることがより好ましい。増感剤の含有量が1質量%より少ない場合には、感度が十分に高められないことがある。一方で、増感剤の含有量が30質量%を超えると、感度を高めるのに過剰となることがある。
 上記ラジカル反応性組成物を所定の基材に塗布等する場合にあっては、有機溶剤を含有する組成物が望ましい場合もある。ラジカル反応性組成物に有機溶剤を含有させることにより、塗布性を高めることができ、作業性が良好となる。当該有機溶剤としては、通常この分野で一般的に用いられている有機溶剤であれば特に制限はない。当該有機溶剤の好ましい具体例としては、上述した本発明の塩基反応性組成物において用いられる有機溶剤の具体例と同様のものが挙げられる。なお、かかる有機溶剤は、1種類の有機溶剤を単独で用いてもよいし、2種以上の有機溶剤を組み合わせて用いてもよい。また、かかる有機溶剤は、市販のものを用いればよい。
 上記ラジカル反応性組成物に、要すれば含まれる有機溶剤の含有量としては、通常この分野で一般的に用いられている量であれば特に制限されず、例えば所定の基材上にラジカル反応性組成物を塗布し、ラジカル反応性組成物による層を形成する際に、均一に塗工されるように適宜選択すればよく、例えば上記ラジカル反応性組成物1gに対して、通常0.01~50mL、好ましくは0.05~30mL、より好ましくは0.1~10mLである。
 上記ラジカル反応性組成物には、上述した添加剤以外にも、本発明の目的および効果を妨げない範囲において、例えば顔料;染料;クペロン、N-ニトロソフェニルヒドロキシルアミンアルミニウム塩、p-メトキシフェノール、ハイドロキノン、アルキル置換ハイドロキノン、カテコール、tert-ブチルカテコール、フェノチアジン等の重合禁止剤;N-フェニルグリシン、トリエタノールアミン、N,N-ジエチルアニリン等のアミン類、チオール類、ジスルフィド類、チオン類、O-アシルチオヒドロキサメート、N-アルキルオキシピリジンチオン類硬化促進剤や連鎖移動触媒;ホスフィン、ホスホネート、ホスファイト等の酸素除去剤や還元剤;カブリ防止剤;退色防止剤;ハレーション防止剤;蛍光増白剤;界面活性剤;着色剤;増量剤;可塑剤;難燃剤;酸化防止剤;紫外線吸収剤;発砲剤;防カビ剤;帯電防止剤;磁性体やその他種々の特性を付与する添加剤;希釈溶剤等の添加剤を含んでいてもよい。かかる添加剤は、1種類の添加剤を単独で用いてもよいし、2種以上の添加剤を組み合わせて用いてもよい。なお、かかる添加剤は、市販のもの、あるいは自体公知の方法によって適宜合成したものを用いればよい。
 上記ラジカル反応性組成物を用いてパタ-ンを形成するには、例えば当該組成物を有機溶剤に溶解して塗布液を調製し、調製された塗布液を基板等の適当な固体表面に塗布し、乾燥して塗膜を形成する。そして、形成された塗膜に対して、パタ-ン露光を行ってラジカルを発生させ、ラジカル反応性組成物に含有されるラジカル反応性化合物の重合反応を促すようにすればよい。
 上述したパタ-ン形成時に行われる、本発明のラジカル反応性組成物の基板への塗布方法、活性エネルギー線の照射方法、現像方法等は自体公知の方法を適宜採用すればよい。
 また、本発明のラジカル反応性組成物にさらに塩基反応性化合物を含有させれば、ラジカル硬化反応とアニオン硬化反応を組み合わせた「ハイブリッド硬化反応」により、本発明のラジカル反応性組成物を硬化させることが可能である。すなわち、本発明のラジカル発生剤は、例えば活性エネルギー線の照射や加熱によって、ラジカルと塩基を同時に発生させることができるため、本発明のラジカル反応性組成物に塩基反応性化合物を含有させる場合、本発明のラジカル発生剤から発生したラジカルとラジカル反応性化合物によるラジカル硬化反応、および、本発明のラジカル発生剤から発生した塩基と塩基反応性化合物によるアニオン硬化反応の、2つの硬化反応を同時に行うことが可能である。
 上記ハイブリット硬化反応によるパターン形成を行う場合には、例えば本発明のラジカル発生剤、ラジカル反応性化合物および塩基反応性化合物を含有する組成物を有機溶剤に溶解して塗布液を調製し、調製された塗布液を基板等の適当な固体表面に塗布し、乾燥して塗膜を形成する。そして、形成された塗膜に対して、パタ-ン露光を行ってラジカルおよび塩基を同時に発生させ、所定の条件で加熱処理を行って、ラジカル反応性化合物におけるラジカル硬化反応と塩基反応性化合物におけるアニオン硬化反応を同時に促すようにすればよい。
 上述したハイブリット硬化反応におけるラジカル反応性化合物、塩基反応性化合物、有機溶剤およびその他共存させる物質としては、通常この分野で一般的に用いられているものであれば特に制限はなく、上述した本発明の塩基反応性組成物および本発明のラジカル反応性組成物に記載の内容に準じて適宜選択すればよい。
上述したパタ-ン形成時に行われる、本発明のラジカル反応性組成物の基板への塗布方法、活性エネルギー線の照射方法、現像方法等は自体公知の方法を適宜採用すればよい。
 以上説明した本発明のラジカル反応性組成物は、本発明のラジカル発生剤とラジカル反応性化合物を含有することにより、光(活性エネルギー線)の照射や加熱等の操作によって、ラジカル発生剤から発生したラジカルを開始剤として、ラジカル反応性化合物の重合反応を生じ、ラジカル反応性化合物の硬化を効果的に進行することが可能である。かかる効果を奏する本発明のラジカル反応性組成物は、例えば硬化材料やレジスト材料(パタ-ン形成材料)等に好適に用いることができる。
 本発明のラジカル反応性組成物を硬化材料に用いた場合、硬化操作後に形成される成形体は、耐熱性、寸法安定性、絶縁性などの特性が有効とされる分野の部材等として、例えば塗料、印刷インキ、カラ-フィルタ-、フレキシブルディスプレ-用フィルム、半導体装置、電子部品、層間絶縁膜、配線被覆膜、光回路、光回路部品、反射防止膜、ホログラム、光学部材または建築材料の構成部材として広く用いられ、印刷物、カラ-フィルタ-、フレキシブルディスプレ-用フィルム、半導体装置、電子部品、層間絶縁膜、配線被覆膜、光回路、光回路部品、反射防止膜、ホログラム、光学部材または建築部材等が提供される。また、本発明の塩基反応性組成物をレジスト材料(パタ-ン形成材料)に用いた場合、パタ-ン形成操作後に形成されたパタ-ン等は、耐熱性および絶縁性を備え、例えばカラ-フィルタ-、フレキシブルディスプレ-用フィルム、電子部品、半導体装置、層間絶縁膜、配線被覆膜、光回路、光回路部品、反射防止膜、その他の光学部材または電子部材として有効に使用することができる。
 以下、実施例および比較例に基づいて本発明を具体的に説明するが、本発明はこれらの例によって何ら限定されるものではない。
 合成例1 1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニドの合成
 1,1,3,3-テトラメチルグアニジン11.9g(10.3mmol;和光純薬工業(株)製)にN,N’-ジイソプロピルカルボジイミド13.1g(10.3mmol;和光純薬工業(株)製)を加え、100℃で2時間加熱攪拌した。反応終了後、反応液にヘキサンを加え、5℃まで冷却し、得られた結晶を脱液することにより、1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニド9.88g(白色粉末、収率:39%)を得た。以下に、H-NMRの測定結果と、1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニドの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):1.10(12H,d),2.78(12H,s),3.38(2H,q)
Figure JPOXMLDOC01-appb-I000084
 合成例2 1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニド炭酸塩の合成
 1,1,3,3-テトラメチルグアニジン12.2g(106mmol;和光純薬工業(株)製)にN,N’-ジシクロヘキシルカルボジイミド10.9g(53mmol;和光純薬工業(株)製)を加え、100℃で2時間加熱攪拌した。反応終了後、反応液を減圧濃縮して1,1,3,3-テトラメチルグアニジンを除去した後、得られた残渣に、アセトン20mLおよび水2mLを加え、ドライアイスを投入し、得られた結晶をろ過することにより、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニド炭酸塩8.44g(白色粉末、収率:45%)を得た。以下に、H-NMRおよび13C-NMRの測定結果と、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニド炭酸塩の構造式を示す。
H-NMR(400MHz,DO)δ(ppm):1.22-1.80(20H,brm),2.86(12H,s),3.02(2H,m)
13C-NMR(400MHz,CDOD)δ(ppm):26.1,34.1,40.1,52.4,158.0,161.2,164.4
Figure JPOXMLDOC01-appb-I000085
 合成例3 1,3-ジメチル-2-(N’,N’,N”,N”-テトラメチルグアニジノ)-4,5-ジヒドロ-3H-イミダゾリウムクロリドの合成
 2-クロロ-1,3-ジメチルイミダゾリニウムクロリド3.38g(20mmol;和光純薬工業(株)製)にジクロロメタン20mLとテトラヒドロフラン(THF)20mLを加え、5℃に冷却したところに、1,1,3,3-テトラメチルグアニジン4.6g(40mmol;和光純薬工業(株)製)を加え、60℃で1.5時間攪拌した。反応終了後、反応液にアセトン30mLを加え、析出した塩を濾過によって除去した。得られた有機層を減圧濃縮することにより、1,3-ジメチル-2-(N’,N’,N”,N”-テトラメチルグアニジノ)-4,5-ジヒドロ-3H-イミダゾリウムクロリド4.76g(白色粉末、収率:96%)を得た。以下に、H-NMRの測定結果と、1,3-ジメチル-2-(N’,N’,N”,N”-テトラメチルグアニジノ)-4,5-ジヒドロ-3H-イミダゾリウムクロリドの構造式を示す。
H-NMR(400MHz,DO)δ(ppm):2.86(6H,s),3.04(12H,s),3.88(4H,d)
Figure JPOXMLDOC01-appb-I000086
 合成例4 テトラキス(テトラメチルグアニジノ)ホスホニウム塩酸塩の合成
 ドイツ特許出願第102006010034号公開公報に記載の方法に従って、テトラキス(テトラメチルグアニジノ)ホスホニウム塩酸塩を合成した。
Figure JPOXMLDOC01-appb-I000087
 合成例5 リチウムトルエンエチニルトリフェニルボレートの合成
 4-エチニルトルエン1.16g(10mmol;和光純薬工業(株)製)にTHF20mLを加え、5℃に冷却したところに1.6Mのn-ブチルリチウムのヘキサン溶液6.25mL(10mmol;和光純薬工業(株)製)を加え、5℃で0.5時間攪拌した。続いて、トリフェニルボラン2.42g(10mmol;シグマアルドリッチ(株)製)を加え、室温で1時間反応させた。反応終了後、反応液に水30mLを加え、水層をトルエンで2回洗浄した。得られた水層を減圧濃縮することにより、リチウムトルエンエチニルトリフェニルボレート1.76g(白色粉末、収率:48%)を得た。以下に、H-NMRの測定結果と、リチウムトルエンエチニルトリフェニルボレートの構造式を示す。
H-NMR(400MHz,DO)δ(ppm):2.19(3H,s),6.98(3H,t),7.06-7.12(8H,m),7.28(2H,d),7.40(6H,d)
Figure JPOXMLDOC01-appb-I000088
 合成例6 1,2-ビス(2,6-ジイソプロピルフェニル)-4,4,5,5-テトラメチルビグアニドの合成
 1,1,3,3-テトラメチルグアニジン3.18g(27.6mmol;和光純薬工業(株)製)にビス(2,6-ジイソプロピルフェニル)カルボジイミド13.1g(27.6mmol;東京化成工業(株)製)を加え、25℃で30分攪拌した。反応終了後、反応液にヘキサンを加え、5℃まで冷却し、得られた結晶を脱液することにより、1,2-ビス(2,6-ジイソプロピルフェニル)-4,4,5,5-テトラメチルビグアニド10.20g(白色粉末、収率:77%)を得た。以下に、1H-NMRの測定結果と、1,2-ビス(2,6-ジイソプロピルフェニル)-4,4,5,5-テトラメチルビグアニドの構造式を示す。
1H-NMR(400MHz,CDCl3)δ(ppm):1.00-1.29(24H,m),2.81(12H,s),3.43(4H,m),7.07-7.26(6H,m)
Figure JPOXMLDOC01-appb-I000089
 合成例7 1-シクロヘキシル-3-(4-ニトロフェニル)カルボジイミドの合成
 イソチオシアン酸4-ニトロフェニル10.0g(55.5mmol;和光純薬工業(株)製)にアセトニトリル40mLを加え、5℃へ冷却したところに、シクロヘキシルアミン5.50g(55.5mmol;和光純薬工業(株)製)を加え1時間攪拌した。反応終了後、生じたチオウレアの結晶を濾取し14.75g(42.6mmol)単離した。得られたチオウレア5.0g(17.9mmol)を酢酸エチルに懸濁させ、トリエチルアミン3.62g(35.8mmol;和光純薬工業(株)製)とヨウ素2.50g(19.7mmol;和光純薬工業(株)製)を加え25℃で1時間撹拌した。反応終了後、生じた結晶を濾過し、シリカゲルカラムクロマグラフィーによって精製することで1-シクロヘキシル-3-(4-ニトロフェニル)カルボジイミド1.17g(微黄色オイル、収率:27%)を得た。以下に、1H-NMRの測定結果と1-シクロヘキシル-3-(4-ニトロフェニル)カルボジイミドの構造式を示す。
1H-NMR(400MHz,CDCl3)δ(ppm):1.24-1.58(8H,m),1.75-1.79(2H,m),3.59-3.63(1H,m),7.14(2H,d),8.16(2H,d)
Figure JPOXMLDOC01-appb-I000090
 合成例8 1-シクロヘキシル-3-(4-ニトロフェニル)-4,4,5,5-テトラメチルビグアニドの合成
 1,1,3,3-テトラメチルグアニジン0.55g(4.8mmol;和光純薬工業(株)製)にトルエン20mLと合成例7で得られた1-シクロヘキシル-3-(4-ニトロフェニル)カルボジイミド1.17g(4.8mmol)を加え、25℃で1時間攪拌した。反応終了後、反応液に生じた結晶を濾過によって単離することにより、1-シクロヘキシル-3-(4-ニトロフェニル)-4,4,5,5-テトラメチルビグアニド1.73g(褐色オイル、収率:100%)を得た。以下に、1H-NMRの測定結果と、1-シクロヘキシル-3-(4-ニトロフェニル)-4,4,5,5-テトラメチルビグアニドの構造式を示す。
1H-NMR(400MHz,CDCl3)δ(ppm):1.12-1.24(3H,m),1.34-1.43(2H,m),1.59-1.62(3H,m),1.68-1.73(2H,m),2.54(12H,s),3.78(1H,brm),4.48(1H,brm),6.76(2H,d),8.02(2H,d)
Figure JPOXMLDOC01-appb-I000091
 実施例1 1,5,7-トリアザビシクロ[4.4.0]デカ-5-エニウムトリフェニル(n-ブチル)ボレート(式(1)で示される化合物)の合成
 1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン0.68g(5.0mmol;シグマアルドリッチ(株)製)を10%塩酸8mLに溶解させ、該溶液に20%リチウムトリフェニル(n-ブチル)ボレート水溶液(北興化学工業(株)製)7.65g(5.0mmol)を加えて、室温で30分間攪拌した。反応終了後、反応液に酢酸エチルを加えて抽出し、有機層を水で洗浄後、減圧濃縮することにより、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エニウムトリフェニル(n-ブチル)ボレート1.53g(白色粉末、収率:69%)を得た。以下に、H-NMRの測定結果と、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エニウムトリフェニル(n-ブチル)ボレートの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):0.81(3H,t),1.07-1.09(4H,m),1.25-1.29(2H,m),1.67-1.71(4H,m),2.68-2.72(4H,m),2.95-3.20(4H,m),3.20(2H,brs),6.90(3H,t),7.07-7.11(6H,m),7.25-7.50(6H,m)
Figure JPOXMLDOC01-appb-I000092
 実施例2 1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウムトリフェニル(n-ブチル)ボレート(式(2)で示される化合物)の合成
 合成例1で得られた1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニド1.32g(5.0mmol)を10%塩酸2mLに溶解させ、該溶液に20%リチウムトリフェニル(n-ブチル)ボレート水溶液7.65g(5.0mmol;北興化学工業(株)製)を加えて、室温で30分間攪拌した。反応終了後、反応液に酢酸エチルを加えて抽出し、有機層を水で洗浄後、減圧濃縮することにより、1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウムトリフェニル(n-ブチル)ボレート2.07g(白色粉末、収率:76%)を得た。以下に、H-NMRの測定結果と、1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウムトリフェニル(n-ブチル)ボレートの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):0.80(3H,t),1.02(12H,d),1.03-1.19(4H,brm),1.26-1.48(2H,m),1.42(1H,s),2.67(12H,s),3.17(2H,brs),3.91(1H,brs),6.89(3H,t),7.03-7.07(6H,m),7.45-7.47(6H,m)
Figure JPOXMLDOC01-appb-I000093
 実施例3 1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウムトリフェニル(n-ブチル)ボレート(式(3)で示される化合物)の合成
 合成例2で得られた1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニド炭酸塩1.41g(2.0mmol)を10%塩酸2mLに溶解させ、該溶液に20%リチウムトリフェニル(n-ブチル)ボレート水溶液6.12g(4.0mmol;北興化学工業(株)製)を加えて、室温で30分間攪拌した。反応終了後、反応液に酢酸エチルを加えて抽出し、有機層を水で洗浄後、減圧濃縮することにより、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウムトリフェニル(n-ブチル)ボレート1.83g(白色粉末、収率:73%)を得た。以下に、H-NMRの測定結果と、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウムトリフェニル(n-ブチル)ボレートの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):0.81(3H,t),1.02(2H,m),1.03-1.14(12H,brm),1.27-1.30(2H,m),1.50-1.70(10H,brm),2.75(12H,s),2.76-2.78(3H,brm),4.37(1H,brs),6.87(3H,t),7.04-7.08(6H,m),7.44-7.46(6H,m)
Figure JPOXMLDOC01-appb-I000094
 実施例4 1,3-ジメチル-2-(N’,N’,N”,N”-テトラメチルグアニジノ)-4,5-ジヒドロ-3H-イミダゾリウムトリフェニル(n-ブチル)ボレート(式(4)で示される化合物)の合成
 合成例3で得られた1,3-ジメチル-2-(N’,N’,N”,N”-テトラメチルグアニジノ)-4,5-ジヒドロ-3H-イミダゾリウムクロリド1.23g(5.0mmol)を、20%リチウムトリフェニル(n-ブチル)ボレート水溶液7.65g(5.0mmol;北興化学工業(株)製)に加えて、室温で30分間攪拌した。反応終了後、反応液に酢酸エチルを加えて抽出し、有機層を水で洗浄後、減圧濃縮することにより、1,3-ジメチル-2-(N’,N’,N”,N”-テトラメチルグアニジノ)-4,5-ジヒドロ-3H-イミダゾリウムトリフェニル(n-ブチル)ボレート1.94g(白色粉末、収率:74%)を得た。以下に、H-NMRの測定結果と、1,3-ジメチル-2-(N’,N’,N”,N”-テトラメチルグアニジノ)-4,5-ジヒドロ-3H-イミダゾリウムトリフェニル(n-ブチル)ボレートの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):0.80(3H,t),1.02-1.29(6H,brm),2.45(6H,s),2.66(12H,s),3.03(4H,s),6.82(6H,t),7.02(6H,t),7.42(6H,brm)
Figure JPOXMLDOC01-appb-I000095
 実施例5 テトラキス(テトラメチルグアニジノ)ホスホニウムトリフェニル(n-ブチル)ボレート(式(5)で示される化合物)の合成
 合成例4で得られたテトラキス(テトラメチルグアニジノ)ホスホニウムクロリド2.61g(5.0mmol)を、20%リチウムトリフェニル(n-ブチル)ボレート水溶液7.65g(5.0mmol;北興化学工業(株)製)に加えて、室温で30分間攪拌した。反応終了後、反応液に酢酸エチルを加えて抽出し、有機層を水で洗浄後、減圧濃縮することにより、テトラキス(テトラメチルグアニジノホスホニウムトリフェニル(n-ブチル)ボレート2.91g(白色粉末、収率:74%)を得た。以下に、H-NMRの測定結果と、テトラキス(テトラメチルグアニジノ)ホスホニウムトリフェニル(n-ブチル)ボレートの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):0.80(3H,t),1.02-1.29(6H,brm),2.76(48H,s),6.84(3H,t),7.01-7.04(6H,m),7.44-7.46(6H,brm)
Figure JPOXMLDOC01-appb-I000096
 実施例6 1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウムトルエンエチニルトリフェニルボレート(式(6)で示される化合物)の合成
 合成例1で得られた1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニド0.48g(2.0mmol)を10%塩酸1mLに溶解させ、該溶液に合成例5で得られたリチウムトルエンエチニルトリフェニルボレート0.72g(2.0mmol)を加えて、室温で30分間攪拌した。反応終了後、反応液に酢酸エチルを加えて抽出し、有機層を水で洗浄後、減圧濃縮することにより、1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウムトルエンエチニルトリフェニルボレート0.96g(白色粉末、収率:80%)を得た。以下に、H-NMRの測定結果と、1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウムトルエンエチニルトリフェニルボレートの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):0.85(12H,d),2.28(3H,s),2.46(12H,s),3.04(2H,brm),4.89(1H,brs),6.91(3H,t),6.99(2H,d),7.06(6H,t),7.32(2H,d),7.60(6H,d)
Figure JPOXMLDOC01-appb-I000097
 実施例7 テトラキス(テトラメチルグアニジノ)ホスホニウムトルエンエチニルトリフェニルボレート(式(7)で示される化合物)の合成
 合成例3で得られたテトラキス(テトラメチルグアニジノ)ホスホニウムクロリド1.04g(2.0mmol)を、合成例4で得られたリチウムトルエンエチニルトリフェニルボレート0.82g(2.2mmol)に加えて、室温で30分間攪拌した。反応終了後、反応液に酢酸エチルを加えて抽出し、有機層を水で洗浄後、減圧濃縮することにより、テトラキス(テトラメチルグアニジノ)ホスホニウムトルエンエチニルトリフェニルボレート1.48g(白色粉末、収率:89%)を得た。以下に、H-NMRの測定結果と、テトラキス(テトラメチルグアニジノ)ホスホニウムトルエンエチニルトリフェニルボレートの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):2.25(3H,t),2.73(48H,s),6.89-6.95(5H,m),7.03(6H,t),7.35(2H,d),7.57(6H,d)
Figure JPOXMLDOC01-appb-I000098
 実施例8 1,2-ビス(2,6-ジイソプロピルフェニル)-4,4,5,5-テトラメチルビグアニジウムトリフェニル(n-ブチル)ボレート(式(8)で示される化合物)の合成
 合成例6で得られた1,2-ビス(2,6-ジイソプロピルフェニル)-4,4,5,5-テトラメチルビグアニド3.00g(6.28mmol)を36.5%塩酸0.7mLに溶解させたところに、該溶液に20%リチウムトリフェニル(n-ブチル)ボレート水溶液9.61g(6.28mmol;北興化学工業(株)製)を加えて、室温で30分間攪拌した。反応終了後、反応液にジクロロメタンを加えて抽出し、有機層を水で洗浄後、減圧濃縮することにより、1,2-ビス(2,6-ジイソプロピルフェニル)-4,4,5,5-テトラメチルビグアニジウムトリフェニル(n-ブチル)ボレート3.76g(白色粉末、収率:77%)を得た。以下に、H-NMRの測定結果と、1,2-ビス(2,6-ジイソプロピルフェニル)-4,4,5,5-テトラメチルビグアニジウムトリフェニル(n-ブチル)ボレートの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):0.76-1.41(30H,m),2.53(12H,s),2.93(2H,m),3.24(2H,m),6.78(3H,t),6.79(6H,t),7.15(2H,d),7.25-7.35(3H,m),7.43-7.50(7H,m)
Figure JPOXMLDOC01-appb-I000099
 実施例9 1-シクロヘキシル-3-(4-ニトロフェニル)-4,4,5,5-テトラメチルビグアニジウムトリフェニル(n-ブチル)ボレート(式(9)で示される化合物)の合成
 合成例8で得られた1-シクロヘキシル-3-(4-ニトロフェニル)-4,4,5,5-テトラメチルビグアニド1.73g(4.8mmol)を36.5%塩酸0.49mLに溶解させ、該溶液に20%リチウムトリフェニル(n-ブチル)ボレート水溶液7.0g(4.8mmol;北興化学工業(株)製)を加えて、室温で1時間攪拌した。反応終了後、反応液にジクロロメタンを加えて抽出し、有機層を水で洗浄後、減圧濃縮することにより、1-シクロヘキシル-3-(4-ニトロフェニル)-4,4,5,5-テトラメチルビグアニジウムトリフェニル(n-ブチル)ボレート3.03g(黄色粉末、収率:96%)を得た。以下に、H-NMRの測定結果と、1-シクロヘキシル-3-(4-ニトロフェニル)-4,4,5,5-テトラメチルビグアニジウムトリフェニル(n-ブチル)ボレートの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):0.78(3H,t),0.93-1.03(4H,m),1.23-1.30(7H,m),1.75-1.82(5H,m),2.45(12H,s),3.34(1H,brm),4.59(1H,d),5.20(1H,brs),6.48(2H,d),6.90(3H,t),7.03(6H,t),7.47(2H,d),8.04(2H,d)
Figure JPOXMLDOC01-appb-I000100
 比較例1 1,5,7-トリアザビシクロ[4.4.0]デカ-5-エニウムテトラフェニルボレート(式(101)で示される化合物)の合成
 J. Am. Chem. Soc.,130,8130(2008)に記載の方法に従って、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エニウムテトラフェニルボレートを合成した。
Figure JPOXMLDOC01-appb-I000101
 比較例2 1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウムテトラフェニルボレート(式(102)で示される化合物)の合成
 実施例2の20%リチウムトリフェニル(n-ブチル)ボレート水溶液(北興化学工業(株)製)の代わりにナトリウムテトラフェニルボレートを用いた以外は実施例2と同様の操作で、1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウムテトラフェニルボレートを合成した(白色粉末、収率:75%)。以下に、H-NMRの測定結果と、1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウムテトラフェニルボレートの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):0.96(12H,d),2.68(12H,s),3.18(2H,m),3.92(2H,d),6.94(4H,t),7.05-7.08(8H,m),7.41-7.43(8H,m)
Figure JPOXMLDOC01-appb-I000102
 比較例3 1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウムテトラフェニルボレート(式(103)で示される化合物)の合成
 実施例3の20%リチウムトリフェニル(n-ブチル)ボレート水溶液(北興化学工業(株)製)の代わりにナトリウムテトラフェニルボレートを用いた以外は実施例3と同様の操作で、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウムテトラフェニルボレートを合成した(白色粉末、収率:67%)。以下に、H-NMRの測定結果と、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウムテトラフェニルボレートの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):0.98-0.98(10H,m),1.44-1.69(10H,m),2.68(12H,s),2.68(2H,brm),4.03(2H,brs),6.92(4H,t),7.04-7.08(8H,m),7.25-7.41(8H,m)
Figure JPOXMLDOC01-appb-I000103
 比較例4 テトラキス(テトラメチルグアニジノ)ホスホニウムテトラフェニルボレート(式(104)で示される化合物)の合成
 実施例5の20%リチウムトリフェニル(n-ブチル)ボレート水溶液(北興化学工業(株)製)の代わりにナトリウムテトラフェニルボレートを用いた以外は実施例5と同様の操作で、テトラキス(テトラメチルグアニジノ)ホスホニウムテトラフェニルボレートを合成した(白色粉末、収率:75%)。以下に、H-NMRの測定結果と、1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウムテトラフェニルボレートの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):2.75(48H,s),6.88(4H,t),7.02-7.06(8H,m),7.41-7.46(6H,m)
Figure JPOXMLDOC01-appb-I000104
 比較例5 1,5,7-トリアザビシクロ[4.4.0]デカ-5-エニウム 2-(3-ベンゾイルフェニル)プロピオネート(式(201)で示される化合物)の合成
 特開2011-80032号公報に記載の方法に従って、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エニウム 2-(3-ベンゾイルフェニル)プロピオネートを合成した。
Figure JPOXMLDOC01-appb-I000105
 比較例6 1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム2-(3-ベンゾイルフェニル)プロピオネート(式(202)で示される化合物)の合成
 ケトプロフェン7.62g(30.0mmol;浜理薬品工業(株)製)と、合成例1で得られた1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジン7.24g(30.0mmol)を、アセトン30mLに溶解させ、室温で10分間攪拌した。反応終了後、反応液を減圧濃縮し、得られた残渣をヘキサンで洗浄後、減圧乾燥することにより、1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム 2-(3-ベンゾイルフェニル)プロピオネート14.86g(白色ワックス状固体、収率:100%)を得た。以下に、H-NMRの測定結果と、1,2-ジイソプロピル-4,4,5,5-テトラメチルビグアニジウム 2-(3-ベンゾイルフェニル)プロピオネートの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):1.10(12H,d),1.53(3H,d),2.82(12H,s),3.26(2H,q),3.70(1H,t),7.35(1H,t),7.44(1H,t),7.52-7.60(2H,m),7.74(1H,d),7.80(1H,d),7.89(1H,s),9.97(1H,brs)
Figure JPOXMLDOC01-appb-I000106
 比較例7 1,1-ジメチルビグアニジウムトリフェニル(n-ブチル)ボレート(式(301)で示される化合物)の合成
 1,1-ジメチルビグアニド塩酸塩0.82g(5.0mmol;和光純薬工業(株)製)と20%リチウムトリフェニル(n-ブチル)ボレート水溶液1.5g(5.0mmol;北興化学工業(株)製)を加えて、室温で1時間攪拌した。反応終了後、反応液に酢酸エチルを加えて抽出し、有機層を水で洗浄後、減圧濃縮することにより、1,1-ジメチルビグアニジウムトリフェニル(n-ブチル)ボレート1.56g(白色粉末、収率:72%)を得た。以下に、H-NMRの測定結果と、1,1-ジメチルビグアニジウムトリフェニル(n-ブチル)ボレートの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):0.74(3H,t),0.93-1.03(4H,m),1.18(2H,m),2.91(6H,s),6.53(3H,s),6.73(3H,t),6.88(6H,t),7.18(8H,d)
Figure JPOXMLDOC01-appb-I000107
 比較例8 グアニジウムトリフェニル(n-ブチル)ボレート(式(302)で示される化合物の合成)
 塩化グアジニウム0.47g(5.0mmol;和光純薬工業(株)製)と20%リチウムトリフェニル(n-ブチル)ボレート水溶液1.5g(5.0mmol;北興化学工業(株)製)を加えて、室温で1時間攪拌した。反応終了後、反応液に酢酸エチルを加えて抽出し、有機層を水で洗浄後、減圧濃縮することにより、グアニジウムトリフェニル(n-ブチル)ボレート1.66g(白色粉末、収率:92%)を得た。以下に、H-NMRの測定結果と、グアニジウムトリフェニル(n-ブチル)ボレートの構造式を示す。
H-NMR(400MHz,d-DMSO)δ(ppm):0.74(3H,t),0.76-0.90(4H,m),1.18(2H,m),6.70(3H,t),6.88(6H,t),7.18(6H,d)
Figure JPOXMLDOC01-appb-I000108
 比較例9 アミノグアニジウムトリフェニル(n-ブチル)ボレート(式(303)で示される化合物の合成)
 重炭酸アミノグアジニン0.68g(5.0mmol;和光純薬工業(株)製)と10%塩酸5mLに溶解させ、該溶液に20%リチウムトリフェニル(n-ブチル)ボレート水溶液1.5g(5.0mmol;北興化学工業(株)製)を加えて、室温で1時間攪拌した。反応終了後、反応液に酢酸エチルを加えて抽出し、有機層を水で洗浄後、減圧濃縮することにより、アミノグアニジウムトリフェニル(n-ブチル)ボレート1.55g(白色粉末、収率:82%)を得た。以下に、H-NMRの測定結果と、アミノグアニジウムトリフェニル(n-ブチル)ボレートの構造式を示す。
H-NMR(400MHz,d-DMSO)δ(ppm):0.74(3H,t),0.76-0.88(4H,m),1.69(2H,m),4.65(1H,brs),6.71(3H,t),6.86(6H,t),7.18(6H,d)
Figure JPOXMLDOC01-appb-I000109
 比較例10 1,3-ジメチル-2-(N’,N’,N”,N”-テトラメチルグアニジノ)-4,5-ジヒドロ-3H-イミダゾリウムトリフェニル(n-ブチル)ボレート(式(105)で示される化合物)の合成
 実施例4の20%リチウムトリフェニル(n-ブチル)ボレート水溶液(北興化学工業(株)製)の代わりにナトリウムテトラフェニルボレートを用いた以外は、実施例4と同様の操作で、1,3-ジメチル-2-(N’,N’,N”,N”-テトラメチルグアニジノ)-4,5-ジヒドロ-3H-イミダゾリウムトリフェニル(n-ブチル)ボレートを合成した(白色粉末、収率:49%)。以下に、H-NMRの測定結果と、1,3-ジメチル-2-(N’,N’,N”,N”-テトラメチルグアニジノ)-4,5-ジヒドロ-3H-イミダゾリウムトリフェニル(n-ブチル)ボレートの構造式を示す。
H-NMR(400MHz,CDCl)δ(ppm):0.80(3H,t),1.02-1.29(6H,brm),2.45(6H,s),2.66(12H,s),3.03(4H,s),6.82(6H,t),7.02(6H,t),7.42(6H,brm)
Figure JPOXMLDOC01-appb-I000110
 実験例1 有機溶剤および塩基反応性化合物に対する溶解性試験
 実施例1~9で得られた化合物(塩基発生剤)、ならびに比較例1~4および7~10で得られた化合物(塩基発生剤)をそれぞれ0.1gずつ秤量し、これらの化合物に各種有機溶剤{プロピレングリコールモノメチルエーテルアセテ-ト(PGMEA)、乳酸エチル(EL)}または塩基反応性化合物{ネオペンチルグリコールジグリシジルエーテル(SR-NPG);阪本薬品工業(株)製}を、室温下で徐々に添加して、有機溶剤および塩基反応性化合物に対する当該化合物(塩基発生剤)の溶解性を目視で確認した。有機溶剤または塩基反応性化合物の添加量が1mL未満で該化合物(塩基発生剤)が溶解した場合を「++」、1mL以上~5mL未満で該化合物(塩基発生剤)が溶解した場合を「+」、5mL以上~10mL未満で該化合物(塩基発生剤)が溶解した場合を「-」、10mL以上でしか該化合物(塩基発生剤)が溶解しなかった場合を「--」と評価した。溶解性の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000111
 実験例2 塩基反応性化合物に対する保存安定性試験
 実施例1~9で得られた化合物(塩基発生剤)、および比較例1~10で得られた化合物(塩基発生剤)をそれぞれ0.1gずつ秤量し、これらの化合物を塩基反応性化合物{ネオペンチルグリコールジグリシジルエーテル(SR-NPG);阪本薬品工業(株)製}2gに溶解させ、40℃の恒温槽にて1週間保存した。保存前後で粘度の変化が無かったもの(保存安定性が良好なもの)を「○」、粘度が2倍以上に上昇したもの(保存安定性が悪かったもの)を「×」、溶解しなかったため評価できなかったものを「-」とした。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000112
 実験例3 ビスフェノ-ルA型ジグリシジルエーテルオリゴマーと多官能チオールを用いた露光硬化試験
 実施例1~9で得られた化合物(塩基発生剤)および比較例1~10で得られた化合物(塩基発生剤)をそれぞれ10mgずつ秤量し、また、増感剤として2-イソプロピルチオキサントンを1mg秤量し、該化合物および増感剤をビスフェノ-ルA型ジグリシジルエーテルオリゴマー(商品名:jER(登録商標)828;三菱化学(株)製)100mgに加温して溶解させた後、ペンタエリスリト-ルテトラキス(3-メルカプトブチレ-ト)(商品名:KarenzMT(登録商標) PE1;昭和電工(株)製)70mgに混合した。得られたサンプルをガラス板上にバーコートし、塗膜に対し特定の露光強度を有する紫外線照射光源装置REX-250(朝日分光(株)製)およびフィルターBP365を用いて30秒間紫外線(活性エネルギー線)を照射してから、90℃で5分間加熱して塗膜を硬化させた。塗膜の硬度は鉛筆硬度試験法にて評価し、硬度4H以上となった場合「○」、未露光部と露光部が同時に硬化した場合「×」、溶解しなかったため評価できなかった場合「-」とした。評価結果を表5に示す。なお、紫外線照射光源装置REX-250(朝日分光(株)製)は、240~440nmの波長の光(活性エネルギー線)を照射するものである。また、フィルターBP365は、365nm未満の波長の光(活性エネルギー線)を吸収し、365nm以上の波長の光(活性エネルギー線)のみを透過するものである。
Figure JPOXMLDOC01-appb-T000113
 実験例4 脂環式エポキシモノマーと多官能チオールを用いた露光硬化試験
 実施例1~9で得られた化合物(塩基発生剤)および比較例1~10で得られた化合物(塩基発生剤)をそれぞれ10mgずつ秤量し、また、増感剤として2-イソプロピルチオキサントンを2mg秤量し、該化合物および増感剤を脂環式エポキシモノマーである3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート(商品名:CEL2021P;(株)ダイセル製)100mgに加温して溶解させた後、ペンタエリスリト-ルテトラキス(3-メルカプトブチレ-ト)(商品名:KarenzMT(登録商標)PE1;昭和電工(株)製)100mgに混合した。得られたサンプルをガラス板上にバーコートし、塗膜に対し特定の露光強度を有する紫外線照射光源装置REX-250(朝日分光(株)製)およびフィルターBP365を用いて30秒間紫外線(活性エネルギー線)を照射してから、120℃で5分間加熱して塗膜を硬化させた。塗膜の硬度は鉛筆硬度試験法にて評価し、硬度4H以上となった場合「○」、未露光部と露光部が同時に硬化した場合「×」、溶解しなかったため評価できなかった場合「-」とした。評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000114
 実験例1~4の結果を表7にまとめる。
Figure JPOXMLDOC01-appb-T000115
 表7から、比較例1および4で得られた化合物(塩基発生剤)は、この分野で一般的に用いられている有機溶剤に対して溶解性が悪く、汎用性が低いことが判った。また、比較例1および4で得られた化合物(塩基発生剤)は、塩基反応性化合物に対する溶解性が悪いため、有機溶剤に溶解させる必要があるが、上述したように、この分野で一般的に用いられている有機溶剤に対する溶解性も悪いため、汎用性の乏しい化合物(塩基発生剤)であることが判った。次に、比較例5および6で得られた化合物(塩基発生剤)は、塩基反応性化合物と混合した状態での保存安定性が悪いため、未露光の状態であっても反応の進行によって粘度が増大した。従って、比較例5および6の塩基発生剤は、塩基反応性化合物と混合した状態で長期間保存することが難しく、硬化を行う直前に両者を配合し速やかに使用しなければならない、利便性の悪い化合物(塩基発生剤)であることが判った。比較例1~4および10で得られた化合物(塩基発生剤)は、芳香環を有するエポキシオリゴマーや脂環式エポキシモノマーなど汎用のエポキシモノマーに対し溶解性の低い化合物(塩基発生剤)であることが判った。比較例7で得られた化合物(塩基発生剤)は、前記一般式(B)のR11~R18における水素原子の数が3以上であるカチオン構造を有するため、該化合物(塩基発生剤)から発生した塩基の塩基性が低く、エポキシなどの塩基反応性化合物と多官能チオールの反応を効率的に加速することができないことが判った。比較例8および9で得られた化合物(塩基発生剤)は、グアニジン上に置換基を有していないため、概して溶解性が低く、この分野で一般的に用いられている有機溶剤やエポキシなどの塩基反応性化合物に溶解できない汎用性の乏しい化合物(塩基発生剤)であることが判った。
 上述した比較例1~10の結果に対し、表7から、本発明の化合物(塩基発生剤)は、有機溶剤に対する溶解性、塩基反応性化合物と混合した状態における保存安定性、および塩基反応性組成物中の塩基反応性化合物を容易に硬化できるという高い硬化性能の、全ての性能を有していることが判った。従って、本発明の化合物(塩基発生剤)は、使用面においても、保存面においても優れた性能を有するものであることが判った。
 実験例5 ビスフェノールA型ジグリシジルエーテルオリゴマーと酸無水物を用いた露光硬化試験
 実施例1~9で得られた化合物(塩基発生剤)および比較例1~10で得られた化合物(塩基発生剤)をそれぞれ10mgずつ秤量し、また、増感剤として2-イソプロピルチオキサントンを2mg秤量し、該化合物および増感剤をビスフェノールA型ジグリシジルエーテルオリゴマー(商品名:jER(登録商標)828;三菱化学(株)製)100mgに40℃で加温して溶解させた後、室温に冷却してからメチル-5-ノルボルネン-2,3-ジカルボン酸無水物(和光純薬工業(株)製)60mgを混合した。得られたサンプルをガラス板上にバーコートし、塗膜に対し紫外線照射光源装置REX-250(朝日分光(株)製)およびフィルターBP405を用いて60秒間紫外線(活性エネルギー線)を照射してから、120℃で7分間加熱して塗膜を硬化させた。塗膜の硬度は鉛筆硬度試験法にて評価し、硬度4H以上となった場合「○」、露光部と未露光部が同時に硬化した場合「×」、溶解しなかったため評価できなかった場合「-」とした。評価結果を表8に示す。なお、フィルターBP405は、405nm未満の波長の光(活性エネルギー線)を吸収し、405nm以上の波長の光(活性エネルギー線)のみを透過するものである。
Figure JPOXMLDOC01-appb-T000116
 実験例5の結果から、本発明の化合物(塩基発生剤)は、酸無水物を架橋剤として併用可能であることが判った。これに対し、比較例1~4および8~10で得られた化合物(塩基発生剤)は、芳香環を有するエポキシオリゴマーなどの汎用のエポキシモノマーに対し溶解性の低い化合物(塩基発生剤)であることが判った。また、比較例5および6で得られた化合物(塩基発生剤)は、露光後に120℃で加熱すると露光部と未露光部において同時に硬化が進行し、露光部と未露光部のコントラストが得られないため、酸無水物を架橋剤として併用できず、汎用性に乏しいことが判った。さらに、比較例7で得られた化合物(塩基発生剤)は、前記一般式(B)のR11~R18における水素原子の数が3以上であるカチオン構造を有するため、該化合物(塩基発生剤)から発生した塩基の塩基性が低く、エポキシなどの塩基反応性化合物と酸無水物の反応を効率的に加速することができないことが判った。
 実験例6 増感剤の検討
 実験例3において、塩基発生剤として実施例1で得られた化合物を用い、増感剤として下記の表9および10に示す各種増感剤を用い、また、フィルターを用いない、またはフィルターにBP365、BP405もしくはBP435を用いた以外は、実験例3と同様にして露光評価を行った。塗膜の硬度を鉛筆硬度試験法にて評価し、硬度4H以上となった場合「○」、硬度4H未満となった(硬化が起こらなかった)場合「×」とした。評価結果を表9に示す。なお、フィルターBP435は、435nm未満の波長の光(活性エネルギー線)を吸収し、435nm以上の波長の光(活性エネルギー線)のみを透過するものである。
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
 実験例6の結果から、本発明の化合物(塩基発生剤)は、各種増感剤を併用することで長波長における感光性が高まることが判った。一方、上記式(201)および(202)で示される化合物に対し、表9で示される各種増感剤を併用したところ、長波長において全く感光性を示さず、増感作用を示さなかった。従って、本発明の化合物(塩基発生剤)は、各種増感剤の併用により長波長における感光性を高めることが可能であり、有用な化合物(塩基発生剤)であることが判った。
 また、特開2003-212856およびWO2009/122664に開示されている、カチオン部分に増感ユニットを導入したボレート型光塩基発生剤の場合、総じて溶解性が悪い傾向にあり、モノマーに直接溶解させることが困難であった。さらに、当該ボレート型光塩基発生剤は、増感基の導入によって光塩基発生剤自体の分子量が大きくなってしまい、一分子あたりに占める塩基の量が少なくなってしまう点や、発生する塩基と等モルの増感基が系中に残存してしまい、膜の深部への光透過を阻害してしまう点が問題となっていた。加えて、当該ボレート型光塩基発生剤は、増感ユニットとして導入できる骨格が限定されるため、色素骨格のようなイオン型の増感剤を併用することも困難であった。
 これに対し、実験例6の結果から、本発明の化合物(塩基発生剤)は、ボレートユニットと増感剤を任意の割合で配合できるだけでなく、既に長波長に吸収を有する従来の光塩基発生剤も併用できるため、系中で異なる2種類の塩基の発生させることも可能であることが判った。また、複雑な構造を有する色素を併用できるため、可視光域や赤外域まで感光波長を延ばすことが可能となることも判った。加えて、一部の色素を増感剤として用いた場合においては、光によって消色する効果があり、深部への硬化が期待できる。
 実験例7 アクリレートを用いたラジカルUV硬化試験
 実施例1~9で得られた化合物をそれぞれ10mgずつ、および増感剤の9-アントリルメチル N,N-ジエチルカルバメート(商品名:WPBG-018;和光純薬工業(株)製)1mgを秤量し、ジペンタエリスリトールヘキサアクリレート(商品名:KAYARAD DPHA;日本化薬(株)製)100mgに40℃で加温して溶解させた。また、9-アントリルメチル N,N-ジエチルカルバメート(商品名:WPBG-018;和光純薬工業(株)製)1mgのみを、ジペンタエリスリトールヘキサアクリレート(商品名:KAYARAD DPHA;日本化薬(株)製)100mgに加え、40℃で加温して溶解させた。サンプルをガラス板上にバーコートし、塗膜に対し紫外線照射光源装置REX-250(朝日分光(株)製)およびフィルターBP365を用いて30秒間紫外線(活性エネルギー線)を照射して室温で塗膜を硬化させた。塗膜の硬度は鉛筆硬度試験法にて評価し、硬度4H以上となった場合「○」、硬度4H未満となった(硬化が起こらなかった)場合「×」とした。評価結果を表11に示す。
Figure JPOXMLDOC01-appb-T000119
 実験例8 チオールエン反応を用いたUV硬化試験
 実施例2で得られた化合物0.18g、増感剤の9-アントリルメチル N,N-ジエチルカルバメート(商品名:WPBG-018;和光純薬工業(株)製)0.10g、および重合禁止剤のN-ニトロソフェニルヒドロキシルアミンアルミニウム塩(商品名:Q-1301;和光純薬工業(株)製)3mgをアセトンに溶解させたのち、2,4,6-トリス(アリルオキシ)-1,3,5-トリアジン(和光純薬工業(株)製)2.49g、およびペンタエリスリト-ルテトラキス(3-メルカプトブチレ-ト)(商品名:KarenzMT(登録商標)PE1;昭和電工(株)製)5.52gを混合した。サンプルをガラス板上にバーコートし、塗膜に対し紫外線照射光源装置REX-250(朝日分光(株)製)およびフィルターBP365を用いて10秒間紫外線(活性エネルギー線)を照射して、室温で塗膜を硬化させた。塗膜の硬度を鉛筆硬度試験法にて評価したところ、硬度3H以上であった。
 実験例9 光ゾル-ゲル法とチオールエン反応を用いたハイブリッドUV硬化試験
 実施例2で得られた化合物0.18g、増感剤のケトプロフェン(和光純薬工業(株)製)0.10g、および重合禁止剤のN-ニトロソフェニルヒドロキシルアミンアルミニウム塩(商品名:Q-1301;和光純薬工業(株)製)3mgをアセトンに溶解させたのち、(3-メルカプトプロピル)トリメトキシシラン1.9g(和光純薬工業(株)製)およびイオン交換水0.27gを加えて室温で1時間撹拌し、さらに2,4,6-トリス(アリルオキシ)-1,3,5-トリアジン(和光純薬工業(株)製)0.79gを加えて混和した。ガラス板上にバーコートし、作製した塗膜を80℃で1分間プレベークした後、塗膜に対し紫外線照射光源装置REX-250(朝日分光(株)製)を用いて10秒間紫外線(活性エネルギー線)を照射して、塗膜を硬化させた。塗膜の硬度を鉛筆硬度試験法にて評価したところ、硬度4H以上であった。
 実験例7の結果から、実施例6および7で得られた化合物ならびに増感剤であるWPBG-018は、ラジカルを発生させることができないため、重合反応(硬化)を起こせなかったのに対し、本発明の前記一般式(A-a)で表される化合物(ラジカル発生剤)は、ラジカルが発生することより、アクリレートなどのアルケンのラジカル重合にも応用できることが判った。また、実験例8の結果から、チオール化合物とエン化合物の共存下でラジカル発生させることでチオールエン反応によるUV硬化にも適用可能だった。さらに、実験例9に示すように塩基によるゾル-ゲル法とラジカルによるチオールエン反応を併用した硬化系にも適用可能であった。従って、該化合物は、塩基と同時にラジカルを発生させることができるため、従来困難であったラジカルUV硬化とアニオンUV硬化と組み合わせたハイブリッドUV硬化のためのハイブリッド硬化剤としても使用可能であることが判った。
 実験例10 耐熱性試験
 実施例1~9で得られた化合物(塩基発生剤)をそれぞれ10mgずつ秤量し、これらの化合物について、TG-DTA2000SA((株)BRUKER AXS製)を用いて30℃から500℃まで昇温速度10℃/minで測定し、該化合物(塩基発生剤)それぞれの5%重量減少開始温度を算出した。算出した温度を分解開始温度として、これらの化合物(塩基発生剤)の耐熱性の評価を行った。その結果を表12に示す。
Figure JPOXMLDOC01-appb-T000120
 実験例10の結果から、本発明の化合物(塩基発生剤)はいずれも分解開始温度が150℃を超えるものであり、熱に対して比較的安定であることが判った。従って、本発明の塩基発生剤を用いた場合には、ベーク時の温度を高く設定できるため、高沸点の有機溶剤を使用できるという利点があるばかりでなく、ベーク後において、有機溶剤の残留を極力少なくすることが可能となることが判った。すなわち、残留有機溶剤による露光部(硬化部)と未露光部(未硬化部)とのコントラストの悪化を抑制することが可能である。
 実験例11 多官能アクリレートと多官能チオールを用いたマイケル付加型UV硬化試験
 実施例6で得られた化合物10mg、および増感剤の9-アントリルメチル N,N-ジエチルカルバメート(商品名:WPBG-018;和光純薬工業(株)製)2mgを秤量し、γ-ブチロラクトンに加温して溶解させたのち、ペンタエリスリトールトリアクリレート(商品名:ライトアクリレートPE-3A;共栄社化学(株)製)100mg、およびペンタエリスリト-ルテトラキス(3-メルカプトブチレ-ト)(商品名:KarenzMT(登録商標)PE1;昭和電工(株)製)141mgを混合した。サンプルをガラス板上にバーコートし、塗膜に対し紫外線照射光源装置REX-250(朝日分光(株)製)およびフィルターBP365を用いて10秒間紫外線(活性エネルギー線)を照射した後、80℃で10分加熱することで塗膜を硬化させた。塗膜の硬度を鉛筆硬度試験法にて評価したところ、硬度3H以上であった。
 実験例5および7の結果から、実施例6で得られた化合物と増感剤であるWPBG-018との組合せは、UV照射によって塩基のみを選択的に発生させ、ラジカルは発生させないことが判った。すなわち、実施例6で得られた化合物のような、前記一般式(A)におけるR~Rのうち、少なくとも1つが「ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基」を有する化合物(以下、本発明のアリールアルキニル化合物と略記する場合がある)は、UV照射により塩基のみを選択的に発生させることが可能であることが判った。また、実験例11の結果から、本発明のアリールアルキニル化合物は、チオールとアクリレートのマイケル付加反応によるアニオンUV硬化に適用可能であることが判った。従って、本発明のアリールアルキニル化合物は、UV照射を行うことにより、実験例7のようなアクリレート単独でのラジカル重合反応を生じさせずに、チオールとアクリレートでのアニオン硬化反応を行うことができるため、アクリレートとチオールの反応率を1:1に合わせることが可能である。すなわち、本発明のアリールアルキニル化合物は、UV照射により塩基のみを選択的に発生させるため、従来制御が困難であったアクリレートとチオールの反応率を1:1に合わせたアニオンUV硬化に適用可能である。
 このようなアクリレートとチオールのUV硬化樹脂は、チオールを含有することにより、アクリレート単独での硬化樹脂よりも樹脂の寸法安定性、柔軟性、耐水性、耐薬品性、樹脂と基材との密着性、酸素による硬化阻害への耐性等様々な性能が総じて高く、有用な材料となりうる。また、ラジカルによる重合が可能なアリル化合物とチオールとのチオールエン反応では、出発物質である多官能性のアリル化合物が一般的に入手しづらいのに対し、アクリレートとチオールとのマイケル付加反応においては、出発物質である多官能性アクリレートが容易に入手可能であることも、新規材料を創製する観点から好ましい。
 本発明の一般式(A)で示される化合物および本発明の塩基発生剤は、光(活性エネルギー線)の照射や加熱等の操作により強塩基(グアニジン類、ビグアニド類、ホスファゼン類またはホスホニウム類)を発生するものであり、一方で、アニオンのボレート部分の求核性が低いため、該化合物(塩基発生剤)とエポキシ系化合物等の塩基反応性組成物を混合した状態で長期間保存した場合であっても、該塩基反応性化合物と反応することがないものである。よって、本発明の一般式(A)で示される化合物および本発明の塩基発生剤は、該化合物(塩基発生剤)と該塩基反応性化合物とを含む組成物を長期間保存していても、その性能を低下させることがなく、保存安定性の高いものとすることができる塩基発生剤として有用なものである。
 本発明の塩基反応性組成物は、上述の如く本発明の塩基発生剤を含有するものであり、硬化操作を行った際には、組成物中の塩基発生剤から発生した強塩基(グアニジン類、ビグアニド類、ホスファゼン類またはホスホニウム類)を開始剤として、塩基反応性化合物の硬化を効果的に進行することができ、かつ、長期間保存した場合であっても、塩基反応性組成物としての性能を低下させず、安定した状態で保存することができるものであり、例えば、塗料、印刷インキ、歯科材料、レジスト等の光学材料、電子材料などに有用なものである。

Claims (14)

  1. 下記一般式(A)で示される化合物。
    Figure JPOXMLDOC01-appb-I000001
    (式中、Rは、炭素数1~12のアルキル基;ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基;炭素数2~12のアルケニル基;2-フリルエチニル基;2-チオフェニルエチニル基;または2,6-ジチアニル基を表し、R~Rはそれぞれ独立して、炭素数1~12のアルキル基;ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数8~16のアリールアルキニル基;ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよい炭素数6~14のアリール基;フラニル基;チエニル基;またはN-アルキル置換ピロリル基を表し、Zは、グアニジニウム基、ビグアニジウム基またはホスファゼニウム基を有するアンモニウムカチオン、あるいはホスホニウムカチオンを表す。)
  2. 前記一般式(A)におけるZで示されるグアニジニウム基、ビグアニジウム基またはホスファゼニウム基を有するアンモニウムカチオン、あるいはホスホニウムカチオンが、下記一般式(B)で示されるグアニジニウム基を有するアンモニウムカチオン、下記一般式(B)で示されるビグアニジウム基を有するアンモニウムカチオン、下記一般式(B)または(B)で示されるホスファゼニウム基を有するアンモニウムカチオン、下記一般式(B)または(B)で示されるホスホニウムカチオンである、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-I000002
    (式中、R~RおよびR10はそれぞれ独立して、水素原子、炭素数1~12のアルキル基またはアミノ基を表し、Rは、水素原子、炭素数1~12のアルキル基、アミノ基または下記式(b
    Figure JPOXMLDOC01-appb-I000003
    で示される基を表し、RとRおよび/またはRとR10とで、炭素数2~4のアルキレン基を形成していてもよい。ただし、R~R10のうち水素原子の数は、0~2である。)
    Figure JPOXMLDOC01-appb-I000004
    (式中、R11~R15及びR18はそれぞれ独立して、水素原子または炭素数1~12のアルキル基を表し、R16及びR17はそれぞれ独立して、水素原子、炭素数1~12のアルキル基またはニトロ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基もしくは炭素数2~12のジアルキルアミノ基で置換されていてもよい炭素数6~14のアリール基を表し、R16とR17とで、炭素数2~4のアルキレン基を形成していてもよい。ただし、R11~R18のうち水素原子の数は、0~2である。)
    Figure JPOXMLDOC01-appb-I000005
    {式中、R19は、水素原子または炭素数1~12のアルキル基を表し、Q~Qはそれぞれ独立して、下記一般式(b)または(b)で示される基を表すか、あるいはQとQとで、下記一般式(b)で示される環状構造を表す。ただし、式中の窒素原子に結合する水素原子の数は、1~5である。
    Figure JPOXMLDOC01-appb-I000006
    (式中、R20およびR21はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表し、R20とR21とで、炭素数2~4のアルキレン基を形成していてもよい。)
    Figure JPOXMLDOC01-appb-I000007
    (式中、R22~R27はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-I000008
    (式中、R28およびR29はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表す。)}
    Figure JPOXMLDOC01-appb-I000009
    (式中、Q~Qはそれぞれ独立して、前記一般式(b)または(b)で示される基を表す。ただし、式中の窒素原子に結合する水素原子の数は、0~4である。)
    Figure JPOXMLDOC01-appb-I000010
    (式中、R30は、水素原子または前記一般式(b)もしくは(b)で示される基を表し、R31~R36はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表し、あるいはR31とR32、R32とR33、R34とR35、R35とR36および/またはR33とR36とで、炭素数2~4のアルキレン基を形成していてもよく、R32、R33およびR35とで、窒素原子を含んでいてもよい炭素数3~10のアルキレン鎖を形成していてもよい。ただし、式中の窒素原子に結合する水素原子の数は、0~4である。)
    Figure JPOXMLDOC01-appb-I000011
    {式中、Q10~Q13はそれぞれ独立して、下記一般式(b)または(b)で示される基を表す。ただし、式中の窒素原子に結合する水素原子の数は、0~4である。
    Figure JPOXMLDOC01-appb-I000012
    (式中、R37~R42はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-I000013
    (式中、R43~R46はそれぞれ独立して、水素原子または炭素数1~6のアルキル基を表す。)}
  3. 前記一般式(A)におけるRが、炭素数1~12のアルキル基またはハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニルエチニル基であり、かつ、R~Rが全て同一の、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、もしくは炭素数1~6のアルキルチオ基で置換されていてもよいフェニル基である、請求項1に記載の化合物。
  4. 前記一般式(A)におけるZで示されるグアニジニウム基、ビグアニジウム基またはホスファゼニウム基を有するアンモニウムカチオン、あるいはホスホニウムカチオンが、前記一般式(B)で示されるグアニジウム基を有するアンモニウムカチオン、前記一般式(B)で示されるビグアニジウム基を有するアンモニウムカチオンまたは前記一般式(B)で示されるホスホニウムカチオンである、請求項2に記載の化合物。
  5. 前記一般式(B)で示される化合物におけるRとRおよびRとR10とで炭素数2~4のアルキレン基を形成しており、Rが水素原子であり、かつ、Rが水素原子または炭素数1~12のアルキル基である、請求項4に記載の化合物。
  6. 前記一般式(B)で示される化合物におけるR11~R14がそれぞれ独立して、炭素数1~12のアルキル基であり、R15およびR18がそれぞれ独立して、水素原子または炭素数1~12のアルキル基であり、かつ、R16およびR17がそれぞれ独立して、炭素数1~12のアルキル基またはニトロ基のみもしくは炭素数1~6のアルキル基のみで置換されているフェニル基であるか、あるいは、R16とR17とで、炭素数2~4のアルキレン基を形成しているものである、請求項4に記載の化合物。
  7. 前記一般式(B)で示される化合物におけるQ10~Q13が全て同一の、一般式(b)で示される基であり、かつ、一般式(b)におけるR37~R42がそれぞれ独立して、炭素数1~6のアルキル基である、請求項4に記載の化合物。
  8. 前記一般式(B)で示される化合物におけるQ10~Q13が全て同一の、一般式(b)で示される基であり、かつ、一般式(b)におけるR43~R46がそれぞれ独立して、炭素数1~6のアルキル基である、請求項4に記載の化合物。
  9. 前記一般式(A)におけるZで示されるグアニジニウム基、ビグアニジウム基またはホスファゼニウム基を有するアンモニウムカチオン、あるいはホスホニウムカチオンが、下記式(B-2)で示されるグアニジニウム基を有するアンモニウムカチオン、下記式(B-4)、(B-5)、(B-6)、(B-17)及び(B-18)で示されるビグアニジウム基を有するアンモニウムカチオン、あるいは、下記式(B-16)で示されるホスホニウムカチオンである、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-I000014

    Figure JPOXMLDOC01-appb-I000015

    Figure JPOXMLDOC01-appb-I000016

    Figure JPOXMLDOC01-appb-I000017

    Figure JPOXMLDOC01-appb-I000018

    Figure JPOXMLDOC01-appb-I000019

    Figure JPOXMLDOC01-appb-I000020
  10. 請求項1に記載の化合物を含んでなる塩基発生剤。
  11. 請求項10に記載の塩基発生剤および塩基反応性化合物を含有することを特徴とする塩基反応性組成物。
  12. 前記組成物が、さらに増感剤を含有するものである、請求項11に記載の塩基反応性組成物。
  13. 前記組成物が、さらに有機溶剤を含有するものである、請求項11に記載の塩基反応性組成物。
  14. 前記塩基反応性化合物が、エポキシ系化合物、ケイ素系化合物、イソシアネート系化合物およびポリアミック酸系化合物からなる群から選ばれるものである、請求項11に記載の塩基反応性組成物。
PCT/JP2015/051593 2014-01-24 2015-01-22 ボレート系塩基発生剤および該塩基発生剤を含有する塩基反応性組成物 WO2015111640A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020167021497A KR102343473B1 (ko) 2014-01-24 2015-01-22 보레이트계 염기 발생제 및 당해 염기 발생제를 함유하는 염기 반응성 조성물
JP2015559097A JP6428646B2 (ja) 2014-01-24 2015-01-22 ボレート系塩基発生剤および該塩基発生剤を含有する塩基反応性組成物
ES15741026T ES2709023T3 (es) 2014-01-24 2015-01-22 Generador de bases basado en borato, y composición reactiva frente a bases que comprende dicho generador de bases
CN201580005279.5A CN106414461B (zh) 2014-01-24 2015-01-22 硼酸盐系产碱剂和含有该产碱剂的碱反应性组合物
EP15741026.7A EP3098226B1 (en) 2014-01-24 2015-01-22 Borate-based base generator, and base-reactive composition comprising such base generator
US15/114,048 US10100070B2 (en) 2014-01-24 2015-01-22 Borate-based base generator, and base-reactive composition comprising such base generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-011774 2014-01-24
JP2014011774 2014-01-24

Publications (1)

Publication Number Publication Date
WO2015111640A1 true WO2015111640A1 (ja) 2015-07-30

Family

ID=53681441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051593 WO2015111640A1 (ja) 2014-01-24 2015-01-22 ボレート系塩基発生剤および該塩基発生剤を含有する塩基反応性組成物

Country Status (8)

Country Link
US (1) US10100070B2 (ja)
EP (1) EP3098226B1 (ja)
JP (1) JP6428646B2 (ja)
KR (1) KR102343473B1 (ja)
CN (1) CN106414461B (ja)
ES (1) ES2709023T3 (ja)
TW (1) TWI649327B (ja)
WO (1) WO2015111640A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024577A1 (ja) * 2014-08-12 2016-02-18 東ソー株式会社 アルキレンオキシド重合触媒及びそれを用いたポリアルキレンオキシドの製造方法
JP2016040346A (ja) * 2014-08-12 2016-03-24 東ソー株式会社 アルキレンオキシド重合触媒およびそれを用いたポリアルキレンオキシドの製造法
JP2016040345A (ja) * 2014-08-12 2016-03-24 東ソー株式会社 アルキレンオキシド重合触媒およびそれを用いたポリアルキレンオキシドの製造方法
JP2016089084A (ja) * 2014-11-07 2016-05-23 協立化学産業株式会社 光硬化性樹脂組成物
JP2016124927A (ja) * 2014-12-26 2016-07-11 株式会社リコー 光塩基発生剤を含む活性光線硬化組成物及び活性光線硬化型インクジェット用インク
WO2017018361A1 (ja) * 2015-07-24 2017-02-02 和光純薬工業株式会社 耐酸性を有する塩基または/およびラジカル発生剤、ならびに該塩基または/およびラジカル発生剤を含有する硬化性樹脂組成物
JP2017120367A (ja) * 2015-12-28 2017-07-06 信越化学工業株式会社 レジスト材料及びパターン形成方法
KR20170077815A (ko) 2015-12-28 2017-07-06 신에쓰 가가꾸 고교 가부시끼가이샤 레지스트 재료 및 패턴 형성 방법
US9897914B2 (en) 2015-12-28 2018-02-20 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
CN107844032A (zh) * 2016-09-20 2018-03-27 信越化学工业株式会社 抗蚀剂组合物和图案化方法
JP2018049263A (ja) * 2016-09-20 2018-03-29 信越化学工業株式会社 レジスト材料及びパターン形成方法
US9958776B2 (en) 2015-12-28 2018-05-01 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
WO2018105537A1 (ja) * 2016-12-08 2018-06-14 株式会社日本触媒 光ルイス酸発生剤
KR20180105186A (ko) * 2016-01-26 2018-09-27 후지필름 와코 준야꾸 가부시키가이샤 광 경화 방법, 그에 사용되는 화합물 및 조성물
WO2018230580A1 (ja) * 2017-06-12 2018-12-20 富士フイルム和光純薬株式会社 光又は熱硬化方法、及び硬化性樹脂組成物
US10222696B2 (en) 2015-12-28 2019-03-05 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US11053328B2 (en) 2019-04-15 2021-07-06 Panasonic Intellectual Property Management Co., Ltd. Photocurable composition
WO2024048612A1 (ja) * 2022-08-31 2024-03-07 株式会社クレハ 硬化性組成物、硬化物、及び硬化物の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11427718B2 (en) 2017-10-27 2022-08-30 Board Of Regents, The University Of Texas System Vat resin with additives for thiourethane polymer stereolithography printing
CN108084442B (zh) * 2017-12-14 2020-07-31 华东理工大学 含多面体低聚半倍硅氧烷基硫脲衍生物及其在制备纳米缓释香料中的应用
WO2020004487A1 (ja) * 2018-06-26 2020-01-02 日東電工株式会社 シーラントシート

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2768205A (en) 1955-09-20 1956-10-23 American Cyanamid Co Preparation of biguanides
US3261809A (en) 1962-11-02 1966-07-19 American Cyanamid Co Substituted isobiguanide catalysts for epoxy resins
JPH09278378A (ja) 1996-04-05 1997-10-28 Sumitomo Constr Mach Co Ltd エコライザ−シ−ブを有するウインチのドラム構造
JPH09292712A (ja) 1996-04-26 1997-11-11 Fuji Photo Film Co Ltd 感光材料
JPH115033A (ja) 1997-04-24 1999-01-12 Wako Pure Chem Ind Ltd 炭素−炭素結合形成方法
JP2003212856A (ja) 2001-11-14 2003-07-30 Hitachi Chem Co Ltd 光塩基発生剤、硬化性組成物及び硬化方法
DE102006010034A1 (de) 2006-03-04 2007-09-06 Degussa Ag Stickstoff-haltige Phosphoniumsalze
JP2007291313A (ja) 2005-07-28 2007-11-08 Osaka City 紫外線硬化性樹脂組成物、当該硬化物、およびこれらから誘導される各種物品
WO2009110582A1 (ja) 2008-03-07 2009-09-11 和光純薬工業株式会社 半導体表面用処理剤組成物及びそれを用いた半導体表面の処理方法
WO2009122664A1 (ja) 2008-03-31 2009-10-08 サンアプロ株式会社 光塩基発生剤
JP2010138234A (ja) * 2008-12-10 2010-06-24 Toyo Ink Mfg Co Ltd 帯電防止剤およびその用途
WO2010095390A1 (ja) 2009-02-18 2010-08-26 サンアプロ株式会社 感光性樹脂組成物
JP2011080032A (ja) 2009-09-08 2011-04-21 Tokyo Univ Of Science 新規な化合物、塩基発生剤及び当該塩基発生剤を含有する感光性樹脂組成物
JP2011236416A (ja) 2010-04-14 2011-11-24 Tokyo Univ Of Science 感光性樹脂組成物
JP2012131936A (ja) 2010-12-22 2012-07-12 Three Bond Co Ltd アミンイミド化合物、およびそれを用いた組成物およびその硬化方法
WO2012142126A2 (en) * 2011-04-12 2012-10-18 Brewer Science Inc. Method of making radiation-sensitive sol-gel materials
JP2012250969A (ja) 2011-05-09 2012-12-20 Tokyo Univ Of Science カルボン酸化合物、塩基発生剤及び当該塩基発生剤を含有する感光性樹脂組成物
WO2013089100A1 (ja) * 2011-12-16 2013-06-20 株式会社スリーボンド 硬化性樹脂組成物
JP2013137489A (ja) 2011-12-27 2013-07-11 Samsung Electro-Mechanics Co Ltd フォトマスク及びその製造方法
JP2014028938A (ja) 2012-06-29 2014-02-13 Arakawa Chem Ind Co Ltd 印刷レジスト用活性エネルギー線硬化性樹脂組成物、これを用いたレジストパターンの形成方法、印刷レジスト積層体およびプリント配線基板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278738A (ja) 1996-04-15 1997-10-28 Fuji Photo Film Co Ltd 塩基の生成方法
CN105339340B (zh) 2013-06-28 2018-10-12 富士胶片和光纯药株式会社 产碱剂、含有该产碱剂的碱反应性组合物和产碱方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2768205A (en) 1955-09-20 1956-10-23 American Cyanamid Co Preparation of biguanides
US3261809A (en) 1962-11-02 1966-07-19 American Cyanamid Co Substituted isobiguanide catalysts for epoxy resins
JPH09278378A (ja) 1996-04-05 1997-10-28 Sumitomo Constr Mach Co Ltd エコライザ−シ−ブを有するウインチのドラム構造
JPH09292712A (ja) 1996-04-26 1997-11-11 Fuji Photo Film Co Ltd 感光材料
JPH115033A (ja) 1997-04-24 1999-01-12 Wako Pure Chem Ind Ltd 炭素−炭素結合形成方法
JP2003212856A (ja) 2001-11-14 2003-07-30 Hitachi Chem Co Ltd 光塩基発生剤、硬化性組成物及び硬化方法
JP2007291313A (ja) 2005-07-28 2007-11-08 Osaka City 紫外線硬化性樹脂組成物、当該硬化物、およびこれらから誘導される各種物品
DE102006010034A1 (de) 2006-03-04 2007-09-06 Degussa Ag Stickstoff-haltige Phosphoniumsalze
WO2009110582A1 (ja) 2008-03-07 2009-09-11 和光純薬工業株式会社 半導体表面用処理剤組成物及びそれを用いた半導体表面の処理方法
WO2009122664A1 (ja) 2008-03-31 2009-10-08 サンアプロ株式会社 光塩基発生剤
JP2010138234A (ja) * 2008-12-10 2010-06-24 Toyo Ink Mfg Co Ltd 帯電防止剤およびその用途
WO2010095390A1 (ja) 2009-02-18 2010-08-26 サンアプロ株式会社 感光性樹脂組成物
JP2011080032A (ja) 2009-09-08 2011-04-21 Tokyo Univ Of Science 新規な化合物、塩基発生剤及び当該塩基発生剤を含有する感光性樹脂組成物
JP2011236416A (ja) 2010-04-14 2011-11-24 Tokyo Univ Of Science 感光性樹脂組成物
JP2012131936A (ja) 2010-12-22 2012-07-12 Three Bond Co Ltd アミンイミド化合物、およびそれを用いた組成物およびその硬化方法
WO2012142126A2 (en) * 2011-04-12 2012-10-18 Brewer Science Inc. Method of making radiation-sensitive sol-gel materials
JP2012250969A (ja) 2011-05-09 2012-12-20 Tokyo Univ Of Science カルボン酸化合物、塩基発生剤及び当該塩基発生剤を含有する感光性樹脂組成物
WO2013089100A1 (ja) * 2011-12-16 2013-06-20 株式会社スリーボンド 硬化性樹脂組成物
JP2013137489A (ja) 2011-12-27 2013-07-11 Samsung Electro-Mechanics Co Ltd フォトマスク及びその製造方法
JP2014028938A (ja) 2012-06-29 2014-02-13 Arakawa Chem Ind Co Ltd 印刷レジスト用活性エネルギー線硬化性樹脂組成物、これを用いたレジストパターンの形成方法、印刷レジスト積層体およびプリント配線基板

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
CHEM. BER., vol. 117, 1984, pages 1900 - 1912
J. AM. CHEM. SOC., vol. 117, 1995, pages 11369 - 11370
J. AM. CHEM. SOC., vol. 130, 2008, pages 8130
J. PHOTOPOLYM. SCI. TECH., vol. 25, 2012, pages 497 - 499
J. POLYM. SCI., PART A: POLYM. CHEM., vol. 32, 1994, pages 1793
MACROMOLECULES, vol. 31, 1998, pages 6476 - 6480
MACROMOLECULES, vol. 31, 1998, pages 951 - 954
MACROMOLECULES, vol. 32, 1999, pages 328 - 330
SCHMIDPETER, ALFRED ET AL.: "Phosphazenes. XXX. Ammonolysis of chlorophosphoranes, Zeitschrift fuer Naturforschung, Teil B: Anorganische Chemie", ORGANISCHE CHEMIE, BIOCHEMIE, BIOPHYSIK, BIOLOGIE, vol. 24, no. 7, 1969, pages 799 - 810, XP055214827 *
SCHWESINGER, REINHARD ET AL.: "Extremely base- resistant organic phosphazenium cations", CHEMISTRY - A EUROPEAN JOURNAL, vol. 12, no. 2, 2005, pages 429 - 437, XP055214822 *
See also references of EP3098226A4
TETRAHEDRON LETT., vol. 39, 1998, pages 2743

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024577A1 (ja) * 2014-08-12 2016-02-18 東ソー株式会社 アルキレンオキシド重合触媒及びそれを用いたポリアルキレンオキシドの製造方法
JP2016040346A (ja) * 2014-08-12 2016-03-24 東ソー株式会社 アルキレンオキシド重合触媒およびそれを用いたポリアルキレンオキシドの製造法
JP2016040345A (ja) * 2014-08-12 2016-03-24 東ソー株式会社 アルキレンオキシド重合触媒およびそれを用いたポリアルキレンオキシドの製造方法
JP2016089084A (ja) * 2014-11-07 2016-05-23 協立化学産業株式会社 光硬化性樹脂組成物
JP2016124927A (ja) * 2014-12-26 2016-07-11 株式会社リコー 光塩基発生剤を含む活性光線硬化組成物及び活性光線硬化型インクジェット用インク
TWI701255B (zh) * 2015-07-24 2020-08-11 日商富士軟片和光純藥股份有限公司 具有耐酸性之鹼或/及自由基產生劑,以及含有該鹼或/及自由基產生劑之硬化性樹脂組成物
WO2017018361A1 (ja) * 2015-07-24 2017-02-02 和光純薬工業株式会社 耐酸性を有する塩基または/およびラジカル発生剤、ならびに該塩基または/およびラジカル発生剤を含有する硬化性樹脂組成物
US10428015B2 (en) 2015-07-24 2019-10-01 Fujifilm Wako Pure Chemical Corporation Acid-resistant base and/or radical generator, and curable resin composition containing said base and/or radical generator
KR20180034386A (ko) 2015-07-24 2018-04-04 와코 쥰야꾸 고교 가부시키가이샤 내산성을 갖는 염기 및/또는 라디칼 발생제, 및 그 염기 및/또는 라디칼 발생제를 함유하는 경화성 수지 조성물
JP2017120367A (ja) * 2015-12-28 2017-07-06 信越化学工業株式会社 レジスト材料及びパターン形成方法
KR20170077815A (ko) 2015-12-28 2017-07-06 신에쓰 가가꾸 고교 가부시끼가이샤 레지스트 재료 및 패턴 형성 방법
US9897914B2 (en) 2015-12-28 2018-02-20 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9958776B2 (en) 2015-12-28 2018-05-01 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US10222696B2 (en) 2015-12-28 2019-03-05 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
KR20180105186A (ko) * 2016-01-26 2018-09-27 후지필름 와코 준야꾸 가부시키가이샤 광 경화 방법, 그에 사용되는 화합물 및 조성물
KR102678451B1 (ko) * 2016-01-26 2024-06-26 후지필름 와코 준야꾸 가부시키가이샤 광 경화 방법, 그에 사용되는 화합물 및 조성물
KR101920165B1 (ko) 2016-09-20 2018-11-19 신에쓰 가가꾸 고교 가부시끼가이샤 레지스트 재료 및 패턴 형성 방법
KR101933801B1 (ko) 2016-09-20 2018-12-28 신에쓰 가가꾸 고교 가부시끼가이샤 레지스트 재료 및 패턴 형성 방법
JP2018049263A (ja) * 2016-09-20 2018-03-29 信越化学工業株式会社 レジスト材料及びパターン形成方法
CN107844032A (zh) * 2016-09-20 2018-03-27 信越化学工业株式会社 抗蚀剂组合物和图案化方法
WO2018105537A1 (ja) * 2016-12-08 2018-06-14 株式会社日本触媒 光ルイス酸発生剤
JPWO2018230580A1 (ja) * 2017-06-12 2020-04-16 富士フイルム和光純薬株式会社 光又は熱硬化方法、及び硬化性樹脂組成物
CN110678500A (zh) * 2017-06-12 2020-01-10 富士胶片和光纯药株式会社 光或热固化方法及固化性树脂组合物
US11548984B2 (en) 2017-06-12 2023-01-10 Fujifilm Wako Pure Chemical Corporation Light- or heat-curing method and curable resin composition
JP7504348B2 (ja) 2017-06-12 2024-06-24 富士フイルム和光純薬株式会社 光又は熱硬化方法、及び硬化性樹脂組成物
WO2018230580A1 (ja) * 2017-06-12 2018-12-20 富士フイルム和光純薬株式会社 光又は熱硬化方法、及び硬化性樹脂組成物
US11053328B2 (en) 2019-04-15 2021-07-06 Panasonic Intellectual Property Management Co., Ltd. Photocurable composition
WO2024048612A1 (ja) * 2022-08-31 2024-03-07 株式会社クレハ 硬化性組成物、硬化物、及び硬化物の製造方法

Also Published As

Publication number Publication date
KR102343473B1 (ko) 2021-12-28
TW201538512A (zh) 2015-10-16
KR20160113149A (ko) 2016-09-28
TWI649327B (zh) 2019-02-01
EP3098226A4 (en) 2017-06-21
EP3098226A1 (en) 2016-11-30
US10100070B2 (en) 2018-10-16
US20160340374A1 (en) 2016-11-24
JPWO2015111640A1 (ja) 2017-03-23
ES2709023T3 (es) 2019-04-12
EP3098226B1 (en) 2018-12-12
CN106414461B (zh) 2018-09-11
CN106414461A (zh) 2017-02-15
JP6428646B2 (ja) 2018-11-28

Similar Documents

Publication Publication Date Title
JP6428646B2 (ja) ボレート系塩基発生剤および該塩基発生剤を含有する塩基反応性組成物
JP6332870B2 (ja) 塩基発生剤、該塩基発生剤を含有する塩基反応性組成物および塩基発生方法
JP6822401B2 (ja) 化合物、耐酸性を有する塩基または/およびラジカル発生剤、ならびに該塩基または/およびラジカル発生剤を含有する硬化性樹脂組成物
CN108602955B (zh) 光固化方法、该光固化方法中使用的化合物以及组合物
WO2018207836A1 (ja) 活性エネルギー線硬化型組成物、硬化膜の製造方法及び硬化物
CN115190891A (zh) 固化性树脂组合物、固化膜、层叠体、固化膜的制造方法及半导体器件
WO2021246457A1 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP5224016B2 (ja) 感活性エネルギー線塩基発生剤、感活性エネルギー線塩基発生剤組成物、塩基反応性組成物及びパターン形成方法
KR101991838B1 (ko) 신규 1,3-벤조디아졸 베타-옥심 에스테르 화합물 및 이를 포함하는 조성물
CN118244579A (zh) 着色固化性组合物、滤色器和显示装置
CN118244578A (zh) 着色固化性组合物、滤色器和显示装置
CN118584748A (zh) 固化性树脂组合物、滤色器和显示装置
CN118591596A (zh) 着色组合物
CN115768832A (zh) 树脂组合物及其制造方法以及图案形成用组合物的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15741026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559097

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015741026

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015741026

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15114048

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167021497

Country of ref document: KR

Kind code of ref document: A