WO2015111566A1 - 重質油の流動接触分解法 - Google Patents
重質油の流動接触分解法 Download PDFInfo
- Publication number
- WO2015111566A1 WO2015111566A1 PCT/JP2015/051347 JP2015051347W WO2015111566A1 WO 2015111566 A1 WO2015111566 A1 WO 2015111566A1 JP 2015051347 W JP2015051347 W JP 2015051347W WO 2015111566 A1 WO2015111566 A1 WO 2015111566A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- catalytic cracking
- fluid catalytic
- heavy oil
- mass
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
- C10G11/04—Oxides
- C10G11/05—Crystalline alumino-silicates, e.g. molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
- C10G11/18—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1033—Oil well production fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/107—Atmospheric residues having a boiling point of at least about 538 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1077—Vacuum residues
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
Definitions
- the present invention relates to a fluid catalytic cracking method of heavy oil, and more particularly to a fluid catalytic cracking method for obtaining light olefins such as propylene and butene from heavy oil in high yield.
- Such a method of using a fluid catalytic cracker has an economic advantage particularly in refineries where oil refining and petrochemical factories are highly coupled.
- Examples of the method for producing light olefins by fluid catalytic cracking of heavy oil include, for example, a method of shortening the contact time between the catalyst and the feedstock (Patent Documents 1 to 4), a method of performing a reaction at a high temperature (Patent Document 5), Examples thereof include methods using pentasil-type zeolite (Patent Documents 6 to 7).
- the selectivity for light olefins has not been sufficiently improved.
- the pyrolysis is combined with an increase in unnecessary dry gas yield, and the yield of useful light olefin is sacrificed accordingly.
- the quality of gasoline obtained together with the light olefin deteriorates.
- the method of shortening the contact time can suppress the hydrogen transfer reaction and reduce the rate of conversion of light olefins to light paraffin, but the conversion rate cannot be increased, so the yield of light olefins is still insufficient. It is.
- Patent Document 8 a method (Patent Document 8) has been proposed that combines these techniques such as high temperature reaction, high catalyst / oil ratio, and short contact time to suppress thermal decomposition and achieve high conversion (Patent Document 8).
- the olefin yield is not sufficient.
- the method using pentasil-type zeolite only increases the light olefin yield by overdecomposing gasoline, so the light olefin yield is not sufficiently increased, and the gasoline yield is significantly reduced. . Therefore, it is difficult to obtain light olefins from heavy oil in high yield by these methods.
- Patent Document 9 In addition to high temperature reaction, high catalyst / oil ratio, short contact time, a down flow type reaction zone that can suppress back mixing in the reaction zone, and content and shape selectivity of rare earth metal oxide in fluid catalytic cracking catalyst. There has been proposed a method (Patent Document 9) for further improving the light olefin yield by adjusting the mixing ratio of the additive containing zeolite. However, even if these methods are used, when the activity of the fluid catalytic cracking catalyst is not sufficient, the cracking of the heavy feedstock is insufficient and the light olefin yield has not been maximized.
- the object of the present invention is to provide an improved heavy oil fluidized catalytic cracking method that can produce light olefins in a high yield by reducing the amount of dry gas generated by thermal cracking by combining the reaction type, reaction conditions, catalyst, etc. There is to do.
- the present inventors diligently focused on obtaining a light olefin in a high yield in a fluid catalytic cracking process for obtaining light olefins such as propylene and butene by fluid catalytic cracking of heavy oil at a high temperature and a short contact time.
- the inventors have found that the object can be achieved by using a catalyst containing a specific fluid catalytic cracking catalyst and subjecting heavy oil to fluid catalytic cracking under specific conditions, and have reached the present invention. .
- the present invention relates to a process for producing light olefins by fluid catalytic cracking of heavy oil, in which the reaction zone outlet temperature is 580 to 630 ° C., the catalyst / oil ratio is 15 to 40 weight / weight, and carbonization in the reaction zone is performed.
- a heavy oil fluidized catalytic cracking method comprising contacting a heavy oil with a catalyst containing a catalytic cracking catalyst as a constituent component.
- the present invention also relates to the above-described fluid catalytic cracking method of heavy oil, characterized in that the catalyst comprises 50 to 95% by mass of a fluid catalytic cracking catalyst and 5 to 50% by mass of an additive containing a shape selective zeolite. .
- the present invention also relates to the above heavy oil fluid catalytic cracking method, wherein the content of ultrastable Y-type zeolite in the fluid catalytic cracking catalyst is 5 to 50% by mass.
- the present invention also relates to the above-described fluid catalytic cracking method of heavy oil, characterized in that the crystal lattice constant of the ultrastable Y-type zeolite is 24.20 to 24.60 ⁇ .
- the present invention also relates to the fluid catalytic cracking method of heavy oil, wherein the content of rare earth metal oxide in the fluid catalytic cracking catalyst is 1.5% by mass or less. Furthermore, the present invention relates to the above-described fluid catalytic cracking method of heavy oil, characterized by using a fluid catalytic cracking reactor having a down flow type reaction zone, a gas-solid separation zone, a stripping zone and a catalyst regeneration zone.
- the amount of dry gas generated by thermal decomposition is small, and light olefins such as propylene and butene can be obtained in high yield.
- the present invention is a fluid catalytic cracking process of heavy oil for producing light olefins.
- fluid catalytic cracking is one in which heavy oil is continuously brought into contact with a catalyst held in a fluid state to decompose heavy oil into light hydrocarbons mainly composed of light olefins and gasoline.
- a fluid catalytic cracker having a reaction zone, a gas-solid separation zone, a stripping zone and a catalyst regeneration zone is used.
- reaction zone examples include a so-called riser reaction zone in which both catalyst particles and feedstock oil rise in the pipe, and a downflow type (downer) reaction zone in which both catalyst particles and feedstock oil fall in the pipe.
- riser reaction zone in which both catalyst particles and feedstock oil rise in the pipe
- downflow type (downer) reaction zone in which both catalyst particles and feedstock oil fall in the pipe.
- thermal decomposition is undesirable because it increases the generation of unnecessary dry gas and decreases the yield of the desired light olefin and gasoline. Therefore, in the present invention, a down flow type (downer) reaction zone in which both catalyst particles and raw material oil descend in the pipe is preferably used.
- the cracked reaction mixture comprising the mixture of cracked reaction product, unreacted material and spent catalyst that has undergone fluid catalytic cracking in the reaction zone is then sent to the gas-solid separation zone where the cracked reaction product, unreacted from the catalyst particles. Most of hydrocarbons such as waste are removed. In some cases, the decomposition reaction mixture is quenched immediately before or after the gas-solid separation zone in order to suppress unnecessary thermal decomposition or excessive decomposition.
- the spent catalyst from which most of the hydrocarbons have been removed is further sent to the stripping zone, where hydrocarbons that could not be completely removed in the gas-solid separation zone are removed by the stripping gas.
- the used catalyst with the carbonaceous material and some heavy hydrocarbons attached is regenerated from the stripping zone in order to regenerate the spent catalyst. Sent to the band.
- the used catalyst is oxidized, and carbonaceous substances and heavy hydrocarbons deposited and deposited on the catalyst are removed and regenerated.
- the catalyst regenerated by this oxidation treatment is sent again to the reaction zone and continuously circulated.
- FIG. 1 shows an example of a fluid catalytic cracking reaction apparatus having a downflow type reaction zone, a gas-solid separation zone, a stripping zone, and a catalyst regeneration zone. The present invention will be described below with reference to FIG.
- the heavy oil as the raw material is supplied to the mixing region 7 through the line 10 and mixed with the regenerated catalyst circulated from the catalyst storage tank 6.
- the mixture flows down in the reaction zone 1 in a parallel flow, and during this time, the raw heavy oil and the catalyst are brought into contact with each other at a high temperature for a short time, and the heavy oil is decomposed.
- the decomposition reaction mixture from reaction zone 1 flows down to gas-solid separation zone 2 located below reaction zone 1, where spent catalyst is separated from decomposition reaction products and unreacted raw materials, and dipleg 9 is Then, it is guided to the upper part of the stripping band 3.
- the hydrocarbon gas from which most of the spent catalyst has been removed is then led to the secondary separator 8.
- a small amount of spent catalyst remaining in the gas is removed, and the hydrocarbon gas is extracted out of the system and recovered.
- a tangential cyclone is preferably used as the secondary separator 8.
- the spent catalyst in the stripping zone 3 is removed by the stripping gas introduced from the line 11 to remove remaining hydrocarbons adhering to the surface of the used catalyst or between the catalysts.
- the stripping gas an inert gas such as nitrogen generated by a steam or a compressor generated by a boiler is used.
- a temperature of 500 to 900 ° C., preferably 500 to 700 ° C., and a catalyst particle residence time of 1 to 10 minutes are usually employed.
- the stripping zone 3 the decomposition reaction products and unreacted raw materials adhering to the spent catalyst are removed, and the stripping gas is extracted from the line 12 at the top of the stripping zone 3 and led to the recovery system.
- the spent catalyst that has undergone the stripping process is supplied to the catalyst regeneration zone 4 through a line including the first flow rate regulator 13.
- the gas superficial velocity in the stripping zone 3 is usually preferably maintained in the range of 0.05 to 0.4 m / s, so that the fluidized bed in the stripping zone can be a bubble fluidized bed. Since the gas velocity is relatively small in the bubbling fluidized bed, the consumption of the stripping gas can be reduced, and since the bed density is relatively large, the pressure control width of the first flow rate regulator 13 can be increased. Therefore, the transfer of the catalyst particles from the stripping zone 3 to the catalyst regeneration zone 4 is facilitated.
- a horizontal perforated plate and other insertions can be provided in multiple stages for the purpose of improving the contact between the used catalyst and the stripping gas and improving the stripping efficiency.
- the catalyst regeneration zone 4 is partitioned by a container having a conical upper portion and a cylindrical lower portion, and the upper conical portion communicates with an upright conduit (riser type regeneration tower) 5.
- the apex angle of the upper cone portion is usually in the range of 30 to 90 degrees, and the height of the upper cone portion is preferably in the range of 1/2 to 2 times the diameter of the lower cylindrical portion.
- the spent catalyst supplied from the stripping zone 3 to the catalyst regeneration zone 4 is fluidized by a regeneration gas (typically an oxygen-containing gas such as air) introduced from the bottom of the catalyst regeneration zone 4. It is regenerated by burning off substantially all of the carbonaceous material and heavy hydrocarbons adhering to the surface.
- a temperature of 600 to 1000 ° C., preferably 650 to 750 ° C., a catalyst residence time of 1 to 5 minutes is adopted, and a gas superficial velocity is preferably 0.4 to 1.2 m / s. Adopted.
- the regenerated catalyst regenerated in the catalyst regeneration zone 4 and jumped out from the upper part of the turbulent fluidized bed is transferred to the riser type regeneration tower 5 from the upper conical portion along with the used regeneration gas.
- the diameter of the riser type regeneration tower 5 communicating with the upper conical portion of the catalyst regeneration zone 4 is preferably 1/6 to 1/3 of the diameter of the lower cylindrical portion.
- the regenerated catalyst rising in the riser type regeneration tower 5 is carried to a catalyst storage tank 6 installed at the top of the riser type regeneration tower.
- the catalyst storage tank 6 also functions as a gas-solid separator, and the used regeneration gas containing carbon dioxide gas or the like is separated from the regeneration catalyst here and discharged out of the system via the cyclone 15.
- the regenerated catalyst in the catalyst storage tank 6 is supplied to the mixing region 7 via a downflow pipe equipped with a second flow rate regulator 17. If necessary, a part of the regenerated catalyst in the catalyst storage tank 6 is regenerated through a bypass conduit having a third flow rate regulator 16 in order to easily control the amount of catalyst circulation in the riser type regeneration tower 5. It can also be returned to band 4. In this way, the catalyst passes through the downflow type reaction zone 1, the gas-solid separation zone 2, the stripping zone 3, the catalyst regeneration zone 4, the riser type regeneration tower 5, the catalyst storage tank 6, and the mixing region 7, and again the downflow type. It circulates in the system in the order of reaction zone 1.
- Examples of the heavy oil used as a raw material in the present invention include vacuum gas oil, atmospheric residue, vacuum residue, pyrolysis gas oil, and heavy oil obtained by hydrorefining these. These heavy oils may be used alone, or a mixture of these heavy oils or a mixture of these heavy oils with a part of light oil may be used.
- the distillation properties of heavy oils used as raw material oils are preferably those having a boiling range of 170 to 800 ° C, more preferably 190 to 780 ° C.
- the reaction zone outlet temperature as used in the present invention is the outlet temperature of the reaction zone, and when the decomposition reaction product is rapidly cooled immediately before the separation from the catalyst or before the gas-solid separation zone, it is rapidly cooled.
- the reaction zone outlet temperature is 580 to 630 ° C., preferably 590 to 620 ° C. If the temperature is lower than 580 ° C., a light olefin cannot be obtained in a high yield, and if it is higher than 630 ° C., thermal decomposition becomes remarkable and the amount of dry gas generated is not preferable.
- the catalyst / oil ratio indicates the ratio of the catalyst circulation rate (ton / h) to the feed oil supply rate (ton / h).
- the catalyst / oil ratio needs to be 15 to 40 weight / weight, preferably 20 to 30 weight / weight.
- the catalyst / oil ratio is smaller than 15 weight / weight, the temperature of the regenerated catalyst supplied to the reaction zone becomes high in view of heat balance, which is not preferable because the amount of dry gas generated by thermal decomposition increases.
- the catalyst / oil ratio is larger than 40 weight / weight, the catalyst circulation amount becomes large, and the capacity of the catalyst regeneration zone becomes too large to secure the catalyst residence time necessary for catalyst regeneration in the catalyst regeneration zone. Therefore, it is not preferable.
- the hydrocarbon residence time as used in the present invention is the time from when the catalyst comes into contact with the raw material oil until the catalyst and the decomposition reaction product are separated at the outlet of the reaction zone, or immediately before the gas-solid separation zone. In the case, the time until quenching is shown.
- the residence time is required to be 0.1 to 1.0 seconds, and preferably 0.2 to 0.7 seconds.
- the residence time of hydrocarbons in the reaction zone is shorter than 0.1 seconds, the decomposition reaction becomes insufficient and light olefins cannot be obtained in high yield.
- the residence time is longer than 1.0 seconds, the contribution of thermal decomposition becomes large, which is not preferable.
- the operating conditions of the fluid catalytic cracking reactor in the present invention are not particularly limited except for the above, but usually, the operation is preferably carried out at a reaction pressure of 150 to 400 kPa.
- the catalyst used in the present invention comprises a fluid catalytic cracking catalyst and an additive.
- the fluid catalytic cracking catalyst comprises a zeolite which is an active component and a matrix which is a supporting matrix thereof.
- the main component of the zeolite is ultrastable Y-type zeolite.
- the matrix is composed of an active matrix, a binder (such as silica), a filler (such as clay mineral), and other components (such as rare earth metal oxides and metal trap components).
- the active matrix has decomposition activity, and examples thereof include alumina and silica alumina.
- an active matrix is added to the fluid catalytic cracking catalyst in order to roughly crack the feedstock to a form that can be cracked by ultrastable Y-type zeolite.
- a catalyst having a low content of the active matrix can provide a higher decomposition activity.
- the fluid catalytic cracking catalyst according to the present invention requires that the ratio (Wmat / Wusy) of the ultrastable Y-type zeolite mass (Wusy) to the active matrix mass (Wmat) is 0 to 0.3, preferably 0 ⁇ 0.28.
- the content of the rare earth metal oxide in the fluid catalytic cracking catalyst is preferably 1.5% by mass or less, more preferably 1.2% by mass or less, and particularly preferably 1.0% by mass or less.
- the content of the rare earth metal oxide in the fluid catalytic cracking catalyst is more than 1.5% by mass, the hydrogen transfer activity becomes too high, and the cracking activity increases, but the light olefin yield decreases.
- the heat resistance increases, so the activity of the equilibrium catalyst increases.
- an equilibrium catalyst containing a large amount of rare earth metal oxide has a high hydrogen transfer activity.
- the hydrogen transfer activity of the fluid catalytic cracking catalyst increases, the olefin in the product decreases and the paraffin increases.
- Olefins mainly in gasoline fractions are decomposed into light olefins by an additive containing a shape selective zeolite described later.
- the crystal lattice constant of the ultrastable Y-type zeolite is preferably 24.20 to 24.60 ⁇ , more preferably 24.36 to 24.45 ⁇ . In this range, the gasoline yield decreases as the crystal lattice constant decreases, but the light olefin yield increases. However, when the crystal lattice constant is smaller than 24.20 ⁇ , the cracking activity of the fluid catalytic cracking catalyst is too low to obtain a high conversion rate, so that the light olefin yield decreases. On the other hand, when the lattice constant is larger than 24.60 mm, the hydrogen transfer activity becomes too high.
- the crystal lattice constant of zeolite here is measured by ASTM D-3942-80.
- the ultrastable Y-type zeolite content in the fluid catalytic cracking catalyst is preferably 5 to 50% by mass, more preferably 15 to 40% by mass.
- the bulk density of the fluid catalytic cracking catalyst is 0.5 to 1.0 g / ml, the average particle size is 50 to 90 ⁇ m, the surface area is 50 to 350 m 2 / g, and the pore volume is 0.05 to 0.5 ml / g. A range is preferred.
- the additive that is a constituent of the catalyst used in the present invention contains a shape-selective zeolite.
- Constituent components other than the shape-selective zeolite include a binder (such as silica) and a filler (such as clay mineral).
- Shape-selective zeolite is a zeolite whose pore diameter is smaller than that of Y-type zeolite, and only limited-shaped hydrocarbons can enter the pores. Examples of such zeolite include ZSM-5, ⁇ , omega, SAPO-5, SAPO-11, SAPO-34, and pentasil-type metallosilicate. Of these shape selective zeolites, ZSM-5 is most preferred.
- the shape-selective zeolite content in the additive is preferably 20 to 70% by mass, more preferably 30 to 60% by mass.
- the bulk density of the additive is in the range of 0.5 to 1.0 g / ml, the average particle size is 50 to 90 ⁇ m, the surface area is 10 to 200 m 2 / g, and the pore volume is in the range of 0.01 to 0.3 ml / g. Preferably there is.
- the ratio of the fluid catalytic cracking catalyst and the additive in the catalyst used in the present invention is 50 to 95% by mass, preferably 55 to 90% by mass for the fluid catalytic cracking catalyst, and 5% for the additive containing the shape selective zeolite. It is preferable that the content be from ⁇ 50 mass%, preferably from 10 to 45 mass%.
- the ratio of the fluid catalytic cracking catalyst is less than 50% by mass, or when the ratio of the additive is more than 50% by mass, the conversion rate of the heavy oil as the raw material oil decreases, and a high light olefin No yield is obtained.
- Example 1 Heavy oil fluidized catalytic cracking was carried out using a downflow reactor (downer) type FCC pilot device.
- the equipment scale is inventory-5 kg, feed amount 1 kg / h, operating conditions are reaction zone outlet temperature 600 ° C., reaction pressure 196 kPa (1.0 kg / cm 2 G), catalyst / oil ratio 25 weight / weight.
- the catalyst regeneration zone temperature is 720 ° C. At this time, the hydrocarbon residence time in the reactor was 0.5 seconds.
- the raw material oil used was a desulfurized atmospheric residue oil (desulfurized AR) of the Middle East (Arabian Light).
- the catalyst used was a mixture of 75% by mass of fluid catalytic cracking catalyst (A) and 25% by mass of an additive containing ZSM-5 (Davison, trade name OlefinsMax).
- the ratio (Wmat / Wusy) of the ultrastable Y-type zeolite mass (Wusy) and the active matrix mass (Wmat) contained in the fluid catalytic cracking catalyst is 0 (zero), and the super catalyst contained in the fluid catalytic cracking catalyst (A)
- the crystal lattice constant of stable Y-type zeolite is 24.40 ⁇ .
- the fluid catalytic cracking catalyst (A) and the additive were each separately steamed at 100% steam for 6 hours at 810 ° C. before being charged to the apparatus. The results of the decomposition reaction are shown in Table 1.
- Example 2 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
- the raw material oil used was the same Middle Eastern (Arabian light) desulfurized atmospheric residue oil (desulfurized AR) as in Example 1.
- the fluid catalytic cracking catalyst (B) used has a ratio (Wmat / Wusy) of the contained ultrastable Y-type zeolite mass (Wusy) and active matrix mass (Wmat) to 0.13.
- the results of the decomposition reaction are shown in Table 1.
- Example 3 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
- the raw material oil used was the same Middle Eastern (Arabian light) desulfurized atmospheric residue oil (desulfurized AR) as in Example 1.
- the fluid catalytic cracking catalyst (C) used has a ratio (Wmat / Wusy) of the ultrastable Y-type zeolite mass (Wusy) and active matrix mass (Wmat) contained to 0.26, and the fluid catalytic cracking catalyst (C) The rare earth oxide content is 1.50% by mass.
- Table 1 The results of the decomposition reaction are shown in Table 1.
- Example 4 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
- the feedstock used was the same Middle Eastern (Arabyanlite) desulfurized vacuum gas oil (desulfurized VGO) as in Example 1.
- the catalyst used was a fluid catalytic cracking catalyst (A), and the ratio (Wmat / Wusy) of the contained ultrastable Y-type zeolite mass (Wusy) to active matrix mass (Wmat) was 0 (zero).
- the results of the decomposition reaction are shown in Table 1.
- Example 5 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
- the feedstock used was the same Middle Eastern (Arabyanlite) desulfurized vacuum gas oil (desulfurized VGO) as in Example 1.
- the catalyst used was a fluid catalytic cracking catalyst (B), and the ratio (Wmat / Wusy) of the contained ultrastable Y-type zeolite mass (Wusy) to active matrix mass (Wmat) was 0.13.
- the results of the decomposition reaction are shown in Table 1.
- Example 6 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
- the feedstock used was the same Middle Eastern (Arabyanlite) desulfurized vacuum gas oil (desulfurized VGO) as in Example 1.
- the catalyst used was a fluid catalytic cracking catalyst (C), and the ratio (Wmat / Wusy) of the contained ultrastable Y-type zeolite mass (Wusy) to active matrix mass (Wmat) was 0.26.
- the rare earth oxide content of (C) is 1.50% by mass.
- Table 1 The results of the decomposition reaction are shown in Table 1.
- Example 7 Heavy oil under the same conditions as in Example 2 except that a mixture of 53% by mass of fluid catalytic cracking catalyst (B) and 47% by mass of an additive containing ZSM-5 (trade name OlefinsMax, manufactured by Davison) was used as the catalyst. Was subjected to fluid catalytic cracking. The results of the decomposition reaction are shown in Table 1.
- Example 1 Comparative Example 1 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
- the feedstock used was the same Middle Eastern (Arabyanlite) atmospheric residue (AR) as in Example 1.
- the fluid catalytic cracking catalyst (D) used has a ratio (Wmat / Wusy) of the ultrastable Y-type zeolite mass (Wusy) and active matrix mass (Wmat) contained to 0.50, and the fluid catalytic cracking catalyst (D) This rare earth metal is 0 (zero).
- Table 1 The results of the decomposition reaction are shown in Table 1.
- Example 2 (Comparative Example 2) Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
- the feedstock used was the same Middle Eastern (Arabyanlite) desulfurized vacuum gas oil (desulfurized VGO) as in Example 4.
- the catalyst used was a fluid catalytic cracking catalyst (D), and the ratio (Wmat / Wusy) of the contained ultrastable Y-type zeolite mass (Wusy) to active matrix mass (Wmat) was 0.50.
- the rare earth metal of (D) is 0 (zero).
- Table 1 The results of the decomposition reaction are shown in Table 1.
- Heavy oil fluidized catalytic cracking was carried out using an upflow reactor (riser) type FCC pilot device.
- the equipment scale is inventory-3 kg, feed amount 1 kg / h, operating conditions are reaction zone outlet temperature 520 ° C., reaction pressure 196 kPa (1.0 kg / cm 2 G), catalyst / oil ratio 5 weight / weight.
- the catalyst regeneration zone temperature is 720 ° C. At this time, the hydrocarbon residence time in the reactor was 1.5 seconds.
- the feedstock used was a Middle Eastern (Arabian Light) atmospheric residue oil (AR).
- the catalyst used was a mixture of 75% by mass of fluid catalytic cracking catalyst (A) and 25% by mass of an additive containing ZSM-5 (Davison, trade name OlefinsMax).
- the ratio (Wmat / Wusy) of the ultrastable Y-type zeolite mass (Wusy) and the active matrix mass (Wmat) contained in the fluid catalytic cracking catalyst is 0 (zero), and the super catalyst contained in the fluid catalytic cracking catalyst (A)
- the crystal lattice constant of stable Y-type zeolite is 24.40 ⁇ .
- the fluid catalytic cracking catalyst (A) and the additive were each separately steamed at 100% steam for 6 hours at 810 ° C. before being charged to the apparatus. The results of the decomposition reaction are shown in Table 1.
- Comparative Example 4 Using the same apparatus as in Comparative Example 3, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
- the feedstock used was the same Middle Eastern (Arabyanlite) atmospheric residue (AR) as in Example 1.
- the catalyst used was the same fluid catalytic cracking catalyst (B) as in Example 2, and the ratio (Wmat / Wusy) of the ultrastable Y-type zeolite mass (Wusy) and active matrix mass (Wmat) contained was 0.13. is there. The results of the decomposition reaction are shown in Table 1.
- Comparative Example 5 Using the same apparatus as in Comparative Example 3, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
- the feedstock used was the same Middle Eastern (Arabyanlite) atmospheric residue (AR) as in Example 1.
- the fluid catalytic cracking catalyst (C) used has a ratio (Wmat / Wusy) of the ultrastable Y-type zeolite mass (Wusy) and active matrix mass (Wmat) contained to 0.26, and the fluid catalytic cracking catalyst (C)
- the rare earth oxide content is 1.50% by mass.
- Example 5 fluidized catalytic cracking of heavy oil under the same operating conditions as in Example 5 except that an upflow reactor (riser) type FCC pilot device was used instead of the downflow reactor (downer) type FCC pilot device. Went.
- Table 1 Since the residence time partially extends in the riser reaction zone due to the effect of backmixing, as a result of excessive decomposition of the gasoline fraction and an increase in dry gas, the liquid yield is higher than that in Example 5 using the downer reaction zone. It became low.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
しかしながら最近では流動接触分解装置をガソリン製造装置としてではなく石油化学原料としての軽質オレフィン(特にプロピレン)製造装置として利用していこうという動きがある。また一方、プロピレン、ブテン等は高オクタン価ガソリン基材であるアルキレート、メチル-t-ブチルエーテル(MTBE)の原料となる。このような流動接触分解装置の利用法は、石油精製と石油化学工場が高度に結びついた精油所において特に経済的なメリットがある。
重質油の流動接触分解により軽質オレフィンを製造する方法としては、例えば、触媒と原料油の接触時間を短くする方法(特許文献1~4)、高温で反応を行う方法(特許文献5)、ペンタシル型ゼオライトを用いる方法(特許文献6~7)等が挙げられる。
高温反応、高触媒/油比、短接触時間に加えて、反応帯域での逆混合を抑制できるダウンフロー形式反応帯域とし、さらに流動接触分解触媒中の希土類金属酸化物の含有量および形状選択性ゼオライトを含む添加剤の混合比率を調節することでさらに軽質オレフィン収率を向上させる方法(特許文献9)が提案されている。しかし、これらの方法を用いても、流動接触分解触媒の活性が十分でない場合は重質な原料油の分解が不足し、軽質オレフィン収率を最大化するまでには至っていなかった。
また本発明は、流動接触分解触媒中の超安定Y型ゼオライトの含有量が5~50質量%であることを特徴とする前記の重質油の流動接触分解法に関する。
また本発明は、超安定Y型ゼオライトの結晶格子定数が24.20~24.60Åであることを特徴とする前記の重質油の流動接触分解法に関する。
また本発明は、流動接触分解触媒中の希土類金属酸化物の含有量が1.5質量%以下であること特徴とする前記の重質油の流動接触分解法に関する。
さらに本発明は、ダウンフロー形式反応帯域、気固分離帯域、ストリッピング帯域および触媒再生帯域を有する流動接触分解反応装置を使用することを特徴とする前記の重質油の流動接触分解法に関する。
しかし、通常のライザー反応帯域を用いた場合には逆混合が起こり、局部的にガスの滞留時間が長くなり熱分解を併発するおそれがある。特に、本発明のように触媒/油比が通常の流動接触分解法に比べて極端に大きい場合には逆混合の程度は大きくなる。そして熱分解は不必要なドライガスの発生を増加させ、目的とする軽質オレフィンおよびガソリンの収率を減少させるため好ましくない。そのため本発明においては、触媒粒子と原料油が共に管中を降下するダウンフロー形式(ダウナー)反応帯域が好ましく用いられる。
原料油として用いる重質油の蒸留性状としては、沸点範囲が170~800℃のものが好ましく、190~780℃がより好ましい。
なお、本発明における流動接触分解反応装置の操作条件のうち上記以外については特に限定されないが、通常、反応圧力150~400kPaで好ましく運転される。
該流動接触分解触媒は、活性成分であるゼオライトとその支持母体であるマトリックスよりなっている。
該ゼオライトの主成分は超安定Y型ゼオライトである。
マトリックスは、活性マトリックス、バインダー(シリカ等)、フィラー(粘土鉱物等)、その他成分(希土類金属酸化物、メタルトラップ成分等)で構成される。
ここで、活性マトリックスとは、分解活性を持つもので、アルミナやシリカアルミナなどが挙げられる。
超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.3を超えると重質油の分解率が悪化する傾向にあり、また分解率に対するコーク選択性が高くなり軽質オレフィン収率が低下するため好ましくない。
なお、ここでいうゼオライトの結晶格子定数はASTM D-3942-80で測定したものである。
形状選択性ゼオライトはその細孔径がY型ゼオライトの細孔径よりも小さく、限られた形状の炭化水素のみがその細孔内へ進入できるというゼオライトである。そのようなゼオライトとして、ZSM-5、β、オメガ、SAPO-5、SAPO-11、SAPO-34、ペンタシル型メタロシリケート等が例示できる。これらの形状選択性ゼオライトのなかでZSM-5が最も好ましい。
ダウンフローリアクター(ダウナー)タイプFCCパイロット装置を用いて重質油の流動接触分解を行なった。装置規模は、インベントリ-5kg、フィ-ド量1kg/hであり、運転条件は、反応帯域出口温度600℃、反応圧力196kPa(1.0kg/cm2G)、触媒/油比25重量/重量、触媒再生帯域温度720℃である。このときリアクター内の炭化水素滞留時間は0.5秒であった。用いた原料油は中東系(アラビアンライト)の脱硫した常圧残渣油(脱硫AR)である。用いた触媒は流動接触分解触媒(A)75質量%とZSM-5を含む添加剤(Davison社製、商品名OlefinsMax)25質量%の混合物である。流動接触分解触媒に含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0(ゼロ)であり、流動接触分解触媒(A)に含まれる超安定Y型ゼオライトの結晶格子定数は24.40Åである。流動接触分解触媒(A)および該添加剤を装置に充填する前にそれぞれを別々に810℃で6時間、100%スチ-ムでスチ-ミングした。分解反応の結果を表1に示す。
実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の脱硫した常圧残渣油(脱硫AR)である。用いた流動接触分解触媒(B)は含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.13である。分解反応の結果を表1に示す。
実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の脱硫した常圧残渣油(脱硫AR)である。用いた流動接触分解触媒(C)は含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.26であり、流動接触分解触媒(C)の希土類酸化物含有量は1.50質量%である。分解反応の結果を表1に示す。
実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の脱硫した減圧軽油(脱硫VGO)である。用いた触媒は流動接触分解触媒(A)で、含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0(ゼロ)である。分解反応の結果を表1に示す。
実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の脱硫した減圧軽油(脱硫VGO)である。用いた触媒は流動接触分解触媒(B)で、含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.13である。分解反応の結果を表1に示す。
実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の脱硫した減圧軽油(脱硫VGO)である。用いた触媒は流動接触分解触媒(C)で、含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.26であり、流動接触分解触媒(C)の希土類酸化物含有量は1.50質量%である。分解反応の結果を表1に示す。
触媒として流動接触分解触媒(B)53質量%とZSM-5を含む添加剤(Davison社製、商品名OlefinsMax)47質量%の混合物を用いた以外は実施例2と同一の条件で重質油の流動接触分解を行なった。分解反応の結果を表1に示す。
実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の常圧残渣油(AR)である。用いた流動接触分解触媒(D)は含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.50であり、流動接触分解触媒(D)の希土類金属は0(ゼロ)である。分解反応の結果を表1に示す。
実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例4と同じ中東系(アラビアンライト)の脱硫した減圧軽油(脱硫VGO)である。用いた触媒は流動接触分解触媒(D)で、含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.50であり、流動接触分解触媒(D)の希土類金属は0(ゼロ)である。分解反応の結果を表1に示す。
アップフローリアクター(ライザー)タイプFCCパイロット装置を用いて重質油の流動接触分解を行なった。装置規模は、インベントリ-3kg、フィ-ド量1kg/hであり、運転条件は、反応帯域出口温度520℃、反応圧力196kPa(1.0kg/cm2G)、触媒/油比5重量/重量、触媒再生帯域温度720℃である。このときリアクター内の炭化水素滞留時間は1.5秒であった。用いた原料油は中東系(アラビアンライト)の常圧残渣油(AR)である。用いた触媒は流動接触分解触媒(A)75質量%とZSM-5を含む添加剤(Davison社製、商品名OlefinsMax)25質量%の混合物である。流動接触分解触媒に含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0(ゼロ)であり、流動接触分解触媒(A)に含まれる超安定Y型ゼオライトの結晶格子定数は24.40Åである。流動接触分解触媒(A)および該添加剤を装置に充填する前にそれぞれを別々に810℃で6時間、100%スチ-ムでスチ-ミングした。分解反応の結果を表1に示す。
比較例3と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の常圧残渣油(AR)である。用いた触媒は、実施例2と同じ流動接触分解触媒(B)で、含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.13である。分解反応の結果を表1に示す。
比較例3と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の常圧残渣油(AR)である。用いた流動接触分解触媒(C)は含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.26であり、流動接触分解触媒(C)の希土類酸化物含有量は1.50質量%である。分解反応の結果を表1に示す。
実施例5において、ダウンフローリアクター(ダウナー)タイプFCCパイロット装置に替えて、アップフローリアクター(ライザー)タイプFCCパイロット装置を用いた以外は、実施例5と同じ運転条件で重質油の流動接触分解を行った。その結果を表1に示す。
ライザー反応帯域では逆混合の影響で部分的に滞留時間が延びるため、ガソリン留分の過分解が進みドライガスが増加する結果、ダウナー反応帯域を用いた実施例5に比較して液収率が低くなった。
2 気固分離帯域
3 ストリッピング帯域
4 触媒再生帯域
5 ライザー型再生塔
6 触媒貯槽
7 混合領域
8 二次分離器
9 ディップレッグ
13 第1流量調節器
15 サイクロン
16 第3流量調節器
17 第2流量調節器
Claims (6)
- 重質油を流動接触分解して軽質オレフィンを製造する方法において、反応帯域出口温度が580~630℃、触媒/油比が15~40重量/重量、反応帯域での炭化水素の滞留時間が0.1~1.0秒の条件下に、超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0~0.3である流動接触分解触媒を構成成分として含む触媒を重質油と接触させることを特徴とする重質油の流動接触分解法。
- 触媒が、流動接触分解触媒50~95質量%と形状選択性ゼオライトを含む添加剤5~50質量%とからなることを特徴とする請求項1に記載の重質油の流動接触分解法。
- 流動接触分解触媒中の超安定Y型ゼオライトの含有量が5~50質量%であることを特徴とする請求項1または請求項2に記載の重質油の流動接触分解法。
- 超安定Y型ゼオライトの結晶格子定数が24.20~24.60Åであることを特徴とする請求項1~3のいずれかに記載の重質油の流動接触分解法。
- 流動接触分解触媒中の希土類金属酸化物の含有量が1.5質量%以下であること特徴とする請求項1~4のいずれかに記載の重質油の流動接触分解法。
- ダウンフロー形式反応帯域、気固分離帯域、ストリッピング帯域および触媒再生帯域を有する流動接触分解反応装置を使用することを特徴とする請求項1~5のいずれかに記載の重質油の流動接触分解法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167019590A KR20160113122A (ko) | 2014-01-24 | 2015-01-20 | 중질유의 유동 접촉 분해법 |
EP15740687.7A EP3098287A4 (en) | 2014-01-24 | 2015-01-20 | Fluid catalytic cracking process for heavy oil |
US15/113,460 US20170009146A1 (en) | 2014-01-24 | 2015-01-20 | Process for fluid catalytic cracking of heavy oil |
CN201580005660.1A CN105980527B (zh) | 2014-01-24 | 2015-01-20 | 重油的流化催化裂化法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014011632A JP6234829B2 (ja) | 2014-01-24 | 2014-01-24 | 重質油の流動接触分解法 |
JP2014-011632 | 2014-01-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015111566A1 true WO2015111566A1 (ja) | 2015-07-30 |
Family
ID=53681369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/051347 WO2015111566A1 (ja) | 2014-01-24 | 2015-01-20 | 重質油の流動接触分解法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20170009146A1 (ja) |
EP (1) | EP3098287A4 (ja) |
JP (1) | JP6234829B2 (ja) |
KR (1) | KR20160113122A (ja) |
CN (1) | CN105980527B (ja) |
WO (1) | WO2015111566A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2018200643A1 (en) * | 2017-03-09 | 2018-09-27 | Accenture Global Solutions Limited | Smart advisory for distributed and composite testing teams based on production data and analytics |
JP6971160B2 (ja) * | 2018-02-01 | 2021-11-24 | 出光興産株式会社 | 粉体移送配管及びこれを備える装置 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3074878A (en) | 1957-10-18 | 1963-01-22 | Exxon Research Engineering Co | Short contact time system |
US4419221A (en) | 1981-10-27 | 1983-12-06 | Texaco Inc. | Cracking with short contact time and high temperatures |
EP0315179A1 (en) | 1987-11-05 | 1989-05-10 | David B. Bartholic | Ultra-short contact time fluidized catalytic cracking process |
US4980053A (en) | 1987-08-08 | 1990-12-25 | Research Institute Of Petroleum Processing, Sinopec | Production of gaseous olefins by catalytic conversion of hydrocarbons |
US5326465A (en) | 1992-10-22 | 1994-07-05 | China Petro-Chemical Corporation | Process for the production of LPG rich in olefins and high quality gasoline |
JPH07506389A (ja) | 1992-05-04 | 1995-07-13 | モービル・オイル・コーポレイション | 流動接触分解 |
US5462652A (en) | 1993-09-24 | 1995-10-31 | Uop | Short contact FCC process with catalyst blending |
JPH1060453A (ja) | 1996-06-05 | 1998-03-03 | Nippon Oil Co Ltd | 重質油の流動接触分解法 |
JPH1143678A (ja) * | 1996-11-15 | 1999-02-16 | Nippon Oil Co Ltd | 重質油の流動接触分解方法 |
JP2002241765A (ja) * | 2001-02-21 | 2002-08-28 | Petroleum Energy Center | 重質油の流動接触分解方法 |
JP2002530514A (ja) * | 1998-11-24 | 2002-09-17 | モービル・オイル・コーポレイション | オレフィン製造のための接触分解 |
JP2005029620A (ja) * | 2003-07-08 | 2005-02-03 | King Fahd Univ Of Petroleum & Minerals | 重質油の流動接触分解法 |
JP3948905B2 (ja) | 2001-02-21 | 2007-07-25 | 財団法人 国際石油交流センター | 重質油の流動接触分解法 |
JP2010110698A (ja) * | 2008-11-06 | 2010-05-20 | Jgc Catalysts & Chemicals Ltd | 炭化水素油の流動接触分解触媒 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010042701A1 (en) * | 2000-04-17 | 2001-11-22 | Stuntz Gordon F. | Cycle oil conversion process |
FR2986799B1 (fr) * | 2012-02-15 | 2015-02-06 | IFP Energies Nouvelles | Procede de conversion d'une charge lourde, mettant en oeuvre une unite de craquage catalytique et une etape d'hydrogenation selective de l'essence issue du craquage catalytique |
-
2014
- 2014-01-24 JP JP2014011632A patent/JP6234829B2/ja not_active Expired - Fee Related
-
2015
- 2015-01-20 CN CN201580005660.1A patent/CN105980527B/zh not_active Expired - Fee Related
- 2015-01-20 US US15/113,460 patent/US20170009146A1/en not_active Abandoned
- 2015-01-20 WO PCT/JP2015/051347 patent/WO2015111566A1/ja active Application Filing
- 2015-01-20 EP EP15740687.7A patent/EP3098287A4/en not_active Withdrawn
- 2015-01-20 KR KR1020167019590A patent/KR20160113122A/ko not_active Application Discontinuation
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3074878A (en) | 1957-10-18 | 1963-01-22 | Exxon Research Engineering Co | Short contact time system |
US4419221A (en) | 1981-10-27 | 1983-12-06 | Texaco Inc. | Cracking with short contact time and high temperatures |
US4980053A (en) | 1987-08-08 | 1990-12-25 | Research Institute Of Petroleum Processing, Sinopec | Production of gaseous olefins by catalytic conversion of hydrocarbons |
EP0315179A1 (en) | 1987-11-05 | 1989-05-10 | David B. Bartholic | Ultra-short contact time fluidized catalytic cracking process |
JPH07506389A (ja) | 1992-05-04 | 1995-07-13 | モービル・オイル・コーポレイション | 流動接触分解 |
US5326465A (en) | 1992-10-22 | 1994-07-05 | China Petro-Chemical Corporation | Process for the production of LPG rich in olefins and high quality gasoline |
US5462652A (en) | 1993-09-24 | 1995-10-31 | Uop | Short contact FCC process with catalyst blending |
JPH1060453A (ja) | 1996-06-05 | 1998-03-03 | Nippon Oil Co Ltd | 重質油の流動接触分解法 |
JPH1143678A (ja) * | 1996-11-15 | 1999-02-16 | Nippon Oil Co Ltd | 重質油の流動接触分解方法 |
JP2002530514A (ja) * | 1998-11-24 | 2002-09-17 | モービル・オイル・コーポレイション | オレフィン製造のための接触分解 |
JP2002241765A (ja) * | 2001-02-21 | 2002-08-28 | Petroleum Energy Center | 重質油の流動接触分解方法 |
JP3948905B2 (ja) | 2001-02-21 | 2007-07-25 | 財団法人 国際石油交流センター | 重質油の流動接触分解法 |
JP2005029620A (ja) * | 2003-07-08 | 2005-02-03 | King Fahd Univ Of Petroleum & Minerals | 重質油の流動接触分解法 |
JP2010110698A (ja) * | 2008-11-06 | 2010-05-20 | Jgc Catalysts & Chemicals Ltd | 炭化水素油の流動接触分解触媒 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3098287A4 * |
Also Published As
Publication number | Publication date |
---|---|
JP6234829B2 (ja) | 2017-11-22 |
CN105980527A (zh) | 2016-09-28 |
JP2015137360A (ja) | 2015-07-30 |
EP3098287A1 (en) | 2016-11-30 |
CN105980527B (zh) | 2018-09-21 |
EP3098287A4 (en) | 2017-09-20 |
US20170009146A1 (en) | 2017-01-12 |
KR20160113122A (ko) | 2016-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI599400B (zh) | 流體催化裂解方法及用於最大化輕質烯烴或最大化中間蒸餾物及輕質烯烴的裝置 | |
JP5339845B2 (ja) | 流動接触分解方法 | |
KR101447299B1 (ko) | Fcc유닛 작동과 관련된 중질 오일 피드스트림을 경질 탄화수소 생성물 스트림으로 변환 및 회수 방법 | |
RU2580829C2 (ru) | Способ и устройство каталитического крекинга для получения пропилена | |
JP2020517793A (ja) | 炭化水素供給原料の蒸気接触ダウナー熱分解による軽質オレフィン収率の向上 | |
US9816037B2 (en) | Methods and systems for increasing production of middle distillate hydrocarbons from heavy hydrocarbon feed during fluid catalytic cracking | |
CN103732726A (zh) | 用于制备中间馏分油和低级烯烃的双提升管催化裂化方法 | |
CN108350367B (zh) | 流化催化裂化的方法和系统 | |
JP6140076B2 (ja) | Fccユニットにおける多段式分解除去プロセス | |
JP2017502110A (ja) | 軽質オレフィンの製造のための溶剤脱瀝および流動接触分解の統合された方法 | |
EP1013743A1 (en) | A fluid catalytic cracking (FCC) process | |
CN103703106A (zh) | 用于制备中间馏分油和低级烯烃的双提升管催化裂化方法 | |
KR20220156569A (ko) | 유동 접촉 분해 공정 및 장비를 통한 원유로부터의 경질 올레핀의 제조 | |
JP3948905B2 (ja) | 重質油の流動接触分解法 | |
JP7436503B2 (ja) | ナフサ範囲材料を改良するための固体分離装置を組み込んだ段階的流動接触分解プロセス | |
JP6234829B2 (ja) | 重質油の流動接触分解法 | |
JP4223690B2 (ja) | 重質油の流動接触分解方法 | |
CN111479903B (zh) | 用于将烃裂化成较轻烃的方法和设备 | |
US20130131412A1 (en) | Resid catalytic cracker and catalyst for increased propylene yield | |
JP6329436B2 (ja) | 重質油の流動接触分解法 | |
JP2019089907A (ja) | 軽質オレフィンの製造方法 | |
KR101672789B1 (ko) | 생성물 분포 프로파일을 향상시키기 위한 촉매적 전환 방법 | |
JP3724934B2 (ja) | 油の流動接触分解方法 | |
JP3724932B2 (ja) | 油の流動接触分解方法 | |
RU2812317C1 (ru) | Способ преобразования углеводородного сырья в более лёгкие олефины |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15740687 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167019590 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015740687 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015740687 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15113460 Country of ref document: US Ref document number: IDP00201604857 Country of ref document: ID |
|
NENP | Non-entry into the national phase |
Ref country code: DE |