WO2015111566A1 - 重質油の流動接触分解法 - Google Patents

重質油の流動接触分解法 Download PDF

Info

Publication number
WO2015111566A1
WO2015111566A1 PCT/JP2015/051347 JP2015051347W WO2015111566A1 WO 2015111566 A1 WO2015111566 A1 WO 2015111566A1 JP 2015051347 W JP2015051347 W JP 2015051347W WO 2015111566 A1 WO2015111566 A1 WO 2015111566A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalytic cracking
fluid catalytic
heavy oil
mass
Prior art date
Application number
PCT/JP2015/051347
Other languages
English (en)
French (fr)
Inventor
秀樹 尾野
太 大内
真理絵 岩間
達史 石塚
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to KR1020167019590A priority Critical patent/KR20160113122A/ko
Priority to EP15740687.7A priority patent/EP3098287A4/en
Priority to US15/113,460 priority patent/US20170009146A1/en
Priority to CN201580005660.1A priority patent/CN105980527B/zh
Publication of WO2015111566A1 publication Critical patent/WO2015111566A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1033Oil well production fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • the present invention relates to a fluid catalytic cracking method of heavy oil, and more particularly to a fluid catalytic cracking method for obtaining light olefins such as propylene and butene from heavy oil in high yield.
  • Such a method of using a fluid catalytic cracker has an economic advantage particularly in refineries where oil refining and petrochemical factories are highly coupled.
  • Examples of the method for producing light olefins by fluid catalytic cracking of heavy oil include, for example, a method of shortening the contact time between the catalyst and the feedstock (Patent Documents 1 to 4), a method of performing a reaction at a high temperature (Patent Document 5), Examples thereof include methods using pentasil-type zeolite (Patent Documents 6 to 7).
  • the selectivity for light olefins has not been sufficiently improved.
  • the pyrolysis is combined with an increase in unnecessary dry gas yield, and the yield of useful light olefin is sacrificed accordingly.
  • the quality of gasoline obtained together with the light olefin deteriorates.
  • the method of shortening the contact time can suppress the hydrogen transfer reaction and reduce the rate of conversion of light olefins to light paraffin, but the conversion rate cannot be increased, so the yield of light olefins is still insufficient. It is.
  • Patent Document 8 a method (Patent Document 8) has been proposed that combines these techniques such as high temperature reaction, high catalyst / oil ratio, and short contact time to suppress thermal decomposition and achieve high conversion (Patent Document 8).
  • the olefin yield is not sufficient.
  • the method using pentasil-type zeolite only increases the light olefin yield by overdecomposing gasoline, so the light olefin yield is not sufficiently increased, and the gasoline yield is significantly reduced. . Therefore, it is difficult to obtain light olefins from heavy oil in high yield by these methods.
  • Patent Document 9 In addition to high temperature reaction, high catalyst / oil ratio, short contact time, a down flow type reaction zone that can suppress back mixing in the reaction zone, and content and shape selectivity of rare earth metal oxide in fluid catalytic cracking catalyst. There has been proposed a method (Patent Document 9) for further improving the light olefin yield by adjusting the mixing ratio of the additive containing zeolite. However, even if these methods are used, when the activity of the fluid catalytic cracking catalyst is not sufficient, the cracking of the heavy feedstock is insufficient and the light olefin yield has not been maximized.
  • the object of the present invention is to provide an improved heavy oil fluidized catalytic cracking method that can produce light olefins in a high yield by reducing the amount of dry gas generated by thermal cracking by combining the reaction type, reaction conditions, catalyst, etc. There is to do.
  • the present inventors diligently focused on obtaining a light olefin in a high yield in a fluid catalytic cracking process for obtaining light olefins such as propylene and butene by fluid catalytic cracking of heavy oil at a high temperature and a short contact time.
  • the inventors have found that the object can be achieved by using a catalyst containing a specific fluid catalytic cracking catalyst and subjecting heavy oil to fluid catalytic cracking under specific conditions, and have reached the present invention. .
  • the present invention relates to a process for producing light olefins by fluid catalytic cracking of heavy oil, in which the reaction zone outlet temperature is 580 to 630 ° C., the catalyst / oil ratio is 15 to 40 weight / weight, and carbonization in the reaction zone is performed.
  • a heavy oil fluidized catalytic cracking method comprising contacting a heavy oil with a catalyst containing a catalytic cracking catalyst as a constituent component.
  • the present invention also relates to the above-described fluid catalytic cracking method of heavy oil, characterized in that the catalyst comprises 50 to 95% by mass of a fluid catalytic cracking catalyst and 5 to 50% by mass of an additive containing a shape selective zeolite. .
  • the present invention also relates to the above heavy oil fluid catalytic cracking method, wherein the content of ultrastable Y-type zeolite in the fluid catalytic cracking catalyst is 5 to 50% by mass.
  • the present invention also relates to the above-described fluid catalytic cracking method of heavy oil, characterized in that the crystal lattice constant of the ultrastable Y-type zeolite is 24.20 to 24.60 ⁇ .
  • the present invention also relates to the fluid catalytic cracking method of heavy oil, wherein the content of rare earth metal oxide in the fluid catalytic cracking catalyst is 1.5% by mass or less. Furthermore, the present invention relates to the above-described fluid catalytic cracking method of heavy oil, characterized by using a fluid catalytic cracking reactor having a down flow type reaction zone, a gas-solid separation zone, a stripping zone and a catalyst regeneration zone.
  • the amount of dry gas generated by thermal decomposition is small, and light olefins such as propylene and butene can be obtained in high yield.
  • the present invention is a fluid catalytic cracking process of heavy oil for producing light olefins.
  • fluid catalytic cracking is one in which heavy oil is continuously brought into contact with a catalyst held in a fluid state to decompose heavy oil into light hydrocarbons mainly composed of light olefins and gasoline.
  • a fluid catalytic cracker having a reaction zone, a gas-solid separation zone, a stripping zone and a catalyst regeneration zone is used.
  • reaction zone examples include a so-called riser reaction zone in which both catalyst particles and feedstock oil rise in the pipe, and a downflow type (downer) reaction zone in which both catalyst particles and feedstock oil fall in the pipe.
  • riser reaction zone in which both catalyst particles and feedstock oil rise in the pipe
  • downflow type (downer) reaction zone in which both catalyst particles and feedstock oil fall in the pipe.
  • thermal decomposition is undesirable because it increases the generation of unnecessary dry gas and decreases the yield of the desired light olefin and gasoline. Therefore, in the present invention, a down flow type (downer) reaction zone in which both catalyst particles and raw material oil descend in the pipe is preferably used.
  • the cracked reaction mixture comprising the mixture of cracked reaction product, unreacted material and spent catalyst that has undergone fluid catalytic cracking in the reaction zone is then sent to the gas-solid separation zone where the cracked reaction product, unreacted from the catalyst particles. Most of hydrocarbons such as waste are removed. In some cases, the decomposition reaction mixture is quenched immediately before or after the gas-solid separation zone in order to suppress unnecessary thermal decomposition or excessive decomposition.
  • the spent catalyst from which most of the hydrocarbons have been removed is further sent to the stripping zone, where hydrocarbons that could not be completely removed in the gas-solid separation zone are removed by the stripping gas.
  • the used catalyst with the carbonaceous material and some heavy hydrocarbons attached is regenerated from the stripping zone in order to regenerate the spent catalyst. Sent to the band.
  • the used catalyst is oxidized, and carbonaceous substances and heavy hydrocarbons deposited and deposited on the catalyst are removed and regenerated.
  • the catalyst regenerated by this oxidation treatment is sent again to the reaction zone and continuously circulated.
  • FIG. 1 shows an example of a fluid catalytic cracking reaction apparatus having a downflow type reaction zone, a gas-solid separation zone, a stripping zone, and a catalyst regeneration zone. The present invention will be described below with reference to FIG.
  • the heavy oil as the raw material is supplied to the mixing region 7 through the line 10 and mixed with the regenerated catalyst circulated from the catalyst storage tank 6.
  • the mixture flows down in the reaction zone 1 in a parallel flow, and during this time, the raw heavy oil and the catalyst are brought into contact with each other at a high temperature for a short time, and the heavy oil is decomposed.
  • the decomposition reaction mixture from reaction zone 1 flows down to gas-solid separation zone 2 located below reaction zone 1, where spent catalyst is separated from decomposition reaction products and unreacted raw materials, and dipleg 9 is Then, it is guided to the upper part of the stripping band 3.
  • the hydrocarbon gas from which most of the spent catalyst has been removed is then led to the secondary separator 8.
  • a small amount of spent catalyst remaining in the gas is removed, and the hydrocarbon gas is extracted out of the system and recovered.
  • a tangential cyclone is preferably used as the secondary separator 8.
  • the spent catalyst in the stripping zone 3 is removed by the stripping gas introduced from the line 11 to remove remaining hydrocarbons adhering to the surface of the used catalyst or between the catalysts.
  • the stripping gas an inert gas such as nitrogen generated by a steam or a compressor generated by a boiler is used.
  • a temperature of 500 to 900 ° C., preferably 500 to 700 ° C., and a catalyst particle residence time of 1 to 10 minutes are usually employed.
  • the stripping zone 3 the decomposition reaction products and unreacted raw materials adhering to the spent catalyst are removed, and the stripping gas is extracted from the line 12 at the top of the stripping zone 3 and led to the recovery system.
  • the spent catalyst that has undergone the stripping process is supplied to the catalyst regeneration zone 4 through a line including the first flow rate regulator 13.
  • the gas superficial velocity in the stripping zone 3 is usually preferably maintained in the range of 0.05 to 0.4 m / s, so that the fluidized bed in the stripping zone can be a bubble fluidized bed. Since the gas velocity is relatively small in the bubbling fluidized bed, the consumption of the stripping gas can be reduced, and since the bed density is relatively large, the pressure control width of the first flow rate regulator 13 can be increased. Therefore, the transfer of the catalyst particles from the stripping zone 3 to the catalyst regeneration zone 4 is facilitated.
  • a horizontal perforated plate and other insertions can be provided in multiple stages for the purpose of improving the contact between the used catalyst and the stripping gas and improving the stripping efficiency.
  • the catalyst regeneration zone 4 is partitioned by a container having a conical upper portion and a cylindrical lower portion, and the upper conical portion communicates with an upright conduit (riser type regeneration tower) 5.
  • the apex angle of the upper cone portion is usually in the range of 30 to 90 degrees, and the height of the upper cone portion is preferably in the range of 1/2 to 2 times the diameter of the lower cylindrical portion.
  • the spent catalyst supplied from the stripping zone 3 to the catalyst regeneration zone 4 is fluidized by a regeneration gas (typically an oxygen-containing gas such as air) introduced from the bottom of the catalyst regeneration zone 4. It is regenerated by burning off substantially all of the carbonaceous material and heavy hydrocarbons adhering to the surface.
  • a temperature of 600 to 1000 ° C., preferably 650 to 750 ° C., a catalyst residence time of 1 to 5 minutes is adopted, and a gas superficial velocity is preferably 0.4 to 1.2 m / s. Adopted.
  • the regenerated catalyst regenerated in the catalyst regeneration zone 4 and jumped out from the upper part of the turbulent fluidized bed is transferred to the riser type regeneration tower 5 from the upper conical portion along with the used regeneration gas.
  • the diameter of the riser type regeneration tower 5 communicating with the upper conical portion of the catalyst regeneration zone 4 is preferably 1/6 to 1/3 of the diameter of the lower cylindrical portion.
  • the regenerated catalyst rising in the riser type regeneration tower 5 is carried to a catalyst storage tank 6 installed at the top of the riser type regeneration tower.
  • the catalyst storage tank 6 also functions as a gas-solid separator, and the used regeneration gas containing carbon dioxide gas or the like is separated from the regeneration catalyst here and discharged out of the system via the cyclone 15.
  • the regenerated catalyst in the catalyst storage tank 6 is supplied to the mixing region 7 via a downflow pipe equipped with a second flow rate regulator 17. If necessary, a part of the regenerated catalyst in the catalyst storage tank 6 is regenerated through a bypass conduit having a third flow rate regulator 16 in order to easily control the amount of catalyst circulation in the riser type regeneration tower 5. It can also be returned to band 4. In this way, the catalyst passes through the downflow type reaction zone 1, the gas-solid separation zone 2, the stripping zone 3, the catalyst regeneration zone 4, the riser type regeneration tower 5, the catalyst storage tank 6, and the mixing region 7, and again the downflow type. It circulates in the system in the order of reaction zone 1.
  • Examples of the heavy oil used as a raw material in the present invention include vacuum gas oil, atmospheric residue, vacuum residue, pyrolysis gas oil, and heavy oil obtained by hydrorefining these. These heavy oils may be used alone, or a mixture of these heavy oils or a mixture of these heavy oils with a part of light oil may be used.
  • the distillation properties of heavy oils used as raw material oils are preferably those having a boiling range of 170 to 800 ° C, more preferably 190 to 780 ° C.
  • the reaction zone outlet temperature as used in the present invention is the outlet temperature of the reaction zone, and when the decomposition reaction product is rapidly cooled immediately before the separation from the catalyst or before the gas-solid separation zone, it is rapidly cooled.
  • the reaction zone outlet temperature is 580 to 630 ° C., preferably 590 to 620 ° C. If the temperature is lower than 580 ° C., a light olefin cannot be obtained in a high yield, and if it is higher than 630 ° C., thermal decomposition becomes remarkable and the amount of dry gas generated is not preferable.
  • the catalyst / oil ratio indicates the ratio of the catalyst circulation rate (ton / h) to the feed oil supply rate (ton / h).
  • the catalyst / oil ratio needs to be 15 to 40 weight / weight, preferably 20 to 30 weight / weight.
  • the catalyst / oil ratio is smaller than 15 weight / weight, the temperature of the regenerated catalyst supplied to the reaction zone becomes high in view of heat balance, which is not preferable because the amount of dry gas generated by thermal decomposition increases.
  • the catalyst / oil ratio is larger than 40 weight / weight, the catalyst circulation amount becomes large, and the capacity of the catalyst regeneration zone becomes too large to secure the catalyst residence time necessary for catalyst regeneration in the catalyst regeneration zone. Therefore, it is not preferable.
  • the hydrocarbon residence time as used in the present invention is the time from when the catalyst comes into contact with the raw material oil until the catalyst and the decomposition reaction product are separated at the outlet of the reaction zone, or immediately before the gas-solid separation zone. In the case, the time until quenching is shown.
  • the residence time is required to be 0.1 to 1.0 seconds, and preferably 0.2 to 0.7 seconds.
  • the residence time of hydrocarbons in the reaction zone is shorter than 0.1 seconds, the decomposition reaction becomes insufficient and light olefins cannot be obtained in high yield.
  • the residence time is longer than 1.0 seconds, the contribution of thermal decomposition becomes large, which is not preferable.
  • the operating conditions of the fluid catalytic cracking reactor in the present invention are not particularly limited except for the above, but usually, the operation is preferably carried out at a reaction pressure of 150 to 400 kPa.
  • the catalyst used in the present invention comprises a fluid catalytic cracking catalyst and an additive.
  • the fluid catalytic cracking catalyst comprises a zeolite which is an active component and a matrix which is a supporting matrix thereof.
  • the main component of the zeolite is ultrastable Y-type zeolite.
  • the matrix is composed of an active matrix, a binder (such as silica), a filler (such as clay mineral), and other components (such as rare earth metal oxides and metal trap components).
  • the active matrix has decomposition activity, and examples thereof include alumina and silica alumina.
  • an active matrix is added to the fluid catalytic cracking catalyst in order to roughly crack the feedstock to a form that can be cracked by ultrastable Y-type zeolite.
  • a catalyst having a low content of the active matrix can provide a higher decomposition activity.
  • the fluid catalytic cracking catalyst according to the present invention requires that the ratio (Wmat / Wusy) of the ultrastable Y-type zeolite mass (Wusy) to the active matrix mass (Wmat) is 0 to 0.3, preferably 0 ⁇ 0.28.
  • the content of the rare earth metal oxide in the fluid catalytic cracking catalyst is preferably 1.5% by mass or less, more preferably 1.2% by mass or less, and particularly preferably 1.0% by mass or less.
  • the content of the rare earth metal oxide in the fluid catalytic cracking catalyst is more than 1.5% by mass, the hydrogen transfer activity becomes too high, and the cracking activity increases, but the light olefin yield decreases.
  • the heat resistance increases, so the activity of the equilibrium catalyst increases.
  • an equilibrium catalyst containing a large amount of rare earth metal oxide has a high hydrogen transfer activity.
  • the hydrogen transfer activity of the fluid catalytic cracking catalyst increases, the olefin in the product decreases and the paraffin increases.
  • Olefins mainly in gasoline fractions are decomposed into light olefins by an additive containing a shape selective zeolite described later.
  • the crystal lattice constant of the ultrastable Y-type zeolite is preferably 24.20 to 24.60 ⁇ , more preferably 24.36 to 24.45 ⁇ . In this range, the gasoline yield decreases as the crystal lattice constant decreases, but the light olefin yield increases. However, when the crystal lattice constant is smaller than 24.20 ⁇ , the cracking activity of the fluid catalytic cracking catalyst is too low to obtain a high conversion rate, so that the light olefin yield decreases. On the other hand, when the lattice constant is larger than 24.60 mm, the hydrogen transfer activity becomes too high.
  • the crystal lattice constant of zeolite here is measured by ASTM D-3942-80.
  • the ultrastable Y-type zeolite content in the fluid catalytic cracking catalyst is preferably 5 to 50% by mass, more preferably 15 to 40% by mass.
  • the bulk density of the fluid catalytic cracking catalyst is 0.5 to 1.0 g / ml, the average particle size is 50 to 90 ⁇ m, the surface area is 50 to 350 m 2 / g, and the pore volume is 0.05 to 0.5 ml / g. A range is preferred.
  • the additive that is a constituent of the catalyst used in the present invention contains a shape-selective zeolite.
  • Constituent components other than the shape-selective zeolite include a binder (such as silica) and a filler (such as clay mineral).
  • Shape-selective zeolite is a zeolite whose pore diameter is smaller than that of Y-type zeolite, and only limited-shaped hydrocarbons can enter the pores. Examples of such zeolite include ZSM-5, ⁇ , omega, SAPO-5, SAPO-11, SAPO-34, and pentasil-type metallosilicate. Of these shape selective zeolites, ZSM-5 is most preferred.
  • the shape-selective zeolite content in the additive is preferably 20 to 70% by mass, more preferably 30 to 60% by mass.
  • the bulk density of the additive is in the range of 0.5 to 1.0 g / ml, the average particle size is 50 to 90 ⁇ m, the surface area is 10 to 200 m 2 / g, and the pore volume is in the range of 0.01 to 0.3 ml / g. Preferably there is.
  • the ratio of the fluid catalytic cracking catalyst and the additive in the catalyst used in the present invention is 50 to 95% by mass, preferably 55 to 90% by mass for the fluid catalytic cracking catalyst, and 5% for the additive containing the shape selective zeolite. It is preferable that the content be from ⁇ 50 mass%, preferably from 10 to 45 mass%.
  • the ratio of the fluid catalytic cracking catalyst is less than 50% by mass, or when the ratio of the additive is more than 50% by mass, the conversion rate of the heavy oil as the raw material oil decreases, and a high light olefin No yield is obtained.
  • Example 1 Heavy oil fluidized catalytic cracking was carried out using a downflow reactor (downer) type FCC pilot device.
  • the equipment scale is inventory-5 kg, feed amount 1 kg / h, operating conditions are reaction zone outlet temperature 600 ° C., reaction pressure 196 kPa (1.0 kg / cm 2 G), catalyst / oil ratio 25 weight / weight.
  • the catalyst regeneration zone temperature is 720 ° C. At this time, the hydrocarbon residence time in the reactor was 0.5 seconds.
  • the raw material oil used was a desulfurized atmospheric residue oil (desulfurized AR) of the Middle East (Arabian Light).
  • the catalyst used was a mixture of 75% by mass of fluid catalytic cracking catalyst (A) and 25% by mass of an additive containing ZSM-5 (Davison, trade name OlefinsMax).
  • the ratio (Wmat / Wusy) of the ultrastable Y-type zeolite mass (Wusy) and the active matrix mass (Wmat) contained in the fluid catalytic cracking catalyst is 0 (zero), and the super catalyst contained in the fluid catalytic cracking catalyst (A)
  • the crystal lattice constant of stable Y-type zeolite is 24.40 ⁇ .
  • the fluid catalytic cracking catalyst (A) and the additive were each separately steamed at 100% steam for 6 hours at 810 ° C. before being charged to the apparatus. The results of the decomposition reaction are shown in Table 1.
  • Example 2 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
  • the raw material oil used was the same Middle Eastern (Arabian light) desulfurized atmospheric residue oil (desulfurized AR) as in Example 1.
  • the fluid catalytic cracking catalyst (B) used has a ratio (Wmat / Wusy) of the contained ultrastable Y-type zeolite mass (Wusy) and active matrix mass (Wmat) to 0.13.
  • the results of the decomposition reaction are shown in Table 1.
  • Example 3 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
  • the raw material oil used was the same Middle Eastern (Arabian light) desulfurized atmospheric residue oil (desulfurized AR) as in Example 1.
  • the fluid catalytic cracking catalyst (C) used has a ratio (Wmat / Wusy) of the ultrastable Y-type zeolite mass (Wusy) and active matrix mass (Wmat) contained to 0.26, and the fluid catalytic cracking catalyst (C) The rare earth oxide content is 1.50% by mass.
  • Table 1 The results of the decomposition reaction are shown in Table 1.
  • Example 4 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
  • the feedstock used was the same Middle Eastern (Arabyanlite) desulfurized vacuum gas oil (desulfurized VGO) as in Example 1.
  • the catalyst used was a fluid catalytic cracking catalyst (A), and the ratio (Wmat / Wusy) of the contained ultrastable Y-type zeolite mass (Wusy) to active matrix mass (Wmat) was 0 (zero).
  • the results of the decomposition reaction are shown in Table 1.
  • Example 5 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
  • the feedstock used was the same Middle Eastern (Arabyanlite) desulfurized vacuum gas oil (desulfurized VGO) as in Example 1.
  • the catalyst used was a fluid catalytic cracking catalyst (B), and the ratio (Wmat / Wusy) of the contained ultrastable Y-type zeolite mass (Wusy) to active matrix mass (Wmat) was 0.13.
  • the results of the decomposition reaction are shown in Table 1.
  • Example 6 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
  • the feedstock used was the same Middle Eastern (Arabyanlite) desulfurized vacuum gas oil (desulfurized VGO) as in Example 1.
  • the catalyst used was a fluid catalytic cracking catalyst (C), and the ratio (Wmat / Wusy) of the contained ultrastable Y-type zeolite mass (Wusy) to active matrix mass (Wmat) was 0.26.
  • the rare earth oxide content of (C) is 1.50% by mass.
  • Table 1 The results of the decomposition reaction are shown in Table 1.
  • Example 7 Heavy oil under the same conditions as in Example 2 except that a mixture of 53% by mass of fluid catalytic cracking catalyst (B) and 47% by mass of an additive containing ZSM-5 (trade name OlefinsMax, manufactured by Davison) was used as the catalyst. Was subjected to fluid catalytic cracking. The results of the decomposition reaction are shown in Table 1.
  • Example 1 Comparative Example 1 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
  • the feedstock used was the same Middle Eastern (Arabyanlite) atmospheric residue (AR) as in Example 1.
  • the fluid catalytic cracking catalyst (D) used has a ratio (Wmat / Wusy) of the ultrastable Y-type zeolite mass (Wusy) and active matrix mass (Wmat) contained to 0.50, and the fluid catalytic cracking catalyst (D) This rare earth metal is 0 (zero).
  • Table 1 The results of the decomposition reaction are shown in Table 1.
  • Example 2 (Comparative Example 2) Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
  • the feedstock used was the same Middle Eastern (Arabyanlite) desulfurized vacuum gas oil (desulfurized VGO) as in Example 4.
  • the catalyst used was a fluid catalytic cracking catalyst (D), and the ratio (Wmat / Wusy) of the contained ultrastable Y-type zeolite mass (Wusy) to active matrix mass (Wmat) was 0.50.
  • the rare earth metal of (D) is 0 (zero).
  • Table 1 The results of the decomposition reaction are shown in Table 1.
  • Heavy oil fluidized catalytic cracking was carried out using an upflow reactor (riser) type FCC pilot device.
  • the equipment scale is inventory-3 kg, feed amount 1 kg / h, operating conditions are reaction zone outlet temperature 520 ° C., reaction pressure 196 kPa (1.0 kg / cm 2 G), catalyst / oil ratio 5 weight / weight.
  • the catalyst regeneration zone temperature is 720 ° C. At this time, the hydrocarbon residence time in the reactor was 1.5 seconds.
  • the feedstock used was a Middle Eastern (Arabian Light) atmospheric residue oil (AR).
  • the catalyst used was a mixture of 75% by mass of fluid catalytic cracking catalyst (A) and 25% by mass of an additive containing ZSM-5 (Davison, trade name OlefinsMax).
  • the ratio (Wmat / Wusy) of the ultrastable Y-type zeolite mass (Wusy) and the active matrix mass (Wmat) contained in the fluid catalytic cracking catalyst is 0 (zero), and the super catalyst contained in the fluid catalytic cracking catalyst (A)
  • the crystal lattice constant of stable Y-type zeolite is 24.40 ⁇ .
  • the fluid catalytic cracking catalyst (A) and the additive were each separately steamed at 100% steam for 6 hours at 810 ° C. before being charged to the apparatus. The results of the decomposition reaction are shown in Table 1.
  • Comparative Example 4 Using the same apparatus as in Comparative Example 3, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
  • the feedstock used was the same Middle Eastern (Arabyanlite) atmospheric residue (AR) as in Example 1.
  • the catalyst used was the same fluid catalytic cracking catalyst (B) as in Example 2, and the ratio (Wmat / Wusy) of the ultrastable Y-type zeolite mass (Wusy) and active matrix mass (Wmat) contained was 0.13. is there. The results of the decomposition reaction are shown in Table 1.
  • Comparative Example 5 Using the same apparatus as in Comparative Example 3, fluid catalytic cracking of heavy oil was performed under the same operating conditions.
  • the feedstock used was the same Middle Eastern (Arabyanlite) atmospheric residue (AR) as in Example 1.
  • the fluid catalytic cracking catalyst (C) used has a ratio (Wmat / Wusy) of the ultrastable Y-type zeolite mass (Wusy) and active matrix mass (Wmat) contained to 0.26, and the fluid catalytic cracking catalyst (C)
  • the rare earth oxide content is 1.50% by mass.
  • Example 5 fluidized catalytic cracking of heavy oil under the same operating conditions as in Example 5 except that an upflow reactor (riser) type FCC pilot device was used instead of the downflow reactor (downer) type FCC pilot device. Went.
  • Table 1 Since the residence time partially extends in the riser reaction zone due to the effect of backmixing, as a result of excessive decomposition of the gasoline fraction and an increase in dry gas, the liquid yield is higher than that in Example 5 using the downer reaction zone. It became low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

 重質油を高温・短接触時間で流動接触分解し、プロピレン、ブテン等の軽質オレフィンを高収率で得るための流動接触分解法として、重質油を流動接触分解して軽質オレフィンを製造する方法において、反応帯域出口温度が580~630℃、触媒/油比が15~40重量/重量、反応帯域での炭化水素の滞留時間が0.1~1.0秒の条件下に、超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0~0.3である流動接触分解触媒を構成成分として含む触媒を重質油と接触させることを特徴とする重質油の流動接触分解法を提供する。 

Description

重質油の流動接触分解法
 本発明は、重質油の流動接触分解法に関し、詳しくは重質油からプロピレン、ブテン等の軽質オレフィンを高収率で得るための流動接触分解法に関する。
 通常の流動接触分解は、石油系炭化水素を触媒と接触させて分解し、主生成物としてのガソリンと少量のLPGと分解軽油等を得、さらに触媒上に堆積したコ-クを空気で燃焼除去して触媒を循環再使用するものである。
 しかしながら最近では流動接触分解装置をガソリン製造装置としてではなく石油化学原料としての軽質オレフィン(特にプロピレン)製造装置として利用していこうという動きがある。また一方、プロピレン、ブテン等は高オクタン価ガソリン基材であるアルキレート、メチル-t-ブチルエーテル(MTBE)の原料となる。このような流動接触分解装置の利用法は、石油精製と石油化学工場が高度に結びついた精油所において特に経済的なメリットがある。
 重質油の流動接触分解により軽質オレフィンを製造する方法としては、例えば、触媒と原料油の接触時間を短くする方法(特許文献1~4)、高温で反応を行う方法(特許文献5)、ペンタシル型ゼオライトを用いる方法(特許文献6~7)等が挙げられる。
 しかし、これらの方法においてもまだ軽質オレフィン選択性を十分高めるまでには至っていない。例えば、高温反応による方法おいては熱分解を併発して不必要なドライガス収率が増大し、その分有用な軽質オレフィンの収率が犠牲となる。また高温反応ではジエンの生成が増加するため軽質オレフィンとともに得られるガソリンの品質が劣化するという欠点もある。接触時間を短くする方法では、水素移行反応を抑制し、軽質オレフィンが軽質パラフィンへ転化する割合を低減することはできるが、転化率を増加させることはできないため、軽質オレフィン収率はまだ不十分である。また、これらの高温反応、高触媒/油比、短接触時間などの技術を組み合わせて熱分解を抑制し、しかも高い転化率を達成する方法(特許文献8)が提案されているが、まだ軽質オレフィン収率は十分とはいえない。またペンタシル型ゼオライトを用いた方法ではガソリンを過分解して軽質オレフィン収率を高めているだけであるから、軽質オレフィン収率の増加も十分ではなく、ガソリン収率が著しく減少するという欠点がある。従ってこれらの方法で重質油から高い収率で軽質オレフィンを得ることは困難である。
 高温反応、高触媒/油比、短接触時間に加えて、反応帯域での逆混合を抑制できるダウンフロー形式反応帯域とし、さらに流動接触分解触媒中の希土類金属酸化物の含有量および形状選択性ゼオライトを含む添加剤の混合比率を調節することでさらに軽質オレフィン収率を向上させる方法(特許文献9)が提案されている。しかし、これらの方法を用いても、流動接触分解触媒の活性が十分でない場合は重質な原料油の分解が不足し、軽質オレフィン収率を最大化するまでには至っていなかった。
米国特許第4,419,221号公報 米国特許第3,074,878号公報 米国特許第5,462,652号公報 ヨーロッパ特許第315,179A号公報 米国特許第4,980,053号公報 米国特許第5,326,465号公報 特公表7-506389号公報 特開平10-60453号公報 特許第3948905号公報
 本発明の目的は、反応形式、反応条件、触媒等の組み合わせにより、熱分解によるドライガス発生量が少なく、軽質オレフィンが高収率で得られる改良された重質油の流動接触分解法を提供することにある。
 本発明者らは重質油を高温・短接触時間で流動接触分解し、プロピレン、ブテン等の軽質オレフィンを得るための流動接触分解法において、高収率で軽質オレフィンを得ることを主眼に鋭意研究した結果、特定の流動接触分解触媒を含む触媒を用い、かつ特定の条件下に重質油を流動接触分解することによりその目的が達成されることを見出し、本発明に到達したものである。
 すなわち、本発明は、重質油を流動接触分解して軽質オレフィンを製造する方法において、反応帯域出口温度が580~630℃、触媒/油比が15~40重量/重量、反応帯域での炭化水素の滞留時間が0.1~1.0秒の条件下に、超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0~0.3である流動接触分解触媒を構成成分として含む触媒を重質油と接触させることを特徴とする重質油の流動接触分解法である。
 また本発明は、触媒が、流動接触分解触媒50~95質量%と形状選択性ゼオライトを含む添加剤5~50質量%とからなることを特徴とする前記の重質油の流動接触分解法に関する。
 また本発明は、流動接触分解触媒中の超安定Y型ゼオライトの含有量が5~50質量%であることを特徴とする前記の重質油の流動接触分解法に関する。
 また本発明は、超安定Y型ゼオライトの結晶格子定数が24.20~24.60Åであることを特徴とする前記の重質油の流動接触分解法に関する。
 また本発明は、流動接触分解触媒中の希土類金属酸化物の含有量が1.5質量%以下であること特徴とする前記の重質油の流動接触分解法に関する。
 さらに本発明は、ダウンフロー形式反応帯域、気固分離帯域、ストリッピング帯域および触媒再生帯域を有する流動接触分解反応装置を使用することを特徴とする前記の重質油の流動接触分解法に関する。
 本発明により、熱分解によるドライガス発生量が少なく、プロピレン、ブテンなどの軽質オレフィンを高い収率で得ることができる。
ダウンフロー形式反応帯域、気固分離帯域、ストリッピング帯域および触媒再生帯域を有する流動接触分解反応装置の一例示す図である。
 以下、本発明について詳述する。
 本発明は、軽質オレフィンを製造する重質油の流動接触分解法である。本発明において流動接触分解は、重質油を流動状態に保持されている触媒に連続的に接触させて重質油を軽質オレフィンおよびガソリンを主体とした軽質な炭化水素に分解するものである。
 流動接触分解装置としては、反応帯域、気固分離帯域、ストリッピング帯域および触媒再生帯域を有する流動接触分解装置が用いられる。
 反応帯域としては、例えば、触媒粒子と原料油が共に管中を上昇するいわゆるライザー反応帯域、触媒粒子と原料油が共に管中を降下するダウンフロー形式(ダウナー)反応帯域が挙げられ、いずれも採用することができる。
 しかし、通常のライザー反応帯域を用いた場合には逆混合が起こり、局部的にガスの滞留時間が長くなり熱分解を併発するおそれがある。特に、本発明のように触媒/油比が通常の流動接触分解法に比べて極端に大きい場合には逆混合の程度は大きくなる。そして熱分解は不必要なドライガスの発生を増加させ、目的とする軽質オレフィンおよびガソリンの収率を減少させるため好ましくない。そのため本発明においては、触媒粒子と原料油が共に管中を降下するダウンフロー形式(ダウナー)反応帯域が好ましく用いられる。
 反応帯域で流動接触分解を受けた分解反応生成物、未反応物および使用済み触媒の混合物からなる分解反応混合物は、次に気固分離帯域に送られ、触媒粒子から分解反応生成物、未反応物等の炭化水素類の大部分が除去される。なお、場合によっては、不必要な熱分解あるいは過分解を抑制するため、分解反応混合物は気固分離帯域の直前あるいは直後で急冷される。
 大部分の炭化水素類が除去された使用済み触媒は、さらにストリッピング帯域に送られ、ストリッピング用ガスにより気固分離帯域で除去しきれなかった炭化水素類の除去が行われる。このようにして使用済み触媒と炭化水素類を分離した後、使用済み触媒を再生するため、炭素質物質および一部重質の炭化水素類が付着した使用済み触媒は、ストリッピング帯域から触媒再生帯域に送られる。触媒再生帯域においては使用済み触媒に酸化処理が施され、触媒上に沈着・付着した炭素質物質および重質炭化水素類が除去され再生される。この酸化処理を受けて再生された触媒は前記反応帯域に再び送られ、連続的に循環される。
 図1に、ダウンフロー形式反応帯域、気固分離帯域、ストリッピング帯域および触媒再生帯域を有する流動接触分解反応装置の一例を示す。以下、図1を参照しながら本発明について説明する。
 原料である重質油は、ライン10を通って混合領域7に供給され、触媒貯槽6から循環される再生触媒と混合される。その混合物は反応帯域1内を並流で流下し、この間に原料重質油と触媒は高温で短時間接触して重質油の分解反応が行われる。反応帯域1からの分解反応混合物は、反応帯域1の下方に位置する気固分離帯域2に流下し、ここで使用済み触媒は、分解反応生成物及び未反応原料から分離され、ディップレッグ9を経てストリッピング帯域3の上部に導かれる。
 大部分の使用済み触媒が除去された炭化水素気体は、次に二次分離器8へ導かれる。ここで気体中に少量残存した使用済み触媒が取り除かれ、炭化水素気体は系外へ抜き出されて回収される。二次分離器8としては接線型サイクロンが好ましく用いられる。
 ストリッピング帯域3内の使用済み触媒は、ライン11から導入されるストリッピング用ガスにより、使用済み触媒の表面や触媒間に付着残存した炭化水素類が取り除かれる。ストリッピング用ガスとしては、ボイラーにより発生されたスチームやコンプレッサー等により昇圧された窒素等の不活性ガスなどが用いられる。
 ストリッピング条件としては、通常、温度500~900℃、好ましくは500~700℃、触媒粒子の滞留時間1~10分が採用される。ストリッピング帯域3においては、使用済み触媒に付着残存する分解反応生成物並びに未反応原料が除去され、ストリッピング用ガスと共にストリッピング帯域3頂部のライン12から抜き出され、回収系に導かれる。一方、ストリッピング処理を受けた使用済み触媒は、第1流量調節器13を備えたラインを通って、触媒再生帯域4に供給される。
 ストリッピング帯域3のガス空塔速度は、通常、0.05~0.4m/sの範囲に保持することが好ましく、これによってストリッピング帯域の流動層を気泡流動層とすることができる。気泡流動層ではガス速度が比較的小さいため、ストリッピング用ガスの消費量を少なくすることができ、また、層密度が比較的大きいことから、第1流量調節器13の圧力制御幅を大きくできるので、ストリッピング帯域3から触媒再生帯域4への触媒粒子の移送が容易となる。ストリッピング帯域3には、使用済み触媒とストリッピング用ガスとの接触を良くし、ストリッピングの効率向上を図る目的で、水平多孔板やその他の内挿物を多段に設けることができる。
 触媒再生帯域4は、上部域が円錐状で下部域が円筒状を呈する容器で区画され、その上部円錐部分は直立導管(ライザー型再生塔)5と連通している。触媒再生帯域4は、上部円錐部分の頂角が通常30~90度の範囲にあり、上部円錐部分の高さが下部円筒部分の直径の1/2~2倍の範囲にあることが好ましい。ストリッピング帯域3から触媒再生帯域4に供給された使用済み触媒は、触媒再生帯域4の底部から導入される再生用ガス(典型的には空気などの酸素含有ガス)により、流動化されながら触媒表面に付着した炭素質物質並びに重質炭化水素の実質的に全てが燃焼除去されることで再生される。再生条件としては、通常、温度600~1000℃、好ましくは650~750℃、触媒滞留時間1~5分が採用され、ガス空塔速度は、通常、0.4~1.2m/sが好ましく採用される。
 触媒再生帯域4内で再生され、乱流流動層の上部から飛び出した再生触媒は、使用済みの再生用ガスに同伴されて上部円錐部分からライザー型再生塔5に移送される。触媒再生帯域4の上部円錐部分と連通するライザー型再生塔5の直径は、下部円筒部分の直径の1/6~1/3であることが好ましい。こうすることで、触媒再生帯域4内の流動層のガス空塔速度を、乱流流動層の形成に適した0.4~1.2m/sの範囲に維持することができ、ライザー型再生塔5のガス空塔速度を、再生触媒の上昇移送に適した4~12m/sの範囲に維持できる。
 ライザー型再生塔5内を上昇した再生触媒は、ライザー型再生塔頂部に設置された触媒貯槽6に運ばれる。触媒貯槽6は気固分離器としても機能し、炭酸ガスなどを含有する使用済み再生用ガスは、ここで再生触媒から分離され、サイクロン15を経由して系外に排出される。
 一方、触媒貯槽6内の再生触媒は、第2流量調節器17を備えた流下管を経て混合領域7に供給される。また必要に応じ、ライザー型再生塔5における触媒循環量の制御を容易にするため、触媒貯槽6内の再生触媒の一部を第3流量調節器16を備えたバイパス導管を経由して触媒再生帯域4に戻すこともできる。このように触媒は、ダウンフロー形式反応帯域1、気固分離帯域2、ストリッピング帯域3、触媒再生帯域4、ライザー型再生塔5、触媒貯槽6、および混合領域7を経て、再びダウンフロー形式反応帯域1の順で系内を循環している。
 本発明で原料に用いる重質油としては、減圧軽油、常圧残油、減圧残油、熱分解軽油、およびこれらを水素化精製した重質油等が例示できる。これらの重質油を単独で用いても良いし、これら重質油の混合物あるいはこれら重質油に一部軽質油を混合したものも用いることができる。
 原料油として用いる重質油の蒸留性状としては、沸点範囲が170~800℃のものが好ましく、190~780℃がより好ましい。
 本発明でいう反応帯域出口温度とは反応帯域の出口温度のことであり、分解反応生成物が触媒と分離される直前の温度、あるいは気固分離帯域の手前で急冷される場合は急冷される直前の温度である。本発明において反応帯域出口温度は580~630℃であり、好ましくは590~620℃である。580℃より低い温度では高い収率で軽質オレフィンを得ることができず、630℃より高い温度では熱分解が顕著になりドライガス発生量が多くなるため好ましくない。
 本発明でいう触媒/油比とは触媒循環量(ton/h)と原料油供給速度(ton/h)の比を示す。本発明において該触媒/油比は、15~40重量/重量であることが必要であり、好ましくは20~30重量/重量である。触媒/油比が15重量/重量より小さい場合には、ヒートバランス上、反応帯域へ供給される再生触媒の温度が高くなるため、熱分解によるドライガス発生量が多くなり好ましくない。また触媒/油比が40重量/重量より大きい場合には、触媒循環量が大きくなり、触媒再生帯域での触媒再生に必要な触媒滞留時間を確保するには触媒再生帯域の容量が大きくなり過ぎるため好ましくない。
 本発明でいう炭化水素の滞留時間とは、触媒と原料油が接触してから反応帯域出口において触媒と分解反応生成物が分離されるまでの時間、あるいは気固分離帯域の手前で急冷される場合は急冷されるまでの時間を示す。本発明において該滞留時間は0.1~1.0秒であることが必要であり、好ましくは0.2~0.7秒である。反応帯域内での炭化水素の滞留時間が0.1秒より短い場合、分解反応が不充分となり軽質オレフィンを高い収率で得ることができない。また該滞留時間が1.0秒より長い場合、熱分解の寄与が大きくなり好ましくない。
 なお、本発明における流動接触分解反応装置の操作条件のうち上記以外については特に限定されないが、通常、反応圧力150~400kPaで好ましく運転される。
 本発明に用いる触媒は、流動接触分解触媒と添加剤よりなる。
 該流動接触分解触媒は、活性成分であるゼオライトとその支持母体であるマトリックスよりなっている。
 該ゼオライトの主成分は超安定Y型ゼオライトである。
 マトリックスは、活性マトリックス、バインダー(シリカ等)、フィラー(粘土鉱物等)、その他成分(希土類金属酸化物、メタルトラップ成分等)で構成される。
 ここで、活性マトリックスとは、分解活性を持つもので、アルミナやシリカアルミナなどが挙げられる。
 重質な原料油を流動接触分解する場合、一般的に、超安定Y型ゼオライトで分解可能な形にまで原料油を粗分解するために流動接触分解触媒には活性マトリックスが添加されるが、本発明での好ましい反応条件範囲においては活性マトリックスの含有率が低い触媒の方が高い分解活性が得られる。本発明に係る流動接触分解触媒は、超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0~0.3であることが必要であり、好ましくは0~0.28である。
 超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.3を超えると重質油の分解率が悪化する傾向にあり、また分解率に対するコーク選択性が高くなり軽質オレフィン収率が低下するため好ましくない。
 流動接触分解触媒における希土類金属酸化物の含有量は1.5質量%以下であることが好ましく、1.2質量%以下がさらに好ましく、1.0質量%以下が特に好ましい。流動接触分解触媒中の希土類金属酸化物の含有量が1.5質量%より多い場合は、水素移行活性が高くなりすぎ、分解活性は高くなるものの軽質オレフィン収率は低下する。
 一般に流動接触分解触媒中の希土類酸化物含有量が増加するほど耐熱性が増加するため平衡触媒の活性は高くなる。一方、希土類金属酸化物を多く含む平衡触媒は水素移行活性も高くなる。流動接触分解触媒の水素移行活性が高くなると生成物中のオレフィンが減少しパラフィンが増加する。主にガソリン留分中のオレフィン類は後で述べる形状選択性ゼオライトを含む添加剤により軽質オレフィンに分解される。しかし、該添加剤によるガソリン留分中のパラフィン類の分解速度はオレフィン類の分解に比べて著しく遅いため、流動接触分解触媒の水素移行活性が高くなるほど該添加剤による軽質オレフィンの生成速度は小さくなる。
 該超安定Y型ゼオライトの好ましい結晶格子定数は24.20~24.60Åであり、より好ましくは24.36~24.45Åである。この範囲において結晶格子定数が小さいほどガソリン収率は減少するが軽質オレフィン収率は増加する。しかし該結晶格子定数が24.20Åより小さい場合、流動接触分解触媒の分解活性が低すぎて高い転化率を得ることができないため軽質オレフィン収率は減少する。また格子定数が24.60Åより大きい場合、水素移行活性が高くなり過ぎ好ましくない。
 なお、ここでいうゼオライトの結晶格子定数はASTM D-3942-80で測定したものである。
 流動接触分解触媒中の超安定Y型ゼオライト含有量は5~50質量%であることが好ましく、15~40質量%がさらに好ましい。また流動接触分解触媒のかさ密度は0.5~1.0g/ml、平均粒径は50~90μm、表面積は50~350m/g、細孔容積は0.05~0.5ml/gの範囲であるのが好ましい。
 本発明に用いる触媒の構成要素である添加剤は形状選択性ゼオライトを含む。形状選択性ゼオライト以外の構成成分は、バインダー(シリカ等)、フィラー(粘土鉱物等)などである。
 形状選択性ゼオライトはその細孔径がY型ゼオライトの細孔径よりも小さく、限られた形状の炭化水素のみがその細孔内へ進入できるというゼオライトである。そのようなゼオライトとして、ZSM-5、β、オメガ、SAPO-5、SAPO-11、SAPO-34、ペンタシル型メタロシリケート等が例示できる。これらの形状選択性ゼオライトのなかでZSM-5が最も好ましい。
 添加剤中の形状選択性ゼオライト含有量は20~70質量%であることが好ましく、30~60質量%がより好ましい。また添加剤のかさ密度は0.5~1.0g/ml、平均粒径は50~90μm、表面積は10~200m/g、細孔容積は0.01~0.3ml/gの範囲であるのが好ましい。
 本発明において使用する触媒中の流動接触分解触媒および添加剤の割合は、流動接触分解触媒が50~95質量%、好ましくは55~90質量%であり、形状選択性ゼオライトを含む添加剤が5~50質量%、好ましくは10~45質量%であることが好ましい。該流動接触分解触媒の割合が50質量%よりも少ない場合、あるいは該添加剤の割合が50質量%よりも多い場合には、原料油である重質油の転化率が低下し、高い軽質オレフィン収率は得られない。一方、該流動接触分解触媒の割合が95質量%よりも多い場合、あるいは該添加剤の割合が5質量%よりも少ない場合には、高い転化率は得られるが高い軽質オレフィン収率は得られない。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 
(実施例1)
 ダウンフローリアクター(ダウナー)タイプFCCパイロット装置を用いて重質油の流動接触分解を行なった。装置規模は、インベントリ-5kg、フィ-ド量1kg/hであり、運転条件は、反応帯域出口温度600℃、反応圧力196kPa(1.0kg/cmG)、触媒/油比25重量/重量、触媒再生帯域温度720℃である。このときリアクター内の炭化水素滞留時間は0.5秒であった。用いた原料油は中東系(アラビアンライト)の脱硫した常圧残渣油(脱硫AR)である。用いた触媒は流動接触分解触媒(A)75質量%とZSM-5を含む添加剤(Davison社製、商品名OlefinsMax)25質量%の混合物である。流動接触分解触媒に含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0(ゼロ)であり、流動接触分解触媒(A)に含まれる超安定Y型ゼオライトの結晶格子定数は24.40Åである。流動接触分解触媒(A)および該添加剤を装置に充填する前にそれぞれを別々に810℃で6時間、100%スチ-ムでスチ-ミングした。分解反応の結果を表1に示す。
(実施例2)
 実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の脱硫した常圧残渣油(脱硫AR)である。用いた流動接触分解触媒(B)は含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.13である。分解反応の結果を表1に示す。
(実施例3)
 実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の脱硫した常圧残渣油(脱硫AR)である。用いた流動接触分解触媒(C)は含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.26であり、流動接触分解触媒(C)の希土類酸化物含有量は1.50質量%である。分解反応の結果を表1に示す。
(実施例4)
 実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の脱硫した減圧軽油(脱硫VGO)である。用いた触媒は流動接触分解触媒(A)で、含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0(ゼロ)である。分解反応の結果を表1に示す。
(実施例5)
 実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の脱硫した減圧軽油(脱硫VGO)である。用いた触媒は流動接触分解触媒(B)で、含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.13である。分解反応の結果を表1に示す。
(実施例6)
 実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の脱硫した減圧軽油(脱硫VGO)である。用いた触媒は流動接触分解触媒(C)で、含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.26であり、流動接触分解触媒(C)の希土類酸化物含有量は1.50質量%である。分解反応の結果を表1に示す。
(実施例7)
 触媒として流動接触分解触媒(B)53質量%とZSM-5を含む添加剤(Davison社製、商品名OlefinsMax)47質量%の混合物を用いた以外は実施例2と同一の条件で重質油の流動接触分解を行なった。分解反応の結果を表1に示す。
(比較例1)
 実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の常圧残渣油(AR)である。用いた流動接触分解触媒(D)は含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.50であり、流動接触分解触媒(D)の希土類金属は0(ゼロ)である。分解反応の結果を表1に示す。
(比較例2)
 実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例4と同じ中東系(アラビアンライト)の脱硫した減圧軽油(脱硫VGO)である。用いた触媒は流動接触分解触媒(D)で、含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.50であり、流動接触分解触媒(D)の希土類金属は0(ゼロ)である。分解反応の結果を表1に示す。
(比較例3)
 アップフローリアクター(ライザー)タイプFCCパイロット装置を用いて重質油の流動接触分解を行なった。装置規模は、インベントリ-3kg、フィ-ド量1kg/hであり、運転条件は、反応帯域出口温度520℃、反応圧力196kPa(1.0kg/cmG)、触媒/油比5重量/重量、触媒再生帯域温度720℃である。このときリアクター内の炭化水素滞留時間は1.5秒であった。用いた原料油は中東系(アラビアンライト)の常圧残渣油(AR)である。用いた触媒は流動接触分解触媒(A)75質量%とZSM-5を含む添加剤(Davison社製、商品名OlefinsMax)25質量%の混合物である。流動接触分解触媒に含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0(ゼロ)であり、流動接触分解触媒(A)に含まれる超安定Y型ゼオライトの結晶格子定数は24.40Åである。流動接触分解触媒(A)および該添加剤を装置に充填する前にそれぞれを別々に810℃で6時間、100%スチ-ムでスチ-ミングした。分解反応の結果を表1に示す。
(比較例4)
 比較例3と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の常圧残渣油(AR)である。用いた触媒は、実施例2と同じ流動接触分解触媒(B)で、含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.13である。分解反応の結果を表1に示す。
(比較例5)
 比較例3と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の常圧残渣油(AR)である。用いた流動接触分解触媒(C)は含有される超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0.26であり、流動接触分解触媒(C)の希土類酸化物含有量は1.50質量%である。分解反応の結果を表1に示す。
(参考例1)
 実施例5において、ダウンフローリアクター(ダウナー)タイプFCCパイロット装置に替えて、アップフローリアクター(ライザー)タイプFCCパイロット装置を用いた以外は、実施例5と同じ運転条件で重質油の流動接触分解を行った。その結果を表1に示す。
 ライザー反応帯域では逆混合の影響で部分的に滞留時間が延びるため、ガソリン留分の過分解が進みドライガスが増加する結果、ダウナー反応帯域を用いた実施例5に比較して液収率が低くなった。
Figure JPOXMLDOC01-appb-T000001
 
 
1 ダウンフロー形式反応帯域
2 気固分離帯域
3 ストリッピング帯域
4 触媒再生帯域
5 ライザー型再生塔
6 触媒貯槽
7 混合領域
8 二次分離器
9 ディップレッグ
13 第1流量調節器
15 サイクロン
16 第3流量調節器
17 第2流量調節器
 
 

Claims (6)

  1.  重質油を流動接触分解して軽質オレフィンを製造する方法において、反応帯域出口温度が580~630℃、触媒/油比が15~40重量/重量、反応帯域での炭化水素の滞留時間が0.1~1.0秒の条件下に、超安定Y型ゼオライト質量(Wusy)と活性マトリックス質量(Wmat)の比率(Wmat/Wusy)が0~0.3である流動接触分解触媒を構成成分として含む触媒を重質油と接触させることを特徴とする重質油の流動接触分解法。
  2.  触媒が、流動接触分解触媒50~95質量%と形状選択性ゼオライトを含む添加剤5~50質量%とからなることを特徴とする請求項1に記載の重質油の流動接触分解法。
  3.  流動接触分解触媒中の超安定Y型ゼオライトの含有量が5~50質量%であることを特徴とする請求項1または請求項2に記載の重質油の流動接触分解法。
  4.  超安定Y型ゼオライトの結晶格子定数が24.20~24.60Åであることを特徴とする請求項1~3のいずれかに記載の重質油の流動接触分解法。
  5.  流動接触分解触媒中の希土類金属酸化物の含有量が1.5質量%以下であること特徴とする請求項1~4のいずれかに記載の重質油の流動接触分解法。
  6.  ダウンフロー形式反応帯域、気固分離帯域、ストリッピング帯域および触媒再生帯域を有する流動接触分解反応装置を使用することを特徴とする請求項1~5のいずれかに記載の重質油の流動接触分解法。
PCT/JP2015/051347 2014-01-24 2015-01-20 重質油の流動接触分解法 WO2015111566A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167019590A KR20160113122A (ko) 2014-01-24 2015-01-20 중질유의 유동 접촉 분해법
EP15740687.7A EP3098287A4 (en) 2014-01-24 2015-01-20 Fluid catalytic cracking process for heavy oil
US15/113,460 US20170009146A1 (en) 2014-01-24 2015-01-20 Process for fluid catalytic cracking of heavy oil
CN201580005660.1A CN105980527B (zh) 2014-01-24 2015-01-20 重油的流化催化裂化法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014011632A JP6234829B2 (ja) 2014-01-24 2014-01-24 重質油の流動接触分解法
JP2014-011632 2014-01-24

Publications (1)

Publication Number Publication Date
WO2015111566A1 true WO2015111566A1 (ja) 2015-07-30

Family

ID=53681369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051347 WO2015111566A1 (ja) 2014-01-24 2015-01-20 重質油の流動接触分解法

Country Status (6)

Country Link
US (1) US20170009146A1 (ja)
EP (1) EP3098287A4 (ja)
JP (1) JP6234829B2 (ja)
KR (1) KR20160113122A (ja)
CN (1) CN105980527B (ja)
WO (1) WO2015111566A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018200643A1 (en) * 2017-03-09 2018-09-27 Accenture Global Solutions Limited Smart advisory for distributed and composite testing teams based on production data and analytics
JP6971160B2 (ja) * 2018-02-01 2021-11-24 出光興産株式会社 粉体移送配管及びこれを備える装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074878A (en) 1957-10-18 1963-01-22 Exxon Research Engineering Co Short contact time system
US4419221A (en) 1981-10-27 1983-12-06 Texaco Inc. Cracking with short contact time and high temperatures
EP0315179A1 (en) 1987-11-05 1989-05-10 David B. Bartholic Ultra-short contact time fluidized catalytic cracking process
US4980053A (en) 1987-08-08 1990-12-25 Research Institute Of Petroleum Processing, Sinopec Production of gaseous olefins by catalytic conversion of hydrocarbons
US5326465A (en) 1992-10-22 1994-07-05 China Petro-Chemical Corporation Process for the production of LPG rich in olefins and high quality gasoline
JPH07506389A (ja) 1992-05-04 1995-07-13 モービル・オイル・コーポレイション 流動接触分解
US5462652A (en) 1993-09-24 1995-10-31 Uop Short contact FCC process with catalyst blending
JPH1060453A (ja) 1996-06-05 1998-03-03 Nippon Oil Co Ltd 重質油の流動接触分解法
JPH1143678A (ja) * 1996-11-15 1999-02-16 Nippon Oil Co Ltd 重質油の流動接触分解方法
JP2002241765A (ja) * 2001-02-21 2002-08-28 Petroleum Energy Center 重質油の流動接触分解方法
JP2002530514A (ja) * 1998-11-24 2002-09-17 モービル・オイル・コーポレイション オレフィン製造のための接触分解
JP2005029620A (ja) * 2003-07-08 2005-02-03 King Fahd Univ Of Petroleum & Minerals 重質油の流動接触分解法
JP3948905B2 (ja) 2001-02-21 2007-07-25 財団法人 国際石油交流センター 重質油の流動接触分解法
JP2010110698A (ja) * 2008-11-06 2010-05-20 Jgc Catalysts & Chemicals Ltd 炭化水素油の流動接触分解触媒

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010042701A1 (en) * 2000-04-17 2001-11-22 Stuntz Gordon F. Cycle oil conversion process
FR2986799B1 (fr) * 2012-02-15 2015-02-06 IFP Energies Nouvelles Procede de conversion d'une charge lourde, mettant en oeuvre une unite de craquage catalytique et une etape d'hydrogenation selective de l'essence issue du craquage catalytique

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074878A (en) 1957-10-18 1963-01-22 Exxon Research Engineering Co Short contact time system
US4419221A (en) 1981-10-27 1983-12-06 Texaco Inc. Cracking with short contact time and high temperatures
US4980053A (en) 1987-08-08 1990-12-25 Research Institute Of Petroleum Processing, Sinopec Production of gaseous olefins by catalytic conversion of hydrocarbons
EP0315179A1 (en) 1987-11-05 1989-05-10 David B. Bartholic Ultra-short contact time fluidized catalytic cracking process
JPH07506389A (ja) 1992-05-04 1995-07-13 モービル・オイル・コーポレイション 流動接触分解
US5326465A (en) 1992-10-22 1994-07-05 China Petro-Chemical Corporation Process for the production of LPG rich in olefins and high quality gasoline
US5462652A (en) 1993-09-24 1995-10-31 Uop Short contact FCC process with catalyst blending
JPH1060453A (ja) 1996-06-05 1998-03-03 Nippon Oil Co Ltd 重質油の流動接触分解法
JPH1143678A (ja) * 1996-11-15 1999-02-16 Nippon Oil Co Ltd 重質油の流動接触分解方法
JP2002530514A (ja) * 1998-11-24 2002-09-17 モービル・オイル・コーポレイション オレフィン製造のための接触分解
JP2002241765A (ja) * 2001-02-21 2002-08-28 Petroleum Energy Center 重質油の流動接触分解方法
JP3948905B2 (ja) 2001-02-21 2007-07-25 財団法人 国際石油交流センター 重質油の流動接触分解法
JP2005029620A (ja) * 2003-07-08 2005-02-03 King Fahd Univ Of Petroleum & Minerals 重質油の流動接触分解法
JP2010110698A (ja) * 2008-11-06 2010-05-20 Jgc Catalysts & Chemicals Ltd 炭化水素油の流動接触分解触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3098287A4 *

Also Published As

Publication number Publication date
JP6234829B2 (ja) 2017-11-22
CN105980527A (zh) 2016-09-28
JP2015137360A (ja) 2015-07-30
EP3098287A1 (en) 2016-11-30
CN105980527B (zh) 2018-09-21
EP3098287A4 (en) 2017-09-20
US20170009146A1 (en) 2017-01-12
KR20160113122A (ko) 2016-09-28

Similar Documents

Publication Publication Date Title
TWI599400B (zh) 流體催化裂解方法及用於最大化輕質烯烴或最大化中間蒸餾物及輕質烯烴的裝置
JP5339845B2 (ja) 流動接触分解方法
KR101447299B1 (ko) Fcc유닛 작동과 관련된 중질 오일 피드스트림을 경질 탄화수소 생성물 스트림으로 변환 및 회수 방법
RU2580829C2 (ru) Способ и устройство каталитического крекинга для получения пропилена
JP2020517793A (ja) 炭化水素供給原料の蒸気接触ダウナー熱分解による軽質オレフィン収率の向上
US9816037B2 (en) Methods and systems for increasing production of middle distillate hydrocarbons from heavy hydrocarbon feed during fluid catalytic cracking
CN103732726A (zh) 用于制备中间馏分油和低级烯烃的双提升管催化裂化方法
CN108350367B (zh) 流化催化裂化的方法和系统
JP6140076B2 (ja) Fccユニットにおける多段式分解除去プロセス
JP2017502110A (ja) 軽質オレフィンの製造のための溶剤脱瀝および流動接触分解の統合された方法
EP1013743A1 (en) A fluid catalytic cracking (FCC) process
CN103703106A (zh) 用于制备中间馏分油和低级烯烃的双提升管催化裂化方法
KR20220156569A (ko) 유동 접촉 분해 공정 및 장비를 통한 원유로부터의 경질 올레핀의 제조
JP3948905B2 (ja) 重質油の流動接触分解法
JP7436503B2 (ja) ナフサ範囲材料を改良するための固体分離装置を組み込んだ段階的流動接触分解プロセス
JP6234829B2 (ja) 重質油の流動接触分解法
JP4223690B2 (ja) 重質油の流動接触分解方法
CN111479903B (zh) 用于将烃裂化成较轻烃的方法和设备
US20130131412A1 (en) Resid catalytic cracker and catalyst for increased propylene yield
JP6329436B2 (ja) 重質油の流動接触分解法
JP2019089907A (ja) 軽質オレフィンの製造方法
KR101672789B1 (ko) 생성물 분포 프로파일을 향상시키기 위한 촉매적 전환 방법
JP3724934B2 (ja) 油の流動接触分解方法
JP3724932B2 (ja) 油の流動接触分解方法
RU2812317C1 (ru) Способ преобразования углеводородного сырья в более лёгкие олефины

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167019590

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015740687

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015740687

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15113460

Country of ref document: US

Ref document number: IDP00201604857

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE