WO2015111486A1 - 平ベルト - Google Patents

平ベルト Download PDF

Info

Publication number
WO2015111486A1
WO2015111486A1 PCT/JP2015/050825 JP2015050825W WO2015111486A1 WO 2015111486 A1 WO2015111486 A1 WO 2015111486A1 JP 2015050825 W JP2015050825 W JP 2015050825W WO 2015111486 A1 WO2015111486 A1 WO 2015111486A1
Authority
WO
WIPO (PCT)
Prior art keywords
woven fabric
layer woven
flat belt
belt
reinforcing layer
Prior art date
Application number
PCT/JP2015/050825
Other languages
English (en)
French (fr)
Inventor
佑紀 佐藤
隆史 安田
Original Assignee
ニッタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッタ株式会社 filed Critical ニッタ株式会社
Publication of WO2015111486A1 publication Critical patent/WO2015111486A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/30Belts or like endless load-carriers
    • B65G15/32Belts or like endless load-carriers made of rubber or plastics
    • B65G15/34Belts or like endless load-carriers made of rubber or plastics with reinforcing layers, e.g. of fabric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • F16G1/10Driving-belts made of rubber with reinforcement bonded by the rubber with textile reinforcement

Definitions

  • This embodiment relates to a flat belt used in a conveying device or a power transmission device.
  • a flat belt is wound around a large number of small-diameter pulleys having pulley flanges. Further, the belt is used in a state where the flat belt is twisted between the pulleys, and the conveyance is performed while the object to be conveyed is sandwiched.
  • the flat belt used in the folding portion of this flexo folder gluer includes a belt core layer woven fabric, a woven fabric layer bonded and laminated on both sides of the core layer woven fabric, and a woven fabric layer A belt composed of a surface material layer on one surface is used.
  • a transport mechanism using a flat belt forms a crown on the pulley, thereby preventing the flat belt from deviating left and right from the surface of the pulley so that stable running can be performed.
  • a flat belt is wound around a number of complicatedly arranged pulleys, and the flat belt is wound around the pulleys while being twisted between the pulleys.
  • the folding portion of the flexo / folder gluer is a large-scale transport mechanism that transports the transported object of the corrugated cardboard sheet between the flat belts. For this reason, it is difficult to always keep the running position of the flat belt constant only by forming a crown on the pulley. Therefore, a pulley with a flange provided with pulleys and flanges for preventing deviation on both sides of the pulley is used.
  • the flat belt having low rigidity in the width direction has a problem of running off the pulley and the flange.
  • a flat belt having a low flexibility in the longitudinal direction of the belt is wound around a large number of small-diameter pulleys, and the belt is repeatedly bent in the longitudinal direction.
  • ⁇ Flat belts used for flexo / folder gluer folding parts are wound around numerous small-diameter pulleys. Further, in the transport mechanism, one end surface of the flat belt always slides with the flange surface attached to the pulley to transport the object to be transported. For this reason, problems such as the flat belt riding on the flange of the pulley and deviating or the flat belt being damaged in a short time due to repeated bending occur.
  • the problem to be solved by the present invention is to provide a flat belt capable of preventing the belt from being damaged in a short time by repeated bending and preventing the flat belt from climbing onto the pulley flange.
  • the flat belt according to this embodiment includes a core layer woven fabric, and a first reinforcing layer woven fabric and a second reinforcing layer woven fabric laminated on the upper surface and the lower surface of the core layer woven fabric,
  • the reinforcing layer woven fabric and the second reinforcing layer woven fabric have a lower tensile stiffness in the longitudinal direction than the core layer woven fabric, and a tensile stiffness comparable to the core layer woven fabric in the width direction. It is characterized by.
  • the tensile strength in the longitudinal direction of the core layer woven fabric is 20 to 75 N / mm
  • the tensile stiffness in the width direction of the core layer woven fabric is 5 to 20 N / mm. .
  • the tensile strength in the longitudinal direction of the first reinforcing layer woven fabric and the second reinforcing layer woven fabric is 2 to 30 N / mm
  • the width direction of the first reinforcing layer woven fabric and the second reinforcing layer woven fabric is The tensile rigidity is 5 to 20 N / mm.
  • the apparatus can be used without changing the belt for a long period of time, and the cardboard box can be efficiently processed and manufactured.
  • FIG. 1 is an explanatory diagram showing a flexo / folder gluer folding unit 100 in which the flat belt of this embodiment is used.
  • the conveyed object 110 which is a corrugated cardboard sheet that has been printed and box-formed
  • the flexo / folder gluer folding unit 100 is used to transport the object 110, which is a corrugated cardboard sheet that has been printed and box-formed.
  • Various belts with the flat belt 10 of the pair of lower folding portions 150 are used.
  • the flat belt 10 of the lower folding portion 150 is wound around, for example, a drive pulley 160, a small pulley 170, a vertically installed pulley 180, and the like.
  • the flat label 10 is twisted and wound at an angle of 90 degrees between the vertically installed pulley 180 and the drive pulley 160.
  • the flat belt 10 travels while the power of the drive pulley 160 is frictionally transmitted, and travels between the drive pulley 160 and the vertically installed pulley 180 in the direction of arrow A shown in FIG.
  • the transported object 110 which is a corrugated cardboard sheet that has been subjected to printing and box forming processing, is supplied from the upstream printing / box forming processing step to the inlet portion 130 of the folding portion of the folding portion 100 of the flexo / folder gluer.
  • the transported object 110 is transported with the upper and lower suction belts 190, the lower feed belt 140, and the flat belt 10 of the lower folding unit 150 sandwiched between the upper and lower sides.
  • the conveyed object 110 supplied to the inlet portion 130 of the folding portion is supplied with glue to the joint portion of the cardboard sheet while being conveyed by the lower feed belt 140.
  • the conveyed object 110 is bent along the ruled line and joined at the lower folding portion 150 where the flat belt 10 is used.
  • the object 120 to be conveyed which is a corrugated cardboard sheet that is bent and joined, is delivered to the subsequent process at the folding unit outlet 135.
  • FIG. 2 is a cross-sectional view of the pulleys of the drive pulley 160, the small pulley 170, and the longitudinally installed pulley 180.
  • flanges 52 are provided on both sides of the pulley 50.
  • “drive pulley 160, small pulley 170, and vertically installed pulley 180” are indicated as “pulley 50” for convenience.
  • One end of both ends of the running flat belt 10 is in contact with one of the flange walls 54. This prevents the flat belt 10 from deviating from the pulley 50, that is, the driving pulley 160, the small pulley 170, and the vertically installed pulley 180.
  • FIG. 3 is a cross-sectional view showing an embodiment of the flat belt of the present invention.
  • the lower side in FIG. 3 is the lower surface (inner peripheral surface) side
  • the upper side is the upper surface (outer peripheral surface) side.
  • the flat belt 10 includes a core layer woven fabric 15 extending over the entire length of the belt at a central portion in the thickness direction of the belt.
  • the first and second elastomer layers 20 and 25 are provided on the upper and lower surfaces of the core layer woven fabric 15.
  • a first reinforcing layer woven fabric 30 is adhesively laminated on the upper surface of the first elastomer layer 20.
  • a second reinforcing layer woven fabric 35 is adhesively laminated on the lower surface of the second elastomer layer 25.
  • a surface material layer 40 is bonded and laminated on the upper surface of the first reinforcing layer woven fabric 30.
  • the surface material layer 40 and the second reinforcing layer woven fabric 35 form an outer peripheral surface and an inner peripheral surface of the flat belt 10, respectively.
  • the outer peripheral surface and the inner peripheral surface of the flat belt 10 are in contact with the drive pulley 160, the small pulley 170, the vertically installed pulley 180, and the conveyed object 110, respectively.
  • the core layer woven fabric 15 is a woven fabric woven by warp yarns 15 ⁇ / b> A extending along the longitudinal direction of the flat belt 10 and weft yarns 15 ⁇ / b> B extending along the width direction of the flat belt 10.
  • the core layer woven fabric 15 has stretchability in the longitudinal direction of the flat belt 10 by using a stretchable yarn as the warp yarn 15A.
  • the core layer woven fabric 15 has high rigidity in the width direction of the flat belt 10 by using a high-rigidity yarn having non-stretchability as the weft 15B of the woven fabric.
  • rubber or a thermoplastic elastomer is used as a polymer component, and various additives are added as necessary.
  • the rubber natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, ethylene propylene rubber, chloroprene rubber, chlorinated polyethylene, epichlorohydrin rubber, nitrile rubber, acrylic rubber, urethane rubber, etc., or a mixture thereof are used. .
  • thermoplastic elastomer a simple substance such as a polyurethane-based elastomer, a polyester-based elastomer, a polyamide-based elastomer, a polyolefin-based elastomer, or a mixture thereof is used.
  • the first elastomer layer 20 and the second elastomer layer 25 are formed by appropriately selecting from the above configurations, but the first elastomer layer 20 and the second elastomer layer 25 may have the same configuration. It may be good or different.
  • the first reinforcing layer woven fabric 30 is a woven fabric woven by warp yarns 30 ⁇ / b> A extending along the longitudinal direction of the flat belt 10 and weft yarns 30 ⁇ / b> B extending along the width direction of the flat belt 10.
  • the second reinforcing layer woven fabric 35 is a woven fabric woven by warp yarns 35A extending along the longitudinal direction of the flat belt 10 and weft yarns 35B extending along the width direction 10 of the flat belt. is there.
  • the warp yarns 30 ⁇ / b> A and 35 ⁇ / b> A of the first reinforcing layer woven fabric 30 and the second reinforcing layer woven fabric 35 are lower than the warp yarn 15 ⁇ / b> A of the core layer woven fabric 15. Therefore, the first reinforcing layer woven fabric 30 and the second reinforcing layer woven fabric 35 have lower rigidity in the longitudinal direction of the flat belt 10 than the core layer woven fabric 15.
  • the weft yarns 30B and 35B of the first reinforcing layer woven fabric 30 and the second reinforcing layer woven fabric 35 are non-stretchable and highly rigid yarns similar to the weft yarns 15B of the core layer woven fabric 15. Therefore, the first reinforcing layer woven fabric 30 and the second reinforcing layer woven fabric 35 have the same high rigidity as the core layer woven fabric 15 in the width direction of the flat belt 10.
  • the longitudinal (longitudinal) tensile stiffness of the core layer fabric 15 is 20 to 75 N / mm
  • the tensile stiffness of the width (width direction) of the core layer fabric 15 is 5 to 20 N / mm.
  • the tensile strength in the longitudinal (longitudinal) direction of the first reinforcing layer woven fabric 30 and the second reinforcing layer woven fabric 35 is 2 to 30 N / mm
  • the first reinforcing layer woven fabric 30 and the second reinforcing layer woven fabric 30 It is optimal that the tensile rigidity of the width 35 (width direction) is 5 to 20 N / mm.
  • rubber or thermoplastic elastomer is used as a polymer component, and various additives are added as necessary.
  • the rubber natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, ethylene propylene rubber, chloroprene rubber, chlorinated polyethylene, epichlorohydrin rubber, nitrile rubber, acrylic rubber, urethane rubber, etc., or a mixture thereof are used. .
  • thermoplastic elastomer a simple substance such as a polyurethane-based elastomer, a polyester-based elastomer, a polyamide-based elastomer, a polyolefin-based elastomer, or a mixture thereof is used. These rubbers or thermoplastic elastomers are appropriately used depending on the use of the belt.
  • the warp yarn 15A of the core layer woven fabric 15, the warp yarn 30A of the first reinforcing layer woven fabric 30, and the warp yarn 35A of the second reinforcing layer woven fabric 35 are, for example, multifilaments, and are polyester-based, polyamide-based, polyvinyl-based, Synthetic fiber yarns such as polyester, polyacrylic, polyethylene, polypropylene, polyurethane, polyfluorocarbon, and fluorine-containing fibers are used.
  • the weft yarn 15B of the core layer woven fabric 15, the weft yarn 30B of the first reinforcing layer woven fabric 30, and the weft yarn 35B of the second reinforcing layer woven fabric 35 are, for example, spun yarn or monofilament, and are polyester, polyamide, or polyvinyl. Synthetic fiber yarns such as polyester, polyacrylic, polyethylene, polypropylene, polyurethane, polyfluorocarbon, and fluorine-containing are used.
  • the core layer woven fabric 15, the first reinforcing layer woven fabric 30, and the second reinforcing layer woven fabric 35 are formed by appropriately selecting from the above configurations, but may have the same configuration or different configurations. It may be.
  • a belt performance test method for the flat belt 10 of this embodiment will be described.
  • the tests were a tensile test for measuring the tensile rigidity in the longitudinal direction of the flat belt, a bending test for measuring the bending elastic modulus in the longitudinal direction and the belt width direction of the flat belt, and a torsional durability running test of the flat belt. .
  • Eb (L 3 ⁇ F) / (4bh 3 ⁇ Y)
  • F is the bending load (N)
  • L is the fulcrum interval (mm)
  • b is the width of the test piece (mm)
  • h is the thickness (mm) of the test piece 210
  • Y is the deflection (mm) of the test piece 210.
  • Test piece size 80 mm x 10 mm (width x length) Support distance: 60mm Deflection speed: 2.0 m / min
  • this belt torsion durability running test machine 300 includes two pulleys in combination with the drive pulley 320 and the driven pulley 330, the torsion test belt 310 is bent twice in one round.
  • Number of times of bending number of times of belt rotation ⁇ 2 times
  • Example 1 Comparative Example 1
  • the main specifications of the belts of Example 1 and Comparative Example 1 are shown in FIG.
  • the longitudinal tensile stiffness of each woven fabric shown in FIG. 6 was measured by the same test method as the above (1) belt tensile stiffness measurement method. Further, the tensile stiffness in the transverse direction of each woven fabric shown in FIG. 6 was also measured by the same test method.
  • Example 1 The flat belt of Example 1 has the following configuration (see Example 1 of FIG. 6).
  • Core layer woven fabric polyester-based woven fabric (thickness is 0.8 mm, belt longitudinal tensile stiffness of woven fabric is 71 N / mm, and belt width direction tensile stiffness of woven fabric is 7.9 N / mm).
  • Adhesive layer Corresponds to urethane adhesive (thickness is 0.55 mm), first elastomer layer 20 and second elastomer layer 25 in FIG.
  • First reinforcing layer woven fabric and second reinforcing layer woven fabric polyester-based woven fabric (thickness is 0.6 mm, belt longitudinal tensile stiffness of woven fabric is 2 N / mm, and belt width direction tensile stiffness of woven fabric is 12. 4 N / mm).
  • Surface material layer vulcanized rubber (thickness is 4 mm).
  • Joining method for endless belt Finger joint.
  • Comparative Example 1 The flat belt of Comparative Example 1 has the following configuration (see Comparative Example 1 of FIG. 6).
  • Core layer woven fabric polyester-based woven fabric (thickness is 0.65 mm, belt fabric longitudinal tensile stiffness is 23 N / mm, belt width direction tensile stiffness is 10.6 N / mm).
  • Adhesive layer vulcanized rubber (thickness is 0.3 mm), corresponding to the first elastomer layer 20 and the second elastomer layer 25 in FIG.
  • First reinforced layer woven fabric and second reinforced layer woven fabric polyester-based woven fabric (thickness is 0.65 mm, belt longitudinal tensile stiffness of woven fabric is 23 / mm, and belt width direction tensile stiffness of woven fabric is 10. 6 N / mm).
  • Surface material layer vulcanized rubber (thickness is 4.5 mm).
  • Joining method of endless belt joint Racing joint.
  • Example 1 For Example 1 and Comparative Example 1, a tensile test for measuring the tensile rigidity in the flat belt longitudinal direction, a bending test for measuring the flexural modulus in the flat belt longitudinal direction and the flat belt width direction, and flat belt twist durability running Tests were conducted. The results of the tensile test, the bending test, and the belt twist durability running test are also shown at the bottom of FIG.
  • the tensile rigidity in the flat belt longitudinal direction of Example 1 is 8% or more larger than that in Comparative Example 1, and is sufficiently high in the flat belt longitudinal direction necessary for driving the belt. It can be seen that the rigidity is secured.
  • the bending elastic modulus in the flat belt longitudinal direction of Example 1 is 45% smaller than the bending elastic modulus of Comparative Example 1, and has sufficiently high flexibility in the flat belt longitudinal direction. You can see that Further, the bending elastic modulus in the flat belt width direction of Example 1 is about 200% larger than that of Comparative Example 1, and sufficiently high bending rigidity in the flat belt width direction is ensured. Recognize.
  • the flat belt of Example 1 does not generate any abnormality even when it is bent more than 220 million times and has sufficient durability.
  • the flat belt of Comparative Example 1 was broken at the joined portion of the flat belt after the number of flexing times of 2.2 million. This is presumably because the internal stress due to bending at the time of bending on the small-diameter pulley increased because the flexibility of the flat belt in the longitudinal direction of Comparative Example 1 was low.
  • the core layer woven fabric having high rigidity in the longitudinal (longitudinal) direction and the lateral (width) direction of the flat belt, high flexibility in the longitudinal (longitudinal) direction of the flat belt, and high rigidity in the lateral (width) direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Belt Conveyors (AREA)

Abstract

 本発明の平ベルトは、芯体層織布と、前記芯体層織布の上面および下面に積層される第1強化層織布および第2強化層織布とを備え、前記第1強化層織布および第2強化層織布は、前記芯体層織布に比べて長手方向に低い引張剛性を有すると共に、幅方向に前記芯体層織布と同程度の引張剛性を有する。

Description

平ベルト
 本実施形態は、搬送装置あるいは動力伝達装置に用いられる平ベルトに関する。
 従来、段ボールシートを段ボール箱に加工する製函機であるフレキソ・フォルダグルアのフォールディング部においては、プーリのフランジを備えた多数の小径プーリに平ベルトが巻き掛けられている。また、プーリ間で平ベルトが捻られた状態で使用され、被搬送物を挟んだ状態で搬送を行っている。このフレキソ・フォルダグルアのフォールディング部に使用されている平ベルトとしては、ベルトの芯体層織布と、その芯体層織布の両面に接着積層された織布層と、その織布層の一方の面の表面材層とで構成されているベルトが使用されている。一般に平ベルトによる搬送機構は、プーリにクラウンを形成することにより、平ベルトがプーリ表面から左右に逸脱することを防止し、安定な走行が行えるようにしている。
 しかしながら、フレキソ・フォルダグルアのフォールディング部では、複雑に配置された多数のプーリに平ベルトが巻き掛けられ、またプーリ間で平ベルトが捻られた状態でプーリに巻き掛けられている。このように、フレキソ・フォルダグルアのフォールディング部は、段ボールシートの被搬送物を平ベルトで挟持して搬送する規模の大きい搬送機構である。このため、プーリにクラウンを形成するだけでは、平ベルトの走行位置を常に一定に保つことが難しい。したがって、プーリの両側部に逸脱防止のプーリ・フランジを備えたフランジ付プーリが使用されている。
 このような搬送機構では、平ベルト両側端面のいずれかの端面が常にプーリ・フランジ面と摺動している。このため、その幅方向の剛性が低い平ベルトは、プーリ・フランジに乗り上げて逸脱する不具合が発生する。また、ベルトの縦方向の柔軟性が低い平ベルトは、多数の小径プーリに巻き掛けられ、ベルトの長手方向の屈曲が繰り返され、短期で破損する等の不具合が発生する。
実開昭62-176110号公報 特開2006-264944号公報
 フレキソ・フォルダグルアのフォールディング部などに使用される平ベルトは、多数の小径プーリに巻き掛けられている。また、その搬送機構では、平ベルトの一方の端面が常にプーリに取付けられたフランジ面と摺動して被搬送物の搬送を行っている。そのため、平ベルトがプーリのフランジに乗り上げ逸脱することや、平ベルトが屈曲の繰り返しにより短期で破損する等の不具合が発生する。
 本発明の解決しようとする課題は、繰り返し屈曲により短期にベルトが破損すること、並びに平ベルトがプーリのフランジへの乗り上げることを防止できる平ベルトを提供することである。
 本実施形態に係る平ベルトは、芯体層織布と、前記芯体層織布の上面および下面に積層される第1強化層織布および第2強化層織布とを備え、前記第1強化層織布および第2強化層織布は、前記芯体層織布に比べて長手方向に低い引張剛性を有すると共に、幅方向に前記芯体層織布と同程度の引張剛性を有することを特徴とする。
 好ましくは、前記芯体層織布の長手方向の引張剛性が20~75N/mmであるとともに、前記芯体層織布の幅方向の引張剛性が5~20N/mmであることを特徴とする。
 好ましくは、前記第1強化層織布および第2強化層織布の長手方向の引張剛性が2~30N/mmであるとともに、前記第1強化層織布および第2強化層織布の幅方向の引張剛性が5~20N/mmであることを特徴とする。
 本実施形態の平ベルトによれば、小径プーリでの繰り返し屈曲による短期でのベルト破損防止効果や、ベルトのプーリのフランジへの乗り上げ防止効果が発揮される。また、長期間ベルトを交換せずに装置が使用でき、段ボール箱を効率的に加工製造することができる。
本実施形態の平ベルトが使用されるフレキソ・フォルダグルアのフォールディング部の一実施形態を示す説明図である。 図1で使用されている駆動プーリ、小プーリおよび縦設置プーリの横断面図である。 図1で使用されている本発明の平ベルトの一実施形態を示す断面図である。 平ベルトの曲げ弾性率の測定方法を説明するための説明図である。 平ベルト捻り耐久走行試験機を説明するための説明図である。 実施例1および比較例1で得られた平ベルトの仕様および各試験結果を示す表である。
 以下、本実施形態の平ベルトを図1~3に基づいて説明する。図1は、本実施形態の平ベルトが使用されるフレキソ・フォルダグルアのフォールディング部100を示す説明図である。
 本実施形態の平ベルト10を用いて、印刷加工および箱成形加工された段ボールシートである被搬送物110の搬送は、以下のように行われる。フレキソ・フォルダグルア工程において、印刷加工および箱成形加工された段ボールシートである被搬送物110を搬送するために、フレキソ・フォルダグルアのフォールディング部100が用いられる。フレキソ・フォルダグルアのフォールディング部100においては、無端状に形成された左右1組の上側サクションベルト190と、無端状に形成された左右1組の下送りベルト140と、無端状に形成された左右1組の下折り部150の平ベルト10との各種ベルトが用いられている。
 下折り部150の平ベルト10は、例えば駆動プーリ160、小プーリ170および縦設置プーリ180などに巻き掛けられている。ここで、平ラベル10は、例えば図1に示すように、縦設置プーリ180と駆動プーリ160との間で90度の角度に捻られ、巻き掛けられている。このような構成により、平ベルト10は、駆動プーリ160の動力が摩擦伝導されて走行され、駆動プーリ160および縦設置プーリ180間において、図1に示す矢印A方向に走行する。
 印刷加工および箱成形加工された段ボールシートである被搬送物110は、上流工程の印刷・箱成形加工工程からフレキソ・フォルダグルアのフォールディング部100のフォールディング部の入口部130に供給される。次に、被搬送物110は、上側サクションベルト190と、下送りベルト140と、下折り部150の平ベルト10とで上下が挟持されて搬送される。即ち、フォールディング部の入口部130に供給された被搬送物110は、下送りベルト140で搬送される間に段ボールシートの継ぎしろ部に糊が供給される。次に、平ベルト10が使用される下折り部150で被搬送物110は罫線に沿って折り曲げられて接合される。次に、折り曲げられて接合された段ボールシートである被搬送物120は、フォールディング部出口部135で、後工程に受け渡される。
 図2は、駆動プーリ160、小プーリ170および縦設置プーリ180の各プーリの横断面図に示す。図2に示すように、プーリ50の両側部には、フランジ52が設けられている。図2においては、便宜上、「駆動プーリ160、小プーリ170および縦設置プーリ180」を「プーリ50」と示している。走行中の平ベルト10の両端部の一方の端部は、フランジ壁54のいずれか一方に接触している。これにより、平ベルト10がプーリ50、すなわち駆動プーリ160、小プーリ170および縦設置プーリ180から逸脱するのを防止する。
 図3は、本発明の平ベルトの一実施形態を示す断面図である。なお、図3における下方側を下面(内周面)側とし、また上方側を上面(外周面)側として説明する。
 図3に示すように、平ベルト10は、ベルトの厚さ方向における中央部分にベルトの全長にわたって延びる芯体層織布15を備える。そして、芯体層織布15の上面および下面に、第1および第2のエラストマー層20、25を備える。その第1のエラストマー層20の上面には第1強化層織布30が接着積層されている。第2のエラストマー層25の下面には第2強化層織布35が接着積層されている。また、第1強化層織布30の上面に表面材層40が接着積層されている。表面材層40および第2強化層織布35は、それぞれ平ベルト10の外周面および内周面を形成する。平ベルト10の外周面および内周面は、それぞれが駆動プーリ160、小プーリ170、縦設置プーリ180および被搬送物110に接触している。
 芯体層織布15は、平ベルト10の長手方向に沿って延在する縦糸15Aと、平ベルト10の幅方向に沿って延在する横糸15Bとによって織成された織布である。芯体層織布15は、縦糸15Aとして伸縮性を有した糸を用いることにより、平ベルト10の長手方向に伸縮性を有する。また、芯体層織布15は、織布の横糸15Bとして非伸縮性を有する高剛性な糸を用いることにより、平ベルト10の幅方向に高い剛性を有する。
 第1のエラストマー層20および第2のエラストマー層25には、ゴムまたは熱可塑性エラストマーがポリマー成分として使用され、必要に応じて各種添加剤が添加されている。ゴムとしては、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、エチレンプロピレンゴム、クロロプレンゴム、塩素化ポリエチレン、エピクロルヒドリンゴム、ニトリルゴム、アクリルゴム、ウレタンゴム等の単体またはこれらの混合物が使用される。熱可塑性エラストマーとしては、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリオレフィン系エラストマー等の単体またはこれらの混合物が使用される。第1のエラストマー層20および第2のエラストマー層25は、上記の構成から適宜選択されて形成されるが、第1のエラストマー層20および第2のエラストマー層25は、同一の構成であっても良いし、異なる構成であっても良い。
 第1強化層織布30は、平ベルト10の長手方向に沿って延在する縦糸30Aと、平ベルト10の幅方向に沿って延在する横糸30Bとによって織成された織布である。第2強化層織布35も同様に、平ベルト10の長手方向に沿って延在する縦糸35Aと、平ベルトの幅方向10に沿って延在する横糸35Bとによって織成された織布である。
 第1強化層織布30および第2強化層織布35の縦糸30A、35Aは、前記芯体層織布15の縦糸15Aに比べて低い剛性の糸を用いている。従って、第1強化層織布30および第2強化層織布35は、芯体層織布15に比べて平ベルト10の長手方向に低い剛性を有する。また、第1強化層織布30および第2強化層織布35の横糸30B、35Bは、前記芯体層織布15の横糸15Bと同程度の非伸縮性での高剛性な糸を用いる。従って、第1強化層織布30および第2強化層織布35は、平ベルト10の幅方向に前記芯体層織布15と同程度の高い剛性を有する。
 即ち、芯体層織布15の縦(長手方向)の引張剛性が20~75N/mmであるとともに、芯体層織布15の幅(幅方向)の引張剛性が5~20N/mmであると最適である。また、第1強化層織布30および第2強化層織布35の縦(長手)方向の引張剛性が2~30N/mmであるとともに、第1強化層織布30および第2強化層織布35の幅(幅方向)の引張剛性が5~20N/mmであると最適である。
 表面材層40には、ゴムまたは熱可塑性エラストマーがポリマー成分として使用され、必要に応じて各種添加剤が添加されている。ゴムとしては、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、エチレンプロピレンゴム、クロロプレンゴム、塩素化ポリエチレン、エピクロルヒドリンゴム、ニトリルゴム、アクリルゴム、ウレタンゴム等の単体またはこれらの混合物が使用される。熱可塑性エラストマーとしては、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリオレフィン系エラストマー等の単体またはこれらの混合物が使用される。これらのゴムまたは熱可塑性エラストマーは、ベルトの用途に応じ適宜使用される。
 芯体層織布15の縦糸15A、第1強化層織布30の縦糸30A、および第2強化層織布35の縦糸35Aは、例えばマルチフィラメントであって、ポリエステル系、ポリアミド系、ポリビニル系、ポリエステル系、ポリアクリル系、ポリエチレン系、ポリプロピレン系、ポリウレタン系、ポリフルオルカーボン系、含フッ素系等の合成繊維糸が使用される。芯体層織布15の横糸15B、第1強化層織布30の横糸30B、および第2強化層織布35の横糸35Bは、例えばスパン糸またはモノフィラメントあって、ポリエステル系、ポリアミド系、ポリビニル系、ポリエステル系、ポリアクリル系、ポリエチレン系、ポリプロピレン系、ポリウレタン系、ポリフルオルカーボン系、含フッ素系等の合成繊維糸が使用される。
 芯体層織布15、第1強化層織布30、および第2強化層織布35は、上記の構成から適宜選択されて形成されるが、同一の構成であっても良いし、異なる構成であっても良い。
 まず、本実施形態の平ベルト10のベルト性能試験方法について説明する。試験は、平ベルトの長手方向での引張り剛性を測定する引張試験と、平ベルトの長手方向およびベルト幅方向の曲げ弾性率を測定する曲げ試験と、平ベルトの捻り耐久走行試験とを行った。
 上記の各試験方法について説明する。
(1)ベルトの引張試験
A.試験方法
 平ベルトの引張剛性の測定は、引張試験機(オートグラフAG-2000B)を用いて行った。具体的には、引張試験機により平ベルトの試験片を、長さ方向に一定引張速度で引っ張ったとき、一定の伸び率(例えば元の長さに対して3%)における引張力を検出し、その値をその伸び率での引張剛性とした。通常、引張剛性は単位ミリメートル幅当たりで表す。
B.試験条件
 試験片サイズ:20mm×500mm(幅×長さ)
 引張速度:50m/分
 測定環境:温度23℃、湿度50%RH
(2)ベルトの曲げ弾性率
A.試験方法
 ベルトの曲げ弾性率の試験は、曲げ弾性率JIS K 7203-1982および熱硬化性プラスチック一般試験方法JIS K 6911-1979に準拠して行った。図4に示すように平ベルトの曲げ試験機200は、矩形断面をもつベルト試験片210を、一定の支点間隔(スパン)をもって左右の支持台220で支え、その中央に加圧くさび230をあてて曲げ荷重Fを加え、試験片210のたわみYを測定した。この曲げ荷重Fの値と試験片のたわみYの値とから、次式に基づいて曲げ弾性率Eb(MPa)を算出した。
 Eb=(L3・F)/(4bh3・Y)
 ここで、Fは曲げ荷重(N)、Lは支点間隔(mm)、bは試験片の幅(mm)、hは試験片210の厚み(mm)、Yは試験片210のたわみ(mm)を示す。
B.試験条件
 試験片サイズ:80mm×10mm(幅×長さ)
 支点間隔:60mm
 たわみ速度:2.0m/分
 測定環境:温度23℃、湿度50%RH
(3)ベルト捻り耐久走行試験
A.試験方法
 図5に示すように、1つの駆動プーリ320と従動プーリ330とが備えられたベルト捻り耐久走行試験機300を用いた。捻り試験ベルト310を、駆動プーリ320から従動プーリ330の間で180度捻り、また従動プーリ330から駆動プーリ320の間で180度捻り、駆動プーリ320と従動プーリ330とに巻き掛けた。駆動プーリ320および従動プーリ330の直径は、100mmとした。各試験ベルトのベルト取付け伸長率は1.0%、走行速度は10m/秒とし、試験ベルトに異常が発生するまで走行させるようにした。このベルト捻り耐久走行試験機300は、駆動プーリ320と従動プーリ330とを合わせて2つのプーリを備えているので、捻り試験ベルト310は1回の周回で2回屈曲される。捻り試験ベルト310が連続走行後に異常発生した時にベルトの耐久寿命とし、屈曲回数で表示した。
  屈曲回数=ベルトの周回回数×2回
B.試験条件:
 捻り試験ベルトサイズ:20mm×1000mm(幅×長さ)
 測定環境:常温環境下
 次に、実施例1および比較例1のベルト性能を比較した結果について説明する。実施例1および比較例1の各ベルトの主な仕様について、図6に示す。なお、図6に示す各織布の縦方向の引張剛性は、上記の(1)ベルトの引張剛性測定方法と同じ試験方法により測定した。また、図6に示す各織布の横方向の引張剛性も、同じ試験方法により測定した。
(実施例1)
 実施例1の平ベルトは下記の構成を有する(図6の実施例1を参照)。
 芯体層織布:ポリエステル系織布(厚みは0.8mm、織布のべルト長手方向引張剛性は71N/mm、織布のベルト幅方向引張剛性は7.9N/mmである)。
 接着層:ウレタン系接着剤(厚みは0.55mmである)、図3の第1のエラストマー層20および第2のエラストマー層25に相当する。
 第1強化層織布および第2強化層織布:ポリエステル系織布(厚みは0.6mm、織布のべルト長手方向引張剛性は2N/mm、織布のベルト幅方向引張剛性は12.4N/mmである)。
 表面材層:加硫ゴム(厚みは4mmである)。
 無端状ベルトの接合部接合方法:フィンガー接手。
(比較例1)
 比較例1の平ベルトは下記の構成を有する(図6の比較例1を参照)。
 芯体層織布:ポリエステル系織布(厚みは0.65mm、織布のべルト長手方向引張剛性は23N/mm、織布のベルト幅方向引張剛性は10.6N/mmである)。
 接着層:加硫ゴム(厚みは0.3mmである)、図3の第1のエラストマー層20および第2のエラストマー層25に相当する。
 第1強化層織布および第2強化層織布:ポリエステル系織布(厚みは0.65mm、織布のべルト長手方向引張剛性は23/mm、織布のベルト幅方向引張剛性は10.6N/mmである)。
 表面材層:加硫ゴム(厚みは4.5mmである)。
 無端状ベルトの接合部接合方法:レーシング接手。
 上記実施例1および比較例1について、平ベルト長手方向での引張り剛性を測定する引張試験と、平ベルト長手方向および平ベルト幅方向の曲げ弾性率を測定する曲げ試験と、平ベルト捻り耐久走行試験とを行った。図6の下側に、上記引張試験、曲げ試験及びベルト捻り耐久走行試験の結果を併せて示す。
 平ベルトの引張試験の結果に示すように、実施例1の平ベルト長手方向の引張り剛性は比較例1に比べ8%以上大きくなっており、ベルト駆動に必要な平ベルト長手方向の十分な高剛性を確保していることがわかる。
 曲げ試験の結果に示すように、実施例1の平ベルト長手方向の曲げ弾性率は、比較例1の曲げ弾性率に比べ45%小さくなっており、平ベルト長手方向において十分高い柔軟性を有していることがわかる。また、実施例1の平ベルト幅方向の曲げ弾性率は、比較例1の曲げ弾性率に比べ約200%大きくなっており、平ベルト幅方向の十分に高い曲げ剛性を確保していることがわかる。
 前記ベルト捻り耐久走行試験の結果に示すように、実施例1の平ベルトは、2.2億回以上の屈曲回数でも異常が発生せず、十分な耐久性を備えていることがわかる。これに対し、比較例1の平ベルトは、220万回の屈曲回数で、平ベルトの接合部で破断が発生した。これは、比較例1の平ベルト長手方向の柔軟性が低いため、小径プーリ上での屈曲時の曲げによる内部応力が高くなったものと考えられる。
 以上のように、平ベルト縦(長手)方向および横(幅)方向で高剛性を有する芯体層織布と、平ベルト縦(長手)方向の高柔軟性と横(幅)方向の高剛性を有する第1強化層織布および第2強化層織布とを有する本実施形態の平ベルトを用いることにより、平ベルトのプーリ・フランジへの乗り上げを防止し、小径プーリでの屈曲による短期のベルト破損を防止することができる。その結果、長期間ベルト交換せずに装置が使用でき、段ボール箱を効率的に製造することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、本発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10 平ベルト
15 芯体層織布
15A 芯体層織布の縦糸
15B 芯体層織布の横糸
20 第1のエラストマー層
25 第2のエラストマー層
30 第1強化層織布
30A 第1強化層織布の縦糸
30B 第1強化層織布の横糸
35 第2強化層織布
35A 第2強化層織布の縦糸
35B 第2強化層織布の横糸
40 表面材層
50 プーリ
52 プーリのフランジ
54 フランジ壁
100 フレキソ・フォルダグルアのフォールディング部装置
110 印刷加工および箱成形加工された段ボールシートである被搬送物
120 折り曲げ、接合された段ボールシートである被搬送物
130 フォールディング部の入口部
135 フォールディング部出口部
140 下送りベルト
150 下折り部
160 駆動プーリ
170 小プーリ
180 縦設置プーリ
190 上側サクションベルト
200 曲げ試験機
210 ベルト試験片
220 支持台
230 加圧くさび
300 ベルト捻り耐久走行試験機
310 捻り試験ベルト
320 駆動プーリ
330 従動プーリ

Claims (6)

  1.  芯体層織布と、前記芯体層織布の上面および下面に積層される第1強化層織布および第2強化層織布とを備え、前記第1強化層織布および第2強化層織布は、前記芯体層織布に比べて長手方向に低い引張剛性を有すると共に、幅方向に前記芯体層織布と同程度の引張剛性を有することを特徴とする平ベルト。
  2.  前記芯体層織布の長手方向の引張剛性は、前記芯体層織布の幅方向の引張剛性に比べ、大きいことを特徴とする請求項1に記載の平ベルト。
  3.  前記第1強化層織布および第2強化層織布の長手方向の引張剛性は、前記第1強化層織布および第2強化層織布の幅方向の引張剛性と同程度の大きさであることを特徴とする請求項1に記載の平ベルト。
  4.  前記芯体層織布の長手方向の引張剛性が20~75N/mmであるとともに、前記芯体層織布の幅方向の引張剛性が5~20N/mmであることを特徴とする請求項2に記載の平ベルト。
  5.  前記第1強化層織布および第2強化層織布の長手方向の引張剛性が2~30N/mmであるとともに、前記第1強化層織布および第2強化層織布の幅方向の引張剛性が5~20N/mmであることを特徴とする請求項3に記載の平ベルト。
  6.  第1強化層織布の上面に積層形成される表面材層がゴムまたは熱可塑性エラストマーであることを特徴とする請求項1に記載の平ベルト。
PCT/JP2015/050825 2014-01-22 2015-01-14 平ベルト WO2015111486A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014009653 2014-01-22
JP2014-009653 2014-01-22

Publications (1)

Publication Number Publication Date
WO2015111486A1 true WO2015111486A1 (ja) 2015-07-30

Family

ID=53681292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050825 WO2015111486A1 (ja) 2014-01-22 2015-01-14 平ベルト

Country Status (2)

Country Link
TW (1) TW201540621A (ja)
WO (1) WO2015111486A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022338A1 (ja) * 2015-07-31 2017-02-09 横浜ゴム株式会社 コンベヤベルト
WO2024008551A1 (en) * 2022-07-08 2024-01-11 Contitech Transportbandsysteme Gmbh Belt with reinforcing polyolefin fabric

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108913A (ja) * 1994-10-06 1996-04-30 Atsusato Kitamura コンベアベルトおよびその製造法
JP2006264944A (ja) * 2005-03-25 2006-10-05 Nitta Ind Corp 搬送用平ベルト
JP2006290601A (ja) * 2005-04-14 2006-10-26 Nitta Ind Corp 平ベルト
JP2009202990A (ja) * 2008-02-27 2009-09-10 Nitta Ind Corp ベルトの継手加工方法
JP2013213576A (ja) * 2012-03-08 2013-10-17 Mitsuboshi Belting Ltd Vリブドベルト

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108913A (ja) * 1994-10-06 1996-04-30 Atsusato Kitamura コンベアベルトおよびその製造法
JP2006264944A (ja) * 2005-03-25 2006-10-05 Nitta Ind Corp 搬送用平ベルト
JP2006290601A (ja) * 2005-04-14 2006-10-26 Nitta Ind Corp 平ベルト
JP2009202990A (ja) * 2008-02-27 2009-09-10 Nitta Ind Corp ベルトの継手加工方法
JP2013213576A (ja) * 2012-03-08 2013-10-17 Mitsuboshi Belting Ltd Vリブドベルト

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022338A1 (ja) * 2015-07-31 2017-02-09 横浜ゴム株式会社 コンベヤベルト
JP2017030915A (ja) * 2015-07-31 2017-02-09 横浜ゴム株式会社 コンベヤベルト
CN107614400A (zh) * 2015-07-31 2018-01-19 横滨橡胶株式会社 传送带
EP3330202A4 (en) * 2015-07-31 2019-04-24 The Yokohama Rubber Co., Ltd. CONVEYOR BELT
US11001449B2 (en) 2015-07-31 2021-05-11 The Yokohama Rubber Co., Ltd. Conveyor belt
WO2024008551A1 (en) * 2022-07-08 2024-01-11 Contitech Transportbandsysteme Gmbh Belt with reinforcing polyolefin fabric

Also Published As

Publication number Publication date
TW201540621A (zh) 2015-11-01

Similar Documents

Publication Publication Date Title
JP5873417B2 (ja) サクションフィーダー用タイミングベルト
JP2009197896A (ja) 平ベルト
JP2011133029A (ja) 平ベルト
WO2015111486A1 (ja) 平ベルト
JP2020143784A (ja) 歯付ベルト
WO2015174480A1 (ja) 無端状平ベルトおよびその製造方法
EP3263947B1 (en) Method for for manufacturing reinforcing fabric for a transmission belt
US9103406B2 (en) Transmission vee-belt comprising an elastically deformable peripheral cushion
WO2016043096A1 (ja) 無端平ベルト及び無端平ベルトの製造方法
US7954630B2 (en) Conveyor belt
JP2006290601A (ja) 平ベルト
EP1849722A1 (en) Conveyance belt with guide
DE502008000716D1 (de) Festigkeitsträgerlage aus hybridcorden für elastomere erzeugnisse, insbesondere für die gürtelbandage von fahrzeugluftreifen
WO2015108074A1 (ja) 無端状平ベルトおよびその製造方法
JP2017100848A (ja) 無端状平ベルトおよびその製造方法
KR102373377B1 (ko) 양면 톱니 벨트
JP2020051617A (ja) 結合ベルトの製造方法
JP6096172B2 (ja) 伸縮積層体の製造方法および装置
JP2006214054A (ja) ゴム帯製造方法及び製造装置
WO2013157426A1 (ja) ベルトコンベア
JP2016037338A (ja) 無端状平ベルトおよびその製造方法
JP6062292B2 (ja) 搬送ベルト
JP6118220B2 (ja) シームレスベルト、シームレスベルトの芯体の製造方法、並びに、成形機
JP6770901B2 (ja) 搬送ベルトおよび搬送ベルトの製造方法
JP2015131711A (ja) 平ベルトおよび平ベルトの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP