WO2015109445A1 - 一种化合物的盐及晶型或无定型物、其制备方法、含有它们的药物组合物和用途 - Google Patents

一种化合物的盐及晶型或无定型物、其制备方法、含有它们的药物组合物和用途 Download PDF

Info

Publication number
WO2015109445A1
WO2015109445A1 PCT/CN2014/071020 CN2014071020W WO2015109445A1 WO 2015109445 A1 WO2015109445 A1 WO 2015109445A1 CN 2014071020 W CN2014071020 W CN 2014071020W WO 2015109445 A1 WO2015109445 A1 WO 2015109445A1
Authority
WO
WIPO (PCT)
Prior art keywords
bms
crystal form
hours
preparation
acid
Prior art date
Application number
PCT/CN2014/071020
Other languages
English (en)
French (fr)
Inventor
胡晨阳
盛晓霞
盛晓红
Original Assignee
杭州普晒医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州普晒医药科技有限公司 filed Critical 杭州普晒医药科技有限公司
Priority to PCT/CN2014/071020 priority Critical patent/WO2015109445A1/zh
Priority to CN201480009595.5A priority patent/CN105073740B/zh
Priority to CN201610661880.6A priority patent/CN106279121B/zh
Priority to CN201610664633.1A priority patent/CN106279122A/zh
Publication of WO2015109445A1 publication Critical patent/WO2015109445A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • Salt crystal form or amorphous form of a compound, preparation method thereof, pharmaceutical composition containing same and use thereof
  • the invention belongs to the technical field of medicinal chemistry, in particular to a medicine for treating hepatitis C
  • Daclatasvir also known as BMS-790052, is a replication inhibitor developed by Bristol-Myers Squibb for the treatment of hepatitis C virus (HCV) infection.
  • the chemical name of this compound is (( 1 S)- 1 -(((2S)-2-(5-(4' -(2-((2S)))) Carbonyl)amino)-3-indolylbutyryl)-2-pyrrolidinyl)imidazol-5-yl)-4-biphenylimidazol-2-yl)pyrrolidinyl)carbonyl)-2-mercaptopropyl Ethyl phthalate, the chemical structural formula is as follows:
  • BMS-790052 is chemically genetically determined to be a potent and specific HCV inhibitor, a small virus molecule with no known enzymatic activity (ie, non-structural protein 5A, tube called "NS5A"). Molecular inhibitory factor.
  • NSA non-structural protein 5A
  • BMS-790052 is chemically genetically determined to be a potent and specific HCV inhibitor, a small virus molecule with no known enzymatic activity (ie, non-structural protein 5A, tube called "NS5A").
  • NSA non-structural protein 5A
  • Molecular inhibitory factor Molecular inhibitory factor.
  • researchers at Bristol-Myers Squibb reported the discovery of the drug and its viral characteristics, and published clinical trials of this compound in normal healthy volunteers and HCV-infected patients. In vitro data indicate a synergistic effect between the drug and known HCV inhibitory drugs.
  • Phase I clinical trials HCV-infected patients received a single dose of 100 mg of this compound, and the 24-hour average viral
  • the drug is expected to become a new combination of potent inhibitors of HC V replication.
  • BMS-790052 dihydrochloride of the literature The solubility of the salt in water is more than 200 mg / ml, but the aqueous solution is allowed to stand at room temperature for 24 hours, and solid precipitation occurs, and the solution becomes cloudy.
  • the solid content is BMS-790052 free base by HPLC content determination, in view of this phenomenon, BMS -790052 Dihydrochloride is not suitable for the preparation of sustained release formulations.
  • BMS-790052 salt and its crystalline form or amorphous form, including BMS having an advantageous sustained release effect and better aqueous solution stability, suitable for sustained release formulation applications.
  • One of the contents of the present invention is to provide solid BMS-790052 di-p-toluenesulfonate and its crystal form, and a process for their preparation.
  • the BMS-790052 di-p-toluenesulfonate is formed by the molar ratio of BMS-790052 and p-toluenesulfonic acid of about 1:2.
  • the preparation method of the BMS-790052 di-p-toluenesulfonate comprises the following steps: forming a solution of BMS-790052 in a soluble solvent, adding p-toluenesulfonic acid solid, BMS-790052 and p-toluenesulfonic acid The molar ratio is 1:2 to 1:3, mixed to form a slurry and stirred, and the solid is separated to obtain the BMS-790052 di-p-toluenesulfonate.
  • the soluble solvent is selected from the group consisting of a ketone, an alcohol or a mixture thereof, preferably a C 3 -C 4 ketone, a d-C4 alcohol or a mixture thereof, more preferably acetone, isopropanol or a mixture thereof.
  • the preparation process is carried out at room temperature.
  • the stirring time is 8 to 16 hours.
  • the concentration of the BMS-790052 in a soluble solvent is 25 to 50 mg / ml.
  • the molar ratio of the BMS-790052 to p-toluenesulfonic acid is 1:2 ⁇ 1:2.2.
  • the actual content of BMS-790052 free base in the BMS-790052 di-p-benzoate was 67.6%, and the theoretical content was 68.3%. It is indicated that the BMS-790052 free base and the para-benzoic acid in the BMS-790052 di-p-benzoate are salted at a molar ratio of about 1:2.
  • the BMS-790052 di-p-benzoate is a BMS-790052 di-p-benzoate monohydrate crystal form having an X-ray powder diffraction pattern at a diffraction angle of 2 ⁇ of 5.1 ⁇ 0.2. , 6.3 ⁇ 0.2. 13.4 ⁇ 0.2. , 14.6 ⁇ 0.2. , 15.4 ⁇ 0.2. And 21.1 ⁇ 0.2. There are characteristic peaks.
  • the BMS-790052 di-p-benzoate salt monohydrate crystal form has an X-ray powder diffraction pattern at a diffraction angle of 2 ⁇ of 5.1 ⁇ 0.2. 6.3 ⁇ 0.2. 10.2 ⁇ 0.2. , 10.7 ⁇ 0.2. 13.4 ⁇ 0.2. , 13.7 ⁇ 0.2. 14.6 ⁇ 0.2. 15.4 ⁇ 0.2. 18.3 ⁇ 0.2. 19.2 ⁇ 0.2. , 19.9 ⁇ 0.2. And 21.1 ⁇ 0.2. There are characteristic peaks.
  • the BMS-790052 di-p-benzoate monohydrate crystal form has an X-ray powder diffraction pattern having characteristic peaks and relative intensities at the following diffraction angles 2 ⁇ :
  • a typical example of the BMS-790052 di-p-benzoate monohydrate crystal form has an X-ray powder diffraction (XRPD) pattern as shown in FIG.
  • the TGA spectrum of the BMS-790052 di-p-benzoate salt monohydrate crystal form shows: about 2.0% step weight loss before 120 °C, which is equivalent to the weight loss ratio (1.6%) of a water molecule, and the decomposition temperature is about 236 ° C.
  • the DSC spectrum of the BMS-790052 di-p-benzoate salt monohydrate crystal form shows that there is a broad endothermic peak before 80 °C, and the endothermic peak between 80 and 150 ° C is the desorbed water molecule.
  • the preparation method of the BMS-790052 di-p-benzoate monohydrate crystal form comprises the following steps: forming a suspension of BMS-790052 di-p-benzoate salt obtained in accordance with the aforementioned preparation method in a solvent, stirring Crystallization, further separating the crystals, and drying under vacuum at room temperature to 40 ° C to obtain the BMS-790052 di-p-benzoate monohydrate crystal form, wherein the solvent is selected from water, a ketone containing 1% water (V) /V), water-saturated ester, water-saturated ether or a mixture thereof.
  • the ketone is a C 3 -C 4 ketone, preferably acetone;
  • the ester is a C 3 -C 5 ester, preferably acetic acid B
  • the ether is a c 4 ⁇ c 6 ether, preferably a decyl tert-butyl ether.
  • the preparation of the BMS-790052 di-p-toluenesulfonate monohydrate crystal form is carried out at room temperature.
  • the crystallization time is 24 to 72 hours, preferably 24 to 48 hours.
  • the drying time is 8 to 24 hours, preferably 8 to 16 hours.
  • the mass to volume ratio of the BMS-790052 di-p-toluenesulfonate to the solvent is 10-16 mg: 1 mL
  • the water-saturated ester (or ether) solvent is prepared by mixing an equal volume of water and an ester (or ether) solvent, stirring vigorously for 10 minutes, allowing to stand for separation, and taking the organic layer as a water-saturated ester ( Or ether) solvent.
  • the BMS-790052 di-p-toluenesulfonate and its monohydrate crystal form of the invention have good sustained release effect and good aqueous solution stability, It is suitable for the application of sustained-release preparations.
  • the preparation method is simple and convenient, and the conventional operation at room temperature is beneficial to the industrialization of the products.
  • the sustained-release effect and the stability of the aqueous solution prevent the active substance from being present in a solid form, resulting in an unstable absorption and a low bioavailability.
  • a second aspect of the present invention is to provide a solid BMS-790052 dibenzene sulfonate and its crystal form, and a process for their preparation.
  • the BMS-790052 dibenzenesulfonate is a combination of BMS-790052 and benzenesulfonic acid in a molar ratio of about 1:2.
  • the structural formula is as follows:
  • the preparation method of the BMS-790052 dibenzenesulfonate comprises the following steps: forming a solution of BMS-790052 in a soluble solvent, adding a solid of benzenesulfonic acid, and the molar ratio of BMS-790052 to benzenesulfonic acid is 1: 2-1:3, mixed to form a slurry and stirred, thereby separating the solid to obtain the BMS-790052 dibenzenesulfonate.
  • the soluble solvent is selected from the group consisting of a ketone, an alcohol or a mixture thereof, preferably a C 3 -C 4 ketone, ( 4 ) or a mixture thereof, more preferably acetone, isopropanol or a mixture thereof.
  • the preparation process is carried out at room temperature.
  • the stirring time is 8 to 16 hours.
  • the concentration of the BMS-790052 in a soluble solvent is 25 to 50 mg/ml.
  • the molar ratio of the BMS-790052 to the benzenesulfonic acid is 1:2 ⁇ 1:2.2.
  • the actual content of BMS-790052 free base in BMS-790052 diphenyl ylide was 70.3% and the theoretical content was 70.1%. It is indicated that the BMS-790052 free base in the BMS-790052 diphenyl ylide salt is formed into a salt at a molar ratio of about 1:2 with benzoic acid.
  • the BMS-790052 diphenyl phthalate is BMS-790052 diphenyl phthalate B crystal form having an X-ray powder diffraction pattern at a diffraction angle of 2 ⁇ 6.7 ⁇ 0.2. 9.7 ⁇ 0.2. , 15.0 ⁇ 0.2. 17.8 ⁇ 0.2. 18.3 ⁇ 0.2. And 22.1 ⁇ 0.2. There are characteristic peaks.
  • the BMS-790052 diphenylphosphonate B crystal form has an X-ray powder diffraction pattern at a diffraction angle of 2 ⁇ 6.7 ⁇ 0.2. 7.2 ⁇ 0.2. 9.0 ⁇ 0.2. 9.7 ⁇ 0.2. , 10.0 ⁇ 0.2. , 13.7 ⁇ 0.2. , 15.0 ⁇ 0.2. , 16.6 ⁇ 0.2. 17.8 ⁇ 0.2. 18.3 ⁇ 0.2. 21.3 ⁇ 0.2. And 22.1 ⁇ 0.2. There are characteristic peaks.
  • the BMS-790052 diphenylsulfonate B crystal form has an X-ray powder diffraction pattern having characteristic peaks and relative intensities at the following diffraction angles 2 ⁇ :
  • a typical example of the BMS-790052 dibenzoate B crystal form has an X-ray powder diffraction (XRPD) pattern as shown in FIG.
  • the method for preparing the BMS-790052 diphenyl phthalate B crystal form comprises the following steps: forming a suspension of BMS-790052 diphenyl phthalate obtained according to the above preparation method in water, stirring and crystallization, and obtaining a solution Said BMS-790052 diphenyl sulfonate B crystal form.
  • the preparation of the BMS-790052 dibenzenesulfonate B crystal form is carried out at room temperature.
  • the crystallization time is 10 to 24 hours.
  • the mass ratio of the BMS-790052 diphenyl sulfonate to water is 15-30 mg: 1 mL.
  • the BMS-790052 diphenyl sulfonate and its B crystal form of the invention have good sustained release effect and good aqueous solution stability, and are suitable for sustained release preparation.
  • the preparation method of the process cartridge, the conventional operation at room temperature is conducive to the industrialization of the product.
  • the sustained-release effect and the stability of the aqueous solution prevent the active substance from being present in a solid form, resulting in an unstable absorption and a low bioavailability.
  • a third aspect of the present invention is to provide a solid BMS-790052-citrate salt and its amorphous form, and a process for their preparation.
  • the BMS-790052-citrate is a compound formed by BMS-790052 and citric acid at a molar ratio of about 1:1.
  • the method for preparing BMS-790052-citrate comprises the following steps: forming a solution of BMS-790052 in a soluble solvent, adding citric acid solid, the molar ratio of BMS-790052 to citric acid is 1:1-1 : 1.5, mixing to form a slurry and stirring, thereby separating the solid to obtain the BMS-790052-citrate.
  • the soluble solvent is a ketone, preferably a c 3 ⁇ c 4 ketone, more preferably acetone.
  • the preparation process is carried out at room temperature.
  • the stirring time is 8 to 16 hours.
  • the concentration of the BMS-790052 in a soluble solvent is 10 to 50 mg / ml.
  • the molar ratio of the BMS-790052 to the citric acid is 1: 1 ⁇ 1: 1.1.
  • BMS-790052 free base and citric acid are salted in a molar ratio of about 1:1.
  • the BMS-790052-citrate is BMS-790052-citrate amorphous.
  • the BMS-790052-citrate amorphous substance is characterized in that the X-ray powder thereof The final diffraction pattern is substantially as shown in Fig. 13, showing no characteristic peaks.
  • the method for preparing the BMS-790052-citrate amorphous substance comprises the following steps: BMS-790052-citrate obtained according to the above preparation method forms a suspension in a solvent, stirs, and precipitates a solid to obtain the BMS- 790052 - Citrate amorphous, wherein the solvent is selected from the group consisting of a ketone, an ester, an ether, or a mixture thereof.
  • the ketone is a C 3 -C 4 ketone, preferably acetone;
  • the ester is a C 3 ⁇ C 5 ester, preferably ethyl acetate;
  • the ether is a C 4 ⁇ C 6 ether, preferably a fluorenyl group Tert-butyl ether.
  • the method of preparing the BMS-790052-citrate amorphous form is carried out at room temperature.
  • the stirring time is 24 to 72 hours, preferably 24 to 48 hours.
  • the mass ratio of the BMS-790052-citrate to the solvent is 10 to 50 mg: 1 mL.
  • the BMS-790052-citrate and its amorphous form of the invention have good sustained release effect and good aqueous solution stability, and are suitable for sustained release preparation.
  • the preparation method is convenient for the industrialization of the product, and the conventional operation is performed at room temperature.
  • the sustained-release effect and the stability of the aqueous solution prevent the risk of absorption instability and low bioavailability of the active substance in a solid form.
  • a fourth aspect of the present invention provides a solid BMS-790052-glycolate and its amorphous form, and a process for their preparation.
  • the BMS-790052-glycolate is a compound formed by BMS-790052 and glycolic acid in a molar ratio of about 1:1.
  • the preparation method of the BMS-790052-glycolic acid comprises the following steps: forming a solution of BMS-790052 in a soluble solvent, adding a glycolic acid solid, the molar ratio of BMS-790052 to glycolic acid is 1:1-1 : 1.5, mixing to form a slurry and stirring, thereby separating the solid to obtain the BMS-790052-glycolate.
  • the soluble solvent is an ester, preferably a c 3 ⁇ c 5 ester, more preferably ethyl acetate.
  • the preparation process is carried out at room temperature.
  • the stirring time is 8 to 16 hours.
  • the concentration of the BMS-790052 in a soluble solvent is 10 to 50 mg/mL.
  • the molar ratio of the BMS-790052 to glycolic acid is 1:1 to 1:1.1.
  • the actual content of BMS-790052 free base in the BMS-790052-glycolate was 88.4% and the theoretical content was 90.7%. It is indicated that the BMS-790052-glycolate salt of BMS-790052 free base and glycolic acid is about 1:1 in a molar ratio.
  • the BMS-790052-glycolate is BMS-790052-glycolate amorphous.
  • the BMS-790052-glycolate amorphous substance is characterized in that its X-ray powder diffraction pattern is substantially as shown in Fig. 17, and shows no characteristic peak.
  • the BMS-790052-glycolic acid is an amorphous form, and the preparation method thereof comprises the following steps: BMS-790052-glycolate obtained according to the aforementioned preparation method is formed into a suspension in a solvent, stirred, and a solid is precipitated to obtain the BMS- 790052 - Glycolic acid is an amorphous form, wherein the solvent is selected from the group consisting of water, ether or alkane.
  • the ether is a C 4 -C 6 ether, preferably a decyl tert-butyl ether;
  • the alkane is a C 6 -C 7 alkane, preferably n-heptane.
  • the method of preparing the BMS-790052-glycolate amorphous form is carried out at room temperature.
  • the stirring time is 8 to 48 hours, preferably 8 to 16 hours.
  • the mass ratio of the BMS-790052-glycolate to the solvent is 10 to 50 mg: 1 mL.
  • the BMS-790052-glycolate and its amorphous form of the invention have good sustained release effect and good aqueous solution stability, and are suitable for sustained release preparation.
  • the preparation method is convenient for the industrialization of the product, and the conventional operation is performed at room temperature.
  • the sustained-release effect and the stability of the aqueous solution prevent the risk of absorption instability and low bioavailability of the active substance in a solid form.
  • a fifth aspect of the present invention provides a solid BMS-790052 dimandelate salt and an amorphous form thereof, and a process for the preparation thereof.
  • the BMS-790052 dimandelate salt is a compound formed by BMS-790052 and mandelic acid at a molar ratio of about 1:2, and its structure
  • the preparation method of the BMS-790052 di-flat salt comprises the following steps: forming a solution of BMS-790052 in a soluble solvent, adding a mandelic acid solid, and the molar ratio of BMS-790052 to mandelic acid is 1:2-1. : 3 , mixing to form a slurry and stirring, thereby separating the solid to obtain the BMS-790052 dimandelate salt.
  • the soluble solvent is an ester, preferably a c 3 ⁇ c 5 ester, more preferably ethyl acetate.
  • the preparation process is carried out at room temperature.
  • the stirring time is 10 to 24 hours, preferably 10 to 16 hours.
  • the concentration of the BMS-790052 in a soluble solvent is 10 to 50 mg / ml.
  • the molar ratio of the BMS-790052 to the mandelic acid is 1:2 ⁇ 1:2.2.
  • BMS-790052 free base and mandelic acid are salted at a molar ratio of about 1:2.
  • the BMS-790052 dimandelate salt is BMS-790052 dimandelate amorphous.
  • the BMS-790052 dimandelate amorphous form whose X-ray powder diffraction pattern is substantially as shown in Fig. 21, shows no characteristic peak.
  • the BMS-790052 dicamba dimorphism comprises the following steps: BMS-790052 dimandelic acid salt obtained according to the aforementioned preparation method is formed into a suspension in a solvent, stirred, and a solid is precipitated to obtain the BMS- 790052 Amino acid dimorph, wherein the solvent is selected from the group consisting of a ketone, an ether or an alkane.
  • the ketone is a C 3 -C 4 ketone, preferably acetone;
  • the ether is a C 4 -C 6 ether, preferably a decyl tert-butyl ether;
  • the alkane is a C 6 -C 7 alkane, preferably It is n-heptane.
  • the method of preparing the BMS-790052 dimandelate amorphous form is carried out at room temperature.
  • the stirring time is 10 to 48 hours, preferably 10 to 16 hours.
  • the mass to volume ratio of the BMS-790052 dimandelate to the solvent is 10 to 50 mg: 1 mL.
  • the BMS-790052 dimandelate and its amorphous form of the invention have good sustained release effect and good aqueous solution stability, and are suitable for sustained release preparation.
  • the preparation method is convenient for the industrialization of the product, and the conventional operation is performed at room temperature.
  • the sustained-release effect and the stability of the aqueous solution prevent the risk of absorption instability and low bioavailability of the active substance in a solid form.
  • a sixth aspect of the present invention provides a solid BMS-790052 di-p-chlorobenzenesulfonate and its crystal form, and a process for the preparation thereof.
  • the BMS-790052 di-p-chlorobenzenesulfonate is a compound formed by BMS-790052 and p-chlorobenzenesulfonic acid in a molar ratio of about 1:2, and its structural formula is as follows:
  • the preparation method of the BMS-790052 di-p-chlorobenzoate comprises the following steps: forming a solution of BMS-790052 in a soluble solvent, adding p-chlorobenzoic acid solid, BMS-790052 and p-chlorobenzenesulfonic acid The molar ratio is 1:2 to 1:3, mixed to form a slurry and stirred, and the solid is separated to obtain the BMS-790052 di-p-chlorobenzoate.
  • the soluble solvent is an alcohol, preferably a d-C 4 alcohol, more preferably ethanol.
  • the preparation process is carried out at room temperature.
  • the stirring time is 10 to 24 hours, preferably 10 to 16 hours.
  • the concentration of the BMS-790052 in a soluble solvent is 10 to 50 mg/ml.
  • the molar ratio of the BMS-790052 to the p-chlorobenzoic acid is 1:2 ⁇ 1:2.2.
  • BMS-790052 free base in the BMS-790052 di-p-chlorobenzoate was 63.8%, and the theoretical content was 65.8%. It is indicated that the BMS-790052 di-chlorobenzoate has a salt ratio of BMS-790052 free base to p-chlorobenzoic acid of about 1:2.
  • the BMS-790052 di-p-chlorobenzoate is BMS-790052 di-chlorobenzoate C crystal form, and its X-ray powder diffraction pattern is 3.5 ⁇ 0.2 at a diffraction angle of 2 ⁇ . , 7.2 ⁇ 0.2. , 10.1 ⁇ 0.2. ,
  • the BMS-790052 di-p-chlorobenzoate C crystal form has an X-ray powder diffraction pattern at a diffraction angle of 2 3.5 of 3.5 ⁇ 0.2. 7.2 ⁇ 0.2. 10.1 ⁇ 0.2. , 10.7 ⁇ 0.2. 19.2 ⁇ 0.2. , 19.7 ⁇ 0.2. ,
  • the BMS-790052 di-p-chlorobenzoate C crystal form has an X-ray powder diffraction pattern having characteristic peaks and relative intensities at the following diffraction angles 2 ⁇ :
  • a typical example of the BMS-790052 di-p-chlorobenzoate C crystal form has an X-ray powder diffraction (XRPD) pattern as shown in FIG.
  • the method for preparing the BMS-790052 di-p-chlorobenzoate C crystal form comprises the following steps: forming a suspension of BMS-790052 di-p-chlorobenzoate obtained in the above preparation method in a solvent, stirring and devitrifying The BMS-790052 di-chlorobenzoate C crystal form is obtained, wherein the solvent is selected from the group consisting of water, ether, alcohol or a mixture thereof.
  • the alcohol is d ⁇ C 3 alcohol, preferably ethanol; the ether c 4 ⁇ c 6 ether, preferably t-butyl ether Yue.
  • the preparation of the BMS-790052 di-p-chlorobenzenesulfonate C crystal form is carried out at room temperature.
  • the crystallization time is 10 to 24 hours, preferably 10 to 16 hours.
  • the mass ratio of the BMS-7900522 di-p-chlorobenzenesulfonate to the solvent is 10-30 mg: 1 mL, preferably 20-30 mg: lmL.
  • the BMS-790052 di-p-chlorobenzenesulfonate and its C crystal form of the invention have good sustained release effect and good aqueous solution stability, and are suitable for slowing down.
  • the preparation of the release preparation, the preparation method thereof, and the conventional operation at room temperature are beneficial to the industrialization of the product.
  • the sustained-release effect and the stability of the aqueous solution prevent the risk of absorption instability and low bioavailability of the active substance in a solid form.
  • a seventh aspect of the present invention is to provide a solid BMS-790052 diethylenedisulfonate salt and a crystal form thereof, and a process for the preparation thereof.
  • the BMS-790052 diethylenedisulfonate is a combination of BMS-790052 and ethanedisulfonic acid in a molar ratio of about 1:2.
  • the structural formula is as follows:
  • the preparation method of the BMS-790052 diethylenedisulfonate comprises the following steps: forming a solution of BMS-790052 in a soluble solvent, adding a solid of ethanedisulfonic acid, a molar ratio of BMS-790052 to ethanedisulfonic acid The mixture is formed into a slurry of 1:2 to 1:3, stirred, and the solid is separated to obtain the BMS-790052 diethylenedisulfonate.
  • the soluble solvent is a ketone, preferably a C 3 - C 4 ketone, more preferably acetone.
  • the preparation process is carried out at room temperature.
  • the stirring time is 10 to 24 hours, preferably 10 to 16 hours.
  • the concentration of the BMS-790052 in a soluble solvent is 10 to 50 mg/ml.
  • the molar ratio of the BMS-790052 to the ethanedisulfonic acid is 1:2 to 1:2.2.
  • the BMS-790052 diglycate is a BMS-790052 diethylene dicarboxylate E crystal form having an X-ray powder diffraction pattern at a diffraction angle of 2 ⁇ of 10.3 ⁇ 0.2. 11.4 ⁇ 0.2. 12.8 ⁇ 0.2. , 15.3 ⁇ 0.2. , 20.6 ⁇ 0.2. And 22.9 ⁇ 0.2. There are characteristic peaks.
  • the BMS-790052 diethylenediamine acid salt E crystal form has an X-ray powder diffraction pattern at a diffraction angle of 2 ⁇ of 6.4 ⁇ 0.2. 9.8 ⁇ 0.2. , 10 ⁇ 3 ⁇ 0 ⁇ 2 ⁇ , 11.4 ⁇ 0 ⁇ 2 ⁇ , 12.8 ⁇ 0 ⁇ 2 ⁇ , 15.3 ⁇ 0 ⁇ 2 ⁇ , 16.1 ⁇ 0 ⁇ 2 ⁇ , 17.0 ⁇ 0.2 ⁇ , 19.1 ⁇ 0.2 ⁇ , 19.6 ⁇ 0.2 ⁇ , 20.6 ⁇ 0.2. And with a characteristic peak at 22.9 ⁇ 0.2 ⁇ .
  • the BMS-790052 diethylenedithiolate ⁇ crystal form has an X-ray powder diffraction pattern having characteristic peaks and relative intensities at the following diffraction angles 2 ⁇ :
  • a typical example of the BMS-790052 di-glycolate twin form has an X-ray powder diffraction (XRPD) pattern as shown in FIG.
  • the method for preparing the BMS-790052 diethylene disilicate crystallization form comprises the following steps: forming a suspension of BMS-790052 diethylenedisulfonate obtained according to the above preparation method in a solvent, stirring and crystallization, and obtaining The BMS-790052 diethylene dicarboxylate E crystalline form, wherein the solvent is selected from the group consisting of water, esters, ketones, ethers, or mixtures thereof.
  • the ester is a C 3 -C 5 ester, preferably ethyl acetate; the ketone is a C 3 -C 4 ketone, preferably acetone; and the ether is a C 4 -C 6 ether, preferably a fluorenyl group Tert-butyl ether.
  • the preparation of the BMS-790052 diethylenedisulfonate E crystal form is carried out at room temperature.
  • the crystallization time is 5 to 24 hours, preferably 5 to 10 hours.
  • the mass to volume ratio of the BMS-7900522 diethylenedisulfonate to the solvent is
  • the BMS-790052 diethylenedisulfonate and its E crystal form of the invention have good sustained release effect and good aqueous solution stability, and are suitable for sustained release.
  • Formulation application, the preparation method thereof, and the conventional operation under room temperature conditions are favorable for industrialization of the product.
  • the sustained-release effect and the stability of the aqueous solution prevent the risk of absorption instability and low bioavailability of the active substance in a solid form.
  • An eighth aspect of the present invention provides a solid BMS-790052 di- ⁇ -keto-glutarate and a crystal form thereof, and a process for the preparation thereof.
  • the BMS-790052 di- ⁇ -keto-glutarate is formed by the combination of BMS-790052 and ⁇ -keto-glutaric acid in a molar ratio of about 1:2.
  • the preparation method of the BMS-790052 bis-keto-glutarate comprises the following steps: forming a solution of BMS-790052 in a soluble solvent, adding ⁇ -keto-glutaric acid solid, BMS-790052 and ⁇
  • the ketone-glutaric acid is used in a molar ratio of 1:2 to 1:3, mixed to form a slurry and stirred, and the solid is separated to obtain the BMS-790052 di- ⁇ -keto-glutarate.
  • the soluble solvent is an ester, preferably a C 4 - C 5 ester, more preferably ethyl acetate.
  • the preparation process is carried out at room temperature.
  • the stirring time is 10 to 24 hours, preferably 10 to 16 hours.
  • the concentration of the BMS-790052 in a soluble solvent is 10 to 50 mg/ml.
  • the molar ratio of the BMS-790052 to the ⁇ -keto-glutaric acid is 1:2 ⁇ 1:2.2.
  • BMS-790052 free base in the BMS-790052 di- ⁇ -keto-glutarate was 68.9%, and the theoretical content was 71.7%. It is indicated that the BMS-790052 free base and the ⁇ -keto-glutaric acid in the BMS-790052 di- ⁇ -keto-glutarate form a salt at a molar ratio of about 1:2.
  • the BMS-790052 bis-keto-glutarate is a BMS-790052 bis-keto-glutarate G crystal form having an X-ray powder diffraction pattern at a diffraction angle of 2 8.4 8.4 ⁇ 0.2°. 9.4 ⁇ 0.2°, 11.2 ⁇ 0.2°, 14.0 ⁇ 0.2°, 14.7 ⁇ 0.2. And 19.1 ⁇ 0.2. There are characteristic peaks.
  • the BMS-790052 di- ⁇ -keto-glutarate G crystal form has an X-ray powder diffraction pattern at a diffraction angle of 2 ⁇ of 8.4 ⁇ 0.2. 9.4 ⁇ 0 ⁇ 2 ⁇ , 11.2 ⁇ 0.2. , 12.0 ⁇ 0.2. , 14.0 ⁇ 0.2 °, 14.7 ⁇ 0.2. 17.7 ⁇ 0.2. 18.3 ⁇ 0 ⁇ 2 ⁇ , 19.1 ⁇ 0 ⁇ 2 ⁇ , 19.5 ⁇ 0 ⁇ 2 ⁇ , 20.8 ⁇ 0.2. And 22.0 ⁇ 0.2. There are characteristic peaks.
  • the BMS-790052 di- ⁇ -keto-glutarate G crystal form has an X-ray powder diffraction pattern having characteristic peaks and relative intensities at the following diffraction angles 2 ⁇ :
  • a typical example of the BMS-790052 bis-keto-glutarate G crystal form has an X-ray powder diffraction (XRPD) pattern as shown in FIG.
  • the preparation method of the BMS-790052 bis-keto-glutarate G crystal form comprises the following steps: forming BMS-790052 bis-keto-glutarate obtained according to the aforementioned preparation method in a ketone or ester The suspension was stirred and crystallized to obtain the BMS-790052 di- ⁇ -keto-glutarate G crystal form.
  • the ketone is a C 3 -C 4 ketone, preferably acetone;
  • the ester is a C 4 -C 6 ester, preferably ethyl acetate.
  • the preparation of the BMS-790052 di- ⁇ -keto-glutarate G crystal form is carried out at room temperature.
  • the crystallization time is 24 to 72 hours, preferably 24 to 48 hours.
  • the mass to volume ratio of the BMS-7900522 di-keto-glutarate to the solvent is
  • the BMS-790052 bis-keto-glutarate of the invention and its G crystal form have good sustained release effect and good aqueous solution stability, It is suitable for the application of sustained-release preparations, and its preparation method is convenient for industrialization of products by performing routine operations at room temperature.
  • the sustained-release effect and the stability of the aqueous solution prevent the active substance from being present in a solid form, resulting in an unstable absorption and a low bioavailability.
  • a ninth aspect of the present invention provides a solid BMS-790052 bis 1,5-naphthalenedisulfonate and a crystalline form thereof, and a process for the preparation thereof.
  • the BMS-790052 di 1,5-naphthalene disulfonate is formed by BMS-790052 and 1,5-naphthalenedisulfonic acid in a molar ratio of about 1:2.
  • the preparation method of the BMS-790052 di 1,5-naphthalene disulfonate comprises the following steps: forming a solution of BMS-790052 in a soluble solvent, adding 1,5-naphthalene disulfonic acid tetrahydrate solid, BMS -790052 and 1,5-naphthalene disulfonic acid tetrahydrate in a molar ratio of 1:2 to 1:3, mixed to form a slurry and stirred, and then separated solids to obtain the BMS-790052 di 1,5-naphthalene Sulfonate.
  • said soluble solvent is an alcohol, preferably d ⁇ C 3 alcohol, more preferably isopropanol.
  • the preparation process is carried out at room temperature.
  • the stirring time is 10 to 24 hours, preferably 10 to 16 hours.
  • the concentration of the BMS-790052 in a soluble solvent is 10 to 50 mg / ml.
  • the molar ratio of the BMS-790052 to the 1,5-naphthalenedisulfonic acid tetrahydrate is 1:2-1:2.2.
  • the actual content of BMS-790052 free base in the BMS-790052 di 1,5-naphthalenedisulfonate was 57.9%, and the theoretical content was 56.2%. It is indicated that the BMS-790052 free base and the 1,5-naphthalene disulfonic acid in the BMS-790052 di 1,5-naphthalene disulfonate form a salt in a molar ratio of about 1:2.
  • the BMS-790052 di 1,5-naphthalenedisulfonate is a crystalline form of BMS-790052 di 1,5-naphthalenedisulfonate Nd, and the X-ray powder diffraction pattern thereof has a diffraction angle of 2 ⁇ of 4.7 ⁇ 0.2. , 10.7 ⁇ 0.2. , 10.9 ⁇ 0.2. , 18.9 ⁇ 0.2. , 19.2 ⁇ 0.2. And 21.6 ⁇ 0.2. There are characteristic peaks.
  • the BMS-790052 di 1,5-naphthalene disulfonate Nd crystal form has an X-ray powder diffraction pattern at a diffraction angle of 2 ⁇ of 4.7 ⁇ 0.2. , 10.7 ⁇ 0.2. 10.9 ⁇ 0.2. , 13.6 ⁇ 0.2. 15.7 ⁇ 0.2. , 17.2 ⁇ 0.2. , 18.9 ⁇ 0.2. 19.2 ⁇ 0.2. 20.1 ⁇ 0.2. 21.6 ⁇ 0.2. 22.0 ⁇ 0.2. And 23.7 ⁇ 0.2. There are characteristic peaks. Further, the BMS-790052 di 1,5-naphthalene disulfonate Nd crystal form has an X-ray powder diffraction pattern having characteristic peaks and relative intensities at the following diffraction angles 2 ⁇ :
  • a typical example of the BMS-790052 di 1,5-naphthalene dicarboxylate Nd crystal form has an X-ray powder diffraction (XRPD) pattern as shown in FIG.
  • the preparation method of the BMS-790052 di 1,5-naphthalene dicarboxylic acid Yd crystal form comprises the following steps: BMS-790052 di 1,5-naphthalene disulfonate obtained according to the aforementioned preparation method in an alcohol or a ketone A suspension is formed and stirred and crystallized to obtain the BMS-790052 di 1,5-naphthalene dicarboxylate Nd crystal form.
  • the alcohol is d ⁇ C 3 alcohol, preferably ethanol or isopropanol; a ketone is C 3 ⁇ C 4 ketones, preferably acetone.
  • the preparation of the BMS-790052 di 1,5-naphthalene dicarboxylic acid Nd crystal form is carried out at room temperature.
  • the crystallization time is 10 to 24 hours, preferably 10 to 16 hours.
  • the mass ratio of the BMS-7900522 di 1,5-naphthalenedicarboxylate to the solvent is 10-30 mg: 1 mL, preferably 20-30 mg: lmL.
  • the BMS-790052 di 1,5-naphthalene disulfonate and its Nd crystal form of the invention have good sustained release effect and good aqueous solution stability. It is suitable for the application of sustained-release preparations.
  • the preparation method is convenient for the industrialization of the products.
  • the sustained release effect and the stability of the aqueous solution prevent the active substance from being present in a solid form, resulting in an unstable absorption and a low bioavailability.
  • the tenth aspect of the present invention provides a solid BMS-790052 di-2-naphthyl salt and a crystal form thereof, and Their preparation method.
  • the BMS-790052 di-2-naphthalene sulfonate is a compound formed by BMS-790052 and 2-naphthalenesulfonic acid in a molar ratio of about 1:2.
  • the method for preparing the BMS-790052 bis 2-naphthalene sulfonate comprises the steps of: forming a solution of BMS-790052 in a soluble solvent, adding 2-naphthalenesulfonic acid solid, BMS-790052 and 2-naphthalenesulfonic acid The molar ratio is 1:2 to 1:3, mixed to form a slurry and stirred, and the solid is separated to obtain the BMS-790052 di-2-naphthylate.
  • said soluble solvent is an alcohol, preferably d ⁇ C 3 alcohol, more preferably isopropanol.
  • the preparation process is carried out at room temperature.
  • the stirring time is 10 to 24 hours, preferably 10 to 16 hours.
  • the concentration of the BMS-790052 in a soluble solvent is 10 to 50 mg / ml.
  • the molar ratio of the BMS-790052 to 2-naphthalenesulfonic acid is 1:2 ⁇ 1:2.2.
  • BMS-790052 free base and 2-naphthalenesulfonic acid are salted in a molar ratio of about 1:2.
  • the BMS-790052 di-2-naphthalenesulfonate is a BMS-790052 di-2-naphthalenesulfonate Ns crystal form having an X-ray powder diffraction pattern at a diffraction angle of 2 ⁇ 6.3 ⁇ 0.2. 10.9 ⁇ 0.2. , 15.0 ⁇ 0.2. And 20.1 ⁇ 0.2. There are characteristic peaks.
  • the BMS-790052 di-2-naphthalenesulfonate Ns crystal form has an X-ray powder diffraction pattern having characteristic peaks and relative intensities at the following diffraction angles 2 ⁇ :
  • a typical example of the BMS-790052 bis 2-naphthalenesulfonate Ns crystal form has an X-ray powder diffraction (XRPD) pattern as shown in FIG.
  • the preparation method of the BMS-790052 bis 2-naphthalene sulfonate Ns crystal form comprises the following steps: forming a suspension of BMS-790052 bis 2-naphthalenesulfonic acid obtained according to the aforementioned preparation method in an alcohol or an ether, and stirring and analyzing Crystallization, the BMS-790052 bis 2-naphthalene sulfonate Ns crystal form is obtained.
  • the alcohol is a C 2 -C 3 alcohol, preferably ethanol or isopropanol; and the ether solvent is a C 4 -C 6 ether, preferably a decyl tert-butyl ether.
  • the preparation of the BMS-790052 di-2-naphthalenesulfonate Ns crystal form is carried out at room temperature.
  • the crystallization time is 5 to 24 hours, preferably 5 to 12 hours.
  • the mass ratio of the BMS-7900522 di-2-naphthalene sulfonate to the solvent is 10-30 mg: 1 mL, preferably 20-30 mg: lmL.
  • the BMS-790052 bis 2-naphthalene sulfonate and the Ns crystal form thereof have good sustained release effect and good aqueous solution stability, and are suitable for slowing down.
  • the preparation of the release preparation, the preparation method thereof, and the conventional operation at room temperature are beneficial to the industrialization of the product.
  • the sustained-release effect and the stability of the aqueous solution prevent the risk of absorption instability and low bioavailability of the active substance in a solid form.
  • An eleventh aspect of the present invention provides a solid BMS-790052 trihydrochloride salt and an amorphous form thereof, and a process for the preparation thereof.
  • the BMS-790052 trihydrochloride is a compound formed by BMS-790052 and hydrochloric acid in a molar ratio of about 1:3,
  • the preparation method of the BMS-790052 trihydrochloride comprises the following steps: forming a solution system of BMS-790052 in a soluble solvent, adding hydrochloric acid, and the molar ratio of BMS-790052 to hydrochloric acid is 1:3 ⁇ 1:10 The mixture was mixed to form a slurry and stirred, and the solid was separated to obtain the BMS-790052 trihydrochloride.
  • the soluble solvent is an ester, more preferably a C 3 - C 5 ester.
  • the preparation process is carried out at room temperature.
  • the agitation time is from 3 to 10 hours, more preferably from 3 to 5 hours.
  • the concentration of the BMS-790052 in a soluble solvent is 10 to 50 mg/mL.
  • the molar ratio of the BMS-790052 to hydrochloric acid is 1:6 to 1:10.
  • the concentration of hydrochloric acid used ranges from 0.1 to 12 mol/L, more preferably from 6 to 12 mol/L.
  • BMS-790052 free base in the BMS-790052 trihydrochloride As determined by HPLC The amount is 87.6% and the theoretical content is 87.1%. It is indicated that the BMS-790052 free base and the hydrochloric acid in the BMS-790052 trihydrochloride are salted at a molar ratio of about 1:3.
  • the BMS-790052 trihydrochloride is BMS-790052 hydrochloride amorphous.
  • the BMS-790052 trihydrochloride amorphous form is characterized in that its X-ray powder diffraction pattern is substantially as shown in Fig. 45.
  • the BMS-790052 trihydrochloride amorphous form comprises the following steps: BMS-790052 trihydrochloride obtained according to the above preparation method is formed into a suspension in a solvent, stirred, and a solid is precipitated to obtain the BMS- 790052 Trihydrochloride amorphous form, wherein the solvent is selected from the group consisting of alcohols, esters or ethers.
  • the alcohol is a C 2 -C 3 alcohol, more preferably isopropanol;
  • the ester is a C 3 -C 5 ester, more preferably ethyl acetate;
  • the ether is a C 4 -C 6 ether, more preferably a decyl tert-butyl ether.
  • the method of preparing the BMS-790052 trihydrochloride amorphous form is carried out at room temperature.
  • the agitation time is from 8 to 48 hours, more preferably from 8 to 16 hours.
  • the mass ratio of the BMS-790052 trihydrochloride to the solvent is 10 to 50 mg: 1 mL.
  • the BMS-790052 trihydrochloride salt of the invention and the amorphous substance thereof have better solubility and stability in water, are suitable for wet granulation and are prepared into an oral suspension, and the preparation method thereof is convenient for the routine operation at room temperature. , is conducive to the industrialization of products.
  • BMS-790052 salt and its crystal form were also found, including a pair of terpene phthalate, monobenzoate, dicitrate, diglycolate, malic acid of BMS-790052. Salt, malonate, monomandelate, phosphate, acid salt, tartrate, p-chlorobenzoate, mono-ethanedicarboxylate, mono-keto-glutarate, a 1,5 - naphthalenedisulfonate and mono-2-naphthylate.
  • the BMS-790052 malate salt is a compound formed by BMS-790052 and malic acid.
  • the preparation method of the BMS-790052 malate comprises the following steps: forming a solution of BMS-790052 in acetone, adding malic acid solid, mixing to form a slurry and stirring, thereby separating the solid to obtain the BMS-790052 malate .
  • the BMS-790052 malonate is a compound formed by BMS-790052 and malonic acid.
  • the preparation method of the BMS-790052 malonate comprises the following steps: forming a solution of BMS-790052 in a soluble solvent, adding malonic acid, mixing to form a slurry and stirring, and further separating the solid to obtain the BMS-790052 Malonate.
  • the BMS-790052 phosphate is a compound formed by BMS-790052 and phosphoric acid.
  • the method for preparing the BMS-790052 phosphate comprises the steps of: forming a solution of BMS-790052 in ethyl acetate, adding phosphoric acid, mixing to form a slurry and stirring, thereby separating the solid, thereby obtaining the
  • the BMS-790052 sulfate is a compound formed by BMS-790052 and sulfuric acid.
  • the preparation method of the BMS-790052 L acid salt comprises the following steps: forming a solution of BMS-790052 in ethyl acetate, adding an acid, mixing to form a slurry and stirring, thereby separating the solid to obtain the BMS-790052 sulfate .
  • the BMS-790052 tartrate salt is a compound formed by BMS-790052 and tartaric acid.
  • the method for preparing the BMS-790052 tartrate comprises the steps of: forming a solution of BMS-790052 in isopropyl alcohol, adding tartaric acid, mixing to form a slurry and stirring, and further separating the solid to obtain the BMS-790052 tartrate.
  • the solid of the obtained BMS-790052 salt or its crystal form is isolated and dried by a conventional method in the art.
  • the "separation” is carried out by a conventional method in the art such as filtration, centrifugation or the like.
  • the specific operation of the filtration is as follows: the sample to be separated is placed on a filter paper, and filtered under reduced pressure.
  • the specific operation of centrifugation is as follows: The sample to be separated is placed in a centrifuge tube, and then rotated at a high speed until the solid is completely sunk to the bottom of the centrifuge tube at a rate of, for example, 6000 rpm.
  • the "drying” is carried out by a conventional method in the art, such as blast drying, reduced-pressure drying, etc., preferably under reduced pressure at a pressure of less than 0.09 MPa.
  • the drying temperature is room temperature to 50 ° C, and the drying time is about 10 to 72 hours, preferably about 10 to 24 hours.
  • the present invention employs a "crystal slurry" crystallization method in which a supersaturated solution of a sample (suspension in the presence of insoluble solids) is stirred in a solvent system to be crystallized.
  • the "room temperature” means 10-30 °C.
  • the “stirring” can be carried out by a conventional method in the art, for example, the stirring method includes magnetic stirring, mechanical stirring, and the stirring speed is 50 to 1800 rpm, preferably 300 to 900 rpm.
  • the "ultrasonic" operation facilitates the dissolution of the sample by: placing the container containing the solution or suspension in an ultrasonic cleaner and treating it at a power of 20 to 40 Kz. Ultrasonic treatment is usually performed for 5 minutes using 40K z power.
  • the starting material BMS-790052 is commercially available, and can also be obtained by the preparation method disclosed in the patent document WO2009020828A1, which is incorporated herein by reference.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically and/or prophylactically effective amount of a pharmaceutically active ingredient selected from the BMS-790052 salt of the present invention or a crystalline form or an amorphous form thereof or by the method of the present invention Preparing a BMS-790052 salt or a crystalline form or an amorphous form thereof, and at least one pharmaceutically acceptable carrier; wherein the BMS-790052 salt of the present invention or a crystalline form or amorphous form thereof is selected from the group consisting of BMS-790052 Di-p-benzoate, BMS-790052 di-p-benzoate monohydrate crystal form, BMS-790052 diphenyl ylide, BMS-790052 diphenyl sulphate B crystal, BMS-790052-lemon Acid salt, BMS-790052-citrate amorphous, BMS-790052-glycolate, BMS-790052 monoglycolate amorphous, BMS-7
  • the pharmaceutical composition may also comprise other pharmaceutically acceptable salts, crystal forms or amorphous forms of BMS-790052, such as the known BMS-790052 dihydrochloride and its crystalline form.
  • the pharmaceutical composition may further comprise other pharmaceutically active ingredients including, but not limited to, other anti-HCV active compounds; immunomodulators such as interferons; other antiviral drugs such as ribavirin, King Kong Alkylamines; other inhibitors of NS5A; inhibitors of other targets in the HCV life cycle.
  • the pharmaceutical composition of the present invention may be in a solid or liquid form; the dosage form is, for example, a solid oral dosage form, including tablets, granules, powders, pills, and capsules; liquid oral dosage forms, including solutions, syrups, suspensions, Dispersing agents and emulsions; Sterile injectable preparations, including solutions, dispersions and lyophilizates; formulations may be suitable for rapid release, delayed release or modified release of the active ingredient. It may be a conventional, dispersible, chewable, orally dissolved or rapidly melted formulation.
  • the route of administration can be administered orally, parenterally or by implantation into a depot comprising subcutaneous, intradermal, intravenous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal and Injury injection or infusion technique.
  • a depot comprising subcutaneous, intradermal, intravenous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal and Injury injection or infusion technique.
  • the pharmaceutically acceptable carrier in the pharmaceutical composition includes, but is not limited to, a diluent such as starch, modified starch, lactose, powdered cellulose, microcrystalline cellulose, anhydrous calcium hydrogencaterate, tricalcium phosphate, Mannitol, sorbitol, sugar, etc.; binders such as acacia, guar gum, gelatin, polyvinylpyrrolidone, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyethylene glycol, copolyvidone, etc.
  • a diluent such as starch, modified starch, lactose, powdered cellulose, microcrystalline cellulose, anhydrous calcium hydrogencaterate, tricalcium phosphate, Mannitol, sorbitol, sugar, etc.
  • binders such as acacia, guar gum, gelatin, polyvinylpyrrolidone, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyethylene glycol, copolyvid
  • a disintegrating agent such as starch, sodium carboxymethyl starch, sodium starch glycolate, pregelatinized starch, crospovidone, croscarmellose sodium, colloidal silica, etc.
  • lubricant such as hard a fatty acid, magnesium stearate, zinc stearate, sodium benzoate, sodium acetate, etc.
  • a glidant such as colloidal silica
  • a complex forming agent such as various grades of cyclodextrin and a resin
  • a speed controlling agent such as hydroxypropylcellulose, hydroxydecylcellulose, hydroxypropylmethylcellulose, ethylcellulose, mercaptocellulose, decyl decyl acrylate, wax, and the like.
  • compositions include, but are not limited to, film formers, plasticizers, colorants, flavoring agents, viscosity modifiers, preservatives, antioxidants, and the like.
  • commonly used carriers include lactose and corn starch, and lubricants such as magnesium stearate may also be added; in the case of oral capsules, useful carriers/diluents include lactose, High and low molecular weight polyethylene glycol and dry corn starch; when administered orally as a suspension, the active ingredient is mixed with emulsifying and suspending agents; if desired, certain sweetening and/or flavoring agents may be added and / or colorant.
  • the pharmaceutical composition can be prepared by methods well known to those skilled in the art.
  • the BMS-790052 salt of the invention or a crystalline form or amorphous form thereof, is admixed with one or more pharmaceutically acceptable carriers, optionally with one or more other drugs
  • the active ingredients are mixed.
  • the solid preparation can be prepared by a process such as direct mixing, granulation, or the like.
  • the present invention provides BMS-790052 di-p-toluene sulfonate, BMS-790052 di-p-benzoate monohydrate crystal form, BMS-790052 diphenyl phthalate, BMS-790052 Diphenyl sulphate B crystal form, BMS-790052-citrate, BMS-790052-citrate amorphous, BMS-790052-glycolate, BMS-790052-glycolate amorphous, BMS-790052 Dimandelate, BMS-790052 dimandelate amorphous, BMS-790052 di-chlorobenzoate, BMS-790052 di-chlorobenzoate C crystal form, BMS-790052 didisulfonate , BMS-790052 diethylene dicarboxylate E crystal form, BMS-790052 di ⁇ -keto-glutarate, BMS-790052 di ⁇ -keto-glutarate G crystal form, BMS-790052 two 1,5 -naphthal
  • the present invention provides a method of treating hepatitis C virus (HCV) infection, the method comprising administering to a patient in need thereof a therapeutically and/or prophylactically effective amount of a salt selected from the group consisting of BMS-790052 or a crystal thereof selected from the present invention.
  • HCV hepatitis C virus
  • a pharmaceutical composition comprising a BMS-790052 salt or a crystalline form or an amorphous form thereof; wherein the BMS-790052 salt of the present invention or a crystalline form or amorphous form thereof is selected from the group consisting of BMS- 790052 Di-p-benzoate, BMS-790052 di-p-benzoate monohydrate crystal form, BMS-790052 diphenyl ylide, BMS-790052 diphenyl sulphate B crystal form, BMS-790052- Citrate, BMS-790052-citrate amorphous, BMS-790052-glycolate, BMS-790052 monoglycolate amorphous, BMS-790052 dimandelate, BMS-790052 dimandelate Shaper, BMS-790052 di-p-chlorobenzoate, BMS-790052 di-p-chlorobenzoate C crystal form, BMS-790052 di-dimenate, BMS-790052 diethylene dicarboxylate
  • the invention is further directed to the following examples which describe in detail the salts, crystalline forms and amorphous forms of the present invention, methods for their preparation, and uses. It will be apparent to those skilled in the art that many changes in the materials and methods can be practiced without departing from the scope of the invention.
  • X-ray powder diffraction The instrument used was a Bruker D8 Advance diffractometer with a Ka X-ray with a copper target wavelength of 1.54 nm, a ⁇ -2 ⁇ goniometer at 40 kV and 40 mA, Mo Mono Instrument, Lynxeye detector. The instrument is calibrated with silicon carbide before use.
  • the acquisition software is Diffrac Plus XRD Commander. The sample is tested at room temperature and the sample to be tested is placed on a non-reflecting plate. The detailed test conditions are as follows, angle range: 340 ° 2 ⁇ , step size: 0.02 ° 2 ⁇ , speed: 0.2 sec / step.
  • the polarized light microscope was obtained from a ⁇ -500 ⁇ polarized light microscope (Shanghai Changfang Optical Instrument Co., Ltd.). Take a small amount of powder sample on the glass slide, add a small amount of mineral oil to better disperse the powder sample, cover the cover glass, and then place the sample on a ⁇ -500 ⁇ polarized light microscope (Shanghai Changfang Optical Instrument Co., Ltd.) On the stage, select the appropriate magnification to observe the shape of the sample and take a picture.
  • the differential thermal analysis (DSC) data was taken from the TA Instruments Q200 MDSC, the instrument control software was Thermal Advantage, and the analysis software was Universal Analysis. Usually take 1 ⁇ 10 mg of sample The sample was placed in an aluminum pan and the sample was raised from room temperature to 200 ° C or 300 ° C under the protection of 40 mL/min dry N 2 at a heating rate of 10 ° C/min.
  • Thermogravimetric analysis (TGA) data was taken from the TA Instruments Q500 TGA, the instrument control software was Thermal Advantage, and the analysis software was Universal Analysis.
  • TGA Thermogravimetric analysis
  • a sample of 5 to 5 mg was placed in a platinum crucible, and the sample was raised from room temperature to 400 °C by a stepwise high-resolution detection method at a heating rate of 10 ° C/min under a dry N 2 protection of 40 mL/min.
  • Nuclear magnetic analysis (NMR) data was taken from Bruker Ascend Tm 500. Normal frequency excitation is usually used, with a spectral width of 30 ppm, single pulse, 30. Angle excitation, scanning 16 times, digital orthogonal detection, temperature control 298K.
  • the release data was obtained from the RC806 dissolution tester.
  • the dissolution method was referred to the Chinese Pharmacopoeia 2010 Edition, Part II, Appendix X, and the dissolution method.
  • the parameters are set to: 100 rpm, the experimental temperature is 37.0 ° C, the amount of dissolution medium is 500 mL, and the sampling time is 1 hour, 6 hours and 12 hours respectively.
  • the data was detected and collected as a high performance liquid phase analytical instrument (HPLC).
  • HPLC high performance liquid phase analytical instrument
  • High performance liquid phase analysis (HPLC) data was taken from Waters 2695/2487, and instrument control software and analysis software was Empower. Using C18 column, 150mm x 4.6mm, column temperature 25 ° C, wavelength 210nm, flow rate l.Oml / min, injection volume 5ul, running time 15min.
  • the mobile phase A was water containing 0.05% trifluoroacetic acid
  • the mobile phase B was acetonitrile.
  • the gradient is shown in Table 2.
  • the single punching machine has a tableting pressure of 5 MPa and a tablet diameter of 10 mm.
  • Ultrasonic operation was performed using 40 Khz power for 5 minutes; agitation was performed at 300 to 900 rpm for magnetic stirring; the rate of centrifugation was 6000 rpm.
  • BMS-790052 free base (3.0 g) was dissolved in 100 mL of isopropanol at 20 °C. Anhydrous hydrochloric acid solution (7.0 mL, 1.25 M concentration) was added and the reaction mixture was stirred. To the solution was added decyl tert-butyl ether (100 mL), and the resulting slurry was vigorously stirred at 40 ° C to 50 ° C for 12 hours. The crystallized slurry was cooled to 20 ° C, filtered, and the solid was air-dried at 20 ° C to obtain 2.77 g of BMS-790052 dihydrochloride as a white crystalline solid, yield 84.0%.
  • the XRPD pattern is shown in Figure 1, which shows: The salt is a crystalline solid.
  • the PLM map is shown in Figure 2, which shows:
  • the salt is a small blocky particle with no rules.
  • the TGA spectrum is shown in Figure 3, which shows: The decomposition temperature is about 236 °C.
  • the DSC spectrum is shown in Figure 4 and shows: The melting point is 251 °C.
  • the solubility of the salt in water is greater than 200 mg / ml at room temperature, and the dissolution of the powder is greater than 95% in 5 minutes.
  • the BMS-790052 dihydrochloride sample prepared in Comparative Example 1 had the same or similar XRPD 2 ⁇ characteristic peak, XRPD pattern and DSC spectrum as compared to the BMS-790052 dihydrochloride salt form disclosed in WO2009020828A1. Description Comparative Example 1 The sample has the same crystal form as the BMS-790052 dihydrochloride of WO2009020828A1.
  • BMS-790052 free base prepared in Preparation Example 1 500 mg was added, and after adding 10 mL of acetone, it was sonicated, and 256 mg of anhydrous p-benzoic acid solid was added to BMS-790052 free base in acetone. The slurry was formed and stirred. After stirring for 16 hours, it was filtered, and the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 521 mg of BMS-790052 di-p-benzoate, yield 71.1%.
  • BMS-790052 di-p-benzoate is a salt of BMS-790052 free base and p-phthalic acid in a molar ratio of about 1:2.
  • BMS-790052 free base prepared in Preparation Example 1 was added, 2.0 mL of isopropanol was added, and ultrasonically dissolved. 23.2 mg of anhydrous p-benzoic acid solid was added to a solution of BMS-790052 free base in isopropanol. The slurry was formed and stirred. After stirring for 8 hours, it was filtered, and the filter cake was vacuum dried at 40 ° C for 16 hours to obtain 51.5 mg of BMS-790052 di-p-benzoate, yield 70.3%.
  • Example 2 had the same or similar HPLC test result (not shown) as the sample of Example 1, indicating that the sample of Example 2 was the same as the sample of Example 1.
  • BMS-790052 free base prepared in Preparation Example 1 200 mg was added, and 4 mL of acetone was added, and then ultrasonically dissolved. 51.2 mg of anhydrous p-benzoic acid was added, and 0.8 mL of acetone was added thereto, followed by ultrasonic dissolution, and p-toluenesulfonic acid was added. The acetone solution was slowly added dropwise to the acetone solution of BMS-790052 free base, and stirred. After reacting for 16 hours, solids were precipitated, filtered, and dried under vacuum at 40 ° C for 16 hours to obtain 160 mg of BMS-790052-p-benzoic acid. Salt, yield 65.1%.
  • BMS-790052 di-p-benzoate salt prepared by the present invention was taken, and 20 ml of water was added to form a suspension. After stirring for 24 hours, the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 285 mg of BMS-790052 di-p-benzoate salt monohydrate crystal form, yield 87.6%.
  • the XRPD pattern is shown in Figure 5:
  • the salt is a crystalline solid.
  • the PLM map is shown in Figure 6:
  • the salt is a smaller particle with no rules.
  • the TGA spectrum is shown in Figure 7: There is about 2.0% step weight loss before 120 °C, which is equivalent to the weight loss ratio of a water molecule, and the decomposition temperature is about 236 °C.
  • the DSC spectrum is shown in Figure 8. There is a broad endothermic peak before 80 °C, and the endothermic peak between 80 and 150 °C is the desorbed water molecule.
  • BMS-790052 di-p-benzoate salt prepared by the present invention was taken, and 8 ml of acetone (V/V) containing 1% of water was added to form a suspension. After stirring for 24 hours, filtration, the cake was dried under vacuum at 40 ° C for 8 hours to obtain 65.6 mg of BMS-790052 di-p-benzoate salt monohydrate crystal form, yield 80.7%.
  • BMS-790052 di-p-benzoate salt prepared by the invention 50 mg was added at room temperature, and 5 ml of water was added. Saturated ethyl acetate formed a suspension. After stirring for 48 hours, filtration, the cake was dried under vacuum at room temperature for 16 hours to obtain 42.3 mg of BMS-790052 di-p-benzoate salt monohydrate crystal form, yield 83.2%.
  • BMS-790052 di-p-benzoate prepared according to the present invention was added, and 25 ml of water-saturated decyl tert-butyl ether was added to form a suspension. After stirring for 72 hours, filtration, the cake was dried under vacuum at room temperature for 24 hours to obtain 195 mg of BMS-790052 di-p-benzoate salt monohydrate crystal form, yield 76.7%.
  • the samples prepared in Examples 5 to 7 had the same or similar XRPD patterns, PLM patterns, DSC patterns, and TGA patterns (not shown) as the samples of Example 4.
  • the samples of Examples 5 to 7 and the samples of Example 4 were the same.
  • BMS-790052 free base prepared in Preparation Example 1 was taken, dissolved in 5 mL of acetone, and 117.5 mg of benzoic acid was added to a solution of BMS-790052 free base in acetone to form a slurry and stirred. After stirring for 16 hours, Filtration, filter cake dried at 40 ° C for 16 hours, 275 mg BMS-790052 diphenyl phthalate, yield 77.0%.
  • BMS-790052 free base in BMS-790052 diphenyl phthalate was 70.3% and the theoretical content was 70.1%.
  • the test results show that: BMS-790052 diphenyl ylide salt BMS-790052 free base and benzoic acid in a molar ratio of about 1: 2 salt.
  • BMS-790052 free base prepared in Preparation Example 1 50.0 mg was taken at room temperature, dissolved in 2 mL of isopropanol, 21.4 mg of fulvic acid was added, 0.2 mL of isopropanol was added, and ultrasonically dissolved, an isopropanol solution of benzenesulfonic acid was added. Slowly dropwise added to the solution of BMS-790052 free base in isopropanol, formed into a slurry and stirred, stirred for 8 hours, filtered, and the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 52.3 mg of BMS-790052 diphenyl sulfonate. The rate is 73.3%.
  • Example 9 The sample prepared in Example 9 had the same or similar HPLC test results (not shown) as the sample of Example 8. DESCRIPTION EXAMPLE 9 Sample and Example 8 The sample was the same material.
  • BMS-790052 diphenylphosphonium salt prepared by the present invention was taken, and 12 ml of water was added to form a suspension. After stirring for 10 hours, filtration, the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 153 mg of BMS-790052 diphenylsuccinate B crystal form, yield 85.0%.
  • the XRPD pattern is shown in Figure 9: The salt is a crystalline solid.
  • the PLM map is shown in Figure 10: The salt is a large, massive particle that is irregular.
  • the TGA spectrum is shown in Figure 11: There is about 8.0% step weight loss before 200 °C, and the decomposition temperature is about 251 °C.
  • Example 12 had the same or similar XRPD pattern, PLM pattern, DSC pattern and TGA pattern (not shown) as the sample of Example 11. DESCRIPTION OF EXAMPLES 12 Samples and Example 11 Samples were the same.
  • BMS-790052 free base prepared in Preparation Example 1 150 mg was taken at room temperature, dissolved in 3 mL of acetone, and 43.5 mg of citric acid solid was added to a solution of BMS-790052 free base in acetone to form a slurry and stirred, stirred for 16 hours, and filtered. The filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 150 mg of BMS- 790 052 succinate, yield 79.4%.
  • BMS-790052 free base in BMS-790052-citrate was 83.7%, and the theoretical content was 79.4%.
  • the test results showed that: BMS-790052 - citrate BMS-790052 free base and citric acid in a molar ratio of about 1:1 salt.
  • BMS-790052 free base prepared in Preparation Example 1 was taken, dissolved in 3 mL of methyl ethyl ketone, and 58.5 mg of citric acid solid was added to a solution of BMS-790052 free base in methyl ethyl ketone to form a slurry and stirred for 16 hours. After filtration, the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 146.4 mg of BMS-790052- citrate, yield 77.5%.
  • BMS-790052-citrate prepared according to the present invention was taken, and 3 ml of acetone was added to form a suspension. After stirring for 24 hours, filtration, the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 111 mg of BMS-790052- citrate amorphous material, yield 74%.
  • the XRPD pattern is shown in Figure 13, and the salt is amorphous.
  • the PLM map is shown in Figure 14, which shows: The salt is smaller and irregular.
  • the TGA spectrum is shown in Figure 15, which shows: about 3.4% slow weight loss before 100 °C, and the decomposition temperature is about 131 °C.
  • BMS-790052-citrate prepared according to the present invention 200 mg was taken at room temperature, and 10 ml of ethyl acetate was added to form a suspension. After stirring for 48 hours, it was filtered, and the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 142 mg of BMS-790052- citrate amorphous substance, yield 71%.
  • BMS-790052-citrate prepared in the present invention 150 mg was taken, and 15 ml of mercapto tert-butyl ether was added to form a suspension. After stirring for 72 hours, filtration, the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 124.5 mg of BMS-790052- citrate amorphous material, yield 83%.
  • the samples prepared in Examples 18, 19 had the same or similar XRPD pattern, PLM pattern, DSC pattern and TGA pattern (not shown) as the sample of Example 17. DESCRIPTION OF EXAMPLES 18, 19 Samples and Examples 17 The samples were the same.
  • BMS-790052 free base prepared in Preparation Example 1 500 mg was taken, dissolved in 10 mL of ethyl acetate, and 58 mg of glycolic acid solid was added to a solution of BMS-790052 free base in ethyl acetate to form a slurry and stirred, and stirred for 8 hours. It was filtered, dried under vacuum at 40 ° C for 16 hours to give 200 mg of BMS-790052 monoethanolate, yield 36.3%.
  • BMS-790052 free base in BMS-790052-glycolate was 88.4% and the theoretical content was 90.7%.
  • the test results show that: BMS-790052 - glycolate BMS-790052 free base and glycolic acid in a molar ratio of about 1: 1 salt.
  • BMS-790052 free base prepared in Preparation Example 1 250 mg was taken, dissolved in 25 mL of isopropyl acetate, and 25.5 mg of glycolic acid was added to a solution of BMS-790052 free base in isopropyl acetate to form a slurry and stirred, and stirred. After an hour, filter, vacuum dry at 40 ° C for 16 hours, get 78 mg BMS-790052 - glycolate, yield 28.3%.
  • BMS-790052 free base prepared in Preparation Example 1 At room temperature, take 250.0 mg of BMS-790052 free base prepared in Preparation Example 1, add 5 mL of ethyl acetate to dissolve, add 38.5 mg of glycolic acid solid to BMS-790052 free base in ethyl acetate solution, form a slurry and stir, stir 8 After an hour, it was filtered and dried under vacuum at 40 ° C for 16 hours to obtain 124 mg of BMS- 790 052-glycolate, yield 45%.
  • BMS-790052 free base prepared in Preparation Example 1 was taken, dissolved in 9 mL of ethyl acetate, 104.4 mg of glycolic acid was added, and 1 mL of ethyl acetate was added, and the solution was sonicated to dissolve BMS-790052 free base ethyl acetate.
  • the solution was slowly added dropwise to a solution of glycolic acid in ethyl acetate. After stirring for 24 hours, the solid was precipitated, filtered, and the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 20.3 mg of BMS-790052 diglycolate, yield 33.7%.
  • BMS-790052-glycolate prepared according to the present invention 300 mg was taken at room temperature, and 30 ml of water was added to form a suspension. After stirring for 16 hours, filtration, the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 201 mg of BMS-790052-glycolate amorphous, yield 67%.
  • the XRPD pattern is shown in Figure 17, and the salt is an amorphous material.
  • the PLM map is shown in Figure 18, which shows: The salt is larger in size and irregular.
  • the TGA spectrum is shown in Figure 19, which shows that there is about 2.8% slow weight loss before 75 ° ⁇ and the decomposition temperature is about 80 °C.
  • the DSC spectrum is shown in Figure 20, which shows a broad endothermic peak before 110 °C.
  • BMS-790052-glycolate prepared by the present invention was taken, and 3.6 ml of decyl tert-butyl ether was added to form a suspension. After stirring for 48 hours, filtration, the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 158.4 mg of BMS-790052-glycolate amorphous, yield 88%.
  • BMS-790052-glycolate prepared according to the present invention 30 mg was taken at room temperature, and 3 ml of n-heptane was added to form a suspension. After stirring for 48 hours, filtration, the filter cake was dried under vacuum at 40 ° C for 48 hours to obtain 23.7 mg of BMS-790052-glycolate amorphous, yield 79%.
  • the samples prepared in Examples 25 and 26 had the same or similar XRPD patterns, PLM patterns, DSC patterns, and TGA patterns (not shown) as the samples of Example 24. DESCRIPTION OF EXAMPLES 25, 26 Samples and Examples The 24 samples were the same.
  • Example 27 Preparation of BMS-790052 Dimandelate 500.0 mg of BMS-790052 free base prepared in Preparation Example 1 was taken at room temperature, dissolved in 10 mL of ethyl acetate, and 226 mg of mandelic acid solid was added to a solution of BMS-790052 free base in ethyl acetate to form a slurry and stirred for 16 hours. After filtration, the filter cake was vacuum dried at 40 ° C for 16 hours to obtain 604 mg of BMS-790052 dimandelic acid salt, yield 85.6%.
  • BMS-790052 dimandelate salt BMS-790052 free base and mandelic acid were salted at a molar ratio of about 1:2.
  • BMS-790052 free base prepared in Preparation Example 1 was added, dissolved in 30 mL of isopropyl acetate, and 123.6 mg of mandelic acid solid was added to a solution of BMS-790052 free base in isopropyl acetate to form a slurry. After stirring, stirring for 10 hours, filtration, and drying of the filter cake under vacuum at 40 ° C for 16 hours gave 352.8 mg of BMS-790052 di-mandelic acid salt, yield 83.3%.
  • BMS-790052 free base prepared in Preparation Example 1 was taken, dissolved in 3 mL of ethyl acetate, and 33.9 mg of mandelic acid solid was added to a solution of BMS-790052 free base in ethyl acetate, and stirred, and stirred for 16 hours. A solid precipitated, filtered, and the filter cake was dried under vacuum at 40 ° C for 16 hours to give 127.2 mg of BMS-790052 of a mandelic acid salt with a yield of 70.3%.
  • BMS-790052 dimandelate prepared by the present invention 100 mg was taken at room temperature, and 2 ml of acetone was added to form a suspension. After stirring for 10 hours, filtration, the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 74 mg of BMS-790052 di-mandelic acid amorphous form, yield 74%.
  • the XRPD pattern is shown in Figure 21 and the salt is amorphous.
  • the PLM map is shown in Figure 22, which shows:
  • the salt is a large blocky particle with no rules.
  • the TGA spectrum is shown in Figure 23, which shows that there is about 6.3% slow weight loss before 150 °C and the decomposition temperature is about 199 °C.
  • the DSC spectrum is shown in Figure 24, which shows a broad endothermic peak before 100 °C.
  • Example 32 Preparation of BMS-790052 Di-mandelic Acid Amorphous Form
  • 150 mg of BMS-790052 dimandelate prepared by the present invention was taken at room temperature, and 15 ml of decyl tert-butyl ether was added to form a suspension. After stirring for 16 hours, filtration, the filter cake was dried under vacuum at 40 ° C for 16 hours to give 117 mg of BMS-790052 di-mandelic acid amorphous, yield 78%.
  • BMS-790052 dimandelate prepared according to the present invention 100 mg was taken at room temperature, and 10 ml of n-heptane was added to form a suspension. After stirring for 48 hours, filtration, the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 85 mg of BMS-790052 di-mandelic acid amorphous form, yield 85 %.
  • the samples prepared in Examples 32 and 33 had the same or similar XRPD patterns, PLM patterns, DSC patterns, and TGA patterns (not shown) as the samples of Example 31. DESCRIPTION OF EXAMPLES 32, 33 Samples and Examples 31 The samples were the same.
  • BMS-790052 free base prepared in Preparation Example 1 was taken, dissolved in 13 mL of decyl alcohol, and 371.8 mg of p-chlorobenzoic acid solid was added to a solution of BMS-790052 free base in sterol to form a slurry and stirred. After stirring for 16 hours, filtration, and filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 56.2 mg of BMS-790052 di-p-chlorobenzoate, yield 73.9%.
  • BMS-790052 free base in BMS-790052 di-p-chlorobenzoate was 63.8%, and the theoretical content was 65.8%.
  • the test results show that: BMS-790052 di-p-chlorobenzoate salt BMS-790052 free base and p-chlorobenzoic acid in a molar ratio of about 1: 2 salt.
  • BMS-790052 free base prepared in Preparation Example 1 At room temperature, take 200.0 mg of BMS-790052 free base prepared in Preparation Example 1, add 4 mL of ethanol to dissolve, add 99.6 mg of p-chlorobenzoic acid solid to BMS-790052 free base in ethanol solution, form a slurry and stir, stir After 10 hours, the filter cake was vacuum dried at 40 ° C for 16 hours to obtain 217.2 mg of BMS-790052 di-p-chlorobenzoate, yield 71.4%.
  • BMS-790052 free base prepared in Preparation Example 1 50.0 mg was added at room temperature, dissolved in 5.0 mL of n-butanol, and 37.4 mg of p-chlorobenzoic acid solid was added to a solution of BMS-790052 free base in n-butanol to form a slurry. After stirring, stirring for 24 hours, filtration, and filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 52.7 mg of BMS-790052 di-p-chlorobenzoate, yield 69.3%.
  • Example 35, 36 had the same or similar HPLC results (not shown) as the samples of Example 34.
  • Illustrative Example 35, 36 Sample and Example 34 The sample was the same material.
  • BMS-790052 free base prepared in Preparation Example 1 was dissolved in 3 mL of ethanol, and 42.9 mg of p-chlorobenzoic acid solid was added to BMS-790052 free base in ethanol, stirred, and stirred for 16 hours. Solid precipitated, filtered, and the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 102 mg.
  • BMS-790052 di-p-chlorobenzoate prepared according to the present invention was added to 7 ml of ethanol to form a suspension. After stirring for 10 hours, filtration, the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 172.2 mg of BMS-790052 di-p-chlorobenzoate C crystals in a yield of 82.0%.
  • the XRPD pattern is shown in Figure 25 and the salt is a crystalline solid.
  • the PLM map is shown in Figure 26, which shows: The salt is fine particles and irregular.
  • the TGA spectrum is shown in Figure 27, which shows that there is about 4.6% slow weight loss before 120 °C and the decomposition temperature is about 180 °C.
  • the DSC spectrum is shown in Figure 28, which shows that there is a broad endothermic peak before 110 °C and a large endothermic peak between 150 and 220 °C.
  • BMS-790052 di-p-chlorobenzoate prepared according to the present invention was added to 8 ml of water to form a suspension.
  • the mixture was stirred for 16 hours, filtered, and the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 142.2 mg of BMS-790052 di-chlorobenzoate C crystal form, yield 79.0%.
  • BMS-790052 di-p-chlorobenzoate prepared by the present invention 120 mg was added, and 6 ml of decyl tert-butyl ether was added to form a suspension. After stirring for 24 hours, filtration, the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 84 mg of BMS-790052 di-chlorobenzoate C crystal form, yield 69.7%.
  • the samples prepared in Examples 39, 40 had the same or similar XRPD patterns, PLM patterns, DSC patterns, and TGA patterns (not shown) as the samples of Example 38. DESCRIPTION OF EXAMPLES 39, 40 Samples and Examples 38 The samples were the same.
  • BMS-790052 free base in BMS-790052 diethylene diammonate was 66.9% and the theoretical content was 66.1%.
  • the test results show that: BMS-790052 diethylene disilicate in BMS-790052 free base and ethanedicarboxylic acid in a molar ratio of about 1: 2 salt.
  • BMS-790052 free base prepared in Preparation Example 1 At room temperature, take 200 mg of BMS-790052 free base prepared in Preparation Example 1, add 4 mL of acetone to dissolve, add 102.8 mg of ethanedicarboxylic acid solid to BMS-790052 free base in acetone solution, form a slurry and stir, stir for 10 hours. , filter, filter cake dried at 40 ° C for 16 hours, get 230.8 mg BMS-790052 diethylene dicarboxylate, yield 76.2%.
  • BMS-790052 free base prepared in Preparation Example 1 300 mg was taken, dissolved in 30 mL of acetone, and 231 mg of ethanedisulfonic acid solid was added to a solution of BMS-790052 free base in acetone to form a slurry and stirred, and stirred for 24 hours. After filtration, the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 333 mg of BMS-790052 diethylenedicarboxylate, yield 73.3%.
  • BMS-790052 free base prepared in Comparative Example 1 150 mg was dissolved in 3 mL of acetone, and 42.9 mg of ethanedisulfonic acid solid was added to the free base in acetone, and stirred. After stirring for 16 hours, solid precipitated. Filtration, filter cake vacuum drying at 40 ° C for 16 hours, to obtain 132 mg BMS-790052-diethylene dicitrate, yield 70%.
  • BMS-790052 diethylenediamine salt of the present invention was taken and 8 ml of water was added to form a suspension. After stirring for 5 hours, filtration, and the filter cake was dried under vacuum at 30 ° C for 16 hours to obtain 212 mg of crystalline BMS-790052 diethylenedithiolate E crystal form, yield 88.3%.
  • the PLM map is shown in Figure 30, which shows: The salt is fine particles and irregular.
  • the TGA spectrum is shown in Figure 31, which shows that there is about 17.3% step loss before 150 °C and the decomposition temperature is about 247 V.
  • BMS-790052 diethylenediamine salt of the present invention was taken, and 21 ml of ethyl acetate was added to form a suspension. After stirring for 10 hours, filtration, the filter cake was dried under vacuum at 30 ° C for 16 hours to obtain 131.6 mg of BMS-790052 diethylenedithiolate E crystal form, yield 62.7%.
  • BMS-790052 diethylenediamine salt of the present invention was taken, and 6 ml of acetone was added to form a suspension. After stirring for 5 hours, filtration, the cake was dried under vacuum at 30 ° C for 16 hours to obtain 133.2 mg of BMS-790052 diethylenedithiolate E crystal form, yield 74.0%.
  • BMS-790052 diethylene dicarboxylate prepared according to the present invention 150 mg was taken at room temperature, and 7.5 ml of decyl tert-butyl ether was added to form a suspension. After stirring for 24 hours, filtration, the filter cake was dried under vacuum at 30 ° C for 16 hours to obtain 104 mg of BMS-790052 diethylenedisulfonate E crystal form, yield 69.3%.
  • the samples prepared in Examples 46 to 48 had the same or similar XRPD patterns, PLM patterns, DSC patterns, and TGA patterns (not shown) as the Example 45 samples. The samples of Examples 46 to 48 are identical to the samples of Example 45.
  • BMS-790052 free base prepared in Preparation Example 1 was taken at room temperature, dissolved in 17 mL of ethyl acetate, and 369 mg of a-keto-glutaric acid solid was added to a solution of BMS-790052 free base in ethyl acetate to form a slurry. The mixture was stirred, stirred for 16 hours, filtered, and the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 962.2 mg of BMS-790052 bis- keto-glutarate in a yield of 81.2%.
  • BMS-790052 free base in BMS-790052 di-keto-glutarate was 68.9%, and the theoretical content was 71.7%.
  • the test results show that: BMS-790052 di- ⁇ -keto-glutaric acid salt BMS-790052 free base and ⁇ -keto-glutaric acid are formed in a molar ratio of about 1:2.
  • BMS-790052 free base prepared in Preparation Example 1 300 mg was taken, dissolved in 30 mL of ethyl acetate, and 118.2 mg of a-keto-glutaric acid solid was added to a solution of BMS-790052 free base in ethyl acetate to form a slurry and stir. The mixture was stirred for 10 hours, filtered, and the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 330 mg of BMS-790052 di-keto-glutarate in a yield of 78.9%.
  • BMS-790052 free base prepared in Preparation Example 1 200 mg was taken, dissolved in 4 mL of isopropyl acetate, and 118.4 mg of a-keto-glutaric acid solid was added to a solution of BMS-790052 free base in isopropyl acetate to form The slurry was stirred and stirred for 24 hours, filtered, and the filter cake was dried under vacuum at 40 ° C for 16 hours to give 210.4 mg of BMS-790052 di- ketone- glutarate, yield 75.5%.
  • Example 50, 51 had the same or similar HPLC test results (not shown) as the sample of Example 49.
  • Illustrative Example 50, 51 Sample and Example 49 The sample was the same material.
  • BMS-790052 free base prepared in Preparation Example 1 150 mg was added at room temperature, dissolved in 3 mL of ethyl acetate, and 32.7 mg of a-keto-glutaric acid solid was added to a solution of BMS-790052 free base in ethyl acetate to form The slurry was stirred and stirred for 16 hours, filtered, and the filter cake was dried under vacuum at 40 ° C for 16 hours to give 145.5 mg of BMS-790052- a- keto-glutarate in a yield of 81.0 %.
  • BMS-790052 di-keto-glutarate prepared by the present invention was added, and 10 ml of acetone was added to form a suspension. After stirring for 24 hours, filtration, the filter cake was dried under vacuum at 30 ° C for 16 hours to obtain 254 mg of BMS-790052 di-keto-glutarate G crystal form, yield 84.7%.
  • the PLM map is shown in Figure 34 and shows: The salt is larger and irregular.
  • the TGA spectrum is shown in Figure 35, which shows: about 4.2% slow weight loss before 150 °C, and the decomposition temperature is about 185 °C.
  • BMS-790052 di- ⁇ -keto-glutarate prepared according to the present invention 240.0 mg was taken at room temperature, and 12 ml of ethyl acetate was added to form a suspension. After stirring for 48 hours, filtration, the cake was dried under vacuum at 30 ° C for 16 hours to obtain 194.8 mg of BMS-790052 di-y- keto-glutarate G crystal form, yield 81.2%.
  • BMS-790052 di- ⁇ -keto-glutarate prepared according to the present invention 120.0 mg was taken at room temperature, and 12 ml of ethyl acetate was added to form a suspension. After stirring for 72 hours, filtration, the cake was dried under vacuum at 30 ° C for 16 hours to obtain 91 mg of BMS-790052 bis-keto-glutarate G crystal form, yield 75.8%.
  • the samples prepared in Examples 54 and 55 had the same or similar XRPD patterns, PLM patterns, DSC patterns, and TGA patterns (not shown) as the samples of Example 53. DESCRIPTION OF EXAMPLES 54, 55 Samples and Examples 53 The samples were the same.
  • BMS-790052 free base prepared in Preparation Example 1 500 mg was added, dissolved in 50 mL of isopropanol, and 536 mg of 1,5-naphthaleneditraic acid tetrahydrate solid was added to BMS-790052 free base in isopropanol solution.
  • the slurry was formed and stirred, stirred for 16 hours, filtered, and the filter cake was vacuum dried at 40 ° C for 16 hours to obtain 622 mg of BMS-790052 di 1,5-naphthalene dimutenate Nd crystal form, yield 70.0%.
  • BMS-790052 free base in BMS-790052 di 1,5-naphthalenedicarboxylate was 57.9%, and the theoretical content was 56.2%.
  • the test results show that: BMS-790052 di 1,5-naphthalene di-alkaline salt BMS-790052 free base and 1,5-naphthalene dinonanoic acid are formed in a molar ratio of about 1:2.
  • BMS-790052 free base prepared in Preparation Example 1 300 mg was added, dissolved in 6 mL of decyl alcohol, and 292.2 mg of 1,5-naphthalene disulfonic acid tetrahydrate solid was added to a solution of BMS-790052 free base in sterol.
  • the slurry was formed and stirred, stirred for 10 hours, filtered, and the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 350.4 mg of BMS-790052 di-1,5-naphthalenediylide, yield 65.6%.
  • BMS-790052 free base prepared in Preparation Example 1 200 mg was taken, dissolved in 10 mL of ethanol, and 292.4 mg of 1,5-naphthalene dicarboxylic acid tetrahydrate solid was added to a solution of BMS-790052 free base in ethanol to form a slurry. The mixture was stirred, stirred for 24 hours, filtered, and the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 226.4 mg of BMS-790052 di 1,5-naphthalenedicarboxylate, yield 63.5%.
  • Example 59 Preparation of BMS-790052-1,5-naphthalenedisulfonate
  • the PLM map is shown in Figure 38, which shows:
  • the salt is a large, massive particle that is irregular.
  • BMS-790052 di 1,5-naphthalene dipotassium salt prepared by the present invention was added, and 7.5 ml of isopropanol was added to form a suspension. After stirring for 16 hours, filtration and drying of the cake at 30 ° C for 16 hours, 119.5 mg of BMS-790052 bis 1,5-naphthalene disulfonate Nd crystal form, yield 79.7%.
  • BMS-790052 di 1,5-naphthalene dipotassium salt prepared by the present invention was taken, and 6.0 ml of acetone was added to form a suspension. After stirring for 24 hours, filtration, the filter cake was dried under vacuum at 30 ° C for 16 hours to obtain 49.5 mg of BMS-790052 bis 1,5-naphthalene dimaleate Nd crystal form, yield 82.5%.
  • the samples prepared in Examples 61 and 62 had the same or similar XRPD patterns, PLM patterns, DSC patterns, and TGA patterns (not shown) as the samples of Example 60. DESCRIPTION OF EXAMPLES 61, 62 Samples and Examples The 60 samples were the same.
  • BMS-790052 free base prepared in Preparation Example 1 600 mg was added at room temperature, dissolved in 60 mL of isopropanol, and 372 mg of 2-naphthoic acid solid was added to a solution of BMS-790052 free base in isopropanol to form a slurry and stir. The mixture was stirred for 10 hours, filtered, and the filter cake was vacuum dried at 40 ° C for 16 hours to obtain BMS-790052 di 2-naphthalenesulfonate 700 mg, yield 74.7%.
  • BMS-790052 free base in BMS-790052 di-2-naphthoate was 60.6% and the theoretical content was 64.0%.
  • the test results showed that: BMS-790052 di-naphthyl sulphate salt BMS-790052 free base and 2-naphthoic acid were salted at a molar ratio of about 1:2.
  • Example 64 Preparation of BMS-790052 Di-2-Naphthalenesulfonate At room temperature, take 350 mg of BMS-790052 free base prepared in Preparation Example 1, add 7 mL of methanol to dissolve, add 197.4 mg of 2-naphthoic acid solid to BMS-790052 free base in methanol solution to form a slurry and stir, stir 16 After an hour, the filter cake was vacuum dried at 40 ° C for 16 hours to obtain BMS-790052 bis 2-naphthoate 385 mg, yield 70.4%.
  • BMS-790052 free base prepared in Preparation Example 1 250 mg was taken, dissolved in 12.5 mL of ethanol, and 211.5 mg of 2-naphthoic acid solid was added to a solution of BMS-790052 free base in ethanol to form a slurry and stirred, and stirred for 24 hours. After filtration, the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain BMS-790052 di-2-naphthoate 261.5 mg, yield 66.9%.
  • Example 64 and 65 had the same or similar HPLC test results (not shown) as the sample of Example 63. DESCRIPTION OF EXAMPLES 64, 65 Samples and Examples 63 The samples were the same.
  • BMS-790052 free base prepared in Preparation Example 1 50 mg was added, dissolved in 3 mL of isopropanol, and 15.5 mg of 2-naphthoic acid solid was added to a solution of BMS-790052 free base in isopropanol, stirred, and stirred. After a few hours, a solid precipitated, and the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 43.7 mg of BMS-790052-2-naphthoate, yield 68.2%.
  • the XRPD pattern is shown in Figure 41 and the salt is a crystalline solid.
  • the PLM map is shown in Figure 42 and shows:
  • the salt is a large, massive particle that is irregular.
  • the DSC spectrum is shown in Figure 44, which shows: There is a broad endothermic peak before 120 °C, and a broad endothermic peak at 120 ⁇ 200 °C.
  • BMS-790052 bis 2-naphthalene disulfonate prepared by the invention was added, 9 ml of isopropanol was added to form a suspension, stirred for 12 hours, filtered, and the filter cake was vacuum dried at 30 ° C for 16 hours. 146.4 mg of BMS-790052 di-2-naphthyl sulphate Ns crystal form was obtained, and the yield was 81.3%.
  • BMS-790052 di-2-naphthalenediate prepared by the invention 150 mg was added, 15 ml of decyl tert-butyl ether was added to form a suspension, stirred for 24 hours, filtered, and the filter cake was vacuum dried at 30 ° C. In an hour, 115 mg of BMS-790052 di-2-naphthoic acid salt Ns was obtained in a yield of 76.7%.
  • the samples prepared in Examples 68, 69 had the same or similar XRPD pattern, PLM pattern, DSC pattern, and TGA pattern (not shown) as the sample of Example 67.
  • the samples of Examples 68 and 69 are identical to the sample of Example 67.
  • BMS-790052 free base prepared in Preparation Example 1 500.0 mg was taken at room temperature, dissolved in 10 mL of ethyl acetate, and 0.56 mL of 12 mol/L concentrated hydrochloric acid was added to a solution of BMS-790052 free base in ethyl acetate to form a slurry and stir. After stirring for 3 hours, it was filtered and dried under vacuum at 40 ° C for 16 hours to obtain 485.8 mg of BMS-790052 trihydrochloride, yield 84.6%.
  • BMS-790052 free base in BMS-790052 trihydrochloride was 87.6% and the theoretical content was 87.1%.
  • the test results show that: BMS-790052 trihydrochloride BMS-790052 free base and hydrochloric acid in a molar ratio of about 1:3 salt.
  • BMS-790052 free base prepared in Preparation Example 1 was taken, dissolved in 25 mL of isopropyl acetate, and 10 mL of 0.1 mol/L hydrochloric acid was added to a solution of BMS-790052 free base in isopropyl acetate to form a slurry. After stirring and stirring for 10 hours, it was filtered and dried under vacuum at 40 ° C for 16 hours to obtain 233.5 mg of BMS-790052 trihydrochloride, yield: 81.4%.
  • BMS-790052 free base prepared in Preparation Example 1 was taken, dissolved in 9 mL of ethyl acetate, and 0.61 mL of 6 mol/L hydrochloric acid was added to a solution of BMS-790052 free base in ethyl acetate to form a slurry and stirred. After stirring for 5 hours, it was filtered and dried under vacuum at 40 ° C for 16 hours to yield 427.6 mg of BMS-790052 trihydrochloride, yield 82.8%.
  • Example 71 and 72 had the same or similar HPLC test results (not shown) as the sample of Example 70. DESCRIPTION OF EXAMPLES 71, 72 Samples and Examples The 70 samples were the same.
  • BMS-790052 trihydrochloride prepared in accordance with the present invention 400 mg was taken at room temperature, and 8 ml of isopropanol was added to form a suspension. After stirring for 8 hours, it was filtered, and the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 379.3 mg of BMS-790052 trihydrochloride amorphous material in a yield of 94.8%.
  • the XRPD pattern is shown in Figure 45, and the salt is an amorphous material.
  • the PLM map is shown in Figure 46, which shows: The salt is fine particles, irregular.
  • the TGA spectrum is shown in Figure 47, which shows: about 5.1% slow weight loss before 100 °C, and the decomposition temperature is about 171 °C.
  • the DSC spectrum is shown in Figure 48, which shows: There is a broad endothermic peak before 140 °C.
  • BMS-790052 trihydrochloride prepared by the invention 200 mg was added at room temperature, and 5 ml of acetic acid B was added. The ester forms a suspension. After stirring for 16 hours, it was filtered, and the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 185.4 mg of BMS-790052 trihydrochloride amorphous material in a yield of 92.7%.
  • BMS-790052 trihydrochloride prepared in accordance with the present invention 300 mg was taken at room temperature, and 30 ml of decyl tert-butyl ether was added to form a suspension. After stirring for 48 hours, filtration, the filter cake was dried under vacuum at 40 ° C for 16 hours to obtain 256.4 mg of BMS-790052 trihydrochloride amorphous material, yield 85.5%.
  • Example 74, 75 had the same or similar XRPD patterns, PLM patterns, DSC patterns, and TGA patterns (not shown) as the samples of Example 73. DESCRIPTION OF EXAMPLES 74, 75 Sample and Example 73 The sample was the same material.
  • BMS-790052 free base prepared in Preparation Example 1 500 mg was taken, dissolved in 10 mL of ethyl acetate, and 78 mg of malonic acid solid was added to a solution of BMS-790052 free base in ethyl acetate to form a slurry and stirred, and stirred. After an hour, the filter cake was vacuum dried at 40 ° C for 16 hours to give 483 mg of BMS-790052 malonate.
  • BMS-790052 free base prepared in Preparation Example 1, add 5.6 mL of ethyl acetate to dissolve, add 81.8 mg of 98% sulfuric acid to BMS-790052 free base in ethyl acetate solution, form a slurry and stir, stir for 0.5 hour. After filtration, the filter cake was dried under vacuum at 40 ° C for 16 hours to give 270.5 mg of BMS-790052.
  • Agent API salt nutrient total weight starch cellulose
  • Remarks API is equivalent to BMS-790052 free base, the dosage is 15mg t tablet formula 1 preparation method: Take the prescription amount of API, hydroxypropyl cellulose (K4M), pregelatinized starch, lactose monohydrate, microcrystal The cellulose and magnesium stearate are uniformly mixed and placed in a tableting machine for tableting.
  • Table 4 Tablet Formulation II Take the prescription amount of API, hydroxypropyl cellulose (K4M), pregelatinized starch, lactose monohydrate, microcrystal The cellulose and magnesium stearate are uniformly mixed and placed in a tableting machine for tableting.
  • Agent API BMS-790052 total weight vitamin (E5) cellulose
  • Preparation method of tablet formula 2 Take the prescribed amount of API, hydroxypropyl cellulose (E5),
  • microcrystalline cellulose and magnesium stearate are uniformly mixed and placed in a tableting machine for tableting.
  • Example 82 Stability Test of the Eluate The water was used as the dissolution medium, and the parameters of the dissolution tester were set to a temperature of 37.0 ° C and a rotation speed of 100 rpm.
  • the tablets prepared in Example 81 were each placed in 500 mL of water and dissolved at 1 hour, 6 hours, and 12 hours. Sampling of liquid.
  • the eluate sample was filtered through a 0.45 ⁇ filter, and allowed to stand at room temperature for 24 hours.
  • the tablets of each group were made in parallel, and the stability of the eluate was observed.
  • test results are as follows: The sample solution of tablet 3 (containing known BMS-790052 dihydrochloride crystal form) and tablet 2 (including BMS-790052 sulfate) is cloudy, and the solid HPLC content of the turbid liquid after centrifugation The determination was confirmed as BMS-790052 free base; and tablets 1 and 4-12 (containing BMS-790052 di-p-benzoate monohydrate crystal form of the invention, BMS-790052 dibenzenesulfonate B crystal form, respectively) , BMS-790052 - Citrate Amorph, BMS-790052 - Glycolate Amorph, BMS-790052 Dimandelate Amorph, BMS-790052 Di-chlorobenzenesulfonate C, BMS- 790052 Diethylenedicarboxylate E crystal form, BMS-790052 di- ⁇ -keto-glutarate G crystal form, BMS-790052 di 1,5-naphthalene dicarboxylate Nd crystal form and BMS-790052 2-2 The
  • test results show that: according to the tablet prepared by the known BMS-790052 dihydrochloride salt crystal form, the BMS-790052 di-p-toluenesulfonate monohydrate crystal form, BMS-790052 diphenyl phthalate Form B, BMS-790052-citrate amorphous, BMS-790052-glycolate amorphous, BMS-790052 dimandelate amorphous, BMS-790052 di-chlorobenzoate C crystal , BMS-790052 Diethylenedicarboxylate E crystal form, BMS-790052 di- ⁇ -keto-glutarate G crystal form, BMS-790052 di 1,5-naphthalene disulfonate Nd crystal form and BMS-790052 Tablets prepared from the crystalline form of bis-2-naphthoate Ns have high stability in aqueous solution and are suitable for pharmaceutical preparation applications.
  • the simulated gastric juice was used as the dissolution medium, and the parameters of the dissolution tester were set to a temperature of 37.0 ° C and a rotation speed of 100 rpm.
  • the tablets 1 to 12 prepared in Example 81 were respectively placed in 500 mL of simulated gastric juice for 1 hour and 6 hours. Samples of the eluate were taken at 12 hours.
  • the eluted drug concentration (g/ml) of the eluate sample was determined by HPLC, and the cumulative release of the tablet at the sampling point was calculated based on the theoretical 100% release concentration of BMS-790052 free base in the tablet of 30 g/ml. %), 6 parallel samples were taken for each group of formulated tablets.
  • the cumulative release curve for tablets 1 to 3 is shown in Figure 49.
  • Tablet 3 containing the known BMS-790052 dihydrochloride crystal form
  • tablets 2 including BMS-790052 sulfate
  • the acid salt monohydrate crystal form can achieve a sustained release effect and is suitable for sustained release preparation applications.
  • tablets 4 to 12 were shown in Table 5 by the cumulative release test of tablets 4-12. It is indicated that tablets 4 ⁇ 12 (containing BMS-790052 diphenyl sulphate B crystal form, BMS-790052 citrate amorphous form, BMS-790052-glycolate amorphous form, respectively, BMS-790052 dimandelate amorphous, BMS-790052 di-p-chlorobenzoate C crystal form, BMS-790052 diethylene dicarboxylate E crystal form, BMS-790052 di ⁇ -keto-glutarate G crystal form, BMS-790052 di 1,5-naphthalene dimese acid salt Nd crystal form and BMS-790052 di 2-naphthyl metaxanthate Ns crystal form) can achieve sustained release effect, and are suitable for sustained release preparation applications.
  • tablets 4 ⁇ 12 containing BMS-790052 diphenyl sulphate B crystal form, BMS-790052 citrate amorphous form, BMS-790052-glycol

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicinal Preparation (AREA)

Abstract

提供化合物((IS)-1-(((2S)-2-(5-(4'-(2-((2S)-1-((2S)-2-((甲氧羰基)氨基)-3-甲基丁酰基)-2-吡咯烷基)-1H-咪唑-5-基)-4-联苯基)-1H-咪唑-2-基)-1-吡咯烷基)羰基)-2-甲基丙基)氨基甲酸甲酯的盐及其晶型和无定形物,还提供了所述盐及其晶型和无定形物的制备方法、药物组合物和制药用途。

Description

一种化合物的盐及晶型或无定型物、其制备方法、含有它们的药物组合物和用途
技术领域
本发明属于药物化学技术领域, 具体而言, 涉及丙肝治疗药物
((lS)-l-(((2S)-2-(5-(4,-(2-((2S)-l-((2S)-2- ((曱氧羰基)氨基) -3-曱基丁醜基) -2-吡咯 烷基)- 1 咪唑 -5-基) -4-联苯基)- 1 咪唑 -2-基)- 1 -吡咯烷基)羰基) -2-曱基丙基)氨 基曱酸曱酯的盐及其晶型或无定型物, 本发明还涉及所述化合物盐及其晶型的制 备方法、 其药物组合物和用途。 背景技术
Daclatasvir,又称 BMS-790052,是由百时美施贵宝公司( Bristol-Myers Squibb ) 开发的一种治疗丙肝病毒(HCV )感染的复制抑制剂。 该化合物的化学名称为 (( 1 S)- 1 -(((2S)-2-(5-(4 ' -(2-((2S)- 1 -((2S)-2-((曱氧羰基)氨基) -3-曱基丁酰基) -2-吡咯 烷基) 咪唑 -5-基) -4-联苯基 咪唑 -2-基)小吡咯烷基)羰基) -2-曱基丙基)氨 基曱酸曱酯, 化学结构式如下所示:
Figure imgf000002_0001
BMS-790052用化学遗传学方法确定为一种强效特异性 HCV抑制因子, 是没 有已知酶活性的第三种病毒分子 (即非结构性蛋白 5A, 筒称为 "NS5A" ) 的一个 小分子抑制因子。 百时美施贵宝公司的研究人员报告了该药的发现及其病毒特征, 并公布了用这一化合物在正常的健康志愿者和 HCV感染者中所进行的临床试验 观察结果。 体外试验数据表明该药与已知的 HCV抑制药物之间有协同作用效果。 在 I期临床试验中, HCV感染者服用单一剂量 100毫克该化合物后, 24小时平均病 毒载量下降 3.31ogl0, 在 2例 HCV基因 lb型感染者中, 这种作用维持了 120小时。 所以该药有望成为强效抑制 HC V复制的新的联合用药。 它们的合成方法, 并公开了 BMS-790052二盐酸盐的晶型数据、 DSC图、 固态核 磁共振光图谱和其药物组合物的相关信息。
本发明人重复该文献提供的方法, 制备得到了该文献的 BMS-790052二盐酸 盐。 该盐的水中溶解度大于 200毫克 /毫升, 但其水溶液在室温下放置 24小时, 出 现固体析出, 溶液变浑浊的现象, 经 HPLC 含量检测, 析出固体为 BMS-790052 游离碱, 鉴于该现象, BMS-790052二盐酸盐不适合制备緩释制剂。
因此, 本领域仍需要开发能延长药效且适于緩释制剂应用的新的 BMS-790052盐及其形态, 例如晶型或无定型物, 以保证该药在患者体内能够长 时间对病毒发挥抑制作用, 减少用药次数和提高患者的临床疗效。 发明内容
针对现有技术的不足, 本发明的目的是提供具有有利的緩释效果和更好的水 溶液稳定性、 适合緩释制剂应用的固态 BMS-790052盐及其晶型或无定型物, 其 中包括 BMS-790052的二对曱苯磺酸盐、二苯磺酸盐、一柠檬酸盐、一乙醇酸盐、 二扁桃酸盐、 二对氯苯磺酸盐、 二乙二磺酸盐、 二 α-酮 -戊二酸盐、 二 1,5-萘二磺 酸盐和二 2-萘磺酸盐。
本发明的内容之一是提供固态的 BMS-790052二对曱苯磺酸盐及其晶型, 以 及它们的制备方法。
所述 BMS-790052二对曱苯磺酸盐, 是 BMS-790052和对曱苯磺酸以摩尔比约 为 1 :2形成的
Figure imgf000003_0001
所述 BMS-790052二对曱苯磺酸盐的制备方法, 包括以下步骤: 形成 BMS-790052在可溶溶剂中的溶液, 加入对曱苯磺酸固体, BMS-790052与对曱苯 磺酸的摩尔用量比为 1:2~1 :3 , 混合形成浆液并搅拌, 进而分离固体, 得到所述 BMS-790052二对曱苯磺酸盐。
优选地, 所述可溶溶剂选自酮、 醇或其混合物, 优选为 C3~C4酮、 d~C4醇 或其混合物, 更优选为丙酮、 异丙醇或其混合物。
优选地, 所述制备方法在室温下进行。
优选地, 所述搅拌的时间为 8~16小时。
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 25~50毫克 /毫升。
优选地, 所述 BMS-790052与对曱苯磺酸的摩尔用量比为 1:2~1 :2.2。 经 HPLC测定, 所述 BMS-790052二对曱苯礒酸盐中 BMS-790052游离碱的 实际含量为 67.6%, 理论含量为 68.3%。 表明所述 BMS-790052二对曱苯礒酸盐 中 BMS-790052游离碱与对曱苯礒酸以摩尔比约为 1 :2成盐。
优选地, 所述 BMS-790052二对曱苯礒酸盐为 BMS-790052二对曱苯礒酸盐一 水合物晶型,其 X-射线粉末衍射图谱在衍射角 2Θ为 5.1士 0.2。、 6.3±0.2。、 13.4士 0.2。、 14.6±0.2。、 15.4±0.2。和 21.1±0.2。处具有特征峰。
进一步地, 所述 BMS-790052二对曱苯橫酸盐一水合物晶型, 其 X射线粉末衍 射图谱在衍射角 2Θ为 5.1士 0.2。、6.3士 0.2。、 10.2士 0.2。、 10.7士 0.2。、 13.4士 0.2。、 13.7士 0.2。、 14.6士 0.2。、 15.4士 0.2。、 18.3士 0.2。、 19.2士 0.2。、 19.9士 0.2。和 21.1士 0.2。处具有特征峰。
更进一步地, 所述 BMS-790052二对曱苯礒酸盐一水合物晶型, 其 X射线粉末 衍射图谱在以下衍射角 2Θ处具有特征峰及其相对强度:
衍射角 2Θ 相对强度 I (%)
5· 1±0·2° 43.1
6·3±0·2° 30.0
10.2士 0.2° 16.2
10.7士 0.2° 11.4
13.4士 0.2° 22.9
13.7士 0.2° 15.5
14.6士 0.2° 30.4
15.4士 0.2° 19.5
18·3±0·2° 12.9
19.2士 0.2° 12.3
19.9士 0.2° 13.2
21.1士 0.2ο 100.0
非限制性地, 所述 BMS-790052二对曱苯礒酸盐一水合物晶型的一个典型实 例具有如图 5所示的 X-射线粉末衍射 (XRPD)图谱。
所述 BMS-790052二对曱苯橫酸盐一水合物晶型的 TGA图谱显示: 120°C之 前有约 2.0%台阶失重,与含一个水分子失重比例(1.6%)相当,分解温度约为 236°C。
所述 BMS-790052二对曱苯橫酸盐一水合物晶型 DSC图谱显示: 80°C之前 有一宽吸热峰, 80~150°C之间的吸热峰为脱去结合的水分子。
所述 BMS-790052二对曱苯礒酸盐一水合物晶型的制备方法, 包括以下步骤: 将根据前述制备方法得到的 BMS-790052二对曱苯橫酸盐在溶剂中形成悬浮液, 搅拌析晶, 进而分离晶体, 室温至 40°C真空干燥, 得到所述 BMS-790052二对曱 苯礒酸盐一水合物晶型, 其中所述溶剂选自水、 含 1%水的酮 (V/V)、 水饱和的 酯、 水饱和的醚或其混合物。
优选地, 所述酮为 C3~C4酮, 优选为丙酮; 所述酯为 C3~C5酯, 优选为乙酸乙 酯; 所述醚为 c4~c6醚, 优选为曱基叔丁基醚。
优选地, 所述 BMS-790052二对曱苯磺酸盐一水合物晶型的制备方法在室温 下进行。
优选地, 所述析晶的时间为 24~72小时, 优选为 24~48小时。
优选地, 所述干燥时间为 8~24小时, 优选为 8~16小时。
优选地,所述 BMS-790052二对曱苯磺酸盐与溶剂的质量体积比为 10~16 mg: 1 mL„
所述水饱和的酯(或醚)溶剂制备方法为: 取等体积的水和酯(或醚)溶剂 混合后, 剧烈搅拌 10分钟, 静置分层, 取有机层即为水饱和的酯(或醚)溶剂。
与已知的 BMS-790052二盐酸盐及其晶型比较, 本发明的 BMS-790052二对曱 苯磺酸盐及其一水合物晶型具有好的緩释效果和好的水溶液稳定性、适合緩释制 剂应用, 其制备方法工艺简便, 在室温条件下进行常规操作, 有利于产品的工业 化。 特别是緩释效果和水溶液稳定性, 可以避免活性物质以固态形式存在而造成 吸收不稳定以及生物利用度低的风险。
本发明的内容之二是提供固态的 BMS-790052二苯磺酸盐及其晶型, 以及它 们的制备方法。
所述 BMS-790052二苯磺酸盐,是 BMS-790052和苯磺酸以摩尔比约为 1 :2形成 的化合 其结构式如下所示:
Figure imgf000005_0001
所述 BMS-790052二苯磺酸盐的制备方法, 包括以下步骤: 形成 BMS-790052 在可溶溶剂中的溶液, 加入苯磺酸固体, BMS-790052与苯磺酸的摩尔用量比为 1 :2-1 :3 ,混合形成浆液并搅拌,进而分离固体,得到所述 BMS-790052二苯磺酸盐。
优选地, 所述可溶溶剂选自酮、 醇或其混合物, 优选为 C3~C4酮、 (^~( 4醇或 其混合物, 更优选为丙酮、 异丙醇或其混合物。
优选地, 所述制备方法在室温下进行。
优选地, 所述搅拌的时间为 8~16小时。
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 25~50 毫克 /毫升。
优选地, 所述 BMS-790052与苯磺酸的摩尔用量比为 1 :2~1 :2.2。 经 HPLC测定, BMS-790052二苯橫酸盐中 BMS-790052游离碱的实际含量 为 70.3%,理论含量为 70.1%。表明所述 BMS-790052二苯橫酸盐中 BMS-790052 游离碱与苯橫酸以摩尔比约为 1:2成盐。
优选地,所述 BMS-790052二苯礒酸盐为 BMS-790052二苯礒酸盐 B晶型,其 X 射线粉末衍射图谱在衍射角 2Θ为 6.7士 0.2。、9.7士 0.2。、 15.0士 0.2。、 17.8士 0.2。、 18.3士 0.2。 和 22.1±0.2。处具有特征峰。
进一步地, 所述 BMS-790052二苯橫酸盐 B晶型, 其 X射线粉末衍射图谱在衍 射角 2Θ为 6.7士 0.2。、 7.2士 0.2。、 9.0士 0.2。、 9.7士 0.2。、 10.0士 0.2。、 13.7士 0.2。、 15.0士 0.2。、 16.6士 0.2。、 17.8士 0.2。、 18.3士 0.2。、 21.3士 0.2。和 22.1士 0.2。处具有特征峰。
更进一步地, 所述 BMS-790052二苯磺酸盐 B晶型, 其 X射线粉末衍射图谱在 以下衍射角 2Θ处具有特征峰及其相对强度:
衍射角 2Θ 相对强度 1 (%)
5.3士 0.2° 14.5
6.7士 0.2° 34.5
7.2士 0.2° 20.0
9.0士 0.2° 17.3
9.7士 0.2° 42.0
10.0士 0.2° 20.8
11.4士 0.2° 18.0
13.7士 0.2。 29.5
15.0士 0.2° 39.5
16.6士 0.2。 19.0
17.3士 0.2° 15.5
17.8士 0.2° 100
18.3士 0.2° 44.5
20.4士 0.2。 14.3
20.8士 0.2° 15.5
21.3士 0.2° 19.0
22.1士 0.2。 49.8
23.3士 0.2° 20.5
24.2士 0.2° 15.3
25.6士 0.2。 13.0
26.9士 0.2。 11.5
非限制性地, 所述 BMS-790052二苯礒酸盐 B晶型的一个典型实例具有如图 9 所示的 X-射线粉末衍射 (XRPD)图谱。
所述 BMS-790052二苯礒酸盐 B晶型的制备方法, 包括以下步骤: 将根据前述 制备方法得到的 BMS-790052二苯礒酸盐在水中形成悬浮液, 搅拌析晶, 得到所 述 BMS-790052二苯磺酸盐 B晶型。
优选地, 所述 BMS-790052二苯磺酸盐 B晶型的制备方法在室温下进行。
优选地, 所述析晶的时间为 10~24小时。
优选地,所述 BMS-790052二苯磺酸盐与水的质量体积比为 15~30 mg: 1 mL。 与已知的 BMS-790052二盐酸盐及其晶型比较, 本发明的 BMS-790052二苯磺 酸盐及其 B晶型具有好的緩释效果和好的水溶液稳定性、 适合緩释制剂应用, 其 制备方法工艺筒便, 在室温条件下进行常规操作, 有利于产品的工业化。 特别是 緩释效果和水溶液稳定性, 可以避免活性物质以固态形式存在而造成吸收不稳定 以及生物利用度低的风险。
本发明的内容之三是提供固态的 BMS-790052—柠檬酸盐及其无定型物, 以 及它们的制备方法。
所述 BMS-790052—柠檬酸盐,是 BMS-790052和柠檬酸以摩尔比约为 1: 1形成 的化合物,
Figure imgf000007_0001
所述 BMS-790052—柠檬酸盐的制备方法, 包括以下步骤: 形成 BMS-790052在 可溶溶剂中的溶液, 加入柠檬酸固体, BMS-790052与柠檬酸的摩尔用量比为 1: 1-1 :1.5,混合形成浆液并搅拌,进而分离固体,得到所述 BMS-790052—种檬酸盐。
优选地, 所述可溶溶剂为酮, 优选为 c3~c4酮, 更优选为丙酮。
优选地, 所述制备方法在室温下进行。
优选地, 所述搅拌的时间为 8~16小时。
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50毫克 /毫升。
优选地, 所述 BMS-790052与柠檬酸的摩尔用量比为 1 : 1~1 : 1.1。
经 HPLC测定, 所述 BMS-790052—柠檬酸盐中 BMS-790052游离碱的实际 含量为 83.7% , 理论含量为 79.4%。 表明所述 BMS-790052 —柠檬酸盐中
BMS-790052游离碱与柠檬酸以摩尔比约为 1 : 1成盐。
优选地, 所述 BMS-790052—柠檬酸盐为 BMS-790052—柠檬酸盐无定型物。 进一步地, 所述 BMS-790052—柠檬酸盐无定型物, 其特征在于, 其 X射线粉 末衍射图谱基本上如图 13所示, 显示无特征峰。
所述 BMS-790052—柠檬酸盐无定型物的制备方法, 包括以下步骤: 根据前 述制备方法得到的 BMS-790052—柠檬酸盐在溶剂中形成悬浮液, 搅拌, 析出固 体, 得到所述 BMS-790052—柠檬酸盐无定型物, 其中所述溶剂选自酮、 酯、 醚 或其混合物。
优选地, 所述酮为 C3~ C4酮, 优选为丙酮; 所述酯为 C3~ C5酯, 优选为乙 酸乙酯; 所述醚为 C4~ C6醚, 优选为曱基叔丁基醚。
优选地, 所述 BMS-790052—柠檬酸盐无定型物的制备方法在室温下进行。 优选地, 所述搅拌的时间为 24~72小时, 优选为 24~48小时。
优选地,所述 BMS-790052—柠檬酸盐与溶剂的质量体积比为 10~50 mg: 1 mL。 与已知的 BMS-790052二盐酸盐及其晶型比较, 本发明的 BMS-790052—柠檬 酸盐及其无定型物具有好的緩释效果和好的水溶液稳定性、 适合緩释制剂应用, 其制备方法工艺筒便, 在室温条件下进行常规操作, 有利于产品的工业化。 特别 是緩释效果和水溶液稳定性, 可以避免活性物质以固态形式存在而造成吸收不稳 定以及生物利用度低的风险。
本发明的内容之四是提供固态的 BMS-790052—乙醇酸盐及其无定型物, 以 及它们的制备方法。
所述 BMS-790052—乙醇酸盐,是 BMS-790052和乙醇酸以摩尔比约为 1 : 1形成 的化合物,
Figure imgf000008_0001
所述 BMS-790052—乙醇酸益的制备方法, 包括以下步骤: 形成 BMS-790052在 可溶溶剂中的溶液, 加入乙醇酸固体, BMS-790052与乙醇酸的摩尔用量比为 1: 1-1 :1.5,混合形成浆液并搅拌,进而分离固体,得到所述 BMS-790052—乙醇酸盐。
优选地, 所述可溶溶剂为酯, 优选为 c3~c5酯, 更优选为乙酸乙酯。
优选地, 所述制备方法在室温下进行。
优选地, 所述搅拌的时间为 8~16小时。
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50 mg/mL。
优选地, 所述 BMS-790052与乙醇酸的摩尔用量比为 1 : 1~1 : 1.1。 经 HPLC测定, 所述 BMS-790052—乙醇酸盐中 BMS-790052游离碱的实际 含量为 88.4% , 理论含量为 90.7%。 表明所述 BMS-790052 —乙醇酸盐中 BMS-790052游离碱与乙醇酸以摩尔比约为 1 : 1 成盐。
优选地, 所述 BMS-790052—乙醇酸盐为 BMS-790052—乙醇酸盐无定型物。 进一步地, 所述 BMS-790052—乙醇酸盐无定型物, 其特征在于, 其 X-射线 粉末衍射图谱基本上如图 17所示, 显示无特征峰。
所述 BMS-790052—乙醇酸益无定型物, 其制备方法包括以下步骤: 根据前述 制备方法得到的 BMS-790052—乙醇酸盐在溶剂中形成悬浮液, 搅拌, 析出固体, 得到所述 BMS-790052—乙醇酸益无定型物, 其中所述溶剂选自水、 醚或烷烃。
优选地,所述醚为 C4~C6醚,优选为曱基叔丁基醚;所述烷烃为 C6~ C7烷烃, 优选为正庚烷。
优选地, 所述 BMS-790052—乙醇酸盐无定型物的制备方法在室温下进行。 优选地, 所述搅拌的时间为 8~48小时, 优选为 8~16小时。
优选地,所述 BMS-790052—乙醇酸盐与溶剂的质量体积比为 10~50 mg: 1 mL。 与已知的 BMS-790052二盐酸盐及其晶型比较, 本发明的 BMS-790052—乙醇 酸盐及其无定型物具有好的緩释效果和好的水溶液稳定性、 适合緩释制剂应用, 其制备方法工艺筒便, 在室温条件下进行常规操作, 有利于产品的工业化。 特别 是緩释效果和水溶液稳定性, 可以避免活性物质以固态形式存在而造成吸收不稳 定以及生物利用度低的风险。
本发明的内容之五是提供固态的 BMS-790052二扁桃酸盐及其无定型物, 以 及它们的制备方法。
所述 BMS-790052二扁桃酸盐,是 BMS-790052和扁桃酸以摩尔比约为 1 :2形成 的化合物, 其结构
Figure imgf000009_0001
所述 BMS-790052二扁 酸盐的制备方法, 包括以下步骤: 形成 BMS-790052 在可溶溶剂中的溶液, 加入扁桃酸固体, BMS-790052与扁桃酸的摩尔用量比为 1 :2-1 :3 ,混合形成浆液并搅拌,进而分离固体,得到所述 BMS-790052二扁桃酸盐。
优选地, 所述可溶溶剂为酯, 优选为 c3~c5酯, 更优选为乙酸乙酯。 优选地, 所述制备方法在室温下进行。
优选地, 所述搅拌的时间为 10~24小时, 优选为 10~16小时。
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50毫克 /毫升。
优选地, 所述 BMS-790052与扁桃酸的摩尔用量比为 1 :2~1 :2.2。
经 HPLC测定, 所述 BMS-790052二扁桃酸盐中 BMS-790052游离碱的实际 含量为 67.7% , 理论含量为 70.9%。 表明所述 BMS-790052 二扁桃酸盐中
BMS-790052游离碱与扁桃酸以摩尔比约为 1 :2成盐。
优选地, 所述 BMS-790052二扁桃酸盐为 BMS-790052二扁桃酸盐无定型物。 进一步地, 所述 BMS-790052二扁桃酸盐无定型物, 其 X射线粉末衍射图谱基 本上如图 21所示, 显示无特征峰。
所述 BMS-790052二 桃酸益无定型物, 其制备方法包括以下步骤: 根据前述 制备方法得到的 BMS-790052二扁桃酸盐在溶剂中形成悬浮液, 搅拌, 析出固体, 得到所述 BMS-790052二 桃酸益无定型物, 其中所述溶剂选自酮、 醚或烷烃。
优选地, 所述酮为 C3~C4酮, 优选为丙酮; 所述醚为 C4~C6醚, 优选为曱基 叔丁基醚; 所述烷烃为 C6~ C7烷烃, 优选为正庚烷。
优选地, 所述 BMS-790052二扁桃酸盐无定型物的制备方法在室温下进行。 优选地, 所述搅拌的时间为 10~48小时, 优选为 10~16小时。
优选地,所述 BMS-790052二扁桃酸盐与溶剂的质量体积比为 10~50 mg: 1 mL。 与已知的 BMS-790052二盐酸盐及其晶型比较, 本发明的 BMS-790052二扁桃 酸盐及其无定型物具有好的緩释效果和好的水溶液稳定性、 适合緩释制剂应用, 其制备方法工艺筒便, 在室温条件下进行常规操作, 有利于产品的工业化。 特别 是緩释效果和水溶液稳定性, 可以避免活性物质以固态形式存在而造成吸收不稳 定以及生物利用度低的风险。
本发明的内容之六是提供固态的 BMS-790052二对氯苯磺酸盐及其晶型, 以 及它们的制备方法。
所述 BMS-790052二对氯苯磺酸盐, 是 BMS-790052和对氯苯磺酸以摩尔比约 为 1 :2形成的化合物, 其结构式如下所示:
Figure imgf000010_0001
所述 BMS-790052二对氯苯礒酸盐的制备方法, 包括以下步骤: 形成 BMS-790052在可溶溶剂中的溶液, 加入对氯苯礒酸固体, BMS-790052与对氯苯 磺酸的摩尔用量比为 1 :2~1 :3 , 混合形成浆液并搅拌, 进而分离固体, 得到所述 BMS-790052二对氯苯礒酸盐。
优选地, 所述可溶溶剂为醇, 优选为 d~C4醇, 更优选为乙醇。
优选地, 所述制备方法在室温下进行。
优选地, 所述搅拌的时间为 10~24小时, 优选搅拌 10~16小时。
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50 毫克 /毫升。
优选地, 所述 BMS-790052与对氯苯礒酸的摩尔用量比为 1:2~1 :2.2。
经 HPLC测定, 所述 BMS-790052二对氯苯礒酸盐中 BMS-790052游离碱的 实际含量为 63.8%, 理论含量为 65.8%。 表明所述 BMS-790052二对氯苯礒酸盐 中 BMS-790052游离碱与对氯苯礒酸以摩尔比约为 1 :2成盐。
优选地, 所述 BMS-790052二对氯苯礒酸盐为 BMS-790052二对氯苯礒酸盐 C 晶型, 其 X-射线粉末衍射图谱在衍射角 2Θ为 3.5±0.2。、 7.2±0.2。、 10.1±0.2。、
19.2士 0.2。、 19.7士 0.2。和 20. 8士 0.2。处具有特征峰。
进一步地, 所述 BMS-790052二对氯苯礒酸盐 C晶型, 其 X-射线粉末衍射图谱 在衍射角 2Θ为 3.5士 0.2。、 7.2士 0.2。、 10.1士 0.2。、 10.7士 0.2。、 19.2士 0.2。、 19.7士 0.2。、
20.8±0.2。和 21.4±0.2。处具有特征峰。
更进一步地, 所述 BMS-790052二对氯苯礒酸盐 C晶型, 其 X-射线粉末衍射图 谱在以下衍射角 2Θ处具有特征峰及其相对强度:
衍射角 2Θ 相对强度 1 (%)
3·5±0·2° 44.2
7.2士 0.2° 100.0
10.1士 0.2。 12.7
10.7士 0.2。 10.1
19.2士 0.2。 16.0
19.7士 0.2。 13.1
20.8士 0.2。 34.0
21.4±0.2Q 14.2
非限制性地,所述 BMS-790052二对氯苯礒酸盐 C晶型的一个典型实例具有如 图 25所示的 X-射线粉末衍射 (XRPD)图谱。
所述 BMS-790052二对氯苯礒酸盐 C晶型的制备方法, 包括以下步骤: 将根据 前述制备方法得到的 BMS-790052二对氯苯礒酸盐在溶剂中形成悬浮液, 搅拌析 晶, 得到所述 BMS-790052二对氯苯礒酸盐 C晶型, 其中所述溶剂选自水、 醚、 醇 或其混合物。 优选地, 所述醇为 d~C3醇, 优选为乙醇; 所述醚为 c4~c6醚, 优选为曱基叔 丁基醚。
优选地, 所述 BMS-790052二对氯苯磺酸盐 C晶型的制备方法在室温下进行。 优选地, 所述析晶的时间为 10~24小时, 优选为 10~16小时。
优选地, 所述 BMS-7900522二对氯苯磺酸盐与溶剂的质量体积比为 10~30mg:lmL, 优选为 20~30mg: lmL。
与已知的 BMS-790052二盐酸盐及其晶型比较, 本发明的 BMS-790052二对氯 苯磺酸盐及其 C晶型具有好的緩释效果和好的水溶液稳定性、适合緩释制剂应用, 其制备方法工艺筒便, 在室温条件下进行常规操作, 有利于产品的工业化。 特别 是緩释效果和水溶液稳定性, 可以避免活性物质以固态形式存在而造成吸收不稳 定以及生物利用度低的风险。
本发明的内容之七是提供固态的 BMS-790052二乙二磺酸盐及其晶型, 以及 它们的制备方法。
所述 BMS-790052二乙二磺酸盐,是 BMS-790052和乙二磺酸以摩尔比约为 1 :2 形成的化合 其结构式如下所示:
Figure imgf000012_0001
所述 BMS-790052二乙二磺酸盐的制备方法, 包括以下步骤: 形成 BMS-790052在可溶溶剂中的溶液, 加入乙二磺酸固体, BMS-790052与乙二磺酸 的摩尔用量比为 1:2~1:3 , 混合形成浆液并搅拌, 进而分离固体, 得到所述 BMS-790052二乙二磺酸盐。
优选地, 所述可溶溶剂为酮, 优选为 C3~ C4酮, 更优选为丙酮。
优选地, 所述制备方法在室温下进行。
优选地, 所述搅拌的时间为 10~24小时, 优选为 10~16小时。
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50 毫克 /毫升。
优选地, 所述 BMS-790052与乙二磺酸的摩尔用量比为 1:2~1:2.2。
经 HPLC测定, 所述 BMS-790052二乙二磺酸盐中 BMS-790052游离碱的实 际含量为 66.9%, 理论含量为 66.1%。 表明所述 BMS-790052 二乙二磺酸盐中 BMS-790052游离碱与乙二磺酸以摩尔比约为 1:2成盐。 优选地, 所述 BMS-790052二乙二礒酸盐为 BMS-790052二乙二礒酸盐 E晶型, 其 X-射线粉末衍射图谱在衍射角 2Θ为 10.3士 0.2。、 11.4士 0.2。、 12.8士 0.2。、 15.3±0.2。、 20.6±0.2。和 22.9±0.2。处具有特征峰。
进一步地, 所述 BMS-790052二乙二橫酸盐 E晶型, 其 X射线粉末衍射图谱在 衍射角 2Θ为 6.4士 0.2。、9.8士 0.2。、 10·3±0·2ο、 11.4士 0·2ο、 12.8士 0·2ο、 15.3士 0·2ο、 16.1士 0·2ο、 17.0士 0.2ο、 19.1士 0.2ο、 19.6士 0.2ο、 20.6士 0.2。和 22.9±0.2ο处具有特征峰。
更进一步地, 所述 BMS-790052二乙二橫酸盐 Ε晶型, 其 X-射线粉末衍射图谱 在以下衍射角 2Θ处具有特征峰及其相对强度:
衍射角 2Θ 相对强度 I (%)
6.4士 0.2° 13.7
9.8士 0.2° 19.3
10.3士 0.2° 70.8
11.4士 0.2。 100.0
12.8士 0.2° 35.3
13.1士 0.2° 13.7
15.3士 0.2° 30.9
16.1士 0.2° 19.6
17.0士 0.2。 18.7
17.3士 0.2° 10.4
19.1士 0.2° 18.2
19.6士 0.2° 27.2
20.6士 0.2。 97.7
21.3士 0.2° 19.5
22.9士 0.2。 39.5
23.8士 0.2° 15.1
24·7±0·2° 24.3
25.3士 0.2° 15.3
26.1士 0.2° 17.6
非限制性地,所述 BMS-790052二乙二礒酸盐 Ε晶型的一个典型实例具有如图 29所示的 X-射线粉末衍射 (XRPD)图谱。
所述 BMS-790052二乙二礒酸盐 Ε晶型的制备方法, 包括以下步骤: 将根据前 述制备方法得到的 BMS-790052二乙二磺酸盐在溶剂中形成悬浮液, 搅拌析晶, 得到所述 BMS-790052二乙二礒酸盐 E晶型, 其中所述溶剂选自水、 酯、 酮、 醚或 其混合物。
优选地, 所述酯为 C3~C5酯, 优选为乙酸乙酯; 所述酮为 C3~C4酮, 优选为丙 酮; 所述醚为 C4~C6醚, 优选为曱基叔丁基醚。 优选地, 所述 BMS-790052二乙二磺酸盐 E晶型的制备方法在室温下进行。 优选地, 所述析晶的时间为 5~24小时, 优选为 5~10小时。
优选地, 所述 BMS-7900522二乙二磺酸盐与溶剂的质量体积比为
10~30mg:lmL , 优选为 20~30mg: lmL。
与已知的 BMS-790052二盐酸盐及其晶型比较, 本发明的 BMS-790052二乙二 磺酸盐及其 E晶型具有好的緩释效果和好的水溶液稳定性、 适合緩释制剂应用, 其制备方法工艺筒便, 在室温条件下进行常规操作, 有利于产品的工业化。 特别 是緩释效果和水溶液稳定性, 可以避免活性物质以固态形式存在而造成吸收不稳 定以及生物利用度低的风险。
本发明的内容之八是提供固态的 BMS-790052二 α-酮 -戊二酸盐及其晶型, 以 及它们的制备方法。
所述 BMS-790052二 α-酮-戊二酸盐,是 BMS-790052和 α-酮 -戊二酸以摩尔比约 为 1:2形成的
Figure imgf000014_0001
所述的 BMS-790052二 α-酮-戊二酸盐的制备方法, 包括以下步骤: 形成 BMS-790052在可溶溶剂中的溶液, 加入 α-酮-戊二酸固体, BMS-790052与 α-酮- 戊二酸的摩尔用量比为 1:2~1:3 , 混合形成浆液并搅拌, 进而分离固体, 得到所述 BMS-790052二 α-酮-戊二酸盐。
优选地, 所述可溶溶剂为酯, 优选为 C4~ C5酯, 更优选为乙酸乙酯。
优选地, 所述制备方法在室温下进行。
优选地, 所述搅拌的时间为 10~24小时, 优选为 10~16小时。
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50 毫克 /毫升。
优选地, 所述 BMS-790052与 α-酮-戊二酸的摩尔用量比为 1:2~1 :2.2。
经 HPLC测定, 所述 BMS-790052二 α-酮 -戊二酸盐中 BMS-790052游离碱 的实际含量为 68.9%, 理论含量为 71.7%。 表明所述 BMS-790052二 α-酮-戊二酸 盐中 BMS-790052游离碱与 α-酮-戊二酸以摩尔比约为 1:2成盐。
优选地, 所述 BMS-790052二 α-酮 -戊二酸盐为 BMS-790052二 α-酮-戊二酸盐 G 晶型,其 X-射线粉末衍射图谱在衍射角 2Θ为 8.4士 0.2°、9.4士 0.2°、 11.2士 0.2°、 14.0士 0.2°、 14.7士 0.2。和 19.1士 0.2。处具有特征峰。
进一步地, 所述 BMS-790052二 α-酮-戊二酸盐 G晶型, 其 X-射线粉末衍射图 谱在衍射角 2Θ为 8.4士 0.2。、 9.4士 0·2ο、 11.2士 0.2。、 12.0士 0.2。、 14.0士 0.2°、 14.7士 0.2。、 17.7士 0.2。、 18.3士 0·2ο、 19.1士 0·2ο、 19.5士 0·2ο、 20.8士 0.2。和 22.0士 0.2。处具有特征峰。
更进一步地, 所述 BMS-790052二 α-酮-戊二酸盐 G晶型, 其 X射线粉末衍射图 谱在以下衍射角 2Θ处具有特征峰及其相对强度:
衍射角 2Θ 相对强度 1 (%)
4.4士 0.2。 13.0
8.4士 0.2° 100.0
9.4士 0.2° 37.2
11.2士 0.2。 37.4
12.0士 0.2。 20.1
14.0士 0.2° 36.2
14.7士 0.2。 30.8
16.7士 0.2° 14.4
17.7士 0.2° 25.6
18.3士 0.2。 15.9
18.7士 0.2° 17.1
19.1士 0.2° 29.1
19.5士 0.2° 20.6
20.3士 0.2° 21.1
20.8士 0.2° 25.6
22.0士 0.2。 18.0
23.0士 0.2。 24.2
23.6士 0.2。 10.6
24.5士 0.2。 14.7
非限制性地, 所述 BMS-790052二 α-酮-戊二酸盐 G晶型的一个典型实例具有 如图 33 所示的 X-射线粉末衍射 (XRPD)图谱。
所述 BMS-790052二 α-酮-戊二酸盐 G晶型的制备方法, 包括以下步骤: 将根 据前述制备方法得到的 BMS-790052二 α-酮-戊二酸盐在酮或酯中形成悬浮液, 搅 拌析晶, 得到所述 BMS-790052二 α-酮-戊二酸盐 G晶型。
优选地,所述酮为 C3~C4酮,优选为丙酮;所述酯为 C4~C6酯,优选为乙酸乙酯。 优选地, 所述 BMS-790052二 α-酮-戊二酸盐 G晶型的制备方法在室温下进行。 优选地, 所述析晶的时间为 24~72小时, 优选为 24~48 、时。
优选地, 所述 BMS-7900522二 α-酮-戊二酸盐的与溶剂的质量体积比为
10~30mg: lmL , 优选为 20~30mg: lmL。 与已知的 BMS-790052二盐酸盐及其晶型比较,本发明的 BMS-790052二 α-酮- 戊二酸盐及其 G晶型具有好的緩释效果和好的水溶液稳定性、适合緩释制剂应用, 其制备方法工艺筒便, 在室温条件下进行常规操作, 有利于产品的工业化。 特别 是緩释效果和水溶液稳定性, 可以避免活性物质以固态形式存在而造成吸收不稳 定以及生物利用度低的风险。
本发明的内容之九是提供固态的 BMS-790052二 1,5-萘二磺酸盐及其晶型, 以 及它们的制备方法。
所述 BMS-790052二 1,5-萘二磺酸盐,是 BMS-790052和 1,5-萘二磺酸以摩尔比 约为 1 :2形成
Figure imgf000016_0001
所述 BMS-790052二 1,5-萘二磺酸盐的制备方法, 包括以下步骤: 形成 BMS-790052在可溶溶剂中的溶液,加入 1,5-萘二磺酸四水合物固体, BMS-790052 与 1,5-萘二磺酸四水合物的摩尔用量比为 1 :2~1 :3 , 混合形成浆液并搅拌, 进而分 离固体, 得到所述 BMS-790052二 1,5-萘二磺酸盐。
优选地, 所述可溶溶剂为醇, 优选为 d~ C3醇, 更优选为异丙醇。
优选地, 所述制备方法在室温下进行。
优选地, 所述搅拌的时间为 10~24小时, 优选为 10~16小时。
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50毫克 /毫升。
优选地, 所述 BMS-790052与 1 ,5-萘二磺酸四水合物的摩尔用量比为 1 :2-1 :2.2。 经 HPLC测定, 所述 BMS-790052二 1,5-萘二磺酸盐中 BMS-790052游离碱 的实际含量为 57.9%, 理论含量为 56.2%。 表明所述 BMS-790052二 1,5-萘二磺 酸盐中 BMS-790052游离碱与 1,5-萘二磺酸以摩尔比约为 1 :2成盐。
优选地,所述 BMS-790052二 1 ,5-萘二磺酸盐为 BMS-790052二 1 ,5-萘二磺酸盐 Nd晶型, 其 X-射线粉末衍射图谱在衍射角 2Θ为 4.7±0.2。、 10.7±0.2。、 10.9±0.2。、 18.9±0.2。、 19.2±0.2。和 21.6±0.2。处具有特征峰。
进一步地, 所述 BMS-790052二 1,5-萘二磺酸盐 Nd晶型, 其 X射线粉末衍射图 谱在衍射角 2Θ为 4.7士 0.2。、 10.7士 0.2。、 10.9士 0.2。、 13.6士 0.2。、 15.7士 0.2。、 17.2士 0.2。、 18.9士 0.2。、 19.2士 0.2。、 20.1士 0.2。、 21.6士 0.2。、 22.0士 0.2。和 23.7士 0.2。处具有特征峰。 更进一步地,所述 BMS-790052二 1,5-萘二磺酸盐 Nd晶型,其 X-射线粉末衍射 图谱在以下衍射角 2Θ处具有特征峰及其相对强度:
衍射角 2Θ 相对强度 1 (%)
4.7士 0.2。 100.0
10.7士 0.2。 56.5
10.9士 0.2。 30.7
13.6士 0.2。 14.8
15.7士 0.2° 10.5
16.4士 0.2。 10.6
17.2士 0.2° 12.8
18.9士 0.2。 28.2
19.2士 0.2° 32.3
20.1士 0.2° 16.3
21.6士 0.2。 47.0
22.0士 0.2。 18.3
23.7士 0.2。 25.5
24.3士 0.2° 18.6
非限制性地,所述 BMS-790052二 1 ,5-萘二礒酸盐 Nd晶型的一个典型实例具有 如图 37 所示的 X-射线粉末衍射 (XRPD)图谱。
所述 BMS-790052二 1,5-萘二礒酸益 Nd晶型的制备方法, 包括以下步骤: 将根据前述制备方法得到的 BMS-790052二 1,5-萘二磺酸盐在醇或酮中形成悬浮 液, 搅拌析晶, 得到所述 BMS-790052二 1,5-萘二礒酸盐 Nd晶型。
优选地, 所述醇为 d~C3醇, 优选为乙醇或异丙醇; 所述酮为 C3~C4酮, 优 选为丙酮。
优选地, 所述 BMS-790052二 1,5-萘二礒酸益 Nd晶型的制备方法在室温下 进行。
优选地, 所述析晶的时间为 10~24小时, 优选为 10~16小时。
优选地, 所述 BMS-7900522 二 1,5-萘二礒酸盐与溶剂的质量体积比为 10~30mg: lmL, 优选为 20~30mg: lmL。
与已知的 BMS-790052二盐酸盐及其晶型比较, 本发明的 BMS-790052二 1,5- 萘二磺酸盐及其 Nd晶型具有好的緩释效果和好的水溶液稳定性、适合緩释制剂应 用, 其制备方法工艺筒便, 在室温条件下进行常规操作, 有利于产品的工业化。 特别是緩释效果和水溶液稳定性, 可以避免活性物质以固态形式存在而造成吸收 不稳定以及生物利用度低的风险。
本发明的内容之十是提供固态的 BMS-790052二 2-萘橫酸盐及其晶型,以及它 们的制备方法。
所述 BMS-790052二 2-萘磺酸盐, 是 BMS-790052和 2-萘磺酸以摩尔比约为 1:2 形成的化合物,
Figure imgf000018_0001
所述 BMS-790052二 2-萘磺酸盐的制备方法,包括以下步骤:形成 BMS-790052 在可溶溶剂中的溶液, 加入 2-萘磺酸固体, BMS-790052与 2-萘磺酸的摩尔用量比 为 1:2~1 :3 , 混合形成浆液并搅拌, 进而分离固体, 得到所述 BMS-790052二 2-萘 横酸盐。
优选地, 所述可溶溶剂为醇, 优选为 d~C3醇, 更优选为异丙醇。
优选地, 所述制备方法在室温下进行。
优选地, 所述搅拌的时间为 10~24小时, 优选为 10~16小时。
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50毫克 /毫升。
优选地, 所述 BMS-790052与 2-萘磺酸的摩尔用量比为 1 :2~1 :2.2。
经 HPLC测定,所述 BMS-790052二 2-萘磺酸盐中 BMS-790052游离碱的实 际含量为 60.6%, 理论含量为 64.0%。 表明所述 BMS-790052二 2-萘磺酸盐中
BMS-790052游离碱与 2-萘磺酸以摩尔比约为 1 :2成盐。
优选地,所述 BMS-790052二 2-萘磺酸盐为 BMS-790052二 2-萘磺酸盐 Ns晶型, 其 X-射线粉末衍射图谱在衍射角 2Θ为 6.3士 0.2。、 10.9士 0.2。、 15.0士 0.2。和 20.1±0.2。 处具有特征峰。
进一步地, 所述 BMS-790052二 2-萘磺酸盐 Ns晶型, 其 X-射线粉末衍射图谱 在以下衍射角 2Θ处具有特征峰及其相对强度:
衍射角 2Θ 相对强度 I (%)
6.3士 0.2° 100.0
10.9士 0.2° 47.1
15.0士 0.2° 38.8
20.1士 0.2° 50.6
非限制性地, 所述 BMS-790052二 2-萘磺酸盐 Ns晶型的一个典型实例具有如 图 41所示的 X-射线粉末衍射 (XRPD)图谱。 所述 BMS-790052二 2-萘磺酸盐 Ns晶型的制备方法, 包括以下步骤: 将根据 前述制备方法得到的 BMS-790052二 2-萘磺酸在醇或醚中形成悬浮液, 搅拌析晶, 得到所述 BMS-790052二 2-萘磺酸盐 Ns晶型。
优选地, 所述醇为 C2~C3醇, 优选为乙醇或异丙醇; 所述醚类溶剂为 C4~C6 醚, 优选为曱基叔丁基醚。
优选地, 所述 BMS-790052二 2-萘磺酸盐 Ns晶型的制备方法在室温下进行。 优选地, 所述析晶的时间为 5~24小时, 优选为 5~12小时。
优选地, 所述 BMS-7900522二 2-萘磺酸盐与溶剂的质量体积比为 10~30mg:lmL , 优选为 20~30mg: lmL。
与已知的 BMS-790052二盐酸盐及其晶型比较, 本发明的 BMS-790052二 2-萘 磺酸盐及其 Ns晶型具有好的緩释效果和好的水溶液稳定性、 适合緩释制剂应用, 其制备方法工艺筒便, 在室温条件下进行常规操作, 有利于产品的工业化。 特别 是緩释效果和水溶液稳定性, 可以避免活性物质以固态形式存在而造成吸收不稳 定以及生物利用度低的风险。
本发明的内容之十一是提供固态的 BMS-790052三盐酸盐及其无定型物, 以 及它们的制备方法。
所述 BMS-790052三盐酸盐,是 BMS-790052和盐酸以摩尔比约为 1 :3形成的化 合物, 其
Figure imgf000019_0001
所述 BMS-790052三盐酸盐的制备方法, 包括以下步骤: 形成 BMS-790052在 可溶溶剂中的溶液体系,加入盐酸, BMS-790052与盐酸的摩尔用量比为 1:3~1 :10, 混合形成浆液并搅拌, 进而分离固体, 得到所述 BMS-790052三盐酸盐。
优选地, 所述可溶溶剂为酯, 更优选为 C3~ C5酯。
优选地, 所述制备方法在室温下进行。
优选地, 所述搅拌的时间为 3~10小时, 更优选为 3~5 小时。
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50 mg/mL。
优选地, 所述 BMS-790052与盐酸的摩尔用量比为 1: 6~ 1: 10。
优选地, 所用盐酸的浓度范围为 0.1 -12 mol/L, 更优选为 6 ~12 mol/L。
经 HPLC测定, 所述 BMS-790052三盐酸盐中 BMS-790052游离碱的实际含 量为 87.6%,理论含量为 87.1%。表明所述 BMS-790052三盐酸盐中 BMS-790052 游离碱与盐酸以摩尔比约为 1 :3成盐。
优选地, 所述 BMS-790052三盐酸盐为 BMS-790052盐酸盐无定型物。
进一步地, 所述 BMS-790052三盐酸盐无定型物, 其特征在于, 其 X射线粉末 衍射图谱基本上如图 45所示。
所述 BMS-790052三盐酸盐无定型物, 其制备方法包括以下步骤: 根据前述 制备方法得到的 BMS-790052三盐酸盐在溶剂中形成悬浮液, 搅拌, 析出固体, 得到所述 BMS-790052三盐酸盐无定型物, 其中所述溶剂选自醇、 酯或醚。
优选地, 所述醇为 C2~ C3醇, 更优选为异丙醇;
优选地, 所述酯为 C3~C5酯, 更优选为乙酸乙酯;
优选地, 所述醚为 C4~C6醚, 更优选为曱基叔丁基醚。
优选地, 所述 BMS-790052三盐酸盐无定型物的制备方法在室温下进行。 优选地, 所述搅拌的时间为 8~48小时, 更优选为 8~16 小时。
优选地,所述 BMS-790052三盐酸盐与溶剂的质量体积比为 10~50 mg: 1 mL。 本发明的 BMS-790052三盐酸盐及其无定型物具有较好的水中溶解度和稳定 性, 适合湿法制粒及制成口服悬浮液, 其制备方法工艺筒便, 在室温条件下进行 常规操作, 有利于产品的工业化。
在本发明的过程中, 还发现以下 BMS-790052盐及其晶型, 包括 BMS-790052 的一对曱苯礒酸盐、 一苯礒酸盐、 二柠檬酸盐、 二乙醇酸盐、 苹果酸盐、 丙二酸 盐、一扁桃酸盐、磷酸盐、 酸盐、 酒石酸盐、一对氯苯礒酸盐、一乙二礒酸盐、 一 α-酮 -戊二酸盐、 一 1,5-萘二磺酸盐和一 2-萘橫酸盐。
所述 BMS-790052苹果酸盐, 是 BMS-790052和苹果酸形成的化合物。
所述 BMS-790052苹果酸盐的制备方法, 包括以下步骤: 形成 BMS-790052在 丙酮中的溶液, 加入苹果酸固体, 混合形成浆液并搅拌, 进而分离固体, 得到所 述 BMS-790052苹果酸盐。
所述 BMS-790052丙二酸盐, 是 BMS-790052和丙二酸形成的化合物。
所述 BMS-790052丙二酸盐的制备方法, 包括以下步骤: 形成 BMS-790052在 可溶溶剂中的溶液, 加入丙二酸, 混合形成浆液并搅拌, 进而分离固体, 得到所 述 BMS-790052丙二酸盐。
所述 BMS-790052磷酸盐, 是 BMS-790052和磷酸形成的化合物。
所述 BMS-790052磷酸盐的制备方法, 包括以下步骤: 形成 BMS-790052在乙 酸乙酯中的溶液, 加入磷酸, 混合形成浆液并搅拌, 进而分离固体, 得到所述
BMS-790052磷酸盐。
所述 BMS-790052硫酸盐, 是 BMS-790052和硫酸形成的化合物。 所述 BMS-790052^L酸盐的制备方法, 包括以下步骤: 形成 BMS-790052在乙 酸乙酯中的溶液, 加入 酸, 混合形成浆液并搅拌, 进而分离固体, 得到所述 BMS-790052硫酸盐。
所述 BMS-790052酒石酸盐, 是 BMS-790052和酒石酸形成的化合物。
所述 BMS-790052酒石酸盐的制备方法, 包括以下步骤: 形成 BMS-790052在 异丙醇中的溶液, 加入酒石酸, 混合形成浆液并搅拌, 进而分离固体, 得到所述 BMS-790052酒石酸盐。
上述各种 BMS-790052盐及其晶型的制备方法中, 所得 BMS-790052盐或其晶 型的固体, 采用本领域的常规方法进行分离和干燥。 所述 "分离", 采用本领域 的常规方法例如过滤、离心等。过滤的具体操作为:将欲分离的样品置于滤纸上, 减压抽滤。 离心的具体操作为: 将欲分离的样品置于离心管中, 之后高速旋转直 至固体全部沉至离心管底部, 离心速率例如为 6000转 /分钟。 所述 "干燥"采用本 领域的常规方法, 例如鼓风干燥、 减压干燥等, 优选压力小于 0.09MPa下的减压 干燥。 干燥温度为室温〜 50°C , 干燥时间约 10~72小时, 优选约 10~24小时。
对本发明中使用的术语解释如下:
本发明采用"晶浆"结晶方式, 是将样品的过饱和溶液(有不溶固体存在的悬 浮液)在溶剂体系中搅拌以析晶。
所述 "室温" 指 10-30°C。
所述 "搅拌", 可以采用本领域的常规方法, 例如搅拌方式包括磁力搅拌、 机械搅拌, 搅拌速度为 50~1800转 /分钟, 优选 300~900转 /分钟。
所述 "超声" 操作, 有利于样品的溶解, 具体操作为: 将装有溶液或悬浊液 的容器置于超声波清洗器中, 以 20~40K z的功率进行处理。 一般采用 40K z功率 超声处理 5分钟。
本发明 BMS-790052盐或其晶型的制备方法中, 起始原料 BMS-790052可以 商购获得, 也可以参照专利文献 WO2009020828A1 公开的制备方法得到, 该文 献通过引用的方式并入本申请中。
进一步地,本发明提供一种药物组合物,所述药物组合物包含治疗和 /或预防 有效量的药物活性成分选自本发明的 BMS-790052盐或其晶型或无定型物或者由 本发明方法制备得到的 BMS-790052盐或其晶型或无定型物, 以及至少一种药学 上可接受的载体; 其中所述本发明的 BMS-790052 盐或其晶型或无定型物选自 BMS-790052 二对曱苯礒酸盐、 BMS-790052 二对曱苯礒酸盐一水合物晶型、 BMS-790052二苯橫酸盐、 BMS-790052二苯橫酸盐 B晶型、 BMS-790052—柠檬 酸盐、 BMS-790052—柠檬酸盐无定型物、 BMS-790052—乙醇酸盐、 BMS-790052 一乙醇酸盐无定型物、 BMS-790052二扁桃酸盐、 BMS-790052二扁桃酸盐无定 型物、 BMS-790052 二对氯苯礒酸盐、 BMS-790052 二对氯苯礒酸盐 C 晶型、 BMS-790052二乙二礒酸盐、 BMS-790052二乙二礒酸盐 E 晶型、 BMS-790052 二 α-酮 -戊二酸盐、 BMS-790052二 α-酮-戊二酸盐 G晶型、 BMS-790052二 1,5- 萘二磺酸盐、 BMS-790052二 1,5-萘二礒酸盐 Nd晶型、 BMS-790052二 2-萘礒酸 盐、 BMS-790052二 2-萘礒酸盐 Ns晶型、 BMS-790052三盐酸盐、 BMS-790052 三盐酸盐无定型物、 BMS-790052苹果酸盐、 BMS-790052丙二酸盐、 BMS-790052 磷酸盐、 BMS-790052 酸盐或 BMS-790052酒石酸盐。 此外, 所述药物组合物 还可以包含 BMS-790052 的其它可药用的盐、 晶型或无定型物, 例如已知的 BMS-790052二盐酸盐及其晶型。 任选地, 所述药物组合物还可以包含其它的药 物活性成分, 包括但不限于其他的抗 HCV活性化合物; 免疫调节剂, 例如干扰 素类; 其他的抗病毒药例如利巴韦林、 金刚烷胺; NS5A的其他抑制剂; HCV生 命周期中的其他靶标的抑制剂。
本发明所述的药物组合物可为固态或液态; 剂型例如固体口服剂型, 包括片 剂、 颗粒剂、 散剂、 丸剂和胶嚢剂; 液体口服剂型, 包括溶液剂、 糖浆剂、 混悬 剂、 分散剂和乳剂; 无菌可注射制剂, 包括溶液剂、 分散剂和冻干剂; 配方可适 于活性成分的快速释放、 延迟释放或调节释放。 可以是常规的、 可分散的、 可咀 嚼的、 口腔溶解的或快速熔化的制剂。 给药途径可以通过口服、 肠胃外或通过植 入贮库进行给药, 所述肠胃外给药包括皮下、 皮内、 静脉内、 肌内、 关节内、 滑 膜内、 胸骨内、 鞘内和损伤区注射或输液技术。 若该药物组合物为液态, 则本发 明的 BMS-790052盐或其晶型或无定型物在该液体组合物中保持为固体, 例如作 为悬浮液。
所述药物组合物中药学上可接受的载体包括但不限于: 稀释剂, 例如淀粉、 改性淀粉、乳糖、粉状纤维素、微晶纤维素、无水磚酸氢钙、磷酸三钙、甘露醇、 山梨醇、 糖等; 粘合剂, 例如阿拉伯胶、 瓜尔胶、 明胶、 聚乙烯吡咯烷酮、 羟丙 基纤维素、 羟丙基曱基纤维素、 聚乙二醇、 共聚维酮等; 崩解剂, 例如淀粉、 羧 曱基淀粉钠、羟基乙酸淀粉钠、预胶化淀粉、交联聚维酮、交联羧曱基纤维素钠、 胶体二氧化硅等; 润滑剂, 例如硬脂酸、 硬脂酸镁、 硬脂酸锌、 苯曱酸钠、 乙酸 钠等; 助流剂, 例如胶体二氧化硅等; 复合物形成剂, 例如各种级别的环糊精和 树脂;释放速度控制剂,例如羟丙基纤维素、羟曱基纤维素、羟丙基曱基纤维素、 乙基纤维素、 曱基纤维素、 曱基丙烯酸曱酯、 蜡等。 可用的其他药学上可接受的 载体包括但不限于成膜剂、 增塑剂、 着色剂、 调味剂、 粘度调节剂、 防腐剂、 抗 氧化剂等。 在口服片剂的情况中, 通常使用的载体包括乳糖和玉米淀粉, 还可以 加入润滑剂如硬脂酸镁; 在口服胶嚢剂的情况中, 有用的载体 /稀释剂包括乳糖、 高和低分子量聚乙二醇和干玉米淀粉; 当以混悬液口服给药时, 所述活性成分与 乳化剂和悬浮剂混合;如果需要,可以加入某些甜味剂和 /或调味剂和 /或着色剂。
所述药物组合物可以采用本领域技术人员公知的方法来制备。在制备药物组 合物时, 本发明的 BMS-790052盐或其晶型或无定型物与一种或多种药学上可接 受的载体相混合, 任选地, 与一种或多种的其他药物活性成分相混合。 固体制剂 可以通过直接混合、 制粒等工艺来制备。
进一步地, 本发明提供本发明所述的 BMS-790052 二对曱苯磺酸盐、 BMS-790052 二对曱苯礒酸盐一水合物晶型、 BMS-790052 二苯礒酸盐、 BMS-790052二苯橫酸盐 B晶型、 BMS-790052—柠檬酸盐、 BMS-790052一柠檬 酸盐无定型物、 BMS-790052—乙醇酸盐、 BMS-790052—乙醇酸盐无定型物、 BMS-790052二扁桃酸盐、 BMS-790052二扁桃酸盐无定型物、 BMS-790052二对 氯苯礒酸盐、 BMS-790052二对氯苯礒酸盐 C晶型、 BMS-790052二乙二磺酸盐、 BMS-790052二乙二礒酸盐 E晶型、 BMS-790052二 α-酮 -戊二酸盐、 BMS-790052 二 α-酮-戊二酸盐 G晶型、 BMS-790052二 1,5-萘二磺酸盐、 BMS-790052二 1,5- 萘二磺酸盐 Nd晶型、 BMS-790052二 2-萘橫酸盐、 BMS-790052二 2-萘橫酸盐 Ns晶型、 BMS-790052三盐酸盐、 BMS-790052三盐酸盐无定型物、 BMS-790052 苹果酸盐、 BMS-790052丙二酸盐、 BMS-790052磷酸盐、 BMS-790052硫酸盐或 BMS-790052酒石酸盐在制备用于治疗和 /或预防丙型肝炎病毒(HCV)感染的药 物中的用途。
进一步地, 本发明提供一种治疗丙型肝炎病毒(HCV)感染的方法, 所述方 法包括给予需要的患者治疗和 /或预防有效量的选自选自本发明的 BMS-790052 盐或其晶型或无定型物或者本发明的含 BMS-790052盐或其晶型或无定型物的药 物组合物; 其中, 所述本发明的 BMS-790052 盐或其晶型或无定型物选自 BMS-790052 二对曱苯礒酸盐、 BMS-790052 二对曱苯礒酸盐一水合物晶型、 BMS-790052二苯橫酸盐、 BMS-790052二苯橫酸盐 B晶型、 BMS-790052—柠檬 酸盐、 BMS-790052—柠檬酸盐无定型物、 BMS-790052—乙醇酸盐、 BMS-790052 一乙醇酸盐无定型物、 BMS-790052二扁桃酸盐、 BMS-790052二扁桃酸盐无定 型物、 BMS-790052 二对氯苯礒酸盐、 BMS-790052 二对氯苯礒酸盐 C 晶型、 BMS-790052二乙二礒酸盐、 BMS-790052二乙二礒酸盐 E 晶型、 BMS-790052 二 α-酮 -戊二酸盐、 BMS-790052二 α-酮-戊二酸盐 G晶型、 BMS-790052二 1,5- 萘二磺酸盐、 BMS-790052二 1,5-萘二橫酸盐 Nd晶型、 BMS-790052二 2-萘橫酸 盐、 BMS-790052二 2-萘礒酸盐 Ns晶型、 BMS-790052三盐酸盐、 BMS-790052 三盐酸盐无定型物、 BMS-790052苹果酸盐、 BMS-790052丙二酸盐、 BMS-790052 磷酸盐、 BMS-790052硫酸盐或 BMS-790052酒石酸盐。 附图说明
图 1 根据 WO2009020828A1制备的 BMS-790052二盐酸盐晶型的 XRPD图 图 2 根据 WO2009020828A1制备的 BMS-790052二盐酸盐晶型的 PLM图 图 3 根据 WO2009020828A1制备的 BMS-790052二盐酸盐晶型的 TGA图 图 4 根据 WO2009020828A1制备的 BMS-790052二盐酸盐晶型的 DSC图 图 5 BMS-790052二对曱苯礒酸盐一水合物晶型的 XRPD图
图 6 BMS-790052二对曱苯橫酸盐一水合物晶型的 PLM图
图 7 BMS-790052二对曱苯橫酸盐一水合物晶型的 TGA图
图 8 BMS-790052二对曱苯橫酸盐一水合物晶型的 DSC图
图 9 BMS-790052二苯礒酸盐 B晶型的 XRPD图
图 10 BMS-790052二苯礒酸盐 B晶型的 PLM图
图 11 BMS-790052二苯礒酸盐 B晶型的 TGA图
图 12 BMS-790052二苯礒酸盐 B晶型的 DSC图
图 13 BMS-790052一柠檬酸盐无定型物的 XRPD图
图 14 BMS-790052一柠檬酸盐无定型物的 PLM图
图 15 BMS-790052一柠檬酸盐无定型物的 TGA图
图 16 BMS-790052一柠檬酸盐无定型物的 DSC图
图 17 BMS-790052—乙醇酸盐无定型物的 XRPD图
图 18 BMS-790052—乙醇酸盐无定型物的 PLM图
图 19 BMS-790052—乙醇酸盐无定型物的 TGA图
图 20 BMS-790052—乙醇酸盐无定型物的 DSC图
图 21 BMS-790052二扁桃酸盐无定型物的 XRPD图
图 22 BMS-790052二扁桃酸盐无定型物的 PLM图
图 23 BMS-790052二扁桃酸盐无定型物的 TGA图
图 24 BMS-790052二扁桃酸盐无定型物的 DSC图
图 25 BMS-790052二对氯苯礒酸盐 C晶型的 XRPD图
图 26 BMS-790052二对氯苯礒酸盐 C晶型的 PLM图
图 27 BMS-790052二对氯苯礒酸盐 C晶型的 TGA图
图 28 BMS-790052二对氯苯礒酸盐 C晶型的 DSC图
图 29 BMS-790052二乙二礒酸盐 E晶型的 XRPD图
图 30 BMS-790052二乙二礒酸盐 E晶型的 PLM图
图 31 BMS-790052二乙二礒酸盐 E晶型的 TGA图
图 32 BMS-790052二乙二礒酸盐 E晶型的 DSC图
图 33 BMS-790052二 α-酮-戊二酸盐 G晶型的 XRPD图 图 34 BMS- -790052二 α-酮-戊二酸盐 G晶型的 PLM图
图 35 BMS- -790052二 α-酮-戊二酸盐 G晶型的 TGA图
图 36 BMS- -790052二 α-酮-戊二酸盐 G晶型的 DSC图
图 37 BMS- -790052二 1,5-萘二橫酸盐 Nd晶型的 XRPD图
图 38 BMS- -790052二 1,5-萘二橫酸盐 Nd晶型的 PLM图
图 39 BMS- -790052二 1,5-萘二橫酸盐 Nd晶型的 TGA图
图 40 BMS- -790052二 1,5-萘二橫酸盐 Nd晶型的 DSC图
图 41 BMS- -790052二 2-萘礒酸盐 Ns晶型的 XRPD图
图 42 BMS- -790052二 2-萘礒酸盐 Ns晶型的 PLM图
图 43 BMS- -790052二 2-萘磺酸盐 Ns晶型的 TGA图
图 44 BMS- -790052二 2-萘礒酸盐 Ns晶型的 DSC图
图 45 BMS- -790052 盐酸盐无定型物的 XRPD图
图 46 BMS- -790052 盐酸盐无定型物的 PLM图
图 47 BMS- -790052 盐酸盐无定型物的 TGA图
图 48 BMS- -790052 盐酸盐无定型物的 DSC图
图 49实施例 83片剂 1~3的累积释放度曲线图 具体实施方式
本发明进一步参考以下实施例, 所述实施例详细描述本发明的盐、 晶型和无 定型物、 其制备方法和应用。 对本领域技术人员显而易见的是, 对于材料和方法 两者的许多改变可在不脱离本发明范围的情况下实施。
采集数据所用的仪器及方法:
X-射线粉末衍射 (XPRD) 所使用的仪器为 Bruker D8 Advance diffractometer, 采用铜靶波长为 1.54nm的 Ka X-射线, 在 40kV和 40mA的操作条件下、 θ -2Θ 测角仪、 Mo单色仪、 Lynxeye探测器。 仪器在使用前用金刚砂校准。 采集软件 是 Diffrac Plus XRD Commander。 样品在室温条件下测试, 把需要检测的样品放 在无反射板上。 详细检测条件如下, 角度范围: 340°2 Θ , 步长: 0.02°2 Θ , 速 度: 0.2秒 /步。
偏正光显微镜 (PLM) 图谱采自于 ΧΡ-500Ε偏振光显微镜(上海长方光学仪 器有限公司)。 取少量粉末样品置于载玻片上, 滴加少量矿物油以更好地分散粉 末样品, 盖上盖玻片, 然后将样品放置在 ΧΡ-500Ε偏振光显微镜 (上海长方光学 仪器有限公司) 的载物台上, 选择合适的放大倍数观测样品的形貌并拍照。
差热分析 ( DSC )数据采自于 TA Instruments Q200 MDSC, 仪器控制软件是 Thermal Advantage, 分析软件是 Universal Analysis。 通常取 1 ~ 10毫克的样品放 置于铝盘内, 以 10°C/min的升温速度在 40mL/min干燥 N2的保护下将样品从室 温升至 200 °C或 300 °C。
热重分析 (TGA)数据采自于 TA Instruments Q500 TGA, 仪器控制软件是 Thermal Advantage , 分析软件是 Universal Analysis。 取 5〜 5 mg样品放置于白金 坩埚内, 采用分段高分辨检测方式, 以 10°C/min升温速度在 40mL/min干燥 N2 保护下将样品从室温升至 400 °C。
核磁分析(NMR)数据采自于 Bruker Ascend Tm 500。 通常使用全频激发, 谱宽 30ppm, 单脉沖, 30。角激发, 扫描 16次, 数字化正交检测, 控温 298K。
释放度数据采自于 RC806溶出试验仪, 溶出方法参考《中国药典 2010版》 第二部附录 X, 溶出测定法第一法。 参数设置为: 转速 100转 /分钟, 实验温度 37.0°C , 溶出介质的用量 500mL, 取样时间分别为 1小时、 6小时和 12小时。 数 据的检测和采集为高效液相分析仪器 (HPLC)。 释放度筛选指标见表 1。
表 1释放度筛选指标
时间 (h) 释放度 (%)
1 15-25
6 60-70
12 〉90
高效液相分析 (HPLC)数据采自于 Waters 2695/2487, 仪器控制软件和分析 软件是 Empower。 采用 C18色谱柱, 150mmx4.6mm, 柱温 25°C, 波长 210nm, 流速 l.Oml/min, 进样量 5ul, 运行时间 15min。 流动相 A为含 0.05%三氟乙酸的 水, 流动相 B为乙腈, 梯度如表 2。
表 2 HPLC梯度条件
时间 (min) A% B%
0 90 10
8 20 80
13 20 80
13.01 90 10
15 90 10
单沖压片机, 压片压力为 5MPa, 片剂直径为 10mm。
实施例中所用的各种试剂如无特别说明均为市售购买。
除非特殊注明, 在以下实施例中: 超声操作采用 40Khz功率超声 5分钟; 搅 拌操作以 300~900转 /分钟进行磁力搅拌; 离心操作的速率为 6000转 /分钟。
制备例 1
根据专利文献 WO2009020828A1 公开的化合物 (I) 晶种制备方法制备 BMS-790052游离碱, 作为起始原料, 具体操作如下:
将 60.0g(105mmol, 1 当量) 4,4,-二 (2-(( -吡咯烷基 -2-基) -1H-咪唑 -5-基)联苯、 38.7 g(221 mmol, 1 当量) N- (曱氧羰基) -L-缬氨酸、 44.5 g(232mmol ,2.2当量) 1-(3- 二曱氨基丙基 )-3-乙基碳化二亚胺盐酸盐、 2.89 g(21.4mmol, 0.2当量) 1-羟基苯并 三唑加入到 300mL乙腈中, 搅拌分散后加入 73.3 mL(420.3mmol, 4当量)二异丙 基乙胺,在 24~30°C下搅拌约 18小时。加入 60 mL水,加热到 50°C达约 5小时。 冷却至室温后, 加入 320 mL 乙酸乙酯和 300 mL 水, 分离得到有机层用 300 mL10wt%碳酸氢钠水溶液、 300 mL水和 200 mL10wt%氯化钠水溶液洗涤。 有机 层用无水硫酸镁干燥,过滤,浓缩,得到粗产品。利用快速色谱柱法进行提纯(硅 胶, 0~10%曱醇在二氯曱烷中), 得到 BMS-790052游离碱。
核磁氢谱数据: ¾ NMR ( 6-DMSO, 500 MHz): 0.86 (d, 6R,J = 6.5 Hz), 0.92 (d, 6R,J = 6.5 Hz), 1.80-2.08 (m, 6H), 2.08-2.22 (s, 4H), 3.55 (s, 6H), 3.81 (m, 4H), 4.08 (t, 2R,J = 8.5 Hz), 5.10 (t, 2H), 7.30 (d, 2R,J = 8.5 Hz),7.52 (m, 2H),7.66 (d, 4H,/ = 8.0 Hz),7.79 (d,4H,/ = 8.0 Hz) , 11.78 (s, 2H)。
对比例 1
BMS-790052二盐酸益, 具体操作如下: '
20°C下, 将 BMS-790052游离碱 (3.0g) 溶于 lOO.OmL异丙醇中。 加入无水盐 酸乙醇溶液(7.0mL, 1.25M浓度), 搅拌反应混合物。 向所述溶液中加入曱基叔 丁基醚 (lOO.OmL) , 所得浆液在 40°C~50 °C剧烈搅拌 12小时。 将有结晶析出的浆 液冷却至 20°C , 过滤, 固体在 20°C风干, 得到 2.77g BMS-790052二盐酸盐白色结 晶固体, 产率 84.0%。
XRPD图谱如图 1所示, 显示: 该盐为结晶态固体。
PLM图谱如图 2所示, 显示: 该盐为较小块状颗粒, 无规则。
TGA图谱如图 3所示, 显示: 分解温度约为 236°C。
DSC图谱如图 4所示, 显示: 熔点为 251 °C。
室温下,该盐在水中的溶解度大于 200毫克 /毫升, 5分钟粉末溶出大于 95%。 与 WO2009020828A1公开的 BMS-790052二盐酸盐晶型相比, 对比例 1制 备的 BMS-790052二盐酸盐样品具有相同或相似的 XRPD的 2Θ特征峰、 XRPD 图谱和 DSC图谱。 说明对比例 1样品与 WO2009020828A1的 BMS-790052二盐 酸盐具有相同的晶型。
实施例 1 BMS-790052二对曱苯磺酸盐的制备
室温下, 取 500mg 制备例 1制备的 BMS-790052游离碱, 加入 10mL丙酮 后超声溶解,加入 256mg无水对曱苯礒酸固体至 BMS-790052游离碱的丙酮溶液 中, 形成浆液并搅拌, 搅拌 16小时后, 过滤, 滤饼 40°C真空干燥 16小时, 得 521mg BMS-790052二对曱苯橫酸盐, 产率 71.1%。
经 HPLC测定, BMS-790052二对曱苯礒酸盐中 BMS-790052游离碱的实际 含量为 67.6%, 理论含量为 68.3%。 检测结果表明: BMS-790052二对曱苯礒酸 盐中 BMS-790052游离碱与对曱苯礒酸以摩尔比约为 1 :2成盐。
实施例 2 BMS-790052二对曱苯磺酸盐的制备
室温下, 取 50.0mg制备例 1制备的 BMS-790052游离碱, 加入 2.0mL异丙 醇后超声溶解, 加入 23.2mg无水对曱苯礒酸固体至 BMS-790052游离碱的异丙 醇溶液中,形成浆液并搅拌,搅拌 8小时后,过滤,滤饼 40°C真空干燥 16小时, 得 51.5mg BMS-790052二对曱苯橫酸盐, 产率 70.3%。
实施例 2制备的样品具有与实施例 1样品相同或相似的 HPLC检测结果(未 示出), 说明实施例 2样品与实施例 1样品是相同的物质。
实施例 3 BMS-790052—对曱苯磺酸盐的制备
室温下, 取 200mg制备例 1制备的 BMS-790052游离碱, 加入 4 mL丙酮后 超声溶解, 取 51.2 mg无水对曱苯橫酸, 加入 0.8 mL丙酮后超声溶解, 将对曱苯 磺酸的丙酮溶液緩慢滴加至 BMS-790052游离碱的丙酮溶液中, 并搅拌,反应 16 小时后, 有固体析出, 过滤, 40°C真空干燥 16小时, 得 160 mg BMS-790052— 对曱苯礒酸盐, 产率 65.1%。
实施例 4 BMS-790052二对曱苯磺酸盐一水合物晶型的制备
室温下, 取 320 mg本发明制备的 BMS-790052二对曱苯橫酸盐, 加入 20 ml 水, 形成悬浮液。 搅拌 24 小时, 过滤, 滤饼在 40 °C真空干燥 16 小时, 得 285mgBMS-790052二对曱苯橫酸盐一水合物晶型, 产率 87.6% 。
XRPD图谱如图 5所示: 该盐为结晶态固体。
PLM图谱如图 6所示: 该盐为较小颗粒, 无规则。
TGA图谱如图 7所示: 120°C之前有约 2.0%台阶失重, 与含一个水分子失重 比例相当, 分解温度约为 236°C。
DSC图谱如图 8所示: 80°C之前有一宽吸热峰, 80~150°C之间的吸热峰为脱 去结合的水分子。
实施例 5 BMS-790052二对曱苯磺酸盐一水合物晶型的制备
室温下, 取 80mg本发明制备的 BMS-790052二对曱苯橫酸盐, 加入 8 ml含 水 1%的丙酮 (V/V), 形成悬浮液。 搅拌 24小时, 过滤, 滤饼在 40°C真空干燥 8 小时, 得 65.6 mgBMS-790052二对曱苯橫酸盐一水合物晶型, 产率 80.7%。
实施例 6 BMS-790052二对曱苯磺酸盐一水合物晶型的制备
室温下, 取 50mg本发明制备的 BMS-790052二对曱苯橫酸盐, 加入 5ml 水 饱和的乙酸乙酯, 形成悬浮液。 搅拌 48小时, 过滤, 滤饼在室温真空干燥 16小 时, 得 42.3mgBMS-790052二对曱苯橫酸盐一水合物晶型, 产率 83.2% 。
实施例 7 BMS-790052二对曱苯磺酸盐一水合物晶型的制备
室温下,取 250mg本发明制备的 BMS-790052二对曱苯礒酸盐,加入 25ml 水 饱和的曱基叔丁基醚, 形成悬浮液。 搅拌 72小时, 过滤, 滤饼在室温真空干燥 24小时, 得 195 mgBMS-790052二对曱苯橫酸盐一水合物晶型, 产率 76.7% 。
实施例 5~7制备的样品具有与实施例 4样品相同或相似的 XRPD图谱、 PLM 图谱、 DSC图谱和 TGA图谱(未示出)。说明实施例 5~7样品与实施例 4样品是 相同的物质。
实施例 8 BMS-790052二苯橫酸盐的制备
室温下, 取 250.0mg制备例 1制备的 BMS-790052游离碱, 加入 5 mL丙酮 溶解, 加入 117.5 mg 苯礒酸至 BMS-790052游离碱的丙酮溶液中, 形成浆液并 搅拌,搅拌 16小时后,过滤,滤饼 40 °C真空干燥 16小时, 275 mg BMS-790052 二苯礒酸盐, 产率 77.0%。
经 HPLC测定, BMS-790052二苯礒酸盐中 BMS-790052游离碱的实际含量 为 70.3% , 理论含量为 70.1%。 检测结果表明: BMS-790052 二苯橫酸盐中 BMS-790052游离碱与苯礒酸以摩尔比约为 1 :2成盐。
实施例 9 BMS-790052二苯橫酸盐的制备
室温下, 取 50.0mg制备例 1制备的 BMS-790052游离碱, 加入 2mL异丙醇溶 解, 取 21.4mg ^黄酸, 加入 0.2mL异丙醇后超声溶解, 将苯磺酸的异丙醇溶液緩 慢滴加至 BMS-790052游离碱的异丙醇溶液中, 形成浆液并搅拌, 搅拌 8小时, 过 滤,滤饼 40 °C真空干燥 16小时,得 52.3mg BMS-790052二苯磺酸益,产率 73.3%。
实施例 9制备的样品具有与实施例 8样品相同或相似的 HPLC检测结果(未 示出)。 说明实施例 9样品与实施例 8样品是相同的物质。
实施例 10 BMS-790052一苯橫酸盐的制备
室温下, 取 50.0mg制备例 1制备的 BMS-790052游离碱, 加入 2mL异丙醇 溶解, 取 12.7mg 苯橫酸, 加入 0.2mL异丙醇后超声溶解, 将苯橫酸的异丙醇溶 液緩慢滴加至 BMS-790052游离碱的异丙醇溶液中, 搅拌 8小时后析出固体, 过 滤,滤饼 40 °C真空干燥 16小时,得 45.1mg BMS-790052一苯橫酸盐,产率 74.3%。 实施例 11 BMS-790052二苯橫酸盐 B晶型的制备
室温下, 取 180 mg本发明制备的 BMS-790052二苯橫酸盐, 加入 12ml水, 形成悬浮液。 搅拌 10小时, 过滤, 滤饼在 40°C真空干燥 16小时, 得 153 mg BMS-790052二苯橫酸盐 B晶型, 产率 85.0%。
XRPD图谱如图 9所示: 该盐为结晶态固体。 PLM图谱如图 10所示: 该盐为较大块状颗粒, 不规则。
TGA图谱如图 11所示: 200 °C之前有约 8.0%台阶失重,分解温度约为 251 °C。
DSC图谱如图 12所示: 120°C之前有一宽吸热峰, 120~180°C之间有一吸热峰。 实施例 12 BMS-790052二苯礒酸盐 B晶型的制备
室温下, 取 300 mg本发明制备的 BMS-790052二苯橫酸盐, 加入 lml水, 形成悬浮液。 搅拌 24小时, 过滤, 滤饼在 40°C真空干燥 16小时, 得 272 mg
BMS-790052二苯礒酸盐 B晶型, 产率 90.7%。
实施例 12制备的样品具有与实施例 11样品相同或相似的 XRPD图谱、 PLM 图谱、 DSC图谱和 TGA图谱(未示出)。 说明实施例 12样品与实施例 11样品是 相同的物质。
实施例 13 BMS-790052一柠檬酸盐的制备
室温下, 取 150mg制备例 1制备的 BMS-790052游离碱, 加入 3 mL丙酮溶 解, 加入 43.5 mg柠檬酸固体至 BMS-790052游离碱的丙酮溶液中, 形成浆液并 搅拌, 搅拌 16小时, 过滤, 滤饼 40°C真空干燥 16小时, 得 150 mg BMS-790052 一柠檬酸盐, 产率 79.4%。
经 HPLC测定, BMS-790052—柠檬酸盐中 BMS-790052游离碱的实际含量 为 83.7% , 理论含量为 79.4%。 检测结果表明: BMS-790052 —柠檬酸盐中 BMS-790052游离碱与柠檬酸以摩尔比约为 1 : 1成盐。
实施例 14 BMS-790052一柠檬酸盐的制备
室温下, 取 250.0mg 制备例 1制备的 BMS-790052游离碱, 加入 25mL丙酮 溶解,加入 65 mg柠檬酸固体至 BMS-790052游离碱的丙酮溶液中, 形成浆液并 搅拌, 搅拌 8小时, 过滤, 滤饼 40°C真空干燥 16小时, 226.5 mg BMS-790052 一柠檬酸盐, 产率 71.9%。
实施例 15 BMS-790052一柠檬酸盐的制备
室温下, 取 150.0mg制备例 1制备的 BMS-790052游离碱, 加入 3 mL丁酮 溶解, 加入 58.5mg柠檬酸固体至 BMS-790052游离碱的丁酮溶液中, 形成浆液 并搅拌,搅拌 16小时,过滤,滤饼 40 °C真空干燥 16小时,得 146.4 mg BMS-790052 一柠檬酸盐, 产率 77.5%。
实施例 14、 15制备的样品具有与实施例 13样品相同或相似的 HPLC检测结 果(未示出)。 说明实施例 14、 15样品与实施例 13样品是相同的物质。
实施例 16 BMS-790052二柠檬酸盐的制备
室温下, 取 100 mg 制备例 1制备的 BMS-790052游离碱, 加入 2 mL丙酮 溶解, 取 58 mg柠檬酸, 加入 0.8 mL丙酮后超声溶解, 将柠檬酸的丙酮溶液緩 慢滴加至 BMS-790052游离碱的丙酮溶液中, 搅拌 16小时后固体析出, 过滤,
40°C真空干燥 16小时, 得 116.4 mg BMS-790052二柠檬酸盐, 产率 76.6%。 实施例 17 BMS-790052—柠檬酸盐无定型物的制备
室温下,取 150mg本发明制备的 BMS-790052—柠檬酸盐,加入 3 ml丙酮, 形成悬浮液。 搅拌 24 小时, 过滤, 滤饼在 40 °C真空干燥 16 小时, 得 111 mgBMS-790052一柠檬酸盐无定型物, 产率 74 %。
XRPD图谱如图 13所示, 该盐为无定型物。
PLM图谱如图 14所示, 显示: 该盐为较小颗粒, 无规则。
TGA图谱如图 15所示, 显示: 100°C之前有约 3.4%緩慢失重, 分解温度 约为 131 °C。
DSC图谱如图 16所示,显示: 110°C之前有一宽吸热峰, 150°C之后开始分解。 实施例 18 BMS-790052—柠檬酸盐无定型物的制备
室温下, 取 200mg本发明制备的 BMS-790052—柠檬酸盐, 加入 10ml乙酸 乙酯, 形成悬浮液。 搅拌 48小时, 过滤, 滤饼在 40°C真空干燥 16小时, 得 142 mgBMS-790052一柠檬酸盐无定型物, 产率 71 %。
实施例 19 BMS-790052—柠檬酸盐无定型物的制备
室温下, 取 150mg本发明制备的 BMS-790052—柠檬酸盐, 加入 15ml曱基 叔丁基醚, 形成悬浮液。 搅拌 72小时, 过滤, 滤饼在 40°C真空干燥 16小时, 得 124.5mgBMS-790052一柠檬酸盐无定型物, 产率 83 %。
实施例 18、 19制备的样品具有与实施例 17样品相同或相似的 XRPD图谱、 PLM图谱、 DSC图谱和 TGA图谱(未示出)。 说明实施例 18、 19样品与实施例 17样品是相同的物质。
实施例 20 BMS-790052—乙醇酸盐的制备
室温下, 取 500mg制备例 1制备的 BMS-790052游离碱, 加入 lOmL乙酸 乙酯溶解, 加入 58mg 乙醇酸固体至 BMS-790052游离碱的乙酸乙酯溶液中, 形 成浆液并搅拌,搅拌 8小时后,过滤, 40 °C真空干燥 16小时,得 200mg BMS-790052 一乙醇酸盐, 产率 36.3%。
经 HPLC测定, BMS-790052—乙醇酸盐中 BMS-790052游离碱的实际含量 为 88.4% , 理论含量为 90.7%。 检测结果表明: BMS-790052 —乙醇酸盐中 BMS-790052游离碱与乙醇酸以摩尔比约为 1: 1成盐。
实施例 21 BMS-790052—乙醇酸盐的制备
室温下, 取 250mg制备例 1制备的 BMS-790052游离碱, 加入 25mL乙酸 异丙酯溶解, 加入 25.5mg 乙醇酸至 BMS-790052游离碱的乙酸异丙酯溶液中, 形成浆液并搅拌, 搅拌 16 小时后, 过滤, 40°C真空干燥 16 小时, 得 78 mg BMS-790052—乙醇酸盐, 产率 28.3%。
实施例 22 BMS-790052—乙醇酸盐的制备
室温下, 取 250.0mg制备例 1制备的 BMS-790052游离碱, 加入 5mL乙酸 乙酯溶解, 加入 38.5 mg 乙醇酸固体至 BMS-790052游离碱的乙酸乙酯溶液中, 形成浆液并搅拌, 搅拌 8 小时后, 过滤, 40°C真空干燥 16 小时, 得 124 mg BMS-790052—乙醇酸盐, 产率 45%。
实施例 21、 22制备的样品具有与实施例 20样品相同或相似的 HPLC检测结 果(未示出)。 说明实施例 21、 22样品与实施例 20样品是相同的物质。
实施例 23 BMS-790052二乙醇酸盐的制备
室温下, 取 450.0mg制备例 1制备的 BMS-790052游离碱, 加入 9 mL乙酸 乙酯溶解,取 104.4 mg 乙醇酸,加入 lmL乙酸乙酯后超声溶解,将 BMS-790052 游离碱的乙酸乙酯溶液緩慢滴加至乙醇酸的乙酸乙酯溶液中, 搅拌 24小时后固 体析出,过滤,滤饼 40 °C真空干燥 16小时,得 20.3mg BMS-790052二乙醇酸盐, 产率 33.7%。
实施例 24 BMS-790052—乙醇酸盐无定型物的制备
室温下, 取 300mg本发明制备的 BMS-790052—乙醇酸盐, 加入 30 ml水, 形成悬浮液。 搅拌 16 小时, 过滤, 滤饼在 40°C真空干燥 16小时, 得 201 mg BMS-790052—乙醇酸盐无定型物, 产率 67%。
XRPD图谱如图 17所示, 该盐为无定型物。
PLM图谱如图 18所示, 显示: 该盐较大块状颗粒, 无规则。
TGA图谱如图 19所示,显示: 75 °〇之前有约 2.8%緩慢失重,分解温度约 80 °C。
DSC图谱如图 20所示, 显示 110°C之前有一宽吸热峰。
实施例 25 BMS-790052—乙醇酸盐无定型物的制备
室温下, 取 180 mg本发明制备的 BMS-790052—乙醇酸盐, 加入 3.6 ml曱 基叔丁基醚,形成悬浮液。搅拌 48 小时,过滤,滤饼在 40°C真空干燥 16小时, 得 158.4 mg BMS-790052—乙醇酸盐无定型物, 产率 88%。
实施例 26 BMS-790052—乙醇酸盐无定型物的制备
室温下, 取 30 mg本发明制备的 BMS-790052—乙醇酸盐, 加入 3 ml正庚 烷,形成悬浮液。搅拌 48 小时,过滤,滤饼在 40°C真空干燥 48小时,得 23.7 mg BMS-790052—乙醇酸盐无定型物, 产率 79 %。
实施例 25、 26制备的样品具有与实施例 24样品相同或相似的 XRPD图谱、 PLM图谱、 DSC图谱和 TGA图谱(未示出)。 说明实施例 25、 26样品与实施例 24样品是相同的物质。
实施例 27 BMS-790052二扁桃酸盐的制备 室温下, 取 500.0mg制备例 1制备的 BMS-790052游离碱, 加入 10mL乙酸 乙酯溶解, 加入 226mg扁桃酸固体至 BMS-790052游离碱的乙酸乙酯溶液中, 形成浆液并搅拌, 搅拌 16小时, 过滤, 滤饼 40°C真空干燥 16小时, 得 604mg BMS-790052的二扁桃酸盐, 产率 85.6% 。
经 HPLC测定, BMS-790052二扁桃酸盐中 BMS-790052游离碱实际含量为 67.7% , 理论含量为 70.9%。 检测结果表明: BMS-790052 二扁桃酸盐中 BMS-790052游离碱与扁桃酸以摩尔比约为 1:2成盐。
实施例 28 BMS-790052二扁桃酸盐的制备
室温下, 取 300.0mg制备例 1制备的 BMS-790052游离碱, 加入 30 mL乙 酸异丙酯溶解,,加入 123.6 mg扁桃酸固体至 BMS-790052游离碱的乙酸异丙酯 溶液中, 形成浆液并搅拌, 搅拌 10小时, 过滤, 滤饼 40°C真空干燥 16小时, 得 352.8 mg BMS-790052的二扁桃酸盐, 产率 83.3%。
实施例 29 BMS-790052二扁桃酸盐的制备
室温下, 取 50.0mg 制备例 1制备的 BMS-790052游离碱, 加入 5mL乙酸曱 酯溶解, 加入 30.9 mg扁桃酸固体至 BMS-790052游离碱的乙酸曱酯溶液中, 形 成浆液并搅拌, 搅拌 24 小时, 过滤, 滤饼 40°C真空干燥 16 小时, 得 52.8mg BMS-790052的二扁桃酸盐, 产率 74.8%。
实施例 28、 29制备的样品具有与实施例 27样品相同或相似的 HPLC检测结 果。 说明实施例 28、 29样品与实施例 27样品是相同的物质。
实施例 30 BMS-790052—扁桃酸盐的制备
室温下, 取 150.0mg制备例 1制备的 BMS-790052游离碱, 加入 3mL乙酸 乙酯溶解, 加入 33.9mg扁桃酸固体至 BMS-790052游离碱的乙酸乙酯溶液中, 并搅拌,搅拌 16小时后有固体析出,过滤,滤饼 40°C真空干燥 16小时,得 127.2 mg BMS-790052的一扁桃酸盐, 产率 70.3% 。
实施例 31 BMS-790052二扁桃酸无定型物的制备
室温下,取 100 mg本发明制备的 BMS-790052二扁桃酸盐,加入 2 ml丙酮, 形成悬浮液。 搅拌 10 小时, 过滤, 滤饼在 40°C真空干燥 16 小时, 得 74 mg BMS-790052二扁桃酸盐无定型物, 产率 74 %。
XRPD图谱如图 21所示, 该盐为无定型物。
PLM图谱如图 22所示, 显示: 该盐为较大块状颗粒, 无规则。
TGA图谱如图 23所示, 显示: 150°C之前有约 6.3%緩慢失重, 分解温度 约为 199 °C。
DSC图谱如图 24所示, 显示 100°C之前有一宽吸热峰。
实施例 32 BMS-790052二扁桃酸无定型物的制备 室温下,取 150 mg本发明制备的 BMS-790052二扁桃酸盐,加入 15 ml曱基 叔丁基醚, 形成悬浮液。 搅拌 16 小时, 过滤, 滤饼在 40°C真空干燥 16小时, 得 117 mg BMS-790052二扁桃酸盐无定型物, 产率 78 %。
实施例 33 BMS-790052二扁桃酸无定型物的制备
室温下,取 100 mg本发明制备的 BMS-790052二扁桃酸盐,加入 10 ml正庚 烷, 形成悬浮液。 搅拌 48 小时, 过滤, 滤饼在 40°C真空干燥 16小时, 得 85 mg BMS-790052二扁桃酸盐无定型物, 产率 85 %。
实施例 32、 33制备的样品具有与实施例 31样品相同或相似的 XRPD图谱、 PLM图谱、 DSC图谱和 TGA图谱(未示出)。 说明实施例 32、 33样品与实施例 31样品是相同的物质。
实施例 34 BMS-790052二对氯苯磺酸盐的制备
室温下, 取 650.0mg制备例 1制备的 BMS-790052游离碱, 加入 13 mL曱醇 溶解,加入 371.8mg对氯苯礒酸固体至 BMS-790052游离碱的曱醇溶液中,形成 浆液并搅拌, 搅拌 16 小时, 过滤, 滤饼 40°C真空干燥 16 小时, 得 56.2mg BMS-790052二对氯苯礒酸盐, 产率 73.9% 。
经 HPLC测定, BMS-790052二对氯苯礒酸盐中 BMS-790052游离碱的实际 含量为 63.8%, 理论含量为 65.8%。 检测结果表明: BMS-790052二对氯苯礒酸 盐中 BMS-790052游离碱与对氯苯礒酸以摩尔比约为 1 :2成盐。
实施例 35 BMS-790052二对氯苯磺酸盐的制备
室温下, 取 200.0 mg制备例 1制备的 BMS-790052游离碱中, 加入 4 mL乙 醇溶解, 加入 99.6 mg对氯苯礒酸固体至 BMS-790052游离碱的乙醇溶液中, 形 成浆液并搅拌, 搅拌 10小时, 过滤, 滤饼 40°C真空干燥 16小时, 得 217.2 mg BMS-790052二对氯苯礒酸盐, 产率 71.4% 。
实施例 36 BMS-790052二对氯苯磺酸盐的制备
室温下, 取 50.0 mg制备例 1制备的 BMS-790052游离碱, 加入 5.0 mL正丁 醇溶解, 加入 37.4 mg对氯苯礒酸固体至 BMS-790052游离碱的正丁醇溶液中, 形成浆液并搅拌, 搅拌 24小时, 过滤, 滤饼 40°C真空干燥 16小时, 得 52.7 mg BMS-790052二对氯苯礒酸盐, 产率 69.3% 。
实施例 35、 36制备的样品具有与实施例 34样品相同或相似的 HPLC检测结 果(未示出)。 说明实施例 35、 36样品与实施例 34样品是相同的物质。
实施例 37 BMS-790052—对氯苯磺酸盐的制备
室温下, 取 150.0mg制备例 1制备的 BMS-790052游离碱, 加入 3 mL乙醇 溶解, 加入 42.9 mg对氯苯礒酸固体至 BMS-790052游离碱的乙醇溶液中, 并搅 拌, 搅拌 16小时后有固体析出, 过滤, 滤饼 40°C真空干燥 16小时, 得 102 mg BMS-790052—对氯苯礒酸盐, 产率 54.0%。
实施例 38 BMS-790052二对氯苯磺酸盐 C晶型的制备
室温下,取 210 mg 本发明制备的 BMS-790052 二对氯苯礒酸盐,加入 7 ml 乙醇, 形成悬浮液。搅拌 10小时, 过滤, 滤饼在 40°C真空干燥 16小时,得 172.2 mg BMS-790052二对氯苯礒酸盐 C晶型, 产率 82.0% 。
XRPD图谱如图 25所示, 该盐为结晶态固体。
PLM图谱如图 26所示, 显示: 该盐为细小颗粒且无规则。
TGA图谱如图 27所示, 显示: 120°C之前有约 4.6%的緩慢失重, 分解温度 约为 180°C。
DSC图谱如图 28所示, 显示: 110°C之前有一宽大吸热峰, 150~220°C之间 有一大吸热峰。
实施例 39 BMS-790052二对氯苯磺酸盐 C晶型的制备
室温下,取 180 mg 本发明制备的 BMS-790052 二对氯苯礒酸盐,加入 8 ml 水, 形成悬浮液。 搅拌 16小时, 过滤, 滤饼在 40°C真空干燥 16小时, 得 142.2 mgBMS-790052二对氯苯橫酸盐 C晶型, 产率 79.0% 。
实施例 40 BMS-790052二对氯苯磺酸盐 C晶型的制备
室温下, 取 120 mg本发明制备的 BMS-790052二对氯苯橫酸盐, 加入 6 ml 曱基叔丁基醚,形成悬浮液。搅拌 24小时,过滤,滤饼在 40 °C真空干燥 16小时, 得 84 mgBMS-790052二对氯苯橫酸盐 C晶型, 产率 69.7% 。
实施例 39、 40制备的样品具有与实施例 38样品相同或相似的 XRPD图谱、 PLM图谱、 DSC图谱和 TGA图谱(未示出)。 说明实施例 39、 40样品与实施例 38样品是相同的物质。
实施例 41 BMS-790052二乙二磺酸盐的制备
室温下, 取 750 mg制备例 1制备的 BMS-790052游离碱, 加入 15 mL丙酮 溶解, 加入 424.5 mg乙二礒酸固体至 BMS-790052游离碱的丙酮溶液中, 形成 浆液并搅拌, 搅拌 16 小时, 过滤, 滤饼 40°C真空干燥 16 小时, 得 903 mg BMS-790052二乙二礒酸盐, 产率 79.5%。
经 HPLC测定, BMS-790052二乙二橫酸盐中 BMS-790052游离碱的实际含 量为 66.9%, 理论含量为 66.1%。 检测结果表明: BMS-790052二乙二礒酸盐中 BMS-790052游离碱与乙二礒酸以摩尔比约为 1 :2成盐。
实施例 42 BMS-790052二乙二磺酸盐的制备
室温下, 取 200 mg制备例 1制备的 BMS-790052游离碱, 加入 4 mL丙酮 溶解, 加入 102.8 mg乙二礒酸固体至 BMS-790052游离碱的丙酮溶液中, 形成 浆液并搅拌, 搅拌 10 小时, 过滤, 滤饼 40°C真空干燥 16 小时, 得 230.8 mg BMS-790052二乙二礒酸盐, 产率 76.2%。
实施例 43 BMS-790052二乙二磺酸盐的制备
室温下, 取 300mg制备例 1制备的 BMS-790052游离碱, 加入 30 mL丙酮 溶解, 加入 231 mg乙二磺酸固体至 BMS-790052游离碱的丙酮溶液中, 形成浆 液并搅拌, 搅拌 24 小时, 过滤, 滤饼 40 °C真空干燥 16 小时, 得 333 mg BMS-790052二乙二礒酸盐, 产率 73.3% 。
实施例 42、 43制备的样品具有与实施例 41样品相同或相似的 HPLC检测结 果(未示出)。 说明实施例 42、 43样品与实施例 41样品是相同的物质。
实施例 44 BMS-790052—乙二磺酸盐的制备
室温下, 取 150 mg对比例 1制备的 BMS-790052游离碱, 加入 3 mL丙酮 中溶解, 加入 42.9 mg 乙二磺酸固体至游离碱的丙酮溶液中, 并搅拌, 搅拌 16 小时后有固体析出, 过滤, 滤饼 40°C真空干燥 16小时, 得 132 mg BMS-790052 一乙二礒酸盐, 产率 70% 。
实施例 45 BMS-790052二乙二磺酸盐 E晶型的制备
室温下,取 240mg 本发明制备的 BMS-790052 二乙二橫酸盐,加入 8 ml 水, 形成悬浮液。 搅拌 5小时, 过滤, 滤饼在 30°C真空干燥 16小时, 得 212 mg结晶 态 BMS-790052二乙二橫酸盐 E晶型, 产率 88.3% 。
XRPD分析如图 29所示, 该盐为结晶态固体。
PLM图谱如图 30所示, 显示: 该盐为细小颗粒, 不规则。
TGA图谱如图 31所示, 显示: 150°C之前有约 17.3%的台阶失重, 分解温度 约为 247 V。
DSC图谱如图 32所示, 显示: 150°C之前大量失溶剂, 熔点约为 249°C。 实施例 46 BMS-790052二乙二磺酸盐 E晶型的制备
室温下,取 210mg 本发明制备的 BMS-790052 二乙二橫酸盐,加入 21 ml 乙 酸乙酯, 形成悬浮液。 搅拌 10小时, 过滤, 滤饼在 30°C真空干燥 16小时, 得 131.6 mgBMS-790052二乙二橫酸盐 E晶型, 产率 62.7% 。
实施例 47 BMS-790052二乙二磺酸盐 E晶型的制备
室温下,取 180 mg本发明制备的 BMS-790052 二乙二橫酸盐,加入 6 ml 丙 酮,形成悬浮液。搅拌 5小时,过滤,滤饼在 30°C真空干燥 16小时,得 133.2 mg BMS-790052二乙二橫酸盐 E晶型, 产率 74.0% 。
实施例 48 BMS-790052二乙二磺酸盐 E晶型的制备
室温下, 取 150 mg本发明制备的 BMS-790052 二乙二礒酸盐, 加入 7.5ml 曱基叔丁基醚, 形成悬浮液。搅拌 24 小时, 过滤, 滤饼在 30°C真空干燥 16 小 时, 得 104 mg BMS-790052二乙二磺酸盐 E晶型, 产率 69.3% 。 实施例 46~48制备的样品具有与实施例 45样品相同或相似的 XRPD图谱、 PLM图谱、 DSC图谱和 TGA图谱(未示出)。 说明实施例 46~48样品与实施例 45样品是相同的物质。
实施例 49 BMS-790052二 α-酮-戊二酸盐的制备
室温下, 取 850mg制备例 1制备的 BMS-790052游离碱, 加入 17 mL乙酸乙酯 溶解, 加入 369 mg a-酮-戊二酸固体至 BMS-790052游离碱的乙酸乙酯溶液中, 形 成浆液并搅拌, 搅拌 16小时, 过滤, 滤饼 40 °C真空干燥 16小时, 得 962.2 mg BMS-790052二 α-酮 -戊二酸盐, 产率 81.2%。
经 HPLC测定, BMS-790052二 α-酮 -戊二酸盐中 BMS-790052游离碱的实际 含量为 68.9%, 理论含量为 71.7%。 检测结果表明: BMS-790052二 α-酮-戊二酸 盐中 BMS-790052游离碱与 α-酮-戊二酸以摩尔比约为 1 :2成盐。
实施例 50 BMS-790052二 α-酮-戊二酸盐的制备
室温下, 取 300mg制备例 1制备的 BMS-790052游离碱, 加入 30mL乙酸乙酯 溶解, 加入 118.2 mga-酮-戊二酸固体至 BMS-790052游离碱的乙酸乙酯溶液中, 形成浆液并搅拌, 搅拌 10小时, 过滤, 滤饼 40 °C真空干燥 16小时, 得 330 mgBMS-790052二 a-酮 -戊二酸盐, 产率 78.9%。
实施例 51 BMS-790052二 a-酮-戊二酸盐的制备
室温下, 取 200mg制备例 1制备的 BMS-790052游离碱, 加入 4 mL乙酸异丙 酯溶解, 加入 118.4 mga-酮-戊二酸固体至 BMS-790052游离碱的乙酸异丙酯溶液 中, 形成浆液并搅拌,搅拌 24 小时, 过滤, 滤饼 40 °C真空干燥 16小时,得 210.4 mg BMS-790052二 a-酮 -戊二酸盐, 产率 75.5%。
实施例 50、 51制备的样品具有与实施例 49样品相同或相似的 HPLC检测结 果(未示出)。 说明实施例 50、 51样品与实施例 49样品是相同的物质。
实施例 52 BMS-790052— a-酮-戊二酸盐的制备
室温下, 取 150 mg制备例 1制备的 BMS-790052游离碱, 加入 3 mL乙酸乙酯 溶解,加入 32.7 mg a-酮-戊二酸固体至 BMS-790052游离碱的乙酸乙酯溶液中, 形 成浆液并搅拌, 搅拌 16小时, 过滤, 滤饼 40 °C真空干燥 16小时, 得 145.5 mg BMS-790052— a-酮 -戊二酸盐, 产率 81.0 %。
实施例 53 BMS-790052二 a-酮-戊二酸盐 G晶型的制备
室温下, 取 300 mg 本发明制备的 BMS-790052 二 a-酮 -戊二酸盐, 加入 10ml 丙酮, 形成悬浮液。 搅拌 24小时, 过滤, 滤饼在 30°C真空干燥 16小时, 得 254 mg BMS-790052二 a-酮-戊二酸盐 G晶型, 产率 84.7% 。
XRPD分析如图 33所示, 该盐为结晶态固体。
PLM图谱如图 34所示, 显示: 该盐为较大颗粒, 不规则。 TGA图谱如图 35所示, 显示: 150 °C之前有约 4.2%的緩慢失重, 分解温度 约为 185°C。
DSC图谱如图 36所示,显示: 105 °C之前有一宽大吸热峰,熔点约为 143 °C。 实施例 54 BMS-790052二 α-酮-戊二酸盐 G晶型的制备
室温下,取 240.0 mg本发明制备的 BMS-790052 二 α-酮-戊二酸盐,加入 12 ml 乙酸乙酯,形成悬浮液。搅拌 48小时,过滤,滤饼在 30°C真空干燥 16小时, 得 194.8 mg BMS-790052二 α-酮-戊二酸盐 G晶型, 产率 81.2% 。
实施例 55 BMS-790052二 α-酮-戊二酸盐 G晶型的制备
室温下,取 120.0 mg本发明制备的 BMS-790052 二 α-酮-戊二酸盐,加入 12 ml乙酸乙酯,形成悬浮液。搅拌 72小时,过滤,滤饼在 30°C真空干燥 16小时, 得 91 mgBMS-790052二 α-酮-戊二酸盐 G晶型, 产率 75.8% 。
实施例 54、 55制备的样品具有与实施例 53 样品相同或相似的 XRPD图谱、 PLM图谱、 DSC图谱和 TGA图谱(未示出)。 说明实施例 54、 55样品与实施例 53样品是相同的物质。
实施例 56 BMS-790052二 1,5-萘二磺酸盐的制备
室温下, 取 500 mg 制备例 1制备的 BMS-790052 游离碱, 加入 50mL异 丙醇溶解, 加入 536 mg 1,5-萘二橫酸四水合物固体至 BMS-790052 游离碱的异 丙醇溶液中, 形成浆液并搅拌, 搅拌 16小时, 过滤, 滤饼 40°C真空干燥 16小时, 得 622mg BMS-790052二 1,5-萘二橫酸盐 Nd晶型, 产率 70.0% 。
经 HPLC测定, BMS-790052二 1,5-萘二礒酸盐中 BMS-790052游离碱的实 际含量为 57.9%, 理论含量为 56.2%。 检测结果表明: BMS-790052二 1,5-萘二橫 酸盐中 BMS-790052游离碱与 1,5-萘二礒酸以摩尔比约为 1:2成盐。
实施例 57 BMS-790052二 1,5-萘二磺酸盐的制备
室温下,取 300mg制备例 1制备的 BMS-790052游离碱,加入 6 mL曱醇溶解, 加入 292.2 mg 1,5-萘二磺酸四水合物固体至 BMS-790052游离碱的曱醇溶液中,形 成浆液并搅拌, 搅拌 10小时, 过滤, 滤饼 40 °C真空干燥 16小时, 得 350.4mg BMS-790052二 1,5-萘二橫酸盐, 产率 65.6% 。
实施例 58 BMS-790052二 1,5-萘二磺酸盐的制备
室温下, 取 200mg制备例 1制备的 BMS-790052游离碱, 加入 10 mL乙醇 溶解,加入 292.4 mg 1,5-萘二礒酸四水合物固体至 BMS-790052游离碱的乙醇溶 液中,形成浆液并搅拌,搅拌 24小时,过滤,滤饼 40 °C真空干燥 16小时,得 226.4 mg BMS-790052二 1,5-萘二礒酸盐, 产率 63.5% 。
实施例 57、 58制备的样品具有与实施例 56样品相同或相似的 HPLC检测结 果(未示出)。 说明实施例 57、 58样品与实施例 56样品是相同的物质。 实施例 59 BMS-790052一 1,5-萘二磺酸盐的制备
室温下, 取 50.0mg制备例 1的 BMS-790052游离碱, 加入 5.0mL异丙醇溶解, 加入 26.8 mg 1,5-萘二橫酸四水合物固体至游离碱的异丙醇溶液中, 并搅拌, 搅 拌 16小时后有固体析出,过滤,滤饼 40 °C真空干燥 16小时,得 55.5 mg BMS-790052 一 1,5-萘二礒酸盐, 产率 79.8% 。
实施例 60 BMS-790052二 1,5-萘二磺酸盐 Nd晶型的制备
室温下, 取 360.0 mg本发明制备的 BMS-790052 二 1,5-萘二礒酸盐, 加入
12 ml 乙醇, 形成悬浮液。搅拌 10 小时, 过滤, 滤饼在 30°C真空干燥 16小时, 得 308.4mg结晶态 BMS-790052二 1,5-萘二磺酸盐 Nd晶型, 产率 85.7% 。
XRPD分析如图 37所示, 该盐为结晶态固体。
PLM图谱如图 38所示, 显示: 该盐为较大块状颗粒, 不规则。
TGA图谱如图 39所示, 显示: 150°C之前有约 10.8%的緩慢失重, 分解温度为
312°C。
DSC图谱如图 40所示, 显示: 150°C之前有一宽大吸热峰, 熔点为 257°C。 实施例 61 BMS-790052二 1,5-萘二磺酸盐 Nd晶型的制备
室温下,取 150 mg 本发明制备的 BMS-790052 二 1,5-萘二橫酸盐,加入 7.5 ml 异丙醇, 形成悬浮液。 搅拌 16 小时, 过滤, 滤饼在 30°C真空干燥 16小时, 得 119.5 mgBMS-790052二 1,5-萘二磺酸盐 Nd晶型, 产率 79.7% 。
实施例 62 BMS-790052二 1,5-萘二磺酸盐 Nd晶型的制备
室温下, 取 60.0 mg本发明制备的 BMS-790052 二 1,5-萘二橫酸盐, 加入 6.0ml 丙酮, 形成悬浮液。搅拌 24 小时, 过滤, 滤饼在 30°C真空干燥 16小时, 得 49.5mgBMS-790052二 1,5-萘二橫酸盐 Nd晶型, 产率 82.5% 。
实施例 61、 62制备的样品具有与实施例 60样品相同或相似的 XRPD图谱、 PLM图谱、 DSC图谱和 TGA图谱(未示出)。 说明实施例 61、 62样品与实施例 60样品是相同的物质。
实施例 63 BMS-790052二 2-萘磺酸盐的制备
室温下, 取 600 mg制备例 1制备的 BMS-790052游离碱, 加入 60mL异丙醇 溶解, 加入 372 mg 2-萘礒酸固体至 BMS-790052游离碱的异丙醇溶液中, 形成浆 液并搅拌, 搅拌 10小时, 过滤, 滤饼 40°C真空干燥 16小时, 得 BMS-790052二 2- 萘磺酸盐 700 mg, 产率 74.7% 。
经 HPLC测定, BMS-790052二 2-萘礒酸盐中 BMS-790052游离碱的实际含 量为 60.6%, 理论含量为 64.0%。 检测结果表明: BMS-790052二 2-萘橫酸盐中 BMS-790052游离碱与 2-萘礒酸以摩尔比约为 1 :2成盐。
实施例 64 BMS-790052二 2-萘磺酸盐的制备 室温下, 取 350mg制备例 1制备的 BMS-790052 游离碱, 加入 7 mL 曱醇溶 解, 加入 197.4 mg2-萘礒酸固体至 BMS-790052游离碱的曱醇溶液中, 形成浆液 并搅拌, 搅拌 16小时, 过滤, 滤饼 40°C真空干燥 16小时, 得 BMS-790052二 2-萘礒 酸盐 385 mg, 产率 70.4%。
实施例 65 BMS-790052二 2-萘磺酸盐的制备
室温下, 取 250mg制备例 1制备的 BMS-790052 游离碱, 加入 12.5mL 乙醇 溶解, 加入 211.5 mg 2-萘礒酸固体至 BMS-790052游离碱的乙醇溶液中, 形成浆 液并搅拌, 搅拌 24小时, 过滤, 滤饼 40°C真空干燥 16小时, 得 BMS-790052二 2- 萘礒酸盐 261.5 mg, 产率 66.9%。
实施例 64、 65制备的样品具有与实施例 63样品相同或相似的 HPLC检测结 果(未示出)。 说明实施例 64、 65样品与实施例 63样品是相同的物质。
实施例 66 BMS-790052— 2-萘磺酸盐的制备
室温下, 取 50mg制备例 1制备的 BMS-790052 游离碱, 加入 3mL异丙醇 溶解,加入 15.5 mg 2-萘礒酸固体至 BMS-790052游离碱的异丙醇溶液中,并搅拌, 搅拌 12小时后有固体析出, 过滤, 滤饼 40°C真空干燥 16小时, 得 BMS-790052— 2-萘礒酸盐 43.7mg, 产率 68.2%。
实施例 67 BMS-790052二 2-萘磺酸盐 Ns晶型的制备
室温下,取 300 mg 本发明制备的 BMS-790052 二 2-萘二橫酸盐,加入 10 ml 乙醇, 形成悬浮液,搅拌 5 小时, 过滤, 滤饼在 30°C真空干燥 16小时,得 257.5 mgBMS-790052二 2-萘橫酸盐 Ns晶型, 产率 85.8% 。
XRPD图谱如图 41所示, 该盐为结晶态固体。
PLM图谱如图 42所示, 显示: 该盐为较大块状颗粒, 不规则。
TGA图谱如图 43所示, 显示: 150°C之前有约 10.7%的緩慢失重, 分解温度为
308°C。
DSC图谱如图 44所示, 显示: 120°C之前有一宽大吸热峰, 120~200°C有一宽 大吸热峰。
实施例 68 BMS-790052二 2-萘磺酸盐 Ns晶型的制备
室温下,取 180 mg 本发明制备的 BMS-790052 二 2-萘二磺酸盐,加入 9 ml 异丙醇, 形成悬浮液, 搅拌 12 小时, 过滤, 滤饼在 30°C真空干燥 16小时, 得 146.4 mgBMS-790052二 2-萘橫酸盐 Ns晶型, 产率 81.3% 。
实施例 69 BMS-790052二 2-萘磺酸盐 Ns晶型的制备
室温下,取 150 mg 本发明制备的 BMS-790052 二 2-萘二 酸盐,加入 15 ml 曱基叔丁基醚, 形成悬浮液, 搅拌 24 小时, 过滤, 滤饼在 30°C真空干燥 16小 时, 得 115 mgBMS-790052二 2-萘橫酸盐 Ns晶型, 产率 76.7% 。 实施例 68、 69制备的样品具有与实施例 67样品相同或相似的 XRPD图谱、 PLM图谱、 DSC图谱和 TGA图谱(未示出)。 说明实施例 68、 69样品与实施例 67样品是相同的物质。
实施例 70 BMS-790052三盐酸盐的制备
室温下, 取 500.0mg制备例 1制备的 BMS-790052游离碱, 加入 lOmL乙酸 乙酯溶解, 加入 0.56 mL 12mol/L的浓盐酸至 BMS-790052游离碱的乙酸乙酯溶 液中, 形成浆液并搅拌,搅拌 3 小时后, 过滤, 40°C真空干燥 16小时,得 485.8 mg BMS-790052三盐酸盐, 产率 84.6%。
经 HPLC测定, BMS-790052三盐酸盐中 BMS-790052游离碱的实际含量为 87.6%,理论含量为 87.1%。检测结果表明: BMS-790052三盐酸盐中 BMS-790052 游离碱与盐酸以摩尔比约为 1 :3 成盐。
实施例 71 BMS-790052三盐酸盐的制备
室温下, 取 250.0mg制备例 1制备的 BMS-790052游离碱, 加入 25mL乙 酸异丙酯溶解,加入 10mL 0.1mol/L的盐酸至 BMS-790052游离碱的乙酸异丙酯 溶液中,形成浆液并搅拌,搅拌 10 小时后,过滤, 40°C真空干燥 16小时,得 233.5 mg BMS-790052三盐酸盐, 产率 81.4%。
实施例 72 BMS-790052三盐酸盐的制备
室温下, 取 450.0mg制备例 1制备的 BMS-790052游离碱, 加入 9 mL乙 酸乙酯溶解,加入 0.61mL 6mol/L盐酸至 BMS-790052游离碱的乙酸乙酯溶液中, 形成浆液并搅拌, 搅拌 5 小时后, 过滤, 40°C真空干燥 16小时, 得 427.6 mg BMS-790052三盐酸盐, 产率 82.8%。
实施例 71、 72制备的样品具有与实施例 70样品相同或相似的 HPLC检测结 果(未示出)。 说明实施例 71、 72样品与实施例 70样品是相同的物质。
实施例 73 BMS-790052三盐酸盐无定型物的制备
室温下,取 400 mg本发明制备的 BMS-790052三盐酸盐,加入 8 ml异丙醇, 形成悬浮液。 搅拌 8小时, 过滤, 滤饼在 40°C真空干燥 16小时, 得 379.3 mg BMS-790052三盐酸盐无定型物, 产率 94.8 %。
XRPD图谱如图 45所示, 该盐为无定型物。
PLM图谱如图 46所示, 显示: 该盐细小颗粒, 无规则。
TGA图谱如图 47所示, 显示: 100°C之前有约 5.1%緩慢失重, 分解温度约 为 171 °C。
DSC图谱如图 48 所示, 显示: 140°C之前有一宽吸热峰。
实施例 74 BMS-790052三盐酸盐无定型物的制备
室温下,取 200 mg本发明制备的 BMS-790052三盐酸盐,加入 5 ml乙酸乙 酯, 形成悬浮液。 搅拌 16小时, 过滤, 滤饼在 40°C真空干燥 16小时, 得 185.4 mg BMS-790052三盐酸盐无定型物, 产率 92.7 %。
实施例 75 BMS-790052三盐酸盐无定型物的制备
室温下,取 300mg本发明制备的 BMS-790052三盐酸盐,加入 30ml曱基叔 丁基醚, 形成悬浮液。 搅拌 48 小时, 过滤, 滤饼在 40°C真空干燥 16 小时, 得 256.4 mg BMS-790052三盐酸盐无定型物, 产率 85.5%。
实施例 74、 75 制备的样品具有与实施例 73 样品相同或相似的 XRPD图谱、 PLM图谱、 DSC图谱和 TGA图谱(未示出)。 说明实施例 74、 75 样品与实施例 73 样品是相同的物质。
实施例 76 BMS-790052苹果酸盐的制备
室温下, 取 240mg制备例 1制备的 BMS-790052游离碱, 加入 4.8 mL丙酮 溶解, 加入 96mg 苹果酸固体至 BMS-790052游离碱的丙酮溶液中, 形成浆液并 搅拌, 搅拌 8小时, 过滤, 滤饼 40°C真空干燥 16小时, 得 250 mg BMS-790052 苹果酸盐。
实施例 77 BMS-790052丙二酸盐的制备
室温下, 取 500mg制备例 1制备的 BMS-790052游离碱, 加入 10 mL乙酸 乙酯溶解, 加入 78mg 丙二酸固体至 BMS-790052游离碱的乙酸乙酯溶液中, 形 成浆液并搅拌, 搅拌 16 小时, 过滤, 滤饼 40°C真空干燥 16 小时, 得 483mg BMS-790052丙二酸盐。
实施例 78 BMS-790052磷酸盐的制备
取 300mg制备例 1制备的 BMS-790052游离碱,加入 6mL乙酸乙酯溶解,加 入 87.6mg 85%的磷酸至 BMS-790052游离碱的乙酸乙酯溶液中,形成浆液并搅拌, 搅拌 0.5小时后过滤, 滤饼 40°C真空干燥 16小时, 得 266.4mg BMS-790052磷酸 实施例 79 BMS-790052 酸盐的制备
取 280 mg制备例 1制备的 BMS-790052游离碱, 加入 5.6 mL乙酸乙酯溶 解, 加入 81.8 mg 98%的硫酸至 BMS-790052游离碱的乙酸乙酯溶液中, 形成浆 液并搅拌, 搅拌 0.5 小时后, 过滤, 滤饼 40°C真空干燥 16小时, 得 270.5 mg BMS-790052 酸盐。
实施例 80 BMS-790052酒石酸盐的制备
取 320 mg制备例 1制备的 BMS-790052游离碱,加入 19.2 mL异丙醇溶解, 加入 20.4 mg 酒石酸固体至 BMS-790052游离碱的异丙醇溶液中,形成浆液并搅 拌, 搅拌 16小时, 过滤, 滤饼 30°C真空干燥 16小时, 得 293 mg BMS-790052 酒石酸盐。 实施例 81 片剂配方及其制备
本发明的片剂配方见表 3和表 4。
表 3 片剂配方一
片 羟丙曱纤
API 预胶化 微晶
剂 API(BMS-790052的盐 维素 共计 重量 淀粉 纤维素
编 晶型或无定型物) (K4M) (mg)
(mg) (mg) (mg)
号 (mg)
BMS-790052二对曱苯
1 22.5 40 67 136 33 1.5 300 磺酸盐一水合物晶型
2 BMS-7900524酸盐 19.0 40 67 139.5 33 1.5 300 已知 BMS-790052二盐
3 16.5 40 67 142 33 1.5 300 酸盐晶型
备注 API折合为 BMS-790052游离碱后, 剂量均为 15mgt 片剂配方一的制备方法: 取处方量的 API、 羟丙曱纤维素 (K4M )、 预胶化 淀粉、 一水乳糖、 微晶纤维素和硬脂酸镁混合均匀后置于压片机中压片。 表 4片剂配方二
API 羟丙曱纤 微晶
剂 API(BMS-790052的 共计 重量 维素 (E5) 纤维素
编 盐晶型或无定型物) (mg)
(mg) (mg) (mg)
4 BMS-790052二苯磺酸盐 B晶型 21.4 70 142.1 65 1.5 300
5 BMS-790052一宁檬酸盐无定型物 18.9 70 144.6 65 1.5 300
6 BMS-790052一乙醇酸盐无定型物 16.5 60 147 75 1.5 300
7 BMS-790052二扁 4兆酸盐无定型物 21.2 60 142.3 75 1.5 300
8 BMS-790052二对氯苯磺酸盐 C晶型 22.8 60 140.7 75 1.5 300
9 BMS-790052二乙二磺酸盐 E晶型 22.7 60 140.8 75 1.5 300
10 BMS-790052二 α-酮-戊二酸盐 G晶型 20.9 60 142.6 75 1.5 300
11 BMS-790052二 l,5-萘二磺酸盐Nd晶型 26.7 60 136.8 75 1.5 300
12 BMS-790052二 酸盐 Ns晶型 23.4 60 140.1 75 1.5 300
API 折合为 BMS-790052 游离碱后, 剂量均为 备注
15mg。
片剂配方二的制备方法: 取处方量的 API、 羟丙曱纤维素 (E5)、
微晶纤维素和硬脂酸镁混合均匀后置于压片机中压片。
实施例 82溶出液的稳定性试验 以水为溶出介质, 溶出试验仪的参数设置为温度 37.0°C、 转速 100转 /分钟, 将实施例 81 制备的各片剂分别置于 500mL水中, 于 1小时、 6小时和 12小时 进行溶出液的取样。 溶出液样品经 0.45μηι滤膜过滤后, 在室温下放置 24小时, 每组配方的片剂平行做 3个, 观察溶出液的稳定性情况。
试验结果为: 片剂 3(含已知的 BMS-790052 二盐酸盐晶型)和片剂 2(含 BMS-790052硫酸盐)的溶出液样品溶液均变浑浊, 浑浊液离心后固体 HPLC含量 测定确认为 BMS-790052游离碱; 而片剂 1和 4~12(分别含本发明的 BMS-790052 二对曱苯礒酸盐一水合物晶型、 BMS-790052二苯磺酸盐 B晶型、 BMS-790052— 柠檬酸盐无定型物、 BMS-790052—乙醇酸盐无定型物、 BMS-790052二扁桃酸盐 无定型物、 BMS-790052二对氯苯磺酸盐 C晶型、 BMS-790052二乙二礒酸盐 E晶 型、 BMS-790052二 α-酮-戊二酸盐 G晶型、 BMS-790052二 1,5-萘二礒酸盐 Nd晶 型和 BMS-790052二 2-萘磺酸盐 Ns晶型)的溶出液澄清, 未观察到浑浊现象。
试验结果表明: 与由已知 BMS-790052二盐酸盐晶型制备的片剂相比, 由本 发明 BMS-790052二对曱苯磺酸盐一水合物晶型、 BMS-790052二苯礒酸盐 B晶型、 BMS-790052 一柠檬酸盐无定型物、 BMS-790052 —乙醇酸盐无定型物、 BMS-790052 二扁桃酸盐无定型物、 BMS-790052 二对氯苯礒酸盐 C 晶型、 BMS-790052 二乙二礒酸盐 E 晶型、 BMS-790052 二 α-酮-戊二酸盐 G 晶型、 BMS-790052二 1,5-萘二磺酸盐 Nd晶型和 BMS-790052二 2-萘礒酸盐 Ns晶型制 备的片剂, 其水溶液的稳定性高, 适合药物制剂应用。
实施例 83 片剂的累积释放度试验
以模拟胃液为溶出介质, 溶出试验仪的参数设置为温度 37.0°C、 转速 100转 /分钟, 将实施例 81制备的片剂 1~12分别置于 500mL模拟胃液中, 于 1小时、 6 小时和 12 小时进行溶出液的取样。 HPLC 检测溶出液样品的溶出药物浓度 ( g/ml),再以该片剂中 BMS-790052游离碱理论 100%释放浓度 30 g/ml为标准, 计算该片剂在取样点的累积释放度(%), 每组配方的片剂做 6个平行样。
片剂 1~3的累积释放度数据见表 5。
片剂 1~3的累积释放度曲线见图 49。 通过表 5和图 49的累积释放度结果与 表 1释放度筛选指标对照,可以看出,在模拟胃液中,片剂 3(含已知的 BMS-790052 二盐酸盐晶型) 与片剂 2(含 BMS-790052硫酸盐)溶出过快,在 6小时的累积释放 度已达 85%以上, 未能达到緩释效果, 而片剂 1(含本发明的 BMS-790052二对曱 苯橫酸盐一水合物晶型)则能达到緩释效果, 适合緩释制剂应用。
同样地, 通过片剂 4~12的累积释放度试验, 片剂 4~12的累积释放度数据见 表 5。 表明, 片剂 4~12(分别含本发明的 BMS-790052 二苯橫酸盐 B 晶型、 BMS-790052 一柠檬酸盐无定型物、 BMS-790052 —乙醇酸盐无定型物、 BMS-790052 二扁桃酸盐无定型物、 BMS-790052 二对氯苯礒酸盐 C 晶型、 BMS-790052 二乙二礒酸盐 E 晶型、 BMS-790052 二 α-酮-戊二酸盐 G 晶型、 BMS-790052二 1,5-萘二橫酸盐 Nd晶型和 BMS-790052二 2-萘橫酸盐 Ns晶型) 均能达到緩释效果, 均适合緩释制剂应用。
表 5片剂 1~12的累积释放度
累积释放百分率 (%)
时间
(h) 片剂 片剂 片剂 片剂 片剂
片剂 2片剂 3片剂 4片剂 5片剂 6片剂 7片剂 8
1 9 10 11 12
1 21.3 41.7 47.7 22.6 23.0 16.9 16.2 18.4 18.0 17.6 16.2 18.0
6 62.7 85.0 92.3 68.5 67.9 62.5 63.6 63.0 63.5 61.8 63.1 61.2
12 94.7 97.3 98.3 96.0 95.4 91.3 92.4 91.5 92.4 90.9 92.4 92.1 以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此, 任何熟悉本领域的技术人员在本发明所揭露的技术范围内, 可不经过创造性劳动 想到的变化或替换, 都应涵盖在本发明的保护范围之内。

Claims

权利要求
1、 BMS-790052二 酸盐, 其结构式如下:
Figure imgf000046_0001
2、 权利要求 1所述 BMS-790052二对曱苯磺酸盐的制备方法, 包括以下步 骤: 形成 BMS-790052在可溶溶剂中的溶液,加入对曱苯磺酸固体, BMS-790052 与对曱苯磺酸的摩尔用量比为 1:2~1 :3 , 混合形成浆液并搅拌, 进而分离固体, 得到所述 BMS-790052二对曱苯磺酸盐;
优选地, 所述可溶溶剂选自酮、 醇或其混合物, 优选为 C3~C4酮、 d~ C4醇 或其混合物, 更优选为丙酮、 异丙醇或其混合物;
优选地, 所述制备方法在室温下进行;
优选地, 所述搅拌的时间为 8~16小时;
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 25~50毫克 /毫升; 优选地, 所述 BMS-790052与对曱苯磺酸的摩尔用量比为 1 :2~1 :2.2。
3、 一种权利要求 1所述的 BMS-790052二对曱苯磺酸盐的一水合物晶型, 其 特征在于,其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰: 5.1士 0.2。、 6.3士 0.2。、 13.4士 0.2。、 14.6士 0.2。、 15.4士 0.2°和 21.1士 0.2。。
4、根据权利要求 3所述 BMS-790052二对曱苯磺酸盐一水合物晶型, 其特征 在于,其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰: 5.1士 0.2。、 6.3±0.2。、 10.2士 0.2。、 10.7士 0.2。、 13.4士 0.2。、 13.7士 0.2。、 14.6士 0.2。、 15.4士 0.2。、 18.3士 0.2。、 19.2士 0.2。、 19.9士 0.2。和 21 ·1±0·2。。
5、根据权利要求 4所述 BMS-790052二对曱苯磺酸盐一水合物晶型, 其特征 在于, 其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰及其相对强度:
衍射角 2Θ 相对强度 (1%)
5.1士 0.2° 43.1
6.3士 0.2° 30.0
10.2±0.2° 16.2
10.7士 0.2° 11.4
13.4士 0.2° 22.9
13.7士 0.2° 15.5
14.6士 0.2° 30.4
15.4士 0.2° 19.5
18·3±0·2° 12.9
19.2士 0.2° 12.3
19.9士 0.2° 13.2
21.1士 0.2° 100.0
6、权利要求 3 ~ 5中任一项所述 BMS-790052二对曱苯磺酸盐一水合物晶型 的制备方法,包括以下步骤:将根据权利要求 2所述制备方法得到的 BMS-790052 二对曱苯磺酸盐在溶剂中形成悬浮液, 搅拌析晶, 进而分离晶体, 室温至 40°C真 空干燥, 得到所述 BMS-790052二对曱苯磺酸盐一水合物晶型, 其中所述溶剂选 自水、 含 1% 水的酮 (V/V)、 水饱和的酯、 水饱和的醚或其混合物;
优选地, 所述酮为 C3~ C4酮, 优选为丙酮; 所述酯为 C3~C5酯, 优选为乙酸 乙酯; 所述醚为 C4~C6醚, 优选为曱基叔丁基醚;
优选地, 所述 BMS-790052二对曱苯磺酸盐一水合物晶型的制备方法在室温 下进行;
优选地, 所述析晶的时间为 24~72小时, 优选为 24~48小时;
优选地, 所述干燥时间为 8~24小时, 优选为 8~16小时;
优选地,所述 BMS-790052二对曱苯磺酸盐与溶剂的质量体积比为 10~16 mg: 1 mL„
7、 B
Figure imgf000047_0001
8、 权利要求 7所述 BMS-790052二苯磺酸盐的制备方法, 包括以下步骤: 形成 BMS-790052在可溶溶剂中的溶液, 加入苯磺酸固体, BMS-790052与苯磺 酸的摩尔用量比为 1 :2~1 :3 , 混合形成浆液并搅拌, 进而分离固体, 得到所述 BMS-790052二苯磺酸盐; 优选地, 所述可溶溶剂选自酮、 醇或其混合物, 优选为 C3~ C4酮、 d~ C4 醇或其混合物, 更优选为丙酮、 异丙醇或其混合物;
优选地, 所述制备方法在室温下进行;
优选地, 所述搅拌的时间为 8~16小时;
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 25~50毫克 /毫升; 优选地, 所述 BMS-790052与苯礒酸的摩尔用量比为 1 :2~1 :2.2。
9、一种权利要求 7所述的 BMS-790052二苯橫酸盐的 B晶型,其特征在于, 其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰: 6.7士 0.2。、9.7士 0.2。、 15.0士 0.2。、 17.8士 0.2。、 18.3士 0.2。和 22.1士 0.2。。
10、 根据权利要求 9所述 BMS-790052二苯橫酸盐 B晶型, 其特征在于, 其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰: 6.7士 0.2。、 7.2士 0.2。、9.0士 0.2。、 9.7士 0·2ο、 10.0士 0·2ο、 13.7士 0·2ο、 15.0士 0·2ο、 16.6士 0·2ο、 17.8士 0·2ο、 18.3士 0.2。、 21.3士 0.2° 和 22.1士 0.2。。
11、 根据权利要求 10所述 BMS-790052二苯橫酸盐 Β晶型, 其特征在于, 其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰及其相对强度:
衍射角 2Θ 相对强度 (1%)
5.3士 0.2° 14.5
6.7士 0.2° 34.5
7.2±0.2° 20.0
9.0士 0.2° 17.3
9.7士 0.2° 42.0
10.0士 0.2。 20.8
11.4士 0.2。 18.0
13.7士 0.2。 29.5
15.0士 0.2° 39.5
16.6士 0.2。 19.0
17.3士 0.2° 15.5
17.8士 0.2° 100
18.3士 0.2° 44.5
20.4士 0.2。 14.3
20.8士 0.2° 15.5
21.3士 0.2° 19.0
22.1士 0.2。 49.8
23.3士 0.2° 20.5
24.2士 0.2° 15.3
25.6士 0.2。 13.0
26.9士 0.2。 11.5 12、 权利要求 9 ~ 11中任一项所述 BMS-790052二苯磺酸盐 B晶型的制备方 法, 包括以下步骤: 将根据权利要求 8所述制备方法得到的 BMS-790052二苯磺 酸盐在水中形成悬浮液, 搅拌析晶, 得到所述 BMS-790052二苯磺酸盐 B晶型; 优选地, 所述 BMS-790052二苯磺酸盐 B晶型的制备方法在室温下进行; 优选地, 所述析晶的时间为 10~24小时;
优选地,所述 BMS-790052二苯磺酸盐与水的质量体积比为 15~30 mg: 1 mL。
13、 -790052—柠檬酸盐, 其结构式如下:
Figure imgf000049_0001
14、权利要求 13所述 BMS-790052—柠檬酸盐的制备方法,包括以下步骤: 形成 BMS-790052在可溶溶剂中的溶液, 加入种檬酸固体, BMS-790052与柠檬 酸的摩尔用量比为 1 : 1~1 : 1.5 , 混合形成浆液并搅拌, 进而分离固体, 得到所述 BMS-790052一柠檬酸盐;
优选地, 所述可溶溶剂为酮, 优选为 c3~c4酮, 更优选为丙酮;
优选地, 所述制备方法在室温下进行;
优选地, 所述搅拌的时间为 8~16小时;
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50毫克 /毫升; 优选地, 所述 BMS-790052与种檬酸的摩尔用量比为 1 : 1~1 : 1.1。
15、 一种权利要求 14所述的 BMS-790052—柠檬酸盐的无定型物。
16、 权利要求 15所述的 BMS-790052—柠檬酸盐无定型物, 其制备方法包 括以下步骤: 将根据权利要求 14所述制备方法得到的 BMS-790052—柠檬酸盐 在溶剂中形成悬浮液, 搅拌, 析出固体, 得到所述 BMS-790052—柠檬酸盐无定 型物, 其中所述溶剂选自酮、 酯、 醚或其混合物;
优选地, 所述酮为 C3~ C4酮, 优选为丙酮; 所述酯为 C3~ C5酯, 优选为乙 酸乙酯; 所述醚为 C4~ C6醚, 优选为曱基叔丁基醚;
优选地, 所述 BMS-790052—柠檬酸盐无定型物的制备方法在室温下进行; 优选地, 所述搅拌的时间为 24~72小时, 优选为 24~48小时;
优选地,所述 BMS-790052—柠檬酸盐与溶剂的质量体积比为 10~50 mg: lmL。 BMS-790052—乙 其结构式如下:
Figure imgf000050_0001
18、 权利要求 17所述 BMS-790052—乙醇酸盐的制备方法, 包括以下步骤: 形成 BMS-790052在可溶溶剂中的溶液, 加入乙醇酸固体, BMS-790052与乙醇 酸的摩尔用量比为 1 : 1~1 : 1.5 , 混合形成浆液并搅拌, 进而分离固体, 得到所述 BMS-790052—乙醇酸盐;
优选地, 所述可溶溶剂为酯, 优选为 C3~C5酯, 更优选为乙酸乙酯;
优选地, 所述制备方法在室温下进行;
优选地, 所述搅拌的时间为 8~16小时;
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50毫克 /毫升; 优选地, 所述 BMS-790052与乙醇酸的摩尔用量比为 1 : 1-1 : 1. L
19、 一种根据权利要求 17所述的 BMS-790052—乙醇酸盐的无定型物。
20、 权利要求 19所述的 BMS-790052—乙醇酸盐无定型物, 其制备方法包 括以下步骤: 将根据权利要求 18所述制备方法得到的 BMS-790052—乙醇酸盐 在溶剂中形成悬浮液, 搅拌, 析出固体, 得到所述 BMS-790052—乙醇酸盐无定 型物, 其中所述溶剂选自水、 醚或烷烃;
优选地,所述醚为 C4~C6醚,优选为曱基叔丁基醚;所述烷烃为 C6~ C7烷烃, 优选为正庚烷;
优选地, 所述 BMS-790052—乙醇酸盐无定型物的制备方法在室温下进行; 优选地, 所述搅拌的时间为 8~48小时, 优选为 8~16小时;
优选地,所述 BMS-790052—乙醇酸盐与溶剂的质量体积比为 10~50 mg: 1 mL。 21、 BMS-790052二扁桃酸盐, 其结构式如下:
Figure imgf000051_0001
22、 权利要求 21所述 BMS-790052二扁桃酸盐的制备方法, 包括以下步骤: 形成 BMS-790052在可溶溶剂中的溶液, 加入扁桃酸固体, BMS-790052与扁桃 酸的摩尔用量比为 1:2〜1:3, 混合形成浆液并搅拌, 进而分离固体, 得到所述 BMS-790052二扁 酸盐;
优选地, 所述可溶溶剂为酯, 优选为 c3~ c5酯, 更优选为乙酸乙酯; 优选地, 所述制备方法在室温下进行;
优选地, 所述搅拌的时间为 10~24小时, 优选为 10〜16小时;
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50 mg/mL;
优选地, 所述 BMS-790052与扁桃酸的用量摩尔比优选为 1:2〜1 :2.2。
23、 一种根据权利要求 21所述的 BMS-790052二扁桃酸盐的无定型物。
24、 权利要求 23所述的 BMS-790052二扁桃酸盐无定型物, 其制备方法包 括以下步骤: 将根据权利要求 22所述制备方法得到的 BMS-790052二扁桃酸盐 在溶剂中形成悬浮液, 搅拌, 析出固体, 得到所述 BMS-790052二扁桃酸盐无定 型物, 其中所述溶剂选自酮、 醚或烷烃;
优选地, 所述酮为 C3~C4酮, 优选为丙酮; 所述醚为 C4~C6醚, 优选为曱基 叔丁基醚; 所述烷烃为 C6〜 C7烷烃, 优选为正庚烷;
优选地, 所述 BMS-790052二扁 4兆酸盐无定型物的制备方法在室温下进行; 优选地, 所述搅拌的时间为 10〜48小时, 优选为 10〜16小时;
优选地,所述 BMS-790052二扁桃酸盐与溶剂的质量体积比为 10~50 mg: lmL。
25、 BMS-790052二对氯苯碩酸盐, 其结构式如下:
50
替换页 (细则第 26条)
26、权利要求 25所述 BMS-790052二对氯苯磺酸盐的制备方法, 包括以下步 骤: 形成 BMS-790052在可溶溶剂中的溶液体系, 加入对氯苯磺酸固体,
BMS-790052与对氯苯磺酸的摩尔用量比为 1 :2~1 :3 , 混合形成浆液并搅拌, 进而 分离固体, 得到所述 BMS-790052二对氯苯磺酸盐;
优选地, 所述可溶溶剂为醇, 优选为 d~ C4醇, 更优选为乙醇;
优选地, 所述制备方法在室温下进行;
优选地, 所述浆液的搅拌的时间为 10~24小时, 优选为 10~16小时; 优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50 毫克 /毫升; 优选地, 所述 BMS-790052与对氯苯磺酸的摩尔用量比为 1:2~1 :2.2。
27、 根据权利要求 25所述 BMS-790052二对氯苯磺酸盐, 其特征在于, 所述 BMS-790052二对氯苯磺酸盐为 BMS-790052二对氯苯磺酸盐 C晶型,其 X-射线 粉末衍射图在以下衍射角 2Θ处具有特征峰: 3.5±0.2。、 7.2士 0.2。、 10.1±0.2。、 19.2士 0.2。、 19.7士 0.2。和 20. 8士 0.2。。
28、根据权利要求 27所述 BMS-790052二对氯苯磺酸盐 C晶型,其特征在于, 其 X-射线粉末衍射图在以下衍射角 26处具有特征峰:3.5士0.2。、7.2士0.2。、10.1士0.2。、 10.7士 0.2。、 19.2士 0.2。、 19.7士 0.2。、 20.8士 0.2°和 21.4士 0.2。。
29、根据权利要求 28所述 BMS-790052二对氯苯磺酸盐 C晶型,其特征在于, 其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰及其相对强度:
衍射角 2Θ 相对强度 (1%)
3·5±0·2° 44.2
7·2±0·2° 100.0
10.1士 0.2° 12.7
10.7士 0.2° 10.1
19.2士 0.2° 16.0
19.7士 0.2° 13.1
20.8士 0.2° 34.0
21.4士 0.2° 14.2 30、 权利要求 27-29中任一项所述 BMS-790052二对氯苯磺酸盐 C晶型的制 备方法, 包括以下步骤: 将根据权利要求 26所述制备方法得到的 BMS-790052 二对氯苯磺酸盐在溶剂中形成悬浮液, 搅拌析晶, 得到所述 BMS-790052二对氯 苯磺酸盐 C晶型, 其中所述溶剂选自水、 醇、 醚或其混合物;
优选地, 所述醇为 d~ C3醇, 优选为乙醇; 所述醚为 C4~ C6醚, 优选为曱基 叔丁基醚;
优选地,所述 BMS-790052二对氯苯磺酸盐 C晶型的制备方法在室温下进行; 优选地, 所述析晶的时间为 10~24小时, 优选为 10~16小时;
优选地, 所述 BMS-7900522二对氯苯磺酸盐与溶剂的质量体积比为
10~30mg: lmL , 优选为 20~30mg: lmL。
31、 BMS-790052二乙二磺酸盐, 其结构式如下:
Figure imgf000053_0001
32、权利要求 31所述 BMS-790052二乙二磺酸盐的制备方法,包括以下步骤: 形成 BMS-790052在可溶溶剂中的溶液, 加入乙二磺酸固体, BMS-790052与乙 二磺酸的摩尔用量比为 1 :2~1 :3 , 混合形成浆液并搅拌, 进而分离固体, 得到所 述 BMS-790052二乙二磺酸盐;
优选地, 所述可溶溶剂为酮, 优选为 C3~ C4酮, 更优选为丙酮;
优选地, 所述制备方法在室温下进行;
优选地, 所述搅拌的时间为 10~24小时, 优选为 10~16小时;
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50 毫克 /毫升; 优选地, 所述 BMS-790052与乙二磺酸的摩尔用量比为 1 :2~1 :2.2。
33、 根据权利要求 31所述 BMS-790052二乙二磺酸盐, 其特征在于, 所述 BMS-790052二乙二磺酸盐为 BMS-790052二乙二磺酸盐 E晶型,其 X-射线粉末 衍射图在以下衍射角 2Θ处具有特征峰: 10.3士 0.2。、 11.4士 0.2。、 12.8士 0.2。、 15.3士 0.2。、 20.6士 0.2。和 22.9±0.2。。
34、 根据权利要求 33所述 BMS-790052二乙二磺酸盐 E晶型, 其特征在于, 其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰: 6.4士 0.2。、9.8士 0.2。、 10.3士 0.2。、 11.4士 0.2。、 12.8士 0.2。、 15.3士 0.2。、 16.1士 0.2。、 17.0士 0.2。、 19.1士 0.2。、 19.6士 0.2。、 20.6士 0.2。和 22.9士 0·2ο
35、 根据权利要求 34所述 BMS-790052二乙二礒酸盐 Ε晶型, 其特征在于, 其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰及其相对强度:
衍射角 2Θ 相对强度 (1%)
6.4士 0.2° 13.7
9.8士 0.2° 19.3
10.3士 0.2° 70.8
11.4士 0.2。 100.0
12.8士 0.2° 35.3
13.1士 0.2° 13.7
15.3士 0.2° 30.9
16.1士 0.2° 19.6
17.0士 0.2。 18.7
17.3士 0.2° 10.4
19.1士 0.2° 18.2
19.6士 0.2° 27.2
20.6士 0.2。 97.7
21.3士 0.2° 19.5
22.9士 0.2。 39.5
23.8士 0.2° 15.1
24·7±0·2° 24.3
25.3士 0.2° 15.3
26.1士 0.2° 17.6
36、 权利要求 33~35中任一项所述 BMS-790052二乙二礒酸盐 E晶型的制备 方法, 包括以下步骤: 将根据权利要求 32所述制备方法得到的 BMS-790052二 乙二礒酸盐在溶剂中形成悬浮液, 搅拌析晶, 得到所述 BMS-790052二乙二礒酸 盐 E晶型, 其中所述溶剂选自水、 酯、 酮、 醚或其混合物;
优选地, 所述酯为 C3~ C5酯, 优选为乙酸乙酯; 所述酮为 C3~ C4酮, 优选为 丙酮; 所述醚为 C4~ C6醚, 优选为曱基叔丁基醚;
优选地, 所述 BMS-790052二乙二礒酸盐 E晶型的制备方法在室温下进行; 优选地, 所述析晶的时间为 5~24小时, 优选为 5~10小时;
优选地, 所述 BMS-790052二乙二礒酸盐与溶剂的质量体积比为 10~30mg: lmL, 优选为 20~30mg: lmL。
37、 BMS-790052二 α-酮 -戊二酸盐, 其结构式如下:
Figure imgf000055_0001
38、 权利要求 37所述 BMS-790052二 α-酮-戊二酸盐的制备方法, 包括以下 步骤: 形成 BMS-790052在可溶溶剂中的溶液, 加入 α-酮-戊二酸固体,
BMS-790052与 α-酮-戊二酸的摩尔用量比为 1 :2~1 :3 , 混合形成浆液并搅拌, 进 而分离固体, 得到所述 BMS-790052二 α-酮 -戊二酸盐;
优选地, 所述可溶溶剂为酯, 优选为 C4~ C5酯, 更优选为乙酸乙酯; 优选地, 所述制备方法在室温下进行;
优选地, 所述搅拌的时间为 10~24小时, 优选为 10~16小时;
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50毫克 /毫升; 优选地, 所述 BMS-790052与 α-酮-戊二酸的用量摩尔比优选为 1:2~1 :2.2。
39、 根据权利要求 37所述 BMS-790052二 α-酮 -戊二酸盐, 其特征在于, 所 述 BMS-790052二 α-酮 -戊二酸盐为 BMS-790052二 α-酮-戊二酸盐 G晶型, 其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰: 8.4士 0.2。、9.4士 0.2。、 11.2士 0.2。、 14.0士 0.2。、 14.7士 0.2。和 19·1±0·2ο
40、 根据权利要求 39所述 BMS-790052二 α-酮-戊二酸盐 G晶型, 其特征在 于, 其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰: 8.4。士 0.2、 9.4士 0.2。、 11.2士 0·2ο、 12.0士 0·2ο、 14.0士 0·2ο、 14.7士 0·2ο、 17.7士 0·2ο、 18.3士 0·2ο、 19.1士 0·2ο、 19.5士 0.2。、 20.8士 0.2。和 22.0士 0.2。。
41、 根据权利要求 40所述的 BMS-790052二 α-酮-戊二酸盐 G晶型, 其特征 在于, 其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰及其相对强度: 衍射角 2Θ 相对强度(1%)
4.4士 0.2° 13.0
8.4士 0.2° 100.0
9.4士 0.2° 37.2
11.2士 0.2° 37.4
12.0士 0.2。 20.1
14.0士 0.2。 36.2
14.7士 0.2° 30.8
16.7士 0.2。 14.4
17.7士 0.2 25.6
18·3±0·2 15.9
18.7士 0.2 17.1
19·1±0·2 29.1
19.5士 0.2 20.6
20·3±0·2 21.1
20.8士 0.2 25.6
22.0士 0.2 18.0
23.0士 0.2 24.2
23.6士 0.2 10.6
24.5士 0.2 14.7
42、 权利要求 39-41中任一项所述 BMS-790052二 α-酮-戊二酸盐 G晶型的 制备方法, 包括以下步骤: 将根据权利要求 38所述制备方法得到的 BMS-790052 二 α-酮-戊二酸盐在酮或酯中形成悬浮液,搅拌析晶,得到所述 BMS-790052二 α- 酮-戊二酸盐 G晶型;
优选地, 所述酮为 C3~C4酮, 优选为丙酮; 所述酯为 C4~C6酯, 优选为乙酸 乙酯;
优选地,所述 BMS-790052二 α-酮-戊二酸盐 G晶型的制备方法在室温下进行; 优选地, 所述析晶的时间为 24~72小时, 优选为 24~48小时;
优选地, 所述 BMS-7900522二 α-酮-戊二酸盐与溶剂的质量体积比为
10~30mg: lmL, 优选为 20~30mg: lmL。
43、 BMS-7
Figure imgf000056_0001
44、 权利要求 43所述 BMS-790052二 1,5-萘二磺酸盐的制备方法, 包括以下 步骤:形成 BMS-790052在可溶溶剂中的溶液,加入 1,5-萘二磺酸四水合物固体, BMS-790052与 1,5-萘二磺酸四水合物的摩尔用量比为 1 :2~1 :3 , 混合形成浆液并 搅拌, 进而分离固体, 得到所述 BMS-790052二 1,5-萘二磺酸盐;
优选地, 其中所述可溶溶剂为醇, 优选为 d~ C3醇, 更优选为异丙醇; 优选地, 所述制备方法在室温下进行; 优选地, 所述搅拌的时间为 10~24小时, 优选为 10~16小时;
优选地, 所述 BMS-790052在醇类溶剂中的浓度为 10~50 毫克 /毫升; 优选地,所述 BMS-790052与 1,5-萘二磺酸四水合物的摩尔用量比为 1 :2~1 :2.2。
45、 根据权利要求 43所述 BMS-790052二 1,5-萘二磺酸盐, 其特征在于, 所 述 BMS-790052二 1,5-萘二礒酸盐为 BMS-790052二 1,5-萘二礒酸盐 Nd晶型,其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰: 4.7士 0.2。、 10.7士 0.2。、 10.9士 0.2。、 18.9士 0.2。、 19.2士 0.2。和 21.6士 0.2。。
46、 根据权利要求 45所述 BMS-790052二 1,5-萘二磺酸盐 Nd晶型, 其特征 在于,其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰: 4.7士 0.2。、 10.7士 0.2。、 10.9士 0.2°、 13.6士 0.2°、 15.7士 0.2°、 17.2士 0.2°、 18.9士 0.2°、 19.2士 0.2°、 20.1士 0.2。、 21.6士 0.2。、 22.0士 0.2。和 23.7士 0.2。。
47、 根据权利要求 46所述 BMS-790052二 1,5-萘二橫酸盐 Nd晶型, 其特征 在于, 其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰及其相对强度:
衍射角 2Θ 相对强度(1%)
4.7士 0.2。 100.0
10.7士 0.2。 56.5
10.9士 0.2。 30.7
13.6士 0.2。 14.8
15.7士 0.2° 10.5
16.4士 0.2。 10.6
17.2士 0.2° 12.8
18.9士 0.2。 28.2
19.2士 0.2° 32.3
20.1士 0.2° 16.3
21.6士 0.2。 47.0
22.0士 0.2。 18.3
23.7士 0.2。 25.5
24.3士 0.2° 18.6
48、权利要求 45~47中任一项所述 BMS-790052二 1,5-萘二橫酸盐 Nd晶型的 制备方法, 包括以下步骤: 将根据权利要求 44所述制备方法得到的 BMS-790052 二 1,5-萘二礒酸盐在醇或酮中形成悬浮液, 搅拌析晶, 得到所述 BMS-790052二 1,5-萘二磺酸盐 Nd晶型;
优选地, 所述醇为 d~ C3醇, 优选为乙醇或异丙醇; 所述酮为 C3~ C4酮, 优 选为丙酮;
优选地,所述 BMS-790052二 1,5-萘二礒酸盐 Nd晶型的制备方法在室温下进行; 优选地, 所述析晶的时间为 10~24小时, 优选为 10~16小时; 优选地, 所述 BMS-7900522 二 1,5-萘二磺酸盐与溶剂的质量体积比为 10~30mg: lmL, 优选为 20~30mg: lmL。
49、 BMS-790052二 2-萘磺酸盐, 其结构式如下:
Figure imgf000058_0001
50、权利要求 49所述 BMS-790052二 2-萘磺酸盐的制备方法,包括以下步骤: 形成 BMS-790052在可溶溶剂中的溶液, 加入 2-萘磺酸固体, 所述 BMS-790052 与 2-萘磺酸的摩尔用量比为 1 :2~1 :3 , 混合形成浆液并搅拌, 进而分离固体, 得 到所述 BMS-790052二 2-萘磺酸盐;
优选地, 所述可溶溶剂为醇, 优选为 d~ C3醇, 更优选为异丙醇;
优选地, 所述制备方法在室温下进行;
优选地, 所述搅拌的时间为 10~24小时, 优选为 10~16小时;
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50毫克 /毫升; 优选地, 所述 BMS-790052与 2-萘磺酸的摩尔用量比为 1 :2~1 :2.2。
51、 根据权利要求 49所述 BMS-790052二 2-萘磺酸盐, 其特征在于, 所述 BMS-790052二 2-萘磺酸盐为 BMS-790052二 2-萘磺酸盐 Ns晶型, 其 X-射线粉 末衍射图在以下衍射角 2Θ处具有特征峰: 6.3±0.2。、 10.9士 0.2。、 15.0士 0.2。和 20.1±0.2°。
52、根据权利要求 51所述 BMS-790052二 2-萘磺酸盐 Ns晶型,其特征在于, 其 X-射线粉末衍射图在以下衍射角 2Θ处具有特征峰及其相对强度:
衍射角 2Θ 相对强度(1%)
6.3士 0.2° 100.0
10.9士 0.2° 47.1
15·0±0·2° 38.8
20·1±0·2° 50.6 。
53、 权利要求 51-52中任一项所述 BMS-790052二 2-萘磺酸盐 Ns晶型的制 备方法, 包括以下步骤: 将根据权利要求 50所述制备方法得到的 BMS-790052 二 2-萘磺酸在醇或醚中形成悬浮液,搅拌析晶, 得到所述 BMS-790052二 2-萘磺 酸盐 Ns晶型;
优选地, 所述醇为 C2~ C3醇, 优选为乙醇或异丙醇; 所述醚为 C4~ C6醚, 优 选为曱基叔丁基醚;
优选地, 所述 BMS-790052二 2-萘磺酸盐 Ns晶型的制备方法在室温下进行; 优选地, 所述析晶的时间为 5~24小时, 优选为 5~12小时;
优选地, 所述 BMS-7900522二 2-萘磺酸盐与溶剂的质量体积比为
10~30mg:lmL , 优选为 20~30mg:lmL。
54、 BMS-790052三 酸盐, 其结构式如下:
Figure imgf000059_0001
55、 权利要求 54 所述 BMS-790052三盐酸盐的制备方法, 所述制备方法包 括以下步骤:形成 BMS-790052在可溶溶剂中的溶液体系,加入盐酸, BMS-790052 与盐酸的摩尔用量比为 1:3~1: 10, 混合形成浆液并搅拌, 进而分离固体, 得到所 述 BMS-790052三盐酸盐;
优选地, 所述可溶溶剂为酯, 更优选为 C3~ C5酯;
优选地, 所述制备方法在室温下进行;
优选地, 所述搅拌的时间为 3~10小时, 更优选为 3~5 小时;
优选地, 所述 BMS-790052在可溶溶剂中的浓度为 10~50 mg/mL;
优选地, 所述 BMS-790052与盐酸的摩尔用量比为 1:6~1 :10;
优选地, 所用盐酸的浓度范围为 0.1 -12 mol/L, 更优选为 6 ~12 mol/L。
56、 一种根据权利要求 54所述的 BMS-790052三盐酸盐的无定型物。
57、 权利要求 56所述的 BMS-790052三盐酸盐无定型物的制备方法, 包括 以下步骤: 将根据权利要求 55所述制备方法得到的 BMS-790052三盐酸盐在溶 剂中形成悬浮液, 搅拌, 析出固体, 得到所述 BMS-790052三盐酸盐无定型物, 其中所述溶剂选自醇、 酯或醚;
优选地, 所述烷烃为 C2~C3醇, 更优选为异丙醇;
优选地, 所述酯为 C3~C5酯, 更优选为乙酸乙酯;
优选地, 所述醚为 C4~C6醚, 更优选为曱基叔丁基醚;
优选地, 所述 BMS-790052三盐酸盐无定型物的制备方法在室温下进行; 优选地, 所述搅拌的时间为 8~48小时, 优选为 8~16小时;
优选地,所述 BMS-790052三盐酸盐与溶剂的质量体积比为 10~50mg: 1 mL。 58、 一种药物组合物, 包含治疗和 /或预防有效量的药物活性组分选自权利要 求 1所述 BMS-790052二对曱苯橫酸盐、权利要求 3~5中任一项所述 BMS-790052 二对曱苯橫酸盐一水合物晶型、 权利要求 7所述 BMS-790052二苯橫酸盐、 权利 要求 9~11中任一项所述 BMS-790052二苯礒酸盐 B晶型、 权利要求 13所述 BMS-790052一柠檬酸盐、 权利要求 15所述 BMS-790052—柠檬酸盐无定型物、 权利要求 17所述 BMS-790052—乙醇酸盐、 权利要求 19所述 BMS-790052—乙 醇酸盐无定型物、 权利要求 21所述 BMS-790052二扁桃酸盐、 权利要求 23所述 BMS-790052二扁桃酸盐无定型物、权利要求 25所述 BMS-790052二对氯苯礒酸 盐、权利要求 27-29中任一项所述 BMS-790052二对氯苯橫酸盐 C晶型、权利要 求 31所述 BMS-790052二乙二橫酸盐、权利要求 33~35中任一项所述 BMS-790052 二乙二橫酸盐 E晶型、 权利要求 37所述 BMS-790052二 α-酮 -戊二酸盐、 权利要 求 39~41中任一项所述 BMS-790052二 α-酮-戊二酸盐 G晶型、权利要求 43所述 BMS-790052二 1,5-萘二磺酸盐、 权利要求 45-47中任一项所述 BMS-790052二 1,5-萘二礒酸盐 Nd晶型、 权利要求 49所述 BMS-790052二 2-萘礒酸盐、 权利要 求 51、 52中任一项所述 BMS-790052二 2-萘橫酸盐 Ns晶型、 权利要求 54所述 BMS-790052三盐酸盐或权利要求 56所述 BMS-790052三盐酸盐无定型物, 以 及至少一种药学上可接受的载体。
59、 根据权利要求 58 所述的药物组合物, 其特征在于, 所述药物组合物选 自具有緩释作用的片剂、 颗粒剂、 散剂、 丸剂、 胶嚢剂、 溶液剂、 糖浆剂、 混悬 剂、 分散剂或乳剂。
60、 权利要求 1所述 BMS-790052二对曱苯橫酸盐、 权利要求 3~5中任一项 所述 BMS-790052二对曱苯礒酸盐一水合物晶型、 权利要求 7所述 BMS-790052 二苯磺酸盐、 权利要求 9~11中任一项所述 BMS-790052二苯橫酸盐 B晶型、 权 利要求 13所述 BMS-790052—柠檬酸盐、 权利要求 15所述 BMS-790052—柠檬 酸盐无定型物、 权利要求 17所述 BMS-790052—乙醇酸盐、 权利要求 19所述 BMS-790052—乙醇酸盐无定型物、 权利要求 21所述 BMS-790052二扁桃酸盐、 权利要求 23 所述 BMS-790052 二扁桃酸盐无定型物、 权利要求 25 所述 BMS-790052二对氯苯橫酸盐、 权利要求 27-29中任一项所述 BMS-790052二对 氯苯磺酸盐 C晶型、权利要求 31所述 BMS-790052二乙二磺酸盐、权利要求 33-35 中任一项所述 BMS-790052二乙二礒酸盐 E晶型、权利要求 37所述 BMS-790052 二 α-酮 -戊二酸盐、 权利要求 39~41中任一项所述 BMS-790052二 α-酮-戊二酸盐 G晶型、权利要求 43所述 BMS-790052二 1,5-萘二磺酸盐、权利要求 45-47中任 一项所述 BMS-790052二 1,5-萘二磺酸盐 Nd晶型、权利要求 49所述 BMS-790052 二 2-萘橫酸盐、 权利要求 51、 52 中任一项所述 BMS-790052二 2-萘橫酸盐 Ns 晶型、权利要求 54所述 BMS-790052三盐酸盐或权利要求 56所述 BMS-790052 三盐酸盐无定型物,在制备用于治疗和 /或预防丙型肝炎病毒感染的药物中的用途。
61、一种治疗和 /或预防丙型肝炎病毒感染的方法,所述方法包括给予需要的 患者治疗和 /或预防有效量的选自权利要求 1所述 BMS-790052二对曱苯橫酸盐、 权利要求 3~5中任一项所述 BMS-790052二对曱苯橫酸盐一水合物晶型、权利要 求 7所述 BMS-790052二苯橫酸盐、 权利要求 9~11 中任一项所述 BMS-790052 二苯橫酸盐 B晶型、权利要求 13所述 BMS-790052—柠檬酸盐、权利要求 15所 述 BMS-790052—柠檬酸盐无定型物、 权利要求 17所述 BMS-790052—乙醇酸 盐、 权利要求 19 所述 BMS-790052 —乙醇酸盐无定型物、 权利要求 21 所述 BMS-790052二扁桃酸盐、 权利要求 23所述 BMS-790052二扁桃酸盐无定型物、 权利要求 25所述 BMS-790052二对氯苯礒酸盐、 权利要求 27-29中任一项所述 BMS-790052二对氯苯礒酸盐 C晶型、 权利要求 31所述 BMS-790052二乙二礒 酸盐、权利要求 33~35中任一项所述 BMS-790052二乙二橫酸盐 E晶型、权利要 求 37 所述 BMS-790052 二 α-酮 -戊二酸盐、 权利要求 39~41 中任一项所述 BMS-790052二 α-酮-戊二酸盐 G晶型、 权利要求 43所述 BMS-790052二 1,5-萘 二 酸盐、 权利要求 45-47中任一项所述 BMS-790052二 1,5-萘二磺酸盐 Nd晶 型、 权利要求 49所述 BMS-790052二 2-萘橫酸盐、 权利要求 51、 52中任一项所 述 BMS-790052二 2-萘礒酸盐 Ns晶型、 权利要求 54所述 BMS-790052三盐酸 盐、权利要求 56所述 BMS-790052三盐酸盐无定型物或权利要求 58、 59中任一 项所述的药物组合物。
PCT/CN2014/071020 2014-01-21 2014-01-21 一种化合物的盐及晶型或无定型物、其制备方法、含有它们的药物组合物和用途 WO2015109445A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/071020 WO2015109445A1 (zh) 2014-01-21 2014-01-21 一种化合物的盐及晶型或无定型物、其制备方法、含有它们的药物组合物和用途
CN201480009595.5A CN105073740B (zh) 2014-01-21 2014-01-21 一种化合物的盐及晶型或无定型物、其制备方法、含有它们的药物组合物和用途
CN201610661880.6A CN106279121B (zh) 2014-01-21 2014-01-21 一种化合物的盐及晶型或无定型物、其制备方法、含有它们的药物组合物和用途
CN201610664633.1A CN106279122A (zh) 2014-01-21 2014-01-21 一种化合物的盐及晶型或无定型物、其制备方法、含有它们的药物组合物和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/071020 WO2015109445A1 (zh) 2014-01-21 2014-01-21 一种化合物的盐及晶型或无定型物、其制备方法、含有它们的药物组合物和用途

Publications (1)

Publication Number Publication Date
WO2015109445A1 true WO2015109445A1 (zh) 2015-07-30

Family

ID=53680561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071020 WO2015109445A1 (zh) 2014-01-21 2014-01-21 一种化合物的盐及晶型或无定型物、其制备方法、含有它们的药物组合物和用途

Country Status (2)

Country Link
CN (3) CN106279122A (zh)
WO (1) WO2015109445A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105153128A (zh) * 2015-10-15 2015-12-16 上海众强药业有限公司 一种合成达卡他韦中间体的新方法
CN105566303A (zh) * 2016-01-25 2016-05-11 上海众强药业有限公司 达卡他韦新晶型及其制备方法
WO2016102979A1 (en) * 2014-12-26 2016-06-30 Cipla Limited Polymorphic forms of methyl((1s)-1-(((2s)-2-(5-(4'-(2-((2s)-1-((2s)-2-((methoxycarbonyl)amino)-3-methylbutanoyl)-2-pyrrolidinyl)-1h-imidazol-5-yl)-4-biphenylyl)-1h-imidazol-2-yl)-1-pyrrolidinyl) carbonyl)-2-methylpropyl)carbamate and salts thereof
CN106188016A (zh) * 2016-07-04 2016-12-07 福建广生堂药业股份有限公司 盐酸达卡他韦的二水合物及其制备方法
WO2016192691A1 (en) * 2015-05-29 2016-12-08 Zentiva, K.S. Solid forms of daclatasvir
WO2017021904A1 (en) * 2015-08-03 2017-02-09 Laurus Labs Private Limited Daclatasvir free base and process for the preparation thereof
WO2020001089A1 (zh) * 2018-06-28 2020-01-02 北京凯因格领生物技术有限公司 一种结晶性氨基甲酸甲酯类化合物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2019000858A (es) * 2016-07-22 2019-11-11 Medshine Discovery Inc Cristal y sal de nitroimidazol y metodo de fabricacion de los mismos.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558059A (zh) * 2006-08-11 2009-10-14 百时美施贵宝公司 丙型肝炎病毒抑制剂
CN101778841A (zh) * 2007-08-08 2010-07-14 百时美施贵宝公司 用于合成用于治疗丙型肝炎的化合物的方法
CN101778840A (zh) * 2007-08-08 2010-07-14 百时美施贵宝公司 ((1s)-1-(((2s)-2-(5-(4’-(2-((2s)-1-((2s)-2-((甲氧羰基)氨基)-3-甲基丁酰基)-2-吡咯烷基)-1h-咪唑-5-基)-4-联苯基)-1h-咪唑-2-基)-1-吡咯烷基)羰基)-2-甲基丙基)氨基甲酸甲酯二盐酸盐的晶型
WO2013028953A1 (en) * 2011-08-24 2013-02-28 Glaxosmithkline Llc Combination treatments for hepatitis c

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558059A (zh) * 2006-08-11 2009-10-14 百时美施贵宝公司 丙型肝炎病毒抑制剂
CN101778841A (zh) * 2007-08-08 2010-07-14 百时美施贵宝公司 用于合成用于治疗丙型肝炎的化合物的方法
CN101778840A (zh) * 2007-08-08 2010-07-14 百时美施贵宝公司 ((1s)-1-(((2s)-2-(5-(4’-(2-((2s)-1-((2s)-2-((甲氧羰基)氨基)-3-甲基丁酰基)-2-吡咯烷基)-1h-咪唑-5-基)-4-联苯基)-1h-咪唑-2-基)-1-吡咯烷基)羰基)-2-甲基丙基)氨基甲酸甲酯二盐酸盐的晶型
WO2013028953A1 (en) * 2011-08-24 2013-02-28 Glaxosmithkline Llc Combination treatments for hepatitis c

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016102979A1 (en) * 2014-12-26 2016-06-30 Cipla Limited Polymorphic forms of methyl((1s)-1-(((2s)-2-(5-(4'-(2-((2s)-1-((2s)-2-((methoxycarbonyl)amino)-3-methylbutanoyl)-2-pyrrolidinyl)-1h-imidazol-5-yl)-4-biphenylyl)-1h-imidazol-2-yl)-1-pyrrolidinyl) carbonyl)-2-methylpropyl)carbamate and salts thereof
US10300044B2 (en) 2014-12-26 2019-05-28 Cipla Limited Polymorphic forms of methyl((1S)-1-(((2S)-2-(5-(4′-(2-((2S)-1-((2S)-2-((methoxycarbonyl)amino)-3-methylbutanoyl)-2-pyrrolidinyl)-1H-imidazol-5-yl)-4-biphenylyl)-1H-imidazol-2-yl)-1-pyrrolidinyl)carbonyl)-2-methylpropyl)carbamate and salts thereof
WO2016192691A1 (en) * 2015-05-29 2016-12-08 Zentiva, K.S. Solid forms of daclatasvir
WO2017021904A1 (en) * 2015-08-03 2017-02-09 Laurus Labs Private Limited Daclatasvir free base and process for the preparation thereof
CN105153128A (zh) * 2015-10-15 2015-12-16 上海众强药业有限公司 一种合成达卡他韦中间体的新方法
CN105566303A (zh) * 2016-01-25 2016-05-11 上海众强药业有限公司 达卡他韦新晶型及其制备方法
WO2017128837A1 (zh) * 2016-01-25 2017-08-03 上海众强药业有限公司 达卡他韦新晶型及其制备方法
CN106188016A (zh) * 2016-07-04 2016-12-07 福建广生堂药业股份有限公司 盐酸达卡他韦的二水合物及其制备方法
WO2020001089A1 (zh) * 2018-06-28 2020-01-02 北京凯因格领生物技术有限公司 一种结晶性氨基甲酸甲酯类化合物

Also Published As

Publication number Publication date
CN106279121A (zh) 2017-01-04
CN106279121B (zh) 2019-05-24
CN106279122A (zh) 2017-01-04
CN105073740B (zh) 2017-06-27
CN105073740A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2015109445A1 (zh) 一种化合物的盐及晶型或无定型物、其制备方法、含有它们的药物组合物和用途
RU2652121C2 (ru) Многокомпонентная кристаллическая система, содержащая нилотиниб и выбранные сокристаллообразователи
CN104736526A (zh) 沃替西汀盐及其晶体、它们的制备方法、药物组合物和用途
JP6501773B2 (ja) 結晶形態のダサチニブの塩
RU2613555C2 (ru) Моногидратный кристалл калиевой соли фимасартана, способ его получения и содержащая его фармакологическая композиция
JP6678711B2 (ja) マルトール第二鉄の結晶形態
WO2015139591A1 (zh) 德罗格韦钠盐的晶型及其制备方法
CA3035124A1 (en) Polymorphic form of kinase inhibitor compound, pharmaceutical composition containing same, and preparation method therefor and use thereof
WO2015054804A1 (zh) 恩杂鲁胺的固态形式及其制备方法和用途
WO2014166337A1 (zh) 替卡格雷晶型及其制备方法和用途
WO2016155670A1 (zh) 一种cdk抑制剂和mek抑制剂的共晶及其制备方法
JP2020508337A (ja) バルベナジン塩の結晶形態
WO2010060387A1 (zh) 硝克柳胺化合物五种晶型、其制法和其药物组合物与用途
WO2014194795A1 (zh) 吲哚酮化合物或其衍生物及其用途
JP6779972B2 (ja) 呼吸器合胞体ウイルス(rsv)感染症の処置のためのn−[(3−アミノ−3−オキセタニル)メチル]−2−(2,3−ジヒドロ−1,1−ジオキシド−1,4−ベンゾチアゼピン−4(5h)−イル)−6−メチル−4−キナゾリンアミンの結晶形
WO2015003571A1 (zh) 达拉菲尼甲磺酸盐的新晶型及其制备方法
WO2019200502A1 (zh) 玻玛西尼甲磺酸盐晶型及其制备方法和药物组合物
JP6392330B2 (ja) ポリペプチドワクチンの塩及びその製造方法と該塩を含有する医薬製品
WO2015096119A1 (zh) 氯卡色林盐及其晶体、其制备方法和用途
WO2014169770A1 (zh) 达拉菲尼的晶型及其制备方法和用途
WO2020156150A1 (zh) 泊马度胺前体药物盐的多晶型物
WO2024056079A1 (zh) 内匹司他酸加成盐的多晶型及其制备方法和用途
WO2015109925A1 (zh) 丙型肝炎药物的晶型及其制备方法、其药物组合物和用途
WO2024120438A1 (zh) 一种固体分散体、其制备方法和应用
JP2018510173A (ja) トピロキソスタットの新規結晶形及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009595.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880144

Country of ref document: EP

Kind code of ref document: A1