WO2014166337A1 - 替卡格雷晶型及其制备方法和用途 - Google Patents

替卡格雷晶型及其制备方法和用途 Download PDF

Info

Publication number
WO2014166337A1
WO2014166337A1 PCT/CN2014/074088 CN2014074088W WO2014166337A1 WO 2014166337 A1 WO2014166337 A1 WO 2014166337A1 CN 2014074088 W CN2014074088 W CN 2014074088W WO 2014166337 A1 WO2014166337 A1 WO 2014166337A1
Authority
WO
WIPO (PCT)
Prior art keywords
ticagrelor
crystal
solvent
water
temperature
Prior art date
Application number
PCT/CN2014/074088
Other languages
English (en)
French (fr)
Inventor
胡晨阳
盛晓霞
盛晓红
Original Assignee
杭州领业医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州领业医药科技有限公司 filed Critical 杭州领业医药科技有限公司
Priority to CN201480001185.6A priority Critical patent/CN104284897B/zh
Publication of WO2014166337A1 publication Critical patent/WO2014166337A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • This application relates to the field of medicinal chemical crystallization technology. More specifically, the present application relates to crystalline forms of ticagrelor, and methods of making and using same. Background technique
  • Ticagrelor is (l S,2S,3R,5S)-3-[7-[(lR,2S)-2-(3,4-difluorophenyl)cyclopropylamino]- 5-(Procarbyl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-3-yl]-5-(2-hydroxyethoxy)cyclopentane-1,2 -
  • ticagrelor is a selective anticoagulant and the first reversible binding P2Y12 adenosine diphosphate receptor (ADP) antagonist.
  • ADP adenosine diphosphate receptor
  • Ticagrelor reversibly acts on the ⁇ 2 receptor subtype P2Y12 on vascular smooth muscle cells (VSMC), which has a significant inhibitory effect on platelet aggregation induced by ADP, and has a rapid onset of action after oral administration, which can effectively improve the acute crown.
  • VSMC vascular smooth muscle cells
  • WO 99/05143 discloses the structural formula of ticagrelor and its synthesis method.
  • WO 01/92262 A1 discloses four crystal forms and an amorphous form of ticagrelor. The preparation process of the amorphous ticagrelor is generally difficult to control, and the stability and fluidity are inferior to those of the crystalline form, and it is not suitable for direct application on a formulation.
  • Form I disclosed in WO 01/92262 A1 is a high temperature stable form whose differential scanning calorimetry curve begins to melt in the range of 146 ° C to 152 ° C when it is substantially pure and substantially anhydrous.
  • the melting start of Form II is in the range of 136 ° C to 139 ° C, which is about 137.5 ° C when it is substantially pure and substantially anhydrous;
  • the melting start of Form III is at 127 In the range of °C ⁇ 132 °C, it is about 132 °C when it is substantially pure and substantially anhydrous;
  • the typical temperature at which the melting of Form IV begins is 139 °C.
  • the melting points of these crystal forms are all below 152 ° C, and the range in which the melting starts is very different.
  • the present application relates to a ticagrelor crystal of high purity, thermodynamic stability and suitable for formulation applications, and provides a novel process for the preparation of said crystals suitable for industrial production.
  • the present application provides a ticagre crystal having an X-ray powder diffraction at a diffraction angle of 2 ⁇ of 5.3 ° ⁇ 0.1, 9.6 ° ⁇ 0.1, 10.9 ° ⁇ 0.1, 13.9 ° ⁇ 0.1, 14.0 ° ⁇ 0.1, 15.7 ° ⁇ 0.1, 21.0° ⁇ 0.1, 21.3 ° ⁇ 0.1, 26.3 ° ⁇ 0.1 and 27.8 ° ⁇ 0.1 have characteristic peaks, and the differential scanning calorimetry curve of the crystal has a melting onset temperature of 154 ° C to 164 ° C, and Has a good particle morphology.
  • the DSC shows it as an anhydrous crystal, hereinafter referred to as "Ticagre crystal form V".
  • the X-ray powder diffraction of ticagrelor Form V is at a diffraction angle of 2 ⁇ 5.3 ° ⁇ 0.1, 9.6 ° ⁇ 0.1, 10.5 ° ⁇ 0.1, 10.9 ° ⁇ 0.1, 13.2 ° ⁇ 0.1, 13.9 ° ⁇ 0.1, 14.0° ⁇ 0.1, 15.3° ⁇ 0.1, 15.7° ⁇ 0.1, 18.4° ⁇ 0.1, 18.8° ⁇ 0.1, 21.0° ⁇ 0.1, 21.3° ⁇ 0.1, 22.5° ⁇ 0.1, 23.
  • the crystal size analyzer (PSD) pattern of the crystal shows that the crystal particles have a median volume diameter D 5 () of at least 5 ⁇ m, and the average particle diameter of the crystal particles of 10% of the total particle volume is at least 0.5 ⁇ m. And / or the average diameter D 9Q of the crystal particles occupying 90% of the total particle volume is at least 30 ⁇ .
  • a typical example of the Ticagre form V of the present application has an XRD pattern as shown in FIG. 2, a DSC pattern shown in FIG. 3, a PLM map shown in FIG. 4, and a PLM map shown in FIG. Particle size distribution map.
  • the temperature at which the ticagrelor crystal form V of the present application begins to melt is between 154 ° C and 164 ° C, relative to the crystal form I of the highest melting point of ticagrelor disclosed in the prior art (melting start temperature 149 152 ° C) , has better thermal stability, and has a better particle morphology, so it has better fluidity and is more suitable for formulation applications.
  • the melting peak of the crystal form on the DSC is sharper than the melting peak of the crystal form I disclosed in the prior art, and the purity is also higher, and can be used to obtain a purer product by the preparation method thereof.
  • the present application provides a method for preparing the crystal of ticagrelor, the method comprising: dissolving or suspending a ticagrelide solid in a solvent to form a solution or suspension, and crystallization under crystallization conditions, wherein Wherein the ticagrele solid and the solvent are used in an amount of from 1 to 40 mg of ticagrelor solid per ml of solvent, the solvent being selected from the group consisting of i) containing C 4 -C 12 alkyl ether; ii) C-wide C 4 alkanol And a mixture of one or more selected from the group consisting of water, c 4 ⁇ c 12 alkyl ether and c 5 ⁇ c 16 alkane.
  • the solvent is further selected from the group consisting of acetone and water.
  • the ticagrelor crystal V is lysed at a temperature of from -10 ° C to 50 ° C; preferably from 4 ° C to 35 ° C; more preferably room temperature.
  • the alkyl ether is selected from the group consisting of isopropyl ether and methyl tert-butyl ether.
  • d ⁇ C 4 alkanol is selected from methanol and ethanol.
  • the C 5 -Ci6 alkane is selected from the group consisting of hexane and heptane.
  • the solvent in which the ticagrelor crystal V is dissolved or suspended is a mixture of methanol and water or a mixture of ethanol and water.
  • the volume ratio of methanol to water is 1:0.5 to 1:1.25.
  • the volume ratio of ethanol to water is from 1:3.3 to 1:10.
  • the volume ratio of acetone to water is 1: 1.5 1 : 8.
  • D 1Q ( ⁇ ) represents the average diameter of particles below the diameter of 10% of the total particle volume
  • D 50 ( ⁇ ) is the median volume diameter, ie the average diameter of the particles which are 50% of the total particle volume
  • the average diameter D 1Q of the crystal particles of 10% of the total particle volume may be at least about 0.5 ⁇ m, such as about 0.5 to 15 ⁇ m and/or
  • the crystal particles may have a median volume diameter D 5Q of at least about 5 ⁇ m, such as about 5 to 50 ⁇ m and/or an average diameter D90 of the crystal particles of 90% of the total particle volume, which may be at least about 30 ⁇ m, such as about 30 to 120 ⁇ m. .
  • a single solvent e.g., isopropyl ether
  • the solvent is easily recovered, the cost is low, the boiling point of the solvent is low, easy to remove, solvent residue is reduced, solvate or hydrate formation is prevented, and formation is facilitated.
  • a stable single crystal form e.g., isopropyl ether
  • a mixed solvent of ethanol and water in which the solvent cost is low, the solvent has a low boiling point, is easily removed, reduces solvent residue, prevents formation of solvates or hydrates, and facilitates formation of a stable single crystal form.
  • solvate may appear during the crystallization process, and the solvate will become the ticagrelor crystal form V after drying and desolvation.
  • the crystallization process of the solid suspension of the present application is:
  • the solid suspension of ticagrelor used for crystallization is crystallographically unstable in the solvent and will transition to more stable other crystal forms.
  • the more stable crystal form energy is lower and the solubility is smaller, so the unstable crystal form will continue to dissolve into the solution, and then the solute will precipitate in a more stable crystal form, and the process will continue until the crystal All types change. Seed crystals can be selectively added to the system.
  • the crystallization process of the solution of the present application is: the solid of ticagrelor for crystallization is dissolved in a solvent, and then the ticagrelor molecule dissolved in the solution is added by adding another solvent, evaporating the solvent or lowering the temperature. Crystallization occurs, and this process continues until most of the sample is precipitated. Seed crystals can be selectively added to the system.
  • the ticagrelor solid suspension refers to a solid-liquid mixture system containing ticagrelor solids (amorphous or crystalline), so the solution is a saturated solution.
  • the ticagrele solid solution refers to a solution system in which the ticagrelor molecule is contained, and thus the solution is a saturated solution or an unsaturated solution.
  • the ticagrelor solid suspension or solution may be at -10 ° C to 70 ° C, preferably 4 ° C to 50 ° C, more preferably room temperature, dispersing or dissolving the ticagrelor It is obtained directly in the above solvent. For example, at the above temperature, a suitable amount of solvent is added to form a suspension solution or solution.
  • the solid suspension or solution of ticagrelor can be suspended by succoli solids at -10 ° C to 60 ° C, preferably 4 ° C to 35 ° C, more preferably at room temperature. Or obtained by dissolving in the corresponding solvent.
  • seed crystals of Formogrel Form V are added to the resulting solution or suspension.
  • the ticagrelor solid suspension or solution of the ticagrelor in the present application may be derived from the amorphous form of ticagrelor, the uncrystallized form, the hydrate, the solvate, and any combination thereof.
  • the ticagrelor solid suspension or solution of ticagrelor is derived from an amorphous ticagrelor. In certain embodiments, the ticagrelor solid suspension or solution of ticagrelor is derived from ticagrelor Form I. In other embodiments, the ticagrelor in a solid suspension or solution of ticagrelor is derived from ticagrelor form III. In other embodiments, the ticagrelor solid suspension or solution of ticagrelor is derived from a mixture of ticagrelor Form I, Form II and Form III.
  • Ticagrelor can be prepared according to any of the methods of the prior art.
  • Ticagrelor amorphous, Form I, Form II and Form III can be prepared according to the method of WO 01/92262 A1.
  • Form I can be prepared according to the method of Example 1 of Patent WO 01/92262 A1, see Comparative Example 1.
  • the DSC spectrum of Form I is shown in Figure 4.
  • the precipitated crystals are separated from the solution. Separation can be carried out by any conventional separation method known in the art, such as filtration or centrifugation. Then, the separated solid is washed, and the solvent used for washing may be selected from the group consisting of d-C 4 alkanol, ether, water, heptane and any combination thereof (when the washing solvent contains methanol or ethanol, the content thereof does not exceed crystallization)
  • the solvent content of the solvent in the solution then dried (eg vacuum drying), the drying temperature is At 20 ° C ⁇ 60 ° C, you can get the ticagrelor crystal form.
  • the method of separation is preferably filtration or centrifugation.
  • the drying temperature is 30 °C ⁇ 60 °C.
  • the crystalline forms described in this application can be subjected to a drying step. Drying can be carried out at room temperature or higher.
  • the crystalline material can be dried at a temperature of from 20 ° C to about 60 ° C or to 40 ° C or to 50 ° C.
  • the drying time is not particularly limited and can be easily determined by those skilled in the art based on actual conditions. Drying can span from 2 hours to 48 hours, or overnight. Drying can be carried out in a fume hood, a forced air oven or a vacuum oven.
  • “Overnight” refers to the time that this step spans the night, and there is no active observation of the experimental phenomenon during the overnight period. This time can be 8 ⁇ 22 hours, or 10 ⁇ 18 hours, usually 16 hours. "Room temperature” refers to 10 °C ⁇ 30 °C.
  • melting start temperature is defined as the point on the DSC map that has changed significantly from the baseline.
  • Peak temperature is defined as the apex of an endothermic or exothermic peak on a DSC map.
  • the method of the present application has the advantages of simple process, low-temperature crystallization, mild reaction conditions, no need to react under high temperature conditions for a long time, and only needs to be crystallized at room temperature to obtain crystal-free V, and the yield is increased to 85% or more, and the cost is increased. Reduced, more conducive to industrial production.
  • the process operation can be simplified, and a single crystal form of ticagrelor crystal form V can be obtained in high yield.
  • the ticagrelor form V prepared by the method of the present invention is stable within the experimental conditions described herein and does not undergo interconversion between crystal forms.
  • the present application also provides a pharmaceutical composition
  • a pharmaceutical composition comprising ticagrelor Form V, and at least one pharmaceutically acceptable carrier.
  • compositions of the present application may be in a solid or liquid state. If the pharmaceutical composition is in a liquid state, the above-mentioned ticagrelor form V remains as a solid in the liquid composition, for example as a suspension.
  • the ticagrelor form V of the present application is a pure, single crystal form of ticagrelor, without mixing any other crystal form.
  • the "single crystal form of ticagrelor” refers to a ticagrelor crystal form which is a single crystal form by X-ray powder diffraction.
  • crystal or “crystal form” refers to the X-ray diffraction pattern characterization as shown.
  • Those skilled in the art will understand that the physicochemical properties discussed herein can be characterized.
  • the intermediate experimental error depends on the instrument's conditions, sample preparation sample purity.
  • X-ray diffraction patterns are generally known to vary with the conditions of the instrument.
  • the relative intensity of the X-ray diffraction pattern may also vary with experimental conditions.
  • the experimental error of the peak angle is usually 5% or less, and the error of these angles should also be taken into account.
  • the X-ray diffraction pattern of one crystal form in the present application need not be exactly identical to the X-ray diffraction pattern in the examples referred to herein. Any crystal form having substantially the same or similarity as these maps is within the scope of the present application. An experienced person is able to compare the maps listed in this application with a map of an unknown crystal form to verify whether the two sets of spectra reflect the same or different crystal forms.
  • the pharmaceutically acceptable carriers described herein include, but are not limited to, diluents such as starch, pregelatinized starch, lactose, powdered cellulose, microcrystalline cellulose, calcium hydrogen phosphate, tricalcium phosphate, mannitol, sorbus Alcohol, sugar, etc.; binders such as acacia, guar, gelatin, polyvinylpyrrolidone, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyethylene glycol, etc.; disintegrants, such as starch, Sodium starch glycolate, pregelatinized starch, crospovidone, croscarmellose sodium, colloidal silica, etc.; lubricants such as stearic acid, magnesium stearate, zinc stearate, benzene Sodium formate, sodium acetate, etc.; a glidant such as colloidal silica; a complex forming agent such as various grades of cyclodextrin and a resin;
  • the ticagrelor amorphous form V prepared by the method of the present invention is suitable for preparation into various dosage forms.
  • it can be formulated into: solid oral dosage forms, including powders, granules, pills, tablets, and capsules; liquid oral dosage forms, including syrups, suspensions, dispersions, and emulsions; injectable preparations, including solutions, dispersions, and Lyophilized composition.
  • the formulation may be adapted for rapid release, delayed release or modified release of the active ingredient. It may be a conventional, dispersible, chewable, orally dissolved or rapidly melted formulation. Routes of administration include oral, intravenous, subcutaneous, transdermal, rectal, nasal, and the like.
  • the pharmaceutical composition can be formulated into an oral preparation, and the oral preparation includes, but is not limited to, any one of a tablet, a capsule, a granule, a powder, a chewable tablet, a buccal tablet, an effervescent tablet, and an effervescent granule.
  • the active ingredient ticagrelor has a unit dosage of 25 mg, 50 mg and 100 mg.
  • the tablets may be presented as uncoated, film coated, sugar coated, powder coated, enteric coated or modified release coated, which provides taste barrier and additional stability to the final tablet.
  • the film coating component may comprise: a mixture of hydroxypropylcellulose and hydroxypropylmethylcellulose, or polyethylene Mixtures of enol and polyethylene glycol, which may contain titanium dioxide and/or other colorants, and/or plasticizers, dispersants, antioxidants, and the like; or other suitable quick release film coating agents.
  • Commercial film coatings are available in Opadry®.
  • the pharmaceutical composition can be prepared using methods well known to those skilled in the art in the art.
  • the ticagrelor anhydrous Form V prepared by the method of the present invention is admixed with one or more pharmaceutically acceptable carriers, optionally with one or more other active ingredients.
  • the solid preparation can be prepared by a process such as direct mixing, dry granulation, or the like.
  • a further aspect of the present application provides a method of treating a reduction in the occurrence of a thrombotic event in a patient with acute coronary syndrome (ACS) comprising administering to the patient a therapeutically effective amount of ticagrelor Form V or a pharmaceutical composition as described above.
  • ACS acute coronary syndrome
  • the application provides a pharmaceutical composition comprising a therapeutically effective amount of ticagrelor crystals disclosed herein and at least one pharmaceutically acceptable carrier.
  • the application provides the use of the ticagrelor crystals and the pharmaceutical composition for the manufacture of a medicament for reducing arterial thrombosis in a patient with acute coronary syndrome (ACS).
  • ACS acute coronary syndrome
  • the application provides the use of the ticagrelor crystals and the pharmaceutical composition for the manufacture of a medicament for preventing growth and spread of a tumor.
  • the present application is directed to a method of reducing arterial thrombosis in a patient with acute coronary syndrome (ACS) comprising administering to the patient a therapeutically effective amount of a ticagrelor crystal or pharmaceutical composition disclosed herein.
  • ACS acute coronary syndrome
  • Figure 1 shows the DSC spectrum of Preparation 1 Ticagrelor Form I.
  • Figure 2 is an X-ray powder diffraction pattern of ticagrelor Form V prepared in accordance with the present invention.
  • Figure 3 shows the DSC spectrum of Example 1 ticagrelor Form V.
  • Figure 4 shows the PLM map of Example 1 ticagrelor Form V.
  • Figure 5 shows the DSC spectrum of Example 3 ticagrelor Form V.
  • Figure 6 shows the particle size distribution map of the ticagrelor crystal form V of Example 1.
  • Fig. 7 shows a particle size distribution map of the ticagrelor crystal form V of Example 3.
  • the X-ray powder diffraction (XRPD) instrument used was a Bmker D8 Advance Diffractometer equipped with a ⁇ -2 ⁇ goniometer, a Mo monochromator, and a Lynxeye detector.
  • the acquisition software is Diffrac Plus XRPD Commander.
  • the instrument is calibrated with the standard (usually corundum) supplied with the instrument before use.
  • the detection conditions are: 2 ⁇ Scan angle range 3 ⁇ 40°, step size 0.02°, speed 0.2 sec/step.
  • Detection process Ka X-ray with a copper target wavelength of 1.54 nm was used. Under the operating conditions of 40 kV and 40 mA, the sample was tested at room temperature, and the sample to be tested was placed on a non-reflecting plate.
  • the differential thermal analysis (DSC) data was taken from the TA Instruments Q200 MDSC, the instrument control software was Thermal Advantage, and the analysis software was Universal Analysis. Usually take 1 ⁇ 10 mg of sample and place it in aluminum crucible with capping (unless otherwise specified). Raise the sample from room temperature under the protection of 40 mL/min dry N 2 at a heating rate of 10 °C/min. Up to 200 ° C or 250 ° C.
  • the polarized light microscope (; PLM) pattern was taken from an XP-500E polarized light microscope (Shanghai Changfang Optical Instrument Co., Ltd.). Take a small amount of powder sample on the glass slide, add a small amount of mineral oil to better disperse the powder sample, cover the cover glass, and then place the sample on the XP-500E polarized light microscope (Shanghai Changfang Optical Instrument Co., Ltd.) On the stage, select the appropriate magnification to observe the shape of the sample and take a picture.
  • PLM polarized light microscope
  • D 10 represents the average diameter of the particles below 10% of the total particle volume below the diameter
  • D 5 () is the median volume diameter
  • ie the average diameter of the particles accounting for 50% of the total particle volume
  • D 90 is The average diameter of the particles below the diameter that is 90% of the total particle volume.
  • High performance liquid chromatography (HPLC) analysis data was taken from Agilent 1260 and chemical workstation was B.04.
  • the corresponding parameters are as follows: C18, 5 ⁇ , 250*4.6 mm column, column temperature 25 ° C, flow rate 1.0 mL / min; wavelength 254 nm; injection volume 50 ⁇ ⁇ ; mobile phase A: lmL formic acid +1000 mL H 2 0; mobile phase B: acetonitrile; run time is 70 minutes.
  • the gradient elution was performed according to the following table.
  • ticagrelor amorphous form and crystalline form I are prepared according to the method of WO 01/92262 A1, as follows:
  • ticagrelor 250 mg was amorphous, and 105 mL (0.05:1) of ethanol/isopropyl ether mixed solution was added to obtain a solid suspension.
  • the solid suspension was stirred at 25 ° C for 30 hours, and the resulting crystal slurry was filtered. Washed with isopropyl ether, the filter cake was dried in a vacuum oven at 40 ° C for 2 h to obtain a white crystal-free V (yield 90%), and the DSC spectrum (Fig. 5) showed a melting start temperature of 157 ° C, peak The temperature was 166 °C.
  • the obtained crystal slurry was filtered, washed with water, and the filter cake was dried in a vacuum oven at 40 ° C for 2 hours to obtain a white crystal-free type V (yield 98%), the melting start temperature was 164 ° C, and the peak temperature was 166 ° C. .
  • the samples prepared in Examples 2 to 8 had the same or similar XRD patterns (not shown) as the samples of Example 1, indicating that the samples of Examples 2 to 8 were the same crystal form as the sample of Example 1.
  • a total of 1,000 coated tablets were prepared in a prescribed amount of ticagrelor uncrystallized V, microcrystalline cellulose, and poly. Vinyl pyrrolidone and croscarmellose sodium were mixed in a mixer for 15 min, mixed with magnesium stearate, and the mixed materials were compressed into tablets by direct extrusion. The tableting pressure was controlled at 15 kPa.
  • the plain tablets were placed in a coating machine, and the plain tablets were coated with Opadry® white.
  • the coating speed is 10 rpm/min, the film bed temperature is controlled at 35 ⁇ 45 °C, and the coating weight gain is 1.04%.
  • the ticagrelor crystal form I and the ticagrelor crystal form V prepared in the first embodiment were respectively heated by TGA, heated to 150 ° C at a rate of 10 ° C / min, and then removed at 150 ° C for 2 h, The purity was measured by HPLC.
  • the ticagrelor crystal form V has superior thermal stability compared to the ticagrelor crystal form I.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本申请公开了替卡格雷的新晶型,其制备方法以及其在制备用于减少急性冠状动脉综合症患者的动脉血栓形成的药物中的用途。

Description

替卡格雷晶型及其制备方法和用途 技术领域
本申请涉及药物化学结晶技术领域。 更具体地, 本申请涉及替卡格雷 的晶型及其制备方法和用途。 背景技术
替卡格雷(Ticagrelor)的化学名称为(l S,2S,3R,5S)-3-[7- [(lR,2S)-2-(3,4- 二氟苯基)环丙胺基] -5- (丙疏基) -3H-[1,2,3]三唑 [4,5-d]嘧啶 -3-基] -5-(2-羟基 乙氧基)环戊烷 -1,2-
Figure imgf000002_0001
由阿斯特拉曾尼卡有限公司( AstraZeneca)研发的替卡格雷是一种具有 选择性的抗凝血药,也是首个可逆的结合型 P2Y12腺苷二磷酸受体 (ADP) 拮抗剂。 替卡格雷能可逆性地作用于血管平滑肌细胞 (VSMC)上的嘌呤 2 受体亚型 P2Y12, 对 ADP引起的血小板聚集有明显的抑制作用, 且口服使 用后起效迅速, 能有效改善急性冠心病患者的症状。 以片剂给药形式, 分 別以 Brilinta在美国, 以 Brilique 和 Possia在欧洲上市。
WO 99/05143公开了替卡格雷的结构式及其合成方法。 WO 01/92262 A1公开了替卡格雷的四种晶型和一种无定型形式。无定型的替卡格雷的制 备工艺通常不易控制, 和结晶型相比稳定性和流动性较差, 不适于直接在 制剂上应用。 WO 01/92262 A1公开的晶型 I是高温稳定形式, 其差示扫描 量热曲线的熔融开始是在 146°C~152°C的范围内, 当它实质上纯的并基本 无水时大约为 15 C ; 晶型 II的熔融开始是在 136°C~139°C的范围内, 当 它实质上纯的并基本无水时大约为 137.5°C ; 晶型 III的熔融开始是在 127 °C ~132 °C 的范围内, 当它实质上纯的并基本无水时大约为 132 °C ;晶型 IV 的熔融开始的典型温度是 139 °C。 从上述数据可以看出, 这些晶型的熔点 均在 152 °C以下, 熔融开始的范围相差非常大。
因此, 本领域仍需要开发纯度高、 热力学稳定性好、 溶解度好且适于 制剂应用的替卡格雷的新晶型, 以保证原料药及其制剂在制备和储存中的 稳定性, 并提高替卡格雷的药物质量和临床疗效。 发明内容
本申请涉及一种纯度高、 热力学稳定性好且适于制剂应用的替卡格雷 晶体, 并提供新的适于工业化生产的制备所述晶体的方法。
本申请一方面提供一种替卡格雷晶体,其 X-射线粉末衍射在衍射角 2Θ 为 5.3°士 0.1, 9.6°士 0.1, 10.9°士 0.1, 13.9°士 0.1, 14.0°士 0.1, 15.7°士 0.1, 21.0°士 0.1, 21.3°±0.1, 26.3°±0.1 和 27.8°±0.1 处有特征峰, 且晶体的差示扫描量热曲 线的熔融开始温度为 154 °C~164 °C, 并具有良好的颗粒形态。 DSC 显示其 为无水晶体, 下文中简称为"替卡格雷晶型 V"。
典型地, 替卡格雷晶型 V的 X-射线粉末衍射在衍射角 2Θ为 5.3°±0.1, 9.6°士 0.1, 10.5°士 0.1, 10.9°士 0.1, 13.2°士 0.1, 13.9°士 0.1, 14.0°士 0.1, 15.3°士 0.1, 15.7°士 0.1, 18.4°士 0.1, 18.8°士 0.1, 21.0°士 0.1, 21.3°士 0.1, 22.5°士 0.1, 23. Γ士 0.1, 26.3°±0.1, 27.4°±0.1和 27.8°±0.1 处有特征峰。
更典型地,替卡格雷晶型 V的 X-射线粉末衍射的特征峰及其相对强度 如下:
衍射角 2Θ 相对强度 1(%)
5.3士 0.1° 100.0
9.6士 0.1° 2. .5
10.5±0.1 ° 1 .4
10.9±0.1 ° 1 .8
13.2±0.1 ° 1 .5
13.9±0.1 ° 2. .7
14.0士 0.1。 1 .4
15.3±0.1 ° 3. .3
15.7±0.1 ° 2. .0
17.6±0.1 ° 1 .5
18.4±0.1 ° 1 .0
18.8士 0.1。 1 .1 20.1士 0.1 3.9
21.0±0.1 7.8
21.3±0.1 5.1
22.5±0.1 1.7
23.1士 0.1 0.9
26.3士 0.1 3.6
27.4士 0.1 2.3
27.8士 0.1 0.9
典型地, 所述晶体的激光粒度仪 (PSD) 图谱显示, 所述晶体颗粒的 中值体积直径 D5()至少为 5μπι, 占总颗粒体积 10%的晶体颗粒的平均直径 Dio至少为 0.5μπι,和 /或占总颗粒体积 90%的晶体颗粒的平均直径 D9Q至少 为 30μπΐο
非限制性地, 本申请的替卡格雷晶型 V的一个典型的实例具有如图 2 所示的 XRD图谱、 图 3所示的 DSC图谱、 图 4所示的 PLM图谱和图 6 所示的粒度分布图。
本申请的替卡格雷晶型 V熔融开始的温度点在 154°C~164°C, 相对于 现有技术公开的熔点最高的替卡格雷的晶型 I (熔融开始的温度 149 152 °C ) , 具有更好的热稳定性, 且其具有更好的颗粒形态, 因此具有更好的 流动性, 更适合制剂应用。且该晶型在 DSC上的熔融峰比现有技术公开的 晶型 I的熔融峰尖锐, 纯度也更高, 可用于通过其制备方法获得更纯的产 品 o
另一方面, 本申请提供一种制备所述替卡格雷晶体的方法, 所述方法 包括: 将替卡格雷固体溶解或悬浮于溶剂中形成溶液或悬浮液, 在析晶条 件下析晶, 其中其中替卡格雷固体与所述溶剂的用量为每毫升溶剂 1~40 mg 替卡格雷固体, 所述溶剂选自 i)含 C4~C12烷基醚; ii)C广 C 4链烷醇与 一种或多种选自水、 c4~c12烷基醚和 c5~c16烷烃的混合物。
上述制备方法中, 所述溶剂进一步选自丙酮与水的混合物。
在某些具体实施方式中, 替卡格雷晶体 V在温度为 -10°C~50°C下进行 析晶; 优选为 4°C~35 °C ; 更优选为室温。
在某些具体实施方式中, 烷基醚选自异丙醚和甲基叔丁基醚。 在某些 具体实施方式中, d ~C4链烷醇选自甲醇和乙醇。 在某些具体实施方式中, C5~Ci6烷烃选自己烷和庚烷。 在某些具体实施方式中,替卡格雷晶体 V 溶解或悬浮于其中的溶剂为 甲醇与水的混合物或乙醇与水的混合物。 在某些具体实施方式中, 甲醇与 水的体积比为 1 :0.5~1 : 1.25。 在某些具体实施方式中, 乙醇与水的体积比为 1 :3.3~1 : 10。 在某些具体实施方式中, 丙酮与水的体积比为 1 : 1.5 1 :8。
使用激光粒度仪 (PSD)来测量标准的粒度分布。 D1Q ( μπι) 代表在该直 径以下的占总颗粒体积 10%的颗粒的平均直径, D50 ( μπι) 为中值体积直 径, 即占总颗粒体积 50%的颗粒的平均直径, D9() ( μπι) 为在该直径以下 的占总颗粒体积 90%的颗粒的平均直径。
在某些实施方式中, 使用本文描述的方法来制备替卡格雷晶体 V时, 占总颗粒体积 10%的晶体颗粒的平均直径 D1Q可以为至少大约 0.5μπι, 例 如大约 0.5~ 15μπι 和 /或该晶体颗粒的中值体积直径 D5Q可以为至少大约 5 μπι,例如大约 5~50 μπι和 /或占总颗粒体积 90%的晶体颗粒的平均直径 D90 可以为至少大约 30μπι, 例如大约 30~120μπι。
在某些优选具体实施方式中, 使用单一溶剂 (例如异丙醚) , 此时溶 剂容易回收, 成本低, 溶剂沸点低, 易除去, 减少溶剂残留, 防止生成溶 剂化物或水合物, 有利于形成稳定的单一晶型。
在某些优选具体实施方式中, 使用乙醇和水的混合溶剂, 此时溶剂成 本低, 溶剂沸点低, 易除去, 减少溶剂残留, 防止生成溶剂化物或水合物, 有利于形成稳定的单一晶型。
其中, 根据选用溶剂的不同, 在析晶过程中可能出现溶剂化物, 溶剂 化物干燥脱溶剂后变成替卡格雷晶型 V。
本申请的固体悬浮液的析晶过程为: 用于结晶的替卡格雷的固体悬浮 液在溶剂中晶型不稳定, 会向更稳定的其他晶型转变。 相对不稳定晶型而 言, 更稳定的晶型能量较低且溶解度较小, 因此不稳定的晶型会不断溶解 进入溶液, 然后溶质以更稳定的晶型析出, 这个过程会一直持续直至晶型 全部转变。 可以选择性地在体系中加入晶种。
本申请的溶液的析晶过程为: 用于结晶的替卡格雷的固体溶解于溶剂 中, 然后通过添加另一种溶剂、 蒸发溶剂或降低温度的方法使溶解在溶液 里的替卡格雷的分子结晶析出, 这个过程会一直持续大部分样品均析出。 可以选择性地在体系中加入晶种。 替卡格雷固体悬浮液指的是其中含有替卡格雷固体(无定型或结晶态) 的固-液混合物体系, 因此溶液为饱和溶液。 替卡格雷固体溶液指的是其中 含有替卡格雷分子的溶液体系, 因此溶液为饱和溶液或不饱和溶液。
在某些具体实施方式中, 替卡格雷固体悬浮液或溶液可以是在 -10 °C -70 °C , 优选为 4°C~50°C, 更优选为室温, 将替卡格雷分散或溶解在上述 溶剂中直接得到。 例如, 在上述温度, 取替卡格雷加入适量溶剂形成悬浮 溶液或溶液。
在某些具体实施方式中, 替卡格雷的固体悬浮液或溶液可以在 -10 °C ~60°C, 优选为 4°C~35°C, 更优选为室温下通过将替卡格雷固体悬浮或溶 解于相应溶剂中获得。
在某些优选具体实施方式中, 在所得到的溶液或悬浮液中加入替卡格 雷晶型 V 的晶种。
本申请的替卡格雷固体悬浮液或溶液中的替卡格雷可以源自替卡格雷 的无定型物、 无水晶型、 水合物、 溶剂化物及其任意组合中。
在某些具体实施方式中, 替卡格雷固体悬浮液或溶液中的替卡格雷源 自无定型的替卡格雷。 在某些具体实施方式中, 替卡格雷固体悬浮液或溶 液中的替卡格雷源自替卡格雷晶型 I。 在另一些具体实施方式中, 替卡格 雷固体悬浮液或溶液中的替卡格雷源自替卡格雷晶型 III。在另一些具体实 施方式中, 替卡格雷固体悬浮液或溶液中的替卡格雷源自替卡格雷晶型 I、 晶型 II和晶型 III的混合物。
替卡格雷可以根据现有技术中的任何方法制备得到的。
替卡格雷无定型、晶型 I、晶型 II和晶型 III可以根据 WO 01/92262 A1 中的方法制备得到。
本申请的对比物替卡格雷晶型 I,可以根据专利 WO 01/92262 A1 中的 实施例 1的方法制备晶型 I, 见对比例 1。 晶型 I的 DSC图谱见图 4。
本申请方法的析晶过程完成后, 将析出的晶体与溶液分离。 可以采用 本领域已知的任何常规的分离方法进行分离, 例如过滤或离心。 然后将分 离得到的固体洗涤, 洗涤所用的溶剂可以选自 d~C4链烷醇、 醚、 水、 庚 烷及其任意组合中 (当洗涤溶剂含有甲醇或乙醇时, 其含量不超过析晶时 溶液的溶剂中该溶剂的含量) , 之后干燥 (例如真空干燥) , 干燥温度为 20°C~ 60 °C, 即可得到替卡格雷晶型 。
分离的方法优选为过滤或离心。 干燥的温度为 30 °C ~60 °C。
除非特別说明, 在本申请中描述的晶型可以经过干燥步骤。 干燥可以 在室温或更高的温度进行。 晶型物质可以在从 20°C到约 60°C 的温度干燥 或者到 40°C,或者到 50°C。 干燥的时间没有特別的限制, 本领域技术人员 可根据实际情况容易确定。 干燥的时间跨度可以从 2小时到 48 小时, 或 者过夜。 干燥可以在通风橱, 鼓风烘箱或真空烘箱里进行。
"过夜"这里指的是该步骤跨越晚上的时间, 在过夜期间没有积极主动 的观察实验现象。 这段时间可以是 8~22 小时, 或者 10~18 小时, 通常是 16小时。 "室温" 这里指的是 10 °C ~30°C。
"熔融开始温度" 定义为 DSC 图谱上从基线开始发生显著变化的点。 "峰值温度" 定义为 DSC图谱上吸热峰或放热峰的顶点。
本申请的方法工艺简便, 采用低温结晶, 反应条件温和, 无需在高温 条件下反应较长时间, 只需在室温条件下结晶即可得到无水晶型 V, 并提 高收率至 85%以上, 成本降低, 更利于工业化生产。
在本申请方法的溶剂体系和操作工艺下, 可以简化工艺操作, 高收率 地获得单一晶型的替卡格雷晶型 V。
本申请方法制备的替卡格雷晶型 V在本申请所述的实验条件范围内稳 定, 不会发生晶型之间的相互转化。
另一方面, 本申请还提供一种药物组合物, 该药物组合物包含替卡格 雷晶型 V, 和至少一种药学上可接受的载体。
本申请的药物组合物可为固态或液态。 若该药物组合物为液态, 则上 述替卡格雷晶型 V 在该液体组合物中保持为固体, 例如作为悬浮液。
在一些优选实施方案中, 本申请的替卡格雷晶型 V 是纯的, 单一晶 型的替卡格雷, 不混合任何其他晶型。 所述的 "单一晶型的替卡格雷" 是 指经 X -射线粉末衍射检测是单一晶型的替卡格雷晶型。
在本申请中, "晶体" 或 "晶型" 指的是被所示的 X射线衍射图表征 所证实的。 在此领域有经验的人员能理解这里所讨论的理化性质可以被表 征, 这个中间的实验误差取决于仪器的条件, 样品的准备额样品纯度。 特 別是, 通常 X 射线衍射图已广为人知会随着仪器的条件而有所改变。 特 別需要指出的是 X 射线衍射图的相对强度也可能随着实验条件的变化而 变化。 另外, 峰角度的实验误差通常在 5% 或更少, 这些角度的误差也应 该被考虑进去。 因而, 可以理解的是本申请中一个晶型的 X 射线衍射图 不必和这里所指的例子中的 X 射线衍射图完全一致。 任何具有和这些图 谱中基本相同或相似的图晶型属于本申请的范畴之内。 一个有经验的人员 是能够比较本申请所列的图谱和一个未知晶型的图谱相比较, 以证实这两 组图谱反映的是相同还是不同的晶型。
本申请所述药学上可接受的载体包括但不限于: 稀释剂, 例如淀粉、 预 胶化淀粉、 乳糖、 粉状纤維素、 微晶纤維素、 磷酸氫钙、 磷酸三钙、 甘露醇、 山梨醇、 糖等; 粘合剂, 例如阿拉伯胶、 瓜尔胶、 明胶、 聚乙烯吡咯烷酮、 羟丙基纤維素、 羟丙基甲基纤維素、 聚乙二醇等; 崩解剂, 例如淀粉、 羟基 乙酸淀粉钠、 预胶化淀粉、 交联聚維酮、 交联羧甲基纤維素钠、 胶体二氧化 硅等; 润滑剂, 例如硬脂酸、 硬脂酸镁、 硬脂酸锌、 苯甲酸钠、 乙酸钠等; 助流剂, 例如胶体二氧化硅等; 复合物形成剂, 例如各种级別的环糊精和树 脂; 释放速度控制剂, 例如羟丙基纤維素、 羟甲基纤維素、 羟丙基甲基纤維 素、 乙基纤維素、 甲基纤維素、 甲基丙烯酸甲酯、 蜡等。 可用的其他药学上 可接受的载体包括但不限于成膜剂、 增塑剂、 着色剂、 调味剂、 粘度调节剂、 防腐剂、 抗氧化剂等。
本申请方法制备的替卡格雷无水晶型 V 适于制备成各种剂型。例如可配 制成: 固体口服剂型, 包括散剂、 颗粒剂、 丸剂、 片剂和胶囊; 液体口服剂 型, 包括糖浆剂、 混悬剂、 分散剂和乳剂; 可注射制剂, 包括溶液剂、 分散 剂和冻干的组合物。 配方可适于活性成分的快速释放、 延迟释放或调节释放。 可以是常规的、 可分散的、 可咀嚼的、 口腔溶解的或快速熔化的制剂。 给药 途径包括口服、 静脉注射、 皮下注射、 透皮给药、 直肠给药、 滴鼻给药等。
所述药物组合物可制成口服制剂, 其口服制剂包括但不仅仅限于片剂、 胶囊、 颗粒剂、 散剂、 咀嚼片、 口含片、 泡腾片、 泡腾颗粒剂中任意一种固 体剂型。 在所述片剂中, 活性成分替卡格雷的单位制剂含量为 25 mg、 50 mg 和 100 mg。 所述片剂可以呈现无包衣、 薄膜包衣、 包糖衣、 粉末包衣、 肠溶 包衣或调节释放包衣, 包衣对最终片剂提供味道屏蔽和额外稳定性。 例如, 膜包衣组分可以包括: 羟丙基纤維素和羟丙基甲基纤維素的混合物, 或聚乙 烯醇和聚乙二醇的混合物, 其可以含有二氧化钛和 /或其他着色剂, 和 /或增塑 剂、 分散剂、 抗氧化剂等; 或其他合适的快速释放的膜涂布剂。 商业膜包衣 可选择 Opadry®。
所述药物组合物可以使用现有技术中本领域技术人员公知的方法来制 备。 在制备时, 本申请方法制备的替卡格雷无水晶型 V与一种或多种药学上 可接受的载体, 任选的一种或多种的其他活性成分相混合。 固体制剂可以通 过直接混合、 干法制粒等工艺来制备。
本申请的再一方面提供了减少急性冠状动脉综合征 (ACS)患者血栓事 件的发生的治疗方法, 其包括给与所述患者治疗有效量的替卡格雷晶型 V 或上述药物组合物。
又一方面, 本申请提供一种药物组合物, 其包含治疗有效量的本申请 中公开的替卡格雷晶体以及至少一种药学上可接受的载体。
又一方面, 本申请提供所述替卡格雷晶体和所述药物组合物在制备用 于减少急性冠状动脉综合征 (ACS)患者的动脉血栓形成的药物中的用途。
又一方面, 本申请提供所述替卡格雷晶体和所述药物组合物在制备用 于预防肿瘤的生长和扩散药物中的用途。
另外, 本申请还涉及减少患者急性冠状动脉综合征 (ACS)的动脉血栓 的方法, 包括对所述患者以治疗有效量的本申请中公开的替卡格雷晶体或 药物组合物给药。 附图说明
图 1显示制备例 1替卡格雷晶型 I的 DSC图谱。
图 2为本发明制备的替卡格雷晶型 V的 X-射线粉末衍射图。
图 3显示实施例 1替卡格雷晶型 V的 DSC图谱。
图 4显示实施例 1替卡格雷晶型 V的 PLM 图谱。
图 5显示实施例 3替卡格雷晶型 V的 DSC图谱。
图 6显示实施例 1替卡格雷晶型 V的粒度分布图谱。
图 7显示实施例 3替卡格雷晶型 V的粒度分布图谱。 具体实施方式
本申请进一步参考以下实施例限定, 所述实施例详细描述本申请的晶 型及其制备和应用。 对本领域技术人员显而易见的是, 对于材料和方法两 者的许多改变可在不脱离本申请范围的情况下实施。
采集数据所用的仪器及方法:
X-射线粉末衍射(XRPD)所使用 的仪器为 Bmker D8 Advance Diffractometer, 配置有 Θ-2Θ 测角仪、 Mo 单色仪、 Lynxeye 探测器。 采集 软件是 Diffrac Plus XRPD Commander。仪器在使用前用仪器自带的标准品 (一般为刚玉) 校准。 检测条件为: 2Θ 扫描角度范围 3~40°, 步长 0.02°, 速度 0.2 秒 /步。检测过程:采用铜靶波长为 1.54nm 的 Ka X-射线,在 40 kV 和 40 mA 的操作条件下, 样品在室温条件下测试, 把需要检测的样品 放在无反射板上。
差热分析 (DSC)数据采自于 TA Instruments Q200 MDSC, 仪器控制软 件是 Thermal Advantage, 分析软件是 Universal Analysis。 通常取 1~10毫 克的样品放置于加盖打孔 (除非特別说明) 的铝坩埚内, 以 10°C/min 的 升温速度在 40 mL/min 干燥 N2 的保护下将样品从室温升至 200°C 或 250°C。
偏振光显微镜 (; PLM)图谱采自于 XP-500E 偏振光显微镜 (上海长方光 学仪器有限公司) 。 取少量粉末样品置于载玻片上, 滴加少量矿物油以更 好地分散粉末样品, 盖上盖玻片, 然后将样品放置在 XP-500E 偏振光显 微镜 (上海长方光学仪器有限公司) 的载物台上, 选择合适的放大倍数观 测样品的形貌并拍照。
激光粒度仪 (PSD)数据采自于 Microtrac FLEX S3500 , 来测量标准的粒 度分布。 其中: D10代表在该直径以下的占总颗粒体积的 10%的颗粒的平 均直径, D5() 为中值体积直径, 即占总颗粒体积 50%的颗粒的平均直径, D90为在该直径以下的占总颗粒体积的 90%的颗粒的平均直径。
高效液相色谱(HPLC)分析数据采自 Agilent 1260, 化学工作站是 B.04。 相应参数如下: 采用 C18, 5 μπι, 250*4.6 mm色谱柱, 柱温 25°C, 流速 1.0 mL/min ; 波长 254 nm ; 进样量 50μΙ^ ; 流动相 A: lmL甲酸 +1000 mL H20; 流动相 B : 乙腈; 运行时间为 70分钟。 按照下表进行梯度洗脱。
时间 (min) A ( %) C ( %) 40 50 50
45 5 95
70 5 95 实施例中所用的各种试剂如无特別说明均为市售购买。
实施例中如无特別说明均在室温下操作。
下面用实施例来进一步说明本申请, 但本申请并不受其限制。 制备例 1
根据 WO 01/92262 A1 中的方法制备替卡格雷无定型和晶型 I, 具体如 下:
a: 取 l g替卡格雷, 用 10 mL的体积比为 50% 乙醇水溶液溶解, 过 滤, 冻干制得替卡格雷无定型。
b : 取 2 mg替卡格雷无定型, 在 DSC中按照以下操作制备纯晶型 I: 35°C到 143°C到 35°C到 148°C到 35°C到 148°C到 35°C。 得到晶型 I晶种。
c : 取 500 mg 替卡格雷无定型, 加入 2.5 mL甲醇和 3.65 mL水, 加 入 a中得到的晶种, 在 30°C 进行结晶得到 340 mg晶型 I。 晶型 I的 DSC 图谱见图 1, 其熔融的开始温度为约 149.7°C, 与文献报道相符。
实施例 1
取 184 mg替卡格雷无定型, 加入 38 mL ( 1: 1.25)的甲醇 /水混合溶液中 得到固体悬浮液, 将该固体悬浮液升温至 50 °C 搅袢 0.5h完全溶解, 保持 2小时, 然后再以 5 °C/分钟的降温速度降温至 5 °C, 将所得晶浆过滤, 用水 洗涤, 滤饼置于室温 25 °C 真空干燥箱内干燥 2h得到白色无水晶型 V (收 率 85%) , 其 XRD 图谱见图 2, DSC 图谱见图 3, PLM 图谱见图 4, 其 熔融的开始温度为 163 °C, 峰值温度为 166 °C。
实施例 2
取 240 mg替卡格雷无定型,加入 72mL异丙醚溶液,得到固体悬浮液, 将该固体悬浮液在 25 °C下搅袢 3个小时,将所得晶浆过滤, 用异丙醚洗涤, 滤饼置于 40°C真空干燥箱内干燥 2h得到白色晶体 (收率大于 95%) , 该 产品的熔融的开始温度为 154°C, 峰值为 157 °C。 实施例 3
取 250mg替卡格雷无定型,加入 105 mL(0.05:l)乙醇 /异丙醚混合溶液, 得到固体悬浮液, 将该固体悬浮液在 25°C下搅袢 30个小时, 将所得晶浆 过滤, 用异丙醚洗涤, 滤饼置于 40°C真空干燥箱内干燥 2h得到白色无水 晶型 V (收率 90%) , DSC图谱(图 5)显示熔融的开始温度为 157°C, 峰值 温度为 166°C。
实施例 4
取 200 mg 替卡格雷无定型固体, 往其中加入 8mL 的水得到固体悬 浮液, 将固体悬浮液升温至 50°C搅袢 0.5h, 再緩慢以 0.5mL/分钟速度滴加 甲醇, 甲醇用量 16mL 时溶解完全, 此时甲醇和水用量比例为 1: 0.5。 再 以 5°C/分钟的降温速度降温至室温 25°C, 将所得晶浆过滤, 用水洗涤, 滤 饼置于 40°C真空干燥箱内干燥 2h得到白色无水晶型 V (收率 87%) 。 熔 融的开始温度为 158°C, 峰值温度为 162 °C。
实施例 5
取黄色替卡格雷无定型 300 mg, 混匀后加 3mL乙醇溶解, 升温至 50 °C完全溶解, 2分钟时间内滴加入 10mL 水, 析出白色固体, 此时乙醇和 水用量比例为 0.3:1。 再以 5°C/分钟的降温速度降温至室温 25°C, 在 45°C 时候加入 20mg替卡格雷无水晶型 V的晶种。搅袢 48小时, 将所得晶浆过 滤, 用水洗涤, 滤饼置于 40°C真空干燥箱内干燥 2h得到白色无水晶型 V (收率 93%) , 熔融的开始温度为 154°C, 峰值温度为 157°C。
实施例 6
取 500mg替卡格雷无定形无定型固体, 往其中加入 13mL(l:1.47)的乙 醇 /水混合溶液中得到固体悬浮液, 将固体悬浮液升温至 50°C搅袢 0.5h 全 部溶解。 再以 5°C/分钟的降温速度降温至室温 25°C, 10mL/分钟速度补加 45 mL水, 此时乙醇和水总用量比例约为 1:10。 加完晶浆过夜。 将所得晶 浆过滤, 用水洗涤, 滤饼置于 40°C真空干燥箱内干燥 2h 得到白色无水晶 型 V (收率 98%) , 熔融的开始温度为 164°C, 峰值温度为 166°C。
实施例 7
取 300 mg 替卡格雷无定型固体, 往其中加入 12 mL (1:1.5)的丙酮 / 水混合溶液中得到固体悬浮液, 将固体悬浮液升温至 50°C 搅袢 0.5h 全 部溶解。 再以 5 °C/分钟的降温速度降温至室温 4°C。 晶浆过夜, 将所得晶 浆过滤, 用水洗涤, 滤饼置于 40°C 真空干燥箱内干燥 3h 得到白色无水 晶型 V (收率 83%) 。 熔融的开始温度为 161 °C, 峰值温度为 163 °C。
实施例 8
取 180 mg替卡格雷无定型固体, 往其中加入 1 mL丙酮得到固体悬浮 液, 将固体悬浮液升温至 50°C搅袢快速溶解, 5mL/分钟速度补加 8 mL水, 再以 5 °C/分钟的降温速度降温至 4°C, 此时丙酮和水总用量比例约为 1 :8。 加完晶浆过夜。 将所得晶浆过滤, 用水洗涤, 滤饼置于 40°C真空干燥箱内 干燥 4h得到类白色无水晶型 V (收率 90%) 。 熔融的开始温度为 159°C, 峰值温度为 161 °C。
实施例 2~8制备得到的样品与实施例 1的样品具有相同或相似的 XRD 图 谱 (未示出), 说明实施例 2~8的样品与实施例 1的样品是相同的晶型。
实施例 9 粒度测试
取较典型的实施例 1和实施例 3制备得到的晶型 V, 进行粒度测定。 其 结果如图 6、 图 7和下表所示。
实施例 Dio ( μπι) D50 ( μπι) D90 ( μπι) 实施例 1 11 27 64 实施例 3 6 16 35 应用范围 0.5-15 5-50 30-120 实施例 10
组分 用量
替卡格雷无水晶型 V 100 克
微晶纤維素 150 克
聚乙烯吡咯烷酮 150 克
交联羧甲基纤維素钠 8 克
硬脂酸镁 8 克
Opadry® 白 16 克
共制成 1,000 片包衣片 取处方量的本申请方法制备的替卡格雷无水晶型 V、 微晶纤維素、 聚 乙烯吡咯烷酮和交联羧甲基纤維素钠在混合机中混合 15 min, 加入硬脂酸 镁混合, 混合后的物料采用直接挤压方法压制成片剂, 压片压力控制在 15 kPa, 压制好的素片置于包衣机中, 素片用 Opadry®白包衣。 包衣转速 10 rpm/min, 片床温度控制在 35~45 °C, 包衣增重 1.04%。
实施例 11
将替卡格雷晶型 I和实施例 1制备得到的替卡格雷晶型 V分別用 TGA 加热, 以 10°C/min 的速率加热至 150°C, 并在 150°C保温 2h后取下, 用 HPLC 检测纯度。
结果如下:
Figure imgf000014_0001
由上表的结果可知, 与替卡格雷晶型 I相比, 替卡格雷晶型 V具有更 优异的热稳定性。
本说明书中所引用的所有专利、 专利申请公开、 专利申请及非专利出 版物, 均通过引用以其全文并入本文中。
上述对本申请中涉及的发明的一般性描述和对其具体实施方式的描述 不应理解为是对该发明技术方案构成的限制。 本领域所属技术人员根据本 申请的公开, 可以在不违背所涉及的发明构成要素的前提下, 对上述一般 性描述或 /和具体实施方式 (包括实施例) 中的公开技术特征进行增加、 减 少或组合, 形成属于所述发明的其它的技术方案。

Claims

权利要求
1、 一种替卡格雷晶体, 其特征在于, 所述晶体的 X-射线粉末衍射在 衍射角 2Θ为 5.3°士 0.1, 9.6°士 0.1, 10.9°士 0.1, 13.9°士 0.1, 14.0°士 0.1, 15.7°士 0.1, 21.0°±0.1, 21.3°±0.1, 26.3°±0.1和 27.8°±0.1处有特征峰, 且所述晶体的差 示扫描量热曲线的熔融开始温度大于 154 °C。
2、 根据权利要求 1所述的替卡格雷晶体, 其特征在于, 所述晶体颗粒 的中值体积直径 D5()至少为 5μπι, 占总颗粒体积 10%的晶体颗粒的平均直径 D10至少为 0.5μπι,和 /或占总颗粒体积 90%的晶体颗粒的平均直径 D9Q至少为 30μπι。
3、 根据权利要求 1~2中任一项所述的替卡格雷晶体, 其特征在于, 所 述晶体的差示扫描量热曲线的熔融开始温度为 154°C~164°C。
4、 根据权利要求 1~3中任一项所述的替卡格雷晶体, 其特征在于, 所 述晶体的 X-射线粉末衍射在衍射角 2Θ为 5.3°士 0.1, 9.6°士 0.1, 10.5°±0.1, 10.9°士 0.1, 13.2°士 0.1, 13.9°士 0.1, 14.0°士 0.1, 15.3°士 0.1, 15.7°士 0.1, 18.4°士 0.1, 18.8°士 0.1, 21.0°士 0.1, 21.3°士 0.1, 22.5°士 0.1, 23. Γ士 0.1, 26.3°士 0.1, 27.4°士 0.1 和 27.8°±0.1处有特征峰。
5、 根据权利要求 4所述的替卡格雷晶体, 其特征在于, 所述 X-射线粉 末衍射图的特征峰及其相对强度如下:
衍射角 2Θ 相对强度 1(%)
5.3±0.1ο 100.0
9.6士 0.1° 2.5
10.5±0.2° 1.4
10.9±0.2° 1.8
13.2±0.2° 1.5
13.9±0.2° 2.7
14.0±0.2° 1.4
15.3±0.2° 3.3
15.7±0.2° 2.0
17.6±0.2° 1.5
18.4±0.2° 1.0
18.8±0.2°
20.1±0.2° 3 9
21.0±0.2° 7 8
21.3±0.2° 5.1
22.5±0.2° 1.7
23.1±0.2° 0.9
26.3±0.2° 3.6
27.4±0.2° 2.3
27.8±0.2° 0.9
6、 一种制备权利要求 1~5中任一项所述的替卡格雷晶体的方法, 包 括: 将替卡格雷固体溶解或悬浮于溶剂中形成溶液或悬浮液, 在析晶条件 下析晶, 其中替卡格雷固体与所述溶剂的用量为每毫升溶剂 l~40 mg 替卡 格雷固体, 所述溶剂选自: i;> C4~C12烷基醚; ii;> C广 C4链烷醇与一种或多 种选自水、 C4~C12烷基醚和 C C16烷烃的混合物。
7、 根据权利要求 6所述的方法, 所述溶剂进一步选自丙酮与水的混合 物。
8、 根据权利要求 6~7中任一项所述的方法, 其中, 所述析晶在温度为 -10°C~50°C ; 优选为 4°C~35°C ; 更优选为室温下进行。
9、根据权利要求 6〜8中任一项所述的方法, 其中, 所述醚选自异丙醚、 甲基叔丁基醚, 所述链烷醇选自甲醇、 乙醇, 所述烷烃选自己烷、 庚烷。
10、根据权利要求 6〜9中任一项所述的方法, 其中, 所述溶剂为甲醇、 乙醇或丙酮与水的混合物, 且甲醇、 乙醇或丙酮与水的体积比分別为 1 :0.5~ 1 : 1.25、 1 :3.3~1 : 10或 1 : 1.5~1 :8。
11、 根据权利要求 6~10中任一项所述的方法, 其中, 所述析晶条件包 括在所述溶液或悬浮液中加入替卡格雷晶种的步骤。
12、 权利要求 6~11中任一项所述的方法制得的替卡格雷晶体。
13、 一种药物组合物, 包含权利要求 1~5和 12任一项所述的替卡格雷 晶体以及至少一种药学上可接受的载体。
14、 权利要求 1~5任一项所述的替卡格雷晶体和权利要求 13 的药物组 合物在制备用于减少急性冠状动脉综合征患者的动脉血栓形成的药物中的 用途。
15、 权利要求 1~5任一项所述的替卡格雷晶体和权利要求 13的药物组 合物在制备用于预防肿瘤的生长和扩散药物中的用途。
PCT/CN2014/074088 2013-04-07 2014-03-26 替卡格雷晶型及其制备方法和用途 WO2014166337A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480001185.6A CN104284897B (zh) 2013-04-07 2014-03-26 替卡格雷晶型及其制备方法和用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310118496.8A CN104098570A (zh) 2013-04-07 2013-04-07 替卡格雷晶型及其制备方法和用途
CN201310118496.8 2013-04-07

Publications (1)

Publication Number Publication Date
WO2014166337A1 true WO2014166337A1 (zh) 2014-10-16

Family

ID=51667153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074088 WO2014166337A1 (zh) 2013-04-07 2014-03-26 替卡格雷晶型及其制备方法和用途

Country Status (2)

Country Link
CN (2) CN104098570A (zh)
WO (1) WO2014166337A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162630A1 (en) 2014-04-25 2015-10-29 Anlon Chemical Research Organization Novel processes for preparing triazolo [4,5-d]- pyrimidines, including ticagrelor, vianew intermediates and new route of synthesis.
WO2016016907A1 (en) * 2014-08-01 2016-02-04 Msn Laboratories Private Limited Novel polymorphs of (1s,2s,3r,5s)-3-[7-{[(1r,2s)-2-(3,4-difluorophenyl) cyclopropyl]amino}-5-(propylthio)-3h-[1,2,3]-triazolo[4,5-d]pyrimidin-3-yi]-5-(2-hydroxvethoxy) cyclopentane-1,2-diol
WO2016116942A1 (en) 2015-01-20 2016-07-28 Anlon Chemical Research Organization Novel pharmaceutical compounds comprising ticagrelor with salts of aspirin

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104211704B (zh) * 2013-06-03 2017-08-25 杭州领业医药科技有限公司 结晶形态的三唑[4,5‑d]嘧啶化合物及其制备方法和用途
CN105801583A (zh) * 2014-12-31 2016-07-27 徐州万邦金桥制药有限公司 一种替格瑞洛的纯化方法
CN105301142A (zh) * 2015-11-28 2016-02-03 重庆植恩药业有限公司 一种采用高效液相色谱检测替格瑞洛及其有关物质的方法
CN106946885A (zh) * 2016-01-07 2017-07-14 南京济群医药科技股份有限公司 一种替格瑞洛单晶的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092262A1 (en) * 2000-06-02 2001-12-06 Astrazeneca Ab New crystalline and amorphous form of a triazolo(4,5-d)pyrimidine compound
CN102311437A (zh) * 2010-07-01 2012-01-11 北京迈劲医药科技有限公司 一种抗血小板凝集药替卡格雷的制备方法
CN102675321A (zh) * 2012-05-11 2012-09-19 上海皓元化学科技有限公司 一种替卡格雷的制备方法
CN102875537A (zh) * 2012-09-10 2013-01-16 常州制药厂有限公司 一种新的抗血栓药物的制备方法
CN103288836A (zh) * 2013-06-27 2013-09-11 苏州明锐医药科技有限公司 替卡格雷的制备方法
CN103524429A (zh) * 2013-09-28 2014-01-22 银杏树药业(苏州)有限公司 一种替格瑞洛及其新的中间体的制备方法
CN103588712A (zh) * 2013-11-08 2014-02-19 南京欧信医药技术有限公司 一种嘧啶类化合物及其制备方法、和应用
CN103626743A (zh) * 2012-08-23 2014-03-12 广东东阳光药业有限公司 替卡格雷的新型中间体及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092262A1 (en) * 2000-06-02 2001-12-06 Astrazeneca Ab New crystalline and amorphous form of a triazolo(4,5-d)pyrimidine compound
CN102311437A (zh) * 2010-07-01 2012-01-11 北京迈劲医药科技有限公司 一种抗血小板凝集药替卡格雷的制备方法
CN102675321A (zh) * 2012-05-11 2012-09-19 上海皓元化学科技有限公司 一种替卡格雷的制备方法
CN103626743A (zh) * 2012-08-23 2014-03-12 广东东阳光药业有限公司 替卡格雷的新型中间体及其制备方法
CN102875537A (zh) * 2012-09-10 2013-01-16 常州制药厂有限公司 一种新的抗血栓药物的制备方法
CN103288836A (zh) * 2013-06-27 2013-09-11 苏州明锐医药科技有限公司 替卡格雷的制备方法
CN103524429A (zh) * 2013-09-28 2014-01-22 银杏树药业(苏州)有限公司 一种替格瑞洛及其新的中间体的制备方法
CN103588712A (zh) * 2013-11-08 2014-02-19 南京欧信医药技术有限公司 一种嘧啶类化合物及其制备方法、和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162630A1 (en) 2014-04-25 2015-10-29 Anlon Chemical Research Organization Novel processes for preparing triazolo [4,5-d]- pyrimidines, including ticagrelor, vianew intermediates and new route of synthesis.
WO2016016907A1 (en) * 2014-08-01 2016-02-04 Msn Laboratories Private Limited Novel polymorphs of (1s,2s,3r,5s)-3-[7-{[(1r,2s)-2-(3,4-difluorophenyl) cyclopropyl]amino}-5-(propylthio)-3h-[1,2,3]-triazolo[4,5-d]pyrimidin-3-yi]-5-(2-hydroxvethoxy) cyclopentane-1,2-diol
WO2016116942A1 (en) 2015-01-20 2016-07-28 Anlon Chemical Research Organization Novel pharmaceutical compounds comprising ticagrelor with salts of aspirin

Also Published As

Publication number Publication date
CN104098570A (zh) 2014-10-15
CN104284897A (zh) 2015-01-14
CN104284897B (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2014166337A1 (zh) 替卡格雷晶型及其制备方法和用途
CN102344438B (zh) 喹啉衍生物的结晶及其制备方法
KR20220008273A (ko) 암 치료를 위한 raf 억제제로서의 n-(3-(2-(2-하이드록시에톡시)-6-모르폴리노피리딘-4-일)-4-메틸페닐)-2 (트리플루오로메틸)이소니코틴아미드의 새로운 결정질 형태
US20050203299A1 (en) Methods of preparing aripiprazole crystalline forms
JP2018502882A (ja) 2−(5−(3−フルオロフェニル)−3−ヒドロキシピコリンアミド)酢酸の固体形態、その組成物及び使用
JP2021523918A (ja) Tlr7/tlr8阻害剤の結晶形態
WO2018184185A1 (zh) 奥扎莫德加成盐晶型、制备方法及药物组合物和用途
WO2013064307A1 (en) Ivabradine hydrochloride form iv
CN104603123A (zh) 曲格列汀的固态形式及其制备方法和用途
CN105294717B (zh) 一种egfr抑制剂的盐、晶型及其用途
KR101490329B1 (ko) 피마살탄 포타슘염의 일수화물 결정, 그 제조방법, 및 그를 포함하는 약제학적 조성물
JP2020500912A (ja) ブロモドメインタンパク質阻害薬の結晶形及びその製造方法並びに用途
EP2631234A1 (en) Solid forms of dabigatran etexilate mesylate and processes for their preparation
WO2019062854A1 (zh) 瑞博西林的共晶和瑞博西林单琥珀酸盐的共晶、其制备方法、组合物和用途
WO2016155670A1 (zh) 一种cdk抑制剂和mek抑制剂的共晶及其制备方法
WO2015109445A1 (zh) 一种化合物的盐及晶型或无定型物、其制备方法、含有它们的药物组合物和用途
WO2016155578A1 (zh) 达格列净的新晶型及其制备方法
WO2010060387A1 (zh) 硝克柳胺化合物五种晶型、其制法和其药物组合物与用途
WO2015003571A1 (zh) 达拉菲尼甲磺酸盐的新晶型及其制备方法
WO2017162139A1 (zh) 用于治疗或预防jak相关疾病药物的盐酸盐晶型及其制备方法
US20040063782A1 (en) Bicalutamide forms
WO2018106657A1 (en) Compositions and methods related to pyridinoylpiperidine 5-ht1f agonists
US7271269B2 (en) Preparation of new pharmaceutically suitable salt of losartan and forms thereof with new purification and isolation methods
TWI662031B (zh) 1-{2-氟-4-[5-(4-異丁基苯基)-1,2,4-噁二唑-3-基]-苄基}-3-吖丁啶羧酸的晶型
WO2014169770A1 (zh) 达拉菲尼的晶型及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782265

Country of ref document: EP

Kind code of ref document: A1