WO2015105148A1 - 金属セラミック接合体、隔膜真空計、金属とセラミックとの接合方法、および、隔膜真空計の製造方法 - Google Patents

金属セラミック接合体、隔膜真空計、金属とセラミックとの接合方法、および、隔膜真空計の製造方法 Download PDF

Info

Publication number
WO2015105148A1
WO2015105148A1 PCT/JP2015/050375 JP2015050375W WO2015105148A1 WO 2015105148 A1 WO2015105148 A1 WO 2015105148A1 JP 2015050375 W JP2015050375 W JP 2015050375W WO 2015105148 A1 WO2015105148 A1 WO 2015105148A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
diaphragm
metal
terminal
bonding layer
Prior art date
Application number
PCT/JP2015/050375
Other languages
English (en)
French (fr)
Inventor
高橋 直樹
圭佑 吉田
Original Assignee
株式会社 アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アルバック filed Critical 株式会社 アルバック
Priority to KR1020167017222A priority Critical patent/KR101857733B1/ko
Priority to CN201580003794.XA priority patent/CN105899475B/zh
Priority to DE112015000356.8T priority patent/DE112015000356T5/de
Priority to US15/109,612 priority patent/US20160349135A1/en
Publication of WO2015105148A1 publication Critical patent/WO2015105148A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/007Transmitting or indicating the displacement of flexible diaphragms using variations in inductance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube

Definitions

  • the technology of the present disclosure relates to a metal ceramic joined body that is a joined body of a metal member and a ceramic member, a diaphragm vacuum gauge, a joining method of metal and ceramic, and a manufacturing method of the diaphragm vacuum gauge.
  • a diaphragm vacuum gauge for example, as described in Patent Document 1, includes two containers having a cylindrical shape having a bottom and a diaphragm that seals the opening of each container by being sandwiched between the two containers. I have.
  • the diaphragm forms, as one container, a reference pressure chamber to which a pressure serving as a measurement reference is applied, and forms a measurement pressure chamber to which the pressure to be measured is applied as the other container.
  • An electrode facing the diaphragm is located on the inner wall surface of the container constituting the reference pressure chamber.
  • the diaphragm vacuum gauge measures the capacitance between the diaphragm and the electrode as the pressure in the measurement pressure chamber relative to the pressure in the reference pressure chamber.
  • the diaphragm is generally joined to each container by glass soldering or welding. Whether the diaphragm is joined to each container by glass solder or the case of joining by welding, when the diaphragm is joined to each container, the state of the joint joining the diaphragm and each container changes from a liquid to a solid. . When the state of the bonded object changes, the volume of the bonded object also changes, so that distortion occurs in the bonded object.
  • Such strain is not limited to the joined material that joins the diaphragm to each container in the diaphragm vacuum gauge, but is commonly generated if the joined material joins the metal member to the ceramic member by changing from a liquid to a solid.
  • One aspect of the metal-ceramic bonded body in the technology of the present disclosure includes a metal member, a ceramic member, a bonding layer formed of glaze and bonding the metal member and the ceramic member, and an outer surface of the ceramic member.
  • the said terminal layer in which the said joining layer is located between the said metal member and the said terminal layer is provided.
  • the above-described aspect is a configuration in which the metal member can be bonded to the ceramic member without melting the bonding layer when the metal member is bonded to the ceramic member.
  • the bonding strength between the metal member and the ceramic member can be made uniform in the portion where the bonding layer and the conductive layer are in contact with each other.
  • the terminal layer is in contact with the conductive layer. According to this configuration, since the voltage applied to the terminal layer is directly applied to the conductive layer, the voltage is easily applied to the portion of the bonding layer in contact with the conductive layer, and the bonding strength between the metal member and the ceramic member is increased. Is increased.
  • a cylindrical ceramic container having an opening, a plate-shaped metal diaphragm that closes the opening, and a glaze are joined to the metal diaphragm and the ceramic container.
  • a bonding layer, a conductive layer constituting the outer surface of the ceramic container and covered by the bonding layer, the conductive layer having a higher electric conductivity than the bonding layer, and the outer surface of the ceramic container It is a terminal layer located in the site
  • the above-described aspect is a configuration in which the metal diaphragm can be bonded to the ceramic container without dissolving the bonding layer when the metal diaphragm is bonded to the ceramic container.
  • the metal diaphragm and the ceramic container are bonded, distortion in the bonding layer is suppressed.
  • the bonding strength between the metal diaphragm and the ceramic container can be made uniform at the portion where the bonding layer and the conductive layer are in contact with each other.
  • the bonding layer is at least partially located on an end surface of the ceramic container surrounding the opening, and the conductive layer is at least part of the bonding layer at the end surface. It is located so as to overlap a part.
  • the terminal layer is in contact with the conductive layer. According to this configuration, since the voltage applied to the terminal layer is directly applied to the conductive layer, the voltage is easily applied to the portion of the bonding layer in contact with the conductive layer, and the strength of bonding between the metal diaphragm and the ceramic container. Is increased.
  • the ceramic container has a bottom portion on the side opposite to the opening, and the terminal layer is continuously from the outer peripheral surface of the ceramic container to the surface of the bottom portion. To position.
  • One aspect of a method for joining a metal and a ceramic in the technology of the present disclosure is to form a terminal layer on the surface of the ceramic member, and in a state where the terminal layer and the metal member are separated from each other, the metal member and the ceramic member Sandwiching a bonding layer composed of a glaze between, and applying a voltage between the terminal layer and the metal member in a state where the bonding layer is heated to a temperature below the glass transition point of the glaze.
  • the sandwiching of the bonding layer includes a conductive layer having a higher electrical conductivity than the bonding layer, and covering the conductive layer constituting the outer surface of the ceramic member with the bonding layer.
  • the bonding strength between the metal member and the ceramic member can be made uniform in the portion where the bonding layer and the conductive layer are in contact with each other.
  • One aspect of the manufacturing method of the diaphragm vacuum gauge in the technology of the present disclosure is that a terminal layer is formed on at least a part of the outer peripheral surface of a cylindrical ceramic container having an opening, and the terminal layer and a plate shape that closes the opening
  • a bonding layer made of glaze is sandwiched between the metal diaphragm and an end surface surrounding the opening of the ceramic container in a state where the metal diaphragm is separated, and the bonding is performed to a temperature lower than the glass point transfer of the glaze. Applying a voltage between the terminal layer and the metal diaphragm while the layer is heated.
  • sandwiching the bonding layer includes covering the conductive layer constituting the outer surface of the ceramic container with the bonding layer, which is a conductive layer having a higher electrical conductivity than the bonding layer.
  • the solid metal diaphragm is joined to the ceramic container by the solid joining layer. Therefore, when a metal diaphragm joins with a ceramic container, it is suppressed that distortion arises in a joining layer.
  • the bonding strength between the metal member and the ceramic member can be made uniform in the portion where the bonding layer and the conductive layer are in contact with each other. As a result, compared with the manufacturing method of the diaphragm vacuum gauge which changes a joining layer from a liquid body to a solid, the precision of the measurement in a diaphragm vacuum gauge increases.
  • the diaphragm vacuum gauge 10 includes a reference container 11, a measurement container 12, and a diaphragm 13 that is an example of a metal member.
  • the diaphragm 13 is joined to the reference container 11 and the measurement container 12.
  • the reference container 11 and the measurement container 12 are examples of a ceramic member and a ceramic container.
  • Each of the reference container 11 and the measurement container 12 has a cylindrical shape, and each of the containers 11 and 12 has openings 11a and 12a at one of the two cylinder ends and a bottom at the other cylinder end.
  • a material for forming the reference container 11 and the measurement container 12 is, for example, ceramic mainly composed of aluminum oxide (Al 2 O 3 ). Ceramics include, for example, Al 2 O 3 at a ratio of 85 mass% to 99 mass%.
  • the diaphragm 13 has a plate shape that closes each of the two openings 11 a and 12 a, and one of the two faces facing the diaphragm 13 faces the opening 11 a of the reference container 11, and the other face measures the measurement container 12. Facing the opening 12a.
  • the outer diameter of the diaphragm 13 is larger than the outer diameter of each of the reference container 11 and the measurement container 12, and the diaphragm 13 extends outward from the outer peripheral surface of each of the reference container 11 and the measurement container 12 in the radial direction. .
  • the material for forming the diaphragm 13 is, for example, any one of Invar, Super Invar, Stainless Invar, and Kovar 42 alloy (Kovar is a registered trademark), which is an alloy containing iron and nickel.
  • the material for forming the diaphragm 13 is, for example, molybdenum hastelloy (Hastelloy is a registered trademark) or inconel (Inconel is a registered trademark). Since the thermal expansion coefficients of these forming materials are almost equal to the thermal expansion coefficient of Al 2 O 3 which is the main component of the forming materials of the containers 11 and 12, the temperature of the containers 11 and 12 and the diaphragm 13 are changed. Further, the occurrence of distortion between the containers 11 and 12 and the diaphragm 13 is suppressed.
  • the diaphragm 13 is joined to the reference container 11 and the measurement container 12, and the reference container 11 and the measurement container 12 are joined to the diaphragm 13 with the openings 11 a and 12 a facing each other with the diaphragm 13 interposed therebetween.
  • the diaphragm 13 forms a reference pressure chamber 11b to which a pressure serving as a measurement reference is applied as a reference container 11, and forms a measurement pressure chamber 12b to which a measured pressure is applied as a measurement container 12.
  • the measurement electrode 14 is located on the inner wall surface of the reference container 11 so as to face the diaphragm 13.
  • the measurement electrode 14 has a metallized layer and a metal layer, and the metallized layer is, for example, a layer in which particles containing molybdenum and manganese or particles containing titanium are diffused in a part of the inner wall surface. Is made of gold, for example, and is located on the metallization layer.
  • the bottom portion of the reference container 11 has a through-hole penetrating between the outer wall surface and the inner wall surface of the bottom portion, the extraction electrode 15 is located in the through-hole, and the extraction electrode 15 is referenced from the outer wall surface of the bottom portion.
  • the container 11 extends outward in the axial direction.
  • the material for forming the extraction electrode 15 is, for example, a metal such as the same material as the metal layer of the measurement electrode 14. Of the two ends of the extraction electrode 15, the end close to the inner wall is, for example, copper and silver. Is brazed to the metallized layer of the measuring electrode 14 by brazing.
  • the bottom of the measurement container 12 has a pressure application port 12c that penetrates between an outer wall surface and an inner wall surface of the bottom portion.
  • a pressure application port 12c In the outer wall surface of the bottom, at least a portion surrounding the opening of the pressure application port 12c, for example, a metallized layer in which particles containing molybdenum and manganese or particles containing titanium are diffused is located.
  • the pressure applying tube portion 16 is brazed to the metallized layer by, for example, brazing containing copper and silver.
  • the pressure to be measured by the diaphragm vacuum gauge 10 is applied to the measurement pressure chamber 12 b through the pressure application pipe unit 16.
  • the diaphragm 13 causes the difference between the pressure in the reference pressure chamber 11b and the pressure in the measurement pressure chamber 12b. Flex to fit. For example, when the pressure in the measurement pressure chamber 12b is larger than the pressure in the reference pressure chamber 11b, the diaphragm 13 bends toward the bottom of the reference container 11 while the pressure in the measurement pressure chamber 12b is in the reference pressure chamber 11b. When it is smaller than the pressure, it bends in a convex shape toward the bottom of the measurement container 12.
  • the electrostatic capacitance between the diaphragm 13 and the measurement electrode 14 changes due to the deflection of the diaphragm 13, in the diaphragm vacuum gauge 10, the electrostatic capacitance between the diaphragm 13 and the measurement electrode 14 is the reference pressure chamber.
  • the pressure is output through the extraction electrode 15 as the pressure of the measurement pressure chamber 12b with respect to the pressure of 11b.
  • the diaphragm vacuum gauge 10 When the pressure in the reference pressure chamber 11b is vacuum, the diaphragm vacuum gauge 10 functions as an absolute pressure gauge. On the other hand, when the reference pressure chamber 11b is released to atmospheric pressure, the diaphragm vacuum gauge 10 It functions as a pressure gauge, that is, a gauge pressure gauge. When the diaphragm vacuum gauge 10 is an absolute pressure gauge, the diaphragm vacuum gauge 10 preferably includes a chemical getter that adsorbs gas molecules in the reference pressure chamber 11b.
  • the diaphragm vacuum gauge 10 includes a bonding layer 21 made of glaze and bonding the diaphragm 13 and the reference container 11, and the bonding layer 21 has an opening in the outer surface of the reference container 11. It is located on the end surface 11c surrounding 11a.
  • the bonding layer 21 may have a point shape, may have a band shape that extends in the radial direction at the end surface 11c, or an annular shape that extends across the entire radial direction and the entire circumferential direction at the end surface 11c. You may have.
  • the bonding layer 21 may have a band shape extending in the circumferential direction on the end surface 11c, or may have a band shape extending over the entire circumference of the end surface 11c.
  • the bonding layer 21 has an annular shape extending over the entire radial direction and the entire circumferential direction of the end surface 11 c.
  • the bonding layer 21 is sandwiched between the end surface 11 c of the reference container 11 and the surface of the diaphragm 13 facing the reference container 11 to bond the reference container 11 and the diaphragm 13.
  • the glaze constituting the bonding layer 21 has a glass substrate and a metal element mixed in the glass substrate.
  • the metal element contained in the glaze is a metal element that functions as a positive mobile ion, and the glaze contains, for example, at least one of sodium, potassium, calcium, and the like as the metal element.
  • the glass substrate constituting the glaze include borosilicate glass, soda lime glass, kovar glass, and lead glass.
  • silicon oxide is the main component. In these materials, the type of metal oxide contained in the glass substrate other than silicon oxide and the ratio of metal oxide to silicon oxide are Different from each other.
  • the diaphragm vacuum gauge 10 includes the conductive layer 22 that constitutes the outer surface of the reference container 11 and is covered with the bonding layer 21.
  • the conductive layer 22 may be the outer wall itself of the reference container 11 or may be positioned on the outer wall of the reference container 11 to constitute the outer surface of the reference container 11. Alternatively, the conductive layer 22 may have both of these.
  • the electric conductivity of the conductive layer 22 is higher than the electric conductivity of the bonding layer 21. That is, the electrical resistance of the conductive layer 22 is lower than the electrical resistance of the bonding layer 21.
  • the conductive layer 22 constitutes at least a part of the end surface 11 c of the outer surface of the reference container 11.
  • the conductive layer 22 may have a point shape, may have a band shape extending in a part in the radial direction at the end surface 11c, or may extend over the entire radial direction and the entire circumferential direction at the end surface 11c. You may have a ring shape to expand. Alternatively, the conductive layer 22 may have a band shape extending partly in the circumferential direction on the end surface 11c, or may have a band shape extending over the entire circumference of the end surface 11c.
  • the conductive layer 22 overlaps at least a part of the bonding layer 21 at the end face 11 c, and preferably overlaps the entire bonding layer 21.
  • the conductive layer 22 has an annular shape that extends over the entire radial direction and the entire circumferential direction of the end surface 11c to form the outer surface of the reference container 11, and the end surface 11c. It overlaps with the entire bonding layer 21.
  • the bonding layer 21 contacts the diaphragm 13 and the conductive layer 22 that is the outer surface of the reference container 11 to bond the diaphragm 13 and the reference container 11 together.
  • the diaphragm vacuum gauge 10 has a terminal layer 23 located at a site away from the diaphragm 13 on the outer surface of the reference container 11.
  • the terminal layer 23 can apply a voltage applied between the diaphragm 13 and the terminal layer 23 to the bonding layer 21.
  • the terminal layer 23 is electrically connected to the conductive layer 22 and may be integrally formed with the conductive layer 22 by the same material, or may be formed as separate layers by a material different from the conductive layer 22. May be.
  • the terminal layer 23 has, for example, a strip shape that is located on the outer peripheral surface 11d of the reference container 11 and extends to a part of the outer peripheral surface 11d in the circumferential direction, away from the end surface 11c in contact with the diaphragm 13 in the reference container 11. Alternatively, it may have a band shape extending over the entire circumferential direction of the outer peripheral surface 11d.
  • the terminal layer 23 may have a band shape that extends along a part of the direction in which the central axis of the reference container 11 extends, or a cylindrical shape that extends over the entire direction in which the central axis extends in the outer peripheral surface 11d. Also good.
  • the terminal layer 23 may be located in the bottom portion 11e on the opposite side of the opening 11a in the reference container 11, may have a band shape extending in a part in the radial direction of the bottom portion 11e, You may have a cylinder shape extended over the whole bottom part 11e.
  • the terminal layer 23 may have a band shape extending in a part in the circumferential direction of the bottom portion 11e, or may have a ring shape extending over the entire circumferential direction in the bottom portion 11e.
  • the terminal layer 23 is preferably located continuously on the outer peripheral surface 11d and the bottom 11e.
  • the terminal layer 23 includes a high resistance terminal layer 24 and a low resistance terminal layer 25.
  • Each of the high resistance terminal layer 24 and the low resistance terminal layer 25 has a cylindrical shape formed on the outer peripheral surface 11 d over the entire axial direction and the entire circumferential direction of the reference container 11.
  • Each of the high resistance terminal layer 24 and the low resistance terminal layer 25 is further located continuously on the outer peripheral surface 11d and the bottom portion 11e.
  • each of the high resistance terminal layer 24 and the low resistance terminal layer 25 has a ring shape that spreads radially outward from the outer edge of the bottom portion 11e.
  • the high resistance terminal layer 24 is made of a glaze like the bonding layer 21 and is separated from the diaphragm 13 and is continuous with the bonding layer 21.
  • the high resistance terminal layer 24 may be composed of a glaze having the same component as that of the bonding layer 21 or may be composed of a glaze having components different from each other.
  • the low resistance terminal layer 25 is separated from the diaphragm 13 and continues to the conductive layer 22, is located on the outer surface of the reference container 11 and is covered with the high resistance terminal layer 24.
  • the low resistance terminal layer 25 may be made of the same material as the conductive layer 22 or may be made of different materials.
  • FIG. 3 shows an enlarged part of the cross-sectional structure of the reference container 11 for convenience of explanation.
  • the conductive layer 22 has a conductive metallized layer 22a and a conductive metal layer 22b.
  • the conductive metallized layer 22a is a layer in which, for example, particles containing molybdenum and manganese or particles containing titanium are diffused on the end surface 11c of the reference container 11.
  • the electric conductivity of the conductive metallized layer 22a is higher than the electric conductivity of the portion of the reference container 11 where the metal particles are not diffused, and higher than the electric conductivity of the bonding layer 21.
  • the conductive metal layer 22b is a layer made of a metal such as gold, iron, nickel, cobalt, chromium, or molybdenum, and is formed using a plating method, a vacuum evaporation method, a sputtering method, or the like. Is a layer.
  • the electric conductivity of the conductive metal layer 22 b is higher than the electric conductivity of the bonding layer 21.
  • the conductive metal layer 22b may cover at least a part of the conductive metallized layer 22a, or may cover the entire conductive metallized layer 22a. When the conductive metal layer 22b constitutes the outer surface of the reference container 11, it is preferable that the entire conductive metal layer 22b overlaps the entire conductive metallized layer 22a. As a result, the conductive metal layer 22b is unlikely to peel off from the outer wall of the reference container 11.
  • the conductive layer 22 does not have to have both the conductive metallized layer 22a and the conductive metal layer 22b.
  • the conductive layer 22 may have only the conductive metallized layer 22a or only the conductive metal layer 22b.
  • the material for forming the conductive metal layer 22b is preferably a material having high adhesion to the ceramic constituting the reference container 11.
  • the conductive metallized layer 22a is located over the entire radial direction and the entire circumferential direction of the end surface 11c, and the conductive metal layer 22b covers the entire conductive metallized layer 22a.
  • the low resistance terminal layer 25 has a terminal metallized layer 25 a and a terminal metal layer 25 b, similarly to the conductive layer 22.
  • the terminal metallized layer 25a is a layer in which, for example, particles containing molybdenum and manganese or particles containing titanium are diffused on the outer peripheral surface 11d and a part of the bottom 11e of the reference container 11.
  • the electrical conductivity of the terminal metallized layer 25 a is higher than the electrical conductivity of the high resistance terminal layer 24.
  • the terminal metallization layer 25a is separated from the diaphragm 13 and is continuous with the conductive metallization layer 22a.
  • the terminal metallization layer 25a may be composed of the same material as the conductive metallization layer 22a, or may be composed of different materials.
  • the terminal metal layer 25b is a layer made of a metal such as gold, iron, nickel, cobalt, chromium, or molybdenum, and is formed by using a plating method, a vacuum evaporation method, a sputtering method, or the like. Is a layer.
  • the electric conductivity of the terminal metal layer 25 b is higher than the electric conductivity of the bonding layer 21.
  • the terminal metal layer 25b may cover a part of the terminal metallization layer 25a or may cover the entire conductive metallization layer 22a. When the terminal metal layer 25b is located on the outer wall of the reference container 11, it is preferable that the entire terminal metal layer 25b overlaps the entire terminal metallized layer 25a. As a result, the terminal metal layer 25b is unlikely to peel off from the outer wall of the reference container 11.
  • the terminal metal layer 25b may be made of the same material as the conductive metal layer 22b, or may be made of different materials.
  • the low resistance terminal layer 25 may not have both the terminal metallized layer 25a and the terminal metal layer 25b, and may have only the terminal metallized layer 25a or only the terminal metal layer 25b. Good.
  • the material for forming the terminal metal layer 25 b is preferably a material having high adhesion to the ceramic constituting the reference container 11.
  • the terminal metallization layer 25a has a cylindrical shape formed on the outer peripheral surface 11d over the entire axial direction and the entire circumferential direction of the reference container 11.
  • the terminal metallized layer 25a is further located continuously on the outer peripheral surface 11d and the bottom 11e.
  • the terminal metallization layer 25a has a ring shape that spreads radially inward from the outer edge of the bottom portion 11e.
  • the terminal metal layer 25b covers the entire terminal metallization layer 25a and is continuous with the conductive metal layer 22b apart from the diaphragm 13.
  • the manufacturing method of the diaphragm vacuum gauge 10 has a terminal layer formation process (step S1), a joining layer clamping process (step S2), and a voltage application process (step S3).
  • the terminal layer forming step the terminal layer 23 is formed on at least one of the reference container 11 and the measurement container 12, and preferably formed on both the reference container 11 and the measurement container 12.
  • the terminal layer forming step when the terminal layer 23 is composed only of the high resistance terminal layer 24, the glaze is applied to at least one outer surface of the reference container 11 and the measurement container 12, and the applied glaze is baked. As a result, the terminal layer 23 is formed.
  • the bonding layer 21 may be formed simultaneously with the high resistance terminal layer 24 or may be formed before the terminal layer forming step. It may be formed after the terminal layer forming step. On the other hand, when the high resistance terminal layer 24 is not formed in the terminal layer forming step, the bonding layer 21 may be formed before the bonding layer sandwiching step.
  • the terminal layer forming step when the terminal layer 23 is composed of only the low resistance terminal layer 25 and the low resistance terminal layer 25 is composed of the terminal metallized layer 25a and the terminal metal layer 25b, first, the reference container A terminal metallized layer 25 a is formed on the outer surface of at least one of 11 and the measurement container 12. Next, the terminal metal layer 25b is formed on the outer surface of the container in which the terminal metallized layer 25a is formed.
  • the conductive layer 22 may be formed simultaneously with the low resistance terminal layer 25 or may be formed before the terminal layer forming step. It may be formed after the terminal layer forming step. On the other hand, when the low resistance terminal layer 25 is not formed in the terminal layer forming step, the conductive layer 22 may be formed before the bonding layer sandwiching step.
  • the terminal layer forming step when the terminal layer 23 is composed of the high resistance terminal layer 24 and the low resistance terminal layer 25, first, a process for forming the low resistance terminal layer 25 is performed. Then, a process for forming the high resistance terminal layer 24 is performed.
  • the bonding layer 21 is sandwiched between at least one of the reference container 11 and the measurement container 12 and the diaphragm 13 in a state where the terminal layer 23 and the diaphragm 13 are separated from each other.
  • at least one bonding layer 21 of the reference container 11 and the measurement container 12 may be sandwiched between the container in which the bonding layer 21 is formed and the diaphragm 13 among the two containers 11 and 12. Good.
  • the bonding layer 21 formed on at least one of the two surfaces facing each other of the diaphragm 13 may be sandwiched between the diaphragm 13 and the container facing the bonding layer 21. Good.
  • the conductive layer 22 having higher electrical conductivity than the bonding layer 21 constitutes at least one outer surface of the reference container 11 and the measurement container 12, and the conductive layer 22 is covered with the bonding layer 21. Is called.
  • the conductive layer 22 may constitute only the outer surface of the reference container 11, or may constitute only the outer surface of the measurement container 12, The outer surface of the reference container 11 and the outer surface of the measurement container 12 may be configured.
  • the conductive layer sandwiching step when the conductive layer 22 is composed of the conductive metallized layer 22a, at least one outer surface of the reference container 11 and the measurement container 12 is composed of the conductive metallized layer 22a.
  • the bonding layer 21 may be included in the container having the conductive metallized layer 22a or covers the conductive metallized layer 22a in the diaphragm 13. It may be formed at the site.
  • the bonding layer sandwiching step when the conductive layer 22 is composed of the conductive metal layer 22b, at least one outer surface of the reference container 11 and the measurement container 12 is composed of the conductive metal layer 22b.
  • the bonding layer 21 is preferably formed in a portion of the diaphragm 13 that covers the conductive metal layer 22b.
  • the conductive layer 22 is composed of the conductive metallized layer 22a and the conductive metal layer 22b
  • the outer surface of at least one of the reference container 11 and the measurement container 12 is electrically conductive metallized layer 22a and conductive metal layer. 22b.
  • the bonding layer 21 is applied to at least one of the two containers or the diaphragm 13 and sintered before the bonding layer clamping step in any case described above. Solid state.
  • a voltage is applied between the terminal layer 23 and the diaphragm 13 while the bonding layer 21 is heated to a temperature lower than the glass transition temperature of the glaze.
  • a voltage is applied between the terminal layer 23 and the diaphragm 13 as compared with the case where the terminal layer 23 is composed of only the high resistance terminal layer 24. Easy to be applied.
  • the voltage is mainly passed through the low resistance terminal layer 25 between the terminal layer 23 and the diaphragm 13. Is applied, and a voltage is also applied through the high resistance terminal layer 24.
  • the bonding layer 21 is heated, so that the electrical conductivity of the bonding layer 21 is increased. Thereby, the metal element contained in the bonding layer 21 functions as positive movable ions.
  • the voltage application process at least one of the reference container 11 and the measurement container 12 and the diaphragm 13 are bonded via the bonding layer 21 due to the movement of electric charge between the bonding layer 21 and the diaphragm 13.
  • a DC voltage may be applied between the terminal layer 23 and the diaphragm 13.
  • the terminal layer 23 may have a positive potential, while the diaphragm 13 may have a negative potential, or the terminal layer 23 may have a negative potential.
  • the diaphragm 13 may be at a positive potential.
  • the positive / negative of the potential between the terminal layer 23 and the diaphragm 13 may be switched during the application of the DC voltage. In this case, it is only necessary that the mobile ions in the bonding layer 21 move to the surface of the bonding target by applying a voltage, and the reaction required for bonding proceeds on the surface of the bonding target.
  • the end faces of the containers 11 and 12 preferably have the bonding layer 21.
  • the end surfaces of the containers 11 and 12 are constituted by the conductive layer 22, and the diaphragm 13 is a bonding layer. 21 is preferable.
  • an AC voltage may be applied between the terminal layer 23 and the diaphragm 13.
  • an AC voltage is applied between the terminal layer 23 and the diaphragm 13
  • the mobile ions in the bonding layer 21 move to the surface to be bonded, and the reaction required for bonding proceeds on the surface to be bonded. do it.
  • the mobile ions may be biased in the bonding layer 21.
  • the mobile ions move from the portion having a relatively positive potential toward the portion having a relatively negative potential in the bonding layer 21. Therefore, when a DC voltage is applied between the terminal layer 23 and the diaphragm 13 and the terminal layer 23 is at a positive potential, while the diaphragm 13 is at a negative potential, the mobile ions are in the bonding layer 21. Therefore, it is biased to a part in contact with the diaphragm 13.
  • the mobile ions need not be biased in the bonding layer 21.
  • it is applied between the terminal layer 23 and the diaphragm 13 while the diaphragm 13 and at least one of the two containers 11 and 12 are bonded.
  • the polarity of the voltage needs to be switched. Therefore, the method of applying a voltage to the terminal layer 23 and the diaphragm 13 becomes complicated.
  • the bonding layer 21 may be in a state of being heated to a temperature lower than the glass transition point of the glaze constituting the bonding layer 21. Therefore, when the terminal layer 23 has the high resistance terminal layer 24 made of glaze, the high resistance terminal layer 24 may be in a state heated to a temperature lower than the glass transition point of the glaze, or higher than the glass transition point. The state heated to temperature may be sufficient. Even if the high resistance terminal layer 24 is heated to a temperature not lower than the glass transition point of the glaze, the bonding layer 21 is at a temperature lower than the glass transition point, that is, as long as it is solid, at least of the two containers 11 and 12. When one side and the diaphragm 13 are joined, distortion in the joining layer 21 can be suppressed.
  • the process described below is performed before the terminal layer forming step described above is performed.
  • standard container 11 and the measurement container 12 which have a cylindrical shape with a bottom part are prepared.
  • the forming material of the reference container 11 and the measurement container 12 is ceramic as described above.
  • the reference container 11 has a through hole for the extraction electrode 15, while the measurement container 12 has a pressure application port 12 c.
  • a diaphragm 13 having a plate shape that closes the openings 11a and 12a of the containers 11 and 12 is also prepared.
  • the material for forming the diaphragm 13 is a metal as described above, and the diaphragm 13 has a plate shape having a larger outer diameter than the containers 11 and 12.
  • the measurement electrode 14 is formed on the reference container 11 at a position facing the diaphragm 13 on the inner wall surface.
  • a metal paste containing molybdenum and manganese or a metal paste containing titanium is applied to a part of the inner wall surface of the reference container 11 and sintered. Thereby, fine particles containing molybdenum and manganese or fine particles containing titanium are thermally diffused on the inner wall surface, whereby a metallized layer is formed on a part of the inner wall surface.
  • a metal layer made of gold is formed on the metallized layer by, for example, a plating method, a vacuum evaporation method, a sputtering method, or the like. Then, the extraction electrode 15 is passed through the through hole of the reference container 11.
  • a metallized layer is formed at a portion surrounding the pressure application port 12 c on the outer wall surface of the measurement container 12 in the same manner as when the measurement electrode 14 is formed.
  • the pressure application pipe portion 16 is brazed to the metallized layer in a state where the opening of the pressure application pipe portion 16 and the pressure application port 12c face each other.
  • each of the reference container 11 and the measurement container 12 positioned with the diaphragm 13 interposed therebetween is in contact with the heater 31.
  • each container 11 and 12 receives heat H from the heater 31, and the joining layer 21 located between the diaphragm 13 and each container 11 and 12 receives the heat H from the heater 31, and the joining layer 21 is received. It is heated to a temperature below the glass transition temperature of the glaze that constitutes.
  • each jig 32 is made of a conductive material, for example, metal, and is in contact with each heater 31 so that the pressure F in the direction from the bottom of each container 11, 12 toward the diaphragm 13 with respect to each container 11, 12. Is applied.
  • the bonding layer 21 sandwiched between the containers 11 and 12 and the diaphragm 13 receives the pressure F by the jig 32, and the bonding layer 21 and the diaphragm 13 are in close contact with each other.
  • the jig 32 applies, for example, a pressure F that does not cause a gap between the surface of the bonding layer 21 and the surface of the diaphragm 13 to the containers 11 and 12.
  • the diaphragm 13 and the two jigs 32 are connected to a DC power source 33 that applies a DC voltage between the diaphragm 13 and each jig 32.
  • the positive terminal of the DC power supply 33 is connected to each jig 32, while the negative terminal of the DC power supply 33 is connected to the diaphragm 13.
  • a DC voltage is applied between the diaphragm 13 and the terminal layer 23 of each container 11, 12.
  • the diaphragm 13 has a negative potential
  • each bonding layer 21 has a positive potential.
  • the terminal layer 23 is continuously located on the outer peripheral surface and the bottom surface of each container 11, 12. Therefore, when a voltage is applied between the conductive layer 22 and the diaphragm 13, by using the jig 32, application of force from the bottom of each container 11, 12 to the diaphragm 13, and the jig 32 and the diaphragm It is possible to apply a voltage to 13. Thereby, the operation
  • the voltage applied to the bonding layer 21 is equalized at the portion where the bonding layer 21 and the conductive layer 22 are in contact with each other. Is also planned.
  • the movable ions M move toward the diaphragm 13 having a negative potential as a positive charge carrier, the movable ions M are biased toward a portion in contact with the diaphragm 13 in the bonding layer 21. A part of the movable ions M has moved from the bonding layer 21 into the diaphragm 13.
  • the movable ions M reduce the silicon oxide constituting the bonding layer 21 and the metal oxide formed on the surface of the diaphragm 13 at the site of the bonding layer 21 in contact with the diaphragm 13. Silicon oxide and metal oxide are changed from a stable state as an oxide to an unstable state as a simple substance by removing oxygen. Therefore, unstable silicon and metal are bonded to each other in order to be in a stable state, and as a result, the interface between the bonding layer 21 and the diaphragm 13 which are in a solid state is bonded.
  • the voltage applied to the bonding layer 21 is made uniform, so that the amount of movement of the movable ions M toward the diaphragm 13 can be made uniform. Therefore, the bonding strength between the diaphragm 13 and each of the containers 11 and 12 can be made uniform in the portion where the bonding layer 21 and the conductive layer 22 are in contact with each other.
  • the bonding layer 21 is bonded to the diaphragm 13 and the reference container 11 before the bonding layer 21 is bonded to the diaphragm 13 and the reference container 11, a voltage is applied between the terminal layer 23 and the diaphragm 13 in a state where the bonding layer 21 is heated, so that a solid is obtained.
  • the diaphragm 13 that is solid and the containers 11 and 12 that are also solid can be bonded.
  • the voltage applied to the bonding layer 21 can be made uniform in the portion where the bonding layer 21 and the conductive layer 22 are in contact with each other.
  • the diaphragm 13 when the diaphragm 13 is joined to each container 11, 12, the diaphragm 13 can be joined to each container 11, 12 without dissolving the bonding layer 21, and as a result, the diaphragm 13 and each container 11 can be joined. , 12 can be prevented from being distorted in the bonding layer 21. In addition, in the portion where the bonding layer 21 and the conductive layer 22 are in contact with each other, the bonding strength between the diaphragm 13 and the containers 11 and 12 can be made uniform.
  • the terminal layer 23 and the diaphragm 13 are compared with the configuration in which the movable ions M are not biased. Bonding is easy by applying a voltage between the two.
  • a voltage is applied to the bonding layer 21 by applying a voltage between the terminal layer 23 and the diaphragm 13.
  • the electrical conductivity of the bonding layer 21 is increased as compared with the case where the bonding layer 21 is in a normal temperature state.
  • the conductivity is low compared to the electrical conductivity of the conductive layer 22. Therefore, a portion of the bonding layer 21 where the metal ions included in the bonding layer 21 function as the movable ions M is limited.
  • a voltage that allows metal ions to function as the movable ions M is applied only to a portion of the bonding layer 21 that is closest to the jig 32 that applies a voltage to the bonding layer 21.
  • the diaphragm 13 and the containers 11 and 12 are bonded only by a part of the bonding layer 21.
  • the bonding between the containers 11 and 12 and the diaphragm 13 is performed in a reduced pressure atmosphere, for example, a vacuum atmosphere of 10 ⁇ 3 Pa or less.
  • a vacuum atmosphere of 10 ⁇ 3 Pa or less for example, a vacuum atmosphere of 10 ⁇ 3 Pa or less.
  • the diaphragm vacuum gauge 10 is a gauge pressure gauge, the containers 11 and 12 and the diaphragm 13 are joined in an atmospheric pressure atmosphere.
  • the solid line indicates the temperature transition in the bonding layer 21
  • the alternate long and short dash line indicates the transition in pressure applied between the reference container 11 and the measurement container 12
  • the two-dot chain line indicates the bonding layer. The transition of the voltage applied between 21 and the diaphragm 13 is shown.
  • the reference container 11 and the measurement container 12 are aligned with the diaphragm 13 in an atmospheric pressure atmosphere.
  • the reference container 11, the measurement container 12, and the diaphragm 13 are sandwiched by the jig 32 together with the heater 31 that heats the containers 11, 12, so that the reference container 11 and the measurement container 12 are attached to the diaphragm 13. It is pressed with a predetermined pressure F.
  • the reference container 11 and the measurement container 12 are arranged in a vacuum atmosphere.
  • the containers 11 and 12 and the diaphragm 13 are arranged in a vacuum atmosphere in a state where the containers 11 and 12 are pressurized in an atmospheric pressure atmosphere. Therefore, since it is not necessary to prepare an actuator that can operate in a vacuum atmosphere, the configuration of the device used in the voltage application process is simplified.
  • each bonding layer 21 is heated.
  • the temperature starts to rise.
  • a predetermined temperature included in a range of 300 ° C. or higher and 800 ° C. or lower
  • each bonding layer 21 Is kept constant until the containers 11, 12 and the diaphragm 13 are joined.
  • each bonding layer 21 When the temperature of each bonding layer 21 reaches a predetermined temperature, application of a voltage between each terminal layer 23 and the diaphragm 13 is started at timing T2, and between each terminal layer 23 and the diaphragm 13 is started.
  • a predetermined voltage for example, a predetermined voltage included in a range of 300V to 1000V is applied. Even when the applied voltage is lower than 300V or higher than 1000V, the diaphragm 13 and the containers 11 and 12 can be joined. However, when the applied voltage is lower than 300V, the movement of the movable ions M hardly occurs.
  • the timing T3 at which the application of the voltage is finished may be set in advance as a time at which a predetermined time has elapsed from the timing T2, for example.
  • the heating of the containers 11 and 12 is finished at the timing T4, and the temperature of the bonding layer 21 starts to fall.
  • the temperature of the bonding layer 21 is lowered to a predetermined temperature, the bonded containers 11 and 12 and the diaphragm 13 are taken out from the vacuum atmosphere to the atmospheric pressure atmosphere at a timing T5, and the containers 11 and 12 and the diaphragm are separated from each other. 13 is removed from each of the containers 11 and 12.
  • the joining layer 21 is heated before the diaphragm 13 and the containers 11 and 12 are joined by the joining layer 21.
  • a voltage can be applied between the terminal layer 23 and the diaphragm 13.
  • the voltage applied to the bonding layer 21 can be made uniform in the portion where the bonding layer 21 and the conductive layer 22 are in contact with each other.
  • the metal ceramic joined body (diaphragm gauge 10) of the present embodiment is configured such that the diaphragm 13 can be joined to the containers 11 and 12 without the joining layer 21 being dissolved.
  • the bonding layer 21 is prevented from being distorted.
  • the bonding strength between the diaphragm 13 and the containers 11 and 12 can be made uniform.
  • each container 11, 12 is composed of a conductive layer 22 connected to the terminal layer 23.
  • the voltage applied to the terminal layer 23 is directly applied to the conductive layer 22, the voltage is easily applied to the portion of the bonding layer 21 in contact with the conductive layer 22, and the diaphragm 13 and the containers 11, 12 The strength of joining is increased.
  • the diaphragm 13 only needs to have a size capable of closing the openings 11a and 12a of the containers 11 and 12, and the outer diameter of the diaphragm 13 may be equal to the outer diameter of the containers 11 and 12, or the diaphragm The outer diameter of 13 may be smaller than the outer diameter of the containers 11 and 12. Even with such a configuration, it is possible to apply a voltage between the terminal layer 23 and the diaphragm 13 formed in each container 11, 12.
  • the metal element constituting the glaze is not limited to sodium, potassium, or calcium, but may be other metal elements. In short, any metal element that can function as movable ions in the bonding layer 21 when a voltage is applied between the terminal layer 23 and the diaphragm 13 may be used.
  • the glass base material which comprises a glaze may be glass other than borosilicate glass, soda-lime glass, Kovar glass, and lead glass, for example, quartz glass.
  • the forming material of the reference container 11 and the measurement container 12 may be a ceramic other than Al 2 O 3 , for example, a ceramic mainly composed of zirconium oxide, silicon nitride, silicon carbide, or aluminum nitride. Even if the forming materials of the containers 11 and 12 are these ceramics, the containers 11 and 12 and the diaphragm 13 can be bonded to each other by the solid bonding layer 21.
  • the material for forming the diaphragm 13 is not limited to the above-described alloy, and may be a metal such as iron, nickel, cobalt, chromium, or molybdenum. Even if the material for forming the diaphragm 13 is any of these metals, the containers 11 and 12 and the diaphragm 13 can be bonded to each other by the solid bonding layer 21.
  • a forming material of the measurement electrode 14 and the extraction electrode 15, metals other than the above, for example, copper, tungsten, etc. may be used.
  • the diaphragm vacuum gauge 10 demonstrated in the above-mentioned embodiment is an example of a metal ceramic joined body.
  • the metal ceramic joined body in the technology of the present disclosure is not limited to the diaphragm vacuum gauge 10, and a metal ceramic in which a metal member and a ceramic member are joined by a joining layer made of glaze and a terminal layer is continuous with the joining layer. What is necessary is just a joined body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

 金属セラミック接合体は、金属部材と、セラミック部材(11)と、釉薬から構成されて金属部材とセラミック部材とを接合する接合層(21)と、セラミック部材の外表面を構成して接合層に覆われる導電層(22)と、セラミック部材の外表面のうち金属部材から離れた部位(11d,11e)に位置する端子層(23)とを備える。導電層(22)は、接合層(21)よりも高い電気伝導率を有する。接合層(21)は、金属部材と端子層(23)との間に位置している。

Description

金属セラミック接合体、隔膜真空計、金属とセラミックとの接合方法、および、隔膜真空計の製造方法
 本開示の技術は、金属部材とセラミック部材との接合体である金属セラミック接合体、隔膜真空計、金属とセラミックとの接合方法、および、隔膜真空計の製造方法に関する。
 隔膜真空計は、例えば特許文献1に記載のように、底部を有した筒形状を有する2つの容器と、2つの容器の間に挟まれることによって、各容器の開口を封止する隔膜とを備えている。隔膜は、測定の基準となる圧力が印加される基準圧力室を一方の容器と形成し、測定される圧力が印加される測定圧力室を他方の容器と形成する。基準圧力室を構成する容器の内壁面には、隔膜と向かい合う電極が位置している。隔膜真空計は、隔膜と電極との間の静電容量を、基準圧力室の圧力に対する測定圧力室の圧力として測定する。
特表2002-500351号公報
 ところで、隔膜真空計では、一般に、隔膜が、ガラスはんだあるいは溶接によって各容器と接合している。隔膜がガラスはんだによって各容器と接合する場合であれ、溶接によって接合する場合であれ、隔膜が各容器と接合するとき、隔膜と各容器とを接合する接合物の状態が液状体から固体に変わる。接合物の状態が変化するとき、接合物の容積も変化するため、接合物にはひずみが生じてしまう。なお、こうしたひずみは、隔膜真空計において隔膜を各容器と接合する接合物に限らず、液状体から固体に変化することによって金属部材をセラミック部材と接合する接合物であれば共通に生じる。
 本開示の技術は、接合物にひずみが生じることを抑えられる金属セラミック接合体、隔膜真空計、金属とセラミックとの接合方法、および、隔膜真空計の製造方法を提供することを目的とする。
 本開示の技術における金属セラミック接合体の一態様は、金属部材と、セラミック部材と、釉薬から構成されて前記金属部材と前記セラミック部材とを接合する接合層と、前記セラミック部材の外表面を構成して前記接合層に覆われる導電層であって、前記接合層よりも電気伝導率が高い前記導電層と、前記セラミック部材の外表面のうち前記金属部材から離れた部位に位置する端子層であって、前記金属部材と前記端子層との間に前記接合層が位置する前記端子層と、を備える。
 この構成によれば、金属部材とセラミック部材とが接合層で接合される前に、接合層が加熱された状態で端子層と金属部材との間に電圧を印加することが可能となる。これにより、固体である接合層を用いて、固体である金属部材と、同じく固体であるセラミック部材とを接合することが可能になる。また、接合層と導電層とが接触する部分において、接合層に印加される電圧の均一化も図られる。すなわち、上述の態様は、金属部材がセラミック部材と接合するときに、接合層が溶解することなく金属部材がセラミック部材と接合することが可能な構成であり、結果として、この態様によれば、金属部材とセラミック部材とが接合されるときに接合層にひずみが生じることが抑えられる。加えて、接合層と導電層とが接触する部分において、金属部材とセラミック部材との接合の強度の均一化も図られる。
 本開示の技術における金属セラミック接合体の他の態様は、前記端子層が、前記導電層に接触している。
 この構成によれば、端子層に印加される電圧が直接導電層に印加されるため、導電層が接触する接合層の部分に電圧が印加されやすくなり、金属部材とセラミック部材との接合の強度が高められる。
 本開示の技術における隔膜真空計の一態様は、開口を有する筒形状のセラミック容器と、前記開口を塞ぐ板形状の金属隔膜と、釉薬から構成されて前記金属隔膜と前記セラミック容器とを接合する接合層と、前記セラミック容器の外表面を構成して前記接合層に覆われる導電層であって、前記接合層よりも電気伝導率が高い前記導電層と、前記セラミック容器の外表面のうち前記金属隔膜から離れた部位に位置する端子層であって、前記金属隔膜と前記端子層との間に前記接合層が位置する前記端子層と、を備える。
 この構成によれば、金属隔膜とセラミック容器とが接合層で接合される前に、接合層が加熱された状態で端子層と金属隔膜との間に電圧を印加することが可能となる。これにより、固体である接合層を用いて、固体である金属隔膜と、同じく固体であるセラミック容器とを接合することが可能になる。また、接合層と導電層とが接触する部分において、接合層に印加される電圧の均一化も図られる。すなわち、上述の態様は、金属隔膜がセラミック容器と接合するときに、接合層が溶解することなく金属隔膜がセラミック容器と接合することが可能な構成であり、結果として、この態様によれば、金属隔膜とセラミック容器とが接合されるときに接合層にひずみが生じることが抑えられる。加えて、接合層と導電層とが接触する部分において、金属隔膜とセラミック容器との接合の強度の均一化も図られる。
 本開示の技術における隔膜真空計の他の態様は、前記接合層が、前記開口を囲む前記セラミック容器の端面に少なくとも部分的に位置し、前記導電層は、前記端面にて前記接合層の少なくとも一部と重なるように位置している。
 この構成によれば、導電層と金属隔膜との間に電圧が印加されるとき、セラミック容器の端面にて導電層と重なる接合層の部位に電圧が印加される。これにより、接合層と導電層とが重なる部位にて金属隔膜がセラミック容器と接合するため、導電層の位置によって金属隔膜におけるセラミック容器との接合位置を決めることができる。
 本開示の技術における隔膜真空計の他の態様は、前記端子層が、前記導電層に接触している。
 この構成によれば、端子層に印加される電圧が直接導電層に印加されるため、導電層が接触する接合層の部分に電圧が印加されやすくなり、金属隔膜とセラミック容器との接合の強度が高められる。
 本開示の技術における隔膜真空計の他の態様は、前記セラミック容器が、前記開口と反対側に底部を有し、前記端子層は、前記セラミック容器の外周面から前記底部の表面まで連続して位置する。
 この構成によれば、導電層と金属隔膜との間に電圧が印加されるとき、導電性の治具を用いることによって、セラミック容器の底部から金属隔膜に向けた力の印加と、治具と金属隔膜との間への電圧の印加とを行うことが可能になる。これにより、金属隔膜とセラミック容器との接合時に必要な作業が簡単になる。
 本開示の技術における金属とセラミックとの接合方法の一態様は、セラミック部材の表面に端子層を形成すること、前記端子層と金属部材とが離れた状態で、前記金属部材と前記セラミック部材との間に釉薬から構成された接合層を挟むこと、前記釉薬のガラス転移点未満の温度まで前記接合層が加熱された状態で前記端子層と前記金属部材との間に電圧を印加することを備える。前記接合層を挟むことは、前記接合層よりも電気伝導率の高い導電層であって、前記セラミック部材の外表面を構成する前記導電層を前記接合層で覆うことを含む。
 この方法によれば、セラミック部材が金属部材と接合するとき、接合層がガラス転移点未満の温度に加熱された状態で、導電層と金属部材との間に電圧が印加される。そのため、固体である金属部材が、固体である接合層によってセラミック部材に接合する。それゆえに、金属部材がセラミック部材と接合するときに、接合層にひずみが生じることが抑えられる。そのうえ、接合層と導電層とが接触する部分において、金属部材とセラミック部材との接合の強度の均一化も図られる。
 本開示の技術における隔膜真空計の製造方法の一態様は、開口を有する筒形状のセラミック容器の外周面の少なくとも一部に端子層を形成すること、前記端子層と、前記開口を塞ぐ板形状の金属隔膜とが離れた状態で、前記金属隔膜と前記セラミック容器の前記開口を囲む端面との間に釉薬から構成された接合層を挟むこと、前記釉薬のガラス点移転未満の温度まで前記接合層が加熱された状態で前記端子層と前記金属隔膜との間に電圧を印加することを備える。そして、前記接合層を挟むことは、前記接合層よりも電気伝導率の高い導電層であって、前記セラミック容器の外表面を構成する前記導電層を前記接合層で覆うことを含む。
 この方法によれば、固体である金属隔膜が、固体である接合層によってセラミック容器と接合する。そのため、金属隔膜がセラミック容器と接合するとき、接合層にひずみが生じることが抑えられる。そのうえ、接合層と導電層とが接触する部分において、金属部材とセラミック部材との接合の強度の均一化も図られる。結果として、接合層を液状体から固体に変える隔膜真空計の製造方法と比べて、隔膜真空計における測定の精度が高まる。
本開示の隔膜真空計の一実施形態の断面構造を示す断面図である。 基準容器の断面構造を示す断面図である。 基準容器の一部断面構造を示す部分断面図である。 隔膜真空計の製造方法の一実施形態における処理の手順を示すフローチャートである。 隔膜真空計の製造方法における電圧印加工程を模式的に示す図である。 接合層における可動イオンの状態を模式的に示す図である。 比較例における可動イオンの状態を模式的に示す図である。 隔膜と各容器とを接合するときの圧力、熱、および、電圧の各々の印加のタイミングを示すタイミングチャートである。
 図1から図5を参照して、本開示の金属セラミック接合体、隔膜真空計、金属とセラミックとの接合方法、および、隔膜真空計の製造方法の一実施形態を説明する。以下では、金属セラミック接合体の一例である隔膜真空計の構成、隔膜真空計の製造方法の順に説明する。
 [隔膜真空計の構成]
 図1および図2を参照して隔膜真空計の構成を説明する。以下では、隔膜真空計の全体構成、および、隔膜真空計の外表面における構成を順番に説明する。
 図1が示すように、隔膜真空計10は、基準容器11、測定容器12、および、金属部材の一例である隔膜13を備え、隔膜13は、基準容器11と測定容器12とに接合している。基準容器11および測定容器12は、セラミック部材およびセラミック容器の一例である。基準容器11および測定容器12の各々は筒形状を有し、各容器11,12は、2つの筒端のうち、一方の筒端に開口11a,12aを有し、他方の筒端に底部を有する。基準容器11と測定容器12の形成材料は、例えば、酸化アルミニウム(Al)を主成分とするセラミックである。セラミックは、例えば、85質量%以上99質量%以下の割合でAlを含む。
 隔膜13は、2つの開口11a,12aの各々を塞ぐ板形状を有し、隔膜13において向かい合う2つの面のうち、一方の面が基準容器11の開口11aと向かい合い、他方の面が測定容器12の開口12aと向かい合っている。隔膜13の外径は、基準容器11および測定容器12の各々の外径よりも大きく、隔膜13は、基準容器11および測定容器12の各々の外周面から径方向の外側に向けて延びている。
 隔膜13の形成材料は、例えば、鉄とニッケルとを含む合金であるインバー、スーパーインバー、ステンレスインバー、および、コバール42合金(コバールは登録商標)などのいずれかである。あるいは、隔膜13の形成材料は、例えば、モリブデンハステロイ(ハステロイは登録商標)、あるいは、インコネル(インコネルは登録商標)などのいずれかである。これらの形成材料の熱膨張係数は、各容器11,12の形成材料の主成分であるAlの熱膨張係数とほぼ等しいため、各容器11,12と隔膜13の温度が変わることにより、各容器11,12と隔膜13との間にひずみが生じることが抑えられる。
 隔膜13は、基準容器11と測定容器12とに接合し、基準容器11と測定容器12とは、互いの開口11a,12aが隔膜13を挟んで向かい合う状態で隔膜13に接合している。隔膜13は、測定の基準となる圧力が印加される基準圧力室11bを基準容器11と形成する一方、測定される圧力が印加される測定圧力室12bを測定容器12と形成している。
 基準容器11の内壁面には、測定電極14が、隔膜13と向かい合う状態で位置している。測定電極14は、メタライズ層と金属層とを有し、メタライズ層は、例えば、モリブデンとマンガンとを含む粒子、あるいは、チタンを含む粒子が内壁面の一部に拡散した層であり、金属層は、例えば金によって構成されて、メタライズ層上に位置している。
 基準容器11の底部は、底部の外壁面と内壁面との間を貫通する貫通孔を有し、貫通孔内には、引出電極15が位置し、引出電極15は、底部の外壁面から基準容器11の軸方向における外側に向けて延びている。引出電極15の形成材料は、例えば、測定電極14の金属層と同じ材料などの金属であり、引出電極15の2つの端部のうち、内壁面に近い端部は、例えば、銅と銀とを含むろうによって測定電極14のメタライズ層にろう付けされている。
 測定容器12の底部は、底部の外壁面と内壁面との間を貫通する圧力印加ポート12cを有している。底部の外壁面のうち、少なくとも圧力印加ポート12cの開口を囲む部分には、例えば、モリブデンとマンガンとを含む粒子、または、チタンを含む粒子が拡散したメタライズ層が位置している。メタライズ層には、圧力印加管部16が、例えば、銅と銀とを含むろうによってろう付けされている。隔膜真空計10の測定対象となる圧力は、圧力印加管部16を通じて測定圧力室12bに印加される。
 隔膜真空計10においては、測定対象となる圧力が、圧力印加管部16から測定圧力室12bに印加されると、隔膜13が、基準圧力室11bの圧力と測定圧力室12bの圧力との差に合わせて撓む。例えば、測定圧力室12bの圧力が基準圧力室11bの圧力よりも大きいとき、隔膜13は基準容器11の底部に向けて凸状に撓む一方、測定圧力室12bの圧力が基準圧力室11bの圧力よりも小さいとき、測定容器12の底部に向かって凸状に撓む。隔膜13が撓むことによって、隔膜13と測定電極14との間の静電容量が変わるため、隔膜真空計10においては、隔膜13と測定電極14との間の静電容量が、基準圧力室11bの圧力に対する測定圧力室12bの圧力として引出電極15を通じて出力される。
 なお、基準圧力室11b内の圧力が真空であるとき、隔膜真空計10は、絶対圧力計として機能する一方、基準圧力室11bが大気圧に解放されているとき、隔膜真空計10は、相対圧力計、すなわち、ゲージ圧力計として機能する。隔膜真空計10が絶対圧力計であるとき、隔膜真空計10は、基準圧力室11b内の気体分子を吸着するケミカルゲッターを備えていることが好ましい。
 [隔膜真空計の外表面における構成]
 図2および図3を参照して隔膜真空計10の外表面における構成を説明する。なお、隔膜真空計10のうち、基準容器11の外表面における構成と測定容器12の外表面における構成とは、隔膜真空計10における位置が異なるものの、構成および機能が相互に同じである。そのため、以下では、基準容器11の外表面における構成を詳しく説明し、測定容器12の外表面における構成の説明を省略する。また、図2においては、説明の便宜上、基準容器11が接合している隔膜13と、隔膜13に接合している測定容器12との図示が省略されている。
 図2が示すように、隔膜真空計10は、釉薬から構成されて隔膜13と基準容器11とを接合する接合層21を有し、接合層21は、基準容器11の外表面のうち、開口11aを囲む端面11cに位置している。接合層21は、点形状を有してもよいし、端面11cにて径方向に延びる帯形状を有してもよいし、端面11cにて径方向の全体および周方向の全体にわたって広がる環形状を有してもよい。あるいは、接合層21は、端面11cにて周方向に延びる帯形状を有してもよいし、端面11cの全周にわたって広がる帯形状を有してもよい。
 例えば、図2が示す一例では、接合層21は、端面11cにおける径方向の全体および周方向の全体にわたる環形状を有している。接合層21は、基準容器11の端面11cと隔膜13における基準容器11と向かい合う面との間に挟まれて、基準容器11と隔膜13とを接合する。
 接合層21を構成する釉薬は、ガラス基材と、ガラス基材に混合された金属元素とを有する。釉薬に含まれる金属元素は、正の可動イオンとして機能する金属元素であり、釉薬は、例えば、ナトリウム、カリウム、および、カルシウムなどの少なくとも1種を金属元素として含む。釉薬を構成するガラス基材は、例えば、ホウケイ酸ガラス、ソーダ石灰ガラス、コバールガラス、および、鉛ガラスなどである。なお、いずれのガラス基材においても酸化ケイ素が主成分であり、これらの材料では、ガラス基材に対して酸化ケイ素以外に含まれる金属酸化物の種類や、酸化ケイ素に対する金属酸化物の割合が相互に異なる。
 隔膜真空計10は、基準容器11の外表面を構成して、接合層21に覆われる導電層22を有する。導電層22は、基準容器11の外壁そのものであってもよいし、基準容器11の外壁の上に位置して、基準容器11の外表面を構成してもよい。あるいは、導電層22は、これらの両方を有してもよい。導電層22の電気伝導率は、接合層21の電気伝導率よりも高い。すなわち、導電層22の電気抵抗は、接合層21の電気抵抗よりも低い。導電層22は、基準容器11の外表面のうち、端面11cの少なくとも一部を構成している。導電層22は、点形状を有してもよいし、端面11cにて径方向の一部に延びる帯形状を有してもよいし、端面11cにて径方向の全体および周方向の全体にわたって広がる環形状を有してもよい。あるいは、導電層22は、端面11cにて周方向の一部に延びる帯形状を有してもよいし、端面11cの全周にわたって広がる帯形状を有してもよい。
 導電層22は、端面11cにて接合層21の少なくとも一部と重なりを有し、好ましくは、接合層21の全体と重なりを有する。
 例えば、図2が示す基準容器11の一例では、導電層22が、端面11cにおける径方向の全体および周方向の全体にわたって広がる環形状を有して基準容器11の外表面を構成し、端面11cにて接合層21の全体と重なっている。接合層21は、隔膜13と基準容器11の外表面である導電層22とに接触して、隔膜13と基準容器11とを接合する。
 隔膜真空計10は、基準容器11の外表面のうち、隔膜13から離れた部位に位置する端子層23を有する。端子層23は、隔膜13と端子層23との間に接合層21が位置するとき、隔膜13と端子層23との間に印加された電圧を接合層21に印加することができる。端子層23は、導電層22に電気的に接続し、導電層22と相互に同じ材料によって一体に形成されてもよいし、導電層22とは相互に異なる材料によって各別の層として形成されてもよい。
 端子層23は、例えば、基準容器11のうち、隔膜13と接する端面11cから離れて、基準容器11の外周面11dに位置し、外周面11dの周方向の一部に延びる帯形状を有してもよいし、外周面11dの周方向の全体にわたって広がる帯形状を有してもよい。端子層23は、基準容器11の中心軸が延びる方向の一部に沿って広がる帯形状を有してもよいし、外周面11dにおける中心軸の延びる方向の全体にわたって広がる筒形状を有してもよい。端子層23は、基準容器11のうち、開口11aと反対側の底部11eに位置してもよく、底部11eの径方向の一部に延びる帯形状を有してもよいし、外周面11dおよび底部11eの全体にわたって広がる筒形状を有してもよい。端子層23は、底部11eの周方向の一部に延びる帯形状を有してもよいし、底部11eにおける周方向の全体にわたって広がる環形状を有してもよい。端子層23は、外周面11dと底部11eとに連続して位置することが好ましい。
 例えば、図2が示す基準容器11の一例では、端子層23は、高抵抗端子層24と低抵抗端子層25とを有する。高抵抗端子層24と低抵抗端子層25の各々は、基準容器11の軸方向全体および周方向全体にわたって外周面11d上に形成される筒形状を有する。高抵抗端子層24と低抵抗端子層25の各々は、さらに、外周面11dと底部11eとに連続して位置している。また、底部11eにおいて、高抵抗端子層24と低抵抗端子層25の各々は、底部11eの外縁から径方向内側に向けて広がる環形状を有する。
 高抵抗端子層24は、接合層21と同じく釉薬から構成され、隔膜13から離れて接合層21と連続している。高抵抗端子層24は、接合層21と相互に同じ成分の釉薬から構成されてもよいし、相互に異なる成分の釉薬から構成されてもよい。
 低抵抗端子層25は、隔膜13から離れて導電層22と連続し、基準容器11の外表面上に位置して高抵抗端子層24に覆われている。低抵抗端子層25は、導電層22と相互に同じ材料から構成されてもよいし、相互に異なる材料から構成されてもよい。
 図3を参照して、導電層22および低抵抗端子層25をより詳しく説明する。なお、図3は、説明の便宜上、基準容器11の断面構造における一部を拡大して示している。
 図3が示すように、導電層22は、導電メタライズ層22aと、導電金属層22bとを有している。導電メタライズ層22aは、基準容器11の端面11cに、例えば、モリブデンとマンガンとを含む粒子、あるいは、チタンを含む粒子が拡散した層である。導電メタライズ層22aの電気伝導率は、基準容器11における金属粒子が拡散していない部分の電気伝導率よりも高く、かつ、接合層21の電気伝導率よりも高い。
 導電金属層22bは、例えば、金、鉄、ニッケル、コバルト、クロム、または、モリブデンなどの金属で構成された層であり、めっき法、真空蒸着法、または、スパッタ法などを用いて形成された層である。導電金属層22bの電気伝導率は、接合層21の電気伝導率よりも高い。導電金属層22bは、導電メタライズ層22aの少なくとも一部を覆っていてもよいし、導電メタライズ層22aの全体を覆っていてもよい。導電金属層22bが基準容器11の外表面を構成する場合は、導電金属層22bの全体が、導電メタライズ層22aの全体と重なることが好ましい。これにより、導電金属層22bが、基準容器11の外壁から剥がれにくくなる。
 導電層22は、導電メタライズ層22aと導電金属層22bとの両方を有する構成でなくともよく、導電メタライズ層22aのみを有してもよいし、導電金属層22bのみを有してもよい。なお、導電層22が導電金属層22bのみを有する場合には、導電金属層22bの形成材料は、基準容器11を構成するセラミックに対する付着性の高い材料であることが好ましい。
 図3が示す基準容器11の一例では、導電メタライズ層22aは、端面11cにおける径方向の全体および周方向の全体にわたって位置し、導電金属層22bは、導電メタライズ層22aの全体を覆っている。
 低抵抗端子層25は、導電層22と同様、端子メタライズ層25aと、端子金属層25bとを有している。端子メタライズ層25aは、基準容器11の外周面11d、および底部11eの一部に、例えば、モリブデンとマンガンとを含む粒子、あるいは、チタンを含む粒子が拡散した層である。端子メタライズ層25aの電気伝導率は、高抵抗端子層24の電気伝導率よりも高い。端子メタライズ層25aは、隔膜13と離れて、導電メタライズ層22aと連続している。端子メタライズ層25aは、導電メタライズ層22aと相互に同じ材料で構成されてもよいし、相互に異なる材料で構成されてもよい。
 端子金属層25bは、例えば、金、鉄、ニッケル、コバルト、クロム、または、モリブデンなどの金属で構成された層であり、めっき法、真空蒸着法、または、スパッタ法などを用いて形成された層である。端子金属層25bの電気伝導率は、接合層21の電気伝導率よりも高い。端子金属層25bは、端子メタライズ層25aの一部を覆っていてもよいし、導電メタライズ層22aの全体を覆っていてもよい。端子金属層25bが基準容器11の外壁上に位置する場合は、端子金属層25bの全体が、端子メタライズ層25aの全体と重なることが好ましい。これにより、端子金属層25bが、基準容器11の外壁から剥がれにくくなる。端子金属層25bは、導電金属層22bと相互に同じ材料で構成されてもよいし、相互に異なる材料で構成されてもよい。
 低抵抗端子層25は、端子メタライズ層25aと端子金属層25bとの両方を有する構成でなくともよく、端子メタライズ層25aのみを有してもよいし、端子金属層25bのみを有してもよい。なお、低抵抗端子層25が端子金属層25bのみを有する場合には、端子金属層25bの形成材料は、基準容器11を構成するセラミックに対する付着性の高い材料であることが好ましい。
 図3が示す基準容器11の一例では、端子メタライズ層25aは、基準容器11の軸方向全体および周方向全体にわたって外周面11d上に形成される筒形状を有する。端子メタライズ層25aは、さらに、外周面11dと底部11eとに連続して位置する。また、底部11eにおいて、端子メタライズ層25aは、底部11eの外縁から径方向内側に向けて広がる環形状を有する。端子金属層25bは、端子メタライズ層25aの全体を覆い、かつ、隔膜13と離れて導電金属層22bと連続している。
 [隔膜真空計の製造方法]
 図4から図8を参照して、隔膜真空計10の製造方法を説明する。以下では、まず、隔膜真空計10の製造方法の手順を説明し、次に、電圧印加工程を説明する。
 図4を参照して、隔膜真空計10の製造方法の処理の手順を説明する。
 図4が示すように、隔膜真空計10の製造方法は、端子層形成工程(ステップS1)、接合層挟持工程(ステップS2)、および、電圧印加工程(ステップS3)を有する。端子層形成工程においては、端子層23が、基準容器11および測定容器12の少なくとも一方に形成され、好ましくは、基準容器11および測定容器12の両方に形成される。
 端子層形成工程においては、端子層23が高抵抗端子層24のみから構成されるとき、基準容器11および測定容器12の少なくとも一方の外表面に対して釉薬が塗布され、塗布された釉薬が焼結されることによって、端子層23が形成される。なお、端子層形成工程において、高抵抗端子層24が形成されるとき、接合層21は、高抵抗端子層24と同時に形成されてもよいし、端子層形成工程よりも前に形成されてもよいし、端子層形成工程よりも後に形成されてもよい。一方、端子層形成工程において、高抵抗端子層24が形成されないとき、接合層21は、接合層挟持工程よりも前に形成されればよい。
 また、端子層形成工程においては、端子層23が低抵抗端子層25のみから構成され、かつ、低抵抗端子層25が端子メタライズ層25aおよび端子金属層25bから構成されるとき、まず、基準容器11および測定容器12の少なくとも一方の外表面に端子メタライズ層25aが形成される。次いで、端子メタライズ層25aが形成された容器の外表面に対して、端子金属層25bが形成される。
 なお、低抵抗端子層25が端子メタライズ層25aのみから構成されるときには、基準容器11および測定容器12の少なくとも一方の外表面に端子メタライズ層25aのみが形成される。また、低抵抗端子層25が端子金属層25bのみから構成されるときには、基準容器11および測定容器12の少なくとも一方の外表面に端子金属層25bのみが形成される。また、端子層形成工程において、低抵抗端子層25が形成されるとき、導電層22は、低抵抗端子層25と同時に形成されてもよいし、端子層形成工程よりも前に形成されてもよいし、端子層形成工程よりも後に形成されてもよい。一方、端子層形成工程において、低抵抗端子層25が形成されないとき、導電層22は、接合層挟持工程よりも前に形成されればよい。
 また、端子層形成工程においては、端子層23が高抵抗端子層24と低抵抗端子層25とから構成されるとき、まず、低抵抗端子層25を形成するための処理が行われ、次に、高抵抗端子層24を形成するための処理が行われる。
 接合層挟持工程においては、端子層23と隔膜13とが離れた状態で、基準容器11および測定容器12の少なくとも一方と隔膜13との間に接合層21が挟まれる。接合層挟持工程においては、基準容器11および測定容器12の少なくとも一方の接合層21が、2つの容器11,12のうち接合層21の形成された容器と隔膜13との間に挟まれてもよい。あるいは、接合層挟持工程においては、隔膜13の互いに対向する2つの面のうち少なくとも一方に形成された接合層21が、隔膜13と、接合層21と対向する容器との間に挟まれてもよい。
 接合層挟持工程においては、さらに、接合層21よりも電気伝導率の高い導電層22が基準容器11および測定容器12の少なくとも一方の外表面を構成して、導電層22が接合層21で覆われる。基準容器11および測定容器12が接合層21を有するとき、導電層22は、基準容器11の外表面のみを構成してもよいし、測定容器12の外表面のみを構成してもよいし、基準容器11の外表面および測定容器12の外表面を構成してもよい。接合層挟持工程においては、導電層22が導電メタライズ層22aから構成されるとき、基準容器11および測定容器12の少なくとも一方の外表面が、導電メタライズ層22aによって構成されている。2つの容器の少なくとも一方における外表面が、導電メタライズ層22aで構成されるとき、接合層21は、導電メタライズ層22aを有する容器が有してもよいし、隔膜13における導電メタライズ層22aを覆う部位に形成されてもよい。
 接合層挟持工程においては、導電層22が導電金属層22bから構成されるとき、基準容器11および測定容器12の少なくとも一方の外表面が、導電金属層22bによって構成されている。2つの容器の少なくとも一方の外表面が導電金属層22bによって構成されるとき、接合層21は、隔膜13における導電金属層22bを覆う部位に形成されることが好ましい。
 接合層挟持工程においては、導電層22が導電メタライズ層22aと導電金属層22bとから構成されるとき、基準容器11および測定容器12の少なくとも一方の外表面が、導電メタライズ層22aおよび導電金属層22bによって構成されている。
 接合層挟持工程においては、上述したいずれの場合であっても、接合層21は、接合層挟持工程よりも前に、2つの容器の少なくとも一方、もしくは、隔膜13に塗布され、かつ、焼結された固体の状態である。
 電圧印加工程においては、釉薬のガラス転移温度未満の温度まで接合層21が加熱された状態で、端子層23と隔膜13との間に電圧が印加される。電圧印加工程においては、端子層23が低抵抗端子層25を有するとき、端子層23が高抵抗端子層24のみから構成されるときと比べて、端子層23と隔膜13との間に電圧が印加されやすい。電圧印加工程においては、端子層23が、高抵抗端子層24と低抵抗端子層25とから構成されるとき、端子層23と隔膜13との間には、主に低抵抗端子層25を通じて電圧が印加され、高抵抗端子層24を通じても電圧が印加される。
 電圧印加工程においては、端子層23と隔膜13との間に電圧が印加されるとき、接合層21が加熱されているため、接合層21の電気伝導率が高められている。これにより、接合層21に含まれる金属元素が正の可動イオンとして機能する。電圧印加工程においては、こうした接合層21と隔膜13との間での電荷の移動によって、基準容器11および測定容器12の少なくとも一方と、隔膜13とが、接合層21を介して接合する。
 電圧印加工程においては、端子層23と隔膜13との間に直流電圧が印加されてもよい。端子層23と隔膜13との間に直流電圧が印加されるとき、端子層23が正の電位である一方、隔膜13が負の電位であってもよいし、端子層23が負の電位である一方、隔膜13が正の電位であってもよい。あるいは、電圧印加工程においては、端子層23と隔膜13との間での電位の正負が、直流電圧の印加の途中で切り換えられてもよい。この場合には、電圧の印加によって、接合層21の中の可動イオンが接合対象の表面に移動し、接合対象の表面にて接合に必要とされる反応が進行すればよい。
 電圧印加工程においては、端子層23が正の電位であり、かつ、隔膜13が負の電位であるとき、各容器11,12の端面が接合層21を有することが好ましい。電圧印加工程においては、端子層23が負の電位であり、かつ、隔膜13が正の電位であるとき、各容器11,12の端面が導電層22によって構成され、かつ、隔膜13が接合層21を有することが好ましい。
 電圧印加工程においては、端子層23と隔膜13との間に交流電圧が印加されてもよい。端子層23と隔膜13との間に交流電圧が印加されるとき、接合層21の中の可動イオンが接合対象の表面に移動し、接合対象の表面にて接合に必要とされる反応が進行すればよい。
 電圧印加工程においては、端子層23と隔膜13との間に電圧が印加されるとき、接合層21の中で、可動イオンの偏りが生じてもよい。可動イオンは、接合層21の中で、相対的に正の電位である部位から、相対的に負の電位である部位に向けて移動する。そのため、端子層23と隔膜13との間に直流電圧が印加され、かつ、端子層23が正の電位である一方、隔膜13が負の電位であるとき、可動イオンは、接合層21の中で、隔膜13に接する部位に偏る。
 これに対して、端子層23と隔膜13との間に直流電圧が印加され、かつ、端子層23が負の電位である一方、隔膜13が正の電位であるとき、可動イオンは、接合層21の中で、導電層22に接する部位に偏る。
 電圧印加工程においては、端子層23と隔膜13との間に電圧が印加されるとき、接合層21の中で、可動イオンの偏りが生じなくともよい。ただし、接合層21の中で可動イオンが偏らないためには、隔膜13と2つの容器11,12の少なくとも一方とが接合される途中で、端子層23と隔膜13との間に印加される電圧の極性が切り換えられる必要がある。そのため、端子層23と隔膜13とに対する電圧の印加方法が煩雑になる。
 電圧印加工程においては、接合層21が、接合層21を構成する釉薬のガラス転移点未満の温度まで加熱された状態であればよい。そのため、端子層23が、釉薬から構成される高抵抗端子層24を有するとき、高抵抗端子層24は、釉薬のガラス転移点未満の温度まで加熱された状態でもよいし、ガラス転移点以上の温度まで加熱された状態でもよい。高抵抗端子層24が、釉薬のガラス転移点以上の温度まで加熱されても、接合層21がガラス転移点未満の温度である、すなわち、固体である以上は、2つの容器11,12の少なくとも一方と隔膜13とが接合されるときに、接合層21にひずみが生じることが抑えられる。
 なお、隔膜真空計の一例として図1が示す隔膜真空計10が製造されるとき、上述した端子層形成工程が行われる前に、以下に記載する処理が行われる。
 例えば、隔膜真空計10の製造方法においては、底部を有した筒形状を有する基準容器11および測定容器12が準備される。基準容器11および測定容器12の形成材料は、上述のようにセラミックであり、基準容器11は、引出電極15用の貫通孔を有する一方、測定容器12は、圧力印加ポート12cを有する。
 基準容器11と測定容器12とが準備されるとき、各容器11,12の開口11a,12aを塞ぐ板形状を有する隔膜13も準備される。隔膜13の形成材料は、上述のように金属であり、隔膜13は、各容器11,12よりも外径の大きい板形状を有する。
 各容器11,12および隔膜13が準備されると、基準容器11には、測定電極14が、内壁面における隔膜13と向かい合う位置に形成される。測定電極14が形成されるときには、例えば、モリブデンとマンガンとを含む金属ペースト、あるいは、チタンを含む金属ペーストが、基準容器11の内壁面の一部に塗布され、焼結される。これにより、モリブデンとマンガンとを含む微粒子、または、チタンを含む微粒子が内壁面に熱拡散されることで、内壁面の一部にメタライズ層が形成される。次いで、金から構成される金属層が、例えば、めっき法、真空蒸着法、または、スパッタ法などによってメタライズ層上に形成される。そして、引出電極15が、基準容器11の貫通孔内に通される。
 測定容器12には、測定電極14が形成されるときと同様の方法で、測定容器12の外壁面における圧力印加ポート12cを囲む部位に、メタライズ層が形成される。メタライズ層には、圧力印加管部16が、圧力印加管部16の開口と圧力印加ポート12cとが向かい合う状態でろう付けされる。
 [電圧印加工程]
 図5から図8を参照して電圧印加工程をより詳しく説明する。なお、以下では、電圧印加工程の一例として、基準容器11および測定容器12の各々が、接合層21を介して隔膜13に接合する例を説明する。
 図5が示すように、電圧印加工程の一例では、隔膜13を挟んで位置する基準容器11および測定容器12の各々が、ヒーター31に接する。これにより、各容器11,12は、ヒーター31から熱Hを受け、隔膜13と各容器11,12との間に位置する接合層21は、ヒーター31からの熱Hを受けて、接合層21を構成する釉薬のガラス転移温度未満の温度まで加熱される。
 また、基準容器11と測定容器12とは、各ヒーター31の外側から治具32によって挟まれる。各治具32は、導電性の材料、例えば、金属で構成され、各ヒーター31と接することで、各容器11,12に対して各容器11,12の底部から隔膜13に向かう方向の圧力Fを印加する。これにより、各容器11,12と隔膜13との間に挟まれた接合層21は、治具32による圧力Fを受け、かつ、接合層21と隔膜13とが密着する。治具32は、例えば、接合層21の表面と隔膜13の表面との間に隙間が生じない程度の圧力Fを各容器11,12に印加する。
 隔膜13と2つの治具32は、隔膜13と各治具32との間に直流電圧を印加する直流電源33に接続される。直流電源33の正端子が各治具32と接続される一方、直流電源33の負端子が隔膜13と接続される。これにより、直流電圧が、隔膜13と各容器11,12の端子層23との間に印加される。このとき、隔膜13が負の電位であり、各接合層21が正の電位である。
 なお、図5が示す電圧印加工程の一例では、端子層23が、各容器11,12の外周面と底面とに連続して位置する。そのため、導電層22と隔膜13との間に電圧が印加されるとき、治具32を用いることによって、各容器11,12の底部から隔膜13に向けた力の印加と、治具32と隔膜13との間への電圧の印加とを行うことが可能になる。これにより、隔膜13と各容器11,12との接合時に必要な作業が簡単になる。
 図6が示すように、隔膜13と端子層23との間に電圧が印加されるとき、隔膜13と導電層22との間に電圧が印加される。そのため、導電層22が正の電位であり、隔膜13が負の電位である。このとき、接合層21には、熱Hおよび圧力Fが印加されているため、接合層21の電気伝導率が高められている。これにより、導電層22と隔膜13との間に電圧が印加されることで、接合層21に含まれる金属元素が正の可動イオンMとして機能する。それゆえに、接合層21と隔膜13との間での電荷の移動が可能になる。
 しかも、各容器11,12の端面には、接合層21と接する導電層22が位置するため、接合層21と導電層22とが接触する部分において、接合層21に印加される電圧の均一化も図られる。
 可動イオンMは、正電荷のキャリアとして負の電位である隔膜13に向けて移動するため、接合層21では、可動イオンMが、隔膜13と接触する部位に偏る。可動イオンMの一部は、接合層21から隔膜13内まで移動している。
 可動イオンMは、接合層21の隔膜13と接触する部位にて、接合層21を構成する酸化ケイ素や、隔膜13の表面に形成された金属酸化物を還元する。酸化ケイ素や金属酸化物は酸素が取り除かれることによって、酸化物としての安定な状態から、単体としての不安定な状態に変わる。そのため、不安定なケイ素と金属とは、安定な状態となるために相互に結合し、結果として、固体の状態である接合層21と隔膜13との界面が接合される。
 接合層21と導電層22とが接触する部分においては、接合層21に印加される電圧の均一化が図られるため、隔膜13に向けた可動イオンMの移動量の均一化も図られる。そのため、接合層21と導電層22とが接触する部分において、隔膜13と各容器11,12との接合の強度の均一化も図られる。
 また、導電層22が接触する接合層21の部分においては、接合層21における他の部分と比べて、電圧が印加されやすくなる。そのため、各容器11,12と隔膜13とを接合する接合層21の部分を導電層22によって選択することが可能である。
 このように、隔膜13と基準容器11とに接合層21が接合する前に、接合層21が加熱された状態で、端子層23と隔膜13との間に電圧が印加されることによって、固体である接合層21を用いて、固体である隔膜13と、同じく固体である各容器11,12との接合が可能になる。また、接合層21と導電層22とが接触する部分において、接合層21に印加される電圧の均一化も図られる。すなわち、隔膜13が各容器11,12と接合するときに、接合層21が溶解することなく隔膜13が各容器11,12と接合することが可能であり、結果として、隔膜13と各容器11,12とが接合されるときに接合層21にひずみが生じることを抑えられる。加えて、接合層21と導電層22とが接触する部分において、隔膜13と各容器11,12との接合の強度の均一化も図られる。
 また、製造された隔膜真空計10では、接合層21にて隔膜13と接触する部位に可動イオンMが偏っているため、可動イオンMが偏っていない構成と比べて、端子層23と隔膜13との間に電圧を印加することによる接合が容易である。
 これに対して、図7が示すように、導電層22を有しない構成では、端子層23と隔膜13との間に電圧が印加されることによって、接合層21に電圧が印加される。このとき、接合層21が加圧および加熱されることによって、接合層21が常温の状態であるときと比べて接合層21の電気伝導率が高められているとはいえ、接合層21の電気伝導率は、導電層22の電気伝導率と比べて低い。そのため、接合層21のうち、接合層21に含まれる金属イオンが可動イオンMとして機能する部分が限られる。例えば、接合層21のうち、接合層21に対して電圧を印加する治具32からの距離が最も近い部位にのみ、金属イオンが可動イオンMとして機能できる程度の電圧が印加される。結果として、隔膜13と各容器11,12とは、接合層21の一部分によってのみ接合される。
 なお、隔膜真空計10が絶対圧力計であるとき、各容器11,12と隔膜13との接合は、減圧された雰囲気、例えば、10-3Pa以下の真空雰囲気にて行われる。一方、隔膜真空計10がゲージ圧力計であるとき、各容器11,12と隔膜13との接合が大気圧雰囲気にて行われる。
 図8を参照して、電圧印加工程の一例として、真空雰囲気にて隔膜13と各容器11,12とが接合される工程を説明する。なお、図8では、実線が、接合層21における温度の遷移を示し、一点鎖線が、基準容器11と測定容器12との間に印加される圧力の遷移を示し、二点鎖線が、接合層21と隔膜13との間に印加される電圧の遷移を示している。
 各容器11,12が隔膜13に接合するとき、まず、大気圧雰囲気にて、基準容器11と測定容器12とが隔膜13に対して位置合わせされる。次いで、基準容器11、測定容器12、および、隔膜13が、各容器11,12を加熱するヒーター31とともに治具32によって挟まれることで、基準容器11と測定容器12とが隔膜13に対して所定の圧力Fで押し付けられる。
 そして、基準容器11と測定容器12との間に所定の圧力Fが印加された状態で、基準容器11、測定容器12、および、隔膜13が真空雰囲気に配置される。各容器11,12および隔膜13が真空雰囲気に配置されることによって、各容器11,12の内部が、接合層21と隔膜13との隙間を通じて排気される。この方法によれば、大気圧雰囲気にて各容器11,12に対する加圧が行われた状態で、各容器11,12および隔膜13が真空雰囲気に配置される。そのため、真空雰囲気で動作可能なアクチュエーターを準備する必要がない分、電圧印加工程に用いられる装置の構成が簡単になる。
 図8が示すように、基準容器11、測定容器12、および、隔膜13が真空雰囲気に配置されると、タイミングT0にて、基準容器11および測定容器12に対する加熱が開始され、接合層21の温度が上がり始める。各接合層21の温度が、タイミングT1にて、接合層21のガラス転移点未満の所定の温度、例えば、300℃以上800℃以下の範囲に含まれる所定の温度に達すると、各接合層21の温度が、各容器11,12と隔膜13とが接合されるまで一定に保たれる。
 各接合層21の温度が所定の温度に達すると、タイミングT2にて、各端子層23と隔膜13との間への電圧の印加が開始され、各端子層23と隔膜13との間には、所定の電圧、例えば、300V以上1000V以下の範囲に含まれる所定の電圧が印加される。なお、印加される電圧が300Vよりも低い場合、あるいは、1000Vよりも高い場合であっても、隔膜13と各容器11,12との接合は可能である。ただし、印加される電圧が300Vよりも低い場合には、可動イオンMの移動が起こりにくくなる。一方、印加される電圧が1000Vよりも高い場合には、可動イオンMの移動が、1000V以下である場合と比べて速くなるために、隔膜13と各容器11,12との接合の強度が弱くなりやすい。このように、タイミングT2にて、各容器11,12と隔膜13との間への圧力の印加、接合層21の加熱、および、導電層22に対する電圧の印加が同時に行われることで、タイミングT2から各接合層21が隔膜13と接触する部位にて上述した接合反応が開始される。
 上述の圧力の印加、加熱、および、電圧の印加が同時に行われている状態が所定の時間にわたって保たれると、タイミングT3にて、電圧の印加が終了される。各容器11,12と隔膜13とは、各容器11,12と隔膜13との間に位置する接合層21によってタイミングT2からタイミングT3までの間に接合される。
 なお、電圧の印加が終了されるタイミングT3は、例えば、タイミングT2から所定の時間が経過した時刻として予め設定されればよい。
 電圧の印加が終了されると、タイミングT4にて、各容器11,12の加熱が終了され、接合層21の温度が下がり始める。接合層21の温度が所定の温度まで下がると、タイミングT5にて、接合された各容器11,12、および、隔膜13が、真空雰囲気から大気圧雰囲気に取り出され、各容器11,12と隔膜13との間に圧力を印加している治具32が、各容器11,12から取り外される。
 以上説明したように、上述した一実施形態によれば、以下に列挙する効果が得られる。
 (1)本実施形態の金属セラミック接合体(隔膜真空計10)の構成によれば、隔膜13と各容器11,12とが接合層21で接合される前に、接合層21が加熱された状態で端子層23と隔膜13との間に電圧を印加することが可能となる。これにより、固体である接合層21を用いて、固体である隔膜13と、同じく固体である各容器11,12とを接合することが可能になる。また、接合層21と導電層22とが接触する部分において、接合層21に印加される電圧の均一化も図られる。すなわち、本実施形態の金属セラミック接合体(隔膜真空計10)は、接合層21が溶解することなく隔膜13が各容器11,12と接合することが可能な構成であり、結果として、隔膜13と各容器11,12とが接合されるときに接合層21にひずみが生じることが抑えられる。加えて、接合層21と導電層22とが接触する部分において、隔膜13と各容器11,12との接合の強度の均一化も図られる。
 (2)各容器11,12の外表面は、端子層23に接続される導電層22で構成されている。これにより、端子層23に印加される電圧が直接導電層22に印加されるため、導電層22が接触する接合層21の部分に電圧が印加されやすくなり、隔膜13と各容器11,12との接合の強度が高められる。
 (3)導電層22と隔膜13との間に電圧が印加されるとき、各容器11,12の端面にて導電層22と重なる接合層21の部位に電圧が印加される。これにより、導電層22と重なる接合層21の部位にて、隔膜13が各容器11,12と接合するため、導電層22の位置によって隔膜13と各容器11,12との接合位置を決めることができる。
 (4)導電層22と隔膜13との間に電圧が印加されるとき、導電性の治具32を用いることによって、各容器11,12の底部11eから隔膜13に向けた力の印加と、治具32と隔膜13との間への電圧の印加とを行うことが可能になる。これにより、隔膜13と各容器11,12との接合時に必要な作業が簡単になる。
 なお、上述した実施形態は、以下のように適宜変更して実施することができる。
 ・接合層21への熱Hの印加、隔膜13に対する各容器11,12の押し付け、端子層23と隔膜13との間への電圧の印加の各々は、図8に示されるタイミングにて開始されたり終了されたりしなくともよい。熱Hの印加、圧力Fの印加、および、電圧の印加の各々の仕方は、適宜変更することができる。要は、加熱、加圧、および、電圧の印加が同時に行われている状態が含まれていれば、各容器11,12と隔膜13との接合が可能である。
 ・隔膜13は、各容器11,12の開口11a,12aを塞ぐことのできる大きさであればよく、隔膜13の外径は、各容器11,12の外径と等しくともよく、あるいは、隔膜13の外径は、各容器11,12の外径よりも小さくともよい。こうした構成であっても、各容器11,12に形成された端子層23と隔膜13との間に電圧を印加することは可能である。
 ・釉薬を構成する金属元素は、ナトリウム、カリウム、または、カルシウムに限らず、他の金属元素であってもよい。要は、端子層23と隔膜13との間に電圧が印加されたときに、接合層21内で可動イオンとして機能することのできる金属元素であればよい。
 ・釉薬を構成するガラス基材は、ホウケイ酸ガラス、ソーダ石灰ガラス、コバールガラス、および、鉛ガラス以外のガラス、例えば、石英ガラスなどであってもよい。
 ・基準容器11と測定容器12との形成材料は、Al以外のセラミック、例えば、酸化ジルコニウム、窒化ケイ素、炭化ケイ素、または、窒化アルミニウムなどを主成分とするセラミックであってもよい。各容器11,12の形成材料がこれらのセラミックであっても、固体状の接合層21による各容器11,12と隔膜13との接合は可能である。
 ・隔膜13の形成材料は、上述した合金に限らず、例えば、鉄、ニッケル、コバルト、クロム、または、モリブデンなどの金属であってもよい。隔膜13の形成材料がこれらの金属であっても、固体状の接合層21による各容器11,12と隔膜13との接合は可能である。
 ・測定電極14および引出電極15の形成材料には、上述以外の金属、例えば、銅、タングステンなどが用いられてもよい。
 ・上述の実施形態にて説明した隔膜真空計10は、金属セラミック接合体の一例である。本開示の技術における金属セラミック接合体は、隔膜真空計10に限らず、金属部材とセラミック部材とが、釉薬から構成される接合層によって接合され、かつ、接合層に端子層が連続する金属セラミック接合体であればよい。

Claims (8)

  1.  金属部材と、
     セラミック部材と、
     釉薬から構成されて前記金属部材と前記セラミック部材とを接合する接合層と、
     前記セラミック部材の外表面を構成して前記接合層に覆われる導電層であって、前記接合層よりも電気伝導率が高い前記導電層と、
     前記セラミック部材の外表面のうち前記金属部材から離れた部位に位置する端子層であって、前記金属部材と前記端子層との間に前記接合層が位置する前記端子層と、を備える
     金属セラミック接合体。
  2.  前記端子層は前記導電層に接触している、
     請求項1に記載の金属セラミック接合体。
  3.  開口を有する筒形状のセラミック容器と、
     前記開口を塞ぐ板形状の金属隔膜と、
     釉薬から構成されて前記金属隔膜と前記セラミック容器とを接合する接合層と、
     前記セラミック容器の外表面を構成して前記接合層に覆われる導電層であって、前記接合層よりも電気伝導率が高い前記導電層と、
     前記セラミック容器の外表面のうち前記金属隔膜から離れた部位に位置する端子層であって、前記金属隔膜と前記端子層との間に前記接合層が位置する前記端子層と、を備える
     隔膜真空計。
  4.  前記接合層は、前記開口を囲む前記セラミック容器の端面に少なくとも部分的に位置し、
     前記導電層は、前記端面にて前記接合層の少なくとも一部と重なるように位置している、
     請求項3に記載の隔膜真空計。
  5.  前記端子層は前記導電層に接触している、
     請求項3または4に記載の隔膜真空計。
  6.  前記セラミック容器は、前記開口と反対側に底部を有し、
     前記端子層は、前記セラミック容器の外周面から前記底部の表面まで連続して位置する、
     請求項5に記載の隔膜真空計。
  7.  セラミック部材の表面に端子層を形成すること、
     前記端子層と金属部材とが離れた状態で、前記金属部材と前記セラミック部材との間に釉薬から構成された接合層を挟むこと、
     前記釉薬のガラス転移点未満の温度まで前記接合層が加熱された状態で前記端子層と前記金属部材との間に電圧を印加すること、を備え、
     前記接合層を挟むことは、
     前記セラミック部材の外表面を構成し前記接合層よりも高い電気伝導率を有する導電層を前記接合層で覆うことを含む、
     金属とセラミックとの接合方法。
  8.  開口を有する筒形状のセラミック容器の外周面の少なくとも一部に端子層を形成すること、
     前記端子層と、前記開口を塞ぐ板形状の金属隔膜とが離れた状態で、前記金属隔膜と前記セラミック容器の前記開口を囲む端面との間に釉薬から構成された接合層を挟むこと、
     前記釉薬のガラス点移転未満の温度まで前記接合層が加熱された状態で前記端子層と前記金属隔膜との間に電圧を印加すること、を備え、
     前記接合層を挟むことは、
     前記セラミック容器の外表面を構成し前記接合層よりも高い電気伝導率を有する導電層を前記接合層で覆うことを含む、
     隔膜真空計の製造方法。
PCT/JP2015/050375 2014-01-08 2015-01-08 金属セラミック接合体、隔膜真空計、金属とセラミックとの接合方法、および、隔膜真空計の製造方法 WO2015105148A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167017222A KR101857733B1 (ko) 2014-01-08 2015-01-08 금속 세라믹 접합체, 격막 진공계, 금속과 세라믹의 접합방법, 및 격막 진공계의 제조방법
CN201580003794.XA CN105899475B (zh) 2014-01-08 2015-01-08 金属陶瓷接合体、隔膜真空计、金属和陶瓷的接合方法以及隔膜真空计的制造方法
DE112015000356.8T DE112015000356T5 (de) 2014-01-08 2015-01-08 Gebundener Metall/Keramik-Körper, Plattenfedermanometer, Bindungsverfahren für Metall und Keramik und Produktionsverfahren für Plattenfedermanometer
US15/109,612 US20160349135A1 (en) 2014-01-08 2015-01-08 Metal/ceramic bonded body, diaphragm vacuum gauge, bonding method for metal and ceramic, and production method for diaphragm vacuum gauge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014001418A JP2015129684A (ja) 2014-01-08 2014-01-08 金属セラミック接合体、隔膜真空計、金属とセラミックとの接合方法、および、隔膜真空計の製造方法
JP2014-001418 2014-01-08

Publications (1)

Publication Number Publication Date
WO2015105148A1 true WO2015105148A1 (ja) 2015-07-16

Family

ID=53523972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050375 WO2015105148A1 (ja) 2014-01-08 2015-01-08 金属セラミック接合体、隔膜真空計、金属とセラミックとの接合方法、および、隔膜真空計の製造方法

Country Status (6)

Country Link
US (1) US20160349135A1 (ja)
JP (1) JP2015129684A (ja)
KR (1) KR101857733B1 (ja)
CN (1) CN105899475B (ja)
DE (1) DE112015000356T5 (ja)
WO (1) WO2015105148A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087122A (ja) * 2016-11-24 2018-06-07 直文 蕨 金属、セラミックスとガラスの複合体及びその物品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976279A (zh) * 2017-12-15 2018-05-01 北京创昱科技有限公司 一种真空测量装置
JP6848008B2 (ja) * 2019-06-06 2021-03-24 マレリ株式会社 接合方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271361A (ja) * 1993-03-23 1994-09-27 Canon Inc 絶縁体と導電体との接合体並びに接合方法
JP2002500351A (ja) * 1997-12-23 2002-01-08 ユナキス・バルツェルス・アクチェンゲゼルシャフト 容量式の真空測定セル
JP2009210482A (ja) * 2008-03-05 2009-09-17 Ulvac Japan Ltd 真空処理装置
JP2009234832A (ja) * 2008-03-26 2009-10-15 Nagasaki Prefecture 金属箔を接合した陶磁器製品およびその製造法
JP2014196976A (ja) * 2013-03-29 2014-10-16 株式会社アルバック 金属セラミック接合体、隔膜真空計、金属とセラミックとの接合方法、および、隔膜真空計の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527834B2 (ja) * 1990-07-20 1996-08-28 三菱電機株式会社 陽極接合法
US5581876A (en) * 1995-01-27 1996-12-10 David Sarnoff Research Center, Inc. Method of adhering green tape to a metal support substrate with a bonding glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271361A (ja) * 1993-03-23 1994-09-27 Canon Inc 絶縁体と導電体との接合体並びに接合方法
JP2002500351A (ja) * 1997-12-23 2002-01-08 ユナキス・バルツェルス・アクチェンゲゼルシャフト 容量式の真空測定セル
JP2009210482A (ja) * 2008-03-05 2009-09-17 Ulvac Japan Ltd 真空処理装置
JP2009234832A (ja) * 2008-03-26 2009-10-15 Nagasaki Prefecture 金属箔を接合した陶磁器製品およびその製造法
JP2014196976A (ja) * 2013-03-29 2014-10-16 株式会社アルバック 金属セラミック接合体、隔膜真空計、金属とセラミックとの接合方法、および、隔膜真空計の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087122A (ja) * 2016-11-24 2018-06-07 直文 蕨 金属、セラミックスとガラスの複合体及びその物品

Also Published As

Publication number Publication date
JP2015129684A (ja) 2015-07-16
KR20160091983A (ko) 2016-08-03
KR101857733B1 (ko) 2018-05-14
CN105899475A (zh) 2016-08-24
CN105899475B (zh) 2018-09-11
US20160349135A1 (en) 2016-12-01
DE112015000356T5 (de) 2016-10-13

Similar Documents

Publication Publication Date Title
US3531853A (en) Method of making a ceramic-to-metal seal
JP3870824B2 (ja) 被処理物保持体、半導体製造装置用サセプタおよび処理装置
JP2548487B2 (ja) 耐高熱性かつ耐真空性の絶縁部品の孔の貫通接続部および該貫通接続部を形成する方法
US9459169B2 (en) Pressure sensor and method for its manufacture
US10593584B2 (en) Electrostatic chuck for clamping in high temperature semiconductor processing and method of making same
WO2015105148A1 (ja) 金属セラミック接合体、隔膜真空計、金属とセラミックとの接合方法、および、隔膜真空計の製造方法
JP3842735B2 (ja) 真空遮断器の容器部品間の接続部と真空遮断器
JP6058450B2 (ja) 金属セラミック接合体、隔膜真空計、金属とセラミックとの接合方法、および、隔膜真空計の製造方法
JP7182083B2 (ja) ウエハ保持体
JP2008028297A (ja) 静電チャック
JP2006313919A (ja) 被処理物保持体、半導体製造装置用サセプタおよび処理装置
JP2006179897A (ja) 被処理物保持体、半導体製造装置用サセプタおよび処理装置
US11602012B2 (en) Wafer placement table and method for manufacturing the same
JP5961917B2 (ja) ウェハ保持体
JP2003229503A (ja) 気密端子及びその製造方法
JP3808234B2 (ja) ウエハ支持部材
WO2019021713A1 (ja) シャワーヘッド及びその製造方法
JP3752424B2 (ja) 絶縁継手
CN107074669B (zh) 在两个陶瓷部件之间产生连接的方法
JP5857441B2 (ja) ウェハ保持体
JP2003002768A (ja) セラミック部材、接合体、及び真空スイッチ用容器
US20120144889A1 (en) Vacuum enveloping component for vacuum-based electronic devices and method of fabrication thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15734921

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20167017222

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15109612

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 112015000356

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15734921

Country of ref document: EP

Kind code of ref document: A1