WO2015105063A1 - グレーティングカプラ及びその製造方法 - Google Patents

グレーティングカプラ及びその製造方法 Download PDF

Info

Publication number
WO2015105063A1
WO2015105063A1 PCT/JP2015/050009 JP2015050009W WO2015105063A1 WO 2015105063 A1 WO2015105063 A1 WO 2015105063A1 JP 2015050009 W JP2015050009 W JP 2015050009W WO 2015105063 A1 WO2015105063 A1 WO 2015105063A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
grating coupler
grating
thin dielectric
dielectric layer
Prior art date
Application number
PCT/JP2015/050009
Other languages
English (en)
French (fr)
Inventor
藤方 潤一
重樹 高橋
Original Assignee
技術研究組合光電子融合基盤技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 技術研究組合光電子融合基盤技術研究所 filed Critical 技術研究組合光電子融合基盤技術研究所
Priority to JP2015556790A priority Critical patent/JP6475640B2/ja
Publication of WO2015105063A1 publication Critical patent/WO2015105063A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching

Definitions

  • the present invention relates to a grating coupler and a manufacturing method thereof, and more specifically to a grating coupler having a special laminated structure as an optical waveguide structure and a manufacturing method thereof.
  • an optical waveguide element in which an optical waveguide is formed on a substrate and light is propagated in a waveguide mode in this optical waveguide.
  • Various grating couplers having a diffraction grating formed on the surface of an optical waveguide have been proposed.
  • FIG. 5 is a cross-sectional view schematically showing a cross-sectional structure of an example of a grating coupler.
  • the structure and function of the grating coupler will be briefly described with reference to FIG.
  • the grating coupler 500 has a function of receiving an optical signal through an optical waveguide and converting an optical axis by diffraction.
  • 5A includes a BOX layer 512, a core layer 514 having a higher refractive index than that of the BOX layer 512, and an upper cladding layer 516 having the same refractive index as that of the BOX layer 512 in this order.
  • the core layer 514 is formed with a diffraction grating portion, and the optical path can be changed only by forming the diffraction grating on the waveguide.
  • the grating coupler 500 includes, for example, (1) uniform GC without focus, (2) uniform GC with focus, (3) non-uniform GC with focus, and the like, as shown in FIG. There are those having various structures.
  • is the period of the diffraction grating
  • K 2 ⁇ / ⁇
  • q is a value corresponding to the order of the emitted light (0, ⁇ 1, ⁇ 2,).
  • the FF is reduced for the diffraction grating of several periods on the light incident side, or the depth d is set to be d. It is known that the coupling strength of the radiated light is improved when the FF is reduced, and there is a manufacturing limit to reducing the FF. Therefore, the depth d is set for the diffraction grating of several periods on the light incident side by the double etching method. Making it small is proposed (refer nonpatent literature 1).
  • the double etching method as described above is employed to reduce the depth d of the grating coupler on the light incident side, the depth accuracy of the diffraction grating portion is increased. Need to be high. However, since it is difficult to accurately control the etching depth even in a normal etching process, there is a problem that manufacturing tolerance is small and it is difficult to achieve sufficient depth accuracy. In double etching, it becomes more difficult to accurately control the etching depth.
  • the basic configuration of the grating coupler of the present invention for solving the above problems is roughly as follows.
  • An optical waveguide structure of a grating coupler is configured by a laminated structure in which an Si layer, a thin dielectric layer, and an upper Si layer having a refractive index substantially equal to the Si layer and having a diffraction grating portion are formed.
  • the depth of the groove of the diffraction grating portion was made substantially constant so that the bottom surface of the groove was positioned on the surface of the thin dielectric layer. Thereby, even if the depth d of the grating coupler is reduced, the depth accuracy of the diffraction grating portion can be kept high.
  • the multi-stage configuration in which the depth d of the grating coupler is reduced only in the vicinity of the end of the grating coupler forming region is roughly as follows.
  • a laminated structure composed of a thin dielectric layer and an upper Si layer having a refractive index substantially equal to that of the Si layer is laminated in a required number of steps in the grating coupler forming region, and a diffraction grating portion near the end of the grating coupler forming region.
  • the optical waveguide structure has a structure in which the depth of the groove is smaller (shallow) than the depth of the groove outside the vicinity of the end portion, and the diffraction grating is formed both near and outside the end portion of the grating coupler forming region.
  • the groove depth of the diffraction grating portion is substantially constant so that the bottom surface of the groove of the portion is positioned on the surface of the thin dielectric layer.
  • the basic configuration of the manufacturing method of the grating coupler of the present invention is roughly as follows.
  • An SOI substrate for forming a grating coupler is prepared.
  • a thin dielectric layer is formed on the SOI substrate, and an upper Si layer is formed thereon.
  • the upper Si layer is etched to form a diffraction grating portion of the grating coupler.
  • the thin dielectric layer in the lower layer is used as an etch stopper.
  • the groove of the diffraction grating portion is filled with the oxide cladding, and the oxide cladding is planarized to form the upper cladding layer.
  • a polycrystalline Si layer can be used as the upper Si layer.
  • the basic configuration of the method for manufacturing a multi-stage grating coupler according to the present invention is roughly as follows.
  • (1 ′) An SOI substrate for forming a grating coupler is prepared.
  • the thin dielectric layer in the lower layer is used as an etch stopper, and the depth is substantially constant in the vicinity of the edge of the grating coupler formation region. Shallow trenches are formed.
  • the multi-layer laminated structure is etched to form a diffraction grating portion of the grating coupler.
  • the thin dielectric layer in the lowermost layer is used as an etch stopper, and the depth is substantially outside the vicinity of the edge of the grating coupler formation region.
  • a polycrystalline Si layer can be used as the upper Si layer.
  • the dielectric layer provided below the upper Si layer is used as an etch stopper. By using it, it is possible to eliminate variations in etching depth when forming the diffraction grating portion.
  • the dielectric layer provided below the upper Si layer has different depths both near and outside the edge of the grating coupler formation region.
  • variations in the etching depth when forming the diffraction grating portion can be eliminated.
  • FIG. 1 is a cross-sectional view schematically showing a cross-sectional structure of an embodiment of the grating coupler of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a cross-sectional structure of an embodiment of a multi-stage grating coupler according to the present invention.
  • FIG. 3 is a cross-sectional process diagram for explaining an embodiment of the method for manufacturing a grating coupler of the present invention.
  • FIG. 4 is a cross-sectional process diagram for explaining an embodiment of a method for manufacturing a multi-stage grating coupler according to the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a cross-sectional structure of an example of a grating coupler.
  • FIG. 1 is a sectional view schematically showing a sectional structure of an embodiment of the grating coupler of the present invention.
  • the cross-sectional structure illustrated in FIG. 1 includes a thin dielectric layer 112 and a Si layer 120 on an SOI substrate formed by laminating a BOX layer 102 and a Si layer 120 having a higher refractive index than the BOX layer 102 on the substrate 101.
  • the Si layer 120, the thin dielectric layer 112, and the Si layer 120 have a refractive index substantially equal to that of the diffraction grating portion formed.
  • the laminated structure composed of the crystalline Si layer 130 has a waveguide function corresponding to the core layer 314 in FIG. 3A, and the effective refractive index N of the waveguide in this case is the combined refractive index of the laminated structure. It is equivalent to.
  • the polycrystalline Si layer 130 is used.
  • a Si layer similar to the Si layer 120 may be used as the upper Si layer.
  • the grating coupler includes, for example, (1) uniform GC without focus, (2) uniform GC with focus, and (3) non-uniform with focus, as shown in FIG.
  • GC uniform GC without focus
  • non-uniform with focus as shown in FIG.
  • FIG. 2 is a cross-sectional view schematically showing a cross-sectional structure of an embodiment of a multi-stage grating coupler according to the present invention.
  • FIG. 2 illustrates a two-stage grating coupler.
  • the cross-sectional structure illustrated in FIG. 2 includes an SOI substrate formed by laminating a BOX layer 202 and a Si layer 220 having a higher refractive index than the BOX layer 202 on the substrate 201, and a thin dielectric formed on the SOI substrate.
  • the thin dielectric layer 252 and the polycrystalline Si layer 270, and the deep groove 290 of the diffraction grating portion formed in the first polycrystalline Si layer 230, and the shallow groove and the deep groove are filled. It shows a multi-stage structure composed of a tanker to the upper cladding layer 216..
  • the multistage structure including the first layer and the second layer has a waveguide function corresponding to the core layer 514 in FIG. 5A.
  • the effective refractive index N of the waveguide corresponds to the combined refractive index of the multistage structure.
  • the polycrystalline Si layers 230 and 270 are used. However, one or both of the polycrystalline Si layers 230 and 270 may be replaced with a Si layer similar to the Si layer 120.
  • the grating coupler includes, for example, (1) uniform GC without focus, (2) uniform GC with focus, and (3) non-uniform with focus, as shown in FIG.
  • GC uniform GC without focus
  • non-uniform with focus as shown in FIG.
  • FIG. 3 is a cross-sectional process diagram for explaining an embodiment of a method for manufacturing a grating coupler of the present invention, and this manufacturing method includes steps (a) to (e).
  • an SOI substrate used for forming a grating coupler is prepared.
  • an Si layer 320 is further formed on the upper surface of a buried oxide layer (BOX layer) 302 formed on the upper surface of the support substrate 301.
  • BOX layer buried oxide layer
  • a relatively thin dielectric layer 312 is formed on the Si layer 320 in the grating coupler formation region, for example, by thermal oxidation.
  • the dielectric layer 312 may be at least one layer selected from, for example, a silicon oxide layer, a silicon nitride layer, another insulating layer, and the like.
  • a polycrystalline silicon layer 330 is formed in the grating coupler formation region.
  • the polycrystalline silicon layer 330 is etched by a reactive etching method to form a number of grooves 350 in the diffraction grating portion. To do.
  • the dielectric layer 312 functions as an etch stopper when the groove 350 is etched.
  • a large number of grooves 350 in the diffraction grating portion are filled with an oxide cladding, and planarization is performed by CMP (chemical-mechanical polishing process) to form an upper cladding layer 316.
  • the polycrystalline Si layer 230 is used, but a Si layer similar to the Si layer 220 may be used instead of the polycrystalline Si layer 230.
  • FIG. 4 is a cross-sectional process diagram for explaining an embodiment of a manufacturing method of a multi-stage grating coupler according to the present invention (a manufacturing method of a 2-stage grating coupler in the case of this embodiment). Includes steps (a ′) to (g ′).
  • an SOI substrate used for forming a grating coupler is prepared.
  • an Si layer 420 is further formed on the upper surface of a buried oxide layer (BOX layer) 402 formed on the upper surface of the support substrate 401.
  • BOX layer buried oxide layer
  • a relatively thin dielectric layer 412 is formed on the Si layer 420 in the grating coupler formation region by, for example, thermal oxidation treatment in the grating coupler formation region.
  • the dielectric layer 412 may be at least one layer selected from, for example, a silicon oxide layer, a silicon nitride layer, another insulating layer, and the like.
  • a polycrystalline silicon layer 430 is formed in the grating coupler formation region.
  • a relatively thin dielectric layer 452 is formed on the polycrystalline silicon layer 430 in the grating coupler formation region, and the polycrystalline silicon layer 470 is formed on the dielectric layer 452. Form.
  • the polycrystalline silicon layer 470 is etched by a reactive etching method so as to be near the end of the grating coupler forming region.
  • a shallow groove 450 of the diffraction grating portion is formed.
  • the dielectric layer 452 functions as an etch stopper when the shallow groove 450 is etched.
  • the number of shallow grooves is not limited to the illustrated example, and may be any number.
  • the polycrystalline silicon layer 470, the thin dielectric layer 452, and the polycrystalline silicon layer 430 are formed by reactive etching. Are sequentially etched to form a deep groove 490 in the diffraction grating portion outside the vicinity of the end of the grating coupler formation region.
  • the etching gas is switched to an etching gas having a high selectivity with respect to the dielectric layer 452, and after the etching of the dielectric layer 452, the selectivity with respect to the polycrystalline silicon layer 430 is changed.
  • the etching gas is switched to a high etching gas (for example, HBr)
  • the lowermost dielectric layer 412 functions as an etch stopper when the deep groove 490 is etched.
  • the etching gas is switched in order to etch the thin dielectric layer 452.
  • switching of the etching gas is only an example, and for example, if dilute hydrofluoric acid is used, the etching gas is switched.
  • Both the crystalline silicon layer 470 and the thin dielectric layer 452 can be etched.
  • the resist mask instead of using a resist mask, the resist mask may be transferred to a hard mask pattern such as SiN x to use the hard mask pattern. This is because the resist is easily peeled off during the dilute hydrofluoric acid treatment, whereas SiN x is stable against the HBr etching and dilute hydrofluoric acid treatment.
  • the shallow groove 450 and the deep groove 490 of the diffraction grating portion are filled with an oxide cladding, and planarized by CMP to form an upper cladding layer 416. Form.
  • the polycrystalline Si layers 430 and 470 are used. However, one or both of the polycrystalline Si layers 430 and 470 may be replaced with the same Si layer as the Si layer 420.
  • the manufacturing method of a two-stage grating coupler has been described.
  • the above step (d ′) may be repeated as many times as necessary.
  • 101, 201, 301, 401, 501 support substrates 102, 202, 302, 402, 502: BOX layers 112, 212, 252, 312, 412, 452, 512: dielectric layers 116, 216, 316, 416, 516 : Upper cladding layers 120, 220.320, 420: Si layers 130, 230, 270, 330, 430, 470: polycrystalline Si layers 140, 240, 340, 440: rib-type Si waveguides 150, 250, 290, 350 , 450, 490: groove 514: core layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 従来、グレーティングカプラの作成に当たり、通常のエッチングでは回折格子の溝の深さの厳密な制御が困難であり、製造上のトレランスが小さいという問題があった。 SOI基板を準備し、グレーティングカプラ形成領域に誘電体層112を形成後、多結晶シリコン層130を形成し、エッチングにより多結晶シリコン層130に回折格子部を構成する多数の溝150を形成する。その際、誘電体層112は、溝150を形成する際にエッチストッパとして機能しエッチング深さのばらつきが解消される。その後、溝150を埋める上部クラッド層116を形成する。グレーティングカプラ形成領域の端部近傍で溝を浅くする多段構成にも適用できる。

Description

グレーティングカプラ及びその製造方法
 本発明は、グレーティングカプラ及びその製造方法に関し、より特定的には、光導波路構造として特別な積層構造を有するグレーティングカプラ及びその製造方法に関する。
 従来より、基板上に光導波路を形成し、この光導波路において光を導波モードで伝搬させるようにした光導波路素子で、導波光を光導波路外へ出射させるため、あるいは外部光を光導波路内に入射させるために、光導波路の表面に回折格子を形成したグレーティングカプラが種々提案されている。
 図5は、グレーティングカプラの一例の断面構造を模式的に示す断面図である。以下では、図5を参照しながら、グレーティングカプラの構造、機能等を簡単に説明する。
 グレーティングカプラ500は、光信号を光導波路を介して受け取り回折により光軸を変換する作用を有するものである。図5(a)に例示された断面構造は、BOX層512と、BOX層512より屈折率の高いコア層514と、BOX層512と同じ屈折率の上部クラッド層516とを、この順に基板510に積層し、コア層514に回折格子部を形成したもので、導波路への回折格子形成加工のみで、光路変換を可能とするものである。なお、グレーティングカプラ500には、例えば、図5(b)に示されるような、(1)フォーカスなし一様GC、(2)フォーカス付一様GC、(3)フォーカス付非一様GC、等の各種の構造を有するものがある。
 以下、導波光を光導波路外へ出射させるための動作原理等について概略説明する。
 図5(a)に示されるように、グレーティングカプラ500の導波路の厚さ方向(x方向)に薄い回折格子を形成すると、導波光と放射光は、伝搬方向(z方向)の位相整合を満たす必要があり、整合条件は、導波光の伝搬定数をβ、放射光の伝搬定数をβとすると、β=β+qKである。但し、Λを回折格子の周期とし、K=2π/Λで、qは放射光の次数(0、±1、±2、・・・)に相当する値である。
 この場合、回折格子の法線に対し、角度θで出射する放射光と導波路との結合条件は、λを使用する波長、Nを導波路の実効屈折率、nを上部クラッド層の屈折率、Λを回折格子の周期とすると、nsinθ=N+qλ/Λとなる。
 N>nであることを考慮すると、放射は、q≦-1の次数に限られることになるが、最もパワー分配比が高い-1次放射光を使用すると、放射光の高効率利用が図られることになる。なお、上記-1次放射光等の他、導波路方向への戻り光Pref、コア層透過光Ptrans、BOX層512を介した基板510側への放射光Pdownも存在する。
 ここで、出射角度θは、図5(a)に示される格子の周期Λ、幅w、深さd、光導波路の厚さDによって任意に設計できるが、それらの数値範囲を例示すれば、以下のとおりである。
 Λ:530~550nm
 FF(=1-w/Λ):0.3~0.6
 d:60~80nm
 D:180~200nm
 以上、グレーティングカプラによって導波光を光導波路外に出射させる場合について述べたが、このようなグレーティングカプラによって外部光を光導波路内に入射させることも従来から広く行なわれている。
 そして、例えば、図5(a)に示されるような導波光を光導波路外へ出射させるための構成においては、光入射側の数周期の回折格子について上記FFを小さくするか、深さdを小さくすると放射光の結合強度が向上することが知られており、FFを小さくことは製造上の限界があることから、ダブルエッチング手法により、光入射側の数周期の回折格子について深さdを小さくすることが提案されている(非特許文献1参照)。
"CMOS-compatible high efficiency double-etched apodized waveguide grating coupler", OPTICS EXPRESS Vol. 21, No. 7 (2013/4/8) 7868-7874
 導波光を光導波路外へ出射させるための構成において、光入射側のグレーティングカプラの深さdを小さくするため上記のようなダブルエッチング手法を採用する場合には、回折格子部の深さ精度を高くする必要がある。しかしながら、そもそも通常のエッチングンにおいてもエッチング深さの正確な制御は困難であることから、製造上のトレランスが小さく、十分な深さ精度の達成が困難であるという問題があり、上記のようなダブルエッチングではエッチング深さの正確な制御がさらに困難となる。
 上記課題を解決するための本発明のグレーティングカプラの基本的構成は、概略以下のとおりである。
 Si層、薄い誘電体層、上記Si層と略等しい屈折率を有し回折格子部が形成された上部Si層を積層した積層構造でグレーティングカプラの光導波路構造を構成し、前記回折格子部の溝の底面が前記薄い誘電体層の表面に位置するようにして回折格子部の溝の深さを略一定とした。これにより、グレーティングカプラの深さdを小さくとっても回折格子部の深さ精度を高く保つことができる。
 また、グレーティングカプラ形成領域の端部近傍においてのみグレーティングカプラの深さdを小さくするという多段構成は、概略以下のとおりである。
 Si層上に、薄い誘電体層及び前記Si層と略等しい屈折率を有する上部Si層からなる積層構造をグレーティングカプラ形成領域において必要段数積層し、グレーティングカプラ形成領域の端部近傍の回折格子部の溝の深さを端部近傍外の溝の深さより小さく(浅く)形成した構造を光導波路構造として有し、グレーティングカプラ形成領域の端部近傍及び端部近傍外の両方において、前記回折格子部の溝の底面が前記薄い誘電体層の表面に位置するようにして前記回折格子部の溝の深さをそれぞれ略一定とした多段構成を有するものである。
 次に、本発明のグレーティングカプラの製造方法の基本的構成は、概略以下のとおりである。
(1)グレーティングカプラを形成するためのSOI基板を準備する。
(2)グレーティングカプラ形成領域において、SOI基板上に薄い誘電体層を形成し、その上に上部Si層を形成する。
(3)グレーティングカプラ形成領域において、前記上部Si層をエッチング加工し、グレーティングカプラの回折格子部を形成する。なお、グレーティングカプラ形成領域における前記上部Si層のエッチング加工の際、下層にある前記薄い誘電体層がエッチストッパーとして用いられる。
(4)酸化物クラッドにより、回折格子部の溝を埋め、酸化物クラッドを平坦化して上部クラッド層を形成する。
 なお、上部Si層として、多結晶Si層を用いることができる。
 また、本発明の多段構成のグレーティングカプラの製造方法の基本的構成は、概略以下のとおりである。
(1’)グレーティングカプラを形成するためのSOI基板を準備する。
(2’)グレーティングカプラ形成領域において、SOI基板上に、薄い誘電体層を形成しその上に上部Si層を形成することにより薄い誘電体層及び上部Si層からなる積層構造を形成し、このような積層構造を必要段数形成する。
(3’)グレーティングカプラ形成領域の端部近傍において、前記上部Si層をエッチング加工し、グレーティングカプラの回折格子部を形成する。なお、グレーティングカプラ形成領域の端部近傍における前記上部Si層のエッチング加工の際、下層にある前記薄い誘電体層がエッチストッパーとして用いられ、グレーティングカプラ形成領域の端部近傍において深さが略一定な浅い溝が形成される。
(4’)グレーティングカプラ形成領域の端部近傍外において、前記複数段の積層構造をエッチング加工し、グレーティングカプラの回折格子部を形成する。なお、グレーティングカプラ形成領域の端部近傍外における前記積層構造のエッチング加工の際、最下層にある薄い誘電体層がエッチストッパーとして用いられ、グレーティングカプラ形成領域の端部近傍外において深さが略一定な深い溝が形成される。
(5’)最後に、酸化物クラッドにより、回折格子部の溝を埋め、酸化物クラッドを平坦化して上部クラッド層を形成する。これにより、グレーティングカプラ形成領域の端部近傍においてのみグレーティングカプラの深さdを小さくするという多段構成が完成する。
 なお、上部Si層として、多結晶Si層を用いることができる。
 本発明のグレーティングカプラの基本的構成及び製造方法の基本的構成によれば、グレーティングカプラの回折格子部を上部Si層に形成する際、上部Si層の下層に設けた誘電体層をエッチストッパとして用いることにより、回折格子部形成時のエッチング深さのばらつきを解消し得る。
 また、本発明の多段構成のグレーティングカプラ及びその製造方法によれば、上部Si層の下層に設けた誘電体層を、グレーティングカプラ形成領域の端部近傍及び端部近傍外の両方においてそれぞれ異なる深さでエッチストッパとして用いることにより、回折格子部形成時のエッチング深さのばらつきを解消し得る。
図1は、本発明のグレーティングカプラの一実施形態の断面構造を模式的に示す断面図である。 図2は、本発明の多段構成のグレーティングカプラの一実施形態の断面構造を模式的に示す断面図である。 図3は、本発明のグレーティングカプラの製造方法の一実施形態を説明するための断面工程図である。 図4は、本発明の多段構成のグレーティングカプラの製造方法の一実施形態を説明するための断面工程図である。 図5は、グレーティングカプラの一例の断面構造を模式的に示す断面図である。
 図1は、本発明のグレーティングカプラの一実施形態の断面構造を模式的に示す断面図である。
 図1に例示された断面構造は、BOX層102とBOX層102より屈折率の高いSi層120とを基板101に積層して形成されたSOI基板上に、薄い誘電体層112、Si層120と略等しい屈折率を有し回折格子部が形成された多結晶Si層130を積層し、さらにその上に多結晶Si層130の回折格子部の溝150を埋める上部クラッド層116を形成した積層構造を示すものである。
 先に説明した図5(a)に示される断面構造との対比でいえば、Si層120、薄い誘電体層112、Si層120と略等しい屈折率を有し回折格子部が形成された多結晶Si層130からなる積層構造が、図3(a)のコア層314に相応する導波路機能を有するものであり、この場合の導波路の実効屈折率Nは、上記積層構造の合成屈折率に相当するものとなる。
 なお、上述の例では、多結晶Si層130を用いているが、多結晶Si層130の代わりに、Si層120と同様のSi層を上部Si層として用いてもよい。
 また、前述したように、グレーティングカプラには、例えば、図5(b)に示されるような、(1)フォーカスなし一様GC、(2)フォーカス付一様GC、(3)フォーカス付非一様GC、等の各種のタイプのものが存在するが、いずれのタイプも本発明に採用し得る。
 図2は、本発明の多段構成のグレーティングカプラの一実施形態の断面構造を模式的に示す断面図であり、図2においては、2段構成のグレーティングカプラを例示している。
 図2に例示された断面構造は、BOX層202とBOX層202より屈折率の高いSi層220とを基板201に積層して形成されたSOI基板と、SOI基板上に形成された薄い誘電体層212、Si層220と略等しい屈折率を有する多結晶Si層230を積層した第1層と、薄い誘電体層252、Si層220と略等しい屈折率を有する多結晶Si層270を積層した第2層と、グレーティングカプラ形成領域の端部近傍において前記第2層の多結晶Si層270に形成された回折格子部の浅い溝250と、グレーティングカプラ形成領域の端部近傍外において前記第2層の薄い誘電体層252及び多結晶Si層270並びに前記第1層の多結晶Si層230に形成された回折格子部の深い溝290と、前記浅い溝及び深い溝を埋め平坦化した上部クラッド層216とから構成される多段構造を示すものである。
 先に説明した図5(a)に示される断面構造との対比でいえば、前記第1層及び第2層からなる多段構造が、図5(a)のコア層514に相応する導波路機能を有するものであり、この場合の導波路の実効屈折率Nは、前記多段構造の合成屈折率に相当するものとなる。
 なお、上述の例では、多結晶Si層230、270を用いているが、多結晶Si層230、270の一方または両方を、Si層120と同様のSi層で置き換えてもよい。
 また、前述したように、グレーティングカプラには、例えば、図5(b)に示されるような、(1)フォーカスなし一様GC、(2)フォーカス付一様GC、(3)フォーカス付非一様GC、等の各種のタイプのものが存在するが、いずれのタイプも本発明の多段構成のグレーティングカプラに採用し得る。
 図3は、本発明のグレーティングカプラの製造方法の一実施形態を説明するための断面工程図であり、この製造方法は、工程(a)~(e)を含む。
 まず、図3(a)に示すとおり、グレーティングカプラを形成するために用いるSOI基板を準備する。このSOI基板は、支持基板301の上面に形成された埋め込み酸化層(BOX層)302上面に、さらにSi層320が形成されている。 
 次に、図3(b)に示すように、グレーティングカプラ形成領域において、比較的薄い誘電体層312を、例えば熱酸化処理により、グレーティングカプラ形成領域のSi層320上に形成する。前記誘電体層312は、例えば、シリコン酸化層、窒化シリコン層、他の絶縁層等から選択される少なくとも一層でも良い。
 次に、図3(c)に示すように、グレーティングカプラ形成領域において、多結晶シリコン層330を形成する。
 次に、図3(d)に示すように、グレーティングカプラ形成領域において、レジストパターンを形成した後、反応性エッチング法により多結晶シリコン層330をエッチングし、回折格子部の多数の溝350を形成する。なお、誘電体層312は、前記溝350をエッチングする際のエッチストッパーとして機能する。
 次に図3(e)に示すように、グレーティングカプラ形成領域において、酸化物クラッドにより回折格子部の多数の溝350を埋めCMP(chemical-mechanicalpolishing process)により平坦化を行って、上部クラッド層316を形成する。
 なお、上述の例では、多結晶Si層230を用いているが、多結晶Si層230の代わりに、Si層220と同様のSi層を用いてもよい。
 図4は、本発明の多段構成のグレーティングカプラの製造方法の一実施形態(本実施形態の場合は2段構成のグレーティングカプラの製造方法)を説明するための断面工程図であり、この製造方法は、工程(a’)~(g’)を含む。
 まず、図4(a’)に示すとおり、グレーティングカプラを形成するために用いるSOI基板を準備する。このSOI基板は、支持基板401の上面に形成された埋め込み酸化層(BOX層)402上面に、さらにSi層420が形成されている。 
 次に、図4(b’)に示すように、グレーティングカプラ形成領域において、比較的薄い誘電体層412を、例えば熱酸化処理により、グレーティングカプラ形成領域のSi層420上に形成する。前記誘電体層412は、例えば、シリコン酸化層、窒化シリコン層、他の絶縁層等から選択される少なくとも一層でも良い。
 次に、図4(c’)に示すように、グレーティングカプラ形成領域において、多結晶シリコン層430を形成する。
 次に、図4(d’)に示すように、グレーティングカプラ形成領域において、比較的薄い誘電体層452を多結晶シリコン層430上に形成するとともに、誘電体層452上に多結晶シリコン層470を形成する。
 次に図4(e’)に示すように、多結晶シリコン層470上にレジストパターンを形成した後、反応性エッチング法により多結晶シリコン層470をエッチングし、グレーティングカプラ形成領域の端部近傍に回折格子部の浅い溝450を形成する。この場合、誘電体層452は、前記浅い溝450をエッチングする際のエッチストッパーとして機能する。なお、浅い溝の個数は、図示の例に限定されるものではなく任意の個数でよい。
 次に、図4(f’)に示すように、多結晶シリコン層470上にレジストパターンを形成した後、反応性エッチング法により多結晶シリコン層470、薄い誘電体層452、多結晶シリコン層430を順次エッチングし、グレーティングカプラ形成領域の端部近傍外に回折格子部の深い溝490を形成する。なお、上記エッチングの過程で、薄い誘電体層452をエッチングする際には、誘電体層452に対する選択比の高いエッチングガスに切り替え、誘電体層452のエッチング終了後に多結晶シリコン層430に対する選択比の高いエッチングガス(例えば、HBr等)に切り替えるようにすれば、最下層の誘電体層412が、深い溝490をエッチングする際のエッチストッパーとして機能することになる。
 また、上述の例では、薄い誘電体層452をエッチングするためにエッチングガスの切り替えを行ったが、このようなエッチングガスの切り替えは実施の一例にすぎず、例えば希フッ酸を用いれば、多結晶シリコン層470、薄い誘電体層452の両者をエッチングすることも可能である。但し、この場合には、レジストマスクを使用する代わりに、レジストマスクをSiNなどのハードマスクパターンに転写して、ハードマスクパターンを使用するようにすればよい。これは、レジストは希フッ酸処理時に剥離し易いのに対し、SiNはHBrエッチング及び希フッ酸処理に対して安定であるためである。
 次に、図4(g’)に示すように、グレーティングカプラ形成領域において、酸化物クラッドにより回折格子部の浅い溝450及び深い溝490を埋めCMPにより平坦化を行って、上部クラッド層416を形成する。
 なお、上述の例では、多結晶Si層430、470を用いているが、多結晶Si層430、470の一方または両方を、Si層420と同様のSi層で置き換えてもよい。
 また、上記実施形態では2段構成のグレーティングカプラの製造方法を説明したが、3段構成以上のグレーティングカプラを製造する場合には、上記工程(d’)を必要回数繰り返せばよい。
 以上、本発明の実施の形態を図面を参照しつつ説明してきたが、当業者であれば、他の類似する実施形態を使用することができること、また、本発明から逸脱することなく適宜形態の変更又は追加を行うことができることに留意すべきである。なお、本発明は、上記の実施形態に限定されるべきではなく、特許請求の範囲の記載に基き解釈されるべきである。
101,201,301,401,501:支持基板
102,202,302,402,502:BOX層
112,212,252,312,412,452,512:誘電体層
116,216、316,416,516:上部クラッド層
120,220.320,420:Si層
130,230,270,330,430,470:多結晶Si層
140,240,340,440:リブ型Si導波路
150,250,290,350,450,490:溝
514:コア層
 

Claims (7)

  1.  Si層、薄い誘電体層、前記Si層と略等しい屈折率を有し回折格子部が形成された上部Si層をその順に積層した積層構造を光導波路構造として有し、前記回折格子部の溝の底面が前記薄い誘電体層の表面に位置することを特徴とするグレーティングカプラ。
  2.  Si層上に、薄い誘電体層及び前記Si層と略等しい屈折率を有する上部Si層からなる積層構造をグレーティングカプラ形成領域において必要段数積層し、グレーティングカプラ形成領域の端部近傍の回折格子部の溝の深さを端部近傍外の溝の深さより小さく形成した構造を光導波路構造として有し、グレーティングカプラ形成領域の端部近傍及び端部近傍外の両方において、前記回折格子部の溝の底面が前記薄い誘電体層の表面に位置するようにして前記回折格子部の溝の深さをそれぞれ略一定とした多段構成を有することを特徴とするグレーティングカプラ。
  3.  請求項1または2に記載のグレーティングカプラにおいて、前記上部Si層が多結晶Si層であることを特徴とするグレーティングカプラ。
  4.  請求項1~3のいずれか1項に記載のグレーティングカプラにおいて、前記Si層は、支持基板、BOX層、Si層の3層からなるSOI基板のSi層であることを特徴とするグレーティングカプラ。
  5.  支持基板、BOX層、Si層の3層からなるSOI基板を準備し、グレーティングカプラ形成領域において、前記SOI基板上に薄い誘電体層を形成し、その上に上部Si層を形成する第1工程と、
     前記グレーティングカプラ形成領域において、前記上部Si層をエッチング加工し、グレーティングカプラの回折格子部を形成する第2工程と、
     前記グレーティングカプラ形成領域において、酸化物クラッドにより、前記回折格子部の溝を埋め、酸化物クラッドを平坦化して上部クラッド層を形成する第3工程と、
    を含み、
     前記第2工程において、前記薄い誘電体層をエッチストッパーとして用いることを特徴とするグレーティングカプラの製造方法。
  6.  支持基板、BOX層、Si層の3層からなるSOI基板を準備し、グレーティングカプラ形成領域において、前記SOI基板上に薄い誘電体層を形成し、その上に上部Si層を形成する第1工程と、
     前記上部Si層上に薄い誘電体層を形成し、その上に、さらに上部Si層を形成する工程を必要回数繰り返し、薄い誘電体層と上部Si層からなる積層構造を形成する第2工程と、
     前記グレーティングカプラ形成領域の端部近傍において、最上部の上部Si層をエッチングし、グレーティングカプラ形成領域の端部近傍に回折格子部の浅い溝を形成する第3工程であって、前記最上部の前記上部Si層の下にある前記薄い誘電体層をエッチストッパーとして用いる、第3工程と、
     前記グレーティングカプラ形成領域の端部近傍外において、前記積層構造をエッチングし、グレーティングカプラ形成領域の端部近傍外に回折格子部の深い溝を形成する第4工程であって、前記積層構造の底部に位置する薄い誘電体層をエッチストッパーとして用いる、第4工程と
    前記回折格子部の浅い溝及び深い溝を酸化物クラッドで埋め、前記酸化物クラッドを平坦化して上部クラッド層を形成する第5工程と、
    を含み、
     前記グレーティングカプラ形成領域の端部近傍においてのみグレーティングカプラの深さを小さくする多段構成を形成することを特徴とするグレーティングカプラの製造方法。
  7.  請求項5または6に記載のグレーティングカプラの製造方法において、前記上部Si層が多結晶Si層であることを特徴とする製造方法。
PCT/JP2015/050009 2014-01-07 2015-01-05 グレーティングカプラ及びその製造方法 WO2015105063A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015556790A JP6475640B2 (ja) 2014-01-07 2015-01-05 グレーティングカプラ及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-000778 2014-01-07
JP2014000778 2014-01-07

Publications (1)

Publication Number Publication Date
WO2015105063A1 true WO2015105063A1 (ja) 2015-07-16

Family

ID=53523891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050009 WO2015105063A1 (ja) 2014-01-07 2015-01-05 グレーティングカプラ及びその製造方法

Country Status (2)

Country Link
JP (1) JP6475640B2 (ja)
WO (1) WO2015105063A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032708A (ja) * 2015-07-30 2017-02-09 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2018180332A (ja) * 2017-04-14 2018-11-15 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN109270626A (zh) * 2018-11-28 2019-01-25 南京邮电大学 一种基于soi晶片的可调光栅滤波器及制备方法
CN109358394A (zh) * 2018-10-23 2019-02-19 中山大学 一种基于中等折射率波导材料的高效率光栅耦合器及其制备方法
KR20190107727A (ko) * 2017-01-27 2019-09-20 매직 립, 인코포레이티드 상이하게 배향된 나노빔들을 갖는 메타표면들에 의해 형성된 회절 격자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525691A (ja) * 2003-04-23 2007-09-06 シオプティカル インコーポレーテッド Soi光プラットフォームの上に形成されたサブミクロン・プレーナ型光波デバイス
JP2011203603A (ja) * 2010-03-26 2011-10-13 Oki Electric Industry Co Ltd 光学素子の製造方法
JP2012047855A (ja) * 2010-08-25 2012-03-08 Nec Corp 多層光配線用光入出力構造
JP2012208371A (ja) * 2011-03-30 2012-10-25 Oki Electric Ind Co Ltd 光デバイス
EP2634605A1 (en) * 2012-02-29 2013-09-04 Caliopa NV A diffractive coupling grating for perpendicular coupling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525691A (ja) * 2003-04-23 2007-09-06 シオプティカル インコーポレーテッド Soi光プラットフォームの上に形成されたサブミクロン・プレーナ型光波デバイス
JP2011203603A (ja) * 2010-03-26 2011-10-13 Oki Electric Industry Co Ltd 光学素子の製造方法
JP2012047855A (ja) * 2010-08-25 2012-03-08 Nec Corp 多層光配線用光入出力構造
JP2012208371A (ja) * 2011-03-30 2012-10-25 Oki Electric Ind Co Ltd 光デバイス
EP2634605A1 (en) * 2012-02-29 2013-09-04 Caliopa NV A diffractive coupling grating for perpendicular coupling

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032708A (ja) * 2015-07-30 2017-02-09 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN106405970A (zh) * 2015-07-30 2017-02-15 瑞萨电子株式会社 半导体器件及其制造方法
US10466415B2 (en) 2015-07-30 2019-11-05 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
CN106405970B (zh) * 2015-07-30 2021-04-30 瑞萨电子株式会社 半导体器件及其制造方法
KR20190107727A (ko) * 2017-01-27 2019-09-20 매직 립, 인코포레이티드 상이하게 배향된 나노빔들을 갖는 메타표면들에 의해 형성된 회절 격자
KR102553802B1 (ko) * 2017-01-27 2023-07-07 매직 립, 인코포레이티드 상이하게 배향된 나노빔들을 갖는 메타표면들에 의해 형성된 회절 격자
JP2018180332A (ja) * 2017-04-14 2018-11-15 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN109358394A (zh) * 2018-10-23 2019-02-19 中山大学 一种基于中等折射率波导材料的高效率光栅耦合器及其制备方法
CN109270626A (zh) * 2018-11-28 2019-01-25 南京邮电大学 一种基于soi晶片的可调光栅滤波器及制备方法

Also Published As

Publication number Publication date
JPWO2015105063A1 (ja) 2017-03-23
JP6475640B2 (ja) 2019-02-27

Similar Documents

Publication Publication Date Title
JP6475640B2 (ja) グレーティングカプラ及びその製造方法
JP6518434B2 (ja) 集積フォトニックカプラ
US9851504B2 (en) Planar optical waveguide device, DP-QPSK modulator, coherent receiver, and polarization diversity
KR102059891B1 (ko) 집적 도파관 커플러
EP2141525B1 (en) CMOS compatible integrated dielectric optical waveguide coupler and fabrication
JP3809167B2 (ja) モード変換用フォトニック結晶構造
JP6372112B2 (ja) 半導体光導波路素子を作製する方法
US20190146153A1 (en) Optical coupling device and method for manufacturing the same
US9547137B2 (en) Optical coupler integrated on a substrate and comprising three elements
US10025031B2 (en) Grating structure, and manufacturing method of grating coupler provided therewith
WO2015139200A1 (zh) 光栅耦合器及其制作方法
JPWO2008111447A1 (ja) 光導波路及びその製造方法
CN108603985B (zh) 一种光耦合器及光处理方法
JP6262597B2 (ja) スポットサイズ変換器
US10416381B1 (en) Spot-size-converter design for facet optical coupling
CN114063211B (zh) 具有部分蚀刻的倒锥的边缘耦合器
US20230125733A1 (en) Photonic module and method of manufacture
KR102626836B1 (ko) 수직형 광 비아 및 그 제조방법
JP6428776B2 (ja) グレーティングカプラ及び光導波路装置
US20240272358A1 (en) Photonic waveguide and method of forming the same
US9116319B2 (en) Photonic integrated circuit having a plurality of lenses
Vermeulen et al. High-efficiency silicon-on-insulator fiber-to-chip grating couplers using a silicon overlay
CN117178215A (zh) 电后端内的端面耦合结构
CN116249921A (zh) 波导结构
JP2018032043A (ja) 光デバイスおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556790

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15735352

Country of ref document: EP

Kind code of ref document: A1