WO2015105024A1 - チタン粉末材料、チタン素材及び酸素固溶チタン粉末材料の製造方法 - Google Patents

チタン粉末材料、チタン素材及び酸素固溶チタン粉末材料の製造方法 Download PDF

Info

Publication number
WO2015105024A1
WO2015105024A1 PCT/JP2014/084529 JP2014084529W WO2015105024A1 WO 2015105024 A1 WO2015105024 A1 WO 2015105024A1 JP 2014084529 W JP2014084529 W JP 2014084529W WO 2015105024 A1 WO2015105024 A1 WO 2015105024A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
oxygen
titanium powder
oxide film
powder material
Prior art date
Application number
PCT/JP2014/084529
Other languages
English (en)
French (fr)
Inventor
勝義 近藤
Original Assignee
勝義 近藤
株式会社ハイレックスコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 勝義 近藤, 株式会社ハイレックスコーポレーション filed Critical 勝義 近藤
Priority to EP14877708.9A priority Critical patent/EP3093085B1/en
Priority to CN201480072562.5A priority patent/CN105899314B/zh
Priority to JP2015556775A priority patent/JP6054553B2/ja
Priority to US15/110,551 priority patent/US10307824B2/en
Publication of WO2015105024A1 publication Critical patent/WO2015105024A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/03Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a titanium powder material and a titanium material, and more particularly to a high-strength titanium powder material in which oxygen is dissolved, a titanium material, and a method for producing them.
  • Titanium is a lightweight material with a specific gravity about half that of steel, and has excellent corrosion resistance and strength. Therefore, titanium, parts for aircraft, railway vehicles, motorcycles, automobiles, It is used for household appliances and building materials. It is also used as a medical material from the viewpoint of excellent corrosion resistance.
  • titanium is used for a limited purpose because of its high material cost compared to steel materials and aluminum alloys.
  • a titanium alloy has a high tensile strength exceeding 1000 MPa, but has a problem that ductility (breaking elongation) is not sufficient and plastic workability at room temperature or low temperature is poor.
  • pure titanium has a high elongation at break exceeding 25% at room temperature and is excellent in plastic workability in a low temperature range, but has a low tensile strength of about 400 to 600 MPa. is there.
  • Patent Document 1 proposes the following steps as a method for obtaining an oxygen solid solution titanium material.
  • a step of preparing titanium powder and TiO 2 particles A step of adjusting the added amount of TiO 2 particles to 0.5% to 3.0% on a mass basis with respect to the entire mixed powder and mixing the titanium powder and TiO 2 particles.
  • C Step of sintering the above mixture in a temperature range from 700 ° C. to less than the melting point of TiO 2 in a vacuum atmosphere to thermally decompose the TiO 2 particles, and dissociating the dissociated oxygen atoms in titanium. .
  • the titanium material produced by the method disclosed in JP2012-241241, that is, the powder metallurgy method using TiO 2 particles, can maintain high strength and high ductility as compared with the melt-processed material. is there.
  • the TiO 2 particles have a small particle size, it is easy to make an aggregate. Specifically, when the amount of TiO 2 particles added is increased, aggregates of TiO 2 particles are formed, and the decomposition of TiO 2 does not proceed completely, and the remaining TiO 2 particles start from breaking. As a result, ductility is reduced.
  • An object of the present invention is to provide a method for producing an oxygen solid solution titanium powder material capable of dissolving a large amount of oxygen in the titanium powder material while maintaining proper ductility.
  • Another object of the present invention is to provide a titanium powder material and a titanium material in which a large amount of oxygen is dissolved while maintaining proper ductility.
  • the manufacturing method of the oxygen solid solution titanium powder material according to the present invention includes the following steps.
  • B) The titanium powder material having the titanium oxide film is heated in an oxygen-free atmosphere to decompose the titanium oxide film formed on the surface of each titanium powder particle, and the dissociated oxygen atoms are A step of dissolving in a matrix of titanium powder particles.
  • the amount of oxygen solid solution in the matrix of each titanium powder particle is increased by performing a plurality of cycles with the formation of the titanium oxide film and the subsequent decomposition of the titanium oxide film as one cycle.
  • the heating temperature for forming the titanium oxide film is preferably 160 ° C. or higher and lower than 600 ° C., and the heating temperature for decomposing the titanium oxide film is preferably 450 ° C. or higher and below the melting point.
  • the heat treatment that contributes to the formation of the titanium oxide film and the decomposition of the titanium oxide film is preferably carried out by containing the titanium powder material in a rotary kiln heating furnace.
  • each titanium powder particle has an oxide film formed naturally in the atmosphere on the surface, and the amount of oxygen dissolved in the matrix of each titanium powder particle is greater than the amount of oxygen in the naturally formed oxide film. There are also many.
  • the oxygen content of each titanium powder particle is preferably 0.4% to 4.7%, more preferably 1.15 to 1.9% on a mass basis.
  • the titanium powder particles constituting the titanium powder material are made of pure titanium, and the average value of the micro Vickers hardness of the matrix of the titanium powder particles is 200 to 600.
  • a titanium material molded into a predetermined shape using the oxygen solid solution titanium powder material described above is also an object of the present invention.
  • the titanium material is a pure Ti powder extruded material, the oxygen content with respect to the whole extruded material is 1.2% by mass or more, and the elongation at break is 18% or more.
  • FIG. 1 is a diagram schematically showing the features of the present invention. First, the outline of the invention will be described with reference to FIG. 1, and more detailed data will be described thereafter.
  • titanium powder material A titanium powder material consisting of a large number of titanium powder particles is prepared.
  • titanium powder particles may be either pure titanium powder particles or titanium alloy powder particles.
  • Each titanium powder particle has an oxide film (natural oxide film) formed naturally in the atmosphere on the surface, but is a very thin film, and therefore the natural oxide film is not shown in FIG.
  • the natural oxide film has a thickness of about 0.1 to 1 ⁇ m.
  • the prepared titanium powder material is heated in an atmosphere containing oxygen to form a titanium oxide film on the surface of each titanium powder particle.
  • the heat treatment that contributes to the formation of the titanium oxide film is preferably carried out by containing the titanium powder material in a rotary kiln heating furnace.
  • the heating conditions are, for example, as follows.
  • Heating atmosphere 10 vol. % O 2 -90 vol. % Ar mixed gas Mixed gas flow rate: 1 L / min. Heating temperature: 200 ° C Holding time: 30 min. Rotational speed: 20 rpm.
  • the titanium oxide film is formed on the surface of each titanium powder particle by the above oxidation heat treatment.
  • the reason why the rotary kiln heating furnace is used is to prevent titanium powder particles from being pre-sintered into a lump during oxidation heat treatment by applying rotation or vibration to the titanium powder material.
  • the reason why argon gas is included is to prevent abnormal heat generation of the titanium powder material due to excessive oxygen.
  • Titanium powder material having a titanium oxide film on its surface is heated in an oxygen-free atmosphere to decompose the titanium oxide film formed on the surface of each titanium powder particle, and the dissociated oxygen atoms are separated from each titanium powder. Solid solution in the matrix of particles.
  • the heat treatment that contributes to the decomposition of the titanium oxide film is preferably carried out by accommodating the titanium powder material in a rotary kiln heating furnace.
  • the oxidation heat treatment and solution heat treatment described above may be performed using the same rotary kiln heating furnace.
  • the heating conditions are, for example, as follows.
  • Heating atmosphere 100 vol. % Ar gas Gas flow rate: 1 L / min. Heating temperature: 600 ° C Holding time: 30 min. Or 60 min. Rotational speed: 20 rpm.
  • the oxygen solution generated by the decomposition of the titanium oxide film is uniformly diffused into the matrix of each titanium powder particle by the above solution heat treatment and is dissolved. In this way, the target oxygen solid solution titanium powder material can be obtained.
  • the oxygen-dissolved titanium powder material obtained as described above When the oxygen-dissolved titanium powder material obtained as described above is placed in the atmosphere, a natural oxide film is formed on the surface of each titanium powder particle.
  • the amount of oxygen in the natural oxide film is at most about 0.2% by mass with respect to the entire titanium powder particles.
  • the oxidation heat treatment and the solution heat treatment are performed by the method of the present invention, the amount of oxygen dissolved in the matrix of each titanium powder particle becomes larger than the amount of oxygen in the natural oxide film.
  • FIG. 2 is a graph showing changes in the diffraction peak of Ti when pure titanium raw material powder is subjected to oxidation heat treatment and solution heat treatment.
  • the Ti diffraction peak shifts to the low angle side, and when the solution heat treatment is further performed, the Ti diffraction peak significantly decreases to the low angle side. It is recognized that there is a shift.
  • These peak shifts indicate that oxygen atoms were dissolved in the Ti substrate (matrix).
  • a large amount of oxygen atoms contribute to the formation of the titanium oxide film, and a few oxygen atoms are dissolved in the Ti substrate. It can be seen that during the solution heat treatment, the titanium oxide film is decomposed and a large amount of oxygen atoms are dissolved in the Ti substrate.
  • FIG. 3 is a diagram showing a change in the diffraction peak of TiO 2 when an oxidation heat treatment and a solution heat treatment are performed on a pure titanium raw material powder.
  • a slight diffraction peak of TiO 2 is detected in the pure titanium raw material powder. This is because the pure titanium raw material powder has an oxide film (natural oxide film) formed naturally in the atmosphere. Since the titanium oxide film is formed on the powder particle surface during the oxidation heat treatment, the peak intensity of TiO 2 is high.
  • the solution heat treatment it is recognized that the titanium oxide film is thermally decomposed and oxygen atoms are dissolved in the Ti base material, so that the TiO 2 peak disappears.
  • Oxidative heat treatment heating atmosphere 10% O 2 + 90% Ar mixed gas (flow rate: 1 L / min.) Heating temperature: 200 ° C Holding time: 30 min. Rotational speed: 20 rpm. Solution heat treatment heating atmosphere: 100% Ar gas (flow rate: 1 L / min.) Heating temperature: 600 ° C Holding time: 30 min. Rotational speed: 20 rpm.
  • the measurement results are shown in Table 1 and FIG.
  • the column of the number of repetitions 0 is the oxygen amount and nitrogen amount of the pure titanium powder before the heat treatment. Oxygen is mainly contained in the natural oxide film.
  • the oxygen content increases linearly in proportion to the number of repetitions of the above cycle, while the nitrogen content remains constant without change.
  • the oxygen content of the titanium powder particles is increased to nearly 4.7%.
  • the pure titanium raw material powder was subjected to an oxidation heat treatment, and further subjected to a solution heat treatment to measure how the micro Vickers hardness (Hv) changes.
  • the measured sample was subjected to one cycle of oxidation heat treatment and solution heat treatment, and the oxygen content after the solution heat treatment was 1.18% by mass.
  • the oxygen content in the Ti powder increases by increasing the number of cycles of oxidation / solution heat treatment.
  • an extremely hard Ti powder having a substrate hardness exceeding 600 Hv requires high pressure when compression molding it, and at the same time, the powder becomes brittle and cracks are generated inside the powder molded body. A molded product cannot be obtained.
  • the hardness of the pure Ti powder subjected to the oxidation / solution heat treatment according to the present invention is 200 to 600 Hv.
  • Example 1 Pure Ti powder (average particle size: 28 ⁇ m, purity> 95%) is used as a starting material, and the oxidation heat treatment and solution heat treatment shown below are set as one cycle, and this is repeated up to 4 times to produce oxygen solid solution pure Ti powder. did.
  • Oxidation heat treatment atmosphere 10% O 2 + 90% Ar mixed gas Temperature: 200 ° C. Holding time: 15 minutes Number of rotations: 20 rpm. Solution heat treatment atmosphere: 100% Ar gas Temperature: 600 ° C. Holding time: 30 minutes Number of rotations: 20 rpm.
  • the oxygen content of each extruded material was analyzed and a tensile test was performed at room temperature to measure the tensile strength, proof stress, and elongation at break, and the dependency on the oxygen content was investigated.
  • Table 3 shows the measurement results.
  • FIG. 6 shows the comparison of tensile strength
  • FIG. 7 shows the comparison of proof stress.
  • the production method (direct oxidation solution heat treatment) according to the present invention, as the oxygen content increases, the tensile strength (UTS) and the yield strength (YS) both increase almost linearly, while the breaking elongation ( ⁇ ). However, it exhibited a sufficiently good ductility of 18.1% at an oxygen content of 1.66% by mass.
  • a sample having an oxygen content of 0.21% by mass is an extruded material composed of pure titanium powder particles in which oxygen is not solid-solved, and is in the natural oxide film formed on the surface of each particle. It means that the amount of oxygen is about 0.21% by mass.
  • the oxygen content of the sample subjected to the direct oxidation solution heat treatment is 0.42% or more.
  • the material having an oxygen content of 1.24% by mass in the pure Ti powder extruded material by direct oxidation solution heat treatment and the oxygen content of 1.23% by mass in the pure Ti powder extruded material by adding TiO 2 particles The fracture starting point of the fracture surface after the tensile test with the material was observed with a scanning electron microscope (SEM). A photomicrograph is shown in FIG.
  • fine dimples are confirmed and a uniform ductile fracture surface is exhibited.
  • the material produced by the TiO 2 particle addition the presence of TiO 2 particles unreacted was observed at the origin of the fracture. That is, since the TiO 2 particles aggregated in the state of the Ti + TiO 2 mixed powder, unreacted TiO 2 became the starting point of fracture, and as a result, the elongation at break was significantly reduced.
  • Example 2 The effect of heating temperature during oxidative heat treatment was investigated. Using the same pure Ti powder as before, 50 g of Ti powder was heated to a rotary kiln-type heat treatment furnace with oxygen + argon mixed gas (10% O 2 + 90% Ar / flow rate: 1 L / min.) Flowing at a heating temperature of 100 Ti powder was produced by changing the temperature to ⁇ 700 ° C. Note that the holding time at each temperature in the oxidation heat treatment is 1 hr, and the rotational speed is 20 rpm. It was.
  • the temperature range suitable for the oxidation heat treatment of the Ti powder is 160 ° C. or more, and the oxidation heat treatment at less than 600 ° C. is effective for suppressing the partial melting of the Ti powder.
  • Example 3 The influence of heating temperature during solution heat treatment was investigated.
  • the oxidation heat treatment under the following conditions was performed on the pure Ti powder as before.
  • Heating atmosphere 10% O 2 + 90% Ar mixed gas (flow rate: 1 L / min.) Heating temperature: 200 ° C Holding time: 30 min. Rotational speed: 20 rpm.
  • the heating temperature was changed in the range of 300 to 800 ° C. in an argon gas atmosphere to produce Ti powder.
  • the holding time at each temperature in the solution heat treatment was 1 hr, the argon gas flow rate: 1 L / min, and the rotation speed: 20 rpm.
  • the weight of Ti powder to be charged into the heating furnace at one time was set to two conditions of 30 g and 150 g, and the influence of the input amount during the heat treatment was also investigated.
  • heat treatment at 450 ° C. or higher is required to thermally decompose the oxide film TiO 2 formed by oxidation heat treatment and to dissolve oxygen atoms in the Ti substrate.
  • a higher temperature of 550 ° C. or higher is desirable to stably and uniformly dissolve oxygen atoms completely.
  • the present invention can be advantageously used to obtain a high-strength titanium powder material and a titanium material in which a large amount of oxygen is dissolved while maintaining proper ductility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

酸素固溶チタン粉末材料の製造方法は、チタン粉末粒子からなるチタン粉末材料を、酸素を含む雰囲気中で160℃以上600℃未満の温度範囲に加熱してチタン粉末粒子の表面にチタン酸化皮膜を形成する工程と、チタン酸化皮膜を有するチタン粉末材料を、酸素を含まない雰囲気中で450℃以上で融点以下の温度範囲に加熱して各チタン粉末粒子の表面に形成されたチタン酸化皮膜を分解し、その際に解離した酸素原子を各チタン粉末粒子のマトリクス中に固溶させる工程とを備える。

Description

チタン粉末材料、チタン素材及び酸素固溶チタン粉末材料の製造方法
 この発明は、チタン粉末材料及びチタン素材に関し、特に酸素を固溶させた高強度チタン粉末材料、チタン素材およびそれらの製造方法に関するものである。
 チタンは、鋼の約1/2の低比重を有する軽量素材であり、耐腐食性や強度に優れた特徴を有することから、軽量化ニーズが強い航空機、鉄道車両、二輪車、自動車などの部品や、家電製品や建築用部材に利用されている。また、優れた耐腐食性の観点から、医療用素材としても利用されている。
 しかしながら、チタンは、鉄鋼材料やアルミニウム合金と比較して、素材コストが高いために利用対象が限定されている。特に、チタン合金は、1000MPaを超える高い引張強さを有するものの、延性(破断伸び)が十分ではなく、また常温または低温域での塑性加工性に乏しいといった課題がある。他方、純チタンは、常温にて25%を超える高い破断伸びを有しており、低温域での塑性加工性にも優れているものの、引張強さが400~600MPa程度と低い点が課題である。
 チタンに対する高強度と高延性の両立、および素材コストの低減に関する要求は極めて強いことから、これまでに様々な検討が行われてきた。特に、低コスト化の観点から、バナジウム、スカンジウム、ニオブなどの高価な元素ではなく、酸素といった比較的安価な元素による高強度化が従来技術として多く検討されてきた。
 例えば、特開2012-241241号公報(特許文献1)は、酸素固溶チタン材料を得るための方法として、以下の工程を提案している。
(a)チタン粉末とTiO粒子とを準備する工程。
(b)混合粉末全体に対してTiO粒子の添加量が質量基準で0.5%~3.0%となるように調整してチタン粉末とTiO粒子とを混合する工程。
(c)上記の混合物を、700℃からTiOの融点未満の温度範囲で、かつ真空雰囲気中で焼結してTiO粒子を熱分解させ、解離した酸素原子をチタン中に固溶させる工程。
特開2012-241241号公報
 特開2012-241241号公報に開示された方法、すなわちTiO粒子を用いて粉末冶金法で作製したチタン材は、溶解製法材と比較して、高い強度と高い延性を維持することが可能である。
 しかしながら、本願の発明者がさらに研究を進めた結果、上記方法にも改善すべき点があることを見出した。TiO粒子は粒径が小さいため、凝集体を作りやすい。具体的には、TiO粒子の添加量を増加していくと、TiO粒子の凝集体が形成され、TiOの分解が完全には進行せずに、残存するTiO粒子が破壊の起点となって延性低下を招く。
 上記の点を考慮すると、TiO粒子を用いた粉末冶金法では、適正な延性を維持するために、TiO粒子の添加量の上限、言い換えれば、酸素固溶量の上限が存在する。
 本発明の目的は、適正な延性を維持しつつ多くの量の酸素をチタン粉末材料中に固溶させることのできる酸素固溶チタン粉末材料の製造方法を提供することである。
 本発明の他の目的は、適正な延性を維持しつつ、多くの酸素を固溶しているチタン粉末材料およびチタン素材を提供することである。
 この発明に従った酸素固溶チタン粉末材料の製造方法は、以下の工程を備える。
(a)チタン粉末粒子からなるチタン粉末材料を、酸素を含む雰囲気中で加熱して上記チタン粉末粒子の表面にチタン酸化皮膜を形成する工程。
(b)上記チタン酸化皮膜を有するチタン粉末材料を、酸素を含まない雰囲気中で加熱して各チタン粉末粒子の表面に形成されたチタン酸化皮膜を分解し、その際に解離した酸素原子を各チタン粉末粒子のマトリクス中に固溶させる工程。
 好ましくは、チタン酸化皮膜の形成および引き続いてのチタン酸化皮膜の分解を1サイクルとして複数回のサイクルを行うことによって、各チタン粉末粒子のマトリクス中への酸素固溶量を増加する。
 チタン酸化皮膜を形成するための加熱温度は、好ましくは160℃以上600℃未満であり、チタン酸化皮膜を分解するための加熱温度は、好ましくは450℃以上で融点以下である。
 チタン酸化皮膜の形成およびチタン酸化皮膜の分解に資する熱処理は、好ましくは、チタン粉末材料をロータリーキルン式加熱炉内に収容して行う。
 上記のうちのいずれかに記載の方法によって製造された酸素固溶チタン粉末材料は、以下の特徴を有する。すなわち、各チタン粉末粒子は、大気中で自然に形成された酸化膜を表面に有しており、各チタン粉末粒子のマトリクス中に固溶した酸素量は、自然形成酸化膜中の酸素量よりも多い。
 好ましくは、各チタン粉末粒子の酸素含有量は、質量基準で、好ましくは、0.4%~4.7%、より好ましくは1.15~1.9%である。
 一つの実施形態では、チタン粉末材料を構成するチタン粉末粒子は純チタンからなり、チタン粉末粒子のマトリクスのマイクロビッカース硬さの平均値は、200~600である。
 上記のいずれかに記載の酸素固溶チタン粉末材料を用いて所定の形状に成形したチタン素材も本発明の対象である。一つの実施形態では、当該チタン素材は純Ti粉末押出材であり、押出材全体に対する酸素含有量が1.2質量%以上であり、破断伸びが18%以上である。
 チタン粉末材料を固化させてチタン素材とする方法としては、例えば、圧粉成形・焼結、熱間押出加工、熱間圧延加工、溶射、金属射出成形、粉末積層造形等が利用される。
上記の特徴的な構成の作用効果または技術的意義については、以下の項目で説明する。
本発明の特徴を模式的に示した図である。 純チタン原料粉末に対して酸化熱処理および固溶化熱処理を行った場合のTiの回折ピークの変化を示す図である。 純Ti原料粉末に対して酸化熱処理および固溶化熱処理を行った場合のTiOの回折ピークの変化を示す図である。 酸化熱処理および固溶化熱処理のサイクルを複数回行うことによる酸素含有量の変化を示す図である。 純チタン原料粉末に対して酸化熱処理および固溶化熱処理を施した場合のマイクロビッカース硬さの変化を示す図である。 酸素含有量と引張強さとの関係を示す図である。 酸素含有量と耐力との関係を示す図である。 純Ti粉末押出材の引張試験後の破断面を示す走査型電子顕微鏡写真である。 Ti粉末同士が一部で溶融して塊状となっている状況を示す写真である。 試料温度と、発熱量と、重量増加率との関係を示す図である。
 図1は、この発明の特徴を模式的に示した図である。まず、この図1を用いて発明の概要を説明し、その後により詳しいデータ等を説明する。
 [チタン粉末材料の準備]
 多数のチタン粉末粒子からなるチタン粉末材料を準備する。ここで「チタン粉末粒子」とは、純チタン粉末粒子またチタン合金粉末粒子のいずれであってもよい。各チタン粉末粒子は、大気中で自然に形成された酸化膜(自然酸化膜)を表面に有しているが、非常に薄い膜であるので、図1では自然酸化膜を図示していない。自然酸化膜の厚みは、0.1~1μm程度である。
 [チタン酸化皮膜の形成]
 準備したチタン粉末材料を、酸素を含む雰囲気中で加熱して各チタン粉末粒子の表面にチタン酸化皮膜を形成する。チタン酸化皮膜の形成に資する熱処理は、好ましくは、チタン粉末材料をロータリーキルン式加熱炉内に収容して行う。加熱条件は、例えば、以下の通りである。
 加熱雰囲気:10vol.%O-90vol.%Arの混合ガス
 混合ガス流量:1L/min.
 加熱温度:200℃
 保持時間:30min.
 回転数:20rpm.
 上記の酸化熱処理により、各チタン粉末粒子の表面にチタン酸化皮膜が形成される。ロータリーキルン式加熱炉を使用するのは、チタン粉末材料に回転や振動を与えることにより、酸化熱処理時にチタン粉末粒子同士が仮焼結し、塊状となることを防ぐためである。また、アルゴンガスを含ませるのは、酸素過多によるチタン粉末材料の異常発熱を防ぐためである。
 [固溶化熱処理]
 表面にチタン酸化皮膜を有するチタン粉末材料を、酸素を含まない雰囲気中で加熱して各チタン粉末粒子の表面に形成されたチタン酸化皮膜を分解し、その際に解離した酸素原子を各チタン粉末粒子のマトリクス中に固溶させる。チタン酸化皮膜の分解に資する熱処理は、好ましくは、チタン粉末材料をロータリーキルン式加熱炉内に収容して行う。前述した酸化熱処理および固溶化熱処理を同一のロータリーキルン式加熱炉を用いて行ってもよい。加熱条件は、例えば、以下の通りである。
 加熱雰囲気:100vol.%Arガス
 ガス流量:1L/min.
 加熱温度:600℃
 保持時間:30min.または60min.
 回転数:20rpm.
 上記の固溶化熱処理により、チタン酸化皮膜の分解によって生じた酸素原子は各チタン粉末粒子のマトリクス中に均一に拡散し、固溶する。こうして、目的とする酸素固溶チタン粉末材料を得ることができる。
 上記のようにして得た酸素固溶チタン粉末材料を大気中に置けば、各チタン粉末粒子の表面に自然酸化膜が形成される。自然酸化膜中の酸素量は、各チタン粉末粒子全体に対して多くても0.2質量%程度である。本発明の方法によって酸化熱処理および固溶化熱処理を行えば、各チタン粉末粒子のマトリクス中に固溶した酸素量が自然酸化膜中の酸素量よりも多くなる。
 [酸化熱処理-固溶化熱処理の繰り返し]
 酸化熱処理の時間を増大しても酸素固溶量は増加しない。その理由は、チタン粉末粒子表面に形成されるチタン酸化皮膜がバリアとなり、更なる酸化反応が進行しないからである。チタン粉末粒子のマトリクス中に固溶する酸素の量を増加するには、酸化熱処理時間を増やすのではなく、チタン酸化皮膜形成のための酸化熱処理、および引き続いてのチタン酸化皮膜分解のための固溶化熱処理を1サイクルとして複数回のサイクルを行うことが望ましい。
 [回折ピークによる検証]
 図2は、純チタン原料粉末に対して酸化熱処理および固溶化熱処理を行った場合のTiの回折ピークの変化を示す図である。図2から明らかなように、純チタン原料粉末に対して酸化熱処理を行うとTiの回折ピークが低角度側にシフトし、さらに固溶化熱処理を行うとTiの回折ピークが顕著に低角度側にシフトしていることが認められる。これらのピークのシフトは、Tiの素地(マトリクス)中に酸素原子が固溶したことを示すものである。酸化熱処理時には、多量の酸素原子がチタン酸化皮膜の形成に寄与し、僅かの酸素原子がTiの素地中に固溶する。固溶化熱処理時には、チタン酸化皮膜が分解し、多量の酸素原子がTiの素地中に固溶していることがわかる。
 図3は、純チタン原料粉末に対して酸化熱処理および固溶化熱処理を行った場合のTiOの回折ピークの変化を示す図である。純チタン原料粉末に僅かなTiOの回折ピークが検出されている。これは、純チタン原料粉末が、大気中で自然に形成された酸化膜(自然酸化膜)を有しているからである。酸化熱処理時には、粉末粒子表面にチタン酸化皮膜が形成されるため、TiOのピーク強度が高くなっている。固溶化熱処理時には、チタン酸化皮膜が熱分解して酸素原子がTiの素地中に固溶したことによりTiOのピークが消失していることが認められる。
 [チタン粉末粒子のマトリクス中への酸素原子固溶量の増加方法]
 下記の条件の酸化熱処理および固溶化熱処理を1サイクルとし、このサイクルを4回繰り返して純チタン粉末中の酸素量および窒素量を測定した。使用した純チタン粉末は、平均粒子径が28μm、純度が95%を超えるものであった。
 酸化熱処理
 加熱雰囲気:10%O+90%Ar混合ガス(流量:1L/min.)
 加熱温度:200℃
 保持時間:30min.
 回転数:20rpm.
 固溶化熱処理
 加熱雰囲気:100%Arガス(流量:1L/min.)
 加熱温度:600℃
 保持時間:30min.
 回転数:20rpm.
 測定結果を表1および図4に示す。繰り返し回数0の欄は、熱処理前の純チタン粉末の酸素量および窒素量である。酸素は、主として、自然酸化膜中に含まれたものである。
Figure JPOXMLDOC01-appb-T000001
 表1および図4に示すように、酸素含有量は上記サイクルの繰り返し回数にほぼ比例して直線的に増加し、他方、窒素量は変化せずに一定である。上記サイクルを4回繰り返すことにより、チタン粉末粒子の酸素含有量が4.7%近くまで増加している。
 [マイクロビッカース硬さの測定]
 純チタン原料粉末に対して、酸化熱処理を行い、さらに固溶化熱処理を行って、マイクロビッカース硬さ(Hv)がどのように変化するかを測定した。測定した試料は、酸化熱処理および固溶化熱処理のサイクルを1回施したものであり、固溶化熱処理後の酸素含有量が1.18質量%になるものであった。
 測定結果を表2および図5に示す。測定数nは30であった。
Figure JPOXMLDOC01-appb-T000002
 表2および図5の測定結果から明らかなように、純Ti原料粉末に対して酸化熱処理および固溶化熱処理を行うと、マイクロビッカース硬さが飛躍的に高くなることが認められる。酸化熱処理により粉末表面にTiO皮膜が形成されるが、一部の酸素が素地中に固溶することで37Hv程度の硬度上昇が見られた。その後、固溶化熱処理を行うことでTiO皮膜が分解し、解離した酸素原子がTi素地中に侵入固溶することで約130Hvの硬度増加が生じた。このように酸化熱処理+固溶化熱処理を組み合わせることにより、多量の酸素原子の固溶が進行し、その結果、チタン粉末の素地硬さが著しく上昇する。
 また、酸化・固溶化熱処理のサイクル数を増やすことで、Ti粉末中の酸素含有量は増加する。例えば、同一熱処理条件でサイクル数N=2の場合、固溶化処理後の純Ti粉末(酸素含有量:2.25質量%)の素地硬度の平均値は498Hvとなり、顕著な増加が確認された。同様に、N=3における素地硬度の平均値は643Hvとなった。しかしながら、素地硬度が600Hvを超えるような極めて硬いTi粉末では、それを圧縮成形する際に高い加圧力が必要となると同時に、粉末が脆くなるために粉末成形体の内部に亀裂が発生し健全な成形体が得られない。
 よって、本発明による酸化・固溶化熱処理を施した純Ti粉末の硬度は200~600Hvとなる。
 [実施例1]
 純Ti粉末(平均粒子径;28μm、純度>95%)を出発原料とし、下記に示す酸化熱処理および固溶化熱処理を1サイクルとし、これを最高4回まで繰り返して酸素固溶純Ti粉末を作製した。
 酸化熱処理
 雰囲気:10%O+90%Ar混合ガス
 温度:200℃
 保持時間:15分
 回転数:20rpm.
 固溶化熱処理
 雰囲気:100%Arガス
 温度:600℃
 保持時間:30分
 回転数:20rpm.
 各Ti粉末を金型内に充填した後、圧力600MPaを付与して円柱状粉末成形体を作製した。続いて、真空焼結(800℃×1hr、真空度;6Pa)を施して焼結体(直径φ42mm、全長30mm)を得た。これをアルゴンガス雰囲気中で予備加熱(1000℃×5min.)し、直ちに熱間押出加工を施して酸素原子が固溶した棒状押出素材(直径φ7mm)を作製した。
 比較材として、上記と同じ純Ti粉末にTiO粒子(平均粒子径;4μm)を最大2.5質量%まで添加して混合した後、それぞれの(Ti+TiO)混合粉末に対して、上記と同じ条件で成形、真空焼結、熱間押出加工を施すことで酸素原子が固溶した棒状押出素材(直径φ7mm)を作製した。
 各押出素材の酸素量を分析すると共に、常温にて引張試験を行い、引張強さ、耐力、破断伸びを測定し、酸素含有量に対する依存性を調査した。測定結果を表3に示す。また、引張強さの対比を図6に、耐力の対比を図7に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明による製法(直接酸化固溶化熱処理)によれば、酸素含有量の増加と共に、引張強さ(UTS)および耐力(YS)はいずれもほぼ直線的に増加し、他方、破断伸び(ε)については徐々に低下するものの、酸素含有量1.66質量%において18.1%といった十分に良好な延性を示した。なお、表3において、酸素含有量が0.21質量%の試料は、酸素を固溶させていない純チタン粉末粒子からなる押出材であり、各粒子の表面に形成された自然酸化膜中の酸素量が0.21質量%程度であることを意味している。直接酸化固溶化熱処理を施した試料の酸素含有量は0.42%以上である。
 TiO粒子添加による酸素固溶法によれば、酸素含有量の増加と共に、引張強さ(UTS)および耐力(YS)は共に増加し、その値は本発明の製法(直接酸化固溶化熱処理)による酸素固溶純Ti粉末押出材とほぼ同等であった。しかしながら、破断伸び(ε)は、酸素含有量が1質量%を超えると急激に低下し、1.23質量%ではε=4.2%となり、延性が著しく低下することが確認された。
 そこで、直接酸化固溶化熱処理による純Ti粉末押出材のうち酸素含有量が1.24質量%の材料、およびTiO粒子添加による純Ti粉末押出材のうち酸素含有量が1.23質量%の材料での引張試験後の破断面について、走査型電子顕微鏡(SEM)により破壊起点を観察した。顕微鏡写真を図8に示す。
 図8に示すように、両者はほぼ同等量の酸素を含有するが、破断面は大きく異なる。直接酸化固溶化熱処理を行った材料では、微細なディンプルが確認され、均一な延性破断面を呈している。他方、TiO粒子添加によって作製した材料では、破壊の起点部に未反応のTiO粒子の存在が確認された。つまり、Ti+TiO混合粉末の状態でTiO粒子が凝集したため、未反応のTiOが破壊の起点となり、その結果、破断伸びの著しい低下を招いた。
 [実施例2]
 酸化熱処理時の加熱温度の影響を調査した。これまでと同様の純Ti粉末を用いて、ロータリーキルン式熱処理炉に酸素+アルゴン混合ガス(10%O+90%Ar/流量;1L/min.)を流入した状態でTi粉末50gを加熱温度100~700℃に変化させてTi粉末を作製した。なお、酸化熱処理における各温度での保持時間はいずれも1hrとし、回転数を20rpm.とした。
 得られた各Ti粉末の酸素含有量と外観(塊状、ブロック化の有無)を調査した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、熱処理温度が160℃以上において、Ti粉末に含まれる酸素量は一定となり、安定した酸化処理が可能である。他方、600℃では、図9の写真に示すように、酸化時の発熱との相乗による過剰昇温が生じ、Ti粉末同士が一部で溶融して塊状となり、目的とするTi粉末が得られない。650℃および700℃でも類似の部分溶融現象が確認された。
 以上の結果より、Ti粉末の酸化熱処理に適した温度範囲は160℃以上であり、またTi粉末同士の部分溶融を抑えるには600℃未満での酸化熱処理が有効である。
 また、示差熱量重量分析(DTA)装置を用いて、空気を流入した状態でTi粉末の重量変化と発熱挙動を調査した結果、図10に示すように、600℃付近から急激に重量が増加している。これは、酸素との反応(酸化)によるものであり、また酸化反応に伴う発熱現象によって、発熱量も同様に600℃付近から急増している。以上の示差熱量分析結果を踏まえると、安定した酸化反応を促進するには、600℃未満での熱処理が必要であり、この温度を超えると、部分溶融現象によりTi粉末のブロック化が生じ、目的とする酸素固溶Ti粉末が得られなくなる。
 [実施例3]
 固溶化熱処理時の加熱温度の影響を調査した。これまでと同様に純Ti粉末に対して、下記の条件の酸化熱処理を行った。
 加熱雰囲気:10%O+90%Ar混合ガス(流量;1L/min.)
 加熱温度:200℃
 保持時間:30min.
 回転数:20rpm.
 その後、固溶化熱処理としてロータリーキルン式加熱炉を用いて、アルゴンガス雰囲気中で加熱温度を300~800℃の範囲で変化させてTi粉末を作製した。なお、固溶化熱処理における各温度での保持時間はいずれも1hrとし、アルゴンガス流量;1L/min、回転数;20rpmとした。
 また、固溶化熱処理において、加熱炉内に1度に投入するTi粉末重量を30gと150gの2条件とし、熱処理時の投入量の影響についても調査した。
 得られたTi粉末に対してXRD回折を行い、TiOピークの有無とTiピーク位置の変化(低角度側への移動)を調査した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、酸化熱処理により形成した酸化皮膜TiOを熱分解し、酸素原子をTi素地中に固溶するには、450℃以上の熱処理が必要である。特に熱処理する際のTi粉末の投入量が増加した場合、安定して均一かつ完全に酸素原子が固溶するには、より高温の550℃以上が望ましい。
 本発明は、適正な延性を維持しつつ、多くの量の酸素を固溶させた高強度チタン粉末材料およびチタン素材を得るのに有利に利用され得る。

Claims (10)

  1.  チタン粉末粒子からなるチタン粉末材料を、酸素を含む雰囲気中で加熱して前記粉末粒子の表面にチタン酸化皮膜を形成する工程と、
     前記チタン酸化皮膜を有する前記チタン粉末材料を、酸素を含まない雰囲気中で加熱して前記各チタン粉末粒子の表面に形成されたチタン酸化皮膜を分解し、その際に解離した酸素原子を前記各チタン粉末粒子のマトリクス中に固溶させる工程と、を備える、酸素固溶チタン粉末材料の製造方法。
  2.  前記チタン酸化皮膜の形成および引き続いての前記チタン酸化皮膜の分解を1サイクルとして複数回のサイクルを行うことによって、前記各チタン粉末粒子のマトリクス中への酸素固溶量を増加する、請求項1に記載の酸素固溶チタン粉末材料の製造方法。
  3.  前記チタン酸化皮膜を形成するための加熱温度は、160℃以上600℃未満であり、
     前記チタン酸化皮膜を分解するための加熱温度は、450℃以上で融点以下である、請求項1または2に記載の酸素固溶チタン粉末材料の製造方法。
  4.  前記チタン酸化皮膜の形成およびチタン酸化皮膜の分解に資する熱処理は、前記チタン粉末材料をロータリーキルン式加熱炉内に収容して行う、請求項1~3のいずれかに記載の酸素固溶チタン粉末材料の製造方法。
  5.  請求項1~4のいずれかに記載の方法によって製造された酸素固溶チタン粉末材料であって、
     前記各チタン粉末粒子は、大気中で自然に形成された酸化膜を表面に有しており、
     前記各チタン粉末粒子のマトリクス中に固溶した酸素量は、前記自然形成酸化膜中の酸素量よりも多いことを特徴とする、酸素固溶チタン粉末材料。
  6.  前記各チタン粉末粒子の酸素含有量は、質量基準で、0.4%~4.7%である、請求項5に記載の酸素固溶チタン粉末材料。
  7.  前記各チタン粉末粒子の酸素含有量は、質量基準で、1.15~1.9%である、請求項6に記載の酸素固溶チタン粉末材料。
  8.  前記チタン粉末粒子は純チタンからなり、
     前記チタン粉末粒子のマトリクスのマイクロビッカース硬さの平均値は、200~600である、請求項5~7のいずれかに記載の酸素固溶チタン粉末材料。
  9.  請求項5~8のいずれかに記載の酸素固溶チタン粉末材料を用いて所定の形状に成形したチタン素材。
  10.  当該チタン素材は純Ti粉末押出材であり、
     押出材全体に対する酸素含有量が1.2質量%以上であり、
     破断伸びが18%以上である、請求項9に記載のチタン素材。
PCT/JP2014/084529 2014-01-10 2014-12-26 チタン粉末材料、チタン素材及び酸素固溶チタン粉末材料の製造方法 WO2015105024A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14877708.9A EP3093085B1 (en) 2014-01-10 2014-12-26 Method for producing oxygen solid solution titanium powder material
CN201480072562.5A CN105899314B (zh) 2014-01-10 2014-12-26 钛粉末材料、钛材以及氧固溶钛粉末材料的制备方法
JP2015556775A JP6054553B2 (ja) 2014-01-10 2014-12-26 酸素固溶チタン素材、酸素固溶チタン粉末材料及び酸素固溶チタン粉末材料の製造方法
US15/110,551 US10307824B2 (en) 2014-01-10 2014-12-26 Titanium powder, titanium material, and method for producing titanium powder containing solid-soluted oxygen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014003392 2014-01-10
JP2014-003392 2014-01-10

Publications (1)

Publication Number Publication Date
WO2015105024A1 true WO2015105024A1 (ja) 2015-07-16

Family

ID=53523857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084529 WO2015105024A1 (ja) 2014-01-10 2014-12-26 チタン粉末材料、チタン素材及び酸素固溶チタン粉末材料の製造方法

Country Status (5)

Country Link
US (1) US10307824B2 (ja)
EP (1) EP3093085B1 (ja)
JP (1) JP6054553B2 (ja)
CN (1) CN105899314B (ja)
WO (1) WO2015105024A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104778A (ja) * 2016-12-27 2018-07-05 勝義 近藤 焼結刃物素材およびその製造方法
WO2022202740A1 (ja) * 2021-03-26 2022-09-29 国立研究開発法人物質・材料研究機構 超臨界水利用装置用チタン合金
WO2024077526A1 (zh) * 2022-10-12 2024-04-18 清华大学 纯钛制件及其制备方法

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6675325B2 (ja) 2014-05-16 2020-04-01 ダイバージェント テクノロジーズ, インコーポレイテッドDivergent Technologies, Inc. 車両用シャーシ用のモジュール式に形成されたノード及びそれらの使用方法
KR20170030546A (ko) 2014-07-02 2017-03-17 디버전트 테크놀로지스, 인크. 조인트 부재를 제조하기 위한 시스템 및 방법
AU2017278225A1 (en) 2016-06-09 2019-01-24 Divergent Technologies, Inc. Systems and methods for arc and node design and manufacture
US10759090B2 (en) 2017-02-10 2020-09-01 Divergent Technologies, Inc. Methods for producing panels using 3D-printed tooling shells
US11155005B2 (en) 2017-02-10 2021-10-26 Divergent Technologies, Inc. 3D-printed tooling and methods for producing same
US10898968B2 (en) 2017-04-28 2021-01-26 Divergent Technologies, Inc. Scatter reduction in additive manufacturing
US10703419B2 (en) 2017-05-19 2020-07-07 Divergent Technologies, Inc. Apparatus and methods for joining panels
US11358337B2 (en) 2017-05-24 2022-06-14 Divergent Technologies, Inc. Robotic assembly of transport structures using on-site additive manufacturing
US11123973B2 (en) 2017-06-07 2021-09-21 Divergent Technologies, Inc. Interconnected deflectable panel and node
US10919230B2 (en) 2017-06-09 2021-02-16 Divergent Technologies, Inc. Node with co-printed interconnect and methods for producing same
US10781846B2 (en) 2017-06-19 2020-09-22 Divergent Technologies, Inc. 3-D-printed components including fasteners and methods for producing same
US10994876B2 (en) 2017-06-30 2021-05-04 Divergent Technologies, Inc. Automated wrapping of components in transport structures
US11022375B2 (en) 2017-07-06 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing microtube heat exchangers
US10895315B2 (en) 2017-07-07 2021-01-19 Divergent Technologies, Inc. Systems and methods for implementing node to node connections in mechanized assemblies
US10751800B2 (en) 2017-07-25 2020-08-25 Divergent Technologies, Inc. Methods and apparatus for additively manufactured exoskeleton-based transport structures
US10940609B2 (en) 2017-07-25 2021-03-09 Divergent Technologies, Inc. Methods and apparatus for additively manufactured endoskeleton-based transport structures
US10605285B2 (en) 2017-08-08 2020-03-31 Divergent Technologies, Inc. Systems and methods for joining node and tube structures
US10357959B2 (en) 2017-08-15 2019-07-23 Divergent Technologies, Inc. Methods and apparatus for additively manufactured identification features
US11306751B2 (en) 2017-08-31 2022-04-19 Divergent Technologies, Inc. Apparatus and methods for connecting tubes in transport structures
US10960611B2 (en) 2017-09-06 2021-03-30 Divergent Technologies, Inc. Methods and apparatuses for universal interface between parts in transport structures
US11292058B2 (en) 2017-09-12 2022-04-05 Divergent Technologies, Inc. Apparatus and methods for optimization of powder removal features in additively manufactured components
US10814564B2 (en) 2017-10-11 2020-10-27 Divergent Technologies, Inc. Composite material inlay in additively manufactured structures
US10668816B2 (en) 2017-10-11 2020-06-02 Divergent Technologies, Inc. Solar extended range electric vehicle with panel deployment and emitter tracking
US11786971B2 (en) 2017-11-10 2023-10-17 Divergent Technologies, Inc. Structures and methods for high volume production of complex structures using interface nodes
US10926599B2 (en) 2017-12-01 2021-02-23 Divergent Technologies, Inc. Suspension systems using hydraulic dampers
US11110514B2 (en) 2017-12-14 2021-09-07 Divergent Technologies, Inc. Apparatus and methods for connecting nodes to tubes in transport structures
US11085473B2 (en) 2017-12-22 2021-08-10 Divergent Technologies, Inc. Methods and apparatus for forming node to panel joints
US11534828B2 (en) 2017-12-27 2022-12-27 Divergent Technologies, Inc. Assembling structures comprising 3D printed components and standardized components utilizing adhesive circuits
US11420262B2 (en) 2018-01-31 2022-08-23 Divergent Technologies, Inc. Systems and methods for co-casting of additively manufactured interface nodes
US10751934B2 (en) 2018-02-01 2020-08-25 Divergent Technologies, Inc. Apparatus and methods for additive manufacturing with variable extruder profiles
US11224943B2 (en) 2018-03-07 2022-01-18 Divergent Technologies, Inc. Variable beam geometry laser-based powder bed fusion
US11267236B2 (en) 2018-03-16 2022-03-08 Divergent Technologies, Inc. Single shear joint for node-to-node connections
US11872689B2 (en) 2018-03-19 2024-01-16 Divergent Technologies, Inc. End effector features for additively manufactured components
US11254381B2 (en) 2018-03-19 2022-02-22 Divergent Technologies, Inc. Manufacturing cell based vehicle manufacturing system and method
US11408216B2 (en) 2018-03-20 2022-08-09 Divergent Technologies, Inc. Systems and methods for co-printed or concurrently assembled hinge structures
US11613078B2 (en) 2018-04-20 2023-03-28 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing adhesive inlet and outlet ports
US11214317B2 (en) 2018-04-24 2022-01-04 Divergent Technologies, Inc. Systems and methods for joining nodes and other structures
US11020800B2 (en) 2018-05-01 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for sealing powder holes in additively manufactured parts
US10682821B2 (en) 2018-05-01 2020-06-16 Divergent Technologies, Inc. Flexible tooling system and method for manufacturing of composite structures
US11389816B2 (en) 2018-05-09 2022-07-19 Divergent Technologies, Inc. Multi-circuit single port design in additively manufactured node
US10691104B2 (en) 2018-05-16 2020-06-23 Divergent Technologies, Inc. Additively manufacturing structures for increased spray forming resolution or increased fatigue life
US11590727B2 (en) 2018-05-21 2023-02-28 Divergent Technologies, Inc. Custom additively manufactured core structures
US11441586B2 (en) 2018-05-25 2022-09-13 Divergent Technologies, Inc. Apparatus for injecting fluids in node based connections
US11035511B2 (en) 2018-06-05 2021-06-15 Divergent Technologies, Inc. Quick-change end effector
CN108569861A (zh) * 2018-07-05 2018-09-25 安徽思凯瑞环保科技有限公司 抗潮解的粗钛粉及其制备方法
US11292056B2 (en) 2018-07-06 2022-04-05 Divergent Technologies, Inc. Cold-spray nozzle
US11269311B2 (en) 2018-07-26 2022-03-08 Divergent Technologies, Inc. Spray forming structural joints
US10836120B2 (en) 2018-08-27 2020-11-17 Divergent Technologies, Inc . Hybrid composite structures with integrated 3-D printed elements
US11433557B2 (en) 2018-08-28 2022-09-06 Divergent Technologies, Inc. Buffer block apparatuses and supporting apparatuses
US11826953B2 (en) 2018-09-12 2023-11-28 Divergent Technologies, Inc. Surrogate supports in additive manufacturing
US11072371B2 (en) 2018-10-05 2021-07-27 Divergent Technologies, Inc. Apparatus and methods for additively manufactured structures with augmented energy absorption properties
US11260582B2 (en) 2018-10-16 2022-03-01 Divergent Technologies, Inc. Methods and apparatus for manufacturing optimized panels and other composite structures
US11504912B2 (en) 2018-11-20 2022-11-22 Divergent Technologies, Inc. Selective end effector modular attachment device
USD911222S1 (en) 2018-11-21 2021-02-23 Divergent Technologies, Inc. Vehicle and/or replica
US11529741B2 (en) 2018-12-17 2022-12-20 Divergent Technologies, Inc. System and method for positioning one or more robotic apparatuses
US10663110B1 (en) 2018-12-17 2020-05-26 Divergent Technologies, Inc. Metrology apparatus to facilitate capture of metrology data
US11449021B2 (en) 2018-12-17 2022-09-20 Divergent Technologies, Inc. Systems and methods for high accuracy fixtureless assembly
US11885000B2 (en) 2018-12-21 2024-01-30 Divergent Technologies, Inc. In situ thermal treatment for PBF systems
US11203240B2 (en) 2019-04-19 2021-12-21 Divergent Technologies, Inc. Wishbone style control arm assemblies and methods for producing same
US11912339B2 (en) 2020-01-10 2024-02-27 Divergent Technologies, Inc. 3-D printed chassis structure with self-supporting ribs
US11590703B2 (en) 2020-01-24 2023-02-28 Divergent Technologies, Inc. Infrared radiation sensing and beam control in electron beam additive manufacturing
US11479015B2 (en) 2020-02-14 2022-10-25 Divergent Technologies, Inc. Custom formed panels for transport structures and methods for assembling same
US11884025B2 (en) 2020-02-14 2024-01-30 Divergent Technologies, Inc. Three-dimensional printer and methods for assembling parts via integration of additive and conventional manufacturing operations
US11421577B2 (en) 2020-02-25 2022-08-23 Divergent Technologies, Inc. Exhaust headers with integrated heat shielding and thermal syphoning
US11535322B2 (en) 2020-02-25 2022-12-27 Divergent Technologies, Inc. Omni-positional adhesion device
JP7383524B2 (ja) * 2020-02-27 2023-11-20 東邦チタニウム株式会社 多孔質金属体の製造方法及び、多孔質金属体
US11413686B2 (en) 2020-03-06 2022-08-16 Divergent Technologies, Inc. Methods and apparatuses for sealing mechanisms for realizing adhesive connections with additively manufactured components
US11850804B2 (en) 2020-07-28 2023-12-26 Divergent Technologies, Inc. Radiation-enabled retention features for fixtureless assembly of node-based structures
CN112048638B (zh) * 2020-07-29 2022-04-22 北京科技大学 钛基合金粉末及制备方法、钛基合金制件的制备方法
US11806941B2 (en) 2020-08-21 2023-11-07 Divergent Technologies, Inc. Mechanical part retention features for additively manufactured structures
US11872626B2 (en) 2020-12-24 2024-01-16 Divergent Technologies, Inc. Systems and methods for floating pin joint design
US11947335B2 (en) 2020-12-30 2024-04-02 Divergent Technologies, Inc. Multi-component structure optimization for combining 3-D printed and commercially available parts
US11928966B2 (en) 2021-01-13 2024-03-12 Divergent Technologies, Inc. Virtual railroad
US20220288850A1 (en) 2021-03-09 2022-09-15 Divergent Technologies, Inc. Rotational additive manufacturing systems and methods
US11865617B2 (en) 2021-08-25 2024-01-09 Divergent Technologies, Inc. Methods and apparatuses for wide-spectrum consumption of output of atomization processes across multi-process and multi-scale additive manufacturing modalities

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077305A1 (fr) * 2001-03-26 2002-10-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Alliage de titane a haute resistance et son procede de production
JP2006342401A (ja) * 2005-06-09 2006-12-21 National Institute For Materials Science 高温制振性を有するβ型チタン合金
JP2012241241A (ja) 2011-05-20 2012-12-10 Katsuyoshi Kondo チタン材料およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2584551B2 (ja) * 1991-06-28 1997-02-26 日本鋼管株式会社 チタン材の表面硬化処理方法
JP2793958B2 (ja) * 1993-06-25 1998-09-03 川崎製鉄株式会社 金属粉末射出成形法によるチタン系焼結体の製造方法
JP3569019B2 (ja) * 1995-02-23 2004-09-22 シチズン時計株式会社 粉末射出成形用組成物およびその製造方法
KR100301677B1 (ko) 1996-03-26 2001-11-22 하루타 히로시 티타늄또는티타늄합금부재와그표면처리방법
JP4408184B2 (ja) 2001-03-26 2010-02-03 株式会社豊田中央研究所 チタン合金およびその製造方法
CN101254536B (zh) * 2008-04-03 2010-08-11 北京科技大学 利用醋酸钴低温制备钴包覆钛粉的方法
CN101758221A (zh) * 2008-11-07 2010-06-30 南通芯迎设计服务有限公司 一种表面包铝二氧化钛粉体的制备方法
JP6261618B2 (ja) * 2014-01-24 2018-01-17 勝義 近藤 チタン素材および窒素固溶チタン粉末材料の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077305A1 (fr) * 2001-03-26 2002-10-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Alliage de titane a haute resistance et son procede de production
JP2006342401A (ja) * 2005-06-09 2006-12-21 National Institute For Materials Science 高温制振性を有するβ型チタン合金
JP2012241241A (ja) 2011-05-20 2012-12-10 Katsuyoshi Kondo チタン材料およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3093085A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104778A (ja) * 2016-12-27 2018-07-05 勝義 近藤 焼結刃物素材およびその製造方法
WO2022202740A1 (ja) * 2021-03-26 2022-09-29 国立研究開発法人物質・材料研究機構 超臨界水利用装置用チタン合金
WO2024077526A1 (zh) * 2022-10-12 2024-04-18 清华大学 纯钛制件及其制备方法

Also Published As

Publication number Publication date
EP3093085A4 (en) 2017-09-20
JP6054553B2 (ja) 2016-12-27
JPWO2015105024A1 (ja) 2017-03-23
CN105899314B (zh) 2017-12-15
EP3093085B1 (en) 2022-04-27
EP3093085A1 (en) 2016-11-16
CN105899314A (zh) 2016-08-24
US20160332233A1 (en) 2016-11-17
US10307824B2 (en) 2019-06-04

Similar Documents

Publication Publication Date Title
JP6054553B2 (ja) 酸素固溶チタン素材、酸素固溶チタン粉末材料及び酸素固溶チタン粉末材料の製造方法
JP6261618B2 (ja) チタン素材および窒素固溶チタン粉末材料の製造方法
JP5760278B2 (ja) チタン材料およびその製造方法
Zadra et al. High-performance, low-cost titanium metal matrix composites
EP2394952A2 (en) Nanoparticles prepared using carbon nanotube and preparation method therefor
JP5709239B2 (ja) チタン基複合材料の製造方法および該方法によって製造されたチタン基複合材料
JP2010095770A (ja) Ti−Al系合金ターゲット及びその製造方法
Božić et al. Synthesis and properties of a Cu–Ti–TiB2 composite hardened by multiple mechanisms
WO2013162658A2 (en) Oxygen-enriched ti-6ai-4v alloy and process for manufacture
JP2014019945A (ja) チタン合金及びその製造方法
WO2015157411A1 (en) Aluminum alloy powder formulations with silicon additions for mechanical property improvements
Alshammari et al. Behaviour of novel low-cost blended elemental Ti–5Fe-xAl alloys fabricated via powder metallurgy
WO2017077922A1 (ja) 酸素固溶チタン焼結体およびその製造方法
US9334550B2 (en) Method of controlling the carbon or oxygen content of a powder injection
Zhu et al. Influences of carbon additions on reaction mechanisms and tensile properties of Al-based composites synthesized in-situ by Al–SiO2 powder system
JP6885900B2 (ja) Ti−Fe系焼結合金素材およびその製造方法
JP2015178676A (ja) Ni3Al基Ti−Ni−Al系金属間化合物及びその製造方法
JP2019516021A (ja) チタンまたはチタン合金にて構成される部材の粉末冶金を用いた製造方法
WO2017077923A1 (ja) 窒素固溶チタン焼結体およびその製造方法
WO2018181107A1 (ja) 焼結アルミニウム合金材およびその製造方法
Vidyasagar et al. Development of 2024 AA-Yttrium composites by spark plasma sintering
Soyama et al. PM Non Ferrous: TNB-V5 Alloy Modification through Elemental Powder Metallurgy
Izadi et al. The investigation of the microstructure and mechanical properties of ordered alominide-iron (boron) nanostructures produced by mechanical alloying and sintering
JP2005163154A (ja) 第三元素粒子を添加することにより、軽量耐熱金属間化合物の延性と強度を向上させる方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556775

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014877708

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15110551

Country of ref document: US

Ref document number: 2014877708

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE