WO2015104958A1 - 赤外線透過ガラス - Google Patents
赤外線透過ガラス Download PDFInfo
- Publication number
- WO2015104958A1 WO2015104958A1 PCT/JP2014/083191 JP2014083191W WO2015104958A1 WO 2015104958 A1 WO2015104958 A1 WO 2015104958A1 JP 2014083191 W JP2014083191 W JP 2014083191W WO 2015104958 A1 WO2015104958 A1 WO 2015104958A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- infrared
- present
- infrared transmitting
- excluding
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 34
- 230000005540 biological transmission Effects 0.000 title claims abstract description 13
- 229910052732 germanium Inorganic materials 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- 229910052793 cadmium Inorganic materials 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229910052716 thallium Inorganic materials 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 239000002994 raw material Substances 0.000 description 10
- 238000004017 vitrification Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000003708 ampul Substances 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 7
- 229910052798 chalcogen Inorganic materials 0.000 description 5
- 150000001787 chalcogens Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052787 antimony Inorganic materials 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 229910052714 tellurium Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000005387 chalcogenide glass Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910005839 GeS 2 Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004297 night vision Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/10—Compositions for glass with special properties for infrared transmitting glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/32—Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
- C03C3/321—Chalcogenide glasses, e.g. containing S, Se, Te
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/04—Optical or mechanical part supplementary adjustable parts
- G01J1/0407—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
- G01J1/0437—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using masks, aperture plates, spatial light modulators, spatial filters, e.g. reflective filters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2204/00—Glasses, glazes or enamels with special properties
Definitions
- the present invention relates to an infrared transmitting glass used for an infrared sensor or the like.
- In-vehicle night vision and security systems are equipped with infrared sensors that are used to detect living bodies at night. Since the infrared sensor senses infrared rays having a wavelength of about 8 to 12 ⁇ m emitted from a living body, an optical element such as a filter or a lens that transmits infrared rays in the wavelength range is provided in front of the sensor unit.
- Examples of the material for the optical element as described above include Ge and ZnSe. Since these are crystals, they are inferior in workability and difficult to be processed into a complicated shape such as an aspheric lens. Therefore, there are problems that it is difficult to mass-produce and it is difficult to reduce the size of the infrared sensor.
- chalcogenide glass has been proposed as a vitreous material that transmits infrared rays having a wavelength of about 8 to 12 ⁇ m and is relatively easy to process (see, for example, Patent Document 1 or 2).
- JP-A-5-24879 Japanese Patent Laid-Open No. 5-85769
- Patent Documents 1 and 2 have a narrow vitrification range and are thermally unstable. Further, it contains a large amount of Ge, which is disadvantageous in terms of cost.
- an object of the present invention is to provide an infrared transmitting glass that is thermally stable and inexpensive.
- Infrared transmitting glass of the present invention is mol%, Ge 0-20% (however, 0%, 20% not included), Sb 0-40% (however 0% not included), Bi 0-20% (however, not including 0+) and S + Se + Te 50-80%.
- the infrared transmitting glass of the present invention may contain Ge 2 to 20% (excluding 20%), Sb 5 to 35%, Bi 1 to 20%, and S + Se + Te 55 to 75% in mol%. preferable.
- the infrared transmitting glass of the present invention preferably further contains 0 to 20% of Sn in mol%.
- the infrared transmitting glass of the present invention does not substantially contain As, Cd, Tl and Pb.
- the infrared transmitting optical element of the present invention is characterized by using the infrared transmitting glass.
- the infrared sensor of the present invention uses the infrared transmitting optical element.
- FIG. 1 is a graph showing a light transmittance curve of the infrared transmission glass produced in Example 1.
- Infrared transmitting glass of the present invention is mol%, Ge 0-20% (however, 0%, 20% not included), Sb 0-40% (however 0% not included), Bi 0-20% (however, not including 0+) and S + Se + Te 50-80%.
- the reason for defining the glass composition in this way will be described below.
- Ge is an essential component for forming a glass skeleton.
- the Ge content is 0 to 20% (however, not including 0% and 20%), preferably 2 to 20% (however, not including 20%), more preferably 2 to 18%. Preferably, it is 4 to 15%.
- Ge When Ge is not contained, it becomes difficult to vitrify.
- the Ge content is too large, Ge-based crystals tend to precipitate and the raw material cost tends to increase.
- Sb is also an essential component for forming a glass skeleton.
- the Sb content is 0 to 40% (excluding 0%), preferably 5 to 35%, and more preferably 10 to 33%. When Sb is not contained or when the content is too large, vitrification becomes difficult.
- Bi is a component that promotes vitrification.
- S, Se, and Te which are chalcogen elements, easily volatilize when melted. Therefore, it becomes difficult to vitrify due to compositional deviation and heterogeneity due to low reactivity of Ge, Sb and chalcogen element. Therefore, in the present invention, Bi is contained in the glass composition in order to promote vitrification.
- the reason why vitrification can be promoted by including Bi in the glass composition is as follows. Ge and Sb have melting points of 940 ° C. and 630 ° C., respectively, whereas Bi has a melting point as low as 270 ° C. and melts at a relatively low temperature.
- the chalcogen element reacts with Bi before volatilizing and vitrification is promoted.
- Bi also has the effect of improving the thermal stability of the glass.
- the Bi content is 0 to 20% (excluding 0%), preferably 1 to 20%, more preferably 0.5 to 10%, and more preferably 2 to 8%. % Is more preferable.
- the chalcogen elements S, Se, and Te are components that form a glass skeleton.
- the content of S + Se + Te (the total amount of S, Se, and Te) is 50 to 80%, preferably 55 to 75%, and more preferably 58 to 68%. When there is too little content of S + Se + Te, it will become difficult to vitrify, and when too much, there exists a possibility that a weather resistance may fall.
- chalcogen element it is preferable to select S from an environmental viewpoint.
- the infrared transmitting glass of the present invention may contain the following components.
- Sn is a component that broadens the vitrification range and increases the thermal stability of the glass.
- the Sn content is preferably 0 to 20%, more preferably 0.5 to 10%. When there is too much content of Sn, it will become difficult to vitrify.
- Zn, In, Ga, and P are components that extend the vitrification range, and their contents are preferably 0 to 20%, respectively. When there is too much content of these components, it will become difficult to glass.
- Cl, F and I are components for extending the infrared transmission wavelength range, and their contents are preferably 0 to 20%, respectively. When there is too much content of these components, a weather resistance will fall easily.
- the infrared transmission glass of this invention does not contain substantially As, Cd, Tl, and Pb which are toxic substances. In this way, the environmental impact can be minimized.
- substantially does not contain means that the material is not intentionally contained in the raw material, and does not exclude mixing of impurity levels. Objectively, the content of each component indicates less than 1000 ppm.
- the infrared transmitting glass of the present invention is excellent in infrared transmittance at a wavelength of about 8 to 12 ⁇ m.
- An index for evaluating the infrared transmittance at a wavelength of about 8 to 12 ⁇ m includes a 50% transmission wavelength in the infrared region.
- the 50% transmission wavelength (thickness 2 mm) in the infrared region of the present invention is preferably 10.5 ⁇ m or more, and more preferably 11 ⁇ m or more.
- the infrared transmitting glass of the present invention can be produced, for example, as follows. First, raw materials are prepared so as to have a desired composition. The raw material is put into a quartz glass ampule that has been evacuated while being heated, and sealed with an oxygen burner while being evacuated. The sealed quartz glass ampoule is held at about 650 to 800 ° C. for 6 to 12 hours, and then rapidly cooled to room temperature to obtain the infrared transmitting glass of the present invention.
- raw materials elemental raw materials (Ge, Sb, Bi, S, etc.) may be used, and compound raw materials (GeS 2 , Sb 2 S 3 , Bi 2 S 3 etc.) may be used.
- Tables 1 and 2 show examples and comparative examples of the present invention, respectively.
- Each sample was prepared as follows. Ge, Sb, Bi, S and Sn were mixed so as to obtain a predetermined composition ratio to obtain a raw material batch.
- the quartz glass ampule washed with pure water was evacuated while being heated, and then the raw material batch was put, and the quartz glass ampule was sealed with an oxygen burner while evacuating.
- the sealed quartz glass ampule was heated to 650-800 ° C. at a rate of 10-20 ° C./hour in a melting furnace and then held for 6-12 hours. During the holding time, the quartz glass ampoule was turned upside down every 2 hours to stir the melt. Thereafter, the quartz glass ampule was taken out of the melting furnace and rapidly cooled to room temperature to obtain a sample.
- the obtained sample was subjected to differential thermal analysis, and it was confirmed whether it was vitrified from the presence or absence of a glass transition point.
- those that are vitrified are indicated as “ ⁇ ”, and those that are not vitrified are indicated as “x”.
- the light transmittance at a thickness of 2 mm was measured for each sample, and the 50% transmission wavelength in the infrared region near the wavelength of 8 to 12 ⁇ m was measured.
- the light transmittance curve of the sample of Example 1 is shown in FIG.
- the infrared transmitting glass of the present invention is suitable as an infrared transmitting optical element used for an infrared sensor or the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Glass Compositions (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
熱的に安定であり、かつ安価な赤外線透過ガラスを提供する。 モル%で、Ge 0~20%(ただし0%、20%を含まない)、Sb 0 ~40%(ただし0%を含まない)、Bi 0~20%(ただし0%を含まない)、及び、S+Se+Te 50~80%を含有することを特徴とする赤外線透過ガラス。
Description
本発明は、赤外線センサー等に使用される赤外線透過ガラスに関する。
車載ナイトビジョンやセキュリティシステム等には、夜間の生体検知に用いられる赤外線センサーを備えている。赤外線センサーは、生体から発せられる波長約8~12μmの赤外線を感知するため、センサー部の前には当該波長範囲の赤外線を透過するフィルターやレンズ等の光学素子が設けられる。
上記のような光学素子用の材料として、GeやZnSeが挙げられる。これらは結晶であるため加工性に劣り、非球面レンズ等の複雑な形状に加工することが困難である。そのため量産しにくく、また赤外線センサーの小型化も困難であるという問題がある。
そこで、波長約8~12μmの赤外線を透過し、加工が比較的容易なガラス質の材料として、カルコゲナイドガラスが提案されている(例えば特許文献1または2参照)。
特許文献1及び2に記載のガラスは、ガラス化範囲が狭く熱的に不安定である。またGeを多量に含有しており、コスト面で不利である。
以上に鑑み、本発明は、熱的に安定であり、かつ安価な赤外線透過ガラスを提供することを目的とする。
本発明の赤外線透過ガラスは、モル%で、Ge 0~20%(ただし0%、20%を含まない)、Sb 0~40%(ただし0%を含まない)、Bi 0~20%(ただし0%を含まない)、及び、S+Se+Te 50~80%を含有することを特徴とする。
本発明の赤外線透過ガラスは、モル%で、Ge 2~20%(ただし20%を含まない)、Sb 5~35%、Bi 1~20%、及び、S+Se+Te 55~75%を含有することが好ましい。
本発明の赤外線透過ガラスは、さらに、モル%で、Sn 0~20%を含有することが好ましい。
本発明の赤外線透過ガラスは、As、Cd、Tl及びPbを実質的に含有しないことが好ましい。
本発明の赤外線透過光学素子は、前記赤外線透過ガラスを用いることを特徴とする。
本発明の赤外線センサーは、前記赤外線透過光学素子を用いることを特徴とする。
本発明によれば、熱的に安定であり、かつ安価な赤外線透過ガラスを提供することが可能となる。
本発明の赤外線透過ガラスは、モル%で、Ge 0~20%(ただし0%、20%を含まない)、Sb 0~40%(ただし0%を含まない)、Bi 0~20%(ただし0%を含まない)、及び、S+Se+Te 50~80%を含有することを特徴とする。このようにガラス組成を規定した理由を以下に説明する。
Geはガラス骨格を形成するための必須成分である。Geの含有量は0~20%(ただし0%、20%を含まない)であり、2~20%(ただし20%を含まない)であることが好ましく、2~18%であることがより好ましく、4~15%であることがさらに好ましい。Geを含有しない場合は、ガラス化しにくくなる。一方、Geの含有量が多すぎると、Ge系の結晶が析出しやすくなるとともに、原料コストが高くなる傾向がある。
Sbもガラス骨格を形成するための必須成分である。Sbの含有量は0~40%(ただし0%を含まない)であり、5~35%であることが好ましく、10~33%であることがより好ましい。Sbを含有しない場合、あるいはその含有量が多すぎると、ガラス化しにくくなる。
Biはガラス化を促進する成分である。カルコゲナイドガラスは、溶融時にカルコゲン元素であるS、Se、Teが揮発しやすい。そのため、組成ズレや、Ge、Sbとカルコゲン元素との反応性の低さによる不均質性に起因して、ガラス化しにくくなる。そこで、本発明では、ガラス化を促進するため、ガラス組成中にBiを含有させている。ガラス組成中にBiを含有させることによりガラス化を促進できる理由は以下の通りである。Ge及びSbは、融点がそれぞれ940℃及び630℃であるのに対し、Biは融点が270℃と低く、比較的低温で融解する。そのため、原料としてBiを添加することにより、カルコゲン元素は揮発する前にBiと反応し、ガラス化が促進される。なお、Biにはガラスの熱安定性を向上させる効果もある。ただし、Biの含有量が多すぎるとガラス化しにくくなる。以上に鑑み、Biの含有量は0~20%(ただし0%を含まない)であり、1~20%であることが好ましく、0.5~10%であることがより好ましく、2~8%であることがさらに好ましい。
カルコゲン元素であるS、Se及びTeはガラス骨格を形成する成分である。S+Se+Teの含有量(S、Se及びTeの合量)は50~80%であり、55~75%であることが好ましく、58~68%であることがより好ましい。S+Se+Teの含有量が少なすぎると、ガラス化しにくくなり、一方、多すぎると耐候性が低下する恐れがある。
なお、カルコゲン元素としては、環境面からSを選択することが好ましい。
本発明の赤外線透過ガラスには、上記成分以外にも、下記の成分を含有させることができる。
Snはガラス化範囲を広げ、ガラスの熱安定性を高める成分である。Snの含有量は0~20%であることが好ましく、0.5~10%であることがより好ましい。Snの含有量が多すぎると、ガラス化しにくくなる。
Zn、In、Ga及びPはガラス化範囲を広げる成分であり、その含有量はそれぞれ0~20%であることが好ましい。これらの成分の含有量が多すぎると、ガラスしにくくなる。
Cl、F及びIは赤外線の透過波長範囲を広げる成分であり、その含有量はそれぞれ0~20%であることが好ましい。これらの成分の含有量が多すぎると、耐候性が低下しやすくなる。
なお、本発明の赤外線透過ガラスは有毒物質であるAs、Cd、Tl及びPbを実質的に含有しないことが好ましい。このようにすれば、環境面への影響を最小限に抑えることができる。ここで、「実質的に含有しない」とは、意図的に原料中に含有させないという意味であり、不純物レベルの混入をも排除するものではない。客観的には、各成分の含有量が1000ppm未満を指す。
本発明の赤外線透過ガラスは波長約8~12μmにおける赤外線透過率に優れる。波長約8~12μmにおける赤外線透過率を評価するための指標として、赤外領域における50%透過波長が挙げられる。本発明の赤外領域における50%透過波長(厚み2mm)は10.5μm以上であることが好ましく、11μm以上であることがより好ましい。
本発明の赤外線透過ガラスは、例えば以下のようにして作製することができる。まず、所望の組成となるように原料を調合する。加熱しながら真空排気を行った石英ガラスアンプルに原料を入れ、真空排気を行いながら酸素バーナーで封管する。封管された石英ガラスアンプルを650~800℃程度で6~12時間保持した後、室温まで急冷することにより本発明の赤外線透過ガラスを得る。
原料としては、元素原料(Ge、Sb、Bi、S等)を用いてもよく、化合物原料(GeS2、Sb2S3、Bi2S3等)を用いても良い。
以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。
表1及び表2は本発明の実施例及び比較例をそれぞれ示している。
各試料は次のようにして調製した。所定の組成比となるように、Ge、Sb、Bi、S及びSnを混合し、原料バッチを得た。純水で洗浄した石英ガラスアンプルを加熱しながら真空排気した後、前記原料バッチを入れ、真空排気を行いながら酸素バーナーで石英ガラスアンプルを封管した。
封管された石英ガラスアンプルを溶融炉内で10~20℃/時間の速度で650~800℃まで昇温後、6~12時間保持した。保持時間中、2時間ごとに石英ガラスアンプルの上下を反転し、溶融物を攪拌した。その後、石英ガラスアンプルを溶融炉から取り出し、室温まで急冷することにより試料を得た。
得られた試料について示差熱分析を行い、ガラス転移点の有無から、ガラス化しているかどうかを確認した。表中には、ガラス化しているものは「○」、ガラス化していないものは「×」として表記した。また、各試料につき厚み2mmでの光透過率を測定し、波長8~12μm付近の赤外領域における50%透過波長を測定した。なお、図1に実施例1の試料の光透過率曲線を示す。
表1に示すように、実施例1~5の試料はガラス化しており、50%透過波長が11.2~11.6μmであり、波長8~12μm付近の赤外領域において良好な光透過率を示していた。
一方、比較例1~4の試料はガラス化しておらず、波長2~20μmの範囲で光透過率はほぼ0%であった。
本発明の赤外線透過ガラスは、赤外線センサー等に用いられる赤外線透過光学素子として好適である。
Claims (6)
- モル%で、Ge 0~20%(ただし0%、20%を含まない)、Sb 0~40%(ただし0%を含まない)、Bi 0~20%(ただし0%を含まない)、及び、S+Se+Te 50~80%を含有することを特徴とする赤外線透過ガラス。
- モル%で、Ge 2~20%(ただし20%を含まない)、Sb 5~35%、Bi 1~20%、及び、S+Se+Te 55~75%を含有することを特徴とする請求項1に記載の赤外線透過ガラス。
- さらに、モル%で、Sn 0~20%を含有することを特徴とする請求項1または2に記載の赤外線透過ガラス。
- As、Cd、Tl及びPbを実質的に含有しないことを特徴とする請求項1~3のいずれか一項に記載の赤外線透過ガラス。
- 請求項1~4のいずれか一項に記載の赤外線透過ガラスを用いることを特徴とする赤外線透過光学素子。
- 請求項5に記載の赤外線透過光学素子を用いることを特徴とする赤外線センサー。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480061638.4A CN105722801B (zh) | 2014-01-09 | 2014-12-16 | 红外线透射玻璃 |
EP14878100.8A EP3093275B1 (en) | 2014-01-09 | 2014-12-16 | Infrared transmission glass |
US15/103,436 US10065881B2 (en) | 2014-01-09 | 2014-12-16 | Infrared transmitting glass |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-002118 | 2014-01-09 | ||
JP2014002118A JP6269075B2 (ja) | 2014-01-09 | 2014-01-09 | 赤外線透過ガラス |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015104958A1 true WO2015104958A1 (ja) | 2015-07-16 |
Family
ID=53523796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/083191 WO2015104958A1 (ja) | 2014-01-09 | 2014-12-16 | 赤外線透過ガラス |
Country Status (5)
Country | Link |
---|---|
US (1) | US10065881B2 (ja) |
EP (1) | EP3093275B1 (ja) |
JP (1) | JP6269075B2 (ja) |
CN (1) | CN105722801B (ja) |
WO (1) | WO2015104958A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10294144B2 (en) | 2015-11-20 | 2019-05-21 | AGC Inc. | Optical glass |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101756747B1 (ko) * | 2016-03-09 | 2017-07-12 | 한국항공대학교산학협력단 | 유리 조성물 및 이를 포함하는 적외선 투과 렌즈 |
JP6938864B2 (ja) * | 2016-07-20 | 2021-09-22 | 日本電気硝子株式会社 | 赤外線透過性レンズの製造方法 |
JP6972626B2 (ja) * | 2017-04-05 | 2021-11-24 | 日本電気硝子株式会社 | カルコゲナイドガラス |
JP7070824B2 (ja) * | 2017-08-02 | 2022-05-18 | 日本電気硝子株式会社 | カルコゲナイドガラス材 |
CN109502970A (zh) * | 2018-12-25 | 2019-03-22 | 南通瑞森光学股份有限公司 | 一种红外长波通玻璃及其制备工艺 |
CN109437558A (zh) * | 2018-12-25 | 2019-03-08 | 广东聚航新材料研究院有限公司 | 一种Se基硫系玻璃及其制备方法 |
US20220127185A1 (en) * | 2019-02-28 | 2022-04-28 | Nippon Electric Glass Co., Ltd. | Infrared-transmitting glass |
WO2020175403A1 (ja) * | 2019-02-28 | 2020-09-03 | 日本電気硝子株式会社 | 赤外線透過ガラス |
CN111484250A (zh) * | 2020-03-09 | 2020-08-04 | 宁波大学 | 具有优异声光特性的Ge-Sb-S硫系玻璃及其声光特性测试方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0524879A (ja) | 1991-07-24 | 1993-02-02 | Matsushita Electric Ind Co Ltd | 赤外線透過性ガラスの製造方法 |
JPH0585769A (ja) | 1991-09-25 | 1993-04-06 | Hoya Corp | 赤外線透過用材料 |
JP2009161374A (ja) * | 2007-12-28 | 2009-07-23 | Isuzu Seiko Glass Kk | モールド成型用赤外線透過ガラス |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0524880A (ja) * | 1991-07-24 | 1993-02-02 | Matsushita Electric Ind Co Ltd | 赤外線透過性レンズおよびそれを用いた人体検知センサー装置 |
JPH06183779A (ja) * | 1992-12-16 | 1994-07-05 | Matsushita Electric Ind Co Ltd | 赤外線透過性ガラスの製造方法 |
JPH08325032A (ja) | 1995-05-29 | 1996-12-10 | Hoya Corp | カルコゲナイドガラスファイバー |
-
2014
- 2014-01-09 JP JP2014002118A patent/JP6269075B2/ja active Active
- 2014-12-16 EP EP14878100.8A patent/EP3093275B1/en active Active
- 2014-12-16 US US15/103,436 patent/US10065881B2/en active Active
- 2014-12-16 CN CN201480061638.4A patent/CN105722801B/zh active Active
- 2014-12-16 WO PCT/JP2014/083191 patent/WO2015104958A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0524879A (ja) | 1991-07-24 | 1993-02-02 | Matsushita Electric Ind Co Ltd | 赤外線透過性ガラスの製造方法 |
JPH0585769A (ja) | 1991-09-25 | 1993-04-06 | Hoya Corp | 赤外線透過用材料 |
JP2009161374A (ja) * | 2007-12-28 | 2009-07-23 | Isuzu Seiko Glass Kk | モールド成型用赤外線透過ガラス |
Non-Patent Citations (2)
Title |
---|
A.K. SHARMA ET AL.: "FAR-INFRARED TRANSMISSION SPECTRA OF DOPED AMORPHOUS GERMAN IUM CHALCOGENIDE SEMICONDUCTORS", JOURNAL OF NON- CRYSTALLINE SOLIDS, vol. 108, no. 3, April 1989 (1989-04-01), pages 309 - 314, XP024061833 * |
G.J. ADRIAENSSENS ESDMSM160: "TRANSIENT PHOTOCURR", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. 114, no. PART 1, 1 December 1989 (1989-12-01), pages 100 - 102, XP022739664, DOI: ACTIVITY ISR (INT. SRCH RPT) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10294144B2 (en) | 2015-11-20 | 2019-05-21 | AGC Inc. | Optical glass |
Also Published As
Publication number | Publication date |
---|---|
EP3093275A4 (en) | 2017-06-21 |
JP6269075B2 (ja) | 2018-01-31 |
EP3093275B1 (en) | 2018-08-22 |
US20160311719A1 (en) | 2016-10-27 |
JP2015129072A (ja) | 2015-07-16 |
EP3093275A1 (en) | 2016-11-16 |
CN105722801B (zh) | 2019-03-15 |
CN105722801A (zh) | 2016-06-29 |
US10065881B2 (en) | 2018-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6269075B2 (ja) | 赤外線透過ガラス | |
JP6804030B2 (ja) | 赤外線透過ガラス | |
JP7058825B2 (ja) | 赤外線透過ガラス | |
KR20160149159A (ko) | 적외선 투과 칼코겐 유리 | |
JPWO2011071157A1 (ja) | 近赤外線カットフィルタガラス | |
JPWO2017086227A1 (ja) | 光学ガラス | |
JP2024174089A (ja) | カルコゲナイドガラス材の作製方法 | |
JP7290022B2 (ja) | カルコゲナイドガラス材 | |
JP6709499B2 (ja) | 赤外線透過ガラス | |
CN113302164B (zh) | 红外线透射玻璃 | |
JP6819920B2 (ja) | カルコゲナイドガラス | |
CN113302165B (zh) | 红外线透射玻璃 | |
JP6788816B2 (ja) | 赤外線透過ガラス | |
JPWO2020066928A1 (ja) | 赤外線透過ガラス | |
JP2023000285A (ja) | 赤外線透過ガラス | |
JP7026892B2 (ja) | 赤外線透過ガラス | |
CN108883956A (zh) | 红外线透过性透镜的制造方法、红外线透过性透镜和红外线摄像机 | |
JP2022169294A (ja) | 赤外線透過ガラス | |
JP6972626B2 (ja) | カルコゲナイドガラス | |
JP6808543B2 (ja) | 赤外線透過ガラス、光学素子およびプリフォーム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14878100 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15103436 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014878100 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014878100 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |