WO2015104915A1 - 車載カメラ画像処理装置 - Google Patents
車載カメラ画像処理装置 Download PDFInfo
- Publication number
- WO2015104915A1 WO2015104915A1 PCT/JP2014/081492 JP2014081492W WO2015104915A1 WO 2015104915 A1 WO2015104915 A1 WO 2015104915A1 JP 2014081492 W JP2014081492 W JP 2014081492W WO 2015104915 A1 WO2015104915 A1 WO 2015104915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- camera
- unit
- image processing
- failure diagnosis
- Prior art date
Links
- 238000003745 diagnosis Methods 0.000 claims abstract description 100
- 238000001514 detection method Methods 0.000 claims description 65
- 238000003384 imaging method Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 description 17
- 238000000034 method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 238000003708 edge detection Methods 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 238000004092 self-diagnosis Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N17/00—Diagnosis, testing or measuring for television systems or their details
- H04N17/002—Diagnosis, testing or measuring for television systems or their details for television cameras
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
- G06V20/582—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of traffic signs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
- G06V20/584—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/588—Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/239—Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/80—Camera processing pipelines; Components thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/90—Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/181—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R11/00—Arrangements for holding or mounting articles, not otherwise provided for
- B60R11/04—Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N2013/0074—Stereoscopic image analysis
- H04N2013/0096—Synchronisation or controlling aspects
Definitions
- the present invention relates to an in-vehicle camera image processing apparatus.
- Patent Document 1 discloses a self-diagnosis unit that relatively compares frame images at the same time of video signals obtained by a plurality of imaging units and self-diagnose the soundness of the plurality of imaging units according to the comparison result.
- the technology of an image processing system comprising:
- Japanese Patent Application Laid-Open No. 2004-228561 adjusts the exposure amount adjusting means when in a predetermined operation state to change the exposure amount of the imaging means in the increasing or decreasing direction, and the screen of the imaging means according to the increase or decrease of the exposure amount.
- a technique of failure determination means for determining a failure based on whether or not the brightness has increased or decreased is shown.
- failure diagnosis can be performed only when the vehicle is stopped or traveling at a low speed. For example, when driving on an expressway, the failure cannot be detected even if the failure occurs for a long period of time except during a traffic jam.
- image processing is always necessary even when traveling in the city, such as pre-crash brakes, especially when the most important image sensor part failure occurs in an in-vehicle camera image processing device, as soon as possible. It is necessary to detect faults in the system.
- the present invention has been made in view of the above points, and the object of the present invention is to perform failure diagnosis in real time at low cost and without interfering with the original image processing function even while traveling. It is to provide a possible in-vehicle camera image processing apparatus.
- the present invention includes a plurality of means for solving the above-described problems.
- the present invention is an in-vehicle camera image processing apparatus that performs image processing on a captured image captured from the outside of a vehicle, the captured image and the test Based on at least one camera unit capable of selectively switching between images and outputting, an image processing unit for performing image processing on the captured image output from the camera unit, and the test image output from the camera unit
- a failure diagnosis unit that performs a failure diagnosis of the camera unit, and the image processing unit determines whether or not the failure diagnosis is possible based on the result of the image processing.
- the diagnosis instruction information is output to the failure diagnosis unit, and the failure diagnosis unit receives an image output from the camera unit from the captured image when receiving the diagnosis instruction information from the image processing unit.
- An image selection instruction signal to switch to strike the image is characterized by outputting to the camera unit.
- FIG. 1 is a diagram illustrating a configuration of an in-vehicle camera image processing device according to Embodiment 1.
- FIG. 6 is a diagram illustrating a configuration of an in-vehicle camera image processing device according to a second embodiment.
- surface which shows the propriety of implementation of the failure diagnosis corresponding to the detection result of each driving control application, and a priority.
- Example 1 In the present embodiment, an example of an in-vehicle camera image processing apparatus that performs failure diagnosis based on information on a travel control application executed by the image processing unit will be described.
- FIG. 1 is a diagram illustrating the configuration of the in-vehicle camera image processing apparatus according to the present embodiment.
- the in-vehicle camera image processing apparatus performs image processing on a captured image obtained by imaging the outside from a vehicle, and includes a camera unit 101 that is attached to the vehicle and images the outside such as the front of the vehicle.
- the camera unit 101 includes an image sensor such as a CCD image sensor or a CMOS image sensor, and outputs a test image output unit 102 that outputs a preset test image and a captured image that is a main function of the image sensor. And a captured image output unit 103.
- the test image output unit 102 can output a test image having a fixed pattern such as a uniform luminance image, a stripe image, or a color chart.
- the captured image output unit 103 includes, for example, an AD conversion unit necessary for a CCD image sensor. Also, it has functions such as CDS (correlated double sampling), gain control, exposure control, etc. that a general image sensor has, and outputs digital image data.
- CDS correlated double sampling
- gain control gain control
- exposure control exposure control
- the camera unit 101 includes an image selector unit 104 that selects and outputs either a test image that is image data from the test image output unit 102 or a captured image that is image data from the captured image output unit 103. ing.
- the image selector unit 104 selectively switches between a captured image and a test image and outputs it as camera image data 110.
- the camera image data 110 output from the camera unit 101 is input to the image processing unit 105 and the failure diagnosis unit 106.
- the image processing unit 105 performs image processing on the captured image output as the camera image data 110 from the camera unit 101.
- the travel control application functions as an in-vehicle camera image processing device by performing image processing for vehicle travel control using the captured image.
- the failure diagnosis unit 106 performs a failure diagnosis of the camera unit 101 based on the diagnosis instruction information 111 from the travel control application in the image processing unit 105.
- the failure diagnosis of the camera unit 101 is performed based on a test image output as camera image data 110 from the camera unit 101.
- the test image output unit 102 is selected by the image selector unit 104 of the camera unit 101 by the camera image selection instruction signal 113 in order to execute the failure diagnosis.
- the frame in which the test image output unit 102 is selected and the test image is output is subjected to failure diagnosis as a test image frame period.
- the stripe image is input to the failure diagnosis unit 106 as the camera image data 110 during the test image frame period.
- the failure diagnosis unit 106 has information about the stripe image in advance and compares it with the stripe image input as the camera image data 110.
- a stripe image having a correct value may be held by having a memory, or a stripe image having a correct value may be obtained from the outside such as the image processing unit 105.
- the failure diagnosis unit 106 determines that a failure has occurred in the image data line if there is a difference as a result of comparison between the stripe image that is the correct value and the stripe image input as the camera image data 110.
- the diagnostic result information 112 is returned to the image processing unit 105.
- the image processing unit 105 determines that the image processing result is likely to be abnormal based on the diagnosis result information 112, and stops using the image processing result for travel control. Alternatively, the fact that the image processing result is abnormal is added and passed to the subsequent control.
- the case of the stripe image as the test image has been described as an example. However, as long as the comparison is possible, an image with a fixed luminance may be used, and the image pattern is not particular.
- FIG. 2 shows an example of the internal configuration of the image processing unit.
- the image processing unit 105 performs image processing on the captured image captured by the camera unit 101 to perform various detection processes, and the travel control application information 412 that is a detection process result of the travel control application 400.
- a diagnosis enable / disable determining unit 411 that determines whether or not failure diagnosis is possible;
- the travel control application 400 includes, for example, a preceding vehicle detection processing unit 401 that detects a preceding vehicle, a pedestrian detection processing unit 402 that detects a pedestrian, and an oncoming vehicle as an object detection processing unit that performs detection processing of various objects.
- An oncoming vehicle detection processing unit 403 for detecting a lane detection processing unit 404 for detecting a lane such as a white line, a road edge detection processing unit 405 for detecting a road edge represented by a guardrail or a side wall, a traffic signal detection processing unit for detecting a traffic light 406, a sign detection processing unit 407 for detecting a sign such as a speed sign.
- the travel control application 400 can also include an application related to travel control not listed here. Further, an external signal 410 such as vehicle speed information is input from the outside of the image processing unit 105 to the diagnosis availability determination unit 411, and can be used for failure diagnosis determination.
- an external signal 410 such as vehicle speed information is input from the outside of the image processing unit 105 to the diagnosis availability determination unit 411, and can be used for failure diagnosis determination.
- the diagnostic instruction information 111 is output from the image processing unit 105 to the failure diagnosis unit 106.
- the failure diagnosis unit 106 outputs a camera image selection instruction signal 113 (see FIG. 1) for selecting a test image to the camera unit 101.
- the camera unit 101 outputs a preset test image, and the failure diagnosis unit 106 performs failure diagnosis using the test image.
- the preceding vehicle detection processing unit 401 functions in the travel control application 400.
- the preceding vehicle detection process if it is determined that no preceding vehicle is detected in front of the host vehicle and there is no preceding vehicle, there is no problem even if the image from the camera unit 101 is switched from the captured image to the test image.
- the test image is temporarily selected for failure diagnosis and the failure diagnosis is performed.
- the traffic light detection processing unit 406 functions and, as a result of the traffic light detection, it is switched to a red signal during driving with a green signal and the vehicle is determined to stop with a red signal, the camera unit 101 similarly There is no problem even if the image is switched from the captured image to the test image, and the failure diagnosis is performed by temporarily selecting the test image for failure diagnosis.
- the sign detection processing unit 407 functions and detects a stop sign as a result of the sign detection, for example, when it is determined that the host vehicle is stopped in combination with an external signal 410 such as vehicle speed information. In this case, there is no problem even if the image from the camera unit 101 is switched from the captured image to the test image, and the failure diagnosis is performed by temporarily selecting a test image for failure diagnosis.
- a failure diagnosis can be performed based on a result of one detection processing unit in the traveling control application 400 or a combination of results of a plurality of detection processing units.
- a fixed image such as the above-described stripe image may be output once, so that only one frame needs to be switched to the test image.
- failure diagnosis can be performed during traveling (real time).
- the present invention can be implemented without interfering with the original image processing function as the in-vehicle camera image processing apparatus.
- the in-vehicle camera image processing apparatus of the present embodiment it is possible to reduce the cost without adding hardware for failure diagnosis and without hindering the original image processing function necessary for the image processing CPU for travel control.
- failure diagnosis can be performed in real time even while traveling.
- FIG. 3 is a diagram illustrating the configuration of the in-vehicle camera image processing apparatus.
- the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- the in-vehicle camera image processing apparatus includes two camera units 201 and 202 like a stereo camera.
- the left camera unit 201 and the right camera unit 202 include a test image output unit 102, a captured image output unit 103, and an image selector unit 104, respectively.
- a captured image of the left camera image data 210 output from the left camera unit 201 and a captured image of the right camera image data 211 output from the right camera unit 202 are input to the image processing unit 105.
- a parallax image is calculated from the left and right camera image data 210 and 211, and the distance to the obstacle such as the host vehicle and the vehicle ahead is calculated.
- the failure diagnosis unit 106 sends a left camera image selection instruction signal 212 to the left camera unit 201 and a right camera image selection instruction to the right camera unit 202.
- the signal 213 is output, and the image selector unit 104 can be controlled on each of the left and right sides.
- the failure diagnosis unit 106 outputs a camera image selection instruction signal to one of the left and right camera units 201 and 202 (a part of the camera units), and only an image output from the one camera unit. May be switched from the captured image to the test image to perform failure diagnosis.
- the image selection instruction signal may be output in order to the two camera units. For example, first, the camera image selection instruction signal is output to one camera unit and is output from one camera unit. Switch only the image from the captured image to the test image, perform fault diagnosis of one camera unit, and then return the image output from one camera unit to the captured image from the test image and output from the other camera unit It is also possible to perform a fault diagnosis of the other camera unit by switching only the image to be captured from the captured image to the test image.
- the left camera unit 201 may be switched to the test image
- only the right camera unit 202 may be switched to the test image
- both the left and right may be switched to the test image.
- the switching is transmitted to the failure diagnosis unit 106 by the diagnosis instruction information 111 of the image processing unit 105, and the failure diagnosis is performed.
- a so-called monocular camera is assumed.
- a stereo camera will be described as an example with reference to FIG.
- the preceding vehicle detection processing unit 401 functions in the travel control application 400.
- the failure diagnosis is performed by temporarily selecting a test image for failure diagnosis. .
- only one camera part may be diagnosed, both camera parts may be diagnosed alternately one by one, or both camera parts may be diagnosed simultaneously.
- the in-vehicle camera image processing apparatus of 30 fps can be implemented in 33.3 ms.
- both camera units are used for fault diagnosis because there is a preceding vehicle even if it is far enough that the pre-crash brake is not activated. We want to avoid switching 201 and 202 to the test image at the same time.
- one side of the camera unit keeps track of the far preceding vehicle so as not to lose sight of the preceding vehicle, and a failure diagnosis of the other camera unit (the other camera unit) is performed.
- the tracking function is switched to the side of the camera unit (the other camera unit) where the failure diagnosis was performed earlier, and the failure diagnosis of the other camera unit (one camera unit) is performed To do.
- the left and right cameras may be fault diagnosed alternately as long as the algorithm does not pose a problem even if the left and right cameras are alternately fault diagnosed.
- the failure diagnosis is ⁇ because of the image recognition algorithm.
- the preceding vehicle detection processing unit 401 if a preceding vehicle is detected at a short distance, it may be possible to perform emergency traveling control such as pre-crash braking, so failure diagnosis is not performed. it can.
- failure diagnosis is possible when there is no detected object.
- detecting objects such as lanes and roadsides
- Fault diagnosis can be performed in real time.
- the fault diagnosis can be performed for each one of the detection results as described above, but the fault diagnosis may be performed in combination with the external signal 410, for example.
- the case where the vehicle speed information is used as the external signal 410 is shown as an example, but map information such as navigation may be combined with the sign detection result or the signal detection result.
- an in-vehicle camera image processing apparatus represented by, for example, a stereo camera having a plurality of camera units uses a detection processing function that is possible even with a so-called monocular camera in one camera unit, so that it can be realized in real time during traveling. Fault diagnosis is possible.
- Example 3 In the present embodiment, an example of an in-vehicle camera image processing device that performs failure diagnosis based on a predetermined priority of a travel control application when a plurality of travel control apps are simultaneously executed by the image processing unit will be described.
- FIG. 4 is a table showing whether or not the failure diagnosis corresponding to the detection result of each traveling control application can be performed and the priority.
- priorities are set in advance for the seven travel control applications.
- the priority the smaller the number, the higher the priority. For example, let us consider a case in which a priority 1 leading vehicle detection application and a priority 3 lane detection application are executed simultaneously. At a certain time, a preceding vehicle is detected in the distance as the detection result of the preceding vehicle detection application (detection result: the preceding vehicle is far away), and no lane is detected (detection result: no lane detection) as the result of the lane detection application.
- both (left and right) camera units may be diagnosed at the same time.
- detection of the preceding vehicle with higher priority is also executed at the same time, and the detection result is far from the preceding vehicle, so only one side camera part or both (left and right) camera parts are diagnosed alternately depending on the condition. Is allowed. Therefore, both (left and right) camera units are not diagnosed at the same time. Other combinations can be considered similarly.
- the above is an example in which the priorities of a plurality of driving control apps are determined in advance. However, even when the priorities of a plurality of driving control apps are dynamically changed during driving, the priorities at that time It is also possible to diagnose a failure based on the above. According to the present invention, failure diagnosis is possible based on the travel control application.
- the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
- the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
- a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Traffic Control Systems (AREA)
- Closed-Circuit Television Systems (AREA)
- Studio Devices (AREA)
Abstract
Description
本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、車両から外部を撮像した撮像画像を画像処理する車載カメラ画像処理装置であって、前記撮像画像とテスト画像とを選択的に切り換えて出力可能な少なくとも一つのカメラ部と、該カメラ部から出力された前記撮像画像の画像処理を行う画像処理部と、前記カメラ部から出力された前記テスト画像に基づいて前記カメラ部の故障診断を行う故障診断部と、を有し、前記画像処理部は、画像処理の結果に基づいて故障診断可能か否かを判断し、故障診断可能と判断した場合に、前記故障診断部に診断指示情報を出力し、前記故障診断部は、前記画像処理部から前記診断指示情報の入力を受けた場合に、前記カメラ部から出力される画像を前記撮像画像から前記テスト画像に切り替えさせる画像選択指示信号を前記カメラ部に出力することを特徴としている。
本実施例では、画像処理部で実行される走行制御アプリの情報に基づいて、故障診断を行う車載カメラ画像処理装置の例を説明する。
車載カメラ画像処理装置は、車両から外部を撮像した撮像画像を画像処理するものであり、車両に取り付けられて車両前方などの外部を撮像するカメラ部101を有している。カメラ部101は、CCDイメージセンサやCMOSイメージセンサなどの撮像素子によって構成されており、予め設定されたテスト画像を出力するテスト画像出力部102と、撮像素子の主たる機能である撮像した画像を出力する撮像画像出力部103とを有している。テスト画像出力部102は、均一輝度画像、ストライプ画像、カラーチャートなどの固定パターンを有するテスト画像を出力することができる。
画像処理部105は、カメラ部101で撮像した撮像画像を画像処理することにより種々の検知処理を行う走行制御アプリ400と、走行制御アプリ400の検知処理結果である走行制御アプリ情報412に基づいて故障診断可能か否かを判断する診断可否判断部411とを有する。
本実施例では、複数のカメラ部をもつ車載カメラ画像処理装置の例を説明する。
図3は、車載カメラ画像処理装置の構成を説明する図である。なお、実施例1と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。
本実施例では、画像処理部で複数の走行制御アプリを同時に実行する場合に、あらかじめ定めた走行制御アプリの優先度に基づいて、故障診断を行う車載カメラ画像処理装置の例を説明する。
本実施例では、7つの走行制御アプリに対して予め優先度が設定されている。優先度は、数字が小さい方が優先度が高くなっている。たとえば、優先度1の先行車検知アプリと、優先度3のレーン検知アプリを同時に実行する場合を考える。あるとき、先行車検知アプリの検知結果として遠方に先行車を検知し(検知結果:先行車遠方)、レーン検知アプリの結果としてレーンなし(検知結果:レーン検知なし)の状態とする。
102 テスト画像出力部
103 撮像画像出力部
104 画像セレクタ部
105 画像処理部
106 故障診断部
110 カメラ画像データ
111 診断指示情報
112 診断結果情報
113 カメラ画像選択指示信号
201 左カメラ部
202 右カメラ部
210 左カメラ画像データ
211 右カメラ画像データ
212 左カメラ画像選択指示信号
213 右カメラ画像選択指示信号
400 走行制御アプリ
401 先行車検知処理部(対象物検知処理部)
402 歩行者検知処理部(対象物検知処理部)
403 対向車検知処理部(対象物検知処理部)
404 レーン検知処理部(対象物検知処理部)
405 路端検知処理部(対象物検知処理部)
406 信号機検知処理部(対象物検知処理部)
407 標識検知処理部(対象物検知処理部)
410 外部信号
411 診断可否判断部
412 走行制御アプリ情報
Claims (5)
- 車両から外部を撮像した撮像画像を画像処理する車載カメラ画像処理装置であって、
前記撮像画像とテスト画像とを選択的に切り換えて出力可能な少なくとも一つのカメラ部と、
該カメラ部から出力された前記撮像画像の画像処理を行う画像処理部と、
前記カメラ部から出力された前記テスト画像に基づいて前記カメラ部の故障診断を行う故障診断部と、を有し、
前記画像処理部は、画像処理の結果に基づいて故障診断可能か否かを判断し、故障診断可能と判断した場合に、前記故障診断部に診断指示情報を出力し、
前記故障診断部は、前記画像処理部から前記診断指示情報の入力を受けた場合に、前記カメラ部から出力される画像を前記撮像画像から前記テスト画像に切り替えさせる画像選択指示信号を前記カメラ部に出力することを特徴とする車載カメラ画像処理装置。 - 前記カメラ部を複数有し、
前記故障診断部は、一部のカメラ部に前記画像選択指示信号を出力することを特徴とする請求項1に記載の車載カメラ画像処理装置。 - 前記故障診断部は、前記複数のカメラ部に対して順番に前記画像選択指示信号を出力することを特徴とする請求項2に記載の車載カメラ画像処理装置。
- 前記画像処理部は、
前記画像処理により外部情報を検知する複数の検知処理部と、
該複数の検知処理部の検知処理結果と前記複数の検知処理部に予め設定されている優先度とに基づいて故障診断可能か否かを判断する診断可否判断部と、
を有することを特徴とする請求項1に記載の車載カメラ画像処理装置。 - 前記画像処理部は、前記画像処理により対象部の有無を検知する対象物検知処理部を有し、
前記故障診断部は、前記対象物検知処理部により前記対象物がいないと判断された場合に前記カメラ部に対して前記画像選択指示信号を出力することを特徴とする請求項1に記載の車載カメラ画像処理装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/100,649 US10154255B2 (en) | 2014-01-10 | 2014-11-28 | In-vehicle-camera image processing device |
JP2015556728A JP6060282B2 (ja) | 2014-01-10 | 2014-11-28 | 車載カメラ画像処理装置 |
EP14878010.9A EP3094075B1 (en) | 2014-01-10 | 2014-11-28 | In-vehicle-camera image processing device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014003599 | 2014-01-10 | ||
JP2014-003599 | 2014-01-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015104915A1 true WO2015104915A1 (ja) | 2015-07-16 |
Family
ID=53523755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/081492 WO2015104915A1 (ja) | 2014-01-10 | 2014-11-28 | 車載カメラ画像処理装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10154255B2 (ja) |
EP (1) | EP3094075B1 (ja) |
JP (1) | JP6060282B2 (ja) |
WO (1) | WO2015104915A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017130858A (ja) * | 2016-01-22 | 2017-07-27 | 三菱電機株式会社 | 撮像装置及び故障検出方法、並びにプログラム及び記録媒体 |
WO2018055914A1 (ja) | 2016-09-23 | 2018-03-29 | 日立オートモティブシステムズ株式会社 | 画像処理装置 |
WO2019176194A1 (ja) * | 2018-03-13 | 2019-09-19 | ソニーセミコンダクタソリューションズ株式会社 | 信号処理装置、信号処理方法、及び信号処理システム |
WO2020122057A1 (ja) * | 2018-12-10 | 2020-06-18 | ソニーセミコンダクタソリューションズ株式会社 | 画像処理装置、画像処理方法および画像処理システム |
KR20200113153A (ko) * | 2019-03-15 | 2020-10-06 | 엘지전자 주식회사 | 차량 제어 장치 |
US12125167B2 (en) | 2018-12-10 | 2024-10-22 | Sony Semiconductor Solutions Corporation | Image processing device, image processing method, and image processing system |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015220884B4 (de) * | 2014-10-27 | 2022-03-31 | Denso Corporation | Bildverarbeitungsvorrichtung |
US10275669B2 (en) * | 2015-09-09 | 2019-04-30 | Lightmetrics Technologies Pvt. Ltd. | System and method for detecting objects in an automotive environment |
US10203408B2 (en) * | 2016-07-29 | 2019-02-12 | Faraday & Future Inc. | Method and apparatus for detection and ranging fault detection and recovery |
DE102016221441A1 (de) * | 2016-11-02 | 2018-05-03 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Überwachen eines Bildsensors |
EP4007268B1 (en) * | 2017-02-16 | 2024-10-09 | Sony Semiconductor Solutions Corporation | Imaging system and imaging device |
US10380438B2 (en) * | 2017-03-06 | 2019-08-13 | Honda Motor Co., Ltd. | System and method for vehicle control based on red color and green color detection |
US10614326B2 (en) * | 2017-03-06 | 2020-04-07 | Honda Motor Co., Ltd. | System and method for vehicle control based on object and color detection |
US11435733B2 (en) * | 2017-11-08 | 2022-09-06 | Cartasense Ltd. | Method and system to assure monitoring system validity |
DE102017220282A1 (de) * | 2017-11-14 | 2019-05-16 | Robert Bosch Gmbh | Testverfahren für ein Kamerasystem, ein Steuergerät des Kamerasystems, das Kamerasystem und ein Fahrzeug mit diesem Kamerasystem |
JP2019145571A (ja) * | 2018-02-16 | 2019-08-29 | 株式会社東芝 | 半導体装置 |
JP7187564B2 (ja) * | 2018-08-21 | 2022-12-12 | 日立Astemo株式会社 | 画像処理装置 |
US11117591B2 (en) * | 2019-05-08 | 2021-09-14 | Pony Ai Inc. | System and method for recalibration of an uncalibrated sensor |
CN112995656B (zh) * | 2021-03-04 | 2024-05-17 | 黑芝麻智能科技(上海)有限公司 | 用于图像处理电路的异常检测方法及系统 |
CN113682323A (zh) * | 2021-09-14 | 2021-11-23 | 东风悦享科技有限公司 | 一种基于双目视觉的低速无人驾驶车辆安全冗余架构与方法 |
CN114584708A (zh) * | 2022-03-03 | 2022-06-03 | 杭州图谱光电科技有限公司 | 一种基于单片fpga的多功能工业相机系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09113221A (ja) * | 1995-10-17 | 1997-05-02 | Mitsubishi Electric Corp | 車載用画像処理装置及びその画像処理方法 |
JPH09319873A (ja) * | 1996-05-28 | 1997-12-12 | Mitsubishi Electric Corp | 車載用画像処理装置 |
JP2001211466A (ja) | 2000-01-27 | 2001-08-03 | Toshiba Corp | 自己診断機能を有する画像処理システム |
JP2003319120A (ja) * | 2002-04-25 | 2003-11-07 | Fujitsu Ten Ltd | 画像認識システムにおける異常の診断装置 |
JP2005073296A (ja) | 2004-10-27 | 2005-03-17 | Mitsubishi Electric Corp | 車両用カメラの露光制御装置 |
JP2008123498A (ja) * | 2006-10-15 | 2008-05-29 | Fujitsu Ten Ltd | 車両用情報記録装置 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6115489A (en) * | 1997-09-02 | 2000-09-05 | General Electric Company | System and method for performing image-based diagnosis |
US6501849B1 (en) * | 1997-09-02 | 2002-12-31 | General Electric Company | System and method for performing image-based diagnosis over a network |
US6661456B1 (en) * | 1999-04-30 | 2003-12-09 | General Electric Company | Imaging of pixel defects in digital detectors |
US6681344B1 (en) * | 2000-09-14 | 2004-01-20 | Microsoft Corporation | System and method for automatically diagnosing a computer problem |
JP2004005364A (ja) * | 2002-04-03 | 2004-01-08 | Fuji Photo Film Co Ltd | 類似画像検索システム |
DE10313002B4 (de) * | 2003-03-24 | 2006-03-23 | Daimlerchrysler Ag | Fahrzeugumgebungserfassungseinheit |
EP1646240B1 (en) * | 2003-07-11 | 2009-09-16 | Hitachi, Ltd. | Image processing camera system and image processing camera control method |
JP4196124B2 (ja) * | 2003-08-29 | 2008-12-17 | 株式会社ニコン | 撮像系診断装置、撮像系診断プログラム、撮像系診断プログラム製品、および撮像装置 |
JP4738778B2 (ja) * | 2003-10-15 | 2011-08-03 | 富士通テン株式会社 | 画像処理装置、運転支援装置および運転支援システム |
US7189000B2 (en) * | 2003-12-22 | 2007-03-13 | Kabushiki Kaisha Toshiba | Image-quality control system |
US7920200B2 (en) * | 2005-06-07 | 2011-04-05 | Olympus Corporation | Image pickup device with two cylindrical lenses |
JP5124147B2 (ja) * | 2007-02-01 | 2013-01-23 | 三洋電機株式会社 | カメラ校正装置及び方法並びに車両 |
TWM326196U (en) * | 2007-07-25 | 2008-01-21 | Supa Technology Co Ltd | Navigation device capable of providing car reversal image |
JP2009060404A (ja) * | 2007-08-31 | 2009-03-19 | Denso Corp | 映像処理装置 |
US8694195B2 (en) * | 2007-12-04 | 2014-04-08 | Volkswagen Ag | Motor vehicle having a wheel-view camera and method for controlling a wheel-view camera system |
US8692873B2 (en) * | 2009-01-15 | 2014-04-08 | Alverix, Inc. | Video-frame data receiver with low frame capture rate |
WO2014007175A1 (ja) * | 2012-07-03 | 2014-01-09 | クラリオン株式会社 | 車載環境認識装置 |
CN103780870B (zh) * | 2012-10-17 | 2017-11-21 | 杭州海康威视数字技术股份有限公司 | 视频图像质量诊断系统及其方法 |
JP5906272B2 (ja) * | 2014-03-28 | 2016-04-20 | 富士重工業株式会社 | 車両用ステレオ画像処理装置 |
DE102015220884B4 (de) * | 2014-10-27 | 2022-03-31 | Denso Corporation | Bildverarbeitungsvorrichtung |
-
2014
- 2014-11-28 WO PCT/JP2014/081492 patent/WO2015104915A1/ja active Application Filing
- 2014-11-28 US US15/100,649 patent/US10154255B2/en active Active
- 2014-11-28 EP EP14878010.9A patent/EP3094075B1/en active Active
- 2014-11-28 JP JP2015556728A patent/JP6060282B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09113221A (ja) * | 1995-10-17 | 1997-05-02 | Mitsubishi Electric Corp | 車載用画像処理装置及びその画像処理方法 |
JPH09319873A (ja) * | 1996-05-28 | 1997-12-12 | Mitsubishi Electric Corp | 車載用画像処理装置 |
JP2001211466A (ja) | 2000-01-27 | 2001-08-03 | Toshiba Corp | 自己診断機能を有する画像処理システム |
JP2003319120A (ja) * | 2002-04-25 | 2003-11-07 | Fujitsu Ten Ltd | 画像認識システムにおける異常の診断装置 |
JP2005073296A (ja) | 2004-10-27 | 2005-03-17 | Mitsubishi Electric Corp | 車両用カメラの露光制御装置 |
JP2008123498A (ja) * | 2006-10-15 | 2008-05-29 | Fujitsu Ten Ltd | 車両用情報記録装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3094075A4 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017130858A (ja) * | 2016-01-22 | 2017-07-27 | 三菱電機株式会社 | 撮像装置及び故障検出方法、並びにプログラム及び記録媒体 |
WO2018055914A1 (ja) | 2016-09-23 | 2018-03-29 | 日立オートモティブシステムズ株式会社 | 画像処理装置 |
WO2019176194A1 (ja) * | 2018-03-13 | 2019-09-19 | ソニーセミコンダクタソリューションズ株式会社 | 信号処理装置、信号処理方法、及び信号処理システム |
US11356656B2 (en) | 2018-03-13 | 2022-06-07 | Sony Semiconductor Solutions Corporation | Signal processing device, signal processing method, and signal processing system |
WO2020122057A1 (ja) * | 2018-12-10 | 2020-06-18 | ソニーセミコンダクタソリューションズ株式会社 | 画像処理装置、画像処理方法および画像処理システム |
JPWO2020122057A1 (ja) * | 2018-12-10 | 2021-10-28 | ソニーセミコンダクタソリューションズ株式会社 | 画像処理装置、画像処理方法および画像処理システム |
JP7451423B2 (ja) | 2018-12-10 | 2024-03-18 | ソニーセミコンダクタソリューションズ株式会社 | 画像処理装置、画像処理方法および画像処理システム |
US12125167B2 (en) | 2018-12-10 | 2024-10-22 | Sony Semiconductor Solutions Corporation | Image processing device, image processing method, and image processing system |
KR20200113153A (ko) * | 2019-03-15 | 2020-10-06 | 엘지전자 주식회사 | 차량 제어 장치 |
KR102183130B1 (ko) | 2019-03-15 | 2020-11-25 | 엘지전자 주식회사 | 차량 제어 장치 |
Also Published As
Publication number | Publication date |
---|---|
EP3094075B1 (en) | 2022-05-11 |
JP6060282B2 (ja) | 2017-01-11 |
EP3094075A1 (en) | 2016-11-16 |
EP3094075A4 (en) | 2017-09-27 |
US10154255B2 (en) | 2018-12-11 |
JPWO2015104915A1 (ja) | 2017-03-23 |
US20160301923A1 (en) | 2016-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6060282B2 (ja) | 車載カメラ画像処理装置 | |
US9592764B2 (en) | Redundant object detection for driver assistance systems | |
US7171027B2 (en) | Vehicular image processing apparatus and related method | |
JP4738778B2 (ja) | 画像処理装置、運転支援装置および運転支援システム | |
JP6137081B2 (ja) | 車載機器 | |
JP6407626B2 (ja) | 物体認識装置及び車両制御システム | |
JP6660751B2 (ja) | 撮像装置 | |
US10810877B2 (en) | Vehicle control device | |
JP6259132B2 (ja) | 車載用カメラ装置 | |
JP2008060873A (ja) | 複数画角カメラ | |
WO2018061739A1 (ja) | 画像生成装置、画像生成方法、プログラムおよび記録媒体 | |
JP2015103894A (ja) | 車載用画像処理装置及び半導体装置 | |
JP2017219427A (ja) | 物体距離検出装置 | |
WO2014148175A1 (ja) | 画像処理装置 | |
US20220024452A1 (en) | Image processing apparatus, imaging apparatus, moveable body, and image processing method | |
JP7427594B2 (ja) | 画像処理装置 | |
JP2018151999A (ja) | 物体距離検出装置 | |
JP6161582B2 (ja) | 画像処理装置 | |
JP6891082B2 (ja) | 物体距離検出装置 | |
JP2015014916A (ja) | 車両監視システムおよび中央装置 | |
JP2013250694A (ja) | 画像処理装置 | |
WO2020021949A1 (ja) | 鉄道車両用撮像システム | |
JP2018180585A (ja) | 車両用システム | |
JPWO2020075476A1 (ja) | 車載システム | |
JP2013206356A (ja) | 画像処理装置及び画像処理カメラ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14878010 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015556728 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15100649 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014878010 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014878010 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |