WO2015104876A1 - 列車位置検知装置 - Google Patents

列車位置検知装置 Download PDF

Info

Publication number
WO2015104876A1
WO2015104876A1 PCT/JP2014/076670 JP2014076670W WO2015104876A1 WO 2015104876 A1 WO2015104876 A1 WO 2015104876A1 JP 2014076670 W JP2014076670 W JP 2014076670W WO 2015104876 A1 WO2015104876 A1 WO 2015104876A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
radio
antennas
position detection
fixed
Prior art date
Application number
PCT/JP2014/076670
Other languages
English (en)
French (fr)
Inventor
亘 辻田
猪又 憲治
聖也 永島
田原 一浩
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/108,710 priority Critical patent/US10640134B2/en
Priority to JP2015556710A priority patent/JP6072307B2/ja
Publication of WO2015104876A1 publication Critical patent/WO2015104876A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • B61L15/0027Radio-based, e.g. using GSM-R
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/021Measuring and recording of train speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/026Relative localisation, e.g. using odometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L3/00Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal
    • B61L3/02Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control
    • B61L3/08Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically
    • B61L3/12Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves
    • B61L3/125Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling electrically using magnetic or electrostatic induction; using radio waves using short-range radio transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/10Systems for determining distance or velocity not using reflection or reradiation using radio waves using Doppler effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/12Systems for determining distance or velocity not using reflection or reradiation using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0246Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves involving frequency difference of arrival or Doppler measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0269Inferred or constrained positioning, e.g. employing knowledge of the physical or electromagnetic environment, state of motion or other contextual information to infer or constrain a position
    • G01S5/02695Constraining the position to lie on a curve or surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/08Position of single direction-finder fixed by determining direction of a plurality of spaced sources of known location

Definitions

  • the present invention relates to a train position detection device that detects the position of a train necessary for performing train operation control, and more particularly to a configuration for detecting a fixed point position of a train.
  • a device described in Patent Document 1 is installed as a train that detects the position of a train by receiving radio waves from a fixed radio that is installed on the side of the train and radiates as predetermined radio waves. there were.
  • the vehicle is placed in a predetermined position according to the difference between the Doppler frequency of the radio wave received by the antenna provided at the front part of the vehicle and the Doppler frequency of the radio wave received by the antenna provided at the rear part of the vehicle. It is designed to detect that it has arrived.
  • the Doppler frequency of the signal received by the two antennas is measured, and if there is a difference between the two, it is determined that the signal passes right beside.
  • the time during which the Doppler frequency difference occurs has a width corresponding to the minute time ⁇ t, an error corresponding to the traveling speed V ⁇ ⁇ t occurs when the passage is determined.
  • the “right side” itself cannot be detected.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a train position detection device capable of obtaining a train position with high accuracy.
  • a train position detection device is configured such that a train traveling on a track has a plurality of antennas with a predetermined antenna interval, and is installed beside the train track via the plurality of antennas, and has a predetermined frequency.
  • a reception unit that extracts a radio wave from a fixed radio that emits a transmission signal having an amplitude or phase as a radio wave, and a relative ratio of a plurality of antennas to the fixed radio from a ratio of Doppler frequencies calculated from the plurality of reception signals
  • a position detection unit that calculates the position, and a train position detection unit that calculates the position of the train from the relative position, the installation position of the fixed wireless device, and the installation positions of the plurality of antennas in the train are provided.
  • the train position detection device of the present invention calculates a relative position of a plurality of antennas with respect to a fixed radio based on a ratio of Doppler frequencies calculated from a plurality of received signals, and calculates a train position based on the relative position. Therefore, the train position can be obtained with high accuracy.
  • FIG. 1 is a block diagram showing a train position detection apparatus according to Embodiment 1 of the present invention.
  • the train position detection device is applied to a configuration including a mobile radio device 100 mounted on a train and a fixed radio device 200 installed beside the track.
  • the mobile radio device 100 includes a first antenna 110a and a second antenna 110b installed at predetermined intervals, a receiving unit 120, a position detecting unit 130, and a train position detecting unit 140.
  • the position detection unit 130 includes a Doppler frequency calculation unit 131 and a mobile radio position calculation unit 132.
  • the train position detection unit 140 includes a passage determination unit 141 and a train position calculation unit 142.
  • the fixed wireless device 200 includes an antenna 210, a transmission unit 220, and a signal generation unit 230.
  • the receiving unit 120 is a processing unit that receives the radio waves transmitted from the fixed wireless device 200 by the antennas 110a and 110b and outputs these as two received signals.
  • the position detection unit 130 is based on a ratio of Doppler frequencies calculated based on a plurality of reception signals output from the reception unit 120, a distance between the fixed radio 200 and the track, and an installation interval between the antennas 110a and 110b. It is a processing unit that calculates the relative position of the mobile radio device 100 with respect to the fixed radio device 200. That is, the position detection unit 130 detects that the ratio of the Doppler frequency becomes negative, thereby detecting that the mobile wireless device 100 is present beside the fixed wireless device 200 and confirms that the mobile wireless device 100 is present beside the right side.
  • the train position detection unit 140 receives the relative position of the mobile wireless device 100 output from the position detection unit 130 with respect to the fixed wireless device 200 and determines that the mobile wireless device 100 exists near the side of the fixed wireless device 200.
  • the processing unit calculates the train position from the relative position of the mobile radio device 100 to the fixed radio device 200, the installation location of the fixed radio device, and the installation location of the mobile radio device 100 in the train.
  • the presence of the mobile radio device 100 near the fixed radio device 200 means that the position of the fixed radio device 200 is located between the antennas 110a and 110b. In other words, it means that one of the antennas 110 a and 110 b passes right next to the fixed radio 200 and the other does not pass right next to the fixed radio 200.
  • the position of a train is the position of a specific location in the train, and means, for example, the start position of a train used for train control.
  • the mobile radio device 100 is not necessarily installed so as to coincide with the position of the train.
  • signal generator 230 generates and outputs a transmission signal having a predetermined frequency, amplitude, or phase. Also, information modulated with a predetermined frequency, amplitude or phase is output as a transmission signal.
  • Transmitter 220 amplifies the transmission signal with an amplifier and outputs the amplified signal to antenna 210. The antenna 210 radiates the input transmission signal as a radio wave.
  • the radio waves radiated from the fixed wireless device 200 are received by the first antenna 110a of the mobile wireless device 100 mounted on the train, and the first reception is performed. It is output to the receiving unit 120 as a radio wave. Further, the signal is received by the second antenna 110 b of the mobile radio device 100 and is output to the receiving unit 120 as a second received radio wave.
  • the 1st antenna 110a and the 2nd antenna 110b are set as the structure arrange
  • the predetermined interval is 2 m. That is, the antennas 110a and 110b are separated by a predetermined interval or more so that the calculated Doppler frequency does not become zero when the mobile radio device 100 is present near the fixed radio device 200. is set up.
  • the receiving unit 120 extracts the radio wave from the fixed wireless device 200 from the first received radio wave and outputs it as a first received signal to the Doppler frequency calculation unit 131 of the position detection unit 130. Similarly, the radio wave from the fixed radio 200 is extracted from the second received radio wave and is output to the Doppler frequency calculation unit 131 as a second received signal.
  • the Doppler frequency calculation unit 131 calculates a Doppler frequency generated as the train moves based on the input received signal, and outputs the calculated Doppler frequency to the mobile radio position calculation unit 132. A first Doppler frequency is calculated from the first received signal, and a second Doppler frequency is calculated from the second received signal. Specifically, a case where a continuous wave of frequency f is transmitted from fixed radio 200 will be described using FIG.
  • the frequency of the transmitted radio wave is f
  • the speed of the radio wave c the moving speed v of the train
  • the angle between the moving direction of the train and the arrival direction of the radio wave arriving at the first antenna 110a is ⁇ 1
  • the second antenna 110b The Doppler frequency obtained when the angle formed by the arrival direction of the incoming radio wave is ⁇ 2 is represented by the following equations.
  • f d1 v ⁇ cos ⁇ 1 ⁇ f ⁇ c
  • f d2 v ⁇ cos ⁇ 2 ⁇ f ⁇ c
  • An IQ signal obtained by IQ detection of the received signal at frequency f is subjected to a complex FFT operation to calculate f d1 and f d2 .
  • the Doppler frequency becomes positive. Conversely, when the mobile radio device 100 moves away from the fixed radio device 200, the Doppler frequency becomes negative.
  • FIG. 2 there are three positional relationships between the mobile radio device 100 and the fixed radio device 200 based on the Doppler frequencies of f d1 and f d2 .
  • both f d1 and f d2 are positive as in the area a of FIG. 2
  • both the first antenna 110a and the second antenna 110b approach the fixed radio 200, and both are negative as in the area c of FIG. Both are separated from each other.
  • the antenna 210 of the fixed radio 200 exists between the first antenna 110a and the second antenna 110b (region b in FIG. 2).
  • the mobile radio position calculation unit 132 calculates the relative position of the mobile radio 100 with respect to the fixed radio 200 based on the input Doppler frequency.
  • the ratio of the Doppler frequency and the relative position of the mobile radio are output to the train position detector 140.
  • the trajectory in which the mobile radio 100 passes right next to the fixed radio 200 is a straight line, and the arrow direction of the trajectory is the traveling direction of the train.
  • the distance between the fixed radio 200 and the orbit is y
  • the intersection of the perpendicular line from the fixed radio 200 to the orbit and the straight line connecting the first antenna 110a and the second antenna 110b is the relative position x of the mobile radio 100.
  • L be the distance between the first antenna 110a and the second antenna 110b.
  • the relationship between the distances y, x, L, and the Doppler frequency is obtained by the following equation, and the relationship is one-to-one as shown in FIG. Therefore, the relative position x of the mobile radio device 100 with respect to the fixed radio device 200 is calculated by referring to a table created in advance.
  • the Doppler frequency ratio is ⁇ 1
  • the relative position x is L / 2.
  • the passage determination unit 141 determines that the Doppler frequency ratio is negative and thus exists within the region b in FIG. 2, and outputs a determination signal to the train position calculation unit 142.
  • the train position calculation unit 142 is based on the installation position of the fixed wireless device 200, the installation position of the mobile wireless device 100 in the train, and the relative position x of the mobile wireless device to the fixed wireless device. Calculate the train position and output the calculated train position. Specifically, the train position is calculated by correcting the mounting position of the mobile radio 100 in the train to the kilometer information where the fixed radio 200 is installed. A method for acquiring the position of the fixed wireless device 200, the distance y, and the mobile wireless device 100 installation position used for the calculation will be described below.
  • the position and distance y of the fixed wireless device 200 may be held as a known constant in advance, or may be held by the fixed wireless device 200 and added to the radio wave of the transmission signal for wireless transmission.
  • the mobile radio device 100 is used to calculate the mobile radio device position and the train position using the received position y of the fixed radio device 200. Further, these pieces of information may be held on a database (not shown), and a unique radio apparatus ID may be assigned from the fixed radio apparatus 200 to refer to the database.
  • FIG. 5 shows an application example of the train position detection apparatus. It is an installation example for accurately detecting the position of a running train. This shows a state in which the fixed wireless device 200 is installed on an electric pole beside the track and the mobile wireless device 100 is installed on a train.
  • the train measures the travel distance of the host vehicle using, for example, a speed generator, and always detects the position of the host vehicle by calculating the travel distance from the reference position.
  • the speed generator calculates the travel distance by counting the number of rotations of the wheel and multiplying by the circumference of the wheel. Accumulation error occurs in the travel distance due to idling of the wheels. This apparatus is used to correct the measurement error.
  • a plurality of antennas are installed with a predetermined antenna interval on a train traveling on a track, and From the ratio of the Doppler frequency calculated from a plurality of received signals and a receiving unit that is installed beside the orbit and radiates a transmission signal having a predetermined frequency, amplitude, or phase as a radio wave from a fixed radio.
  • a position detection unit that calculates a relative position of a plurality of antennas with respect to a fixed radio, and a train position detection unit that calculates a position of the train from the relative positions, the installation positions of the fixed radios, and the installation positions of the plurality of antennas in the train. Because it is equipped, the train position can be detected with high accuracy.
  • the train position detection device of the present embodiment the relative position of the plurality of antennas with respect to the fixed radio is calculated, the calculated relative position, the installation position of the fixed radio, the installation position of the plurality of antennas in the train, Since the train position is calculated from the train position, the train position can be detected with high accuracy.
  • the train position detection device of the first embodiment when it is detected that a mobile radio device having a plurality of antennas is present near the fixed radio device, the relative positions of the plurality of antennas with respect to the fixed radio device Is calculated.
  • the change in the ratio of the Doppler frequency is relatively large with respect to the change in the relative position of the multiple antennas to the fixed radio.
  • the relative position with respect to the fixed wireless device can be obtained with high accuracy.
  • FIG. 6 is a configuration diagram of a train position detection apparatus according to the second embodiment.
  • the position detection unit 130a of the mobile radio device 100a includes the speed calculation unit 133, and is configured to calculate the moving speed of the train based on the time change of the calculated relative position. Since the other configuration is the same as that of the first embodiment shown in FIG. 1, the same reference numerals are given to the corresponding portions and the description thereof is omitted.
  • the position x of the mobile wireless device 100a calculated by the mobile wireless device position calculation unit 132 is output to the speed calculation unit 133 and the passage determination unit 141.
  • the position detecting unit calculates the moving speed of the train by changing the relative position with time. It can obtain
  • Embodiment 3 is an example in which the mobile radio position calculation unit 132 and the passage determination unit 141 of the first embodiment are realized with a simpler device configuration.
  • the first embodiment it is detected that the mobile radio device 100 is present beside the fixed radio device 200, and the train position is detected from an arbitrary position x in the antenna interval L of the mobile radio device 100.
  • the Doppler frequency ratio is ⁇ 1 and the passage determination is performed.
  • FIG. 7 is a configuration diagram of a train position detection apparatus according to the third embodiment.
  • the mobile radio device 100b includes a receiving unit 120, a position detecting unit 130b, and a train position detecting unit 140a.
  • the position detection unit 130b includes a Doppler frequency calculation unit 131
  • the train position detection unit 140a includes a passage determination unit 141a and a train position calculation unit 142.
  • the Doppler frequency calculation unit 131 has the same configuration as the Doppler frequency calculation unit 131 of the first embodiment, and outputs a plurality of Doppler frequencies.
  • the passage determination unit 141a determines that the mobile wireless device 100b has passed right next to the fixed wireless device 200 when the Doppler frequency ratio is -1.
  • the train position calculation unit 142 is configured to calculate the train position from the installation position of the fixed radio 200 and the installation position of the mobile radio 100b in the train. . Since the other configuration is the same as that of the first embodiment shown in FIG. 1, the same reference numerals are given to the corresponding portions and the description thereof is omitted.
  • the Doppler frequency calculated by the Doppler frequency calculation unit 131 of the position detection unit 130b is output to the passage determination unit 141a of the train position detection unit 140a.
  • the train position calculation unit 142 calculates the train position based on the installation position of the fixed radio 200 and the installation position of the mobile radio 100b in the train, and outputs the calculated train position.
  • a plurality of antennas are installed with a predetermined antenna interval on a train traveling on a track, and A receiver installed on the side of the track that radiates a transmission signal having a predetermined frequency, amplitude, or phase as a radio wave, and a Doppler frequency calculated from a plurality of reception signals.
  • the ratio of the position detection unit and the Doppler frequency is ⁇ 1
  • Train position detector for calculating the position so there is no need to calculate the relative position x of the mobile radio with respect to the fixed radio in detail. It can be realized ⁇ knowledge.
  • FIG. Embodiments 1 to 3 have described the case where the moving direction of the train and the direction of the antenna arrangement of the mobile radio device can be installed substantially in parallel. However, it is not always possible to install the train moving direction and the antenna array direction substantially in parallel.
  • An angle formed by the train moving direction and the antenna arrangement direction is defined as an attachment angle (yaw angle).
  • FIG. 8 shows the position detection of the mobile radio when the mounting angle is not zero. The part drawn with a broken line in the figure is when the Doppler frequency ratio of the signal received by the two antennas becomes ⁇ 1 when the direction of the antenna arrangement of the mobile radio device and the direction of movement of the train coincide.
  • This figure shows the relationship between a fixed radio and a mobile radio, and the part drawn with a solid line is when the Doppler frequency ratio of the signals received by the two antennas is ⁇ 1 when the mounting angle is not zero.
  • the relationship between the fixed wireless device and the mobile wireless device is shown.
  • a mobile radio position detection error occurs because the position of the mobile radio with respect to a fixed radio having a Doppler frequency ratio of ⁇ 1 differs depending on the mounting angle.
  • the fourth embodiment is a mode for solving this problem.
  • FIG. 9 is a configuration diagram of the train position detection apparatus according to the fourth embodiment.
  • the train position detection apparatus according to the fourth embodiment is applied to a configuration including a mobile radio 100c mounted on a train and a fixed radio 200 installed beside the track.
  • the configuration of fixed radio apparatus 200 is the same as in the first to third embodiments, and thus the description thereof is omitted here.
  • the mobile radio device 100c includes three antennas (first antenna 310a, second antenna 310b, and third antenna 310c) installed at predetermined intervals, a receiving unit 320, a Doppler frequency calculation unit 330, and a train position detection unit. 340, a train speed sensor 400 is provided.
  • the receiving unit 320 is a processing unit that outputs the radio waves from the fixed radio 200 received by the first antenna 310a to the third antenna 310c as received signals.
  • the Doppler frequency calculation unit 330 is a calculation unit that calculates three Doppler frequencies from each reception signal extracted by the reception unit 320.
  • the train position detection unit 340 obtains a train position based on three or more Doppler frequencies calculated by the Doppler frequency calculation unit 330, and includes a passage determination unit 341, an attachment angle correction calculation unit 342, and a mobile radio position calculation unit 343.
  • the train position calculation unit 344 is provided.
  • the passage determining unit 341 uses the three Doppler frequencies calculated by the Doppler frequency calculating unit 330, detects that the ratio of the plurality of Doppler frequencies is -1, and detects any two of the three antennas. It is a processing unit that determines whether the fixed wireless device 200 is passing through the side and calculates a plurality of passage determination signals.
  • the attachment angle correction calculation unit 342 is an attachment angle of a straight line connecting the three antennas with respect to the train traveling direction based on the plurality of passage determination signals output from the passage determination unit 341 and the moving speed of the train obtained by the train speed sensor 400. Is a processing unit for calculating.
  • the mobile wireless device position calculation unit 343 determines the mobile wireless device 100c with respect to the fixed wireless device 200 based on the mounting angle obtained by the mounting angle correction calculation unit 342, the distance between the fixed wireless device 200 and the track, and the antenna interval. It is a process part which calculates a relative position.
  • the train position calculation unit 344 is a processing unit that calculates the position of the train from the installation position of the fixed radio, the installation position of the mobile radio 100c in the train, and the relative position obtained by the mobile radio position calculation unit 343. .
  • signal generator 230 generates and outputs a transmission signal having a predetermined frequency, amplitude, or phase. Also, information modulated with a predetermined frequency, amplitude or phase is output as a transmission signal.
  • Transmitter 220 amplifies the transmission signal with an amplifier and outputs the amplified signal to antenna 210. The antenna 210 radiates the input transmission signal as a radio wave.
  • the radio wave radiated from the fixed radio 200 is received by the first antenna 310a of the mobile radio 100c mounted on the train, and the first radio The received radio wave is output to the receiving unit 120. Further, the signal is received by the second antenna 310b of the mobile radio device 100c and output to the receiving unit 320 as a second received radio wave. Further, the signal is received by the third antenna 310c of the mobile radio device 100c and output to the receiving unit 320 as a third received radio wave.
  • FIG. 10 is an explanatory diagram showing a state in which the mobile radio device 100c installed at the attachment angle ⁇ passes by the side of the fixed radio device 200.
  • the first antenna 310a, the second antenna 310b, and the third antenna 310c are arranged in a linear array with a predetermined interval L, respectively.
  • the mobile radio device 100c approaches, passes, or separates from the fixed radio device 200
  • the mobile phone 100c passes right next to the fixed radio device 200 in the order of the third antenna 310c, the second antenna 310b, and the first antenna 310a.
  • the fixed radio device 200 is relatively close to the mobile radio device 100c.
  • the receiving unit 320 extracts the radio wave output from the fixed radio 200 from the first received radio wave and outputs it as a first received signal to the Doppler frequency calculating unit 330.
  • the radio wave output from the fixed wireless device 200 is extracted from the second received radio wave and output to the Doppler frequency calculation unit 330 as the second received signal.
  • the radio wave output from the fixed radio device 200 is extracted from the third received radio wave and output to the Doppler frequency calculation unit 330 as a third received signal.
  • the Doppler frequency calculation unit 330 calculates the Doppler frequency generated with the movement of the train based on the input reception signal, and outputs the calculated Doppler frequency to the train position detection unit 340. That is, the Doppler frequency calculator 330 calculates the first Doppler frequency from the first received signal, calculates the second Doppler frequency from the second received signal, and calculates the third Doppler frequency from the third received signal. Calculate the Doppler frequency. The calculated Doppler frequency is output to the passage determination unit 341.
  • the passage determination unit 341 detects that the ratio between the second Doppler frequency and the third Doppler frequency is ⁇ 1 and outputs a first passage determination signal to the attachment angle correction calculation unit 342. Further, it detects that the ratio of the first Doppler frequency and the third Doppler frequency is ⁇ 1 and outputs a second passage determination signal to the attachment angle correction calculation unit 342.
  • the train speed sensor 400 measures the moving speed of the train and outputs a speed value V to the attachment angle correction calculation unit 342.
  • the attachment angle correction calculation unit 342 measures a time t from when the first passage determination signal is input to when the second passage determination signal is input.
  • the passage determination position interval d is calculated by multiplying the measured time t by the velocity value V.
  • the attachment angle ⁇ is obtained from the calculated passage determination position interval d.
  • the attachment angle ⁇ is output to the mobile radio position calculation unit 343.
  • FIG. 11 is an explanatory diagram showing the relationship between the passage determination position interval d and the mounting angle ⁇ . There is a one-to-one relationship between the passage determination position interval d and the mounting angle ⁇ . A correspondence table is created in advance from the distance y and the distance L between the two antennas, and the attachment angle ⁇ is obtained from the passage determination position interval d by referring to the table.
  • the mobile radio position calculation unit 343 calculates the mobile radio position x when the second passage signal that is the relative position of the mobile radio 100c to the fixed radio 200 is detected. To do.
  • the train position calculation unit 344 calculates the train position based on the mobile radio position, the installation position of the fixed radio 200, and the installation position of the mobile radio 100c in the train, and outputs the calculated train position.
  • the number of antennas is three. However, the number is not limited to this, and may be four or more.
  • the ratio between the first Doppler frequency and the third Doppler frequency and the ratio between the second Doppler frequency and the third Doppler frequency are used. However, as long as two or more Doppler frequency ratios can be calculated. Any combination may be used.
  • three or more antennas are installed at predetermined antenna intervals on a train traveling on a track, and these antennas are ,
  • a receiver installed on the side of the train track, which radiates a transmission signal having a predetermined frequency, amplitude or phase as a radio wave, as a received signal, and a reception received by the receiver
  • a Doppler frequency calculation unit for calculating three or more Doppler frequencies from a signal, and detecting that a ratio of a plurality of Doppler frequencies is ⁇ 1, and a fixed radio of any two of the three or more antennas
  • a straight train connecting three or more antennas based on the passage determination unit that determines whether the aircraft is passing straight and calculates a plurality of passage determination signals, and the movement speed of the train.
  • the relative position of the three or more antennas with respect to the fixed wireless device is calculated based on the mounting angle correction calculation unit that calculates the mounting angle with respect to the row direction, the mounting angle, the distance between the fixed wireless device and the track, and the antenna interval. Since it has a position calculation unit, a fixed radio set position, a train position calculation unit that calculates the position of the train from the installation position of the three or more antennas in the train, and a relative position, the antenna for the train traveling direction An error in the installation angle of the installation position can be suppressed, and the train speed can be obtained with higher accuracy.
  • FIG. 12 is a configuration diagram showing a position detection unit 130c in the train position detection apparatus of the fifth embodiment.
  • the position detection unit 130c of the fifth embodiment includes a Doppler frequency calculation unit 131, a mobile radio position calculation unit 132, a radio wave arrival angle calculation unit 134, and a speed calculation unit 133a.
  • description here is abbreviate
  • the relative position x of the mobile wireless device 100 measured by the mobile wireless device position calculating unit 132 is input to the radio wave arrival angle calculating unit 134, the radio wave radiated from the fixed wireless device 200 is transmitted to the mobile wireless device 100.
  • the arrival angle ⁇ 1 and the arrival angle ⁇ 2 of the radio waves arriving at the antennas 110a and 110b, respectively, are calculated and output to the velocity calculation unit 133a as the radio wave arrival angles.
  • the radio wave arrival angles ⁇ 1 and ⁇ 2 are calculated from the following equations using the relative position x, the distance L between the antennas 110a and 110b, and the distance y between the fixed radio 200 and the orbit.
  • ⁇ 1 tan ⁇ 1 (y / x)
  • ⁇ 2 tan ⁇ 1 (y / (L ⁇ x))
  • the speed calculation unit 133a calculates the train moving speed v from the radio wave arrival angles ⁇ 1 and ⁇ 2 , the Doppler frequencies f d1 and f d2 , the radio wave frequency f, and the radio wave speed c as follows: Calculated from, and output as train speed.
  • v f d1 / cos ⁇ 1 / f ⁇ c
  • v f d2 / cos ⁇ 2 / f ⁇ c
  • the train speed is calculated from the change amount ⁇ x of the relative position x per time ⁇ t, but in the fifth embodiment, the train speed is calculated from the relative position x and the radio wave arrival angle. Therefore, the train speed can be calculated without using a plurality of measurement points at the relative position x.
  • the position detection unit uses the relative position, the distance between the fixed radio, the distance between the tracks, and the antenna interval so that the radio wave radiated from the fixed radio is an antenna. Since the arrival angle of the radio wave arriving at is calculated, the arrival direction of the radio wave radiated from the fixed wireless device can be obtained.
  • the position detection unit calculates the train moving speed using the radio wave arrival angle, the Doppler frequency, and the predetermined frequency, and thus the calculated train speed. Can be used to diagnose the soundness of a speed sensor mounted on a train.
  • any combination of each embodiment, any component of each embodiment can be modified, or any component in each embodiment can be omitted. .
  • the train position detection device relates to a configuration for detecting a fixed point position of a train and is suitable for detecting the position of a train using the train operation control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 位置検知部130は、受信部120が出力した複数の受信信号から算出したドップラ周波数の比に基づいて移動無線機100における複数のアンテナ110a,110bの固定無線機200に対する相対位置を算出する。列車位置検知部140は、算出した相対位置と固定無線機200の設置位置と複数のアンテナ110a,110bの列車における設置位置とから列車の位置を算出する。

Description

列車位置検知装置
 この発明は列車運行制御を行うために必要な列車の位置を検知する列車位置検知装置に関し、特に、列車の定点位置を検知する構成に関するものである。
 列車の軌道脇に設置され、所定の電波として放射する固定無線機からの電波を受信することで、列車の位置を検知するようにしたものとして、例えば特許文献1に記載されるような装置があった。この装置は、車両の前部に設けられたアンテナにより受信された電波のドップラ周波数と、車両の後部に設けられたアンテナにより受信された電波のドップラ周波数との差に応じて車両が所定位置に到来したことを検出するようにしたものである。
特開平4-13983号公報
 上記のように、従来の装置では、2本のアンテナで受信した信号のドップラ周波数を計測し、両者に差が生じると真横を通過したと判定する。しかしながら、ドップラ周波数差が生じている時間には、微小時間Δtだけ幅が存在するため、通過判定した際に走行速度V×Δtだけの誤差が発生する。これにより、基地局の「真横近辺」を通過したことは検知できても、「真横」そのものを検知することができないという問題があった。
 この発明は上記のような課題を解決するためになされたもので、高精度で列車位置を求めることのできる列車位置検知装置を得ることを目的とする。
 この発明に係る列車位置検知装置は、軌道上を走行する列車に所定のアンテナ間隔を有して複数のアンテナが設置され、複数のアンテナを介して、列車の軌道脇に設置され、所定の周波数、振幅または位相を持つ送信信号を電波として放射する固定無線機からの電波をそれぞれ受信信号として取り出す受信部と、複数の受信信号から算出したドップラ周波数の比から複数のアンテナの固定無線機に対する相対位置を算出する位置検知部と、相対位置と固定無線機の設置位置と複数のアンテナの列車における設置位置とから列車の位置を算出する列車位置検知部とを備えたものである。
 この発明の列車位置検知装置は、複数の受信信号から算出したドップラ周波数の比に基づいて複数のアンテナの固定無線機に対する相対位置を算出し、この相対位置によって列車の位置を算出するようにしたので、高精度で列車位置を求めることができる。
この発明の実施の形態1による列車位置検知装置を示す構成図である。 この発明の実施の形態1による列車位置検知装置のドップラ周波数の説明図である。 この発明の実施の形態1による列車位置検知装置の移動無線機の位置算出を示す説明図である。 この発明の実施の形態1による列車位置検知装置のドップラ周波数比と位置xの関係を示す説明図である。 この発明の実施の形態1による列車位置検知装置の適用例を示す説明図である。 この発明の実施の形態2による列車位置検知装置を示す構成図である。 この発明の実施の形態3による列車位置検知装置を示す構成図である。 この発明の実施の形態4による列車位置検知装置の移動無線機の取付角度による測定誤差の説明図である。 この発明の実施の形態4による列車位置検知装置を示す構成図である。 この発明の実施の形態4による列車位置検知装置の動作を示す説明図である。 この発明の実施の形態4による列車位置検知装置の通過判定位置間隔と取付角度の関係を示す説明図である。 この発明の実施の形態5による列車位置検知装置の位置検知部を示す構成図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1による列車位置検知装置を示す構成図である。
 図1に示すように、列車位置検知装置は、列車に搭載される移動無線機100と軌道脇に設置される固定無線機200からなる構成に適用されるものである。移動無線機100は所定の間隔で設置された第1のアンテナ110aと第2のアンテナ110b、受信部120、位置検知部130、列車位置検知部140を備えている。位置検知部130は、ドップラ周波数演算部131と移動無線機位置演算部132とを備えている。列車位置検知部140は、通過判定部141と列車位置演算部142とを備えている。固定無線機200は、アンテナ210と送信部220と信号生成部230とを備えている。
 ここで、受信部120は、固定無線機200から送信された電波をアンテナ110a,110bで受信し、これを2つの受信信号として出力する処理部である。位置検知部130は、受信部120から出力された複数の受信信号に基づいて算出したドップラ周波数の比と、固定無線機200と軌道間の距離と、アンテナ110a,110bの設置間隔とに基づいて移動無線機100の固定無線機200に対する相対位置を算出する処理部である。すなわち、位置検知部130は、ドップラ周波数の比が負となることを検知することで、移動無線機100が固定無線機200の真横付近に存在することを検知し、真横付近に存在することを検知した場合に、移動無線機100の固定無線機200に対する相対位置を出力する。
 列車位置検知部140は、位置検知部130から出力された移動無線機100の固定無線機200に対する相対位置を受けて、移動無線機100が固定無線機200の真横付近に存在することを判定し、移動無線機100の固定無線機200に対する相対位置と、固定無線機の設置位置と、移動無線機100の列車における設置位置とから列車の位置を算出する処理部である。
 ここで、移動無線機100が固定無線機200の真横付近に存在するとは、固定無線機200の位置が、アンテナ110a、110bの間に位置することを意味する。言い換えると、アンテナ110a、110bのいずれか一方が固定無線機200の真横を通過しており、他方が固定無線機200の真横を通過していない状態を意味する。また、列車の位置とは、列車内の特定の個所の位置であり、例えば、列車制御に用いる列車の先頭位置を意味する。移動無線機100は、列車の位置と一致するように設置するとは限らない。
 次に、実施の形態1の列車位置検知装置の動作について説明する。
 固定無線機200において信号生成部230は所定の周波数、振幅あるいは位相をもつ送信信号を生成して出力する。また、所定の周波数、振幅あるいは位相で変調した情報を送信信号として出力する。送信部220は送信信号を増幅器で電力増幅してアンテナ210へ出力する。アンテナ210は入力された送信信号を電波として放射する。
 列車が固定無線機200のある場所に在線していると、固定無線機200から放射された電波は、列車に搭載されている移動無線機100の第1のアンテナ110aで受信され第1の受信電波として受信部120へ出力される。また、移動無線機100の第2のアンテナ110bで受信され第2の受信電波として受信部120へ出力される。ここで、第1のアンテナ110aと第2のアンテナ110bは、列車の進行方向と略並行に所定の間隔で配置した構成とする。所定の間隔として例えば2mがある。すなわち、これらアンテナ110a,110bは、移動無線機100が固定無線機200の真横付近に存在する場合に、算出されるドップラ周波数が共にゼロとなることがないように所定の区間以上に離隔して設置されている。
 受信部120では、第1の受信電波から固定無線機200からの電波を取り出して第1の受信信号として位置検知部130のドップラ周波数演算部131へ出力する。同様に第2の受信電波から固定無線機200からの電波を取り出して第2の受信信号としてドップラ周波数演算部131へ出力する。ドップラ周波数演算部131は、入力された受信信号に基づいて列車の移動に伴って発生するドップラ周波数を演算し、算出したドップラ周波数を移動無線機位置演算部132に出力する。第1の受信信号から第1のドップラ周波数を算出し、第2の受信信号からは第2のドップラ周波数を算出する。具体的には、図2を用いて固定無線機200から周波数fの連続波を送信した場合について説明する。
 送信される電波の周波数をf、電波の速度c、列車の移動速度v、列車の移動方向と第1のアンテナ110aに到来する電波の到来方向がなす角度をθ1、第2のアンテナ110bに到来する電波の到来方向がなす角度をθ2としたときに得られるドップラ周波数はそれぞれ次式となる。
d1=v×cosθ1×f÷c
d2=v×cosθ2×f÷c
 受信信号を周波数fでIQ検波して得られたIQ信号を複素FFT演算してfd1およびfd2を算出する。
 移動無線機100が固定無線機200に接近する際は、ドップラ周波数が正となる。逆に移動無線機100が固定無線機200から離反する際は、ドップラ周波数が負となる。
 fd1とfd2のドップラ周波数から移動無線機100と固定無線機200の位置関係は図2に示すように3通り存在する。図2の領域aのようにfd1とfd2が共に正の時、第1のアンテナ110aと第2のアンテナ110bは共に固定無線機200に接近し、図2の領域cのように共に負となる時、共に離反している。fd1とfd2の一方が正で他方が負となる場合、第1のアンテナ110aと第2のアンテナ110b間に固定無線機200のアンテナ210が存在する(図2の領域b)。
 図2の領域bにおいて、ドップラ周波数の比が負となるとき、移動無線機位置演算部132では、入力されたドップラ周波数に基づいて固定無線機200に対する移動無線機100の相対位置を演算し、ドップラ周波数の比と移動無線機の相対位置を列車位置検知部140へ出力する。
 図3に示すように、移動無線機100が固定無線機200の真横を通過する軌跡が直線で軌道の矢印方向を列車の進行方向とする。固定無線機200と軌道の距離をy、固定無線機200から軌道へ下ろした垂線と第1のアンテナ110aと第2のアンテナ110bをつないだ直線の交点を移動無線機100の相対位置xとする。第1のアンテナ110aと第2のアンテナ110bの間隔をLとする。図において、距離yとxとLとドップラ周波数との関係は次式の関係が得られ、その関係は図4に示すように一対一となる。よって、予め作成したテーブルを参照することで移動無線機100の固定無線機200に対する相対位置xが算出される。
Figure JPOXMLDOC01-appb-I000001
 ドップラ周波数比が-1になるとき、相対位置xはL/2となる。
 通過判定部141は、ドップラ周波数の比が負となることで、図2の領域b内に存在することを判定し、判定信号を列車位置演算部142へ出力する。列車位置演算部142は、判定信号が入力されると、固定無線機200の設置位置と、移動無線機100の列車における設置位置と、移動無線機の固定無線機に対する相対位置xとに基づいて列車位置を演算し、算出した列車位置を出力する。具体的には、固定無線機200が設置されているキロ程情報に移動無線機100の列車における搭載位置を補正して、列車位置を算出する。演算に用いる固定無線機200位置、距離y、移動無線機100設置位置の取得方法について以下説明する。
 固定無線機200の位置と距離yは予め既知の定数として保持してもよいし、固定無線機200で保持して送信信号の電波に付加して無線伝送してもよい。移動無線機100は受信した固定無線機200の位置、yを用いて移動無線機位置および列車位置の演算に用いることになる。また、これらの情報は図示しないデータベース上で保持して、固定無線機200から固有の固有無線機IDを付与してデータベースを参照しても良い。
 図5は列車位置検知装置の適用例を示す。走行中の列車の位置を精度良く検知するための設置例である。固定無線機200が軌道脇の電架柱に設置され移動無線機100が列車に設置されている状態を表している。列車は、自車の移動距離を例えば速度発電機を用いて計測し、常に基準位置からの移動距離を算出することで自車位置を検知している。速度発電機は車輪の回転数をカウントし車輪の円周長を乗算することで移動距離を算出する。
 車輪の空転滑走により移動距離に積算誤差が生じる。本装置はその測定誤差を補正するために利用する。
 以上説明したように、実施の形態1の列車位置検知装置によれば、軌道上を走行する列車に所定のアンテナ間隔を有して複数のアンテナが設置され、複数のアンテナを介して、列車の軌道脇に設置され、所定の周波数、振幅または位相を持つ送信信号を電波として放射する固定無線機からの電波をそれぞれ受信信号として取り出す受信部と、複数の受信信号から算出したドップラ周波数の比から複数のアンテナの固定無線機に対する相対位置を算出する位置検知部と、相対位置と固定無線機の設置位置と複数のアンテナの列車における設置位置とから列車の位置を算出する列車位置検知部とを備えたので、高精度に列車位置を検知することができる。
 列車が高速で移動している場合、移動無線機が固定無線機の真横に位置する時間は非常に短く、移動無線機が固定無線機の真横を通過する瞬間を正確に検知することは困難となる。特に、送信信号が間欠的に放射される場合には、真横を通過した瞬間を正確に検知することは困難となる。本実施の形態の列車位置検知装置によれば、複数のアンテナの固定無線機に対する相対位置を算出し、算出した相対位置と、固定無線機の設置位置と、複数のアンテナの列車における設置位置とから列車の位置を算出するので、高精度に列車位置を検知することができる。
 また、実施の形態1の列車位置検知装置によれば、複数のアンテナを備える移動無線機が固定無線機の真横付近に存在することを検知した場合に、複数のアンテナの固定無線機に対する相対位置を算出する。複数のアンテナが固定無線機の真横付近に存在する場合には、複数のアンテナの固定無線機に対する相対位置の変化に対して、ドップラ周波数の比の変化が比較的大きくなるため、複数のアンテナの固定無線機に対する相対位置を精度良く求めることができる。
実施の形態2.
 実施の形態2は、実施の形態1で説明した移動無線機100の固定無線機200に対する相対位置xの時間変化を用いて列車の移動速度を算出するようにしたものである。
 図6は、実施の形態2による列車位置検知装置の構成図である。実施の形態2では、移動無線機100aの位置検知部130aが速度演算部133を備え、算出した相対位置の時間変化により列車の移動速度を算出するよう構成されている。その他の構成は図1に示した実施の形態1と同様であるため、対応する部分に同一符号を付してその説明を省略する。
 移動無線機位置演算部132で算出した移動無線機100aの位置xは速度演算部133および通過判定部141へ出力する。
 速度演算部133は、位置xの時間Δtあたりの変化量Δxから次式を用いて列車の移動速度vを算出し出力する。
 v=Δx/Δt
 以上説明したように、実施の形態2の列車位置検知装置によれば、位置検知部は、相対位置の時間変化により列車の移動速度を算出するようにしたので、高精度で列車の移動速度を求めることができ、算出した速度値を用いて、列車に搭載した速度センサの健全性の診断等を行うことができる。
実施の形態3.
 実施の形態3は、実施の形態1の移動無線機位置演算部132と通過判定部141をより簡易な装置構成で実現する例である。実施の形態1では、移動無線機100が固定無線機200の真横付近に存在することを検知しており、移動無線機100のアンテナ間隔Lの中の任意の位置xから列車の位置検知を実施していたが、実施の形態3ではドップラ周波数の比が-1となることを検知して通過判定を実施するものである。
 図7は、実施の形態3による列車位置検知装置の構成図である。図において、移動無線機100bは、受信部120、位置検知部130bおよび列車位置検知部140aを備えている。位置検知部130bはドップラ周波数演算部131を備え、列車位置検知部140aは、通過判定部141aと列車位置演算部142を備えている。ドップラ周波数演算部131は実施の形態1のドップラ周波数演算部131と同様の構成であり、複数のドップラ周波数を出力する。通過判定部141aは、ドップラ周波数の比が-1となることで移動無線機100bが固定無線機200の真横を通過したと判定する。列車位置演算部142は、実施の形態1の列車位置演算部142と同様に、固定無線機200の設置位置と移動無線機100bの列車における設置位置から列車の位置を算出するよう構成されている。
 その他の構成は図1に示した実施の形態1と同様であるため、対応する部分に同一符号を付してその説明を省略する。
 次に、実施の形態3の列車位置検知装置の動作について説明する。
 位置検知部130bのドップラ周波数演算部131で算出したドップラ周波数は列車位置検知部140aの通過判定部141aへ出力される。通過判定部141aは、ドップラ周波数比が-1となることを検知して真横を通過したと判定し、その判定信号を列車位置演算部142へ出力する。具体的にはドップラ周波数比が-1となるとき常にx=L/2となる。列車位置演算部142は、判定信号が入力されると、固定無線機200の設置位置と移動無線機100bの列車における設置位置に基づいて列車位置を演算し、算出した列車位置を出力する。
 以上説明したように、実施の形態3の列車位置検知装置によれば、軌道上を走行する列車に所定のアンテナ間隔を有して複数のアンテナが設置され、複数のアンテナを介して、列車の軌道脇に設置され、所定の周波数、振幅または位相を持つ送信信号を電波として放射する固定無線機からの電波をそれぞれ受信信号として取り出す受信部と、複数の受信信号から算出したドップラ周波数を算出する位置検知部と、ドップラ周波数の比が-1となることで複数のアンテナが固定無線機の真横を通過したと判定し、固定無線機の設置位置と複数のアンテナの列車における設置位置から列車の位置を算出する列車位置検知部とを備えたので、固定無線機に対する移動無線機の相対位置xを詳細に演算する必要がなくなりより簡易な装置構成で列車位置検知を実現できる。
実施の形態4.
 実施の形態1~実施の形態3は、列車の移動方位と移動無線機のアンテナ配列の方位が略並行に設置できた場合について説明した。しかしながら、常に列車移動方位とアンテナ配列の方位が略並行に設置できているとは限らない。列車移動方位とアンテナ配列方位がなす角度を取付角度(ヨー角)とする。図8に取付角度がゼロでない場合の移動無線機の位置検知について示す。図中の破線で描画された部分は、移動無線機のアンテナ配列の方位と列車の移動方位が一致している場合に、二つのアンテナで受信した信号のドップラ周波数比が-1となったときの、固定無線機と移動無線機の関係を示しており、実線で描画された部分は、取付角度がゼロでない場合に、二つのアンテナで受信した信号のドップラ周波数比が-1となったときの固定無線機と移動無線機の関係を示している。取付角度によって、ドップラ周波数比が-1となる固定無線機に対する移動無線機位置が異なるため、移動無線機位置検知誤差が発生するという問題がある。実施の形態4では、この問題を解決するための形態である。
 図9は、実施の形態4による列車位置検知装置の構成図である。図示のように、実施の形態4の列車位置検知装置は、列車に搭載される移動無線機100cと軌道脇に設置される固定無線機200からなる構成に適用されるものである。ここで、固定無線機200の構成については実施の形態1~3と同様であるため、ここでの説明は省略する。
 移動無線機100cは、所定の間隔で設置された3つのアンテナ(第1のアンテナ310a,第2のアンテナ310b,第3のアンテナ310c)、受信部320、ドップラ周波数演算部330、列車位置検知部340、列車速度センサ400を備えている。受信部320は、第1のアンテナ310a~第3のアンテナ310cで受信した固定無線機200からの電波をそれぞれ受信信号として出力する処理部である。ドップラ周波数演算部330は、受信部320で取り出されたそれぞれの受信信号から3つのドップラ周波数を算出する演算部である。列車位置検知部340は、ドップラ周波数演算部330が算出した3つ以上のドップラ周波数に基づいて列車位置を求めるもので、通過判定部341、取付角度補正演算部342、移動無線機位置演算部343、列車位置演算部344を備えている。
 通過判定部341は、ドップラ周波数演算部330で算出した3つのドップラ周波数を用い、複数のドップラ周波数の比が-1となることを検知して、3つのアンテナのうちのいずれか2つのアンテナの固定無線機200の真横通過を判定し、複数の通過判定信号を算出する処理部である。取付角度補正演算部342は、通過判定部341から出力された複数の通過判定信号と列車速度センサ400で求められた列車の移動速度から、3つのアンテナを結ぶ直線の、列車進行方向に対する取付角度を算出する処理部である。移動無線機位置演算部343は、取付角度補正演算部342で求められた取付角度と、固定無線機200と軌道間の距離と、アンテナ間隔とに基づいて移動無線機100cの固定無線機200に対する相対位置を算出する処理部である。列車位置演算部344は、固定無線機の設置位置と、移動無線機100cの列車における設置位置と、移動無線機位置演算部343で求められた相対位置から列車の位置を算出する処理部である。
 次に、実施の形態4の列車位置検知装置の動作について説明する。
 固定無線機200において信号生成部230は所定の周波数、振幅あるいは位相をもつ送信信号を生成して出力する。また、所定の周波数、振幅あるいは位相で変調した情報を送信信号として出力する。送信部220は送信信号を増幅器で電力増幅してアンテナ210へ出力する。アンテナ210は入力された送信信号を電波として放射する。
 列車が固定無線機200のある場所に在線していると、固定無線機200から放射された電波は、列車に搭載されている移動無線機100cの第1のアンテナ310aで受信され、第1の受信電波として受信部120へ出力される。また、移動無線機100cの第2のアンテナ310bで受信され、第2の受信電波として受信部320へ出力される。また、移動無線機100cの第3のアンテナ310cで受信され、第3の受信電波として受信部320へ出力される。
 図10は、取付角度θで設置された移動無線機100cが固定無線機200の横を通過する様子を示す説明図である。
 ここで、第1のアンテナ310aと第2のアンテナ310bと第3のアンテナ310cは、それぞれ所定の間隔Lで直線配列に配置した構成である。また、移動無線機100cが固定無線機200へ接近、通過、離反する際、第3のアンテナ310c、第2のアンテナ310b、第1のアンテナ310aの順番で固定無線機200の真横を通過するものとする。図中では、移動無線機100cの視点から描いており、固定無線機200が移動無線機100cに対して相対的に接近している。
 受信部320では第1の受信電波から、固定無線機200から出力された電波を取り出して第1の受信信号としてドップラ周波数演算部330へ出力する。同様に第2の受信電波から、固定無線機200から出力された電波を取り出して第2の受信信号としてドップラ周波数演算部330へ出力する。同様に第3の受信電波から固定無線機200から出力された電波を取り出して第3の受信信号としてドップラ周波数演算部330へ出力する。
 ドップラ周波数演算部330は、入力された受信信号に基づいて列車の移動に伴って発生するドップラ周波数を演算し、算出したドップラ周波数を列車位置検知部340に出力する。すなわち、ドップラ周波数演算部330は、第1の受信信号から第1のドップラ周波数を算出し、第2の受信信号からは第2のドップラ周波数を算出し、第3の受信信号からは第3のドップラ周波数を算出する。算出されたドップラ周波数は通過判定部341へ出力される。
 通過判定部341は、第2のドップラ周波数と第3のドップラ周波数の比が-1となることを検知して第1の通過判定信号を取付角度補正演算部342へ出力する。また、第1のドップラ周波数と第3のドップラ周波数の比が-1となることを検知して第2の通過判定信号を取付角度補正演算部342へ出力する。
 列車速度センサ400は、列車の移動速度を計測し速度値Vを取付角度補正演算部342へ出力する。取付角度補正演算部342は、第1の通過判定信号が入力されてから第2の通過判定信号が入力されるまでの時間tを計測する。計測した時間tに速度値Vを乗算して通過判定位置間隔dを算出する。算出した通過判定位置間隔dより取付角度θを得る。
 取付角度θは、移動無線機位置演算部343へ出力する。
 図11は、通過判定位置間隔dと取付角度θの関係を示す説明図である。通過判定位置間隔dと取付角度θには一対一の関係がある。予め距離y、2つのアンテナの間隔Lより対応表を作成し、テーブル参照により通過判定位置間隔dより取付角度θを得る。
 移動無線機位置演算部343は、取付角度θが入力されると、移動無線機100cの固定無線機200に対する相対位置である第2の通過判信号を検知した際の移動無線機位置xを算出する。移動無線機位置xは、アンテナ間隔L、距離y、取付角度θを用いて次式から算出される。
 x=2L-(2L×(y+2Lsinθ)/(2y+2Lsinθ)
 列車位置演算部344は、移動無線機位置と固定無線機200の設置位置と移動無線機100cの列車における設置位置に基づいて列車位置を演算し、算出した列車位置を出力する。
 なお、上記実施の形態4では、アンテナを3本としたがこの本数に限定されるものではなく、4本以上であってもよい。また、上記例では、第1のドップラ周波数と第3のドップラ周波数の比、第2のドップラ周波数と第3のドップラ周波数の比としたが、ドップラ周波数比が2つ以上算出できるものであればどのような組合せであってもよい。
 以上説明したように、実施の形態4の列車位置検知装置によれば、軌道上を走行する列車に、所定のアンテナ間隔を有して3つ以上のアンテナが設置され、これらのアンテナを介して、列車の軌道脇に設置され、所定の周波数、振幅または位相を持つ送信信号を電波として放射する固定無線機からの電波をそれぞれ受信信号として取り出す受信部と、受信部で取り出されたそれぞれの受信信号から3つ以上のドップラ周波数を算出するドップラ周波数演算部と、複数のドップラ周波数の比が-1となることを検知して、3つ以上のアンテナのうちのいずれか2つのアンテナの固定無線機の真横通過を判定し、複数の通過判定信号を算出する通過判定部と、複数の通過判定信号と列車の移動速度から、3つ以上のアンテナを結ぶ直線の、列車進行方向に対する取付角度を算出する取付角度補正演算部と、取付角度と、固定無線機と軌道間の距離と、アンテナ間隔とに基づいて3つ以上のアンテナの固定無線機に対する相対位置を算出する位置演算部と、固定無線機の設置位置と、3つ以上のアンテナの列車における設置位置と、相対位置とから列車の位置を算出する列車位置演算部とを備えたので、列車進行方向に対するアンテナ設置位置の取付角度の誤差を抑圧でき、更に高精度で列車速度を求めることができる。
実施の形態5.
 実施の形態5は、実施の形態1で計測した移動無線機100の固定無線機200に対する相対位置から、固定無線機200から移動無線機100へ到来する電波の到来角度を検知すると共に、検知した電波到来角度に基づいて列車の移動速度を検出する例である。
 図12は、実施の形態5の列車位置検知装置における位置検知部130cを示す構成図である。実施の形態5の位置検知部130cは、ドップラ周波数演算部131、移動無線機位置演算部132、電波到来角度演算部134、速度演算部133aを備える。なお、列車位置検知装置におけるその他の構成は図1に示した実施の形態1と同様であるため、ここでの説明は省略する。
 次に、実施の形態5の列車位置検知装置の動作について説明する。
 電波到来角度演算部134は、移動無線機位置演算部132で計測した移動無線機100の固定無線機200に対する相対位置xが入力されると、固定無線機200から放射した電波が移動無線機100のアンテナ110aと110bへそれぞれ到来した電波の到来角度θと電波の到来角度θをそれぞれ演算し、電波到来角度として速度演算部133aへ出力する。
 電波到来角度θとθは、相対位置x、アンテナ110aと110bの間隔L、固定無線機200と軌道間の距離yを用いて次式から算出される。
 θ=tan-1(y/x)
 θ=tan-1(y/(L-x))
 速度演算部133aは、電波到来角度が入力されると、電波到来角度θ,θとドップラ周波数fd1とfd2と電波の周波数fと電波の速度cから列車の移動速度vを次式から算出し、列車速度として出力する。
 v=fd1/cosθ/f×c
 もしくは、
 v=fd2/cosθ/f×c
 実施の形態2では、相対位置xの時間Δtあたりの変化量Δxから列車の速度を算出したが、実施の形態5では、相対位置xと電波到来角度から列車の速度を算出する。そのため相対位置xの複数の測定点を用いることなく列車の速度を算出できる。
 以上説明したように、実施の形態5の列車位置検知装置によれば、位置検知部は、相対位置と固定無線機と軌道間の距離とアンテナ間隔とから、固定無線機から放射した電波がアンテナに到来する電波到来角度を算出するようにしたので、固定無線機から放射される電波の到来方向を求めることができる。
 また、実施の形態5の列車位置検知装置によれば、位置検知部は、電波到来角度とドップラ周波数と所定の周波数を用いて列車の移動速度を算出するようにしたので、算出した列車の速度を利用して、列車に搭載した速度センサの健全性の診断などを行うことができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組合せ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 以上のように、この発明に係る列車位置検知装置は、列車の定点位置を検知する構成に関するものであり、列車運行制御装置に用いて列車の位置を検知するのに適している。
 100,100a,100b,100c 移動無線機、110a,310a 第1のアンテナ、110b,310b 第2のアンテナ、310c 第3のアンテナ、120,320 受信部、130,130a,130b,130c 位置検知部、131,330 ドップラ周波数演算部、132 移動無線機位置演算部、133,133a 速度演算部、134 電波到来角度演算部、140,140a,340 列車位置検知部、141,141a,341 通過判定部、142,344 列車位置演算部、200 固定無線機、210 アンテナ、220 送信部、230 信号生成部、342 取付角度補正演算部、343 移動無線機位置演算部、400 列車速度センサ。

Claims (6)

  1.  軌道上を走行する列車に所定のアンテナ間隔を有して複数のアンテナが設置され、当該複数のアンテナを介して、前記列車の軌道脇に設置され、所定の周波数、振幅または位相を持つ送信信号を電波として放射する固定無線機からの電波をそれぞれ受信信号として取り出す受信部と、
     前記複数の受信信号から算出したドップラ周波数の比から前記複数のアンテナの前記固定無線機に対する相対位置を算出する位置検知部と、
     前記相対位置と前記固定無線機の設置位置と前記複数のアンテナの前記列車における設置位置とから前記列車の位置を算出する列車位置検知部とを備えたことを特徴とする列車位置検知装置。
  2.  前記位置検知部は、前記複数のアンテナが前記固定無線機の真横付近に存在することを前記複数の受信信号から算出したドップラ周波数の比が負となることから検知し、前記固定無線機と前記軌道間の距離と、前記アンテナ間隔とに基づいて前記複数のアンテナの前記固定無線機に対する相対位置を算出することを特徴とする請求項1記載の列車位置検知装置。
  3.  前記位置検知部は、前記相対位置の時間変化により前記列車の移動速度を算出することを特徴とする請求項1記載の列車位置検知装置。
  4.  前記位置検知部は、前記相対位置と前記固定無線機と前記軌道間の距離と前記アンテナ間隔とから、前記固定無線機から放射した電波が前記アンテナに到来する電波到来角度を算出することを特徴とする請求項1記載の列車位置検知装置。
  5.  前記位置検知部は、前記電波到来角度と前記ドップラ周波数と前記所定の周波数を用いて前記列車の移動速度を算出することを特徴とする請求項4記載の列車位置検知装置。
  6.  軌道上を走行する列車に、所定のアンテナ間隔を有して3つ以上のアンテナが設置され、これらのアンテナを介して、前記列車の軌道脇に設置され、所定の周波数、振幅または位相を持つ送信信号を電波として放射する固定無線機からの電波をそれぞれ受信信号として取り出す受信部と、
     前記受信部で取り出されたそれぞれの受信信号から3つ以上のドップラ周波数を算出するドップラ周波数演算部と、
     複数のドップラ周波数の比が-1となることを検知して、前記3つ以上のアンテナのうちのいずれか2つのアンテナの前記固定無線機の真横通過を判定し、複数の通過判定信号を算出する通過判定部と、
     前記複数の通過判定信号と列車の移動速度から、前記3つ以上のアンテナを結ぶ直線の、列車進行方向に対する取付角度を算出する取付角度補正演算部と、
     前記取付角度と、前記固定無線機と前記軌道間の距離と、前記アンテナ間隔とに基づいて前記3つ以上のアンテナの前記固定無線機に対する相対位置を算出する位置演算部と、
     前記固定無線機の設置位置と、前記3つ以上のアンテナの前記列車における設置位置と、前記相対位置とから前記列車の位置を算出する列車位置演算部とを備えたことを特徴とする列車位置検知装置。
PCT/JP2014/076670 2014-01-09 2014-10-06 列車位置検知装置 WO2015104876A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/108,710 US10640134B2 (en) 2014-01-09 2014-10-06 Train position detection device
JP2015556710A JP6072307B2 (ja) 2014-01-09 2014-10-06 列車位置検知装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014002383 2014-01-09
JP2014-002383 2014-01-09

Publications (1)

Publication Number Publication Date
WO2015104876A1 true WO2015104876A1 (ja) 2015-07-16

Family

ID=53523718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076670 WO2015104876A1 (ja) 2014-01-09 2014-10-06 列車位置検知装置

Country Status (3)

Country Link
US (1) US10640134B2 (ja)
JP (1) JP6072307B2 (ja)
WO (1) WO2015104876A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117192A1 (ja) * 2015-01-22 2016-07-28 三菱電機株式会社 列車位置検知装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3025464B1 (fr) * 2014-09-04 2016-12-23 Alstom Transp Tech Procede pour commander un vehicule de transport terrestre , vehicule de transport terrestre, equipement au sol, et systeme de transport
DE102015211336A1 (de) * 2015-06-19 2016-12-22 Bayerische Motoren Werke Aktiengesellschaft Sendeempfänger, Fahrzeug, Verfahren und Computerprogramm für einen Sendeempfänger
EP3375234B1 (en) * 2015-11-09 2021-11-10 Telefonaktiebolaget LM Ericsson (publ) Uplink resource allocation in a unidirectional single frequency network arrangement for high speed trains
US10419974B2 (en) 2015-11-09 2019-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Random access handling in single frequency network with unidirectional antenna node arrangement
US11198458B2 (en) * 2016-02-22 2021-12-14 Mitsubishi Electric Corporation Speed control device, wireless train control system, and speed control method
EP3456606B1 (en) * 2017-09-15 2020-07-15 Aktiebolaget SKF Position determination method and system
KR101835432B1 (ko) * 2017-10-24 2018-03-09 한국철도기술연구원 열차 위치 측정 방법 및 장치
SE542199C2 (en) * 2018-05-24 2020-03-10 Icomera Ab System and apparatus for determining the position of rail-bound vehicles on a railway system
EP3823879B1 (en) * 2018-07-17 2024-05-08 Amsted Rail Company, Inc. System and method for building and managing a train consist
KR20210101957A (ko) 2020-02-11 2021-08-19 삼성전자주식회사 레이더 시스템에서의 객체 속도 검출 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03240326A (ja) * 1990-02-19 1991-10-25 Toshiba Corp 列車無線受信システム
JP2010236951A (ja) * 2009-03-30 2010-10-21 Nippon Signal Co Ltd:The 無線距離・速度計測装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889264A (en) * 1973-05-21 1975-06-10 Nasa Vehicle locating system utilizing AM broadcasting station carriers
US6184831B1 (en) * 1988-12-02 2001-02-06 The Boeing Company Method and system for determining location and velocity of electromagnetic emitters using doppler frequency measurements
JPH0413983A (ja) 1990-05-07 1992-01-17 Toyota Motor Corp 路上ビーコン位置検出装置
GB2248512B (en) * 1990-10-01 1994-04-20 Marconi Gec Ltd Vehicle control system
JPH07198834A (ja) 1993-12-28 1995-08-01 Nippon Signal Co Ltd:The ドップラ式速度計測装置
JPH10104345A (ja) 1996-09-27 1998-04-24 Fujitsu Ten Ltd 車両位置検出装置および方法
US5803411A (en) * 1996-10-21 1998-09-08 Abb Daimler-Benz Transportation (North America) Inc. Method and apparatus for initializing an automated train control system
EP1280589A2 (de) 2000-05-05 2003-02-05 Maegdefrau, Peter Verfahren zur originalgetreuen, realitätsnahen automatischen oder halbautomatischen steuerung von gleisgeführten spielzeugen, insbesondere elektromotorisch betriebenen modellbahnen und modellzügen, anordnung zur durchführung eines solchen verfahrens, gleise, gleisstücke oder weichen zur verwendung b

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03240326A (ja) * 1990-02-19 1991-10-25 Toshiba Corp 列車無線受信システム
JP2010236951A (ja) * 2009-03-30 2010-10-21 Nippon Signal Co Ltd:The 無線距離・速度計測装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117192A1 (ja) * 2015-01-22 2016-07-28 三菱電機株式会社 列車位置検知装置
JPWO2016117192A1 (ja) * 2015-01-22 2017-10-12 三菱電機株式会社 列車位置検知装置
US10501101B2 (en) 2015-01-22 2019-12-10 Mitsubishi Electric Corporation Train-position detection device

Also Published As

Publication number Publication date
JPWO2015104876A1 (ja) 2017-03-23
US20160325766A1 (en) 2016-11-10
JP6072307B2 (ja) 2017-02-01
US10640134B2 (en) 2020-05-05

Similar Documents

Publication Publication Date Title
JP6072307B2 (ja) 列車位置検知装置
JP7081046B2 (ja) レーダセンサにおける角度測定誤差を検出する方法
JP6305575B2 (ja) 列車位置検知装置
CA2850287C (en) Train control system
US9505420B2 (en) Train control system
JP2009145206A5 (ja)
CN106537182A (zh) 车载雷达装置以及报告系统
JP2013095262A (ja) 列車の位置検出システム
JP4931748B2 (ja) 列車位置検知装置および移動無線機
JP6074322B2 (ja) 速度計測装置
CN110235020A (zh) 移动体探测系统
JP5297765B2 (ja) 台車搬送作業計測システム
JP2019070567A (ja) 移動体認識レーダ装置
JP2014010110A (ja) 測角装置及び測角方法
JP2007248058A (ja) レーダ装置の光軸調整方法
JP2014211332A (ja) レーダ装置、レーダ装置の制御方法
KR101478642B1 (ko) 신호원 위치탐지 시스템 및 방법
JP2010136083A (ja) 列車位置検知システムおよび移動無線機
JP2020173155A (ja) 目標運動推定装置及び目標運動推定方法
KR20190054664A (ko) 360˚ 전방위 20미터 내 탐지용 fmcw 레이다 기술을 활용한 멀티센서
US11529977B1 (en) Radar enabled determination of presence, axle count, speed, and direction of a rail car
JP4948485B2 (ja) 方位探知装置
JP2014126498A (ja) 車載レーダ装置
US20220205779A1 (en) Object size estimation apparatus and method
JP2011257158A (ja) レーダ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556710

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15108710

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878114

Country of ref document: EP

Kind code of ref document: A1