WO2015101170A1 - 通用型进样器、气相色谱仪和联用谱仪 - Google Patents

通用型进样器、气相色谱仪和联用谱仪 Download PDF

Info

Publication number
WO2015101170A1
WO2015101170A1 PCT/CN2014/093879 CN2014093879W WO2015101170A1 WO 2015101170 A1 WO2015101170 A1 WO 2015101170A1 CN 2014093879 W CN2014093879 W CN 2014093879W WO 2015101170 A1 WO2015101170 A1 WO 2015101170A1
Authority
WO
WIPO (PCT)
Prior art keywords
injector
passage
gasification chamber
opening
carrier gas
Prior art date
Application number
PCT/CN2014/093879
Other languages
English (en)
French (fr)
Inventor
张清军
李元景
陈志强
马秋峰
赵自然
刘以农
刘耀红
王钧效
邹湘
王燕春
常建平
谈林霞
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2015101170A1 publication Critical patent/WO2015101170A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/18Injection using a septum or microsyringe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature

Definitions

  • the invention belongs to the field of analytical detection, and relates to a gas chromatography or gas chromatography-ion mobility spectrometer spectrometer sampling device, in particular to a split/splitless temperature-programmed sampler for a capillary column.
  • the sample is analyzed by gas chromatography (GC), GC, and ion mobility spectrometry (IMS)/mass spectrometry (MS).
  • the sample is first passed through the injector.
  • the injector is used to vaporize the sample component of interest in the first position and mix it with the carrier gas for rapid, accurate, and quantitative application to the GC column head. Since Perkin Elmer produced the first capillary column, more than 90% of GC analysis has been performed by capillary columns today due to its high column efficiency and good separation performance ("Basic Gas Chromatography", Second Edition, by Harold M.McNair and James M.Miller. John Wiley & Sons, Inc.). Due to the small capacity of the capillary column itself, the split/splitless injector is the most versatile injector for GC, GC-IMS or GC-MS.
  • the heating temperature of the gasification chamber is uneven.
  • the temperature difference between the center and the ends of the gasification chamber is large, which causes the sample to be heterogeneously vaporized or the components with different boiling points are vaporized and reach below gasification. Condensation occurs when the position of the point is reached.
  • the carrier gas is not preheated, and there is a temperature gradient change in the carrier gas entering the gasification chamber. This will result in different vaporization rates for different components of the sample.
  • the time from gasification to gasification into the column is very short (in seconds). Thus, since the split flow is much greater than the flow in the column, the less gasified component may split some of the sample more than the fully vaporized component.
  • the diffusion rate of different sample components in the carrier gas is different, and the diffusion rate is directly proportional to the temperature, so it is an important measure to eliminate the dissociation discrimination. Therefore, the temperature of the injector must be strictly controlled to be slightly higher than the temperature of the oven, which on the one hand increases the production cost of the injector and on the other hand is not conducive to the analysis of thermally unstable substances.
  • Patent CN1352390A discloses an injector which solves the problem of preheating of a carrier gas.
  • the injector is provided with a carrier gas preheating chamber, a carrier gas inlet and a carrier gas preheating chamber between the split flow passage and the gasification chamber.
  • the lower part communicates with the upper part of the carrier gas preheating chamber communicating with the gasification chamber.
  • the carrier gas moves upward from the inlet into the carrier gas preheating chamber and then moves upwards, and then enters the gasification chamber from the top to contact the sample to instantaneously vaporize.
  • the patent CN203216933U discloses a sampler for a non-volatile substance, comprising a casing and a diffusion pipe inside the casing, and the casing end cover is provided with a communication connected with the diffusion pipe.
  • the gas passage, the carrier gas passage extends to the inside of the diffuser tube and is at a certain distance from the bottom of the diffuser tube.
  • an electric heating rod extending from the bottom of the outer casing to the end cover is evenly arranged around the outer casing of the injector, thereby uniformly heating the upper and lower portions of the injector.
  • an object of the present invention is to provide a general-purpose injector which has a simple structure, rapid continuous injection, and good detection effect on a wide boiling range sample.
  • the inventors have realised that uniform temperature in the gasification chamber, preheating of the carrier gas, and adequate mixing of the sample can eliminate shunt discrimination.
  • an injector includes: an injector housing, a gasification chamber located within the injector housing;
  • the top of the injector housing is provided with an injector housing opening and a detachable end cap, the end cap sealing the injector housing opening;
  • a gasification chamber opening is disposed at the top of the gasification chamber, and a passage for gas to pass is left between the gasification chamber opening and the end cover;
  • the gasification outdoor circumference is further provided with a carrier gas passage, a septum purging passage and a coolant passage in the injector housing, the carrier gas passage, the coolant passage, and the septum purging passage a top portion of the carrier gas passage opening portion and the septum purging passage opening portion are respectively connected to the top opening of the gasification chamber;
  • the carrier gas passage is disposed a carrier gas inlet, the septum purging channel being provided with a septum purging channel outlet, the coolant passage being provided with a coolant inlet and a coolant outlet;
  • a capillary column is disposed at a bottom of the gasification chamber, one end of the capillary column extends into the gasification chamber, and the other end of the capillary column protrudes outside the sampler;
  • a heater is also disposed within the injector housing.
  • the gasification chamber is fixed with a liner, and the liner is open at both ends.
  • a top opening of the liner is in communication with the top opening of the gasification chamber, the bottom opening of the liner is not in contact with the bottom of the gasification chamber;
  • a circumferential seal outer edge of the liner and an inner edge of the gasification chamber opening are provided with a ring-shaped sealing fixture; the liner passes through the ring-shaped sealing device to fix the outer edge of the top opening of the liner Gasification room.
  • the sealing ring is a high temperature resistant rubber material or a graphite material.
  • the sampler further comprises a split channel, the split channel is provided with a split channel opening and a split channel outlet, the split channel opening being disposed on the side wall of the gasification chamber and the gasification chamber Connected.
  • the cooling passage is also in communication with the gasification chamber.
  • a sealing spacer is further disposed between the injector housing opening and the detachable end cover, and a gas is passed between the sealing spacer and the opening of the gasification chamber. aisle.
  • the carrier gas inlet, the septum purge passage outlet, the coolant inlet and the coolant outlet are both disposed at the bottom of the injector housing.
  • the inlet of the carrier gas channel, the outlet of the septum purging channel, and the inlet and outlet of the coolant channel are connected to the gas flow control valve.
  • the heater is evenly distributed on the outer wall of the injector housing, and further includes a temperature control unit controlled by the temperature control unit to achieve single point heating or temperature programmed heating.
  • the inlet of the carrier gas channel, the outlet of the septum purging channel, the inlet and the outlet of the coolant channel are connected to a gas flow control valve, and the temperature control unit is further connected to the gas flow control valve Connecting; the temperature control unit and the airflow control valve cooperate to achieve cooling of the injector.
  • the injector housing is made of a metal material, and the center of the end cap is coaxial with the center of the gasification chamber.
  • the capillary column is disposed at a center position of the bottom of the gasification chamber.
  • the coolant passage serves to cool the gasification chamber.
  • a refrigerant with a large heat capacity including liquid nitrogen, liquid CO 2 or water, or a large air stream of nitrogen or air can be used for heat dissipation.
  • the coolant passage and the gasification chamber are arranged to communicate, and the coolant enters the gasification chamber from the cooling passage, and flows out along the branch passage, the septum purging passage and the refrigerant outlet passage, and on the other hand
  • the function of cooling and cooling also plays the role of purging and purifying the gasification chamber.
  • the coolant passages recirculate on the injector housing and do not communicate with the gasification chamber.
  • the heater is evenly distributed on the outer wall of the injector housing to ensure uniform heating of the injector.
  • the injector is equivalent to a temperature-programmed injector that combines split/splitless and cold-column injections. It fully exploits the advantages of various injection methods, overcomes the above shortcomings, and is more practical and flexible. better.
  • a gas chromatograph comprising the injector of any of the above embodiments.
  • a gas chromatography-ion mobility spectrometer is also disclosed, the combined spectrometer comprising the injector of any of the above embodiments.
  • a gas chromatography-mass spectrometry spectrometer comprising the injector of any of the above embodiments.
  • the injector, gas chromatograph and combined spectrometer provided by the invention have the following deliberate technical effects:
  • a plurality of passages are arranged along the length of the gasification chamber, one of which serves as a carrier gas passage, which can preheat the carrier gas before entering the gasification chamber, and has sufficient heat capacity to ensure that the sample is quickly and evenly after entering the gasification chamber. Gasification, and then into the capillary column, thereby reducing the shunt discrimination, resulting in better detection results.
  • the other multiple channels are also designed as coolant channels, septum purge channels, and split channels, respectively, on the injector housing.
  • the advantage of this design is that on the one hand, through multiple access The channel reduces the heat capacity of the metal casing, and on the other hand, the coolant and the carrier gas flowing on the injector casing can take away the heat of the gasification chamber, and cool and cool the gasification chamber. It can ensure rapid temperature rise and rapid temperature drop, which is beneficial for rapid continuous injection when handling a large number of inspection tasks.
  • the heater of the injector of the invention is evenly distributed on the injector housing, so that the design has the advantages of uniform heating of the injector housing and rapid temperature rise to ensure uniform gasification of the sample. Reduce diversion discrimination.
  • the coordinated control of the cooling channel, multi-channel airflow control valve and thermostat makes the injector have a temperature programming function. Because the volatility of different samples is different, for some substances that are volatile or easy to crack at high temperature, set low temperature to volatilize first. For difficult samples, heat them to high temperature to promote volatilization. The optimum amount of volatilization was obtained for each sample component. For the detection of wide boiling range samples, temperature-programmed injections can be used, which effectively protect substances that are susceptible to thermal cracking or coking. The advantage of this design is that the injector can be used as a universal injector, which can effectively deal with wide boiling range sample analysis and eliminate shunt discrimination.
  • FIG. 1 is a schematic structural view of a sampler according to an embodiment of the present invention.
  • the present invention provides an injector comprising: an injector housing, a gasification chamber located in the injector housing; an injector housing opening at the top of the injector housing and The end cap is removed, the end cap seals the opening of the injector housing; the top of the gasification chamber is provided with a gasification chamber opening, and a passage for gas to pass between the opening of the gasification chamber and the end cover; the gasification outdoor circumference is injected
  • the carrier housing is further provided with a carrier gas passage, a septum purging passage and a coolant passage, and the carrier gas passage, the coolant passage and the top of the septum purging passage are respectively provided with a carrier gas passage opening portion and a septum purging passage opening portion.
  • the opening of the carrier gas passage and the opening of the septum purging passage are all communicated with the top opening of the gasification chamber;
  • the carrier gas passage is provided with a carrier gas inlet, and the septum purging passage is provided with a septum purging passage outlet, and the coolant passage is arranged
  • a capillary column is arranged at the bottom of the gasification chamber, one end of the capillary column extends into the gasification chamber, and the other end of the capillary column protrudes outside the injector;
  • a heater is also disposed in the injector housing.
  • the injector port of the injector is located at the top of the injector and is comprised of an end cap 1 and a sealing septum 2.
  • the end cap 1 is sleeved on the injector housing 3 by a threaded sleeve, which is convenient to disassemble, and is convenient for inserting a disposable sample tube during solid injection.
  • a passage for gas to pass is left between the sealing septum and the opening of the gasification chamber.
  • the gasification chamber 5 is located inside the injector housing, and a sealing septum 2 is disposed between the vaporization chamber 5 and the end cap 1 to seal the vaporization chamber from the injection port, and the center of the end cap is coaxial with the center of the gasification chamber.
  • quartz or glass liner can be placed in the gasification chamber, and solid sample can be placed in a disposable sample tube with solid content adsorbed.
  • the liner is open at both ends, the top opening of the liner is connected with the top opening of the gasification chamber, and the bottom opening of the liner is not in contact with the bottom of the gasification chamber; a gap between the outer surface of the liner and the surface of the gasification chamber is left;
  • the outer edge of the top opening of the tube and the inner edge of the opening of the gasification chamber are provided with a ring-shaped sealing and fixing device; the liner passes through the ring-shaped sealing device to fix the outer edge of the top opening of the liner in the gasification chamber.
  • the liner or disposable sample tube 6 is tightly sealed by the O-ring 4 and supported in the middle of the gasification chamber 5.
  • a capillary column 19 is provided at a center of the bottom of the gasification chamber 5.
  • the capillary column 19 is secured to the bottom of the gasification chamber by a gasket and a convenient loading and unloading nut.
  • a plurality of passages are uniformly disposed inside the injector housing 3 along the circumference of the gasification chamber, and the position of the passage can be seen in conjunction with the cross section 22 of the injector housing, and all the outlets and inlets of the passage are designed. At the bottom of the injector housing and all along the length of the gasification chamber to the upper end of the injector.
  • a plurality of channels can be divided into a carrier gas channel 7, a septum purge channel 8, a split channel 9, and a coolant channel 10 according to functions.
  • the carrier gas inlet 14 and the gas source inlet 12 are connected by a valve, and the carrier gas flows upward along the carrier channel along the carrier gas inlet 14 at the carrier gas inlet 8 at the bottom of the injector housing, and is preheated by the inlet of the gasification chamber 5 Entering the gasification chamber;
  • the septum purge passage 8 communicates with the top opening of the gasification chamber and is led out along the length of the injector housing by the septum purge outlet 16 at the bottom of the injector housing;
  • the split passage 9 is The bottom of the liner enters the gap between the gasification chamber 5 and the liner 6 into the top of the gasification chamber and exits the gasification chamber 5 near the lower portion of the seal ring 4 and flows out from the bottom portion along the split passage on the injector housing 15 export.
  • the coolant passages 10 are evenly distributed around the gasification chamber 5.
  • the coolant passage is in communication with the gasification chamber for the purpose of rapid cooling. Coolant can enter the coolant passage 10 from the coolant inlet 11.
  • the coolant passage 10 may be in communication with the gasification chamber and the coolant and the carrier gas simultaneously enter the gasification chamber to cool the gasification chamber, and the coolant may be along the septum purge passage 8
  • the flow dividing passage 9 and the coolant passage 10 flow out from the coolant outlet 17, and the discharge chamber cools down to face the gasification chamber, and functions as a purge and purification on the one hand.
  • the coolant passage 10 is a separate return passage that does not communicate with the gasification chamber 5 and only serves to cool down.
  • the operating state and operating timing of each channel are regulated by a multi-channel airflow control valve 13.
  • the total air outlet 18 is connected to the outlets of the plurality of passages through a multi-channel air flow control valve 13 for exhausting gas.
  • the heater 20 is evenly distributed around the injector housing to ensure uniform heating up and down of the injector housing.
  • the heater 20 is controlled by the temperature control unit 21 to achieve single point or temperature programmed heating.
  • the temperature control unit 21 and the multi-channel air flow control valve 13 cooperate to achieve the temperature drop of the injector. In the detection of wide boiling range samples, it can turn on the temperature-programming function injection, which can effectively avoid cracking or coking at low boiling point, and can overcome the shunt discrimination and ensure the accuracy of the test results.
  • the sealing ring is a high temperature resistant rubber material or a graphite material; the heater is a resistance wire or a mica plate.
  • a gas chromatograph a gas chromatograph
  • the injector of any of the above embodiments is included.
  • gas chromatography-ion mobility spectrometer spectrometer comprising the injector of any of the above embodiments.
  • gas chromatography-mass spectrometry spectrometer comprising the injector of any of the above embodiments.
  • the injector, gas chromatograph and combined spectrometer have the following deliberate technical effects: 1.
  • Several channels are arranged along the length of the gasification chamber, one of which serves as a carrier gas channel, which can be carried The gas is preheated before entering the gasification chamber, and has sufficient heat capacity to ensure that the sample enters the gasification chamber and is rapidly and evenly vaporized, and then enters the capillary column, thereby reducing the shunt discrimination, thereby obtaining better detection results.
  • the other multiple channels are also designed as coolant channels, septum purge channels, and split channels on the injector housing. The advantage of this design is that on the one hand, the heat capacity of the metal casing is reduced by multiple channels.
  • the coolant and carrier gas flowing on the injector housing can take away the heat of the gasification chamber and cool and cool the gasification chamber.
  • This design can ensure rapid temperature rise and rapid cooling. It is beneficial for rapid continuous injection when dealing with a large number of inspection tasks.
  • the heater of the injector of the invention is evenly distributed on the injector housing, so that the design has the advantages of uniform heating of the injector housing and rapid temperature rise to ensure uniform gasification of the sample and reduce shunting. Discrimination. 4.
  • the coordinated control of the cooling channel, multi-channel airflow control valve and thermostat makes the injector have a temperature programming function. Because the volatility of different samples is different, for some substances that are volatile or easy to crack at high temperature, set low temperature to volatilize first.
  • the injector, gas chromatograph and combined spectrometer have the following deliberate technical effects: 1.
  • Several channels are arranged along the length of the gasification chamber, one of which serves as a carrier gas channel, which can be carried The gas is preheated before entering the gasification chamber, and has sufficient heat capacity to ensure that the sample enters the gasification chamber and is rapidly and evenly vaporized, and then enters the capillary column, thereby reducing the shunt discrimination, thereby obtaining better detection results.
  • the other multiple channels are also designed as coolant channels, septum purge channels, and split channels on the injector housing. The advantage of this design is that on the one hand, the heat capacity of the metal casing is reduced by multiple channels.
  • the coolant and carrier gas flowing on the injector housing can take away the heat of the gasification chamber and cool and cool the gasification chamber.
  • This design can ensure rapid temperature rise and rapid cooling. It is beneficial for rapid continuous injection when dealing with a large number of inspection tasks.
  • the heater of the injector of the invention is evenly distributed on the injector housing, so that the design has the advantages of uniform heating of the injector housing and rapid temperature rise to ensure uniform gasification of the sample and reduce shunting. Discrimination. 4.
  • the coordinated control of the cooling channel, multi-channel airflow control valve and thermostat makes the injector have a temperature programming function. Because the volatility of different samples is different, for some substances that are volatile or easy to crack at high temperature, set low temperature to volatilize first.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种通用型进样器、包括该进样器的气相色谱仪和联用谱仪,该进样器包括:进样端口机构、进样器壳体(3)、气化室(5)、加热器(20)、温控单元(21)、载气通道(7)、隔垫吹扫通道(8)、分流通道(9)、冷却剂通道(10)、多通道气流控制阀(13)。该通用型进样器相当于一个把分流/不分流和冷柱头进样结合在一起的程序升温进样器,充分发挥了各种进样方式的长处,实用性更强,灵活性更好。

Description

通用型进样器、气相色谱仪和联用谱仪 技术领域
本发明属于分析检测领域,涉及一种气相色谱或气相色谱-离子迁移谱联用谱仪进样装置,尤其涉及一种用于毛细柱的分流/不分流程序升温进样器。
背景技术
采用气相色谱(GC)、GC与离子迁移谱(IMS)/质谱(MS)联用谱仪对样品进行分析过程中,样品首先要通过进样器。进样器用于在第一位置将感兴趣的样品成分气化并与载气混合后快速、准确、定量地加到GC柱头上。自Perkin Elmer生产第一支毛细管柱以来,由于其柱效高,分离性能好的优势,今天已经有超过90%GC分析都是由毛细管柱实现的(“Basic Gas Chromatography”,Second Edition,by Harold M.McNair and James M.Miller.
Figure PCTCN2014093879-appb-000001
John Wiley & Sons,Inc.)。由于毛细管柱本身积容量小的特性,使得分流/不分流进样器成为GC、GC-IMS或GC-MS最通用的进样器。
目前已有成熟的分流/不分流进样器。然而由于不同样品组分的实际分流比不同,在一定的设定分离比下,这就会造成进入色谱柱(毛细管柱)的组成不同于原来的样品组成,带来分流歧视(对于宽沸程的样品的分流歧视尤为严重),从而影响分析准确度,导致定量及重复性较差。
造成分流歧视主要有三个方面:
一是气化室的加热温度分部不均匀,在某些情况下气化室中心和两端的温差很大,这样造成样品不均匀气化或沸点不同的组分气化后到达低于气化点的位置时产生凝结。
二是载气未经预热,载气进入气化室会有一个温度梯度的变化, 这样会造成样品不同组分气化速度不同。从气化室气化到进入色谱柱的时间很短(以秒计)。这样,由于分流流量最远大于柱内流量,因此气化不太完全的组分就可能比完全气化的组分多分流掉一些样品。
三是不同样品组分在载气中的扩散速度不同,而扩散速度与温度是成正比的,所以尽量使样品快速气化是消除分流歧视的重要措施。因此进样器温度必须严格控制为比柱箱温度略高,这样,一方面提高了进样器的制作成本,一方面也不利于对热不稳定物质的分析。
专利CN1352390A公开了一种进样器,解决了载气的预热问题,该进样器在分流导出通道与气化室之间设有载气预热室,载气入口与载气预热室下部相通,载气预热室的上部与气化室连通。载气从入口进入载气预热室预热后向上运动,然后从顶端进入气化室与样品接触使之瞬间气化。这种进样口虽然解决了载气预热问题和分流歧视的问题,然而,由于其预热室与气化室相连通,这相当于增加了气化室的体积,即增加了柱前死体积。这样,气化后的样品混合气会反扩散到预热室,将会导致保留时间增加以及峰展宽。
为了克服专利CN1352390A中存在的一些问题,专利CN203216933U公开了一种针对难挥发性物质的进样器,包括外壳和所述外壳内部的扩散管,外壳端盖上设有与扩散管相连通的载气通道,载气通道延伸至扩散管内部并距扩散管底部一定距离,这样设计的好处在于,由于样品放置在扩散管的底部,样品在挥发时其表面的挥发浓度最高,将载气通道延伸至样品表面上方,这样载气可以把样品表面的挥发气体全部带走。为了使进样器上下部均匀加热,在该进样器的外壳四周均匀布置了从外壳底部延伸至端盖的电热棒,实现了对进样器上下部均匀加热。该专利解决了样品的不均匀气化问题,然而该进样器仅有不分流模式。由于不分流进样模式操作条件较为复杂,对操作技术要求高,在实际工作中应用远没有分流进样普遍,只是在分流进样不能满足分析要求(主要是灵敏度要求)时才考虑不分 流进样。
此外,在检测任务繁多时需要连续进样,且相邻两次样品的沸程有明显差异情况下,需要对进样器的温度重新设定,尽管不同类型的分流/不分流进样器种类较多,而快速降温的通用进样器并不多。为了实现快速测试,因此需要给通用进样器增加快速降温设计及温控设计。
发明内容
为了解决上述现有技术中存在的问题,本发明的目的是提供一种结构简单、快速连续进样,对宽沸程样品检测效果好的通用型进样器。发明人意识到,气化室均匀的温度、载气的预热以及样品的充分混合可以消除分流歧视。
为了达到上述目的,根据本发明的一个方面,提供了一种进样器。该进样器包括:进样器壳体、位于所述进样器壳体内的气化室;
所述进样器壳体顶部设置有进样器壳体开口和可拆卸的端盖,所述端盖密封所述进样器壳体开口;
所述气化室顶部设置有气化室开口,所述气化室开口与所述端盖之间留有供气体通过的通道;
所述气化室外圆周在所述进样器壳体内还设置有载气通道、隔垫吹扫通道和冷却剂通道,所述载气通道、所述冷却剂通道、所述隔垫吹扫通道顶部分别设置有载气通道开口部、隔垫吹扫通道开口部,所述载气通道开口部、隔垫吹扫通道开口部均与所述气化室顶部开口连通;所述载气通道设置有载气入口,所述隔垫吹扫通道设置有隔垫吹扫通道出口,所述冷却剂通道设置有冷却剂入口和冷却剂出口;
所述气化室底部设置有毛细管柱、所述毛细管柱一端伸入所述气化室内、所述毛细管柱另一端伸出所述进样器外部;
所述进样器壳体内还设置有加热器。
其中较优地,所述气化室内固定有衬管,所述衬管两端开口,所 述衬管的顶部开口与所述气化室顶部开口连通,所述衬管底部开口与所述气化室底部不接触;
所述衬管外表面与所述气化室内表面之间留有气体通过的间隙;
所述衬管顶部开口外缘与所述气化室开口内缘设置有圈形密封固定装置;所述衬管穿过所述圈形密封装置使所述衬管顶部开口外缘固定在所述气化室内。
其中较优地,所述密封圈为耐高温橡胶材料或石墨材料。
其中较优地,所述进样器还包括分流通道,所述分流通道设置有分流通道开口和分流通道出口,所述分流通道开口设置在所述气化室侧壁上与所述气化室连通。
其中较优地,所述冷却通道还与所述气化室连通。
其中较优地,所述进样器壳体开口和所述可拆卸的端盖之间还设置有密封隔垫,所述密封隔垫与所述气化室开口之间留有供气体通过的通道。
其中较优地,所述载气入口、所述隔垫吹扫通道出口、所述冷却剂入口和冷却剂出口均设置在所述进样器壳体的底部。
其中较优地,所述载气通道的入口、所述隔垫吹扫通道的出口、所述冷却剂通道的入口和出口均连接气流控制阀。
其中较优地,所述加热器均匀分布在所述进样器壳体外壁,还包括温控单元,所述加热器由所述温控单元控制以实现单点加热或程序升温加热。
其中较优地,所述载气通道的入口、所述隔垫吹扫通道的出口、所述冷却剂通道的入口和出口均连接气流控制阀,所述温控单元还与所述气流控制阀连接;所述温控单元和所述气流控制阀协同作用实现进样器的降温。
其中较优地,所述进样器壳体为金属材质,所述端盖中心与所述气化室中心同轴。
其中较优地,所述毛细管柱设置在所述气化室底部的正中心位置。
述冷却剂通道起到为气化室制冷降温的作用,降温时可以采用热容量大的制冷剂,包括液氮,液态CO2或者水,也可直接用大气流的氮气或空气吹扫散热。当使用液氮或者氮气降温时,冷却剂通道和气化室设置为相通,冷却剂由冷却通道进入气化室,并沿分流通道、隔垫吹扫通道和制冷剂出口通道流出,一方面起到冷却降温的作用,一方面还起着吹扫净化气化室的功能。当使用非惰性的制冷剂降温时,冷却剂通道在所述进样器壳体上回流,不和气化室相通。所述加热器均匀分布在所述进样器壳体外壁,保证进样器上下受热均匀。
该进样器相当于一个把分流/不分流和冷柱头进样结合在一起的程序升温进样器,充分发挥了各种进样方式的长处,克服了上述缺点,实用性更强,灵活性更好。
根据本发明的另一方面,还公开了一种气相色谱仪,所述气相色谱仪包括以上实施例中任一项所述的进样器。
根据本发明的又一方面,还公开了一种气相色谱-离子迁移谱联用谱仪,所述联用谱仪包括以上实施例中任一项所述的进样器。
根据本发明的再一方面,还公开了一种气相色谱-质谱联用谱仪,所述联用谱仪包括以上实施例中任一项所述的进样器。
本发明提供的进样器、气相色谱仪和联用谱仪具有以下有意的技术效果:
1、沿所述气化室的长度方向设有若干通道,其中一个作为载气通道,可使载气进入气化室之前预热,有足够的热容量,保障样品进入气化室后被快速均匀气化,然后进入毛细管柱,从而减小分流歧视,从而得到较佳的检测结果。
2、其它多个通道分别作为冷却剂通道、隔垫吹扫通道、分流通道的也设计在进样器壳体上,这种设计的好处在于一方面通过多打通 道减小金属壳体热容量,另一方面在所述进样器壳体上流动的冷却剂和载气能把气化室的热量带走,对气化室起到冷却降温作用,这种设计既能保证快速升温也可实现快速降温,有益于处理大量检测任务时的快速连续进样。
3、本发明进样器的加热器均匀分部在进样器壳体上,这样设计的好处在于能实现对所述进样器壳体加热均匀,又能实现快速升温保证样品气化均匀,减少分流歧视。
4、冷却通道、多通道气流控制阀和温控器的配合控制使进样器具有程序升温功能。由于不同样品的挥发性各不相同,对于一些易挥发,或在高温下易裂解的物质就要设定低温使其先挥发,对于难挥发的样品就要对其进行加热到高温促进挥发,以期各样品成分得到最佳的挥发量。对于宽沸程样品的检测可以使用程序升温进样,这能有效保护易热裂解或焦化的物质。这样设计的好处在于可将进样器作为通用型进样器使用,能有效地对付宽沸程样品分析,消除分流歧视。
附图说明
图1是根据本发明一实施例的进样器的结构示意图;
图1附图标记的符号表示为:1-端盖,2-密封隔垫,3-进样器壳体,4-密封圈,5-气化室,6-衬管,7-载气通道,8-隔垫吹扫气通道,9-分流通道,10-冷却剂通道,11-冷却剂入口,12-气源入口,13-多通道气流控制阀,14-载气入口,15-分流出口,16-隔垫吹扫气出口,17-冷却剂出口,18-总出气口,19-毛细管柱,20-加热器,21-温控器,22-进样器壳体横截面。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
如图1所示,本发明提供一种进样器,包括:进样器壳体、位于进样器壳体内的气化室;进样器壳体顶部设置有进样器壳体开口和可 拆卸的端盖,端盖密封进样器壳体开口;气化室顶部设置有气化室开口,气化室开口与端盖之间留有供气体通过的通道;气化室外圆周在进样器壳体内还设置有载气通道、隔垫吹扫通道和冷却剂通道,载气通道、冷却剂通道、隔垫吹扫通道顶部分别设置有载气通道开口部、隔垫吹扫通道开口部,载气通道开口部、隔垫吹扫通道开口部均与气化室顶部开口连通;载气通道设置有载气入口,隔垫吹扫通道设置有隔垫吹扫通道出口,冷却剂通道设置有冷却剂入口和冷却剂出口;气化室底部设置有毛细管柱、毛细管柱一端伸入气化室内、毛细管柱另一端伸出进样器外部;进样器壳体内还设置有加热器。下面对本发明提供的进样器展开详细说明。
参见图1,根据本发明的一个实施例,进样器的进样端口机构位于进样器的顶部,由端盖1和密封隔垫2组成。端盖1通过螺纹扣套在进样器壳体3上,拆卸方便,便于固体进样时置入一次性样品管。密封隔垫与气化室开口之间留有供气体通过的通道。
气化室5位于进样器壳体的内部,气化室5与端盖1之间有密封隔垫2将气化室与进样端口密封,端盖中心与气化室中心同轴。气体或液态样品进样时气化室内可放置石英或玻璃衬管,固态样品进样时可放置吸附有固体成分的一次性样品管。衬管两端开口,衬管的顶部开口与气化室顶部开口连通,衬管底部开口与气化室底部不接触;衬管外表面与气化室内表面之间留有气体通过的间隙;衬管顶部开口外缘与气化室开口内缘设置有圈形密封固定装置;衬管穿过圈形密封装置使衬管顶部开口外缘固定在气化室内。具体地,衬管或一次性样品管6由O型密封圈4套紧密封并支撑置于气化室5的中间。
在气化室5底部的正中心位置设有毛细管柱19。毛细管柱19通过密封垫和方便装卸的螺母固定在气化室底部。
在进样器壳体3内部沿气化室外圆周均匀设置有若干通道,通道的位置可结合进样器壳体横切面22看到,通道的所有出、入口均设计 在进样器壳体的底部并均沿气化室长度方向到达进样器的上端。若干通道按功能可分为载气通道7、隔垫吹扫通道8、分流通道9、冷却剂通道10。其中,载气入口14和气源入口12通过阀相连,载气沿载气通道8从进样器壳体底部的载气入口14沿载体通道向上流动被预热后由气化室5的入口进入气化室;隔垫吹扫通道8与气化室的顶部开口连通,并沿进样器壳体的长度方向由进样器壳体底部的隔垫吹扫出口16导出;分流通道9由衬管底部进入气化室5和衬管6之间的间隙进入到气化室的顶部并在密封圈4的下方附近出气化室5并沿进样器壳体上的分流通道从底部分流出口15导出。冷却剂通道10均匀分布在气化室5的周围。为了实现快速降温的目的,冷却剂通道与气化室连通。冷却剂可从冷却剂入口11进入冷却剂通道10。当使用液氮或氮气等惰性物质制冷降温时,冷却剂通道10可与气化室连通并且上述冷却剂与载气同时进入气化室冷却气化室,冷却剂可沿隔垫吹扫通道8、分流通道9和冷却剂通道10从冷却剂出口17流出,一放面对气化室起到冷却降温的作用,一方面起到吹扫净化的功能。当使用其他非惰性冷却物质时,冷却剂通道10为单独的回流通道,不与气化室5连通,仅起降温的作用。各通道的工作状态和工作时序由多通道气流控制阀13调节实现。总出气口18通过多通道气流控制阀13与上述多个通道的出口相连接,用于排出气体。
加热器20均匀分布在进样器壳体的周围,保证进样器壳体上下受热均匀。加热器20由温控单元21控制实现单点或程序升温加热。温控单元21和多通道气流控制阀13协同作用实现进样器的降温。在检测宽沸程样品时可以开启程序升温功能进样,能有效避免低沸点位置的裂解或焦化,又能克服分流歧视,保证检测结果的准确性。
优选地,密封圈为耐高温橡胶材料或石墨材料;加热器为电阻丝或云母片。
根据本发明的另一方面,还公开了一种气相色谱仪,气相色谱仪 包括以上实施例中任一项的进样器。
根据本发明的又一方面,还公开了一种气相色谱-离子迁移谱联用谱仪,联用谱仪包括以上实施例中任一项的进样器。
根据本发明的再一方面,还公开了一种气相色谱-质谱联用谱仪,联用谱仪包括以上实施例中任一项的进样器。
上述具体实施方式只是对本发明技术方案的解释,本发明并不仅仅局限于上述实施例,凡是以及上述原理及在本发明基础上的改进代替都应在本发明的保护范围之内。
综上,本发明提供的进样器、气相色谱仪和联用谱仪具有以下有意的技术效果:1、沿气化室的长度方向设有若干通道,其中一个作为载气通道,可使载气进入气化室之前预热,有足够的热容量,保障样品进入气化室后被快速均匀气化,然后进入毛细管柱,从而减小分流歧视,从而得到较佳的检测结果。2、其它多个通道分别作为冷却剂通道、隔垫吹扫通道、分流通道的也设计在进样器壳体上,这种设计的好处在于一方面通过多打通道减小金属壳体热容量,另一方面在进样器壳体上流动的冷却剂和载气能把气化室的热量带走,对气化室起到冷却降温作用,这种设计既能保证快速升温也可实现快速降温,有益于处理大量检测任务时的快速连续进样。3、本发明进样器的加热器均匀分部在进样器壳体上,这样设计的好处在于能实现对进样器壳体加热均匀,又能实现快速升温保证样品气化均匀,减少分流歧视。4、冷却通道、多通道气流控制阀和温控器的配合控制使进样器具有程序升温功能。由于不同样品的挥发性各不相同,对于一些易挥发,或在高温下易裂解的物质就要设定低温使其先挥发,对于难挥发的样品就要对其进行加热到高温促进挥发,以期各样品成分得到最佳的挥发量。对于宽沸程样品的检测可以使用程序升温进样,这能有效保护易热裂解或焦化的物质。这样设计的好处在于可将进样器作为进样器使用,能有效地对付宽沸程样品分析,消除分流歧视。
工业实用性
综上,本发明提供的进样器、气相色谱仪和联用谱仪具有以下有意的技术效果:1、沿气化室的长度方向设有若干通道,其中一个作为载气通道,可使载气进入气化室之前预热,有足够的热容量,保障样品进入气化室后被快速均匀气化,然后进入毛细管柱,从而减小分流歧视,从而得到较佳的检测结果。2、其它多个通道分别作为冷却剂通道、隔垫吹扫通道、分流通道的也设计在进样器壳体上,这种设计的好处在于一方面通过多打通道减小金属壳体热容量,另一方面在进样器壳体上流动的冷却剂和载气能把气化室的热量带走,对气化室起到冷却降温作用,这种设计既能保证快速升温也可实现快速降温,有益于处理大量检测任务时的快速连续进样。3、本发明进样器的加热器均匀分部在进样器壳体上,这样设计的好处在于能实现对进样器壳体加热均匀,又能实现快速升温保证样品气化均匀,减少分流歧视。4、冷却通道、多通道气流控制阀和温控器的配合控制使进样器具有程序升温功能。由于不同样品的挥发性各不相同,对于一些易挥发,或在高温下易裂解的物质就要设定低温使其先挥发,对于难挥发的样品就要对其进行加热到高温促进挥发,以期各样品成分得到最佳的挥发量。对于宽沸程样品的检测可以使用程序升温进样,这能有效保护易热裂解或焦化的物质。这样设计的好处在于可将进样器作为通用型进样器使用,能有效地对付宽沸程样品分析,消除分流歧视。

Claims (15)

  1. 一种进样器,其特征在于,包括:进样器壳体、位于所述进样器壳体内的气化室;
    所述进样器壳体顶部设置有进样器壳体开口和可拆卸的端盖,所述端盖密封所述进样器壳体开口;
    所述气化室顶部设置有气化室开口,所述气化室开口与所述端盖之间留有供气体通过的通道;
    所述气化室外圆周在所述进样器壳体内还设置有载气通道、隔垫吹扫通道和冷却剂通道,所述载气通道、所述冷却剂通道、所述隔垫吹扫通道顶部分别设置有载气通道开口部、隔垫吹扫通道开口部,所述载气通道开口部、隔垫吹扫通道开口部均与所述气化室顶部开口连通;所述载气通道设置有载气入口,所述隔垫吹扫通道设置有隔垫吹扫通道出口,所述冷却剂通道设置有冷却剂入口和冷却剂出口;
    所述气化室底部设置有毛细管柱、所述毛细管柱一端伸入所述气化室内、所述毛细管柱另一端伸出所述进样器外部;
    所述进样器壳体内还设置有加热器。
  2. 如权利要求1所述的进样器,其特征在于,所述气化室内固定有衬管,所述衬管两端开口,所述衬管的顶部开口与所述气化室顶部开口连通,所述衬管底部开口与所述气化室底部不接触;
    所述衬管外表面与所述气化室内表面之间留有气体通过的间隙;
    所述衬管顶部开口外缘与所述气化室开口内缘设置有圈形密封固定装置;所述衬管穿过所述圈形密封装置使所述衬管顶部开口外缘固定在所述气化室内。
  3. 如权利要求2所述的进样器,其特征在于,所述密封圈为耐高温橡胶材料或石墨材料。
  4. 如权利要求1-3任意一项所述的进样器,其特征在于,所述进样器还包括分流通道,所述分流通道设置有分流通道开口和分流通 道出口,所述分流通道开口设置在所述气化室侧壁上与所述气化室连通。
  5. 如权利要求1所述的进样器,其特征在于,所述冷却通道还与所述气化室连通。
  6. 如权利要求1所述的进样器,其特征在于,所述进样器壳体开口和所述可拆卸的端盖之间还设置有密封隔垫,所述密封隔垫与所述气化室开口之间留有供气体通过的通道。
  7. 如权利要求1所述的进样器,其特征在于,所述载气入口、所述隔垫吹扫通道出口、所述冷却剂入口和冷却剂出口均设置在所述进样器壳体的底部。
  8. 如权利要求1或7所述的进样器,其特征在于,所述载气通道的入口、所述隔垫吹扫通道的出口、所述冷却剂通道的入口和出口均连接气流控制阀。
  9. 如权利要求1所述的进样器,其特征在于,所述加热器均匀分布在所述进样器壳体外壁,还包括温控单元,所述加热器由所述温控单元控制以实现单点加热或程序升温加热。
  10. 如权利要求9所述的进样器,其特征在于,所述载气通道的入口、所述隔垫吹扫通道的出口、所述冷却剂通道的入口和出口均连接气流控制阀,所述温控单元还与所述气流控制阀连接;所述温控单元和所述气流控制阀协同作用实现进样器的降温。
  11. 如权利要求1所述的进样器,其特征在于,所述进样器壳体为金属材质,所述端盖中心与所述气化室中心同轴。
  12. 如权利要求1所述的进样器,其特征在于,所述毛细管柱设置在所述气化室底部的正中心位置。
  13. 一种气相色谱仪,所述气相色谱仪包括根据权利要求1-12中任一项所述的进样器。
  14. 一种联用谱仪,所述联用谱仪是气相色谱-离子迁移谱联用谱 仪,并且所述联用谱仪包括根据权利要求1-12中任一项所述的进样器。
  15. 一种联用谱仪,所述联用谱仪是气相色谱-质谱联用谱仪,并且所述联用谱仪包括根据权利要求1-12中任一项所述的进样器。
PCT/CN2014/093879 2013-12-30 2014-12-15 通用型进样器、气相色谱仪和联用谱仪 WO2015101170A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310746569.8A CN104749389B (zh) 2013-12-30 2013-12-30 通用型进样器、气相色谱仪和联用谱仪
CN201310746569.8 2013-12-30

Publications (1)

Publication Number Publication Date
WO2015101170A1 true WO2015101170A1 (zh) 2015-07-09

Family

ID=52144496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093879 WO2015101170A1 (zh) 2013-12-30 2014-12-15 通用型进样器、气相色谱仪和联用谱仪

Country Status (4)

Country Link
US (1) US9618484B2 (zh)
EP (1) EP2889615B1 (zh)
CN (1) CN104749389B (zh)
WO (1) WO2015101170A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333274A (zh) * 2018-04-10 2018-07-27 中国医学科学院北京协和医院 一种花粉种属及花粉挥发性有机物的定性检测方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11567041B2 (en) * 2016-06-28 2023-01-31 Perkinelmer Health Sciences, Inc. Low thermal mass GC module
JP7015636B2 (ja) 2017-01-27 2022-02-03 太陽誘電株式会社 積層セラミック電子部品
JP7302940B2 (ja) 2017-01-27 2023-07-04 太陽誘電株式会社 積層セラミック電子部品
CN107991278B (zh) * 2017-12-28 2024-04-26 湖南华南光电科技股份有限公司 基于荧光猝灭技术痕量炸药探测器的加热进样结构
CN113495095A (zh) * 2020-04-03 2021-10-12 重庆超硅半导体有限公司 硅片金属杂质检测样品保护装置及硅片金属杂质检测方法
CN111707615B (zh) * 2020-06-29 2024-09-13 中国石油天然气集团有限公司 紫外荧光硫水平自动进样装置
CN112563113B (zh) * 2020-11-26 2021-11-02 中国地质大学(武汉) 一种提升icp-ms仪器灵敏度的加热冷凝装置
CN114509518B (zh) * 2022-02-21 2024-01-16 淮北工科检测检验有限公司 基于大型变压器的油气相色谱快速测定装置
CN115015414B (zh) * 2022-05-30 2023-12-26 北京普析通用仪器有限责任公司 一种气相色谱进样装置及气相色谱仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1166598A (zh) * 1996-02-27 1997-12-03 A·阿米拉夫 气相色谱仪的进样方法与装置
CN1352390A (zh) * 2000-11-15 2002-06-05 中国石油化工股份有限公司 色谱进样器
US20070084302A1 (en) * 2005-10-14 2007-04-19 Shimadzu Corporation Gas chromatograph sample injector
WO2010120486A2 (en) * 2009-04-01 2010-10-21 Varian, Inc Gas chromatography check valve and system
CN203772879U (zh) * 2013-12-30 2014-08-13 同方威视技术股份有限公司 通用型进样器、气相色谱仪和联用谱仪

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120955A (ja) * 1982-12-28 1984-07-12 Shimadzu Corp ガスクロマトグラフ
CA1223461A (en) * 1985-02-08 1987-06-30 Andre H. Lawrence Method and apparatus for the introduction of a vapourized sample into an analytical test apparatus
JPH076972B2 (ja) * 1986-01-10 1995-01-30 日立マクセル株式会社 分析用熱分解装置
US5037611A (en) * 1988-11-29 1991-08-06 Icr Research Associates, Inc. Sample handling technique
US5228514A (en) * 1992-11-19 1993-07-20 Ruska Laboratories, Inc. Gas trap apparatus
AU7014796A (en) * 1995-09-20 1997-04-09 Gregory G O'Neil Precolumn separator for gas chromatograph
US5778681A (en) * 1997-04-15 1998-07-14 Varian Associates, Inc. Cooling device for cooling heatable gas chromatography analyte sample injector
US6093371A (en) * 1998-01-29 2000-07-25 Agilent Technologies, Inc. PTFE matrix in a sample inlet liner
US5954862A (en) * 1998-01-29 1999-09-21 Hewlett-Packard Company Sample inlet liner
DE19817016C2 (de) * 1998-04-17 2000-02-03 Gerstel Gmbh & Co Kg Probenaufgabeeinrichtung für einen Gaschromatopgraphen
US6494939B1 (en) * 1999-09-16 2002-12-17 Perkinelmer Instruments Llc Zero-dilution split injector liner gas chromatography
US6907796B2 (en) * 2001-05-30 2005-06-21 Gerstel Systemtechnik Gmbh & Co. Kg Temperature-controlled injector for a chemical analysis unit
US7798021B2 (en) * 2006-01-12 2010-09-21 Gamble Kimberly R Method and apparatus for sample processing and injection
US20140331744A1 (en) * 2011-08-11 2014-11-13 Dsm Ip Assets B.V. Sample introduction device and method
CN203216933U (zh) 2013-04-12 2013-09-25 汪小知 一种用于分析仪器的多功能连续进样器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1166598A (zh) * 1996-02-27 1997-12-03 A·阿米拉夫 气相色谱仪的进样方法与装置
CN1352390A (zh) * 2000-11-15 2002-06-05 中国石油化工股份有限公司 色谱进样器
US20070084302A1 (en) * 2005-10-14 2007-04-19 Shimadzu Corporation Gas chromatograph sample injector
WO2010120486A2 (en) * 2009-04-01 2010-10-21 Varian, Inc Gas chromatography check valve and system
CN203772879U (zh) * 2013-12-30 2014-08-13 同方威视技术股份有限公司 通用型进样器、气相色谱仪和联用谱仪

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333274A (zh) * 2018-04-10 2018-07-27 中国医学科学院北京协和医院 一种花粉种属及花粉挥发性有机物的定性检测方法

Also Published As

Publication number Publication date
CN104749389B (zh) 2017-07-14
US9618484B2 (en) 2017-04-11
EP2889615A1 (en) 2015-07-01
EP2889615B1 (en) 2020-07-29
CN104749389A (zh) 2015-07-01
US20150185189A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
WO2015101170A1 (zh) 通用型进样器、气相色谱仪和联用谱仪
US7284410B2 (en) Chromatographic interface for thermal desorption systems
CN104502493B (zh) 一种用于连续在线观测水中挥发性有机物的吹扫捕集仪
US8104330B2 (en) Method and apparatus for analysis by liquid chromatography
WO2016107484A1 (zh) 气相物质分析装置和气相导入装置
US7984638B2 (en) Gas chromatograph oven
CN203772879U (zh) 通用型进样器、气相色谱仪和联用谱仪
CN105319308B (zh) 白酒各类组成的气相色谱/质谱分析装置和分析方法
US7908901B2 (en) Cooling apparatus for microwave chromatography
CN104374614A (zh) 用于元素测定的裂解—化学蒸汽发生进样装置及分析方法
CN202939085U (zh) 一种与分析仪器在线连接的固、液样品热裂解进样装置
CN105784887B (zh) 热脱附管的老化装置及其老化方法
CN108051532B (zh) 分离密封式进样口
CN109557224B (zh) 一种带有辅助冷却装置的气相色谱仪及其使用方法
CN218726967U (zh) 气体预浓缩仪
CN214252163U (zh) 一种气相色谱仪分流进样系统
JP2010217078A (ja) ガスクロマトグラフ及びガスクロマトグラフ質量分析計
CN115436545A (zh) 气体预浓缩仪
US7520920B1 (en) Guard columns for gas chromatographs and gas chromatograph-mass spectrometers
CN112557562A (zh) 一种气相色谱仪分流进样系统及其工作方法
CN206431100U (zh) 一种气相谱分析仪
SU1122969A1 (ru) Устройство дл термодесорбции сконцентрированных примесей из концентратора в хроматографическую колонку
CN106568883B (zh) 一种同时测定热熔胶中苯酚和bht的方法
JPS628527Y2 (zh)
JP2004028851A (ja) ガスクロマトグラフ分析システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14876331

Country of ref document: EP

Kind code of ref document: A1