WO2015099171A1 - 亜硫酸ガス含有排ガスの脱硫方法および脱硫装置 - Google Patents

亜硫酸ガス含有排ガスの脱硫方法および脱硫装置 Download PDF

Info

Publication number
WO2015099171A1
WO2015099171A1 PCT/JP2014/084687 JP2014084687W WO2015099171A1 WO 2015099171 A1 WO2015099171 A1 WO 2015099171A1 JP 2014084687 W JP2014084687 W JP 2014084687W WO 2015099171 A1 WO2015099171 A1 WO 2015099171A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
sulfurous acid
desulfurization
acid gas
gas
Prior art date
Application number
PCT/JP2014/084687
Other languages
English (en)
French (fr)
Inventor
張本 崇良
克夫 及川
ヨンシリ チャトロン
研一 末光
Original Assignee
クボタ化水株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クボタ化水株式会社 filed Critical クボタ化水株式会社
Publication of WO2015099171A1 publication Critical patent/WO2015099171A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Definitions

  • the present invention relates to a desulfurization method and desulfurization apparatus for sulfur dioxide gas-containing exhaust gas. More specifically, the present invention relates to a method and apparatus for desulfurizing exhaust gas discharged from a boiler or the like provided in a thermal power generation facility such as coal burning or heavy oil burning with seawater.
  • the sulfur content in fossil fuels can produce serious air pollution when released into the atmosphere by producing sulfur dioxide (sulfur dioxide), which is the main causative substance such as acid rain during combustion.
  • sulfur dioxide sulfur dioxide
  • various flue gas desulfurization processes and equipment are used to suppress sulfur dioxide gas emissions, and a desulfurization method using boiler cooling seawater is particularly convenient for power plants located near the coast. For this reason, so-called seawater desulfurization equipment has been widely adopted.
  • Non-Patent Document 1 discloses seawater desulfurization absorption data using a filling gas-liquid contact device, oxidation rate of sulfurous acid in desulfurized seawater subjected to desulfurization, and recovery data of seawater pH by decarboxylation. Disclosed. In this method, since the entire amount of seawater is passed through the desulfurization tower, it is inevitable that the power cost for transporting the seawater to the desulfurization tower is unavoidable. Shown that recovery is possible.
  • Patent Document 2 a Flakt-Hydro process was proposed in which desulfated seawater was mixed with undesulfurized seawater and then aerated (see Non-Patent Document 2).
  • Patent Document 2 it is pointed out that the process of mixing desulfated seawater with undesulfurized seawater and then aeration requires a large power cost for aeration, and the desulfurized seawater is brought to a pH of 4 to 5 in the desulfurization tower. A method of aeration with controlled air was proposed.
  • the pH control of the decarboxylation process has been conventionally performed by feedback control that measures the pH of the process and adjusts the amount of seawater and the amount of aeration to be mixed. Some feedback control uses advanced calculations to adjust the output, but in principle, even if a disturbance occurs, it cannot be corrected unless the effect appears. become more prominent.
  • seawater method flue gas desulfurization apparatus Various gas-liquid contact devices such as a perforated plate tower, a packed tower and a spray tower are used in the gas-liquid absorption section of the seawater method flue gas desulfurization apparatus.
  • the basic principle of the seawater desulfurization process is to mainly wash and neutralize sulfur dioxide, which is an acidic substance in exhaust gas, using an alkaline component (hydrogen carbonate ion) in seawater.
  • alkaline component hydrogen carbonate ion
  • wet desulfurization methods such as lime gypsum method, magnesium hydroxide method, seawater flue gas desulfurization method and equipment are simple process, do not use chemicals or reduce the amount of use, cost There are advantages such as cheap.
  • the bisulfite ion is detected as a chemical oxygen consumption (COD) value because of its reducibility, and reacts with oxygen to produce sulfuric acid as shown in the reaction formula (2).
  • COD chemical oxygen consumption
  • Equation (2), Equation (3), and Equation (4) air is introduced into the desulfurized seawater before aeration, and the COD value and pH value are processed to the release standard. obtain.
  • the desulfurized seawater has a property of greatly absorbing carbon dioxide. If seawater that has absorbed carbon dioxide is introduced as it is in the subsequent process, it will cause a great disadvantage. That is, the total carbon concentration in seawater that is almost in a vapor-liquid equilibrium state with 10 or more Vol% CO 2 in the exhaust gas is far supersaturated with respect to the carbon dioxide concentration in the air of 380 ppm. Both seawater and aqueous solutions have special properties that tend to remain in a metastable state even when carbon dioxide is supersaturated. Therefore, the supersaturated state cannot be resolved unless the transition and diffusion to the liquid level proceed.
  • the present inventors provide a seawater desulfurization method and apparatus that solves the above-mentioned problems, simplifies the control system, has a low environmental load, can greatly reduce facility costs and running costs, and has economic efficiency and practicality. For this purpose, various studies have been made and the present invention has been achieved.
  • the present invention provides the following inventions in order to solve the above problems.
  • Seawater is introduced into the exhaust gas desulfurization tower, gas-liquid contact with the exhaust gas containing sulfurous acid gas is absorbed into the seawater, and the exhaust gas after the seawater absorption treatment is derived from the exhaust gas desulfurization tower.
  • a first decarboxylation step of decarboxylating seawater that has absorbed sulfurous acid gas An oxidation treatment step for oxidizing bisulfite ions in seawater after the first decarboxylation treatment; and a mixing step for mixing seawater that has not been subjected to desulfurization into seawater that has absorbed sulfurous acid gas before the oxidation treatment step;
  • the pH value of the seawater after the sulfurous acid gas absorption process and before the mixing process is 2.2 ⁇ pH ⁇ 4.0, and in the mixing process, the mixing ratio of seawater that has not been subjected to desulfurization and seawater that has absorbed sulfurous acid gas (for sulfur dioxide desulfurization)
  • the value obtained by dividing the amount of unsealed seawater by the amount of seawater that has absorbed sulfite gas) is adjusted based on the pH value of seawater after the sulfite gas absorption step and before the mixing step.
  • Desulfurization method for contained exhaust gas (2) Introducing seawater into the exhaust gas desulfurization tower, bringing it into gas-liquid contact with the exhaust gas containing sulfurous acid gas, absorbing the sulfurous acid gas in the exhaust gas into the seawater, and deriving the exhaust gas after the seawater absorption treatment from the exhaust gas desulfurization tower Sulfur dioxide absorption process; A first decarboxylation step of decarboxylating seawater that has absorbed sulfurous acid gas; An oxidation treatment step of oxidizing bisulfite ions in seawater after the first decarboxylation treatment; and a mixing step of mixing seawater not subjected to desulfurization with seawater that has absorbed sulfite gas before the oxidation treatment step;
  • the pH value of the seawater after the sulfurous acid gas absorption process and before the mixing process is 2.2 ⁇ pH ⁇ 4.0, and the mixing ratio of seawater that has not been subjected to desulfurization and seawater that has absorbed sulfurous acid gas in the mixing process is A
  • decarboxylation rate ( ⁇ %) [(2.0 ⁇ in the desulfurized seawater Total carbonate concentration mmol / L) x 100] /2.0
  • the mixing ratio ( ⁇ ) of seawater that has not been subjected to desulfurization / absorbed seawater that has absorbed sulfurous acid gas is based on the pH value of seawater after the sulfurous acid gas absorbing step and before the mixing step: 209 x pH -5.04 ⁇ ⁇ 171 x pH -3.52 (Here, the pH value is 2.2 ⁇ pH ⁇ 4.0, and ⁇ has no unit, and may be either a volume ratio or a weight ratio.)
  • the method for desulfurizing exhaust gas containing sulfurous acid gas according to the above (1) to (6), wherein the temperature of seawater not subjected to desulfurization is set 2 to 20 ° C.
  • Desulfurization method for gas-containing exhaust gas (15) The method for desulfurizing an exhaust gas containing sulfurous acid gas according to the above (1) to (14), wherein hypochlorous acid is previously contained in seawater brought into gas-liquid contact with the exhaust gas containing sulfurous acid gas, and then heated. (16) In the mixing step, sulfurous acid gas according to any one of (1) to (14) above, wherein hypochlorous acid is preliminarily contained in seawater that has not been subjected to desulfurization mixed with seawater that has absorbed sulfurous acid gas, and then heated. Desulfurization method for contained exhaust gas.
  • Seawater is introduced into gas-liquid contact with the sulfurous acid gas-containing exhaust gas to absorb the sulfurous acid gas in the exhaust gas into the seawater, and the pH value of the seawater that has absorbed the sulfurous acid gas is mixed after the sulfurous acid gas absorption step.
  • the exhaust gas desulfurization tower is adjusted to 2.2 ⁇ pH ⁇ 4.0 and derives the exhaust gas after seawater absorption treatment;
  • a first decarboxylation unit that decarboxylates seawater that has absorbed sulfur dioxide;
  • Oxidation part that oxidizes bisulfite ions in seawater after the first decarboxylation treatment; and seawater that has not been subjected to desulfurization is not subjected to desulfurization when mixed with seawater that has absorbed sulfite gas before the oxidation treatment process
  • a mixing section that adjusts the mixing ratio of seawater and seawater that has absorbed sulfurous acid gas based on the pH value of seawater after the sulfurous acid gas absorption process and before the mixing process;
  • Seawater is introduced into gas-liquid contact with the sulfurous acid gas-containing exhaust gas to absorb the sulfurous acid gas in the exhaust gas into the seawater, and the pH value of the seawater that has absorbed the sulfurous acid gas is mixed after the sulfurous acid gas absorption step.
  • the exhaust gas desulfurization tower is adjusted to 2.2 ⁇ pH ⁇ 4.0 and derives the exhaust gas after seawater absorption treatment;
  • a first decarboxylation unit that decarboxylates seawater that has absorbed sulfur dioxide;
  • Oxidation part that oxidizes bisulfite ions in seawater after the first decarboxylation treatment; and seawater that has not been subjected to desulfurization is not subjected to desulfurization when mixed with seawater that has absorbed sulfite gas before the oxidation treatment process
  • a mixing unit that sets a mixing ratio of seawater and seawater that has absorbed sulfurous acid gas to a value set in advance based on the pH value of seawater after the sulfurous acid gas absorption process and before the mixing process;
  • Seawater is introduced into gas-liquid contact with the sulfurous acid gas-containing exhaust gas to absorb the sulfurous acid gas in the exhaust gas into the seawater, and the pH value of the seawater that has absorbed the sulfurous acid gas is mixed after the sulfurous acid gas absorption step.
  • the exhaust gas desulfurization tower is adjusted to 2.2 ⁇ pH ⁇ 4.0 and derives the exhaust gas after seawater absorption treatment;
  • a first decarboxylation unit that decarboxylates seawater that has absorbed sulfur dioxide;
  • Oxidation part that oxidizes bisulfite ions in seawater after the first decarboxylation treatment; and seawater that has not been subjected to desulfurization is not subjected to desulfurization when mixed with seawater that has absorbed sulfite gas before the oxidation treatment process
  • a mixing unit that controls the mixing ratio of seawater and seawater that has absorbed sulfurous acid gas based on the pH value of seawater after the sulfurous acid gas absorption process and before the mixing process;
  • seawater is used to treat sulfur dioxide in exhaust gas, and seawater that has absorbed sulfurous acid gas (desulfurized seawater) is adjusted within an appropriate pH range, and desulfurized within an optimum decarboxylation rate range.
  • seawater that has not been subjected to desulfurization undesulfurized seawater
  • carbonated and mixed with seawater that has not been subjected to desulfurization (undesulfurized seawater) at an optimal mixing ratio and then oxidized and decarboxylated, resulting in low environmental impact and a significant reduction in equipment and running costs. It is possible to provide a highly efficient seawater desulfurization technology that can achieve economic effects.
  • the method for desulfurizing exhaust gas containing sulfurous acid gas of the present invention introduces seawater into the exhaust gas desulfurization tower, and makes gas-liquid contact with the exhaust gas containing sulfurous acid to absorb the sulfurous acid gas in the exhaust gas into the seawater.
  • An oxidation treatment step that oxidizes bisulfite ions in seawater after the first decarboxylation treatment; and a mixing step in which seawater that has not been subjected to desulfurization is mixed with seawater that has absorbed sulfite gas before the oxidation treatment step.
  • the pH value of seawater after absorption of sulfurous acid gas and before the mixing step is 2.2 ⁇ pH ⁇ 4.0, and is not subjected to desulfurization in the mixing step.
  • the mixing ratio of seawater and seawater that has absorbed sulfur dioxide (the amount of seawater that has not been subjected to sulfur dioxide desulfurization divided by the amount of seawater that has absorbed sulfur dioxide) is the seawater after the sulfur dioxide absorption process and before the mixing process. It adjusts based on pH value of this.
  • the properties and quantity of the sulfurous acid gas-containing exhaust gas and the properties and quantity of the seawater are determined in advance. And a method of controlling and adjusting either or both of the amount of sulfurous acid gas-containing exhaust gas and the amount of seawater based on the measured value of pH. That is, in one embodiment of the method for desulfurizing exhaust gas containing sulfurous acid gas according to the present invention, the pH value of seawater after the sulfurous acid gas absorption step and before the mixing step is 2.2 ⁇ pH ⁇ 4.0, and is used for desulfurization in the mixing step.
  • the mixing ratio of the unsealed seawater and the seawater that has absorbed the sulfurous acid gas is a value set in advance based on the pH value of the seawater after the sulfurous acid gas absorbing process and before the mixing process.
  • the preset value is set as appropriate in the operation of the desulfurization method, and further, when designing the apparatus, set a certain numerical value in consideration of the property and amount of the sulfurous acid gas-containing exhaust gas and the property and amount of seawater in advance. This includes cases where the device is simplified by omitting valves and bypasses.
  • the pH value of the seawater after the sulfurous acid gas absorption step and before the mixing step is 2.2 ⁇ pH ⁇ 4.0, and is used for desulfurization in the mixing step. Based on the pH value of the seawater after the sulfite gas absorption process and before the mixing process, either or both of the amount of exhaust gas containing sulfurous acid gas and the amount of seawater It is characterized by controlling.
  • natural seawater is preferably used as seawater from the viewpoint of cost, etc., but the seawater obtained by adjusting the components of natural seawater for modification or the same carbon content as seawater so as to have desulfurization performance is used. It may be carbonate-containing water or synthetic seawater prepared to contain.
  • seawater pumped up from the sea may be used for some process such as boiler cooling water or washing water, or may be used as dilution water for some waste water.
  • fresh water and ground water may be mixed or stored in a reservoir or the like as long as they do not adversely affect the action of the present invention, such as inhibiting the oxidation reaction of sulfurous acid.
  • the case where natural seawater is used will be described below.
  • the air may be one in which oxygen or ozone is added to air, and oxidation of sulfurous acid can be promoted. It can be used for decarboxylation as long as it does not become an obstacle such as containing a large amount of carbon dioxide during decarboxylation.
  • the typical total carbonic acid substance concentration in the surface seawater is 2000 ⁇ mol / L, and the concentration distribution of the carbonic acid species at each pH is shown in FIG. From FIG. 1, it can be seen that at pH 5, bicarbonate ions occupy about 10% of the total amount, and at pH 4 or less, hydrated carbonate accounts for 99% or more.
  • Hydrated carbon dioxide CO 2 (aq) accounts for an overwhelming proportion of hydrated carbon dioxide CO 2 (aq) * and has properties close to neutrality, so its solubility does not change much even in acidic solutions.
  • the solubility in pure water carbon dioxide is 0.77 nm 3 / m 3
  • the solubility of the sulfuric acid solution of 1 mol / L is 0.694 Nm 3 / m 3. Even if it remains strong acidic and falls to about pH-0.31, the solubility of carbon dioxide in the strong acid solution drops only about 10%.
  • FIG. 2 shows experimental data on the solubility and temperature of carbon dioxide gas in acidic seawater at pH 2.8.
  • the broken line indicates the total carbonate concentration (mmol / L) of the surface seawater
  • the solid line indicates the relationship between the total carbonate concentration at which the seawater at pH 2.8 is equilibrated with 14 Vol% CO 2 and the temperature. From FIG. 2, it can be seen that seawater has a property of absorbing CO 2 at about 40 ° C. or less, even at an acidic pH of 2.8, when it comes into contact with 14 Vol% CO 2 . In a typical coal-fired power plant, coal is burned by air.
  • the air contains approximately 21 vol% of oxygen and about 79Vol% nitrogen, in an air combustion CO 2 concentration in the combustion exhaust gas is increased to about 13 ⁇ 15 vol%.
  • the seawater temperature is usually 10 ° C. to 33 ° C., and FIG. 2 suggests that the desulfurized seawater in the desulfurization tower absorbs carbon dioxide gas. Therefore, in order to avoid the above-mentioned unnecessary decarboxylation in the high pH region, it is considered necessary to decarboxylate under conditions that facilitate decarboxylation before mixing with seawater.
  • the first decarboxylation step of decarboxylating seawater that has absorbed sulfurous acid gas before mixing with seawater is included.
  • the mechanism of decarboxylation differs depending on the presence of carbon dioxide on both sides below pH 4 and above pH 4, with pH 4 being the boundary.
  • the decarboxylation rate at pH 4 or lower on the acidic side is not affected by the pH of the liquid when the temperature, air volume and aeration device constant are constant, and the decarboxylation rate is proportional to the hydrated carbonic acid concentration in the liquid. Therefore, the carbonic acid concentration decreases linearly, that is, logarithmically.
  • the pH increases due to decarboxylation, and further, due to the increase in pH, the fraction of hydrated carbonic acid concentration decreases rapidly, and the decarboxylation rate decreases rapidly.
  • the pH value of the desulfurized seawater in the desulfurization tower falls within the range of 2.2 ⁇ pH ⁇ 4.0, the existence form of carbonic acid exists in the form of 99.97 to 99% hydrated carbonic acid. If the pH is 4 or less, absorption and release of carbonic acid do not affect the pH value of seawater. In the present invention, by aeration under the condition of pH 4 or less, the optimum condition for rapidly removing carbon dioxide in the desulfurized seawater is obtained, and hydrated carbon dioxide CO 2 (aq) * is desulfurized with high efficiency and speed. It can be removed from seawater and at the same time oxidize bisulfite ions and remove a small amount of free sulfite, and mixing and aeration in subsequent steps can be performed at relatively low pH values.
  • the pH value of the desulfurized seawater in the desulfurization tower is preferably 2.5 to 3.5.
  • the pH value of the desulfurized seawater is within the range of 2.2 ⁇ pH ⁇ 4.0. Involved. In this matter, a decarboxylation standard must be determined. However, the concentration of carbon dioxide absorbed in desulfurized seawater depends on the device constants of the gas-liquid contact device, and depends on the type of device, operating conditions, exhaust gas conditions, etc. Is inappropriate.
  • a decarboxylation rate in the desulfurization tower based on a total carbonic acid concentration of 2.0 mmol / L typical in the surface seawater was introduced, and as a result of various studies, a decarboxylation rate of 30-60% in desulfurized seawater
  • the total aeration amount which is the sum of the aeration amount in the desulfurization tower and the subsequent step aeration amount, would be in the minimum value range if it was mixed and aerated with undesulfurized seawater after expelling the carbon dioxide.
  • FIG. 3 shows the relationship between the decarboxylation rate in the desulfurization tower and the total aeration amount.
  • the aeration amount without decarbonation in the desulfurization tower was set to 1.
  • FIG. 3 shows the experimental data on the aeration amount in the desulfurization tower
  • the solid line shows the desulfurization.
  • the relationship between the total aeration amount and the decarboxylation rate in the two steps of aeration in the tower (first decarboxylation) and second decarboxylation after mixing is shown.
  • FIG. 3 shows that the decarboxylation rate in the first decarboxylation step in the desulfurization tower is about 45%, and the total aeration amount becomes a minimum value.
  • the decarboxylation rate in the first decarboxylation step is 30 to 60%, desirably 35 to 55%, more preferably 40 to 50%, Save about 35% of the total aeration air required to achieve the same treatment standards.
  • This decarboxylation rate can be easily achieved by adjusting the required amount of aeration.
  • This decarboxylation rate is obtained by converting the measured value of the total carbonate concentration in the desulfurized seawater by the following formula.
  • Decarboxylation rate ( ⁇ %) [(2.0-Total carbonate concentration in desulfated seawater mmol / L) x 100] /2.0 That is, in the first decarboxylation step, the decarboxylation calculated by the above formula is performed by introducing air into the seawater at pH value 2.2 ⁇ pH ⁇ 4.0 of the seawater after absorbing the sulfurous acid gas. This is done by expelling carbon dioxide in the seawater so that the rate is 30 to 60%.
  • Measurement of total carbonic acid concentration in seawater can be done either automatically or manually.
  • the control method of the aeration amount can be performed by adjusting the aeration amount based on the decarboxylation rate data result.
  • an online automatic control method, a manual control method, or the like can be adopted.
  • the desulfurized seawater in the desulfurization tower does not change the pH of the seawater even after decarboxylation, so that it is mixed with non-desulfurized seawater to be discharged into the ocean.
  • there is another important problem That is, if the pH value of the seawater after mixing is too high, the conventional wasteful aeration problem occurs.
  • the pH value of the seawater after mixing is too low, if the pH value is below the equivalent point of the neutralization reaction of the acidic substance, There is a risk that the value cannot be recovered forever, and that the problem of sulfur dioxide gas re-entrainment may occur.
  • the present invention requires that an appropriate pH range of seawater after mixing is required, and that an optimum mixing ratio of undesulfurized seawater and desulfurized seawater exists. It is what I found. That is, according to the present invention, in the mixing step, the mixing ratio of seawater that has not been subjected to desulfurization / seawater that has absorbed sulfurous acid gas is changed from after the sulfurous acid gas absorption step to before the mixing step, optimally after the first decarboxylation treatment step. It adjusts based on the pH value of seawater.
  • the optimum mixing ratio of non-desulfurized seawater and desulfurized seawater is determined in consideration of the dependency of carbonic acid and sulfurous acid on the pH within a pH range of 2.2 to pH4. It was found from the empirical formula. That is, the method for desulfurizing exhaust gas containing sulfite gas of the present invention further includes a mixing step of mixing seawater that has not been subjected to desulfurization into seawater that has absorbed sulfite gas before the oxidation treatment step, and includes undesulfurized seawater / desulfurized seawater.
  • the ratio ⁇ in accordance with the pH value of the seawater that has absorbed the above sulfurous acid gas is represented by the following formula: 209 x pH -5.04 ⁇ ⁇ 171 x pH -3.52 (Here, the pH value is 2.2 ⁇ pH ⁇ 4.0, and ⁇ has no unit, and may be either a volume ratio or a weight ratio.) To be satisfied.
  • Fig. 4 shows the optimum mixing ratio range of desulfated seawater pH and non-desulfurized seawater / desulfurized seawater. According to this empirical formula, the seawater after mixing can be brought to an optimum pH range for decarboxylation. Of course, if there is surplus seawater, it may be joined to the latter stage of the seawater treatment apparatus or the seawater treatment apparatus outlet.
  • the temperature of the above-mentioned non-desulfurized seawater is set to 2 to 20 ° C. lower than the temperature of desulfurized seawater (seawater that has absorbed sulfurous acid gas). It is preferable to do this.
  • the boiler exhaust gas subject to seawater desulfurization usually has a temperature of over 100 ° C, and sulfur dioxide gas is treated by gas-liquid contact in the seawater desulfurization process and heat exchange is also performed.
  • the temperature of desulfurized seawater is about several degrees To rise. The greater the amount of seawater used for desulfurization, the smaller the increase in seawater temperature after desulfurization. In other words, the rise is used as an indicator of waste by the amount of seawater used for desulfurization.
  • the temperature rise ( ⁇ T) between intake and discharge water in Japan is less than 7 ° C, in France it is less than 15 ° C, in the UK it is 10-12 ° C in the thermal power plant. In the United States, it is set to 7-15 ° C. Since the amount of warm waste water decreases as ⁇ T rises, the amount of cooling seawater is about one-half in the case of 15 ° C., compared to the case in which the temperature rise is 7 ° C. In such a case, in the seawater desulfurization method that does not use desulfurization chemicals, the amount of water necessary for recovery of seawater pH is insufficient, so it is necessary to take water directly from the sea and make up for the shortage in the mixing seawater.
  • the pH value of the desulfurized seawater is adjusted to the range of 2.2 ⁇ pH ⁇ 4.0, and the auxiliary control factor is set so that the temperature difference between the mixing seawater and the desulfurized seawater falls within 2 to 20 ° C.
  • the amount of desulfurized seawater used can be appropriately maintained reliably and simply, and further, complete treatment of desulfurized seawater can be performed only with seawater without adding chemicals.
  • decarboxylation can be carried out under optimum decarboxylation conditions with certainty and simplification, with the control factor being pH.
  • the control system preferably obtains the ratio of undesulfurized seawater / desulfurized seawater from the pH value of the desulfurization tower desulfurization seawater outlet, and adjusts the amount of seawater for mixing.
  • it can be performed by an on-line automatic control method or a manual control method.
  • the seawater desulfurization equipment uses cooled seawater that condenses from the power plant or boiler to the ocean.
  • the dissolved oxygen concentration in seawater decreases greatly with increasing temperature. Therefore, due to local overheating in the middle of cooling, dissolved oxygen and dissolved nitrogen in seawater decrease below the solubility, and escaped oxygen and nitrogen become large bubbles. Since it takes time for the oxygen in the bubbles to redissolve in the seawater, the dissolved oxygen in the cooled seawater remains substantially at a low concentration.
  • Formula (2) represents that the absorbed bisulfite ion is oxidized to sulfuric acid by oxygen. From the results of seawater desulfurization operation, it was found that the reaction of absorbing sulfurous acid gas into the desulfurization tower and at the same time, the reaction of oxidizing bisulfite ions to sulfuric acid proceeded smoothly if oxygen was present. In particular, since there are many components such as cobalt, nickel and iron that are necessary for the oxidation reaction of sulfurous acid in seawater, it was observed that the oxidation reaction was carried out quickly.
  • the oxidation reaction proceeds, there is a merit that the amount of air in the oxidation process corresponding to the conventional seawater treatment apparatus can be reduced, or the pH value of the mixed seawater in which resulfurization of sulfurous acid gas is reduced. Therefore, it is preferable to preliminarily dissolve dissolved oxygen in the desulfurization tower desulfurization seawater and the seawater mixing undesulfurization seawater. Therefore, it is preferable to introduce the fine bubbles into the seawater that has not been subjected to desulfurization and the seawater that has absorbed the sulfurous acid gas to saturate the dissolved oxygen.
  • both the absorption tower, the oxidation section, and the sulfurous acid are used.
  • the oxidation reaction of hydrogen ions can be performed quickly, and as a result, it can contribute to the reduction of the power cost required for oxidation and aeration than the conventional method.
  • Sulfur gas re-entrainment depends not only on the pH of the seawater, but also on the concentration of the sulfite substance in the seawater. That is, with respect to the partial pressure of sulfurous acid gas in seawater containing sulfurous acid, for example, the threshold partial pressure of sulfurous acid gas felt by humans is such that the pH value decreases as the concentration of the sulfurous acid substance decreases.
  • an oxidation part can be provided in order to promote the oxidation reaction preferentially without using the mixing area without aeration in the conventional system.
  • an air amount of 1.5 to 3% of the mixed seawater volume flow rate is preferably introduced as fine bubbles from the mixing point with an aeration intensity of 0.1 m / min or less. Then, the bisulfite ions are oxidized.
  • the introduction port of the desulfurized seawater is preferably installed at the lower part of the non-desulfurized seawater, and it is preferable to use a fine bubble diameter of about 50 ⁇ m to 1 mm.
  • the aeration intensity in addition to the air volume, by setting the aeration intensity to a linear velocity of air of 0.1 m / min or less, it is possible to suppress the escape of air due to a large local aeration volume.
  • the conventional difficulty of being done can be overcome.
  • the introduction of a very small amount of fine bubbles in the structure of the oxidation part described above solves the problem of re-emission of sulfurous acid gas that occurs frequently in the conventional method, and the second decarboxylation with a large air volume is achieved.
  • Implementation becomes possible.
  • the mixed seawater is second decarboxylated by a normal aeration method after the oxidation treatment step to recover pH.
  • the aeration apparatus becomes efficient and compact, the bubble diameter is coarse, and the air diffuser structure can be simplified.
  • hypochlorous acid By containing hypochlorous acid in advance in seawater to be brought into gas-liquid contact with the sulfurous acid gas-containing exhaust gas, the substance that consumes the oxidant contained in the seawater can be oxidized in advance by heating and reacting efficiently. Thus, dissolved oxygen can be used efficiently in the oxidation treatment step. Further, in the sulfurous acid gas absorption step, the decarboxylation step, and the oxidation treatment step, hypochlorous acid is allowed to remain so that it acts as an oxidizing agent, so that sulfurous acid can be oxidized efficiently.
  • hypochlorous acid is previously added to seawater that has not been subjected to desulfurization mixed with seawater that has absorbed sulfurous acid gas, and then heated and reacted efficiently, thereby oxidizing the seawater.
  • Substances that consume the agent can be oxidized in advance, so that dissolved oxygen can be used efficiently in the oxidation treatment step.
  • hypochlorous acid is allowed to remain so that it acts as an oxidizing agent, and sulfurous acid can be oxidized efficiently.
  • a biocidal agent such as hypochlorite of several ppm after coarse filtration, microorganisms in the seawater become debris and form fine suspended substances and float. Direct release to the ocean will have a negative impact on the environment and landscape.
  • a large air volume aeration may disturb the fine suspended solids along with the flow of seawater in the aeration area, making solid-liquid separation difficult.
  • an air amount of 1.5 to 3% of the seawater volume flow rate is introduced as a fine bubble in the subsequent stage of the aeration process with an aeration intensity of 0.1 m / min or less in order to recover dissolved oxygen and to float floating solids. Is preferred.
  • the aeration intensity to a linear velocity of air of 0.1 m / min or less, the stirring effect due to the large amount of aeration can be eliminated, and the suspended solids can be floated.
  • fine bubbles having a diameter of about 50 ⁇ m to 1 mm, and by providing a structure in which the underflow and overflow are combined at the outlet of the seawater treatment apparatus, the suspended solids can be easily separated into solid and liquid. In this way, the wastewater from which the suspended solids in the seawater are removed can be discharged.
  • the fine bubbles introduced at the latter stage of the aeration process have a very slow ascending speed, can stay in the seawater for a long time, and the dissolved oxygen concentration is kept high up to the sea drain.
  • the environmental load on the ocean can be minimized, and desulfurized seawater can be completely treated before returning to the ocean.
  • the desulfurization apparatus for sulfurous acid gas-containing exhaust gas of the present invention introduces seawater, makes gas-liquid contact with the sulfurous acid gas-containing exhaust gas, absorbs sulfurous acid gas in the exhaust gas into seawater, and has a pH value of seawater that has absorbed sulfurous acid gas.
  • a mixing unit that adjusts and mixes the mixing ratio of seawater that has not been provided and seawater that has absorbed sulfurous acid gas based on the pH value of seawater before and after the sulfurous acid gas absorption step.
  • the adjustment is performed by setting the mixing ratio of seawater that has not been subjected to desulfurization and seawater that has absorbed sulfurous acid gas to a preset value based on the pH value of seawater after the sulfurous acid gas absorption process and before the mixing process.
  • set a predetermined value In the case of setting the value in advance during the operation of the desulfurization method, and in addition to the property and amount of the sulfurous acid gas-containing exhaust gas and the property and amount of seawater in advance during the design of the apparatus, set a predetermined value.
  • the mixing ratio of seawater that has not been subjected to desulfurization and seawater that has absorbed sulfurous acid gas is determined based on the pH value of seawater after the sulfurous acid gas absorbing step and before the mixing step, Controlling either or both of the amounts.
  • the mixing ratio of seawater that has not been subjected to desulfurization and seawater that has absorbed sulfurous acid gas is preferably adjusted based on the pH value of the seawater after the first decarboxylation treatment.
  • the exhaust gas desulfurization tower, the first decarbonation section, the mixing section, and the oxidation section correspond to the respective steps in the desulfurization method of the sulfurous acid gas-containing exhaust gas, and one embodiment thereof is shown in FIG. 5 described later. .
  • the inlet of seawater that has absorbed sulfurous acid gas is installed below the inlet of seawater that has not been subjected to desulfurization.
  • the desulfurization apparatus for sulfurous acid gas-containing exhaust gas of the present invention includes a second decarbonation treatment unit that decarboxylates seawater after the oxidation treatment and raises the pH.
  • the desulfurization apparatus for exhaust gas containing sulfurous acid gas includes a fine bubble generating section that introduces fine bubbles into seawater that has not been subjected to desulfurization and seawater that has absorbed sulfurous acid gas to saturate dissolved oxygen. Prepare.
  • a structure that combines underflow and overflow for excluding suspended solids in seawater to be discharged is provided after the second decarboxylation unit.
  • the exhaust gas containing sulfurous acid gas (sulfur dioxide) is introduced into the desulfurization tower (12) through the exhaust gas duct line (11), and the desulfurization seawater is fed from the seawater piping line (14) to the upper part of the desulfurization tower (12). More down.
  • a plurality of perforated plates (25) may be provided in the desulfurization tower (12), and a filler may be filled between the perforated plates if necessary.
  • a filler is used on the perforated plate (25)
  • the seawater that has flowed down can be retained on the surface of the filler, and the seawater and the exhaust gas can be sufficiently brought into contact with each other.
  • the cleaned exhaust gas tank (13) is discharged through the chimney.
  • a fine bubble introduction piping line (20) for saturating dissolved oxygen in advance is provided in the seawater piping line (14).
  • the fine bubble diameter is preferably about 50 ⁇ m to 1 mm.
  • the pH value of the desulfurized seawater in the desulfurization tower (12) is measured by the pH meter (26) installed in the piping line (21), and the pH is in the range of 2.2 ⁇ pH ⁇ 4.0 by the automatic control method or the manual control method. Controlled within.
  • a predetermined amount of seawater is introduced into the desulfurization tower (12), an aeration pipe (15) is provided at the bottom of the desulfurization tower water tank, aeration air is introduced into the desulfurization seawater, and all the carbonate substances in the desulfurization seawater are
  • the amount of aerated air in the air pipe (15) is adjusted so that the decarboxylation rate is 30 to 60%, preferably 40 to 50% (first decarboxylation).
  • the pipe line (21) may be provided by connecting metal or resin pipes.
  • the pipe line (21) is a water channel containing open culverts or underdrains. It may be provided.
  • a sealing property such as providing a lid.
  • the pH meter (26) may be provided anywhere after contact with the sulfuric acid gas-containing exhaust gas as long as the pH of the desulfurized seawater before mixing the desulfurized seawater and the non-desulfurized seawater can be measured.
  • a storage tank or a pH measurement tank may be provided inside the desulfurization tower (12) or separately, and a pH meter (26) may be provided there.
  • the desulfurized seawater flows out from the desulfurization tower via the piping line (21), and is introduced into the oxidation part of the seawater treatment device via the multi-divided piping (22).
  • a predetermined amount of undesulfurized seawater at a mixing ratio determined by the pH value of the desulfurized seawater is transferred to the oxidation section of the seawater treatment device ( 16 ) through the seawater piping line (23) and through the multi-divided pipe (24).
  • the structure of the desulfurized seawater inlet and the structure of the non-desulfurized seawater inlet are not limited to the structures described here, and a mixing section can be provided before the oxidation section. It is preferable that the structure is such that undesulfurized seawater remains.
  • a fine bubble piping line for oxidation (17) is installed at the bottom of the oxidation section, and an air volume of 1.5 to 3% of the specified mixed seawater volume flow rate is introduced as ultrafine bubbles at an aeration intensity of 0.1 m / min or less to create mixed seawater. It is preferred to oxidize the bisulfite ions therein.
  • the mixed seawater enters the second decarboxylation section through the oxidation section.
  • the diffuser pipe line (18) is provided at the bottom of the decarboxylation section of the seawater treatment device ( 16 ).
  • the pH of seawater is recovered by a normal aeration method.
  • a fine bubble aeration pipe line (19) is installed at the bottom of the finishing section to introduce fine bubbles.
  • the suspended substances are levitated so as not to flow out of the seawater treatment device, and are removed from the seawater treatment device regularly or continuously. It is preferable to do this.
  • the seawater (30) that has sufficiently fulfilled the local environmental protection standards in this way can finally be discharged from the seawater treatment device to the ocean.
  • hypochlorous acid in advance in seawater that is in gas-liquid contact with sulfurous acid gas-containing exhaust gas, and then add hypochlorous acid, and then provide a heating device to heat and react efficiently.
  • a heating device to heat and react efficiently.
  • the substance that consumes the oxidizing agent contained in the seawater in advance the dissolved oxygen can be used efficiently in the oxidation part.
  • hypochlorous acid remains in the sulfurous acid gas absorption part, the first decarbonation part, and the oxidation part, sulfurous acid can be efficiently oxidized as an oxidizing agent.
  • the heating may be slight, but is preferably 2 to 15 ° C., more preferably 5 to 7 ° C.
  • a chlorine addition device is provided in seawater that has not been subjected to desulfurization to be mixed with seawater that has absorbed sulfurous acid gas, and after containing hypochlorous acid in advance, it is warmed by a heating device and reacted efficiently.
  • a heating device By making it oxidize beforehand the substance which consumes the oxidizing agent contained in seawater, dissolved oxygen can be efficiently used in an oxidation part.
  • hypochlorous acid remains in the oxidation part, sulfurous acid can be efficiently oxidized as an oxidizing agent.
  • the heating may be slight, but is preferably 2 to 15 ° C., more preferably 5 to 7 ° C.
  • the amount of seawater for desulfurization is determined by considering the desulfurization processability in the desulfurization tower at the same time so that the desulfurized seawater is within an appropriate pH range by a simplified control method.
  • the first decarboxylation can be performed within the optimum decarboxylation rate range by adjusting the amount of aeration in the desulfurization tower.
  • the optimum mixing ratio is calculated according to the pH of the desulfurized seawater after the sulfurous acid gas absorption process and before the mixing process, and after mixing with undesulfurized seawater according to this mixing ratio, the desulfurized seawater is oxidized and second decarboxylated.
  • measures for separation of suspended solids and maintenance of dissolved oxygen are performed, and a seawater desulfurization method and apparatus having low environmental impact, drastically reducing facility costs and running costs, and having economic efficiency and practicality. Can be provided.
  • Example 1 Using seawater desulfurization equipment shown in FIG. 5, seawater is introduced into the exhaust gas desulfurization tower under the conditions shown in Table 1, and is brought into gas-liquid contact with the SO 2 (800 ppm) -containing exhaust gas in a countercurrent manner.
  • the gas was absorbed in seawater, and the exhaust gas (SO 2 50 ppm) after the seawater absorption was derived from the exhaust gas desulfurization tower (desulfurization rate 93%).
  • the pH of the desulfurized seawater was 2.9, the decarboxylation rate in the first decarboxylation treatment step was 40%, and the mixing ratio of undesulfurized seawater (33 ° C) / desulfurized seawater (37 ° C) was 3.28.

Abstract

 環境負荷が低く、設備コストとランニングコストが大幅に削減でき、経済性と実用性を持つ海水脱硫方法と装置を提供する。 排ガス脱硫塔に海水を導入して、亜硫酸ガス含有排ガスと気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、海水吸収処理後の排ガスを該排ガス脱硫塔より導出する亜硫酸ガス吸収工程; 亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸処理工程; 第1脱炭酸処理後の海水中の亜硫酸水素イオンを酸化する酸化処理工程;ならびに 脱硫に供していない海水を亜硫酸ガスを吸収した海水に、酸化処理工程以前に混合する混合工程;を含み、 亜硫酸ガス吸収工程後から混合工程前の海水のpH値は、2.2≦pH≦4.0であり、かつ 混合工程において、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて調整する。

Description

亜硫酸ガス含有排ガスの脱硫方法および脱硫装置
 本発明は、亜硫酸ガス含有排ガスの脱硫方法および脱硫装置に関する。さらに詳しくは、本発明は、たとえば、石炭焚き、重油焚き等の火力発電設備に設けられるボイラー等から排出される排ガスを海水によって脱硫する方法と装置に関する。
 化石燃料中の硫黄分は、燃焼時に酸性雨等の主たる原因物質である亜硫酸ガス(二酸化硫黄)を生成して、大気に放散されると深刻な大気汚染をもたらし得る。現在、亜硫酸ガスの排出を抑制するために、種々の排煙脱硫プロセスや装置が利用され、特に海岸の近くに立地する発電所には、ボイラー冷却用海水を利用して脱硫する方法が好都合であるため、いわゆる海水脱硫装置が広く採用されてきた。
 1972年にL. A. Bromley(非特許文献1)は、脱硫パイロット装置であるスプレー方式と充填方式の基礎データに基づいて、海水を用いて亜硫酸ガスを吸収させ、90~99%の脱硫率を達成できることを示した。さらに、特許文献1は、充填式気液接触装置を用いて海水脱硫吸収データ、そして脱硫に供された脱硫酸性海水中の亜硫酸の空気曝気による酸化率、及び脱炭酸による海水pHの回復データを開示した。この方法は、脱硫塔に海水を全量通す方式であるため、脱硫塔に海水を移送するための動力費が高くなるのは避けられないが、空気曝気によって亜硫酸物質の酸化と脱炭酸によるpHの回復が可能であることを示した。その後、脱硫酸性海水を未脱硫海水と混合し、ついで曝気するFlakt-Hydro プロセスが提案された(非特許文献2参照)。特許文献2においては、脱硫酸性海水を未脱硫海水と混合し、ついで曝気するプロセスは、曝気に多大な動力費がかかるという難点を指摘したうえで、脱硫塔内に脱硫海水をpH4~5間に制御しながら曝気する方式が提案された。
 また、脱炭酸工程のpH制御は従来、同工程のpHを測り、混合する海水量や曝気量を調整するフィードバック制御で行われて来た。フィードバック制御にも高度な演算を用いて出力を調整する物があるが、原則として外乱が発生してもその影響が現れてからでなければ修正ができず、装置が大型化すればその傾向はより顕著になる。
 海水法排煙脱硫装置の気液吸収部においては、種々の気液接触装置、例えば多孔板塔、充填塔とスプレー塔などが利用されている。海水脱硫プロセスの基本原理は、主に海水中のアルカリ性成分(炭酸水素イオン)を利用して排ガス中の酸性物質である二酸化硫黄を洗浄して中和することである。その他の湿式脱硫法、例えば石灰石膏法、水酸化マグネシウム法などと比べ、海水法排煙脱硫方法と装置は、プロセスがシンプルで、薬剤を使用しないか、又は使用量を減らすことができ、コストが安いなどメリットがある。
 このような海水脱硫プロセスにおいては、次の化学反応が発生することが知られている。
脱硫塔内の亜硫酸ガスの吸収反応:
SO + HO = HSO = HSO  + H     (1)
海水中の亜硫酸イオンの酸化反応(COD値の低減効果):
HSO  + 1/2 O = SO 2- + H        (2)
中和反応(pH値上昇効果):
HCO  + H = HCO              (3)
空気曝気による海水中の脱炭酸反応(pH値上昇効果):
CO = CO + HO                (4)
 ここでは、排ガス中の二酸化硫黄が海水に吸収され、亜硫酸を生成し、亜硫酸が部分解離するため、海水のpH値が降下し酸性になる。そして、亜硫酸水素イオンは、還元性を有するために化学的酸素消費量(COD)値として検出され、酸素と反応すると、反応式(2)に示すように硫酸を生成する。式(2)、式(3)および式(4)に示すように、海へ放流する前に脱硫海水に空気を導入して曝気して、そのCOD値とpH値を放流基準までに処理し得る。
 上述した海水脱硫方法と装置においては、最初の気液接触工程での亜硫酸ガスの吸収と脱硫後の酸性海水の脱炭酸に着目して、種々の検討がなされてきた。従来、これらの関連する化学反応については、脱硫には亜硫酸系、pHの回復には炭酸系が関係していることが説明されてきた。しかし、実際には、海水法排煙脱硫工程において、亜硫酸ガスの吸収反応および亜硫酸水素イオンの酸化反応と、二酸化炭素ガスの吸収反応および水和炭酸の生成及び炭酸系物質種のpHによる転化反応とは、pHを介して同時に動いていることに留意する必要がある。
 気液接触工程においても、脱硫酸性海水は二酸化炭素を大いに吸収する性質を有する。二酸化炭素を吸収した海水をそのまま後続工程に導入すると、大きな不都合を生じさせることになる。すなわち、排ガス中の10数Vol%COとほぼ気液平衡状態にある海水中の全炭素濃度は、空気中の二酸化炭素濃度380ppmに対して遥かに過飽和状態である。海水も水溶液も二酸化炭素が過飽和になっても準安定状態にとどまりやすい特殊な性質を有するので、液面までの移行、拡散が進まなければ、過飽和状態は解消されない。苛性ソーダを用いて脱硫酸性海水を中和してpHを回復する場合には、吸収された亜硫酸ガスの当量よりはるかに過剰な薬品が消費される。これは海水中に吸収された酸性ガスである二酸化炭素に起因するものでもあり、例えば従来のように未脱硫海水と脱硫酸性海水とを混合した後に曝気する場合には、余計に吸収された炭酸を混合後に高いpH領域で脱炭酸するために、多大な動力費を要する。したがって、脱炭酸によるpHの回復工程では、見かけ上ではpHが回復することになるが、吸収された炭酸相当分は実質的にpH回復に全く寄与しない。
 さらに、特許文献2記載のpH4~5の範囲内で制御して曝気する場合には、高いpHでは炭酸物質種のpHによる分布より、直接脱炭酸できない物質種の炭酸水素イオンの割合が高くなり、物質種間の平衡関係によって、脱炭酸反応の速度を遅らせ、効率的な脱炭酸ができない。
 さらに、もう一つの重要な問題は、脱炭酸のための動力費を如何に低下させるかである。本発明者の知見によれば、曝気処理後に放流される海水の最終pHは、亜硫酸の成分が完全処理されるか、亜硫酸の残留濃度が無視できるという前提条件で、海水中に残留する炭酸物質の濃度のみによって決められるので、脱炭酸の履歴、順序や場所などには無関係であることがわかった。したがって、最終的に同じpH、すなわち同じ溶液状態にするため、無数の脱炭酸ルートが存在し得る。脱炭酸に要する動力費は、そのようなルート、即ち履歴、順序や場所などに大いに依存する。したがって、動力費が最小範囲となる脱炭酸のルートは必ず存在すると考えられる。
L.A.Bromley, Int.,J.Sulfur Chem.,Part B,Vol 7,Number I,77-84,1972 Svein Ole Strommen & Frank Hjelm, IChemE Symposium Series No.131, 95-108,1993
特開昭49-4669号公報 特開平9-173769号公報
 本発明者らは、上記の難点を解決して、制御システムを簡素化し、環境負荷が低く、設備コストとランニングコストが大幅に削減でき、経済性と実用性を持つ海水脱硫方法と装置を提供するために種々検討を行い、本発明に到達したものである。
 本発明は上記の問題を解決するために、以下の発明を提供するものである。
(1)排ガス脱硫塔に海水を導入して、亜硫酸ガス含有排ガスと気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、海水吸収処理後の排ガスを該排ガス脱硫塔より導出する亜硫酸ガス吸収工程;
 亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸処理工程;
 第1脱炭酸処理後の海水中の亜硫酸水素イオンを酸化する酸化処理工程;ならびに
 脱硫に供していない海水を亜硫酸ガスを吸収した海水に、酸化処理工程以前に混合する混合工程;を含み、
 亜硫酸ガス吸収工程後から混合工程前の海水のpH値は、2.2≦pH≦4.0であり、かつ
 混合工程において、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比(亜硫酸ガス脱硫に供していない海水の量を、亜硫酸ガスを吸収した海水の量で割った値)を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて調整する、ことを特徴とする亜硫酸ガス含有排ガスの脱硫方法。
(2)排ガス脱硫塔に海水を導入して、亜硫酸ガス含有排ガスと気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、海水吸収処理後の排ガスを該排ガス脱硫塔より導出する亜硫酸ガス吸収工程;
 亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸処理工程;
 第1脱炭酸処理後の海水中の亜硫酸水素イオンを酸化する酸化処理工程;及び
 脱硫に供していない海水と亜硫酸ガスを吸収した海水とを、酸化処理工程以前に混合する混合工程;を含み、
 亜硫酸ガス吸収工程後から混合工程前の海水のpH値は、2.2≦pH≦4.0であり、かつ
 混合工程において、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて予め設定した値とすることを特徴とする亜硫酸ガス含有排ガスの脱硫方法。
(3)排ガス脱硫塔に海水を導入して、亜硫酸ガス含有排ガスと気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、海水吸収処理後の排ガスを該排ガス脱硫塔より導出する亜硫酸ガス吸収工程;
 亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸処理工程;
 第1脱炭酸処理後の海水中の亜硫酸水素イオンを酸化する酸化処理工程;及び
 脱硫に供していない海水と亜硫酸ガスを吸収した海水とを、酸化処理工程以前に混合する混合工程;を含み、
 亜硫酸ガス吸収工程後から混合工程前の海水のpH値は、2.2≦pH≦4.0であり、かつ
 混合工程において、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて制御することを特徴とする亜硫酸ガス含有排ガスの脱硫方法。
(4)第1脱炭酸処理工程において、海水に空気を導入して、全炭酸物質濃度2.0mmol/Lを基準として、下記式
脱炭酸率(η%)=[(2.0-脱硫酸性海水中の全炭酸物質濃度mmol/L)×100]/2.0
により算出される脱炭酸率30~60%となるように海水中の二酸化炭素を追い出す、上記(1)~(3)に記載の亜硫酸ガス含有排ガスの脱硫方法。
(5)脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、第1脱炭酸処理工程後の海水のpH値に基づいて調整する上記(1)~(4)に記載の亜硫酸ガス含有排ガスの脱硫方法。
(6)混合工程において、脱硫に供していない海水/亜硫酸ガスを吸収した海水の混合比(α)は、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて、次式:
209×pH-5.04 < α < 171×pH―3.52
(ここで、pH値は2.2≦pH≦4.0であり、αは単位がなく、体積比または重量比のいずれであってもよい。)
を充たす、上記(1)~(5)に記載の亜硫酸ガス含有排ガスの脱硫方法。
(7)脱硫に供していない海水の温度を、亜硫酸ガスを吸収した海水の温度より2~20℃低く設定する上記(1)~(6)に記載の亜硫酸ガス含有排ガスの脱硫方法。
(8)脱硫に供していない海水と亜硫酸ガスを吸収した海水に予め微細気泡を導入して溶存酸素を飽和させる上記(1)~(7)に記載の亜硫酸ガス含有排ガスの脱硫方法。
(9)亜硫酸ガスを吸収した海水の導入口が、脱硫に供していない海水の導入口の下部に設置される上記(1)~(8)に記載の亜硫酸ガス含有排ガスの脱硫方法。
(10)混合された海水体積流量の1.5~3%の空気を微細気泡として曝気強度0.1m/min以下で導入して、亜硫酸水素イオンを酸化する上記(1)~(9)に記載の亜硫酸ガス含有排ガスの脱硫方法。
(11)さらに、酸化処理後の海水を脱炭酸してpHを上昇させる第2脱炭酸処理工程を含む上記(1)~(10)に記載の亜硫酸ガス含有排ガスの脱硫方法。
(12)第2脱炭酸工程後に、海水体積流量の1.5~3%の空気を微細気泡として曝気強度0.1m/min以下で導入して、溶存酸素を増加させる上記(11)に記載の亜硫酸ガス含有排ガスの脱硫方法。
(13)微細気泡径が50μm~1mmである上記(8)、(10)または(12)に記載の亜硫酸ガス含有排ガスの脱硫方法。
(14)第2脱炭酸工程後に、アンダーフローとオーバーフローを組み合わせた構造物により放流すべき海水中の浮遊固形分を除外した後に、海水を放流する上記(11)~(13)に記載の亜硫酸ガス含有排ガスの脱硫方法。
(15)亜硫酸ガス含有排ガスと気液接触させる海水に予め次亜塩素酸を含有させたあと、加温する上記(1)~(14)に記載の亜硫酸ガス含有排ガスの脱硫方法。
(16)混合工程において、亜硫酸ガスを吸収した海水と混合させる脱硫に供していない海水に予め次亜塩素酸を含有させたあと、加温する上記(1)~(14)に記載の亜硫酸ガス含有排ガスの脱硫方法。
(17)海水を導入して、亜硫酸ガス含有排ガスと気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、亜硫酸ガスを吸収した海水のpH値は、亜硫酸ガス吸収工程後から混合工程前において、2.2≦pH≦4.0に調節されるとともに、海水吸収処理後の排ガスを導出する排ガス脱硫塔;
 亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸部;
 第1脱炭酸処理後の海水中の亜硫酸水素イオンを酸化する酸化部;ならびに
 脱硫に供していない海水を亜硫酸ガスを吸収した海水に、酸化処理工程以前に混合する際に、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて調整する混合部;
を備えてなる亜硫酸ガス含有排ガスの脱硫装置。
(18)海水を導入して、亜硫酸ガス含有排ガスと気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、亜硫酸ガスを吸収した海水のpH値は、亜硫酸ガス吸収工程後から混合工程前において、2.2≦pH≦4.0に調節されるとともに、海水吸収処理後の排ガスを導出する排ガス脱硫塔;
 亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸部;
 第1脱炭酸処理後の海水中の亜硫酸水素イオンを酸化する酸化部;ならびに
 脱硫に供していない海水を亜硫酸ガスを吸収した海水に、酸化処理工程以前に混合する際に、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて予め設定した値とする混合部;
を備えてなる亜硫酸ガス含有排ガスの脱硫装置。
(19)海水を導入して、亜硫酸ガス含有排ガスと気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、亜硫酸ガスを吸収した海水のpH値は、亜硫酸ガス吸収工程後から混合工程前において、2.2≦pH≦4.0に調節されるとともに、海水吸収処理後の排ガスを導出する排ガス脱硫塔;
 亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸部;
 第1脱炭酸処理後の海水中の亜硫酸水素イオンを酸化する酸化部;ならびに
 脱硫に供していない海水を亜硫酸ガスを吸収した海水に、酸化処理工程以前に混合する際に、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて制御する混合部;
を備えてなる亜硫酸ガス含有排ガスの脱硫装置。
(20)亜硫酸ガスを吸収した海水の導入口が、脱硫に供していない海水の導入口の下部に設置される上記(17)~(19)に記載の亜硫酸ガス含有排ガスの脱硫装置。
(21)さらに、酸化処理後の海水を脱炭酸してpHを上昇させる第2脱炭酸処理部を備えた上記(17)~(20)に記載の亜硫酸ガス含有排ガスの脱硫装置。
(22)脱硫に供していない海水と亜硫酸ガスを吸収した海水に予め微細気泡を導入して溶存酸素を飽和させる微細気泡発生部を備えた上記(17)~(21)に記載の亜硫酸ガス含有排ガスの脱硫装置。
(23)放流すべき海水中の浮遊固形分を除外するための、アンダーフローとオーバーフローを組み合わせた構造物を、第2脱炭酸処理部より後に備えてなる上記(17)~(22)に記載の亜硫酸ガス含有排ガスの脱硫装置。
(24)亜硫酸ガス含有排ガスと気液接触させる海水に予め次亜塩素酸を含有させる塩素添加部と、次亜塩素酸を含有させた海水を加温する加温部を有する上記(17)~(23)に記載の亜硫酸ガス含有排ガスの脱硫装置。
(25)混合工程において、亜硫酸ガスを吸収した海水と混合させる脱硫に供していない海水に予め次亜塩素酸を含有させる塩素添加部と、次亜塩素酸を含有させた海水を加温する加温部を有する上記(17)~(24)に記載の亜硫酸ガス含有排ガスの脱硫装置。
 本発明によれば、海水を利用して排ガス中の二酸化硫黄を処理し、亜硫酸ガスを吸収した海水(脱硫酸性海水)を適切なpH範囲内に調整し、最適な脱炭酸率範囲内で脱炭酸し、脱硫に供していない海水(未脱硫海水)と最適な混合比によって混合した後に、酸化、脱炭酸処理することにより、環境負荷が低く、設備コストとランニングコストが大幅に削減でき、高い経済効果が得られる、高効率の海水脱硫技術を提供し得る。
本発明に係る各pHにおける海水中炭酸物質種の濃度分布を示す図である。 本発明に係る酸性海水における二酸化炭素ガスの溶解度と温度の関係を示す図である。 本発明に係る脱硫塔内脱炭酸率と全曝気量との関係を示す図である。 本発明に係る脱硫酸性海水pHと2種類の海水の最適な混合比の範囲を示す図である。 本発明に係る海水脱硫装置の実施形態を示す構成図である。
 本発明の亜硫酸ガス含有排ガスの脱硫方法は、排ガス脱硫塔に海水を導入して、亜硫酸ガス含有排ガスと気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、海水吸収処理後の排ガスを該排ガス脱硫塔より導出する亜硫酸ガス吸収工程;
亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸処理工程;
第1脱炭酸処理後の海水中の亜硫酸水素イオンを酸化する酸化処理工程;ならびに脱硫に供していない海水を亜硫酸ガスを吸収した海水に、酸化処理工程以前に混合する混合工程;を含む。
 本発明の亜硫酸ガス含有排ガスの脱硫方法においては、亜硫酸ガス吸収後から混合工程前の海水のpH値は、2.2≦pH≦4.0であり、かつ混合工程において、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比(亜硫酸ガス脱硫に供していない海水の量を、亜硫酸ガスを吸収した海水の量で割った値)を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて調整する、ことを特徴とする。混合工程前の海水のpH値に基づいて脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を調整するためには、予め亜硫酸ガス含有排ガスの性状及び量並びに海水の性状及び量を考慮して決定する方法と、pHの測定値をもとに、亜硫酸ガス含有排ガスの量、海水の量のうち何れか一方又は両方を制御して調整する方法を含む。
 すなわち、本発明の亜硫酸ガス含有排ガスの脱硫方法の1つの態様において、亜硫酸ガス吸収工程後から混合工程前の海水のpH値は、2.2≦pH≦4.0であり、かつ混合工程において、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて予め設定した値とすることを特徴とする。予め設定した値は、脱硫方法の運転に際して適宜設定しておく場合、さらには装置の設計時に予め亜硫酸ガス含有排ガスの性状及び量並びに海水の性状及び量を考慮して一定の数値を設定し、バルブ、バイパス等を省略し装置の簡略化を図る場合も含まれる。
 さらに、本発明の亜硫酸ガス含有排ガスの脱硫方法のさらなる態様において、亜硫酸ガス吸収工程後から混合工程前の海水のpH値は、2.2≦pH≦4.0であり、かつ 混合工程において、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて、亜硫酸ガス含有排ガスの量、海水の量のうち何れか一方又は両方を制御することを特徴とする。
 本発明において、海水としては、天然海水を用いるのがコストの点等から好適であるが、天然海水を成分調整して改質した海水、または脱硫性能を有するように海水と同様な炭酸分を含有するように調製された炭酸塩含有水もしくは合成海水であってもよい。たとえば、海からくみ上げたもののほか、海からくみ上げた海水をボイラーの冷却水や洗浄水など何らかのプロセスに使用したもの、又は何らかの排水の希釈水などとして用いたものであっても良い。さらに亜硫酸の酸化反応を阻害するなど、本発明における作用に悪影響をもたらすものでなければ、淡水、地下水を混合し、又は貯水池等に貯留したものであってもよい。以下は、天然海水を用いる場合について説明する。
 また、上記の空気としては、空気に酸素またはオゾン等を添加したものであってもよく、亜硫酸の酸化を促進され得る。脱炭酸をする際に多量の二酸化炭素が含まれているなど障害となるものでなければ脱炭酸用に使用することができる。
 海水中の二酸化炭素の溶解度に関しては、炭酸ガスと気液平衡をした状態では、水和二酸化炭素(CO(aq))、炭酸(HCO)、炭酸水素イオン(HCO )、および炭酸イオン(CO 2-)の4種類の炭酸物質(全炭酸)が存在する。そして、水和二酸化炭素CO(aq)と炭酸HCOについては、次のHCOの脱水反応と逆反応の水和反応が成立する。なお、全炭酸は、炭酸,炭酸水素イオン及び炭酸イオンの合量で二酸化炭素 (CO2)の量として表すものであり、全炭酸濃度の測定方法は日本工業規格(JIS)K0101の25番又はその英文版であるJIS K0101-1998 No.25 (Total Carbonate)に従い、塩化ストロンチウム塩酸滴定法又は赤外線分析法を適用する測定することが好ましいが、同等の測定結果が得られる方法であればその他の方法を用いても構わない。
   HCO ⇔ CO(aq) + HO             (5)
 25℃における炭酸の脱水反応速度係数K=0.025 (S-1)、逆反応の水和反応速度係数 k2=20 (S-1)であり、これらの速度係数の比K=k2/k=800 は、両者の濃度比を示す。即ち、CO(aq)/HCO(aq)の濃度比は約800対1である。しかし、酸塩基滴定では両者の区別ができないので、水和炭酸CO(aq)で記し、両者を表記する。
 海水における炭酸物質の気液平衡と解離平衡を次の式で表す。
   CO(g) = CO(aq)  (気液平衡定数H)       (6)
   CO(aq) = H + HCO  (第1解離定数pK) (7)
   HCO  = H + CO 2- (第2解離定数pK)   (8)
 海水中の高濃度電解質によるイオン強度の影響のため、炭酸物質種の存在割合は大きく酸性側にシフトする。例えば、25℃における第1解離定数pKは、6.3から5.98に、第2解離定数は、10.33から9.06に変わる。海水pHの変化によって、炭酸物質形態間の転化反応(式(7)と式(8))が起きる。表層海水中の代表的な全炭酸物質濃度は2000μmol/Lであり、各pHにおける炭酸物質種の濃度分布を図1に示す。図1より、pH5では、炭酸水素イオンが総量の1割程度を占めることと、pH4以下であれば、水和炭酸が99%以上を占めることが分かる。
 水和炭酸CO(aq)中には水和二酸化炭素CO(aq)が圧倒的な割合を占め、中性に近い物性を持つため、酸性溶液にしてもその溶解度はあまり変わらない。例えば、25℃とCO圧力101.3 kPaにおいて、純水中二酸化炭素の溶解度は、0.77Nm3/m3であり、1mol/Lの硫酸溶液中の溶解度は、0.694 Nm3/m3である。強酸性のままで約pH-0.31までに下がっても、強酸溶液中の二酸化炭素の溶解度は約1割しか落ちない。
 図2に、pH2.8の酸性海水における、二酸化炭素ガスの溶解度と温度の実験データを示す。破線は、表層海水の全炭酸物質濃度(mmol/L)を示し、実線はpH2.8における海水が14Vol%COと平衡した全炭酸濃度と温度の関係を示す。図2より、海水は約40℃以下では、酸性のpH2.8においても、14Vol%のCOと接触すれば、COを吸収する性質を持っていることが分かる。通常の石炭火力発電所において、石炭は空気によって燃焼される。空気には、約21Vol%の酸素と約79Vol%の窒素が含まれ、空気燃焼では燃焼排ガス中の CO濃度は13~15Vol%程度まで上昇する。海水を用いて脱硫する場合には、通常海水温度は10℃~33℃であるため、図2より、脱硫塔内の脱硫酸性海水は、二酸化炭素ガスを吸収することが示唆される。従って、前述したpHの高い領域での余計な脱炭酸を避けるため、海水混合前に脱炭酸しやすい条件で脱炭酸する必要があると考えられる。本発明においては、上記のように、海水混合前に亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸処理工程が含まれる。
 図1に示すように、pH4付近を境界にして、pH4以下とpH4超の両側における二酸化炭酸の存在形態の違いによって脱炭酸のメカニズムが異なる。酸性側pH4以下における脱炭酸反応速度は、温度、空気量と曝気装置定数を一定にする場合には、液のpHによる影響を受けず、脱炭酸速度は液中の水和炭酸濃度に比例するため、炭酸濃度は一次反応式的に即ち対数的に減少していく。一方、pH4超~8の範囲内では、脱炭酸によってpHが上昇し、さらにpHの上昇による影響を受け、水和炭酸濃度の分率が迅速に降下し、脱炭酸速度が急激に減少する。
 脱硫塔内の脱硫酸性海水のpH値が2.2≦pH≦4.0の範囲に入れば、炭酸の存在形態は、99.97~99%の水和炭酸の形態で存在する。pH4以下であれば、炭酸の吸収と放散が海水のpH値に影響を与えない。本発明においては、pH4以下の条件で曝気することによって、脱硫海水中の二酸化炭素を迅速に駆除する最適な条件が得られ、高効率かつ迅速に水和二酸化炭素CO(aq)を脱硫海水から移出し、同時に亜硫酸水素イオンの酸化及び少量の遊離態亜硫酸を駆除でき、後続工程での混合と曝気が比較的低いpH値でも行なわれ得る。
 また、本発明者の知見によれば、脱硫酸性海水のpH値が2.2未満になると、僅かなpHの降下でも、多大な酸性物質量が必要となり、気液平衡となる脱硫処理済排ガス中亜硫酸ガスの残留濃度が急激に悪くなる。すなわち、装置の脱硫性能が急激に低下するので、pH2.2未満にするのは実用的なものではないことがわかった。したがって、脱硫塔内の脱硫酸性海水のpH値は、好適には、2.5~3.5である。
 次に、脱硫酸性海水のpH値は、2.2≦pH≦4.0の範囲において、脱硫酸性海水に空気を導入して、どの程度までに脱炭酸するかよいかについては、上述した脱炭酸のルートの問題に関わる。この問題においては脱炭酸の基準を決めなければならない。しかし、脱硫酸性海水に吸収される炭酸濃度は、気液接触装置の機器定数によるものであり、装置の種類、運転状況、排ガス状況などにも依存するので、不確定な条件を基準とするのは不適切である。本発明においては、表層海水中代表的な全炭酸物質濃度2.0mmol/Lを基準とした脱硫塔内脱炭酸率を導入し、種々検討した結果、脱炭酸率30~60%まで脱硫酸性海水中の二酸化炭素を追い出した後に未脱硫海水と混合して曝気すれば、脱硫塔内曝気量と後継工程曝気量の合計である全曝気量が極小値範囲となることを見出した。たとえば、脱硫酸性海水温度35℃においては、同量の海水を使って、同じ最終pH値6.8まで回復するための脱硫塔内曝気ありと脱硫塔内曝気なしの比較実験を行った。図3は、脱硫塔内脱炭酸率と全曝気量との関係を示し、ここでは、脱硫塔内脱炭酸なしの場合での曝気量を1とした。図3における破線は脱硫塔内曝気量の実験データを示し、点線は脱硫酸性海水(pH3)を混合比α=2で混合した混合海水の脱炭酸曝気量の実験データを示し、実線は、脱硫塔内での曝気(第1脱炭酸)と混合後の第2脱炭酸の2つの工程における全曝気量と脱炭酸率との関係を示す。図3より、脱硫塔内の第1脱炭酸工程における脱炭酸率が45%程度で、全曝気量が極小値となる結果が得られた。さらに検討を行なったところ、本発明によれば、第1脱炭酸工程での脱炭酸率を30~60%に、望ましくは35~55%、さらに好ましくは40~50%にすると、同一条件で、同一処理基準を達成するのに所要全曝気空気量の約35%を節約できる。この脱炭酸率は、必要な曝気量を調整すれば、容易に達成できる。
 この脱炭酸率は、次式によって脱硫酸性海水中の全炭酸物質濃度の測定値を換算して得られる。
脱炭酸率(η%)=[(2.0-脱硫酸性海水中の全炭酸物質濃度mmol/L)×100]/2.0
 すなわち、上記の第1脱炭酸処理工程は、亜硫酸ガスを吸収した後の海水のpH値2.2≦pH≦4.0において、海水に空気を導入して、上記式により算出される脱炭酸率30~60%となるように海水中の二酸化炭素を追い出すことにより行われる。
 海水中の全炭酸物質濃度の測定は、自動分析でも手動分析方法でも行える。曝気量の制御方式は、脱炭酸率データ結果より曝気量を調整することによって行い得る。通常、ボイラー排ガス運転条件の変動が頻繁ではないため、オンライン自動制御方式、手動制御方式等を採用し得る。
 上記のように、脱硫塔内の脱硫酸性海水は、脱炭酸を経ても海水のpHが変わらないので、海洋放流するためには、未脱硫海水と混合して処理される。ここでは、本発明者の知見によれば、もう一つの重要な問題がある。即ち、混合後海水のpH値が高すぎると、従来の無駄な曝気問題が発生し、他方、混合後海水のpH値が低すぎると、酸性物質の中和反応の当量点を下回ると、pH値の回復が永遠にできないこと、さらには亜硫酸ガスの再飛散の問題が生じる恐れがある。このような問題が発生しないために、本発明は、混合後の海水の適切なpH範囲が要求されること、さらには未脱硫海水と脱硫酸性海水の最適混合比が存在することになることを見出したものである。すなわち、本発明は、混合工程において、脱硫に供していない海水/亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前、最適には第1脱炭酸処理工程後、の海水のpH値に基づいて調整するものである。
 さらに、本発明においては、脱硫酸性海水について、pH2.2以上からpH4以下のpH範囲内における炭酸と亜硫酸のpHに対する依存特性を考慮して、未脱硫海水と脱硫酸性海水の最適混合比を次の実験式より求めることを見出した。すなわち、本発明の亜硫酸ガス含有排ガスの脱硫方法は、さらに、脱硫に供していない海水を亜硫酸ガスを吸収した海水に、酸化処理工程以前に混合する混合工程を含み、未脱硫海水/脱硫酸性海水の比αは、上記の亜硫酸ガスを吸収した海水のpH値に従い、次式:
209×pH-5.04 < α < 171×pH―3.52
(ここで、pH値は2.2≦pH≦4.0であり、αは単位がなく、体積比または重量比のいずれであってもよい。)
を充たすように決定される。
 図4に脱硫酸性海水pHと未脱硫海水/脱硫酸性海水の最適な混合比範囲を示す。この実験式に従えば、混合後の海水を、脱炭酸を行う最適なpH範囲とすることができる。もちろん、余剰海水があれば、海水処理装置後段或いは海水処理装置出口に合流すればよい。
 本発明の硫酸ガス含有排ガスの脱硫方法においては、上記の未脱硫海水(脱硫に供していない海水)の温度が、脱硫酸性海水(亜硫酸ガスを吸収した海水)の温度より2~20℃低く設定するのが好適である。
 海水脱硫の対象ボイラー排ガスは通常100℃超の温度を持ち、海水脱硫工程で気液接触によって亜硫酸ガスが処理されると同時に熱交換も行われ、脱硫処理後脱硫酸性海水の温度は数度ほど上昇する。脱硫に使用される海水量が多いほど、脱硫後海水温度の上昇幅が小さくなる。言い換えれば、上昇幅が脱硫に使う海水量による無駄さの指標として使われる。
 一方、発電所などの温排水は、日本では、取放水間の水温上昇幅(ΔT)は、7℃以下に、フランスでは、15℃以下に、イギリスでは、火力発電所において10~12℃に、アメリカでは、7~15℃に設定されている。温排水量はΔT上昇に伴い減少するので、水温上昇幅7℃の場合と比べて、15℃の場合には、冷却海水量が約二分の一になる。このような場合には、脱硫薬品を使用しない海水脱硫方式には、海水pHの回復に必要な水量が足りなくなるので、海から直接取水し、混合用海水に不足分を補う必要が生じる。
 本発明者の知見によれば、混合用海水の温度(T/℃)を脱硫酸性海水の温度(Td/℃)より2~20℃低く設定すれば、脱硫に使う海水量の無駄がなく、及び薬品を添加せず、海水のみで脱硫の実施が可能となる。
 本発明によれば、脱硫酸性海水のpH値は2.2≦pH≦4.0の範囲に調整したうえで、さらに混合用海水と脱硫酸性海水の温度差を2~20℃に入るように、補助制御因子とし、確実かつ簡便に、脱硫用海水の使用量を適切に維持でき、さらには薬品を添加せず海水のみで脱硫海水の完全処理が可能となる。
 本発明によれば、制御因子をpHとして、確実かつ簡素化で最適な脱炭酸条件で脱炭酸が行える。制御方式は、上記のように、好適には脱硫塔脱硫酸性海水出口のpH値より、未脱硫海水/脱硫酸性海水の比を求め、混合用海水量の調整を行う。通常は、ガス運転条件の変動が少ないため、オンライン自動制御方式でも、手動制御方式でも行える。
 海水脱硫装置は、ほとんどのケースでは、発電所やボイラーから海洋に復水する冷却海水が利用される。海水中の溶存酸素濃度は、温度の上昇によって大きく減少する。したがって、冷却途中での局部過熱によって、海水中の溶存酸素、溶解窒素が溶解度以下に減少し、逸出した酸素と窒素が大きな気泡になってしまう。気泡中の酸素が海水に再溶解するのに時間がかかるため、実質的には、冷却海水中の溶存酸素は低い濃度のままにとどまる。
 式(2)は、吸収された亜硫酸水素イオンが酸素によって硫酸に酸化されることを表す。海水脱硫の運転結果より、脱硫塔内には亜硫酸ガスを吸収する同時に、酸素が存在すれば同時にも亜硫酸水素イオンが硫酸に酸化される反応は円滑に進行することが分かった。特に海水中に亜硫酸の酸化反応に必要な触媒であるコバルト、ニッケル、鉄等の成分が数多く存在するため、酸化反応は迅速に行うことが観察された。亜硫酸の空気酸化実験データより、亜硫酸酸化反応においては、酸素ガスが海水に溶解する速度が律速となり、すでに溶解された酸素であれば、遅い気液反応を介さないで、比較的迅速に秒単位で進行することが分かった。
 酸化反応が進めば、従来の海水処理装置に相当する酸化処理工程の空気量が減らせるか、亜硫酸ガスの再飛散が発生する混合海水のpH値が低くなるというメリットがある。従って、脱硫塔脱硫用海水と海水混合用未脱硫海水に予め溶存酸素を飽和させておくのが好適である。したがって、脱硫に供していない海水と亜硫酸ガスを吸収した海水に予め微細気泡を導入して溶存酸素を飽和させておくのが好適である。本発明の好適な態様においては、脱硫塔脱硫用海水、そして海水混合用未脱硫海水に使用直前に微細気泡を導入して溶存酸素を飽和させることによって、吸収塔内にも酸化部にも亜硫酸水素イオンの酸化反応が迅速に行うことができ、結果的には、従来方式より酸化・曝気に所要動力費の削減に寄与し得る。
 従来方式では、曝気しないで混合専用のエリアを設けるのが通常である。上述の通り混合後に海水中亜硫酸水素イオンの酸化反応は秒単位の速度で迅速に進行するが、同時に海水中溶存酸素も急速に減少し、溶存酸素の濃度の低下に伴い酸化反応がほとんど進行しなくなる。一方、脱炭酸反応は、多量の曝気が必要である。亜硫酸の酸化反応が十分に進んでいないうちに多量曝気することは、従来亜硫酸ガスの再飛散の問題を生じる原因の一つである。亜硫酸ガスの再飛散は、海水のpHだけではなく、海水中の亜硫酸物質の濃度にも依存する。すなわち、亜硫酸を含有する海水における亜硫酸ガスの分圧については、例えば人間が感じる亜硫酸ガスの閾値分圧は、亜硫酸物質の濃度が低くなるとpH値が低下するという関係が成り立つ。
 本発明においては、好適には、従来方式における曝気なしの混合エリアを用いないで、酸化反応を優先的に促進するために酸化部を設けることもできる。具体的な手段としては、上記の混合後の脱硫海水の処理方法において、好適には混合地点から混合海水体積流量の1.5~3%の空気量を微細気泡として曝気強度0.1m/min以下で導入して、亜硫酸水素イオンを酸化する。脱硫酸性海水の導入口は未脱硫海水の下部に設置するのが好適であり、微細気泡径は50μm~1mm程度のものを用いるのが好適である。さらに、空気量以外に、曝気強度を空気の線速度0.1m/min以下にすることによって、局部的な大曝気量による空気の逸出が抑えられるので、酸化が不十分の間に大風量曝気されるという従来の難点も克服できる。
 さらに、酸化部における脱硫酸性海水の導入口は複数設ければ、混合が円滑に進行することができ、あるいは、脱硫酸性海水と一部の未脱硫海水を、例えば手前の地下配管で混合しておいてもよい。酸化部における脱硫酸性海水もしくは部分混合海水の導入口を未脱硫海水の下部に設置するのが好適である。
 酸化用空気量が極少量であるため、主に溶存酸素の補充にあたって、亜硫酸水素イオンの酸化反応を促進させ、そして亜硫酸物質の濃度が減少し、それに伴い海水中亜硫酸ガス分圧も大幅に減少するので、亜硫酸ガスの再飛散の恐れが低減される。さらに、最上層未脱硫海水の流れが暫く続き、亜硫酸ガスが大気へ逸出するのを抑える役割を果たす。
 本発明の好適な態様においては、上述した酸化部の構造において極少量の微細気泡の導入によって、従来方式で多発する亜硫酸ガスの再発散の問題が解決され、大風量での第2脱炭酸の実施が可能となる。混合海水は酸化処理工程後に、pH回復のために、通常の曝気方式により第2脱炭酸される。ここでは、大風量曝気を行うことによって、効率的かつ曝気装置がコンパクトになり、気泡径が粗く、散気管構造を簡易化できるメリットがある。
 亜硫酸ガス含有排ガスと気液接触させる海水に予め次亜塩素酸を含有させたあと、加温して効率よく反応させることにより、海水中に含まれる酸化剤を消費する物質を予め酸化することができ、それにより酸化処理工程において溶存酸素を効率よく亜硫酸の用いることができる。また、亜硫酸ガス吸収工程、脱炭酸工程及び酸化処理工程において、次亜塩素酸が残留させることにより、酸化剤として作用させ、亜硫酸の酸化を効率よく行うことができる。
また、混合工程において、亜硫酸ガスを吸収した海水と混合させる脱硫に供していない海水に予め次亜塩素酸を含有させたあと、加温して効率よく反応させることにより、海水中に含まれる酸化剤を消費する物質を予め酸化することができ、それにより酸化処理工程において溶存酸素を効率よく亜硫酸の用いることができる。また、酸化処理工程において、次亜塩素酸が残留させることにより、酸化剤として作用させ、亜硫酸の酸化を効率よく行うことが出来る。ボイラー冷却海水は、粗ろ過後に数ppm程度の次亜塩素酸塩等の殺菌剤を投入して殺菌されると、海水中の微生物が残骸となり、微細な浮遊物質を形成し浮上してしまう。直接に海洋に放流すると環境と景観に対して悪影響をもたらすこととなる。
 大風量曝気によって、曝気エリア内海水の流れとともに微小な浮遊物質が乱れて、固液分離が困難状態になることがある。本発明においては、溶存酸素の回復、そして浮遊固形分の浮上のために、海水体積流量の1.5~3%の空気量を微細気泡として曝気強度0.1m/min以下で曝気工程の後段に導入するのが好適である。空気量以外に、曝気強度を空気の線速度0.1m/min以下とすることにより、大曝気量による撹拌効果をなくし、浮遊固形分を浮上させ得る。ここでは、好適には微細気泡径は50μm~1mm程度のものを用い、海水処理装置の放流口にアンダーフローとオーバーフローの組み合わせる構造物を設けることによって、浮遊物質を簡単に固液分離できる。このようにして海水中の浮遊固形分を除去した排海水を放流し得る。
 曝気工程の後段に導入した微細気泡は、上昇速度が非常に遅く、海水中に長く滞留でき、海排水口まで溶存酸素の濃度が高く維持される。
 本発明によれば、海洋に対して環境負荷を極小に抑え、脱硫海水を完全処理してから海洋に戻すことができる。
 本発明の亜硫酸ガス含有排ガスの脱硫装置は、海水を導入して、亜硫酸ガス含有排ガスと気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、亜硫酸ガスを吸収した海水のpH値は、亜硫酸ガス吸収工程後から混合工程前において、2.2≦pH≦4.0に調整されるとともに、海水吸収処理後の排ガスを導出する排ガス脱硫塔;亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸部;第1脱炭酸処理後の海水中の亜硫酸水素イオンを酸化する酸化部;ならびに脱硫に供していない海水を亜硫酸ガスを吸収した海水に、酸化処理工程以前に混合する際に、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて調整して混合する混合部;を備えてなる。調整は、前記のように、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて予め設定した値とすることを含み、予め設定した値は、脱硫方法の運転に際して適宜設定しておく場合、さらには装置の設計時に予め亜硫酸ガス含有排ガスの性状及び量並びに海水の性状及び量を考慮して一定の数値を設定し、バルブ、バイパス等の省略し装置の簡略化を図る場合も含まれる。さらに、混合工程において、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて、亜硫酸ガス含有排ガスの量、海水の量のうち何れか一方又は両方を制御することを含む。
 脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比は、好適には第1脱炭酸処理後の海水のpH値に基づいて調整される。
 上記の排ガス脱硫塔、第1脱炭酸部、混合部ならびに酸化部は、上記の亜硫酸ガス含有排ガスの脱硫方法における各工程に対応するものであり、その1実施態様は後述の図5に示される。
 本発明の亜硫酸ガス含有排ガスの脱硫装置においては、さらに好適には、亜硫酸ガスを吸収した海水の導入口が、脱硫に供していない海水の導入口の下部に設置される。さらに、本発明の亜硫酸ガス含有排ガスの脱硫装置は、酸化処理後の海水を脱炭酸してpHを上昇させる第2脱炭酸処理部を備える。
 好適な1態様において、本発明の亜硫酸ガス含有排ガスの脱硫装置は、脱硫に供していない海水と亜硫酸ガスを吸収した海水に予め微細な気泡を導入して溶存酸素を飽和させる微細気泡発生部を備える。また、放流すべき海水中の浮遊固形分を除外するための、アンダーフローとオーバーフローを組み合わせた構造物を、第2脱炭酸処理部より後に備えてなるのが好適である。
 以下に、図5とともに本発明の1実施態様についてさらに説明する。図5において、亜硫酸ガス(二酸化硫黄)を含む排ガスは、排ガスダクトライン(11)を通して脱硫塔(12)に導入され、脱硫用海水は海水配管ライン(14)から脱硫塔(12)の塔上部より流下する。脱硫塔(12)内に複数の多孔板(25)を設け、必要があれば多孔板の間に充填剤を充填してもよい。多孔板(25)上に充填剤を用いる場合には、流下した海水を充填剤表面上にも滞留させ、海水と排ガスと充分に接触させることができる。洗浄された排ガス (13)は煙突を通して排出される。海水配管ライン(14)に予めに溶存酸素を飽和させるための微細気泡導入配管ライン(20)を設ける。微細気泡径は、好適には50μm~1mm程度である。
 脱硫塔(12)中の脱硫酸性海水のpH値は、配管ライン(21)に設置するpH計(26)によって測定し、自動制御方式もしくは手動制御方式によって、pHは2.2≦pH≦4.0の範囲内にコントロールされる。所定量の海水を脱硫塔(12)に導入し、脱硫塔水槽の底部に曝気配管(15)を設け、脱硫酸性海水に曝気用空気を導入し、脱硫酸性海水中の全炭酸物質を所定の脱炭酸率30~60%、望ましくは40~50%に除去するように空気配管(15)の曝気空気量を調整する(第1脱炭酸)。外付け型水槽内で曝気しても、曝気後排ガスを脱硫塔内に導入すれば、脱硫塔内曝気と同一の効果が得られる。ここで、配管ライン(21)は、金属又は樹脂製の管を連接して設けても良いが、水量が大きい場合には開渠(かいきょ)又は暗渠(あんきょ)を含む水路を設けてもよい。ただし、亜硫酸ガスの再飛散を防止するために、蓋を設けるなど密閉性を持たせることが好ましい。また、pH計(26)は硫酸ガス含有排ガスとの接触後であって、脱硫酸性海水と未脱硫海水を混合する前の脱硫酸性海水のpHを測定できる場所であればどこに設けても良く、脱硫塔(12)の内部や別に貯留槽又はpH測定槽を設けて、そこにpH計(26)を設けてもよい。
 その後、脱硫酸性海水は配管ライン(21)を経由して脱硫塔から流出し、複数分水配管(22)を経て海水処理装置の酸化部に導入する。この脱硫酸性海水のpH値によって決定された混合比で所定量の未脱硫海水は海水配管ライン(23)を通し複数分水管(24)にて海水処理装置(16)の酸化部に移送される。脱硫酸性海水の導入口の構造と未脱硫海水の導入口の構造は、ここに述べたような構造に限定されるものではなく、酸化部の前段に混合部を設けることもできるが、最上層に未脱硫海水が残るような構成とするのが好適である。
 酸化部底部に酸化用微細気泡配管ライン(17)を設置し、所定の混合海水体積流量の1.5~3%の空気量を超微細気泡として曝気強度0.1m/min以下で導入して、混合海水中の亜硫酸水素イオンを酸化するのが好適である。
 混合海水は酸化部を経て第2脱炭酸部に入り、ここでは、海水処理装置(16)の脱炭酸部の底部に散気管ライン(18)を設け、上記方法によって、第2脱炭酸部で通常の曝気方法で海水のpHを回復させる。続いて後段の仕上げ部に海水中の浮遊物質の固液分離と溶存酸素含有量の維持を行うために、仕上げ部の底部に微細気泡曝気配管ライン(19)を設け、微細な気泡を導入して、海水処理装置の放流口にアンダーフローとオーバーフローの組み合わせる構造物を設けることによって、浮遊した物質を海水処理装置外に流出しないように浮上させ、定期的にもしくは連続的に海水処理装置から除去するのが好適である。このようにして現地の環境保護基準を十分に満たすことができた海水(30)は、最終的に海水処理装置から海洋に放流され得る。
 亜硫酸ガス含有排ガスと気液接触させる海水に予め次亜塩素酸を含有さる塩素添加装置を設けて次亜塩素酸を含有させたあと、加温装置を設けて加温して効率よく反応させることにより、海水中に含まれる酸化剤を消費する物質を予め酸化することにより、酸化部において溶存酸素を効率よく亜硫酸の用いることができる。また、亜硫酸ガス吸収部、第一脱炭酸部及び酸化部において、次亜塩素酸が残留していた場合には、酸化剤として亜硫酸の酸化を効率よく行うことができる。加温は、わずかであってもよいが、好適には2~15℃、さらに好適には5~7℃である。
 また、混合部において、亜硫酸ガスを吸収した海水と混合させる脱硫に供していない海水に塩素添加装置を設けて予め次亜塩素酸を含有させたあと、加温装置により加温して効率よく反応させることにより、海水中に含まれる酸化剤を消費する物質を予め酸化することにより、酸化部において溶存酸素を効率よく亜硫酸の用いることができる。また、酸化部において、次亜塩素酸が残留していた場合には、酸化剤として亜硫酸の酸化を効率よく行うことができる。加温は、わずかであってもよいが、好適には2~15℃、さらに好適には5~7℃である。
 このように、本発明によれば、簡素化された制御方式で、脱硫酸性海水を適切なpH範囲内に入るように、脱硫塔での脱硫処理性を同時に配慮して脱硫用海水量を決め、脱硫塔内の曝気量を調整して最適な脱炭酸率範囲内で第1脱炭酸できる。また、亜硫酸ガス吸収工程後~混合工程前の間における脱硫酸性海水のpHによって最適な混合比を算出し、この混合比に従い未脱硫海水と混合した後に酸化、第2脱炭酸して脱硫海水を処理し、さらに好適には浮遊物質の分離と溶存酸素の維持の措置を行い、環境負荷が低く、設備コストとランニングコストが大幅に削減でき、経済性と実用性を持つ海水脱硫方法と装置を提供できる。
実施例1
 図5に示す海水脱硫装置を用いて、表1に示す条件下に、排ガス脱硫塔に海水を導入して、SO(800ppm)含有排ガスと向流方式で気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、海水吸収処理後の排ガス(SO50ppm)を排ガス脱硫塔より導出させた(脱硫率93%)。脱硫酸性海水のpHは2.9、第1脱炭酸処理工程での脱炭酸率は40%、未脱硫海水(33℃)/脱硫酸性海水(37℃)の混合比は3.28であった。
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、環境負荷が低く、設備コストとランニングコストが大幅に削減でき、経済性と実用性を持つ海水脱硫方法と装置を提供し得る。
 (11)  排ガスダクトライン
 (12)  脱硫塔
 (13)  洗浄された排ガス
 (14)  海水配管ライン
 (15)  曝気配管
 (16)  海水処理装置
 (17)  酸化用微細気泡配管ライン
 (18)  散気管ライン
 (19)  微細気泡曝気配管ライン
 (20)  微細気泡導入配管ライン
 (21)  配管ライン
 (22)  複数分水配管
 (23)  海水配管ライン
 (24)  複数分水管
 (25)  多孔板
 (26)  pH計
 (30)  放流海水

Claims (25)

  1.  排ガス脱硫塔に海水を導入して、亜硫酸ガス含有排ガスと気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、海水吸収処理後の排ガスを該排ガス脱硫塔より導出する亜硫酸ガス吸収工程;
     亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸処理工程;
     第1脱炭酸処理後の海水中の亜硫酸水素イオンを酸化する酸化処理工程;ならびに
     脱硫に供していない海水を亜硫酸ガスを吸収した海水に、酸化処理工程以前に混合する混合工程;を含み、
     亜硫酸ガス吸収工程後から混合工程前の海水のpH値は、2.2≦pH≦4.0であり、かつ
     混合工程において、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて調整する、ことを特徴とする亜硫酸ガス含有排ガスの脱硫方法。
  2.  排ガス脱硫塔に海水を導入して、亜硫酸ガス含有排ガスと気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、海水吸収処理後の排ガスを該排ガス脱硫塔より導出する亜硫酸ガス吸収工程;
     亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸処理工程;
     第1脱炭酸処理後の海水中の亜硫酸水素イオンを酸化する酸化処理工程;及び
     脱硫に供していない海水と亜硫酸ガスを吸収した海水とを、酸化処理工程以前に混合する混合工程;を含み、
     亜硫酸ガス吸収工程後から混合工程前の海水のpH値は、2.2≦pH≦4.0であり、かつ
     混合工程において、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて予め設定した値とすることを特徴とする亜硫酸ガス含有排ガスの脱硫方法。
  3.  排ガス脱硫塔に海水を導入して、亜硫酸ガス含有排ガスと気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、海水吸収処理後の排ガスを該排ガス脱硫塔より導出する亜硫酸ガス吸収工程;
     亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸処理工程;
     第1脱炭酸処理後の海水中の亜硫酸水素イオンを酸化する酸化処理工程;及び
     脱硫に供していない海水と亜硫酸ガスを吸収した海水とを、酸化処理工程以前に混合する混合工程;を含み、
     亜硫酸ガス吸収工程後から混合工程前の海水のpH値は、2.2≦pH≦4.0であり、かつ
     混合工程において、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて制御することを特徴とする亜硫酸ガス含有排ガスの脱硫方法。
  4.  第1脱炭酸処理工程において、海水に空気を導入して、全炭酸物質濃度2.0mmol/Lを基準として、下記式
    脱炭酸率(η%)=[(2.0-脱硫酸性海水中の全炭酸物質濃度mmol/L)×100]/2.0
    により算出される脱炭酸率30~60%となるように海水中の二酸化炭素を追い出す、請求項1~3のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫方法。
  5.  脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、第1脱炭酸処理工程後の海水のpH値に基づいて調整する請求項1~4のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫方法。
  6.  混合工程において、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比(α)は、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて、次式:
    209×pH-5.04 < α < 171×pH―3.52
    (ここで、pH値は2.2≦pH≦4.0であり、αは単位がなく、体積比または重量比のいずれであってもよい。)
    を充たす、請求項1~5のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫方法。
  7.  脱硫に供していない海水の温度を、亜硫酸ガスを吸収した海水の温度より2~20℃低く設定する請求項1~6のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫方法。
  8.  脱硫に供していない海水と亜硫酸ガスを吸収した海水に予め微細気泡を導入して溶存酸素を飽和させる請求項1~7のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫方法。
  9.  亜硫酸ガスを吸収した海水の導入口が、脱硫に供していない海水の導入口の下部に設置される請求項1~8のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫方法。
  10.  混合された海水体積流量の1.5~3%の空気を微細気泡として曝気強度0.1m/min以下で導入して、亜硫酸水素イオンを酸化する請求項1~9のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫方法。
  11.  さらに、酸化処理後の海水を脱炭酸してpHを上昇させる第2脱炭酸処理工程を含む請求項1~10のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫方法。
  12.  第2脱炭酸工程後に、海水体積流量の1.5~3%の空気を微細気泡として曝気強度0.1m/min以下で導入して、溶存酸素を増加させる請求項11に記載の亜硫酸ガス含有排ガスの脱硫方法。
  13.  微細気泡径が50μm~1mmである請求項8、10または12に記載の亜硫酸ガス含有排ガスの脱硫方法。
  14.  第2脱炭酸工程後に、アンダーフローとオーバーフローを組み合わせた構造物により放流すべき海水中の浮遊固形分を除外した後に、海水を放流する請求項11~13のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫方法。
  15.  亜硫酸ガス含有排ガスと気液接触させる海水に予め次亜塩素酸を含有させたあと、加温する請求項1~14のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫方法。
  16.  混合工程において、亜硫酸ガスを吸収した海水と混合させる脱硫に供していない海水に予め次亜塩素酸を含有させたあと、加温する請求項1~14のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫方法。
  17.  海水を導入して、亜硫酸ガス含有排ガスと気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、亜硫酸ガスを吸収した海水のpH値は、亜硫酸ガス吸収工程後から混合工程前において、2.2≦pH≦4.0に調節されるとともに、海水吸収処理後の排ガスを導出する排ガス脱硫塔;
     亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸部;
     第1脱炭酸処理後の海水中の亜硫酸水素イオンを酸化する酸化部;ならびに
     脱硫に供していない海水を亜硫酸ガスを吸収した海水に、酸化処理工程以前に混合する際に、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて調整する混合部;
    を備えてなる亜硫酸ガス含有排ガスの脱硫装置。
  18. 海水を導入して、亜硫酸ガス含有排ガスと気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、亜硫酸ガスを吸収した海水のpH値は、亜硫酸ガス吸収工程後から混合工程前において、2.2≦pH≦4.0に調節されるとともに、海水吸収処理後の排ガスを導出する排ガス脱硫塔;
     亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸部;
     第1脱炭酸処理後の海水中の亜硫酸水素イオンを酸化する酸化部;ならびに
     脱硫に供していない海水を亜硫酸ガスを吸収した海水に、酸化処理工程以前に混合する際に、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて予め設定した値とする混合部;
    を備えてなる亜硫酸ガス含有排ガスの脱硫装置。
  19.   海水を導入して、亜硫酸ガス含有排ガスと気液接触させて排ガス中の亜硫酸ガスを海水中に吸収処理し、亜硫酸ガスを吸収した海水のpH値は、亜硫酸ガス吸収工程後から混合工程前において、2.2≦pH≦4.0に調節されるとともに、海水吸収処理後の排ガスを導出する排ガス脱硫塔;
     亜硫酸ガスを吸収した海水を脱炭酸する第1脱炭酸部;
     第1脱炭酸処理後の海水中の亜硫酸水素イオンを酸化する酸化部;ならびに
     脱硫に供していない海水を亜硫酸ガスを吸収した海水に、酸化処理工程以前に混合する際に、脱硫に供していない海水と亜硫酸ガスを吸収した海水の混合比を、亜硫酸ガス吸収工程後から混合工程前の海水のpH値に基づいて制御する混合部;
    を備えてなる亜硫酸ガス含有排ガスの脱硫装置。
  20.  亜硫酸ガスを吸収した海水の導入口が、脱硫に供していない海水の導入口の下部に設置される請求項17~19のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫装置。
  21.  さらに、酸化処理後の海水を脱炭酸してpHを上昇させる第2脱炭酸処理部を備えた請求項17~20のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫装置。
  22.  脱硫に供していない海水と亜硫酸ガスを吸収した海水に予め微細気泡を導入して溶存酸素を飽和させる微細気泡発生部を備えた請求項17~21のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫装置。
  23.  放流すべき海水中の浮遊固形分を除外するための、アンダーフローとオーバーフローを組み合わせた構造物を、第2脱炭酸処理部より後に備えてなる請求項17~22のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫装置。
  24.  亜硫酸ガス含有排ガスと気液接触させる海水に予め次亜塩素酸を含有させる塩素添加部と、次亜塩素酸を含有させた海水を加温する加温部を有する請求項17~23のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫装置。
  25.  混合工程において、亜硫酸ガスを吸収した海水と混合させる脱硫に供していない海水に予め次亜塩素酸を含有させる塩素添加部と、次亜塩素酸を含有させた海水を加温する加温部を有する請求項17~24のいずれか1項に記載の亜硫酸ガス含有排ガスの脱硫装置。
PCT/JP2014/084687 2013-12-27 2014-12-26 亜硫酸ガス含有排ガスの脱硫方法および脱硫装置 WO2015099171A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-273546 2013-12-27
JP2013273546 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015099171A1 true WO2015099171A1 (ja) 2015-07-02

Family

ID=53479009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084687 WO2015099171A1 (ja) 2013-12-27 2014-12-26 亜硫酸ガス含有排ガスの脱硫方法および脱硫装置

Country Status (2)

Country Link
JP (1) JP6462359B2 (ja)
WO (1) WO2015099171A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066762A1 (ja) * 2018-09-28 2020-04-02 三菱日立パワーシステムズ株式会社 水処理システム及び水処理方法
CN113982867A (zh) * 2021-10-29 2022-01-28 中国船舶重工集团海装风电股份有限公司 一种海上风力发电机组塔底有害气体导出装置及方法
CN115445409A (zh) * 2022-08-24 2022-12-09 无锡市远洲环保科技有限公司 一种具有加药剂量可调功能的酸碱废气处理装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106029206A (zh) * 2014-09-02 2016-10-12 富士电机株式会社 废气处理装置及废气处理装置的排水处理方法
EP3144281A1 (en) * 2015-09-17 2017-03-22 General Electric Technology GmbH Integrated air distributor arrangement for effluent seawater treatment basin
JP2017077537A (ja) * 2015-10-21 2017-04-27 月島機械株式会社 硫黄吸収溶液の処理装置及び処理方法
JP6953877B2 (ja) * 2017-08-08 2021-10-27 株式会社Ihi 二酸化炭素固定方法及び装置と排煙脱硫設備

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63319026A (ja) * 1987-06-17 1988-12-27 ベクテル グループ,インコーポレイティド 煙道ガスの脱硫方法及び装置
JPH05309376A (ja) * 1992-05-13 1993-11-22 Japan Organo Co Ltd 液体中和装置
JPH09173769A (ja) * 1995-09-23 1997-07-08 Lentjes Bischoff Gmbh 廃ガスから二酸化硫黄を分離除去する方法
JP2000288339A (ja) * 1999-04-08 2000-10-17 Osaka Gas Co Ltd 脱硫方法
JP2007125474A (ja) * 2005-11-01 2007-05-24 Nippon Kankyo Kikaku Kk 海水による排ガス脱硫方法及び排ガス脱硫装置
JP2010162510A (ja) * 2009-01-19 2010-07-29 Ihi Corp 海水脱硫装置
WO2010116482A1 (ja) * 2009-04-06 2010-10-14 三菱重工業株式会社 海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システム
JP2010240624A (ja) * 2009-04-09 2010-10-28 Mitsubishi Heavy Ind Ltd 排煙脱硫装置及び排ガス処理方法
JP2012236146A (ja) * 2011-05-11 2012-12-06 Mitsubishi Heavy Ind Ltd エアレーション装置及びこれを備えた海水排煙脱硫装置
JP2013154330A (ja) * 2012-01-31 2013-08-15 Mitsubishi Heavy Ind Ltd 酸化槽、海水排煙脱硫システムおよび発電システム
JP2013158720A (ja) * 2012-02-06 2013-08-19 Mitsubishi Heavy Ind Ltd 脱硫海水処理システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259365B2 (ja) * 2008-12-08 2013-08-07 株式会社東芝 浄水場におけるpH制御装置
JP2010214248A (ja) * 2009-03-13 2010-09-30 Toshiba Corp 固液分離システム

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63319026A (ja) * 1987-06-17 1988-12-27 ベクテル グループ,インコーポレイティド 煙道ガスの脱硫方法及び装置
JPH05309376A (ja) * 1992-05-13 1993-11-22 Japan Organo Co Ltd 液体中和装置
JPH09173769A (ja) * 1995-09-23 1997-07-08 Lentjes Bischoff Gmbh 廃ガスから二酸化硫黄を分離除去する方法
JP2000288339A (ja) * 1999-04-08 2000-10-17 Osaka Gas Co Ltd 脱硫方法
JP2007125474A (ja) * 2005-11-01 2007-05-24 Nippon Kankyo Kikaku Kk 海水による排ガス脱硫方法及び排ガス脱硫装置
JP2010162510A (ja) * 2009-01-19 2010-07-29 Ihi Corp 海水脱硫装置
WO2010116482A1 (ja) * 2009-04-06 2010-10-14 三菱重工業株式会社 海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システム
JP2010240624A (ja) * 2009-04-09 2010-10-28 Mitsubishi Heavy Ind Ltd 排煙脱硫装置及び排ガス処理方法
JP2012236146A (ja) * 2011-05-11 2012-12-06 Mitsubishi Heavy Ind Ltd エアレーション装置及びこれを備えた海水排煙脱硫装置
JP2013154330A (ja) * 2012-01-31 2013-08-15 Mitsubishi Heavy Ind Ltd 酸化槽、海水排煙脱硫システムおよび発電システム
JP2013158720A (ja) * 2012-02-06 2013-08-19 Mitsubishi Heavy Ind Ltd 脱硫海水処理システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066762A1 (ja) * 2018-09-28 2020-04-02 三菱日立パワーシステムズ株式会社 水処理システム及び水処理方法
CN113982867A (zh) * 2021-10-29 2022-01-28 中国船舶重工集团海装风电股份有限公司 一种海上风力发电机组塔底有害气体导出装置及方法
CN113982867B (zh) * 2021-10-29 2023-03-17 中国船舶重工集团海装风电股份有限公司 一种海上风力发电机组塔底有害气体导出装置及方法
CN115445409A (zh) * 2022-08-24 2022-12-09 无锡市远洲环保科技有限公司 一种具有加药剂量可调功能的酸碱废气处理装置

Also Published As

Publication number Publication date
JP6462359B2 (ja) 2019-01-30
JP2015142912A (ja) 2015-08-06

Similar Documents

Publication Publication Date Title
JP6462359B2 (ja) 亜硫酸ガス含有排ガスの脱硫方法および脱硫装置
RU2435628C2 (ru) Способ обработки отходящего газа
CN102755827B (zh) 一种电石渣-石膏法烟气脱硫工艺及装置
EP3456398B1 (en) Flue gas condensation water extraction system
JP4446309B2 (ja) 海水による排ガス脱硫装置
JP5773687B2 (ja) 海水排煙脱硫システムおよび発電システム
WO2010116482A1 (ja) 海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システム
JP6313945B2 (ja) 海水脱硫用散気装置及びそれを備えた海水脱硫装置、並びに水質改善方法
US9321025B2 (en) Oxidation control for improved flue gas desulfurization performance
JP2013086054A (ja) 海水利用の湿式石灰石−石膏法脱硫装置
TWI519338B (zh) Desulphurization seawater treatment system
WO2013115108A1 (ja) 酸化槽、海水排煙脱硫システムおよび発電システム
TWI392655B (zh) Desulfurization seawater treatment method
CN100336579C (zh) 气体净化方法和装置
JP2005152745A (ja) 湿式排煙脱硫方法及び装置
JP6742830B2 (ja) 傾斜曝気と混合自動回復を備える海水プラント
JP6837355B2 (ja) 脱硫方法および脱硫装置
CN101642667B (zh) 一种利用冷却塔循环水作为烟气脱硫系统用水的方法
KR101626532B1 (ko) 석회석을 이용한 해수의 처리장치 및 처리방법
KR102096900B1 (ko) 해수탈황 공정의 이산화탄소 포집장치 및 포집방법
JP3748861B2 (ja) 複分解法による排ガス脱硫方法
JP5991664B2 (ja) 排煙脱硫システム
CN108025934A (zh) 用于废海水处理池的集成的空气分配器布置
CN201634520U (zh) 可移动式海水脱硫工业试验海水恢复装置
JP7065161B2 (ja) 脱硫方法および脱硫装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875222

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201604903

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14875222

Country of ref document: EP

Kind code of ref document: A1