WO2010116482A1 - 海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システム - Google Patents

海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システム Download PDF

Info

Publication number
WO2010116482A1
WO2010116482A1 PCT/JP2009/057072 JP2009057072W WO2010116482A1 WO 2010116482 A1 WO2010116482 A1 WO 2010116482A1 JP 2009057072 W JP2009057072 W JP 2009057072W WO 2010116482 A1 WO2010116482 A1 WO 2010116482A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
dilution
sulfur
oxidation tank
absorbing
Prior art date
Application number
PCT/JP2009/057072
Other languages
English (en)
French (fr)
Inventor
知雄 秋山
進 沖野
英次 越智
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to MYPI2011004786A priority Critical patent/MY169823A/en
Priority to CN200980158577.2A priority patent/CN102387850B/zh
Priority to PCT/JP2009/057072 priority patent/WO2010116482A1/ja
Priority to JP2011508123A priority patent/JPWO2010116482A1/ja
Publication of WO2010116482A1 publication Critical patent/WO2010116482A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Definitions

  • the present invention relates to a seawater desulfation treatment apparatus for releasing sulfur content-absorbing seawater pH and COD generated by desulfurization of sulfur content such as sulfur oxides in exhaust gas from an industrial combustion facility using seawater as a level at which seawater can be discharged.
  • the present invention relates to a method for treating desulfurized seawater and a power generation system to which the method is applied.
  • this seawater flue gas desulfurization apparatus is lower in cost than the lime-gypsum method, it is used particularly in thermal power plants where it is difficult to stably supply limestone in coastal areas. Further, since a large amount of seawater is used as cooling water in the condenser of the boiler, a part of the seawater effluent discharged from the condenser and heated is supplied to the desulfurization device, and used as an absorption liquid for seawater desulfurization. It is used to remove SO 2 in exhaust gas.
  • FIG. 8 is a diagram simply illustrating a configuration of a power generation system including a seawater desulfation treatment apparatus using conventional seawater.
  • a power generation system 100 using a conventional seawater flue gas desulfurization device using seawater is heat-exchanged between a boiler 12 that is burned by a burner (not shown) using preheated air 11 and the boiler 12.
  • the dust collector 14 for removing the dust in the exhaust gas 13 to be discharged, and the sulfur content in the exhaust gas 13 is absorbed into the absorption seawater 15A and desulfurized, and the sulfur content absorbed in a high concentration is generated.
  • the seawater desulfation treatment apparatus 101 includes a flue gas desulfurization absorption tower 20 that absorbs SO 2 in the exhaust gas 13 into the absorption sea water 15A and recovers it as sulfurous acid (H 2 SO 3 ) and sulfuric acid (H 2 SO 4 ), It comprises an oxidation tank 21 that performs a water quality recovery process on the sulfur content-absorbing seawater 16A containing a high concentration of sulfur content discharged from the flue gas desulfurization absorption tower 20.
  • the exhaust gas 13 discharged from the boiler 12 is used as a heat source for generating steam, and a generator (not shown) of a steam turbine (not shown) is driven using the generated steam to generate power.
  • the exhaust gas 13 is sent to a flue gas denitration device (not shown) and denitrated, and then sent to a dust collector 14 to remove the dust in the exhaust gas 13.
  • the exhaust gas 13 removed by the dust collector 14 is supplied into the flue gas desulfurization absorption tower 20 by the induction fan 22.
  • the sulfur content in the exhaust gas 13 is desulfurized by using a part of the seawater 15 as the absorption seawater 15 ⁇ / b> A by the pump 24. ing. That is, the exhaust gas 13 produced by burning fossil fuel contains sulfur, which is sulfur oxide (SOx) in the form of SO 2 or the like.
  • SOx sulfur oxide
  • the exhaust gas 13 and the absorption seawater 15A supplied via the seawater supply line L1 are brought into gas-liquid contact in the flue gas desulfurization absorption tower 20, and a reaction shown in the following formula occurs.
  • Desulfurization is performed by absorbing the sulfur content such as sulfur oxide (SOx) contained in the form of sulfurous acid gas (SO 2 ) into the absorption seawater 15A.
  • the purified gas 26 desulfurized in the desulfurization absorption tower 20 is discharged into the atmosphere from the chimney 27 through the purified gas discharge line L2.
  • the sulfur-absorbing seawater 16A discharged from the flue gas desulfurization absorption tower is discharged from the flue gas desulfurization absorption tower 20 via the sulfur content-absorbing seawater discharge line L3.
  • the sulfur-absorbing seawater 16A discharged from the flue gas desulfurization absorption tower needs to reduce the concentration of sulfurous acid as a COD component and increase the pH and dissolved oxygen concentration before being released to the sea 25 or reused. is there. Therefore, the sulfur-absorbing seawater 16A discharged from the flue gas desulfurization absorption tower containing a high concentration of sulfur is supplied to the oxidation tank 21 via the sulfur-absorbing seawater discharge line L3, and is used for oxidation in the oxidation tank 21.
  • Air 30 is supplied from the air blower 29 through the air diffuser 31 into the oxidation tank 21 from the nozzle 32 and brought into gas-liquid contact with the sulfur-absorbing seawater 28 in the oxidation tank to cause a reaction of the following formula: While reducing the concentration of sulfurous acid as a component, the pH and dissolved oxygen concentration are increased.
  • a part of the seawater 15 supplied by the seawater supply line L1 is mixed and diluted as the first dilution seawater 15B by the first seawater branch line L4 to increase the pH of the sulfur-absorbing seawater 28 in the oxidation tank. This prevents re-emission of SO 2 .
  • the water content of the sulfur-absorbing seawater 16B at the inlet of the oxidation tank is gradually recovered by the oxidation and decarboxylation of bisulfite ions (HSO 3 ⁇ ). It becomes sulfur content absorption seawater 16C.
  • the composition of the sulfur-absorbing seawater 28 in the oxidation tank changes continuously, it indicates the entire seawater having a certain range in its composition.
  • the remaining seawater 15 is oxidized as the second dilution seawater 15C by the second seawater branch line L5 before leaving the oxidation tank 21 and being discharged into the sea 25.
  • the tank 21 is mixed and diluted with sulfur-absorbing seawater 28 in the oxidation tank.
  • COD reduction and pH improvement of the sulfur-absorbing seawater 16C discharged from the oxidation tank outlet are efficiently performed, and water quality recovery is achieved.
  • the water quality recovery seawater 33 by which water quality was recovered is discharged
  • the sulfur-absorbing seawater 16A discharged from the flue gas desulfurization absorption tower is used as the first dilution seawater. It is mixed and diluted in 15B and oxidation tank 21 and aerated to oxidize hydrogen sulfite ion (HSO 3 ⁇ ) and render it harmless. At the same time, the dissolved oxygen concentration is improved, and further decarboxylated and discharged from the flue gas desulfurization absorption tower. After the pH of the sulfur-absorbing seawater 16A to be improved, it is discharged to the sea 25 (Patent Documents 1 to 3).
  • the supply amount of the seawater 15A to the flue gas desulfurization absorption tower 20 increases, the pump capacity increases, and the equipment cost and the running cost increase. Therefore, the supply amount of the absorption seawater 15A to the flue gas desulfurization absorption tower 20 It is desirable to reduce as much as possible.
  • the acid-alkali equivalent ratio refers to the ratio of the acid equivalent of the absorbed sulfur content to the alkali equivalent of seawater.
  • the acid equivalent due to the absorbed sulfur content is the concentration of hydrogen ions (H + ) that can be generated when the sulfurous acid (H 2 SO 3 ) and sulfuric acid (H 2 SO 4 ) generated by the absorbed sulfur content are completely dissociated.
  • the alkali equivalent of seawater is equal to the alkalinity and refers to the acid equivalent consumed when titrating seawater to pH 4.8 with hydrochloric acid.
  • the present invention optimizes the amount of seawater used to dilute sulfur-absorbing seawater desulfurized using seawater, thereby preventing re-emission of SO 2 harmful to the human body and water quality that can be discharged into seawater. It is an object of the present invention to provide a low-cost and safe seawater desulfation treatment apparatus, a seawater desulfurization system, and a method for treating desulfurized seawater, which simultaneously achieve the above.
  • the first invention of the present invention for solving the above-mentioned problems is exhaust gas desulfurization in which exhaust gas is brought into contact with seawater, sulfur oxides in the exhaust gas are removed and recovered as sulfur-absorbing seawater containing sulfurous acid.
  • a seawater supply line for supplying water to the oxidation tank, and an oxidation tank for mixing a part of the seawater with sulfur-absorbing seawater discharged from the flue gas desulfurization absorption tower as first dilution seawater.
  • a seawater desulfation treatment apparatus comprising: a discharge line that discharges water-quality-recovered seawater diluted with sea
  • the acid equivalent derived from the absorbed sulfur content is characterized in that the first dilution seawater is supplied so that a ratio of seawater to an alkali equivalent is 0.83 or more and 1.2 or less.
  • a detector for detecting a bisulfite ion concentration in the sulfur-absorbing seawater discharged from the flue gas desulfurization absorption tower on the sulfur-absorbing seawater discharge line It exists in the seawater desulfation processing apparatus characterized by having.
  • a detector for detecting an alkali equivalent of the first dilution seawater is provided on the first dilution seawater supply line. It is in the seawater desulfation treatment equipment.
  • a fifth invention is the seawater desulfation treatment apparatus according to any one of the first to fourth inventions, wherein the seawater is drained from a condenser.
  • the sixth invention uses a boiler, exhaust gas discharged from the boiler as a heat source for generating steam, a steam turbine that drives a generator using the generated steam, and water condensed in the steam turbine.
  • a condenser that collects and circulates, a flue gas denitration device that denitrates exhaust gas discharged from the boiler, a dust collector that removes soot in the exhaust gas, and And a chimney that discharges the purified gas desulfurized by the flue gas desulfurization apparatus to the outside.
  • the seventh aspect of the invention is to wash the sulfur content in the exhaust gas in contact with seawater, to oxidize the sulfur-absorbing seawater that has absorbed the sulfur content in the exhaust gas after washing, to oxidize the sulfurous acid and to perform decarboxylation treatment, to restore the water quality Then, in the method for treating the desulfurized seawater to be discharged, after mixing a part of the seawater with the sulfur-absorbing seawater as the first dilution seawater in the dilution mixing tank at the oxidation tank inlet, the sulfur content absorption at the oxidation tank inlet Seawater is supplied to the oxidation tank, sulfur content absorption at the oxidation tank inlet is oxidized and sulfurous acid in the seawater is oxidized and decarboxylated, and the sulfur content at the oxidation tank outlet after the oxidation / decarbonation treatment is discharged from the oxidation tank.
  • the acid equivalent of the absorbed sulfur content in the seventh invention, immediately after mixing the first dilution seawater and the sulfur-absorbing seawater discharged from the flue gas desulfurization absorption tower, the acid equivalent of the absorbed sulfur content
  • the first dilution seawater is supplied so that a ratio of seawater to an alkali equivalent is 0.83 or more and 1.2 or less.
  • the ninth invention is the desulfurized seawater treatment method according to the seventh or eighth invention, wherein the seawater is drained from a condenser.
  • a part of the seawater is supplied in advance to the sulfur-absorbing seawater generated by seawater desulfurization in the flue gas desulfurization absorption tower via the first dilution seawater supply line, and the sulfur absorption is thereby performed.
  • Seawater is diluted, the acid / alkali equivalent ratio in the sulfur-absorbing seawater is lowered, the pH of the sulfur-absorbing seawater is increased, and the oxidation reaction rate can be improved.
  • diluting the sulfur-absorbing seawater with the first dilution seawater to reduce the SO 2 partial pressure, it is possible to prevent re-emission of SO 2 harmful to the human body.
  • the sulfur-absorbing seawater and the first dilution seawater in the oxidation tank there is a seawater amount minimum of sulfur absorbing seawater to flow into the oxidation tank mixed, high sulfite concentrations in sea water of the oxidation tank, and the pH decrease in the re-emission or reaction rate constants of SO 2
  • the CO 2 partial pressure of the sulfur-absorbing seawater in the oxidation tank is maintained at a high level. Can be done.
  • the pH of the water quality recovery seawater can be efficiently increased, and COD can be reduced.
  • the oxidation tank can be downsized while maintaining the pH and COD of the water quality recovered seawater, and the seawater can be discharged, and the cost of the oxidation facility can be reduced.
  • FIG. 1 is a schematic diagram showing the configuration of a power generation system to which a seawater desulfation treatment apparatus according to an embodiment of the present invention is applied.
  • FIG. 2 is a diagram showing the relationship between the pH of seawater and the CO 2 partial pressure.
  • FIG. 3 is a graph showing the relationship between the pH of sulfur-absorbing seawater and the oxidation reaction rate constant of bisulfite ions in the sulfur-absorbing seawater.
  • FIG. 4 is a diagram showing the relationship between the acid-alkali equivalent ratio of the sulfur-absorbing seawater at the inlet of the oxidation tank and the pH of the sulfur-absorbing seawater at the inlet of the oxidation tank, the sulfur-absorbing seawater at the outlet of the oxidation tank, and the water quality recovery seawater.
  • FIG. 1 is a schematic diagram showing the configuration of a power generation system to which a seawater desulfation treatment apparatus according to an embodiment of the present invention is applied.
  • FIG. 2 is a diagram showing the relationship between the pH of seawater and the
  • FIG. 5 is a diagram showing the relationship between the acid-alkali equivalent ratio of the sulfur-absorbing seawater at the oxidation tank inlet and the COD concentration in the sulfur-absorbing seawater and water-recovered seawater at the oxidation tank outlet.
  • FIG. 6 is a diagram showing the relationship between the acid-alkali equivalent ratio of the oxidation tank inlet seawater and the maximum SO 2 partial pressure of the sulfur-absorbing seawater in the oxidation tank.
  • FIG. 7 is a diagram showing the relationship between the acid-alkali equivalent ratio of the oxidation tank inlet seawater and the total carbonic acid concentration of the sulfur-absorbing seawater and water-recovered seawater at the oxidation tank outlet.
  • FIG. 8 is a diagram simply illustrating a configuration of a power generation system including a seawater desulfation treatment apparatus using conventional seawater.
  • FIG. 1 is a schematic diagram showing the configuration of a power generation system to which a seawater desulfation treatment apparatus according to an embodiment of the present invention is applied.
  • FIG. 1 is a schematic diagram showing the configuration of a power generation system to which a seawater desulfation treatment apparatus according to an embodiment of the present invention is applied.
  • a power generation system 40 to which a seawater desulfation treatment apparatus 10 according to the present embodiment is applied is a boiler that burns with a burner (not shown) using air 11 preheated by an air preheater (AH) 41.
  • AH air preheater
  • seawater desulfurization oxidizing apparatus 10 for performing a process, in which the exhaust gas 13 in seawater desulfurization oxidizing apparatus 10 consists of a chimney 27 for discharging the purified gas 26 desulfurized outside.
  • the air 11 supplied from the outside is supplied to the air preheater 41 by the pushing fan 48 and preheated.
  • Fuel (not shown) and air 11 preheated by the air preheater 41 are supplied to the burner, and the fuel is combusted in the boiler 12 to generate steam 42 for driving the steam turbine 44.
  • fuel (not shown) used in the present embodiment is supplied from, for example, an oil tank.
  • the exhaust gas 13 generated by combustion in the boiler 12 is sent to a flue gas denitration device 47. Moreover, when there is no nitrogen oxide (NOx) emission regulation, the installation of the flue gas denitration device 47 may be omitted. At this time, the exhaust gas 13 exchanges heat with the water 45 discharged from the condenser 46 and is used as a heat source for generating steam 42, and the generated steam 42 drives the generator 43 of the steam turbine 44. The water 45 condensed by the steam turbine 44 is returned to the boiler 12 and circulated.
  • NOx nitrogen oxide
  • the exhaust gas 13 discharged from the boiler 12 and guided to the flue gas denitration device 47 is denitrated in the flue gas denitration device 47, exchanges heat with the air 11 by the air preheater 41, and then is sent to the dust collector 14.
  • the dust in the exhaust gas 13 is removed.
  • the exhaust gas 13 removed by the dust collector 14 is supplied into the flue gas desulfurization absorption tower 20 by the induction fan 22.
  • the exhaust gas 13 is heat-exchanged with the purified gas 26 desulfurized and discharged by the flue gas desulfurization absorption tower 20 by the heat exchanger 49 and then supplied into the flue gas desulfurization absorption tower 20.
  • the exhaust gas 13 may be directly supplied to the flue gas desulfurization absorption tower 20 without exchanging heat with the purified gas 26 by the heat exchanger 49.
  • the seawater desulfation treatment device 10 brings the exhaust gas 13 into contact with a part of the seawater 15A for absorption of the seawater 15 so that the The flue gas desulfurization absorption tower 20 which removes sulfur oxides (SOx) and collects as sulfur content absorption seawater 16A containing sulfurous acid (H 2 SO 3 ), and the sulfur content absorption seawater discharged from the flue gas desulfurization absorption tower
  • the oxidation tank 21 that oxidizes and decarboxylates the sulfur content in 16A and restores water quality
  • the seawater supply line L1 that supplies seawater 15 as dilution seawater 15A to the flue gas desulfurization absorption tower 20, and the oxidation tank 21 inlet side A dilution mixing tank 21A at the inlet of the oxidation tank that mixes a part of the seawater 15 with the sulfur-absorbing seawater 16A discharged from the flue gas desulfurization ab
  • the seawater supplied to the flue gas desulfurization absorption tower 20 among the seawater 15 is the absorption seawater 15A
  • the seawater supplied to the dilution mixing tank 21A at the oxidation tank inlet is the first dilution seawater 15B
  • the seawater supplied to the dilution mixing tank 21C at the oxidation tank outlet is defined as the second dilution seawater 15C.
  • the seawater desulfurization is performed using the seawater 15 pumped up from the sea 25 by the sulfur content contained in the exhaust gas 13.
  • the exhaust gas 13 and the absorption seawater 15A supplied via the seawater supply line L1 are brought into gas-liquid contact, so that the SO 2 in the exhaust gas 13 is absorbed by the absorption seawater 15A, and seawater desulfurization is performed. Is going.
  • seawater 15 pumped up from the sea 25 is sent to the flue gas desulfurization absorption tower 20 by the pump 24 as a part of the seawater 15 which is the wastewater discharged by exchanging heat in the condenser 46 as seawater 15A.
  • seawater 15 drawn from the sea 25 may be used directly.
  • sulfur dioxide gas SO 2
  • SO 3 sulfurous acid
  • the absorption seawater 15A Since the hydrogen ions (H + ) generated by the dissociation of sulfurous acid are generated in the absorption seawater 15A and then released into the absorption seawater 15A, the absorption seawater 15A after being brought into gas-liquid contact with the exhaust gas 13 absorbs sulfurous acid gas. At the same time, the pH drops. At this time, the pH of the sulfur-absorbing seawater 16A is, for example, about 3 to 6.
  • a part of the seawater 15 is branched from the seawater supply line L1 and supplied as the first dilution seawater 15B to the dilution mixing tank 21A at the inlet of the oxidation tank.
  • a first dilution seawater supply line L4 is provided.
  • the acid-alkali equivalent ratio is obtained by previously mixing the sulfur-absorbing seawater 16A discharged from the flue gas desulfurization absorption tower and the first dilution seawater 15B at a predetermined ratio in the dilution mixing tank 21A at the oxidation tank inlet.
  • the adjusted pre-diluted seawater 16B can be fed to the oxidation tank 21.
  • the pre-diluted seawater 16B refers to the sulfur-absorbing seawater 16B at the oxidation tank inlet in which the first dilution seawater 15B and the sulfur-absorbing seawater 16A discharged from the flue gas desulfurization absorption tower are mixed.
  • an acid alkali equivalent ratio means the ratio with respect to the alkali equivalent of seawater of the acid equivalent by the sulfur content absorbed as mentioned above.
  • a detector 35 for detecting the sulfurous acid concentration in the sulfur-absorbing seawater 16A discharged from the flue gas desulfurization absorption tower is provided on the sulfur-absorbing seawater discharge line L3 so as to detect the sulfurous acid concentration.
  • a standard redox potential electrode (ORP sensor) can be used as a means for detecting the sulfurous acid concentration.
  • a detector 36 for detecting the alkali equivalent of the first dilution seawater 15B is provided on the first dilution seawater supply line L4 so as to detect the alkali equivalent. Since the alkali equivalent can be estimated from the total carbonic acid concentration and pH of seawater, a total organic carbon meter (trade name: TOC-VCSH, manufactured by Shimadzu Corporation) and a pH meter can be used as means for detecting the alkali equivalent. .
  • the sulfur-absorbing seawater 16A discharged from the flue gas desulfurization absorption tower is not supplied to the oxidation tank 21 as it is, but the sulfur-absorbing seawater 16A discharged from the flue gas desulfurization absorption tower in advance in the dilution mixing tank 21A at the oxidation tank inlet.
  • a predetermined amount of one seawater for dilution 15B is mixed, and the prediluted seawater 16B adjusted for the acid-alkali equivalent ratio is supplied to the oxidation tank 21 to restore the water quality by decarboxylation of the prediluted seawater 16B in the oxidation tank 21. Can be done efficiently.
  • FIG. 2 shows the relationship between the pH of sulfur-absorbing seawater and the CO 2 partial pressure. As shown in FIG.
  • FIG. 3 shows the relationship between the pH of sulfur-absorbing seawater and the oxidation reaction rate constant of bisulfite ion (HSO 3 ⁇ ) in the sulfur-absorbing seawater.
  • the oxidation rate constant of bisulfite ion (HSO 3 ⁇ ) decreases as the pH of the sulfur-absorbing seawater decreases. Therefore, the amount of the first dilution seawater 15B mixed with the sulfur-absorbing seawater 16A discharged from the flue gas desulfurization absorption tower is adjusted, and the prediluted seawater 16B whose pH has been adjusted in advance is supplied to the oxidation tank 21.
  • the oxidation reaction of the bisulfite ions (HSO 3 ⁇ ) in the seawater 16B after the pre-dilution in the oxidation tank 21 can be promoted.
  • the sulfur-absorbing seawater 16C at the outlet of the oxidation tank recovered in water quality by the oxidation reaction and decarboxylation of the bisulfite ions (HSO 3 ⁇ ) in the sulfur-absorbing seawater 28 in the oxidation tank is provided at the outlet of the oxidation tank. It is discharged through the dilution / mixing tank 21C and the seawater discharge line L6.
  • the 2nd dilution seawater supply line L5 which joins part of the seawater 15 branched from the seawater supply line L1 with the sulfur content absorption seawater 16C of the oxidation tank exit as the 2nd dilution seawater 15C is provided. .
  • the second dilution seawater 15C is fed to the dilution mixing tank 21C at the oxidation tank outlet via the second dilution seawater supply line L5, and the second dilution seawater 15C is supplied to the dilution mixing tank 21C at the oxidation tank outlet.
  • the sulfur component absorbing seawater 16C at the oxidation tank outlet can be diluted.
  • the water-recovered seawater 33 whose water quality has been recovered by diluting the sulfur-absorbing seawater 16C at the oxidation tank outlet with the second dilution seawater 15C is discharged to the sea 25 via the seawater discharge line L6 as seawater drainage.
  • the alkalinity is restored by mixing the second dilution seawater 15C with the sulfur-absorbing seawater 16C at the oxidation tank outlet in which the alkalinity and the total carbonic acid concentration are reduced.
  • the pH can be increased more efficiently than in the dilution mixing tank 21A at the oxidation tank inlet.
  • the second dilution seawater 15B supplied via the first dilution seawater supply line L4 is reduced and the second dilution supplied via the second dilution seawater supply line L5 instead.
  • the residence time of seawater 16B after predilution in the oxidation tank 21 can be increased, and the oxidation and decarboxylation of sulfurous acid in the oxidation tank 21 can be sufficiently performed.
  • the COD value of the water quality recovery solution 33 can be reduced by diluting the sulfur-absorbing seawater 16C at the oxidation tank outlet with the second dilution seawater 15C.
  • the prediluted seawater 16B obtained by mixing and diluting the first dilution seawater 15B and the sulfur-absorbing seawater 16A discharged from the smoke desulfurization absorption tower.
  • the ratio of the acid equivalent derived from the absorbed sulfur to the alkali equivalent of seawater is most preferably 1: 1, but the sulfur-absorbing seawater 16A discharged from the smoke desulfurization absorption tower is diluted with the first dilution seawater 15B.
  • the ratio of the acid equivalent derived from the absorbed sulfur content to the alkali equivalent of seawater is preferably 0.83 or more and 1.2 or less, more preferably 0.9. As described above, 1.1 or less is preferable, and 0.95 or more and 1.05 or less is more preferable.
  • the acid equivalent derived from the absorbed sulfur content is a hydrogen ion that can be generated by complete dissociation of sulfurous acid and sulfuric acid generated by absorption of sulfur content in the exhaust gas by the flue gas desulfurization absorption tower.
  • the maximum amount of (H + ) concentration is a hydrogen ion that can be generated by complete dissociation of sulfurous acid and sulfuric acid generated by absorption of sulfur content in the exhaust gas by the flue gas desulfurization absorption tower.
  • the acid equivalent up to pH 4.8 or the alkali equivalent calculated from the total inorganic carbonic acid amount and pH can be used.
  • the first dilution seawater 15B is smoke-desulfurized so that the ratio of the acid equivalent derived from the sulfur content absorbed in the seawater 16B after the pre-dilution to the alkali equivalent of the seawater is 0.83 or more and 1.2 or less.
  • the amount of seawater in the prediluted seawater 16B in the oxidation tank 21 is required without excessively increasing the amount of seawater in the first dilution seawater 15B. While making it the minimum, the oxidation reaction rate and decarboxylation rate of sulfurous acid can be improved by increasing the sulfurous acid concentration in the seawater 16B after predilution.
  • the oxidation reaction and decarboxylation of the bisulfite ion (HSO 3 ⁇ ) in the seawater 16B after the pre-dilution can be efficiently advanced, so that the oxidation tank 21 is not increased in size, and the oxidation equipment cost and running Cost can be suppressed.
  • the pH and COD of the water quality recovery solution 33 can be released to a level at which seawater can be discharged.
  • the sulfurous acid concentration in the sulfur content absorption seawater 16A discharged from the smoke desulfurization absorption tower is detected by the detector 35 provided on the sulfur content absorption solution discharge line L3. Further, the alkali equivalent of the first dilution seawater 15B is detected and calculated by the total inorganic carbon amount and pH in the detector 36 provided on the first dilution seawater supply line L4.
  • the amount of the first dilution seawater 15B is changed with the total amount of the desulfurization amount, the absorption seawater 15A, the first dilution seawater 15B, and the second dilution seawater 15C in the flue gas desulfurization absorption tower 20 being constant.
  • the ratio of the acid equivalent derived from the sulfur content absorbed in the seawater 16B after the pre-dilution to the alkali equivalent of the seawater in the seawater 16B after the dilution (the acid equivalent derived from the sulfur content absorbed in the seawater 16B after the pre-dilution / the alkali equivalent of the seawater)
  • Table 1 shows the flow rate conditions of Examples 1 to 12, the water quality of the water quality recovery seawater 33, and the maximum SO 2 partial pressure of the oxidation tank.
  • the total amount of seawater used in the desulfation apparatus was 70,000 m 3 / hr, and other equipment conditions were as follows.
  • Oxidation tank area 2,800m 2
  • Oxidation tank ventilation rate 90,000 m 3 / hr
  • Seawater temperature 42 ° C (summer) 30 °C (Winter)
  • the drainage standard of the water quality recovery seawater 33 was as follows. pH: 6-9 COD: 5 mg / L or less
  • the upper limit value of the oxidation tank SO 2 partial pressure was set as follows as an upper limit value that does not feel odor.
  • FIG. 4 shows the ratio of the acid equivalent derived from the sulfur content absorbed in the sulfur-absorbing seawater 16B at the oxidation tank to the alkali equivalent of the seawater (acid-alkali equivalent ratio), the sulfur-absorbing seawater 16C at the oxidation tank outlet, and the second It is a figure which shows the relationship with the pH of the water quality recovery seawater 33 after dilution by the seawater for dilution.
  • FIG. 5 shows the ratio of the acid equivalent derived from the sulfur content absorbed in the sulfur-absorbing seawater 16B at the oxidation tank inlet to the alkali equivalent of the seawater (acid-alkali equivalent ratio), the sulfur-absorbing seawater 16B at the oxidation tank inlet, and the oxidation tank outlet.
  • FIG. 6 shows the ratio of the acid equivalent derived from the sulfur content absorbed in the sulfur-absorbing seawater 16B at the inlet of the oxidation tank to the alkali equivalent of the seawater (acid-alkali equivalent ratio), and the SO 2 content of the sulfur-absorbing seawater 28 in the oxidation tank. It is a figure which shows the relationship with a pressure maximum value.
  • the acid equivalent derived from the sulfur component absorbed in the seawater 16B after the pre-dilution is the sulfurous acid produced by absorbing the sulfur component in the exhaust gas 13 in the flue gas desulfurization absorption tower 20 as described above.
  • the maximum amount of hydrogen ion (H + ) concentration that can be generated by complete dissociation of sulfuric acid is the maximum amount of hydrogen ion (H + ) concentration that can be generated by complete dissociation of sulfuric acid.
  • the total carbonic acid concentration refers to the sum of carbonic acid (H 2 CO 3 ), hydrogen carbonate ions (HCO 3 ⁇ ), and carbonate ions (CO 3 3 ⁇ ).
  • the ratio of the acid equivalent derived from the absorbed sulfur content in the pre-diluted seawater 16B to the alkali equivalent of seawater is about 1.2 or less.
  • the pH of sulfur-absorbing seawater in the oxidation tank decreases, and the oxidation reaction rate of bisulfite ions (HSO 3 ⁇ ) in the oxidation tank decreases as shown in FIG. Therefore, as shown in FIG. 5, the COD concentration in the water quality recovery seawater 33 becomes high and exceeds the drainage standard (COD concentration of 5 mg / L or less), and as shown in FIG. Since the SO 2 partial pressure maximum value of 28 also exceeds the reference value (1 ppm), it is not preferable.
  • the total carbonic acid concentration in the sulfur-absorbing seawater 16C at the oxidation tank outlet can be efficiently reduced as shown in FIG. 7, so that the pH improvement effect as shown in FIG. 4 is efficient.
  • the ratio of the acid equivalent derived from the sulfur content absorbed in the pre-diluted seawater 16B to the alkali equivalent of the seawater is about 0.83 or more, the water quality-recovered seawater 33 diluted with the second diluted seawater 15C is obtained.
  • the pH of the solution becomes 6.0 or more (including measurement error 0.15). For this reason, the drainage standard value of pH (6 to 9) can be satisfied.
  • the sulfur-absorbing seawater 16A is used for the first dilution.
  • the ratio of the acid equivalent derived from the sulfur content absorbed in the seawater 16B after dilution at the inlet of the oxidation tank 21 to the alkali equivalent of seawater (the acid derived from the absorbed sulfur in the seawater 16B after dilution) Equivalent / alkaline equivalent of seawater) is 0.83 or more and 1.2 or less, and is mixed and diluted with sulfur-absorbing seawater 16A discharged from the smoke desulfurization absorption tower on the inlet side of the oxidation tank 21.
  • the amount of seawater 15A used for desulfurization in the flue gas desulfurization absorption tower 20 the amount of seawater of the first dilution seawater 15B used for dilution of the sulfur content absorption seawater 16A discharged from the smoke desulfurization absorption tower,
  • the amount of seawater in the second dilution seawater 15C used for diluting the sulfur-absorbing seawater 16C at the oxidation tank outlet SO 2 re-released acid from the oxidation tank 21 is prevented and the first Without excessively increasing the amount of seawater in the dilution seawater 15B, the amount of seawater in the prediluted seawater 16B in the oxidation tank 21 is minimized, and reduction in the oxidation reaction rate and decarboxylation rate of sulfurous acid is prevented.
  • the oxidation equipment cost and the running cost can be suppressed by downsizing the oxidation tank 21 while maintaining the pH of the water quality recovery seawater 33 and the level at which COD can be discharged into the sea
  • seawater properties for example, temperature, alkalinity, pH, and acid acceleration of sulfurous acid
  • the specifications of the oxidation tank for example, residence time and air flow rate
  • the drainage standards conform to the standards of the area where the facilities are installed, it is not possible to determine the optimum oxidation tank specifications based only on the properties of the seawater 25 and the properties of the exhaust gas 13.
  • effective water quality recovery eg, oxidation, decarboxylation
  • equipment costs eg, oxidation tank size, air flow
  • running costs eg, air flow
  • the above-mentioned range is preferable for the acid-alkali equivalent ratio in the pre-diluted seawater 16B for determining the pH of the sulfur-absorbing seawater 28 in the oxidation tank. Will not change.
  • the exhaust gas 13 is brought into contact with the absorption seawater 15A, sulfur oxides in the exhaust gas 13 are removed, and sulfur-containing seawater 16A containing sulfurous acid is contained.
  • the smoke desulfurization absorption tower by supplying the first dilution seawater 15B to the sulfur-absorbing seawater 16A discharged from the smoke desulfurization absorption tower in advance via the first dilution seawater supply line L4 and mixing them, the smoke desulfurization absorption tower
  • the sulfur-absorbing seawater 16A discharged from the seawater is diluted, the ratio of the acid equivalent derived from the absorbed sulfur content in the seawater 16B after pre-dilution is reduced to the alkali equivalent of seawater, and the pH of the seawater 16B after pre-dilution is increased,
  • the oxidation reaction rate can be improved.
  • by reducing the SO 2 partial pressure it is possible to prevent scattering of SO 2 , to prevent the generation of bad odor around the oxidation tank 21, and to ensure the safety of workers.
  • the pH of the sulfur-absorbing seawater 16C at the oxidation tank outlet is increased by supplying the second dilution seawater 15C to the sulfur-absorbing seawater 16C at the oxidation tank outlet via the second dilution seawater supply line L5. COD can be reduced, and the residence time of the seawater 16B after pre-dilution in the oxidation tank 21 can be reduced.
  • the first dilution seawater 15B is smoked so that the ratio of the acid equivalent derived from the absorbed sulfur to the alkali equivalent of the seawater is 0.83 or more and 1.2 or less.
  • the oxidation equipment cost and running cost can be suppressed without increasing the size of the oxidation tank 21, and the pH and COD of the water quality recovery solution 33 discharged from the dilution mixing tank 21C at the oxidation tank outlet are discharged into seawater. Can be released as possible.
  • the seawater desulfation treatment apparatus 10 according to the present embodiment is applied, it is possible to ensure the safety of the worker by preventing the re-emission of SO 2 from the oxidation tank 21. In addition, it can be discharged into the ocean or reused while satisfying the drainage standard of seawater drainage pH, and the cost and running cost of the oxidation facility can be reduced and the cost can be reduced. .
  • a flue gas denitration device 47 is provided on the downstream side of the boiler 12 in consideration of emission regulations of nitrogen oxides (NOx).
  • the exhaust gas 13 from which nitrogen oxides have been removed in advance is sent to the flue gas desulfurization absorption tower 20, but the present invention is not limited to this, and emission regulations for nitrogen oxides (NOx), etc.
  • the flue gas denitration device 47 may not be provided, and the exhaust gas 13 discharged from the boiler 12 may be supplied to the flue gas desulfurization absorption tower 20 without denitration.
  • the seawater desulfation treatment apparatus 10 is included in exhaust gas discharged from factories in various industries, power plants such as large-sized and medium-sized thermal power plants, large boilers for electric utilities, or general industrial boilers. It can be used for removing sulfur content in the sulfur content absorption solution produced by desulfurizing the contained sulfur oxides.
  • the seawater desulfation treatment apparatus mixes and dilutes an appropriate amount of sulfur-absorbed seawater generated by seawater desulfurization with seawater at the inlet of the oxidation tank, and oxidizes and decarboxylates the sulfur, pH Since the COD adjustment can be performed while reducing the oxidation equipment cost and the running cost, it is suitable for use in a seawater desulfation treatment apparatus that adjusts so that the seawater used for seawater desulfurization can be released to the ocean.

Abstract

 海水脱硫酸化処理装置10は、排ガス13を洗浄する排煙脱硫吸収塔20と、排煙脱硫吸収塔から排出される硫黄分吸収海水16Aを水質回復する酸化槽21と、希釈用海水15Aを排煙脱硫吸収塔20に供給する海水供給ラインL1と、酸化槽21入口側に設け、第一の希釈用海水15Bを排煙脱硫吸収塔から排出される硫黄分吸収海水16Aと混合させる酸化槽入口の希釈混合槽21Aと、酸化槽21出口側に設け、第二の希釈用海水15Cを酸化槽出口の硫黄分吸収海水16Cと混合させる酸化槽出口の希釈混合槽21Cと、排煙脱硫吸収塔から排出される硫黄分吸収海水16Aを酸化槽入口の希釈混合槽21Aに排出する硫黄分吸収海水排出ラインL3と、第一の希釈用海水15Bを酸化槽入口の希釈混合槽21Aに供給する第一の希釈用海水供給ラインL4と、第二の希釈用海水15Cを酸化槽出口の希釈混合槽21Cに供給する第二の希釈用海水供給ラインL5とを有する。

Description

海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システム
 本発明は、工業燃焼設備の排ガス中の硫黄酸化物などの硫黄分を海水を用いて脱硫することで生じる硫黄分吸収海水のpH、CODを海水放流可能なレベルとして放出する海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システムに関する。
 近年、排煙脱硫装置の吸収液として海水を用いる海水排煙脱硫装置を適用した火力発電所が増加傾向にある。また、石炭等の化石燃料を燃焼することで発生する排ガス中に含有される硫黄分を除去するため排煙脱硫装置が設けられている。発電所などでは大量の冷却水を必要とするため海に面した場所に建設される場合が多いこと、脱硫処理の稼動コストを低く抑えられることなどの観点から、海水を吸収液として利用して脱硫を行う海水脱硫技術が注目されている。
 この海水排煙脱硫装置は、石灰‐石膏法に比べて低コストであるため、特に沿岸部で石灰石の安定供給が難しい火力発電所などにおいて用いられている。また、ボイラの復水器で多量の海水を冷却水として用いるため、前記復水器から排出されて温められた海水排液の一部を脱硫装置に供給して、海水脱硫用の吸収液として用いて排ガス中のSO2の除去が行われている。
 従来の海水を用いた海水脱硫酸化処理装置の一例を図8に示す。図8は、従来の海水を用いた海水脱硫酸化処理装置を備えた発電システムの構成を簡略に示す図である。図8に示すように、従来の海水を用いた海水排煙脱硫装置を用いた発電システム100は、予熱された空気11を用いて図示しないバーナにより燃焼させるボイラ12と、ボイラ12で熱交換され、排出される排ガス13中の煤塵を除去する集塵装置14と、排ガス13中の硫黄分を吸収用海水15Aに吸収させて脱硫し、生成される硫黄分を高濃度に含んだ硫黄分吸収海水16Aの水質回復処理を行う海水脱硫酸化処理装置101とからなるものである。この海水脱硫酸化処理装置101は、排ガス13中のSO2を吸収用海水15Aに吸収させ亜硫酸(H2SO3)及び硫酸(H2SO4)として回収する排煙脱硫吸収塔20と、この排煙脱硫吸収塔20から排出される硫黄分を高濃度に含んだ硫黄分吸収海水16Aの水質回復処理を行う酸化槽21とからなるものである。
 そして、ボイラ12から排出される排ガス13を蒸気発生用の熱源として使用し、発生した蒸気を用いて蒸気タービン(図示しない)の発電機(図示しない)を駆動し、発電するようにしている。
 排ガス13は図示しない排煙脱硝装置に送給され脱硝した後、集塵装置14に送給され、排ガス13中の煤塵を除去する。そして、集塵装置14で除塵された排ガス13は誘引ファン22により排煙脱硫吸収塔20内に供給される。
 排煙脱硫吸収塔20では、海25からポンプ23を用いて汲み上げられた海水15のうち、ポンプ24により海水15の一部を吸収用海水15Aとして用いて排ガス13中の硫黄分の脱硫を行っている。即ち、化石燃料を燃焼させて生じる排ガス13には、SO2などの形態で硫黄酸化物(SOx)である硫黄分が含有されている。海水脱硫では、排煙脱硫吸収塔20において排ガス13と海水供給ラインL1を介して供給される吸収用海水15Aとを気液接触させて、下記式に示すような反応が生じ、排ガス13中の亜硫酸ガス(SO2)などの形態で含有されている硫黄酸化物(SOx)などの硫黄分を吸収用海水15Aに吸収させ、脱硫を行っている。
SO2(g)+H2O → H2SO3(l) → HSO3 -+H+ ・・・(1)
 吸収用海水15Aと排ガス13との気液接触により、SO2が吸収されて吸収用海水16A中に亜硫酸(H2SO3)が生成し、これに続いて亜硫酸が解離して水素イオン(H+)が発生するため、排ガス13と気液接触させた後の吸収用海水15Aは亜硫酸ガスの吸収と共にpHが下がることになる。そして、硫黄分を吸収させて生じる硫黄分吸収海水16AのpHは3~6程度になる。
 そして、脱硫吸収塔20で脱硫された浄化ガス26は浄化ガス排出ラインL2を通って煙突27より大気中に放出する。排煙脱硫吸収塔から排出される硫黄分吸収海水16Aは硫黄分吸収海水排出ラインL3を介して排煙脱硫吸収塔20から排出される。
 排煙脱硫吸収塔から排出される硫黄分吸収海水16Aは、海25へと放出または再利用する前にCOD成分となる亜硫酸の濃度を低減し、pH及び溶存酸素濃度を上昇させておく必要がある。そのため、硫黄分を高濃度に含んだ排煙脱硫吸収塔から排出される硫黄分吸収海水16Aは、硫黄分吸収海水排出ラインL3を介して酸化槽21に供給され、その酸化槽21において酸化用空気ブロア29より空気30を散気管31を介してノズル32から酸化槽21内に供給し、酸化槽内の硫黄分吸収海水28と気液接触させて下記式のような反応を生じさせ、COD成分となる亜硫酸の濃度を低減すると共に、pH及び溶存酸素濃度を上昇させる。
2(g) → O2(l)・・・(2)
HSO3 - + 1/2O2(l) → SO4 2- + H ・・・(3)
HCO3 - + H → CO2(g) + H2O ・・・(4)
CO3 2- + 2H → CO2(g) + H2O ・・・(5)
 ここで、酸化槽21は通常屋外に設置される為、酸化槽内の硫黄分吸収海水28のpHが低いと、(2)式の酸素の供給を目的に行う曝気により、(6)式で示すSOの再放散が起こるため、好ましくない。
2SO3(l) → SO2(g)+H2O ・・・(6)
 そこで、海水供給ラインL1により供給される海水15の一部を第一の海水分岐ラインL4により第一の希釈用海水15Bとして混合希釈して、酸化槽内の硫黄分吸収海水28のpHを上げることで、SO2の再放散を防ぐ。
 ここで酸化槽21の入口から出口に流れる過程で、酸化槽入口の硫黄分吸収海水16Bは、亜硫酸水素イオン(HSO3 -)の酸化と脱炭酸により徐々に水質が回復され、酸化槽出口の硫黄分吸収海水16Cとなる。このように、酸化槽内の硫黄分吸収海水28は、組成が連続的に変化するため、その組成にある程度の幅を持った海水全体を指す。
 また、更なる水質回復が必要な場合には、酸化槽21を出て海25に放出される前に、第二の海水分岐ラインL5により残りの海水15を第二の希釈用海水15Cとして酸化槽21で酸化槽内の硫黄分吸収海水28に混合希釈する。これにより、排出される酸化槽出口の硫黄分吸収海水16CのCOD低減、pH向上が効率的に行われ、水質の回復が達成される。そして、水質回復された水質回復海水33は、海水排液として海水排出ラインL6を介して海25に排出される。
 このように、従来の発電システム100では、酸化槽21でSO2の再放散の防止とpHを向上するため、排煙脱硫吸収塔から排出される硫黄分吸収海水16Aを第一の希釈用海水15Bと酸化槽21で混合希釈し、また曝気することで亜硫酸水素イオン(HSO3 -)を酸化して無害化すると同時に溶存酸素濃度を向上させ、さらに脱炭酸して排煙脱硫吸収塔から排出される硫黄分吸収海水16AのpHを向上させてから海25に排出するようにしている(特許文献1~特許文献3)。
特開2006-055779号公報 特開2007-125474号公報 国際公開第2008/077430号
 ここで、排煙脱硫吸収塔20への海水15Aの供給量が大きくなるとポンプ容量が大きくなり、設備コスト及びランニングコストが増加するため、排煙脱硫吸収塔20への吸収用海水15Aの供給量は極力低減することが望ましい。
 一方、酸化槽21入口における第一の希釈用海水15Bの供給量が充分でなく、酸化槽内の硫黄分吸収海水28中の酸アルカリ当量比が高くなりpHが低くなると、酸化槽内の硫黄分吸収海水28中に空気30を吹き込んでも亜硫酸水素イオンの酸化反応が進行せず、酸化槽内の硫黄分吸収海水28のCODが低減しない、という問題がある。
 なお、ここで酸アルカリ当量比とは、吸収された硫黄分による酸当量の海水のアルカリ当量に対する比をいう。
 また、吸収された硫黄分による酸当量は、吸収された硫黄分により生成する亜硫酸(H2SO3)および硫酸(H2SO4)が完全解離した時に生成しうる水素イオン(H+)濃度の最大量をいう。
 また、海水のアルカリ当量とは、アルカリ度と等しく、海水を塩酸でpH4.8まで滴定した際に消費される酸当量をいう。
 また、酸化槽21入口における第一の希釈用海水15Bの供給量が少なく、酸化槽内の硫黄分吸収海水28のpHが低くなると、酸化槽内の硫黄分吸収海水28中に空気30を吹き込んだ際に人体に有害なSO2が再放散され、酸化槽21周辺部に悪臭が発生する、という問題がある。
 一方、酸化槽21入口における第一の希釈用海水15Bの供給量が過大となり、酸化槽内の硫黄分吸収海水28中の亜硫酸濃度が低くなり過ぎると、酸化反応速度が遅くなり、酸化槽21での滞留時間を長くする必要がある。このため、酸化槽21を大型化する必要がある上、酸化槽内の硫黄分吸収海水28のpH向上によるCO2分圧の低下により、酸化用空気ブロア29により多量の空気30を供給する必要があるため、酸化用空気ブロア29等の酸化設備費、動力費などのコストも高くなる、という問題がある。
 本発明は、前記問題に鑑み、海水を用いて脱硫した硫黄分吸収海水の希釈に用いる海水量を適正化することで、人体に有害なSO2の再放散の防止、海水に放流可能な水質の維持、を同時に達成する、低コストで安全な海水脱硫酸化処理装置、海水脱硫システム及び脱硫海水の処理方法を提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、排ガスを海水と接触させて、前記排ガス中の硫黄酸化物を除去し、亜硫酸を含有する硫黄分吸収海水として回収する排煙脱硫吸収塔と、該排煙脱硫吸収塔から排出される硫黄分吸収海水中の硫黄分を酸化すると共に脱炭酸し、水質回復を行う酸化槽と、前記海水を希釈用海水として前記排煙脱硫装置に供給する海水供給ラインと、前記酸化槽入口側に設けられ、前記海水の一部を、第一の希釈用海水として前記排煙脱硫吸収塔から排出される硫黄分吸収海水と混合させる酸化槽入口の希釈混合槽と、前記酸化槽出口側に設けられ、前記海水の一部を第二の希釈用海水として水質回復された酸化槽出口の硫黄分吸収海水と混合させる酸化槽出口の希釈混合槽と、前記排煙脱硫吸収塔から排出される硫黄分吸収海水を前記酸化槽入口の希釈混合槽に排出する硫黄分吸収海水排出ラインと、前記第一の希釈用海水を前記酸化槽入口の希釈混合槽に供給する第一の希釈用海水供給ラインと、前記第二の希釈用海水を前記酸化槽出口の希釈混合槽に供給する第二の希釈用海水供給ラインと、前記酸化槽出口の硫黄分吸収海水を前記第二の希釈用海水により希釈した水質回復海水を海へ排出する排出ラインと、を有することを特徴とする海水脱硫酸化処理装置にある。
 第2の発明は、第1の発明において、前記第一の希釈用海水と前記排煙脱硫吸収塔から排出される硫黄分吸収海水とを混合させた直後において、吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比が、0.83以上、1.2以下の割合となるように、前記第一の希釈用海水を供給することを特徴とする海水脱硫酸化処理装置にある。
 第3の発明は、第1又は2の発明において、前記硫黄分吸収海水排出ライン上に、前記排煙脱硫吸収塔から排出される硫黄分吸収海水中の亜硫酸水素イオン濃度を検出する検出器を有することを特徴とする海水脱硫酸化処理装置にある。
 第4の発明は、第1乃至3の何れか一つの発明において、前記第一の希釈用海水供給ライン上に、前記第一の希釈用海水のアルカリ当量を検出する検出器を有することを特徴とする海水脱硫酸化処理装置にある。
 第5の発明は、第1乃至4の何れか一つの発明において、前記海水が復水器から排出される排液であることを特徴とする海水脱硫酸化処理装置にある。
 第6の発明は、ボイラと、前記ボイラから排出される排ガスを蒸気発生用の熱源として使用すると共に、発生した蒸気を用いて発電機を駆動する蒸気タービンと、前記蒸気タービンで凝縮した水を回収し、循環させる復水器と、前記ボイラから排出される排ガスの脱硝を行う排煙脱硝装置と、前記排ガス中の煤塵を除去する集塵装置と、第1乃至5の何れか一つの発明の海水脱硫酸化処理装置と、前記排煙脱硫装置で脱硫された浄化ガスを外部へ排出する煙突とからなることを特徴とする発電システムにある。
 第7の発明は、排ガス中の硫黄分を海水と接触させて洗浄し、洗浄後の排ガス中の硫黄分を吸収した硫黄分吸収海水中の亜硫酸を酸化すると共に脱炭酸処理を行い、水質回復した後、排出する脱硫海水の処理方法において、前記硫黄分吸収海水に前記海水の一部を第一の希釈用海水として酸化槽入口の希釈混合槽において混合した後、酸化槽入口の硫黄分吸収海水を酸化槽に供給し、前記酸化槽入口の硫黄分吸収海水中の亜硫酸を酸化すると共に、脱炭酸を行い、前記酸化槽から排出される酸化・脱炭酸処理後の酸化槽出口の硫黄分吸収海水を酸化槽出口の希釈混合槽に送給し、前記酸化槽出口の希釈混合槽において前記海水の一部を第二の希釈用海水として前記酸化槽出口の希釈混合槽に混合した後、放出することを特徴とする脱硫海水の処理方法にある。
 第8の発明は、第7の発明において、第一の希釈用海水と前記排煙脱硫吸収塔から排出される硫黄分吸収海水とを混合させた直後において、吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比が、0.83以上、1.2以下の割合となるように、前記第一の希釈用海水を供給することを特徴とする脱硫海水の処理方法にある。
 第9の発明は、第7又は8の発明において、前記海水が復水器から排出される排液であることを特徴とする脱硫海水の処理方法にある。
 本発明によれば、排煙脱硫吸収塔において海水脱硫によって生じる硫黄分吸収海水に第一の希釈用海水供給ラインを介して予め海水の一部を供給し、混合することで、前記硫黄分吸収海水が希釈され、前記硫黄分吸収海水中の酸アルカリ当量比が低下し、前記硫黄分吸収海水のpHを上昇させ、酸化反応速度を向上させることができる。また、前記硫黄分吸収海水を前記第一の希釈用海水により希釈しSO2分圧を低減することで、人体に有害なSO2の再放散を防止することができる。
 また、前記第一の希釈用海水供給ラインを介して供給する第一の希釈用海水の海水量を過大にすることなく、前記酸化槽で前記硫黄分吸収海水と前記第一の希釈用海水とが混合した酸化槽に流入させる硫黄分吸収海水の海水量を必要最低限とし、前記酸化槽内の海水中の亜硫酸濃度を高く、かつ、pHをSO2の再放散や反応速度定数の低下が生じない程度に低く維持することで、酸化槽内の硫黄分吸収海水のCO分圧を高く維持し、亜硫酸の酸化処理及び脱炭酸による水質回復をより小さな酸化槽、ブロアを用いて効率的に行うことができる。
 また、前記海水排出ラインから排出される水質回復処理後の硫黄分吸収海水に前記第二の希釈用海水供給ラインを介して前記海水の一部を供給希釈することで、前記水質回復海水のpHを効率的に上昇させると共に、CODを低減することができる。
 これにより、前記水質回復海水のpH、CODを海水放流可能なレベルを維持しつつ、前記酸化槽の小型化が可能となり、酸化設備のコストを低減することができる。
図1は、本発明による実施の形態に係る海水脱硫酸化処理装置を適用した発電システムの構成を示す概略図である。 図2は、海水のpHとCO分圧の関係を示す図である。 図3は、硫黄分吸収海水のpHと硫黄分吸収海水中の亜硫酸水素イオンの酸化反応速度定数との関係を示す図である。 図4は、酸化槽入口の硫黄分吸収海水の酸アルカリ当量比と酸化槽入口の硫黄分吸収海水及び酸化槽出口の硫黄分吸収海水及び水質回復海水のpHとの関係を示す図である。 図5は、酸化槽入口の硫黄分吸収海水の酸アルカリ当量比と酸化槽出口の硫黄分吸収海水及び水質回復海水中のCOD濃度との関係を示す図である。 図6は、酸化槽入口海水の酸アルカリ当量比と酸化槽内の硫黄分吸収海水のSO2分圧最大値との関係を示す図である。 図7は、酸化槽入口海水の酸アルカリ当量比と酸化槽出口の硫黄分吸収海水及び水質回復海水の全炭酸濃度との関係を示す図である。 図8は、従来の海水を用いた海水脱硫酸化処理装置を備えた発電システムの構成を簡略に示す図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
[実施の形態]
 本発明による実施の形態に係る海水脱硫酸化処理装置を適用した発電システムについて、図面を参照して説明する。
 図1は、本発明による実施の形態に係る海水脱硫酸化処理装置を適用した発電システムの構成を示す概略図である。図中、前記図8に示した装置と同一構成には同一符号を付して重複した説明は省略する。
 図1に示すように、本実施の形態に係る海水脱硫酸化処理装置10を適用した発電システム40は、空気予熱器(AH)41で予熱された空気11を用いて図示しないバーナにより燃焼させるボイラ12と、ボイラ12から排出される排ガス13を蒸気発生用の熱源として使用すると共に、発生した蒸気42を用いて発電機43を駆動する蒸気タービン44と、この蒸気タービン44で凝縮した水45を回収し、循環させる復水器46と、ボイラ12から排出される排ガス13の脱硝を行う排煙脱硝装置47と、ボイラ12から排出される排ガス13中の煤塵を除去する集塵装置14と、排ガス13中の硫黄分を吸収用海水15Aを用いて海水脱硫し、海水脱硫することで生成される硫黄分を高濃度に含んだ硫黄分吸収海水16Aの水質回復処理を行う海水脱硫酸化処理装置10と、海水脱硫酸化処理装置10で排ガス13が脱硫された浄化ガス26を外部へ排出する煙突27とからなるものである。
 外部から供給される空気11は押込みファン48により空気予熱器41に送給され予熱される。図示しない燃料と空気予熱器41で予熱された空気11とは前記バーナに供給され、前記燃料がボイラ12で燃焼され蒸気タービン44を駆動するための蒸気42を発生する。また、本実施の形態において用いられる図示しない燃料は、例えば油タンクなどから供給される。
 ボイラ12内で燃焼して発生する排ガス13は排煙脱硝装置47に送給される。また、窒素酸化物(NOx)の排出規制が存在しない場合には、排煙脱硝装置47の設置を省略してもよい。このとき、排ガス13は復水器46から排出される水45と熱交換し、蒸気42を発生する熱源として使用され、発生した蒸気42は蒸気タービン44の発電機43を駆動している。そして、蒸気タービン44で凝縮した水45を再びボイラ12に戻し、循環させるようにしている。
 そして、ボイラ12から排出され、排煙脱硝装置47に導かれた排ガス13は排煙脱硝装置47内で脱硝され、空気予熱器41で空気11と熱交換した後、集塵装置14に送給され、排ガス13中の煤塵を除去する。そして、集塵装置14で除塵された排ガス13は、誘引ファン22により排煙脱硫吸収塔20内に供給される。この時、排ガス13は熱交換器49で排煙脱硫吸収塔20で脱硫され排出される浄化ガス26と熱交換された後、排煙脱硫吸収塔20内に供給される。また、排ガス13は熱交換器49で浄化ガス26と熱交換することなく、直接、排煙脱硫吸収塔20に供給するようにしてもよい。
 本実施の形態に係る海水脱硫酸化処理装置を適用した発電システム40においては、海水脱硫酸化処理装置10は、排ガス13を海水15の一部の吸収用海水15Aと接触させて、排ガス13中の硫黄酸化物(SOx)を除去し、亜硫酸(H2SO3)を含有する硫黄分吸収海水16Aとして回収する排煙脱硫吸収塔20と、この排煙脱硫吸収塔から排出される硫黄分吸収海水16A中の硫黄分を酸化すると共に脱炭酸し、水質回復を行う酸化槽21と、海水15を希釈用海水15Aとして排煙脱硫吸収塔20に供給する海水供給ラインL1と、酸化槽21入口側に設けられ、海水15の一部を、第一の希釈用海水15Bとして排煙脱硫吸収塔から排出される硫黄分吸収海水16Aと混合させる酸化槽入口の希釈混合槽21Aと、酸化槽21出口側に設けられ、海水15の一部を第二の希釈用海水15Cとして水質回復された酸化槽出口の硫黄分吸収海水16Cと混合させる酸化槽出口の希釈混合槽21Cと、排煙脱硫吸収塔から排出される硫黄分吸収海水16Aを酸化槽入口の希釈混合槽21Aに排出する硫黄分吸収海水排出ラインL3と、第一の希釈用海水15Bを酸化槽入口の希釈混合槽21Aに供給する第一の希釈用海水供給ラインL4と、第二の希釈用海水15Cを酸化槽出口の希釈混合槽21Cに供給する第二の希釈用海水供給ラインL5と、酸化槽出口の硫黄分吸収海水16Cを第二の希釈用海水15Cにより希釈した水質回復海水33を海25へ排出する排出ラインL6と、を有するものである。
 本実施の形態においては、海水15のうち、排煙脱硫吸収塔20に送給する海水を吸収用海水15Aとし、酸化槽入口の希釈混合槽21Aに供給する海水を第一の希釈用海水15Bとし、酸化槽出口の希釈混合槽21Cに供給する海水を第二の希釈用海水15Cとする。
 排煙脱硫吸収塔20では、排ガス13中に含有されている硫黄分を海25から汲み上げられた海水15を用いて海水脱硫を行っている。排煙脱硫吸収塔20において排ガス13と海水供給ラインL1を介して供給される吸収用海水15Aとを気液接触させて、排ガス13中のSO2を吸収用海水15Aに吸収させ、海水脱硫を行っている。
 また、海25から汲み上げられた海水15は復水器46で熱交換して排出される排海水である海水15の一部を海水15Aとしてポンプ24で排煙脱硫吸収塔20に送給し、海水脱硫に用いているが、海25から汲み上げた海水15を直接用いるようにしてもよい。
 また、排煙脱硫吸収塔20において海水脱硫により吸収用海水15Aと排ガス13との気液接触により、亜硫酸ガス(SO2)が吸収されて吸収用海水16A中に亜硫酸(H2SO3)が生成し、これに続いて亜硫酸が解離して発生した水素イオン(H+)が吸収用海水15A中に遊離するため、排ガス13と気液接触させた後の吸収用海水15Aは亜硫酸ガスの吸収と共にpHが下がることになる。このとき、硫黄分吸収海水16AのpHとしては、例えば3~6程度となる。
 また、本実施の形態に係る海水脱硫酸化処理装置10においては、海水供給ラインL1から分岐され、海水15の一部を第一の希釈用海水15Bとして酸化槽入口の希釈混合槽21Aに供給する第一の希釈用海水供給ラインL4が設けられている。このため、排煙脱硫吸収塔から排出される硫黄分吸収海水16Aと第一の希釈用海水15Bを予め所定の割合で酸化槽入口の希釈混合槽21Aで混合させることで、酸アルカリ当量比が調整された前希釈後海水16Bを酸化槽21に送給することができる。
 尚、前希釈後海水16Bとは、第一の希釈用海水15Bと排煙脱硫吸収塔から排出される硫黄分吸収海水16Aとを混合した酸化槽入口の硫黄分吸収海水16Bをいう。
 また、酸アルカリ当量比とは、前述の通り吸収された硫黄分による酸当量の海水のアルカリ当量に対する比をいう。
 酸化槽入口の希釈混合槽21Aで排煙脱硫吸収塔から排出される硫黄分吸収海水16Aに第一の希釈用海水15Bを予め混合し、pHの低い排煙脱硫吸収塔から排出される硫黄分吸収海水16Aを希釈することで、酸化槽21に流入される前希釈後海水16BのpHを上昇させることができる。これにより酸化槽内の硫黄分吸収海水28のSO2分圧を低減し、有害なSO2の再放散を防止することができ、酸化槽21周辺部に悪臭が発生するのを防止することができる。
 また、硫黄分吸収海水排出ラインL3上に、排煙脱硫吸収塔から排出される硫黄分吸収海水16A中の亜硫酸濃度を検出する検出器35を設け、亜硫酸濃度を検出するようにしている。亜硫酸濃度の検出手段としては、標準酸化還元電位電極(ORPセンサー)を用いることができる。
 また、第一の希釈用海水供給ラインL4上に、第一の希釈用海水15Bのアルカリ当量を検出する検出器36を設け、アルカリ当量を検出するようにしている。アルカリ当量は海水の全炭酸濃度とpHから推算可能であることから、アルカリ当量の検出手段としては、全有機炭素計(商品名:TOC-VCSH、島津製作所製)及びpHメーターを用いることができる。
 排煙脱硫吸収塔から排出される硫黄分吸収海水16Aを酸化槽21にそのまま供給せず、酸化槽入口の希釈混合槽21Aで予め排煙脱硫吸収塔から排出される硫黄分吸収海水16Aに第一の希釈用海水15Bを所定量混合し、酸アルカリ当量比を調整した前希釈後海水16Bを酸化槽21に供給することにより、酸化槽21において前希釈後海水16Bの脱炭酸による水質回復を効率的に行うことができる。硫黄分吸収海水のpHとCO分圧の関係を図2に示す。図2に示すように、硫黄分吸収海水のpHが低い方がCO分圧が高い。脱炭酸量はCO分圧に比例するため、酸化槽内の硫黄分吸収海水28のpHを低く維持することで、脱炭酸による水質回復を効率的に行うことができる。
 硫黄分吸収海水のpHと硫黄分吸収海水中の亜硫酸水素イオン(HSO3 -)の酸化反応速度定数との関係を図3に示す。図3に示すように、硫黄分吸収海水のpHが低下するに従って亜硫酸水素イオン(HSO3 -)の酸化反応速度定数が低下する。よって、排煙脱硫吸収塔から排出される硫黄分吸収海水16Aに混合する第一の希釈用海水15Bの量を調整し、pHを予め調整させた前希釈後海水16Bを酸化槽21に供給することにより、酸化槽21において前希釈後海水16B中の亜硫酸水素イオン(HSO3 -)の酸化反応を促進することができる。
 そして、酸化槽21で酸化槽内の硫黄分吸収海水28中の亜硫酸水素イオン(HSO3 -)の酸化反応、脱炭酸により水質回復された酸化槽出口の硫黄分吸収海水16Cは酸化槽出口の希釈混合槽21C及び海水排出ラインL6を介して排出される。
 また、海水供給ラインL1から分岐された海水15の一部を第二の希釈用海水15Cとして酸化槽出口の硫黄分吸収海水16Cと合流させる第二の希釈用海水供給ラインL5が設けられている。第二の希釈用海水15Cを第二の希釈用海水供給ラインL5を介して酸化槽出口の希釈混合槽21Cに送給し、第二の希釈用海水15Cを、酸化槽出口の希釈混合槽21Cで酸化槽出口の硫黄分吸収海水16Cと混合することで、酸化槽出口の硫黄分吸収海水16Cを希釈することができる。第二の希釈用海水15Cで酸化槽出口の硫黄分吸収海水16Cを希釈することにより水質回復された水質回復海水33は、海水排液として海水排出ラインL6を介して海25に排出される。
 酸化槽出口の希釈混合槽21Cにおける希釈は、アルカリ度と全炭酸濃度が低減した酸化槽出口の硫黄分吸収海水16Cに、第二の希釈用海水15Cを混合することでアルカリ度が回復するため,酸化槽入口の希釈混合槽21Aにおける希釈よりも、pHを効率的に上昇させることができる。第一の希釈用海水供給ラインL4を介して供給される第一の希釈用海水15Bの供給量を低減し、代わりに第二の希釈用海水供給ラインL5を介して供給される第二の希釈用海水15Cの供給量を増加させることで、酸化槽21での前希釈後海水16Bの滞留時間を増加することができ、酸化槽21における亜硫酸の酸化及び脱炭酸を十分に実施することができる。更に、酸化槽出口の硫黄分吸収海水16Cを第二の希釈用海水15Cで希釈することにより水質回復溶液33のCOD値を低減することができる。
 また、本実施の形態に係る海水脱硫酸化処理装置10においては、第一の希釈用海水15Bと煙脱硫吸収塔から排出される硫黄分吸収海水16Aとを混合して希釈した前希釈後海水16Bにおいて、吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比は、1対1が最も好ましいが、煙脱硫吸収塔から排出される硫黄分吸収海水16Aを第一の希釈用海水15Bで希釈する際、前希釈後海水16Bにおいて、吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比は、0.83以上、1.2以下の割合で供給するのが好ましく、更には0.9以上、1.1以下が好ましく、更には0.95以上、1.05以下とするのがより好ましい。
 また、本発明においては、吸収した硫黄分由来の酸当量とは、排煙脱硫吸収塔で排ガス中の硫黄分が吸収されることで生じる亜硫酸と硫酸とが完全解離して生成しうる水素イオン(H)濃度の最大量をいう。
 また、海水のアルカリ当量の指標としては、pH4.8までの酸消費量、或いは全無機炭酸量及びpHから算出したアルカリ当量を用いることができる。
 排煙脱硫吸収塔から排出される硫黄分吸収海水16Aを第一の希釈用海水15Bで希釈しすぎると、希釈後の前希釈後海水16B中の亜硫酸水素イオン(HSO3 -)の酸化反応、重炭酸イオン(HCO3 -)の脱炭酸反応が遅くなり、酸化槽21において所定の亜硫酸の酸化率及び脱炭酸量を維持する為には、滞留時間確保のため酸化槽21の拡大及び酸化設備(酸化用空気ブロア29、散気管31、ノズル32)の増強が必要となる。そのため、前希釈後海水16Bにおいて吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比が、0.83以上、1.2以下の割合となるように第一の希釈用海水15Bを煙脱硫吸収塔から排出される硫黄分吸収海水16Aに予め供給することで、第一の希釈用海水15Bの海水量を過大にすることなく、酸化槽21での前希釈後海水16Bの海水量を必要最低限とすると共に、前希釈後海水16B中の亜硫酸濃度を高くすることで、亜硫酸の酸化反応速度及び脱炭酸速度を向上させることができる。
 これにより、前希釈後海水16B中の亜硫酸水素イオン(HSO3 -)の酸化反応、脱炭酸を効率よく進行させることができるため、酸化槽21を大型化することはなく、酸化設備コスト及びランニングコストを抑制することができる。また、水質回復溶液33のpH、CODを海水放流可能なレベルとして放出することができる。
 また、煙脱硫吸収塔から排出される硫黄分吸収海水16A中の亜硫酸濃度は、硫黄分吸収溶液排出ラインL3上に設けた検出器35で検出される。また、第一の希釈用海水15Bのアルカリ当量は、第一の希釈用海水供給ラインL4上に設けた検出器36において、全無機炭素量及びpHにより検出、算出される。
 また、酸化槽入口の希釈混合槽21Aにおける前希釈後海水16Bの酸当量と酸化槽出口の希釈混合槽21Cにおける硫黄分吸収海水16C及び水質回復海水33の海水性状との関係について具体的に説明する。
 排煙脱硫吸収塔20における脱硫量、吸収用海水15A、第一の希釈用海水15B、第二の希釈用海水15Cの合計量を一定として、第一の希釈用海水15Bの量を変更することで、前希釈後海水16Bにおける吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比(前希釈後海水16Bにおける吸収した硫黄分由来の酸当量/海水のアルカリ当量)を変化させた場合の、前希釈後海水16B、酸化槽出口の硫黄分吸収海水16C及び第二の希釈用海水15Cで希釈した後の水質回復海水33のpH、COD、SO2分圧、全炭酸濃度との関係を図4~図7に示す。
 実施例1~12の流量条件と水質回復海水33の水質、酸化槽の最大SO2分圧を表1に示す。脱硫酸化装置で使用する海水の全体量は70、000m3/hrとし、その他の設備条件は以下の通りとした。
吸収塔における脱硫量:66kgmol/hr
海水のアルカリ当量  :2.4meq/L
酸化槽面積     :2、800m2
酸化槽通気量    :90、000m3/hr
海水温度      :42℃(夏季)
           30℃(冬季)
 また、水質回復海水33の排水基準は以下の通りとした。
pH:6~9
COD:5mg/L以下
 また、酸化槽SO2分圧の上限値は臭気を感じない上限値として以下の通りとした。
酸化槽SO2分圧:1ppm以下
Figure JPOXMLDOC01-appb-T000001
 図4は、酸化槽入口の硫黄分吸収海水16Bにおける吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比(酸アルカリ当量比)と、酸化槽出口の硫黄分吸収海水16C及び第二の希釈用海水による希釈後の水質回復海水33のpHとの関係を示す図である。
 図5は、酸化槽入口の硫黄分吸収海水16Bにおける吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比(酸アルカリ当量比)と、酸化槽入口の硫黄分吸収海水16B、酸化槽出口の硫黄分吸収海水16C及び第二の希釈用海水により希釈した後の水質回復海水33中のCOD濃度との関係を示す図である。
 図6は、酸化槽入口の硫黄分吸収海水16Bにおける吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比(酸アルカリ当量比)と、酸化槽内の硫黄分吸収海水28のSO2分圧最大値との関係を示す図である。
 図7は、酸化槽入口の硫黄分吸収海水16Bにおける吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比(酸アルカリ当量比)と、酸化槽入口の硫黄分吸収海水16B、酸化槽出口の硫黄分吸収海水16C及び第二の希釈用海水により希釈した後の水質回復海水33の全炭酸濃度との関係を示す図である。
 また、本発明においては、前希釈後海水16Bにおける吸収した硫黄分由来の酸当量とは、上述のように、排煙脱硫吸収塔20で排ガス13中の硫黄分が吸収されることで生じる亜硫酸と硫酸が完全解離して生成しうる水素イオン(H)濃度の最大量をいう。
 また、全炭酸濃度は、炭酸(H2CO3)、炭酸水素イオン(HCO3 -)、炭酸イオン(CO3 3-)の総和をいう。
 前希釈後海水16Bにおける吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比(前希釈後海水16B中における吸収した硫黄分由来の酸当量/海水のアルカリ当量)を、約1.2以下にしなければ、図4に示すように、酸化槽内の硫黄分吸収海水のpH低下により、図3に示すように、酸化槽内における亜硫酸水素イオン(HSO3 -)の酸化反応速度が低下するため、図5に示すように、水質回復海水33中のCOD濃度が高くなり、排水基準(COD濃度5mg/L以下)を超えるうえ、図6に示すように、酸化槽内の硫黄分吸収海水28のSO2分圧最高値も基準値(1ppm)を超えてしまうため、好ましくない。
 また、前希釈後海水16Bにおける吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比(前希釈後海水16B中における吸収した硫黄分由来の酸当量/海水のアルカリ当量)を増加させることで、脱炭酸速度の向上により図7に示すように酸化槽出口の硫黄分吸収海水16C中の全炭酸濃度を効率的に低減することができるため、図4に示すようなpH向上効果が効率的に得られ、前希釈後海水16Bにおける吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比が約0.83以上の場合には、第二の希釈海水15Cによる希釈後の水質回復海水33のpHは6.0以上(測定誤差0.15を含む)となる。このため、pHの排水基準値(6~9)を満たすことができる。
 よって、図4~図7に示すように、第二の希釈海水15Cによる希釈後の水質回復海水33のpH、COD、SO2分圧を考慮すると、硫黄分吸収海水16Aを第一の希釈用海水15Bで希釈する際、酸化槽21の入口での前希釈後海水16Bにおける吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比(前希釈後海水16B中における吸収した硫黄分由来の酸当量/海水のアルカリ当量)が、0.83以上、1.2以下となるように、酸化槽21の入口側で煙脱硫吸収塔から排出される硫黄分吸収海水16Aと混合希釈する第一の希釈用海水15Bの海水量を調整し、残りを酸化槽21の出口側での第二の希釈用海水15Cとするのが好ましい。更には、前希釈後海水16Bにおける吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比(前希釈後海水16B中における吸収した硫黄分由来の酸当量/海水のアルカリ当量)を、0.9以上、1.1以下となるように、酸化槽21の入口側で煙脱硫吸収塔から排出される硫黄分吸収海水16Aの希釈用に用いる第一の希釈用海水15Bの海水量を調整するのが好ましい。
 また、海水15のうち、排煙脱硫吸収塔20で海水脱硫に用いる吸収用海水15A、煙脱硫吸収塔から排出される硫黄分吸収海水16Aの希釈用に用いる第一の希釈用海水15Bの残りを酸化槽出口の硫黄分吸収海水16Cの希釈用に第二の希釈用海水15Cとして用いる。
 このように、排煙脱硫吸収塔20で脱硫用に用いる海水15Aの海水量、煙脱硫吸収塔から排出される硫黄分吸収海水16Aの希釈用に用いる第一の希釈用海水15Bの海水量、酸化槽出口の硫黄分吸収海水16Cの希釈用に用いる第二の希釈用海水15Cの海水量を適正に調整することで、酸化槽21からのSO2の再放酸を防ぐと共に、第一の希釈用海水15Bの海水量を過大にすることなく、酸化槽21での前希釈後海水16Bの海水量を必要最低限とすると共に、亜硫酸の酸化反応速度及び脱炭酸速度の低下を防ぐ。これにより、水質回復海水33のpH、CODを海水放流可能なレベルを維持しつつ、酸化槽21の小型化により、酸化設備コスト及びランニングコストを抑制することができる。
 尚、海水の性状(例えば、温度、アルカリ度、pH、亜硫酸の酸加速度)には季節的な変動があるため、また、酸化槽仕様(例えば、滞留時間、通気量)は、排水基準に応じて変更する必要があり、排水基準は設備を設置する地域の基準に準ずるため、海水25の性状と排ガス13の性状だけで最適な酸化槽仕様を決定することはできない。しかしながら、効果的な水質回復(例えば、酸化、脱炭酸)を行い、酸化装置の設備コスト(例えば、酸化槽サイズ、通気量)及びランニングコスト(例えば、通気量)を最小とする方法は、酸化槽内の硫黄分吸収海水28のpH設定で決定される為、酸化槽内の硫黄分吸収海水28のpHを決定する前希釈後海水16B中の酸アルカリ当量比は、上記範囲が好ましいことには変わらない。
 従って、本実施の形態に係る海水脱硫酸化処理装置10によれば、排ガス13を吸収用海水15Aと接触させて、排ガス13中の硫黄酸化物を除去し、亜硫酸を含有する硫黄分吸収海水16Aとして回収させる排煙脱硫吸収塔20と、この排煙脱硫吸収塔から排出される硫黄分吸収海水16A中の硫黄分を酸化すると共に脱炭酸し、水質回復を行う酸化槽21と、海水15を希釈用海水15Aとして排煙脱硫吸収塔20に供給する海水供給ラインL1と、酸化槽21入口側に設けられ、海水15の一部を、第一の希釈用海水15Bとして排煙脱硫吸収塔から排出される硫黄分吸収海水16Aと混合させる酸化槽入口の希釈混合槽21Aと、酸化槽21出口側に設けられ、海水15の一部を第二の希釈用海水15Cとして水質回復された酸化槽出口の硫黄分吸収海水16Cと混合させる酸化槽出口の希釈混合槽21Cと、排煙脱硫吸収塔から排出される硫黄分吸収海水16Aを酸化槽入口の希釈混合槽21Aに排出する硫黄分吸収海水排出ラインL3と、第一の希釈用海水15Bを酸化槽入口の希釈混合槽21Aに供給する第一の希釈用海水供給ラインL4と、第二の希釈用海水15Cを酸化槽出口の希釈混合槽21Cに供給する第二の希釈用海水供給ラインL5と、水質回復海水33を海25へ排出する排出ラインL6と、を有している。このため、煙脱硫吸収塔から排出される硫黄分吸収海水16Aに第一の希釈用海水供給ラインL4を介して予め第一の希釈用海水15Bを供給し、混合することで、煙脱硫吸収塔から排出される硫黄分吸収海水16Aが希釈され、前希釈後海水16B中の吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比が低下し、前希釈後海水16BのpHを上昇させ、酸化反応速度を向上させることができる。また、SO2分圧を低減することでSO2の飛散を防止し、酸化槽21周辺に悪臭が発生するのを防止し、作業者の安全を確保することができる。
 また、酸化槽出口の硫黄分吸収海水16Cに第二の希釈用海水供給ラインL5を介して第二の希釈用海水15Cを供給することで、酸化槽出口の硫黄分吸収海水16CのpHを上昇させ、CODを低減することができると共に、酸化槽21での前希釈後海水16Bの滞留時間を縮小することができる。
 更に、前希釈後海水16Bにおいて、吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比が、0.83以上、1.2以下の割合となるように第一の希釈用海水15Bを煙脱硫吸収塔から排出される硫黄分吸収海水16Aに供給することで、酸化槽21での前希釈後海水16Bの海水量を必要最低限とし、亜硫酸の酸化反応速度及び脱炭酸速度を向上させることができる。これにより、酸化槽21を大型化することなく、酸化設備コスト及びランニングコストを抑制することができると共に、酸化槽出口の希釈混合槽21Cから排出される水質回復溶液33のpH、CODを海水放流可能なレベルとして放出することができる。
 このように、本実施の形態に係る海水脱硫酸化処理装置10を適用した発電システム40によれば、酸化槽21からのSOの再放散を防止することで、作業者の安全確保が可能となるのに加え、海水排液のpHの排水基準を満たしつつ、海洋への放出または再利用を行うことができると共に、酸化設備のコストおよびランニングコストを低減し、低コスト化を図ることができる。
 また、本実施の形態に係る海水脱硫酸化処理装置10を適用した発電システム40においては、窒素酸化物(NOx)の排出規制を考慮してボイラ12の後流側に排煙脱硝装置47を設け、窒素酸化物を予め除去した排ガス13を排煙脱硫吸収塔20に送給するようにしているが、本発明はこれに限定されるものではなく、窒素酸化物(NOx)の排出規制等が特にない場合には、排煙脱硝装置47を設けず、ボイラ12から排出される排ガス13を脱硝することなく排煙脱硫吸収塔20に送給するようにしてもよい。
 また、本実施の形態に係る海水脱硫酸化処理装置10は、各種産業における工場、大型、中型火力発電所などの発電所、電気事業用大型ボイラ又は一般産業用ボイラ等から排出される排ガス中に含まれる硫黄酸化物を海水脱硫することで生じる硫黄分吸収溶液中の硫黄分の除去に利用することができる。
 以上のように、本発明に係る海水脱硫酸化処理装置は、海水脱硫によって生じる硫黄分吸収海水を酸化槽入口で海水で予め適量混合して希釈し、硫黄分の酸化、脱炭酸を行い、pH、COD調整を行いつつ、酸化設備コストおよびランニングコストの低減を図ることができるため、海水脱硫に用いた海水を海洋に放出できるように調整する海水脱硫酸化処理装置に用いるのに適している。
 10 海水脱硫酸化処理装置
 11 空気
 12 ボイラ
 13 排ガス
 14 集塵装置
 15 海水
 15A 吸収用海水
 15B 第一の希釈用海水
 15C 第二の希釈用海水
 16A 排煙脱硫吸収塔から排出される硫黄分吸収海水
 16B 酸化槽入口の硫黄分吸収海水(前希釈後海水)
 16C 酸化槽出口の硫黄分吸収海水
 20 排煙脱硫吸収塔
 21 酸化槽
 21A 酸化槽入口の希釈混合槽
 21C 酸化槽出口の希釈混合槽
 22 誘引ファン
 23、24 ポンプ
 25 海
 26 浄化ガス
 27 煙突
 28 酸化槽内の硫黄分吸収海水
 29 酸化用空気ブロア
 30 空気
 31 散気管
 32 ノズル
 33 水質回復海水
 34 流量調整器
 35 検出器
 36 検出器
 40 発電システム
 41 空気予熱器(AH)
 42 蒸気
 43 発電機
 44 蒸気タービン
 45 水
 46 復水器
 47 排煙脱硝装置
 48 押込みファン
 49 熱交換器
 L1 海水供給ライン
 L2 浄化ガス排出ライン
 L3 硫黄分吸収海水排出ライン
 L4 第一の希釈用海水供給ライン
 L5 第二の希釈用海水供給ライン
 L6 海水排出ライン

Claims (9)

  1.  排ガスを海水と接触させて、前記排ガス中の硫黄酸化物を除去し、亜硫酸を含有する硫黄分吸収海水として回収する排煙脱硫吸収塔と、
     該排煙脱硫吸収塔から排出される硫黄分吸収海水中の硫黄分を酸化すると共に脱炭酸し、水質回復を行う酸化槽と、
     前記海水を希釈用海水として前記排煙脱硫装置に供給する海水供給ラインと、
     前記酸化槽入口側に設けられ、前記海水の一部を、第一の希釈用海水として前記排煙脱硫吸収塔から排出される硫黄分吸収海水と混合させる酸化槽入口の希釈混合槽と、
     前記酸化槽出口側に設けられ、前記海水の一部を第二の希釈用海水として水質回復された酸化槽出口の硫黄分吸収海水と混合させる酸化槽出口の希釈混合槽と、
     前記排煙脱硫吸収塔から排出される硫黄分吸収海水を前記酸化槽入口の希釈混合槽に排出する硫黄分吸収海水排出ラインと、
     前記第一の希釈用海水を前記酸化槽入口の希釈混合槽に供給する第一の希釈用海水供給ラインと、
     前記第二の希釈用海水を前記酸化槽出口の希釈混合槽に供給する第二の希釈用海水供給ラインと、
     前記酸化槽出口の硫黄分吸収海水を前記第二の希釈用海水により希釈した水質回復海水を海へ排出する排出ラインと、
    を有することを特徴とする海水脱硫酸化処理装置。
  2.  請求項1において、
     前記第一の希釈用海水と前記排煙脱硫吸収塔から排出される硫黄分吸収海水とを混合させた直後において、吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比が、0.83以上、1.2以下の割合となるように、前記第一の希釈用海水を供給することを特徴とする海水脱硫酸化処理装置。
  3.  請求項1又は2において、
     前記硫黄分吸収海水排出ライン上に、前記排煙脱硫吸収塔から排出される硫黄分吸収海水中の亜硫酸水素イオン濃度を検出する検出器を有することを特徴とする海水脱硫酸化処理装置。
  4.  請求項1乃至3の何れか一つにおいて、
     前記第一の希釈用海水供給ライン上に、前記第一の希釈用海水のアルカリ当量を検出する検出器を有することを特徴とする海水脱硫酸化処理装置。
  5.  請求項1乃至4の何れか一つにおいて、
     前記海水が復水器から排出される排液であることを特徴とする海水脱硫酸化処理装置。
  6.  ボイラと、
     前記ボイラから排出される排ガスを蒸気発生用の熱源として使用すると共に、発生した蒸気を用いて発電機を駆動する蒸気タービンと、
     前記蒸気タービンで凝縮した水を回収し、循環させる復水器と、
     前記ボイラから排出される排ガスの脱硝を行う排煙脱硝装置と、
     前記排ガス中の煤塵を除去する集塵装置と、
     請求項1乃至5の何れか一つの海水脱硫酸化処理装置と、
     前記排煙脱硫装置で脱硫された浄化ガスを外部へ排出する煙突とからなることを特徴とする発電システム。
  7.  排ガス中の硫黄分を海水と接触させて洗浄し、洗浄後の排ガス中の硫黄分を吸収した硫黄分吸収海水中の亜硫酸を酸化すると共に脱炭酸処理を行い、水質回復した後、排出する脱硫海水の処理方法において、
     前記硫黄分吸収海水に前記海水の一部を第一の希釈用海水として酸化槽入口の希釈混合槽において混合した後、酸化槽入口の硫黄分吸収海水を酸化槽に供給し、前記酸化槽入口の硫黄分吸収海水中の亜硫酸を酸化すると共に、脱炭酸を行い、
     前記酸化槽から排出される酸化・脱炭酸処理後の酸化槽出口の硫黄分吸収海水を酸化槽出口の希釈混合槽に送給し、前記酸化槽出口の希釈混合槽において前記海水の一部を第二の希釈用海水として前記酸化槽出口の希釈混合槽に混合した後、放出することを特徴とする脱硫海水の処理方法。
  8.  請求項7において、
     第一の希釈用海水と前記排煙脱硫吸収塔から排出される硫黄分吸収海水とを混合させた直後において、吸収した硫黄分由来の酸当量の海水のアルカリ当量に対する比が、0.83以上、1.2以下の割合となるように、前記第一の希釈用海水を供給することを特徴とする脱硫海水の処理方法。
  9.  請求項7又は8において、
     前記海水が復水器から排出される排液であることを特徴とする脱硫海水の処理方法。
PCT/JP2009/057072 2009-04-06 2009-04-06 海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システム WO2010116482A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MYPI2011004786A MY169823A (en) 2009-04-06 2009-04-06 Seawater desulfurization/oxidation treatment apparatus, method of treating desulfurization seawater, and power generating system employing the same
CN200980158577.2A CN102387850B (zh) 2009-04-06 2009-04-06 海水脱硫氧化处理装置、脱硫海水的处理方法及应用该方法的发电系统
PCT/JP2009/057072 WO2010116482A1 (ja) 2009-04-06 2009-04-06 海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システム
JP2011508123A JPWO2010116482A1 (ja) 2009-04-06 2009-04-06 海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/057072 WO2010116482A1 (ja) 2009-04-06 2009-04-06 海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システム

Publications (1)

Publication Number Publication Date
WO2010116482A1 true WO2010116482A1 (ja) 2010-10-14

Family

ID=42935793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057072 WO2010116482A1 (ja) 2009-04-06 2009-04-06 海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システム

Country Status (4)

Country Link
JP (1) JPWO2010116482A1 (ja)
CN (1) CN102387850B (ja)
MY (1) MY169823A (ja)
WO (1) WO2010116482A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557194A (zh) * 2011-12-31 2012-07-11 国家海洋局天津海水淡化与综合利用研究所 膜法曝气工业烟气脱硫海水恢复工艺
EP2486969A1 (en) * 2011-02-10 2012-08-15 Alstom Technology Ltd A method and a device for treating effluent seawater from a seawater scrubber
WO2013004143A1 (zh) * 2011-07-01 2013-01-10 Peng Sigan 酸性海水处理方法及设备
WO2013115108A1 (ja) * 2012-01-31 2013-08-08 三菱重工業株式会社 酸化槽、海水排煙脱硫システムおよび発電システム
WO2013115107A1 (ja) * 2012-01-31 2013-08-08 三菱重工業株式会社 海水排煙脱硫システムおよび発電システム
WO2015099171A1 (ja) * 2013-12-27 2015-07-02 クボタ化水株式会社 亜硫酸ガス含有排ガスの脱硫方法および脱硫装置
CN108218050A (zh) * 2018-03-23 2018-06-29 东方电气集团东方锅炉股份有限公司 一种海水烟气脱硫后酸性海水的水质恢复装置及恢复方法
WO2020066762A1 (ja) * 2018-09-28 2020-04-02 三菱日立パワーシステムズ株式会社 水処理システム及び水処理方法
JPWO2021111957A1 (ja) * 2019-12-04 2021-06-10

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716651B (zh) * 2012-06-26 2015-03-18 田鹏程 脱硫脱硝一体化烟气净化处理系统及其净化处理工艺
EP3189883B1 (en) 2014-09-02 2019-09-04 Fuji Electric Co., Ltd. Exhaust gas treatment device and waste water treatment method for exhaust gas treatment device
CN106745987B (zh) * 2016-12-21 2023-03-14 武汉凯迪电力环保有限公司 一种高效低能耗海水脱硫氧化系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117349A (ja) * 2001-10-17 2003-04-22 Mitsubishi Heavy Ind Ltd 排煙処理装置
JP2007125474A (ja) * 2005-11-01 2007-05-24 Nippon Kankyo Kikaku Kk 海水による排ガス脱硫方法及び排ガス脱硫装置
JP2008207149A (ja) * 2007-02-28 2008-09-11 Mitsubishi Heavy Ind Ltd 海水排煙脱硫システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117349A (ja) * 2001-10-17 2003-04-22 Mitsubishi Heavy Ind Ltd 排煙処理装置
JP2007125474A (ja) * 2005-11-01 2007-05-24 Nippon Kankyo Kikaku Kk 海水による排ガス脱硫方法及び排ガス脱硫装置
JP2008207149A (ja) * 2007-02-28 2008-09-11 Mitsubishi Heavy Ind Ltd 海水排煙脱硫システム

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107010710A (zh) * 2011-02-10 2017-08-04 通用电器技术有限公司 处理来自海水洗涤器的排出海水的方法和装置
EP2486969A1 (en) * 2011-02-10 2012-08-15 Alstom Technology Ltd A method and a device for treating effluent seawater from a seawater scrubber
WO2012107817A1 (en) * 2011-02-10 2012-08-16 Alstom Technology Ltd A method and a device for treating effluent seawater from a seawater scrubber
CN103347590A (zh) * 2011-02-10 2013-10-09 阿尔斯通技术有限公司 处理来自海水洗涤器的排出海水的方法和装置
US9327230B2 (en) 2011-02-10 2016-05-03 Alstom Technology Ltd Method and a device for treating effluent seawater from a seawater scrubber
WO2013004143A1 (zh) * 2011-07-01 2013-01-10 Peng Sigan 酸性海水处理方法及设备
JP2014524830A (ja) * 2011-07-01 2014-09-25 ペン, シーガン 酸性海水の処理方法及び装置
CN102557194A (zh) * 2011-12-31 2012-07-11 国家海洋局天津海水淡化与综合利用研究所 膜法曝气工业烟气脱硫海水恢复工艺
WO2013115108A1 (ja) * 2012-01-31 2013-08-08 三菱重工業株式会社 酸化槽、海水排煙脱硫システムおよび発電システム
WO2013115107A1 (ja) * 2012-01-31 2013-08-08 三菱重工業株式会社 海水排煙脱硫システムおよび発電システム
WO2015099171A1 (ja) * 2013-12-27 2015-07-02 クボタ化水株式会社 亜硫酸ガス含有排ガスの脱硫方法および脱硫装置
CN108218050A (zh) * 2018-03-23 2018-06-29 东方电气集团东方锅炉股份有限公司 一种海水烟气脱硫后酸性海水的水质恢复装置及恢复方法
WO2020066762A1 (ja) * 2018-09-28 2020-04-02 三菱日立パワーシステムズ株式会社 水処理システム及び水処理方法
JPWO2021111957A1 (ja) * 2019-12-04 2021-06-10
WO2021111957A1 (ja) * 2019-12-04 2021-06-10 富士電機株式会社 排ガス処理装置
JP7310920B2 (ja) 2019-12-04 2023-07-19 富士電機株式会社 排ガス処理装置

Also Published As

Publication number Publication date
JPWO2010116482A1 (ja) 2012-10-11
MY169823A (en) 2019-05-16
CN102387850B (zh) 2014-12-10
CN102387850A (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
WO2010116482A1 (ja) 海水脱硫酸化処理装置、脱硫海水の処理方法及びこれを適用した発電システム
KR101307089B1 (ko) 배기 가스 처리 방법
JP5773687B2 (ja) 海水排煙脱硫システムおよび発電システム
WO2013115107A1 (ja) 海水排煙脱硫システムおよび発電システム
JP2009262081A (ja) 排ガス処理システム及び排ガス中の水銀除去方法
JP5717382B2 (ja) 排煙処理装置及び排煙処理方法
JP2012179521A5 (ja)
WO2016203865A1 (ja) 石炭焚ボイラ用排ガス処理装置と石炭焚ボイラ用排ガス処理方法
JP4719228B2 (ja) 石炭焚ボイラの排ガス処理システム
JP2009166010A (ja) 石炭焚ボイラの排ガス処理システム及び方法
JP6462359B2 (ja) 亜硫酸ガス含有排ガスの脱硫方法および脱硫装置
TWI531538B (zh) Oxidation tank, seawater desulfurization system and power generation system
JP5106479B2 (ja) 脱硫装置における水銀再放出抑制方法および装置
WO2010131327A1 (ja) 海水排煙脱硫装置及び脱硫海水の処理方法
JP4936002B2 (ja) 排ガス処理方法及び排ガス処理装置
JP5144967B2 (ja) 排ガス処理システム
CN212440707U (zh) 一种脱硫脱硝除尘一体化技术的研制
CN111054201A (zh) 一种脱硫脱硝除尘一体化技术的研制
JP2003340238A (ja) 湿式排煙脱硫方法及びその装置
JP5591446B2 (ja) 排ガス処理方法
JP5991664B2 (ja) 排煙脱硫システム
CN104162354A (zh) 钙基湿法-氧化脱硝法
SA109300663B1 (ar) جهاز معالجة فصل كبريت ماء البحر بواسطة الأكسدة
JP2010137201A (ja) 水銀除去方法と装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158577.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011508123

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 7231/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842992

Country of ref document: EP

Kind code of ref document: A1