WO2015098638A1 - 絶縁ワイヤ、コイルおよび電気・電子機器ならびに皮膜剥離防止絶縁ワイヤの製造方法 - Google Patents

絶縁ワイヤ、コイルおよび電気・電子機器ならびに皮膜剥離防止絶縁ワイヤの製造方法 Download PDF

Info

Publication number
WO2015098638A1
WO2015098638A1 PCT/JP2014/083364 JP2014083364W WO2015098638A1 WO 2015098638 A1 WO2015098638 A1 WO 2015098638A1 JP 2014083364 W JP2014083364 W JP 2014083364W WO 2015098638 A1 WO2015098638 A1 WO 2015098638A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
insulated wire
layer
thermosetting resin
sides
Prior art date
Application number
PCT/JP2014/083364
Other languages
English (en)
French (fr)
Inventor
佳祐 池田
真 大矢
秀雄 福田
恵一 冨澤
Original Assignee
古河電気工業株式会社
古河マグネットワイヤ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河マグネットワイヤ株式会社 filed Critical 古河電気工業株式会社
Priority to MYPI2016702345A priority Critical patent/MY185769A/en
Priority to CN201480070361.1A priority patent/CN106062893B/zh
Priority to KR1020167019657A priority patent/KR101988092B1/ko
Priority to EP14873847.9A priority patent/EP3089168B1/en
Priority to JP2015554775A priority patent/JP6382224B2/ja
Publication of WO2015098638A1 publication Critical patent/WO2015098638A1/ja
Priority to US15/192,195 priority patent/US9536636B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/065Insulating conductors with lacquers or enamels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/307Other macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof

Definitions

  • the present invention relates to an insulating wire, a coil, an electric / electronic device, and a method for manufacturing a film peeling prevention insulating wire.
  • Inverters are being attached to many electrical devices as efficient variable speed controllers. However, switching is performed at several kHz to several tens of kHz, and a surge voltage is generated for each of those pulses. Such an inverter surge is reflected at an impedance discontinuity in the propagation system, for example, at the start or end of a connected wiring, and as a result, a phenomenon in which a voltage twice as high as the inverter output voltage is applied at the maximum. It is.
  • an output pulse generated by a high-speed switching element such as an IGBT (Insulated Gate Bipolar Transistor) has a high voltage steepness, so that even if the connection cable is short, the surge voltage is high, and the voltage attenuation by the connection cable is also small. As a result, a voltage close to twice the inverter output voltage is generated.
  • IGBT Insulated Gate Bipolar Transistor
  • Insulator-related equipment such as high-speed switching elements, inverter motors, transformers, and other electrical equipment coils
  • insulated wires that are mainly enameled wires are used as magnet wires. Therefore, as described above, in the inverter-related equipment, a voltage close to twice the inverter output voltage is applied. Therefore, it is becoming necessary for insulated wires (insulated wires) to minimize partial discharge deterioration caused by inverter surges.
  • partial discharge deterioration includes molecular chain breakage deterioration due to collision of charged particles generated by the partial discharge of an electrically insulating material, sputtering deterioration, thermal melting or thermal decomposition deterioration due to local temperature rise, chemical deterioration due to ozone generated by discharge, etc. Is a complicated phenomenon. As a result, the thickness of the electrically insulating material deteriorated by the actual partial discharge is reduced.
  • the inverter surge deterioration of the insulated wire proceeds by the same mechanism as general partial discharge deterioration. That is, a partial discharge occurs in the insulated wire due to a surge voltage having a high peak value generated in the inverter, and the coating of the insulated wire causes partial discharge deterioration due to the partial discharge, that is, high frequency partial discharge deterioration.
  • an insulated wire having a high partial discharge voltage has been studied.
  • a method of increasing the thickness of the insulating layer of the insulated wire can be considered.
  • Patent Documents 1 and 2 propose an extrusion-coated resin layer on an enamel baking layer.
  • Patent Document 3 proposes providing a thermoplastic coating resin having a shape in which each side is curved outward on a rectangular conductor as an outermost layer.
  • the present invention can prevent the peeling of the coating during processing to the coil, is excellent in processing suitability, and adheres a coating of an insulating layer having an appropriate thickness capable of raising the partial discharge generation voltage between the conductor of the insulated wire and the enamel baking layer.
  • An object of the present invention is to provide an inverter surge-proof insulated wire realized without reducing the strength.
  • the present invention relates to a method for producing a film peeling prevention insulating wire for preventing the exfoliation of an extrusion-coated resin layer from a conductor of an insulating wire, a coil using the insulating wire, and an electric / electronic device using the coil.
  • the purpose is to provide.
  • the present inventors have found that a specific convex portion is formed on the surface of the lower film without making the film thickness of the enamel baking layer, which is the lower film of the thick film coated wire, uniform. It was found that an inverter surge-insulated electric wire that overcomes the above-mentioned problems can be obtained by providing an extrusion-coated resin layer outside the enameled layer. Moreover, when the extrusion-coated resin layer was formed from a thermoplastic resin, particularly from a crystalline thermoplastic resin, the adhesion strength was expressed even if the degree of crystallinity was increased. . The present invention has been made based on these findings.
  • thermosetting resin layer (A) on a conductor having a flat cross section directly or via an insulating layer (D), and at least a thermoplastic resin on the outer periphery of the thermosetting resin layer (A) It consists of a laminated resin-coated insulated wire having a layer (B),
  • the cross-sectional shape of the thermosetting resin layer (A) is composed of two sets of two opposing sides, and has at least four convex portions having a maximum film thickness, and the at least four convex portions are Having at least one protrusion on each of the four sides, or at least two protrusions on each of at least two opposite sides; In each of the sides having the protrusions, a / b is 0.60 or more and 0.90 or less, where the minimum film thickness is a ⁇ m and the average of the maximum film thickness of the protrusions is b ⁇ m.
  • thermosetting resin layer (A) has at least two convex portions on each of at least two opposing sides, and further includes the convex portions on each of the remaining two opposing sides. Have one or more, In each of the sides having the protrusions, a / b is 0.60 or more and 0.90 or less, where the minimum film thickness is a ⁇ m and the average of the maximum film thickness of the protrusions is b ⁇ m.
  • the insulated wire as described in (1).
  • thermosetting resin layer (A) has one convex portion on one side, at least two convex portions are provided near the center of the side or on one side.
  • it has, it has one each of the convex part near the both ends of the side, or has each one between the middle point from the center of the side to the end of the side and both ends of the side.
  • the outer shape of the cross section of the thermoplastic resin layer (B) is composed of two short sides facing two long sides facing each other, up to the conductor on each side.
  • the insulated wire according to any one of (1) to (4), wherein the total thickness of the laminated resin coating layers is the same for all portions of the side.
  • An insulating layer (C) made of an amorphous resin is provided between the thermosetting resin layer (A) and the thermoplastic resin layer (B).
  • thermoplastic resin layer (B) is a thermoplastic resin selected from the group consisting of thermoplastic polyimide, polyphenylene sulfide, polyether ether ketone, and modified polyether ether ketone.
  • thermosetting resin layer (A) is a thermosetting resin selected from the group consisting of polyimide, polyamideimide, thermosetting polyester, and H-type polyester
  • (10) A coil obtained by winding the insulating wire according to any one of (1) to (9).
  • (11) An electric / electronic device using the coil according to (10).
  • thermosetting resin layer (A) on a conductor having a flat cross section directly or through an insulating layer (D), and at least a thermoplastic resin on the outer periphery of the thermosetting resin layer (A)
  • An insulated wire comprising a laminated resin-coated insulated wire having a layer (B),
  • the cross-sectional shape of the thermosetting resin layer (A) is composed of two sets of two opposing sides, and has at least four convex portions having a maximum film thickness, and the at least four convex portions are Forming at least one protrusion on each of the four sides, or forming at least two protrusions on each of at least two opposite sides; In each of the sides having the convex portions, the convex portions are set so that a / b satisfies 0.60 or more and 0.90 or less when the minimum film thickness is a ⁇ m and the average of the maximum film thickness of the convex portions is b ⁇ m.
  • the formation of the film prevents peeling of the thermo
  • the insulated wire of the present invention is an insulating film in which an insulating film is formed by coating a conductor with at least two laminated resin layers having an enamel baking layer and an extrusion-coated resin layer, which are made of different types of resins having different heat resistance.
  • the formed insulating film is a wire and has excellent processing resistance against bending processing (winding processing) to a coil or the like.
  • processing resistance against bending processing winding processing
  • at least an enamel baking layer and an extrusion-coated resin layer The air gap that can occur between both membranes is also eliminated. Therefore, according to the present invention, there is no film peeling at the time of processing on the coil, the processing suitability is excellent, and the insulating layer is made thicker to increase the partial discharge generation voltage.
  • FIG. 1 is a schematic diagram of a laminated resin-coated insulated wire according to the present invention having an enamel-baked layer provided with a thick convex portion at the center of one of four sides on a rectangular conductor.
  • FIG. FIG. 2 is a schematic view of a laminated resin-coated insulated wire according to the present invention having an enamel-baked layer in which two opposing long sides are provided with thick convex portions in the vicinity of both ends of each side on a rectangular conductor.
  • FIG. FIG. 3 shows that two long sides facing each other on a rectangular conductor are provided with thick convex portions in the vicinity of both ends of each side, and the two short sides facing each other are the center of the short side of each side.
  • FIG. 5 is a schematic cross-sectional view of a laminated resin-coated insulated wire of the present invention having an enamel-baked layer in which four sides each have a thick convex portion in the vicinity of both ends of each side on a rectangular conductor.
  • FIG. 6 is a schematic cross-sectional view of a laminated resin-coated insulated wire having a conventional enamel-baked layer having a cross-sectional shape on a rectangular conductor.
  • FIG. 7 is a schematic cross-sectional view of a laminated resin-coated insulated wire having an enamel-baked layer provided with a thick convex portion on only one long side on a rectangular conductor.
  • FIG. 8 is a schematic cross-sectional view of a laminated resin-coated insulated wire having an enamel-baked layer provided with a thick convex portion on only one short side on a rectangular conductor.
  • FIG. 9 is a schematic cross-sectional view of a laminated resin-coated insulated wire having an enamel baking layer in which two opposing long sides are provided with a thick convex portion at the center of each side on a rectangular conductor. is there.
  • the insulated wire of the present invention has a thermosetting resin layer (A) (also referred to as an enamel-baked layer) directly or via an insulating layer (D) on a flat conductor having four corners in the cross section having a radius of curvature r described later. And a laminated resin-coated insulated electric wire having at least a thermoplastic resin layer (B) (also referred to as an extrusion-coated resin layer) on the outer periphery of the thermosetting resin layer (A).
  • the thickness surrounding the conductor of the thermosetting resin layer (A) has a uniform thickness as shown in FIG. Instead, a thick convex part is provided on the long side or the short side, and the maximum thickness of the convex part is within a specific range.
  • thermosetting resin layer 2 (A) (enamel baking layer) is provided on the conductor 1
  • thermoplastic resin layer 3 (B) (extrusion coating resin layer) is provided on the outer periphery thereof.
  • an insulating layer (D) may be provided between the conductor and the thermosetting resin layer 2 (A), and the thermosetting resin layer may be provided.
  • an intermediate layer for example, an insulating layer (C) made of an amorphous resin as an adhesive layer (hereinafter referred to as “noncrystalline resin layer (C)”) May also be provided.
  • each of these layers may be a single layer or a plurality of layers of two or more layers.
  • the conductors will be described in order.
  • a conductor used for this invention what is normally used with an insulated wire can be used and metal conductors, such as a copper wire and an aluminum wire, are mentioned.
  • metal conductors such as a copper wire and an aluminum wire
  • it is a copper wire, more preferably a low oxygen copper having an oxygen content of 30 ppm or less, more preferably a low oxygen copper or oxygen-free copper conductor having a oxygen content of 20 ppm or less. If the oxygen content is 30 ppm or less, when the conductor is melted with heat to prevent welding, voids due to oxygen contained in the welded portion are not generated, and the electrical resistance of the welded portion is prevented from deteriorating. The strength of the welded portion can be maintained.
  • the conductor used in the present invention has a flat cross-sectional shape.
  • the rectangular conductor has a higher occupation ratio with respect to the stator slot during winding than the circular conductor. Therefore, it is preferable for such applications.
  • the rectangular conductor preferably has a shape with chamfers (curvature radius r) at four corners as shown in FIGS. 1 to 9 in that partial discharge from the corner is suppressed.
  • the radius of curvature r is preferably 0.6 mm or less, and more preferably in the range of 0.2 to 0.4 mm.
  • the size of the cross section of the conductor is not particularly limited, but the width (long side) is preferably 1 to 5 mm, more preferably 1.4 to 4.0 mm, and the thickness (short side) is 0.4 to 3.0 mm. Is preferable, and 0.5 to 2.5 mm is more preferable.
  • the ratio of the width (long side) to the thickness (short side) is preferably 1: 1 to 4: 1.
  • the cross section of the conductor used in the present invention may have the same width and thickness, that is, a substantially square shape. When the cross section of the conductor is substantially square, the long side means each of two opposing sides of the cross section of the conductor, and the short side means each of two other opposing sides.
  • the enamel baking layer has at least one thermosetting resin layer (A) made of a thermosetting resin.
  • the term “one layer” means that the resin constituting the layer and the additive to be contained are the same layer when the same layer is laminated. The number of layers is counted when the composition constituting the layers is different, such as when the blending amount is different. The same applies to other layers other than the enamel baking layer.
  • the enamel baking layer is made of resin varnish (if necessary, antioxidant, antistatic agent, UV inhibitor, light stabilizer, fluorescent whitening agent, pigment, dye, compatibilizer, lubricant, reinforcing agent, flame retardant, crosslinking agent. , A crosslinking aid, a plasticizer, a thickener, a thinning agent, and various additives such as an elastomer) may be applied and baked on the conductor a plurality of times.
  • the method of applying the resin varnish may be a conventional method, for example, a method of using a varnish application die having a similar conductor shape.
  • the conductor coated with these resin varnishes is also baked in a baking furnace by a conventional method.
  • the specific baking conditions depend on the shape of the furnace used, but for a natural convection type vertical furnace of about 5 m, the passage time is set to 400 to 500 ° C. and 10 to 90 seconds. Can be achieved.
  • an organic solvent or the like is used for varnishing the thermosetting resin.
  • the organic solvent is not particularly limited as long as it does not inhibit the reaction of the thermosetting resin.
  • N-methyl-2 Amido solvents such as pyrrolidone (NMP), N, N-dimethylacetamide (DMAC), dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea, tetramethylurea
  • NMP pyrrolidone
  • DMAC N-dimethylacetamide
  • dimethyl sulfoxide N, N-dimethylformamide
  • N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea tetramethylurea
  • Urea solvents such as ⁇ -butyrolactone, lactone solvents such as ⁇ -caprolactone, carbonate solvents such as propylene carbonate
  • ketone solvents such as methyl eth
  • amide solvents and urea solvents are preferable in terms of high solubility, high reaction acceleration, and the like, and they do not have hydrogen atoms that easily inhibit crosslinking reaction by heating.
  • -Pyrrolidone, N, N-dimethylacetamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea and tetramethylurea are more preferred, and N-methyl-2-pyrrolidone is particularly preferred.
  • the enamel baking layer which is a thermosetting resin layer (A) may be provided directly on the outer periphery of the conductor, or may be provided via an insulating layer (D).
  • thermosetting resin of the thermosetting resin varnish materials used for ordinary enameled wires can be used.
  • PAI polyamideimide
  • PI polyimide
  • PI polyimide
  • PES thermosetting polyester
  • HPE type H polyester
  • polyvinyl formal epoxy resin
  • polyhydantoin polyimide resins
  • polyimide resins such as polyimide (PI), polyamideimide (PAI), polyesterimide, polyetherimide, and polyimide hydantoin-modified polyester, which are excellent in heat resistance.
  • An ultraviolet curable resin or the like may be used.
  • thermosetting resins may be used alone or in combination of two or more.
  • thermosetting resins may be used in each layer, or thermosetting resins having different mixing ratios may be used. Good.
  • thermosetting resin is preferably a thermosetting resin selected from the group consisting of polyimide (PI), polyamideimide (PAI), thermosetting polyester (PEst), and class H polyester (HPE).
  • PI polyimide
  • PAI polyamideimide
  • PES thermosetting polyester
  • HPE class H polyester
  • polyimide (PI) or polyamideimide (PAI) is preferable, and polyimide (PI) is particularly preferable.
  • the H-type polyester refers to an aromatic polyester obtained by modifying a resin by adding a phenol resin or the like and having a heat resistance class of H type.
  • examples of commercially available H-type polyester (HPE) include Isonel 200 (trade name, manufactured by Schenectady International).
  • the polyimide (PI) is not particularly limited, and any polyimide resin such as wholly aromatic polyimide and thermosetting aromatic polyimide can be used.
  • any polyimide resin such as wholly aromatic polyimide and thermosetting aromatic polyimide can be used.
  • commercially available products manufactured by Unitika Ltd., trade name: Uimide, Ube Industries, trade name: U-Varnish, Toray DuPont, trade name: # 3000, etc.
  • aromatics are used by conventional methods.
  • polyamide-imide As the polyamide-imide (PAI), a commercially available product (for example, product name: HI406 manufactured by Hitachi Chemical Co., Ltd.) is used, or a tricarboxylic acid anhydride and a diisocyanate are directly reacted in a polar solvent, for example, by a conventional method. Or a product obtained by first reacting a diamine with a tricarboxylic acid anhydride in a polar solvent, first introducing an imide bond, and then amidating with a diisocyanate.
  • Polyamideimide (PAI) has characteristics that it has a lower thermal conductivity than other resins, has a high dielectric breakdown voltage, and can be baked and cured.
  • the thickness of the enamel baking layer is preferably 60 ⁇ m or less, and more preferably 50 ⁇ m or less in order to reduce the number of passes through the baking furnace and prevent the adhesive force between the conductor and the enamel baking layer from being extremely reduced. Moreover, in order not to impair the withstand voltage characteristic and the heat resistance characteristic, which are necessary characteristics for the enameled wire as the insulating wire, it is preferable that the enamel baking layer has a certain thickness.
  • the lower limit thickness of the enamel baking layer is not particularly limited as long as it does not cause pinholes, and is preferably 3 ⁇ m or more, more preferably 6 ⁇ m or more.
  • the thickness here is a thickness when the convex portion is not provided, and may be an average thickness.
  • the enamel baking layer may be a single layer or a plurality of layers.
  • the enamel baking layer which is the thermosetting resin layer (A)
  • the enamel baking layer is provided with a thick portion in the thermosetting resin layer (A) having the above thickness, and a convex portion having a maximum thickness in the cross-sectional shape.
  • the cross-sectional shape of the enamel baking layer, which is the thermosetting resin layer (A) is composed of two opposing two sides as shown in FIG. 6 in the conventional enamel baking layer.
  • at least four convex portions are provided on any of the four sides. This increases the surface area (the length of the interface in the cross-sectional shape) of the interface that is in contact with the intermediate layer such as the extrusion-coated resin layer or the adhesive layer provided on the upper layer of the enamel baking layer, and the maximum convex portion.
  • the film thickness of the convex portion and the installation positions on the surfaces of the sides of at least four convex portions are specified.
  • the minimum film thickness which is the thickness of the flat portion in the state where the convex portion is not provided is a ⁇ m, the maximum film thickness of the convex portion or a plurality of convex portions.
  • the value of a / b is 0.60 or more and 0.90 or less. Therefore, when a plurality of sides have a convex portion, the value of a / b is 0.60 or more and 0.90 or less on each side.
  • it is especially preferable that the value of a / b is 0.60 or more and 0.90 or less in each convex part.
  • the minimum film thickness is a thickness in a state where no convex portion is provided, and is a thickness of a portion where no convex portion is formed on the same side.
  • the maximum convex portion (the convex portion having the maximum value) is not limited to only the shape of the convex portion showing the inflection point on both sides of the convex portion, for example, This includes a case where no inflection point is shown in the end direction or the short side direction (thickness direction) of the side where the convex portion is formed, as in the case where the convex portion is provided at the end portion of the side.
  • the convex portion in the present invention smoothly connects the convex portion and the end portion of each side or the convex portion and the flat portion, and does not protrude in a rectangular shape from the flat portion. There is no stress concentration at the boundary of the part or at the boundary between the convex part and the flat part.
  • the connection between the convex portion and the end portion of the side can be performed even if the convex portion and the end portion of the side are connected via the flat portion. You may connect the part and the edge part of a side directly. If the convex part and the edge part of the side or the convex part and the flat part are smoothly connected, the resin covering the upper layer may wrap around.
  • a / b is preferably 0.65 or more and 0.85 or less, and more preferably 0.70 or more and 0.80 or less.
  • a / b exceeds 0.90, a sufficient adhesion area cannot be obtained between the enamel baking layer and the extrusion-coated resin layer, and the target processability is lowered.
  • it is 0.80 or less.
  • the minimum film thickness a is preferably 3 ⁇ m to 60 ⁇ m, more preferably 6 ⁇ m to 50 ⁇ m, further preferably 10 ⁇ m to 50 ⁇ m, and particularly preferably 20 ⁇ m to 50 ⁇ m.
  • the average b of the maximum film thickness of the convex part or the maximum film thickness of the convex part is preferably 20 ⁇ m or more and 60 ⁇ m or less, more preferably 20 ⁇ m or more and 55 ⁇ m or less, and further preferably 25 ⁇ m or more and 55 ⁇ m or less.
  • the cross-sectional shape of the convex portion in the present invention is preferably a convex portion that increases in thickness successively, and conversely decreases in thickness after passing the maximum point of the convex portion.
  • a convex part is preferable.
  • the peak of the convex portion (which may be temporarily flattened toward the maximum point, but increases gradually, in other words, does not include the decrease, increases sequentially, and increases when the peak is the maximum point).
  • the convex part of the curve which decreases sequentially is preferable.
  • the proportion of the base of the convex portion may occupy the entire side or may be a part thereof, but at least the flat portion and the minimum film thickness can be observed so that the flat portion exists. preferable.
  • convex portions are provided as in 1) or 2) below.
  • At least one convex portion is provided on each of the four sides. 2) At least two convex portions are provided on each of at least two opposing sides.
  • side indicates only a straight line portion that does not include a corner portion having the radius of curvature r, and is before a so-called convex portion is provided.
  • the installation method of 1) is more preferable than the installation method of 2).
  • the two opposing sides on which the convex portions are provided are preferably longer sides than short sides.
  • the convex portions provided on the remaining two sides are preferably provided with two convex portions, rather than providing one convex portion on one side, and in this case, it is preferable to provide two convex portions on both sides.
  • the value of a / b in the side having the newly provided convex portion is preferably 0.60 or more and 0.90 or less.
  • At least four convex portions are provided.
  • two convex portions are preferably provided on one side, and therefore, in the case where two convex portions are provided on each of the four sides, a total of eight convex portions are provided. It is effective. When the number of convex portions provided on one side is too large, the area occupied by each convex portion is reduced, and the obtained effect tends to be reduced as compared with two.
  • the a / b values of two opposing sides may be the same value or different from each other.
  • the two opposing sides in the cross-sectional shape are preferably point-symmetric or line-symmetric with respect to the center point or center line of the two opposing sides with respect to the arrangement of the convex portions.
  • the height may be different on each side or on each convex part, but when there are two convex parts on the same side, the height of each convex part is the same as when using an insulated wire.
  • each has one convex portion in the vicinity of both ends of the side, or has one convex portion in the vicinity of the end of the side and the other one convex portion Between the middle point from the center of the side to the end of the side to the end on the side that does not have a convex portion, or between the middle point from the center of the side to the end of the side and both ends of the side It is preferable to have one each.
  • one convex portion is provided near both ends of the side, or between the middle point from the center of the side to the end of the side and both ends of the side. It is preferable to have one each on the left and right.
  • the vicinity of the center of the side means a range of ⁇ L / 10 from the center of the side, where L is the length of the side. In the present invention, it is most preferable to provide the maximum point of the convex portion at the center point of the side.
  • the vicinity of the end of the side means a range of L / 10 from the end of the side. In the present invention, it is preferable to provide the maximum point of the convex portion in the vicinity of the end of the side.
  • the surface tension is utilized by adjusting the linear velocity by reducing the viscosity of the resin varnish forming the layer.
  • a method of forming convex portions at the corners of the enamel baking layer and a method of controlling by a die shape.
  • the method using viscosity reduction can provide convex portions at the corners, but it is difficult to provide convex portions at any intended positions, and it is difficult to control the thickness of the convex portions. It is preferable to control the position and thickness of the part.
  • thermoplastic resin layer (B) made of a thermoplastic resin as an extrusion-coated resin layer in contact with the enamel baking layer as the thermosetting resin layer (A) or through an intermediate layer such as an adhesive layer. ) At least one layer.
  • an insulating wire having a high partial discharge generation voltage can be obtained.
  • the advantage of the extrusion coating method is that the thickness of the insulating layer can be increased without growing the thickness of the oxide film layer of the conductor because it is not necessary to pass through a baking furnace in the manufacturing process.
  • thermoplastic resin As the resin used for the extrusion-coated resin layer, a thermoplastic resin is used, and it is preferable to use a thermoplastic resin excellent in heat resistance.
  • thermoplastic resins include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-ethylene copolymer (ETFE), tetrafluoroethylene perfluoroalkyl.
  • PVPE Vinyl ether copolymer
  • PA thermoplastic polyamide
  • PE thermoplastic polyester
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • TPI thermoplastic polyimide
  • PPS polyphenylene sulfide
  • PEEK ether ketone
  • modified PEEK modified PEEK
  • PEEK includes, for example, KetaSpire KT-820 (trade name, manufactured by Solvay Specialty Polymers), PEEK450G (trade name, manufactured by Victrex Japan), and modified PEEK include AvaSpire AV-650 (Solvay Specialty Polymers).
  • thermoplastic PA include nylon 6,6 FDK-1 (product name, manufactured by Unitika Ltd.), nylon 4,6 F- 5000 (product name, manufactured by Unitika Ltd.), nylon , Aalen AE-420 of the T (manufactured by Mitsui Petrochemical Co., Ltd., trade name), nylon 9, T of GENESTAR N1006D (Kuraray Co., Ltd., trade name) can be given a commercially available product such as.
  • modified PEEK examples include those obtained by alloying PPS, PES, PPSU, and PEI with PEEK.
  • PPS polystyrene
  • PES polystyrene
  • PPSU polystyrene
  • PEI PEI with PEEK.
  • modified PEEK, PEEK, PPS, and TPI are preferable.
  • a crystalline resin as the resin used for the extrusion-coated resin layer in view of lowering the partial discharge generation voltage and considering the solvent resistance.
  • modified PEEK, PEEK, or PPS since it is required that the film is not easily damaged during coil processing, it is preferable to use modified PEEK, PEEK, or PPS that is crystalline and has a particularly high elastic modulus.
  • thermoplastic resin to be used may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • a laminated extrusion coating resin layer composed of a plurality of thermoplastic resin layers (B) different thermoplastic resins may be used in each layer, or thermoplastic resins having different mixing ratios may be used.
  • two types of thermoplastic resins are used in combination, for example, they are polymer-alloyed and used as a compatible homogeneous mixture, or an incompatible blend is used in a compatible state using a compatibilizing agent. Can be used.
  • the thickness of the extrusion-coated resin layer that is, the thickness in a state where the enamel baking layer does not have a convex portion, specifically, the thickness of the enamel baking layer in a flat portion having no convex portion
  • the thickness of the extrusion-coated resin layer in this sense is not particularly limited, but is preferably 30 to 300 ⁇ m. If the thickness of the extrusion-coated resin layer is too small, the insulation is lowered and partial discharge deterioration is likely to occur, so that the requirements as a coil cannot be satisfied. If the thickness of the extrusion-coated resin layer is too large, the rigidity of the electric wire becomes too high, making bending difficult and leading to an increase in cost. In the present invention, the thickness of the extrusion-coated resin layer is more preferably 50 to 250 ⁇ m, and further preferably 60 to 200 ⁇ m.
  • the outer surface of the thermoplastic resin layer (B) is composed of two sets of two opposing sides, and each side of the laminated resin coating layer up to the conductor is formed. It is particularly preferred that the total thickness is the same for any part of the side. That is, as shown in FIGS. 1 to 5, it is preferable that the outer surface in the cross-sectional shape of the thermoplastic resin layer (B) be similar to the shape of the conductor. It is hard to be distorted with respect to the force applied from the side surface, and the strength of the insulated wire is maintained at a high level.
  • thermoplastic resin layer (B) having such a cross-sectional shape is extrusion-coated with an extruder using an extrusion die so that the outer shape of the cross-section of the extrusion-coated resin layer is similar to the shape of the conductor. Can be formed.
  • the raw material for obtaining the extrusion-coated resin layer within a range that does not affect the properties, crystallization nucleating agent, crystallization accelerator, bubble nucleating agent, antioxidant, antistatic agent, ultraviolet light inhibitor, Various additives such as light stabilizers, fluorescent brighteners, pigments, dyes, compatibilizers, lubricants, reinforcing agents, flame retardants, crosslinking agents, crosslinking aids, plasticizers, thickeners, thickeners, and elastomers May be blended. Moreover, the layer which consists of resin containing these additives may be laminated
  • thermosetting resin layer (A) it is also preferable to provide an insulating layer as an intermediate layer between the thermosetting resin layer (A) and the thermoplastic resin layer (B).
  • an adhesive layer that enhances the adhesion between the thermosetting resin layer (A) and the thermoplastic resin layer (B) using resins having different properties is preferable.
  • the adhesive layer is preferably an amorphous resin layer (C) made of an amorphous resin.
  • crystallinity refers to the property of having a crystalline structure regularly arranged in at least a part of a polymer chain in an environment favorable for crystallization, and “non-crystalline”.
  • the term "maintains an amorphous state having almost no crystal structure” means that the polymer chains are in a random state when cured.
  • amorphous resin used in the present invention examples include polysulfone (PSU), polyethersulfone (PES), polyetherimide (PEI), polyphenylsulfone (PPSU), and polyphenylene ether (PPE). It is preferable to use an amorphous resin selected from the above as an adhesive layer that enhances adhesiveness.
  • PSU polysulfone
  • PES polyethersulfone
  • PEI polyetherimide
  • PPSU polyphenylsulfone
  • PPE polyphenylene ether
  • the workability is further improved, and the occurrence of peeling of the extrusion-coated resin layer that is the thermoplastic resin layer (B) from the conductor is suppressed, and the function of the convex portion of the enamel baking layer is also enhanced. It works advantageously.
  • PSU for example, Udel PSU (manufactured by Solvay Advanced Polymers, Inc., trade name) can be used.
  • PES include Sumika Excel 4800G (trade name, manufactured by Sumitomo Chemical Co., Ltd.), PES (trade name, manufactured by Mitsui Chemicals), Ultra Zone E (trade name, manufactured by BASF Japan), Radel A (Solvay Advanced Polymers Co., Ltd.).
  • Product name, etc. can be used.
  • PEI for example, Ultem 1010 (manufactured by Subic Innovative Plastics, Inc., trade name) or the like can be used.
  • PPSU for example, Radel R5800 (manufactured by Solvay Advanced Polymer Co., Ltd., trade name) can be used.
  • PPE for example, XYLON (trade name, manufactured by Asahi Kasei Chemicals), Iupiace (trade name, manufactured by Mitsubishi Engineering Plastics), etc. can be used.
  • the thickness of the amorphous resin layer (C) is preferably from 0.5 to 20 ⁇ m, more preferably from 2 to 15 ⁇ m, further preferably from 3 to 12 ⁇ m, particularly preferably from 3 to 10 ⁇ m.
  • the thickness of the amorphous resin layer (C) is preferably a uniform thickness including the convex shape and flat portion of the enamel baking layer, and when the thickness is small with respect to the thickness of the enamel baking layer, A uniform film thickness can be easily formed.
  • the non-crystalline resin layer (C) is obtained by enamelling a resin varnish obtained by dissolving an amorphous resin in an organic solvent such as N-methyl-2-pyrrolidone (NMP) with a die having a shape similar to that of a conductor. It can be formed by coating on the baking layer and baking.
  • organic solvent for the resin varnish the organic solvents mentioned in the resin varnish of the enamel baking layer are preferable.
  • specific baking conditions depend on the shape of the furnace used, the conditions described in the conditions for the enamel baking layer are preferable.
  • ⁇ Insulating layer (D)> In this invention, you may provide an insulating layer (D) between a conductor and the enamel baking layer which is a thermosetting resin layer (A) other than the said amorphous resin layer (C).
  • the insulating layer (D) does not cause poor appearance during baking of the thermosetting resin layer, and the adhesion between the conductor and the insulating layer (D) and between the insulating layer (D) and the thermosetting resin layer (A) is significantly reduced. Any resin may be used as long as it is not a resin.
  • An enamel-baked layer which is a thermosetting resin layer (A), is provided on the conductor without an insulating layer (D), and a thermoplastic resin layer (B) or an amorphous resin layer (C) is provided on the outside thereof. It is preferable.
  • the method for producing an insulated wire according to the present invention is as described for each layer.
  • the adhesive layer is formed by baking the varnished resin on the outer periphery of the enamel baking layer, and then providing the extrusion coating resin layer, preferably at a temperature higher than the glass transition temperature of the resin used for the adhesive layer
  • a thermoplastic resin forming an extrusion coating resin layer that is in a molten state is extruded and brought into contact with the adhesive layer, and the extrusion coating resin layer is thermally fused to the enamel baking layer via the adhesive layer.
  • the adhesive layer is not coated by extrusion, but is applied by applying a varnished resin (resin varnish).
  • the manufacturing method of the film peeling prevention insulated wire of this invention can prevent generation
  • thermosetting insulating layer (A) is composed of two opposing two sides and has a maximum film thickness At least four protrusions, and at least four protrusions are formed on at least one protrusion on each of the four sides, or at least two protrusions on at least two opposite sides.
  • a / b satisfies 0.60 or more and 0.90 or less when the minimum film thickness is a ⁇ m and the average of the maximum film thickness of the protrusions is b ⁇ m.
  • the insulated wire of the present invention and the manufacturing method thereof are as described above.
  • the film peeling prevention of the present invention has the at least four convex portions.
  • the insulated wire of the present invention can be used in fields requiring voltage resistance and heat resistance, such as various electric devices (also referred to as electronic devices).
  • the insulated wire of the present invention is coiled and used for a motor, a transformer, etc., and can constitute a high-performance electric device.
  • it is suitably used as a winding for a drive motor of HV (hybrid car) or EV (electric car).
  • HV hybrid car
  • EV electric car
  • the insulated wire of this invention is used for a motor coil, it is also called the insulated wire for motor coils.
  • thermosetting resin layer (A) [enamel baking layer]
  • PI polyimide resin
  • U imide manufactured by Unitika Co., Ltd.
  • thermosetting resin layer (A) was formed to obtain an enameled wire. As shown in FIG. 1, the formed thermosetting resin layer (A) has one maximal convex portion at the center of each of the four sides, and the maximum maximal convex portion on any side.
  • the film thickness was 50 ⁇ m
  • the minimum film thickness was 35 ⁇ m
  • the ratio of the minimum film thickness / the maximum film thickness of the maximum convex portion was 0.70 on any side.
  • the thermoplastic resin is polyetheretherketone (PEEK) (trade name: KetaSpire KT-820, relative dielectric constant 3.1, manufactured by Solvay Specialty Polymers), and the outer shape of the cross section of the extrusion-coated resin layer is a conductor.
  • Example 2 In Example 1, the resin varnish of the thermosetting resin layer (A) was replaced with a class H polyester resin (HPE) varnish (trade name: Isonel 200, manufactured by Schenectady International Co., Ltd.).
  • HPE class H polyester resin
  • the thermosetting resin layer (A) having the shape shown in FIG. 1 was formed to obtain an enameled wire.
  • the formed thermosetting resin layer (A) has one convex portion at the center of each of the four sides, and the maximum film thickness of the convex portion on any side. Was 42 ⁇ m, the minimum film thickness was 35 ⁇ m, and the ratio of the minimum film thickness / the maximum film thickness of the protrusions was about 0.83 on any side. The ratio is rounded off to the third decimal place and shown in the table. In the following, if it is not divisible, the same is shown in the table.
  • the obtained enameled wire was used as a core wire, and the thermoplastic resin was replaced with polyphenylene sulfide resin (PPS) (trade name: FZ-2100, relative dielectric constant 3.4, manufactured by DIC Corporation).
  • PPS polyphenylene sulfide resin
  • Thermoplastic resin layer (B) as shown in FIG. 1 is formed on the outside of the thermosetting resin layer (A) so that the thickness at the flat portion where the thermosetting resin layer (A) does not have a convex portion is 100 ⁇ m.
  • Example 3 In Example 1, the resin varnish of the thermosetting resin layer (A) was replaced with a polyamide-imide resin (PAI) varnish (trade name: HI406, manufactured by Hitachi Chemical Co., Ltd.). A thermosetting resin layer (A) having the shape shown in Fig. 1 was formed to obtain an enameled wire. As shown in FIG. 5, the formed thermosetting resin layer (A) has two convex portions in the vicinity of both ends of the sides, and the two convex portions on either side. The average of the maximum film thickness was 42 ⁇ m, the minimum film thickness was 30 ⁇ m, and the ratio of the minimum film thickness / (average of the maximum film thickness of the protrusions) was about 0.71 on any side.
  • PAI polyamide-imide resin
  • the obtained enameled wire with an adhesive layer is used as a core wire, and the same PEEK as in Example 1 is used as the thermoplastic resin, and the outer side of the amorphous resin layer (C) [adhesive layer] is used in the same manner as in Example 1.
  • the thermoplastic resin layer (B) as shown in FIG. 5 is formed so that the thickness of the flat portion where the thermosetting resin layer (A) does not have a convex portion is 70 ⁇ m, and the PEEK extrusion coated enamel wire is used. An insulated wire was obtained.
  • Example 3 the resin varnish of the thermosetting resin layer (A) uses the same PI as in Example 1, and in the same manner as in Example 3, the shape shown in FIG. A thermosetting resin layer (A) was formed to obtain an enameled wire.
  • amorphous resin layer [adhesive layer] shown in Table 1 below was dissolved in N-methyl-2-pyrrolidone (NMP), and the thickness shown in Table 1 below was obtained in the same manner as in Example 3.
  • NMP N-methyl-2-pyrrolidone
  • An amorphous resin layer (C) was formed to obtain an enameled wire with an adhesive layer.
  • the obtained enameled wire with an adhesive layer is used as a core wire, and the resin shown in Table 1 below is used as the thermoplastic resin, and the outer surface of the amorphous resin layer (C) [adhesive layer] is used in the same manner as in Example 3.
  • the thermoplastic resin layer (B) having the thickness shown in Table 1 below was formed to obtain an insulating wire.
  • the resin of the amorphous resin layer (C) is polyphenylsulfone resin (PPSU) (manufactured by Solvay Specialty Polymers, trade name: Radel R5800, glass transition temperature 220 ° C.), Example 5.
  • PPSU polyphenylsulfone resin
  • PES polyethersulfone resin
  • TPI thermoplastic polyimide
  • Example 5 uses modified polyetheretherketone resin (modified PEEK) (Solvay Specialty Polymers, trade name: AvaSpire AV-650, dielectric constant 3.1) did.
  • Example 6 In Example 1, the resin varnish of the thermosetting resin layer (A) was used in the same manner as in Example 1, using the same PI as in Example 1, and in the shape shown in FIG. A thermosetting resin layer (A) was formed to obtain an enameled wire.
  • the obtained enameled wire was used as a core wire, and the thermoplastic resin was replaced with polyethylene terephthalate (PET) (manufactured by Teijin Ltd., trade name: TR8550, glass transition temperature 70 ° C.).
  • PET polyethylene terephthalate
  • a thermoplastic resin layer (B) having the thickness shown in Table 1 below was formed on the outside of the layer (A) to obtain an insulating wire made of PET extrusion-coated enamel wire.
  • Example 7 the resin varnish of the thermosetting resin layer (A) was replaced with the resin varnish shown in Table 1 below, and in the same manner as in Example 3, the shape shown in Table 1 below was used. A thermosetting resin layer (A) having a thickness shown in Table 1 was formed to obtain an enameled wire.
  • Example 3 Next, the same PEI as in Example 3 was used, and in the same manner as in Example 3, an amorphous resin layer (C) having the thickness shown in Table 1 below was formed to obtain an enameled wire with an adhesive layer.
  • amorphous resin layer (C) having the thickness shown in Table 1 below was formed to obtain an enameled wire with an adhesive layer.
  • the obtained enameled wire with an adhesive layer is used as a core wire, and the same PEEK as in Example 3 is used as the thermoplastic resin, and in the same manner as in Example 3, on the outside of the amorphous resin layer (C) [adhesive layer].
  • the thermoplastic resin layer (B) having the thickness shown in Table 1 below was formed to obtain an insulating wire.
  • thermosetting resin layer (A) the same PI as in Example 1 was used in Examples 7, 8 and 10, and the same PAI as in Example 3 was used in Example 9.
  • Examples 11 to 16 In Examples 11, 13 and 15, as in Examples 1 and 8, Examples 12, 14 and 16 were produced in the same manner as in Examples 3 and 9, and insulated wires having the structures shown in Table 2 below were produced.
  • Examples 15 and 16 as shown in Table 2 below, the thicknesses or average thicknesses of the convex portions on the two long sides are different from each other on the thicknesses of the convex portions on the two short sides. The thickness or average thickness was changed to a different thickness on each side.
  • thermosetting resin layer (A) the same PI as in Example 1 was used in Examples 11 and 13 to 15, and the same PAI as in Example 3 was used in Examples 12 and 16. .
  • resin for the amorphous resin layer (C) the same PEI as in Example 3 was used in Examples 12 and 16, and the same PES as in Example 5 was used in Example 14.
  • resin for the thermoplastic resin layer (B) the same PEEK as in Example 1 was used in Examples 11 to 13, 15 and 16, and the same modified PEEK as in Example 5 was used in Example 14.
  • Comparative Examples 1-6 In Comparative Example 1, as in Example 1, In Comparative Examples 2 to 6, in the same manner as in Example 3, an insulated wire having the configuration shown in Table 3 below was produced.
  • the resin of the thermosetting resin layer (A) the same PAI as in Example 3 was used in Comparative Examples 1 and 3, and the same PI as in Example 1 was used in Comparative Examples 2 and 4-6.
  • the resin of the amorphous resin layer (C) the same PES as in Example 5 was used in Comparative Example 2, and the same PEI as in Example 3 was used in Comparative Examples 3 to 6.
  • the resin of the thermoplastic resin layer (B) uses the same TPI as in Example 4 in Comparative Example 1, uses the same PPS as in Example 2 in Comparative Example 2, and in Comparative Examples 3 to 6, The same PEEK as in Example 1 was used.
  • each insulating wire is cut into 50 cm, and 1 cm of the thermoplastic resin layer (B) [extruded coated resin layer] is peeled off in four directions from both ends of the insulating wire to have an amorphous resin layer (C) [adhesive layer] These were also peeled off at the same time, leaving the thermosetting resin layer (A) [enamel baking layer] exposed.
  • one end of the insulated wire in this state is fixed, and the other end is twisted in one direction with a constant load (weight: 100 N), and the film peeling of the thermoplastic resin layer (B) [extruded coated resin layer] is observed. The number of twists to be measured was measured.
  • thermoplastic resin layer (B) [extruded coating resin layer] immediately after the cutting was peeled off to expose the surface of the thermoplastic resin layer (B) and the exposed thermosetting resin.
  • the surface of the layer (A) [enamel baking layer] was observed with a microscope (50 times magnification). Any of the thermoplastic resin layer (B) [extruded coating resin layer] and the thermosetting resin layer (A) [enamel-baked layer] which were not foamed or deficient was acceptable and indicated by “A”. Further, any of the thermoplastic resin layer (B) [extruded coating resin layer] and the thermosetting resin layer (A) [enamel baking layer] in which both foaming and defects were observed was rejected. C ”.
  • thermosetting resin layer (A) shown in Tables 1 to 3, the average of the maximum thickness of the convex portions, the thickness of the thermoplastic resin layer (B) and the amorphous resin layer (C). Is ⁇ m.
  • thermosetting resin layer (A) [enamel baking layer]
  • the ratio of the minimum film thickness / (average of the maximum film thickness of the protrusions) is 0.60 or more and 0.90 or less, or at least one pair of two opposing sides has two protrusions.
  • the ratio of the minimum film thickness / (average of the maximum film thickness of the protrusions) is 0.60 or more and 0.90 or less on any side having the protrusions.
  • the film has excellent adhesion to the film and foams both on the surface of the thermoplastic resin layer (B) [extruded coating resin layer] and on the exposed surface of the thermosetting resin layer (A) [enamel baking layer]. And the surface of the insulated wire and the thermosetting resin layer (A) [enamel baked Only it is excellent in any of appearance evaluation of the outer surface of the layer].
  • the protrusions on the long side and the short side may have different thicknesses, and in addition to this, as shown in Examples 15 and 16.
  • the thicknesses of the convex portions on the opposing sides of the two long sides and the two short sides are different from each other, excellent effects can be obtained by satisfying the provisions of the present invention.
  • each of the two long sides and the two short sides has a convex portion, and the ratio of the minimum film thickness / (the average of the maximum film thickness of the convex portions) is 0 for both sides.
  • thermosetting resin layer (A) [enamel baking layer]
  • those having convex portions on any of the four sides are compared with those of only two long sides. It can be seen that the processability is excellent. Moreover, it turns out that it is further excellent when all of two long sides have a convex part in both ends, and two short sides both have at least 1 convex part.
  • both of the two short sides have convex portions at both ends, and the two long sides both have convex portions at both ends are superior in workability. I understand.
  • Comparative Example 5 in the case of a flat side having no convex part on all four sides as in the prior art, the convex part is provided only on one side of the four sides as in Comparative Examples 3 and 4. In the case of having a convex part on both of the two long sides as in Comparative Example 6, even if each side has only one convex part at the center and no convex part on the short side. Inferior in workability.
  • the ratio of the minimum film thickness / (average of the maximum film thickness of the convex portion) is 0 as in Comparative Example 1.
  • the value is larger than .90, the appearance evaluation is satisfactory, but the workability is inferior.
  • Comparative Example 2 although the workability is satisfied when the ratio of the minimum film thickness / (average of the maximum film thickness of the convex portions) is less than 0.60, the appearance is inferior and the workability is low. It can be seen that, in order to satisfy both the appearance evaluations, the ratio of the minimum film thickness / (average of the maximum film thickness of the convex portions) needs to be 0.60 or more and 0.90 or less.
  • Comparative Example 1 a sufficient contact area cannot be obtained between the thermoplastic resin layer (B) [extrusion-coated resin layer] and the thermosetting resin layer (A) [enamel baking layer]. It is thought that workability was not obtained. Moreover, in Comparative Example 2, since foaming due to residual solvent was observed on the outer surface of the thermosetting resin layer (A) [enamel baking layer], the thermosetting resin layer (A) [enamel baking layer]. It is considered that the maximum film thickness part of the convex part of the film was not sufficiently baked. In Comparative Examples 3 and 4, since there is only one convex portion on one side of the long side or the short side of the four sides of the flat wire, peeling does not occur on the side where the convex portion is formed.
  • the insulated wire of the present invention can be preferably applied to electric and electronic devices such as coils, particularly motor coils.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Laminated Bodies (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

 断面平角の導体上に熱硬化性樹脂層を有し、該層の外周に、熱可塑性樹脂層を有し、絶縁ワイヤの断面形状で、熱硬化性樹脂層が、2組の対向する2つの辺からなり、膜厚が極大となる凸部を少なくとも4つ有しており、少なくとも4つの凸部が、4つの辺の各々に少なくとも1つの凸部を有するか、又は少なくとも対向する2辺の各々に少なくとも2つの凸部を有してなり、凸部を有する各辺の各々において、最小膜厚/(凸部の最大膜厚の平均)が0.6~0.9である絶縁ワイヤ、コイル及び電子機器並びに絶縁ワイヤの皮膜剥離防止方法。

Description

絶縁ワイヤ、コイルおよび電気・電子機器ならびに皮膜剥離防止絶縁ワイヤの製造方法
 本発明は、絶縁ワイヤ、コイルおよび電気・電子機器ならびに皮膜剥離防止絶縁ワイヤの製造方法に関する。
 インバータは、効率的な可変速制御装置として、多くの電気機器に取り付けられるようになってきている。しかし、数kHz~数十kHzでスイッチングが行われ、それらのパルス毎にサージ電圧が発生する。このようなインバータサージは、伝搬系内におけるインピーダンスの不連続点、例えば接続する配線の始端または終端等において反射が発生し、その結果、最大でインバータ出力電圧の2倍の電圧が印加される現象である。特に、IGBT(Insulated Gate Bipolar Transistor)等の高速スイッチング素子により発生する出力パルスは、電圧峻度が高く、それにより接続ケーブルが短くてもサージ電圧が高く、さらにその接続ケーブルによる電圧減衰も小さく、その結果、インバータ出力電圧の2倍近い電圧が発生する。
 インバータ関連機器、例えば高速スイッチング素子、インバータモーター、変圧器等の電気機器コイルには、マグネットワイヤとして主にエナメル線である絶縁電線が用いられている。従って、前述したように、インバータ関連機器では、インバータ出力電圧の2倍近い電圧がかかる。そこでインバータサージに起因する部分放電劣化を最小限にすることが、絶縁電線(絶縁ワイヤ)に要求されるようになってきている。
 一般に、部分放電劣化は電気絶縁材料がその部分放電で発生した荷電粒子の衝突による分子鎖切断劣化、スパッタリング劣化、局部温度上昇による熱溶融あるいは熱分解劣化、放電で発生したオゾンによる化学的劣化等が複雑に起こる現象である。これによって、実際の部分放電で劣化した電気絶縁材料では厚さが減少したりする。
 絶縁ワイヤのインバータサージ劣化も一般の部分放電劣化と同様なメカニズムで進行するものと考えられている。すなわち、インバータで発生した波高値の高いサージ電圧により、絶縁ワイヤに部分放電が起こり、その部分放電により絶縁ワイヤの塗膜が部分放電劣化を引き起こす、つまり高周波部分放電劣化を引き起こす。
 このような部分放電による絶縁電線の劣化を防ぐため、部分放電の発生電圧が高い絶縁電線の検討が行われている。この絶縁電線を得るためには、絶縁電線の絶縁層の厚さを厚くする方法が考えられる。
 また、エナメル線の外側に被覆樹脂層を設けることで、部分放電の発生電圧を高める以外に、新たに設けられた被覆樹脂層によって付加価値の高い特性を追及する試みが行われている。エナメル焼付け層上に押出被覆樹脂層を設けることは、例えば、特許文献1、2等で提案されている。
 一方、モーターのような回転電機において、絶縁ワイヤを巻線加工したコイルを収納する際、収納されるスロットの体積空間に対するコイルの導体の占める割合(占有率)の向上のために、樹脂ワニスの流動性と表面張力を考慮して、矩形の導体上に各辺が外側に湾曲した形状の熱可塑性被覆樹脂を最外層として設けることが、特許文献3で提案されている。
特開昭59-040409号公報 特開昭63-195913号公報 特開2012-90441号公報
 しかし、これらに記載の従来の技術では、部分放電発生電圧の向上と、導体とエナメル焼付け層の密着性との両立が困難であった。これに加えて、特に絶縁ワイヤからコイルへの加工時には高速でワイヤ同士が何度も擦れあうことがあり、磨耗性、密着性の低い絶縁ワイヤでは、この加工時に導体上の皮膜が剥離することがあるという問題があった。
 本発明は、コイルへの加工時の皮膜剥離を防止でき加工適正に優れ、しかも部分放電発生電圧を上げ得る適切な厚さの絶縁層の皮膜を、絶縁ワイヤの導体とエナメル焼付け層との接着強度を低下させることなく実現した耐インバータサージの絶縁ワイヤを提供することを目的とする。
 さらに、本発明は、絶縁ワイヤの導体からの押出被覆樹脂層の剥離の発生を防止する皮膜剥離防止絶縁ワイヤの製造方法、前記絶縁ワイヤを用いたコイルおよび該コイルを用いた電気・電子機器を提供することを目的とする。
 本発明者らは、上記の従来技術が有する課題を解決するため鋭意検討した結果、厚膜被覆線材の下層皮膜であるエナメル焼付け層の膜厚を均一にしないで下層皮膜表面に特定の凸部を持たせる構成とし、エナメル焼付け層の外側に押出被覆樹脂層を設けることにより、上記問題を克服した耐インバータサージ絶縁電線を得ることができることがわかった。また、このエナメル焼付け層の形状によって押出被覆樹脂層を熱可塑性樹脂から、とりわけ結晶性の熱可塑性樹脂から形成した場合には結晶化度を高くしても密着強度を発現するという知見を得た。本発明は、これらの知見に基づきなされたものである。
 すなわち、本発明の上記課題は、以下の手段によって達成された。
(1)断面が平角の導体上に、直接または絶縁層(D)を介して熱硬化性樹脂層(A)を有し、該熱硬化性樹脂層(A)の外周に、少なくとも熱可塑性樹脂層(B)を有する積層樹脂被覆絶縁電線からなり、
 前記熱硬化性樹脂層(A)の断面形状が、2組の対向する2つの辺からなり、膜厚が極大となる凸部を少なくとも4つ有しており、該少なくとも4つの凸部が、4つの辺の各々に少なくとも1つの凸部を有するか、または少なくとも対向する2辺の各々に少なくとも2つの凸部を有してなり、
 前記凸部を有する各辺の各々において、最小膜厚をaμm、凸部の最大膜厚の平均をbμmとしたとき、a/bが0.60以上0.90以下であることを特徴とする絶縁ワイヤ。
(2)前記熱硬化性樹脂層(A)の断面形状が、少なくとも対向する2辺の各々に少なくとも2つ前記凸部を有し、残りの対向する2辺の各々に、さらに前記凸部を1つもしくは2つ以上有し、
 前記凸部を有する各辺の各々において、最小膜厚をaμm、凸部の最大膜厚の平均をbμmとしたとき、a/bが0.60以上0.90以下であることを特徴とする(1)に記載の絶縁ワイヤ。
(3)前記熱硬化性樹脂層(A)の断面形状が、4つの辺の各々に1つの前記凸部を有することを特徴とする(1)に記載の絶縁ワイヤ。
(4)前記熱硬化性樹脂層(A)の断面形状が、1つの辺に前記凸部を1つ有する場合、該辺の中央近傍に、または、1つの辺に少なくとも2つの前記凸部を有する場合は、該凸部を該辺の両端近傍に各々1つ有するか、または該辺の中央から該辺の端までの中間点から該辺の両端までの間にそれぞれ1つ有することを特徴とする(1)~(3)のいずれか1項に記載の絶縁ワイヤ。
(5)前記積層樹脂被覆の断面形状において、前記熱可塑性樹脂層(B)の断面の外形が、対向する2つの長辺と対向する2つの短辺からなり、各々の辺において、前記導体までの積層樹脂被覆層の合計の厚みが、該辺のいずれの部分も、同じであることを特徴とする(1)~(4)のいずれか1項に記載の絶縁ワイヤ。
(6)前記熱硬化性樹脂層(A)と前記熱可塑性樹脂層(B)の間に非結晶性樹脂からなる絶縁層(C)を有することを特徴とする(1)~(5)のいずれか1項に記載の絶縁ワイヤ。
(7)前記非結晶性樹脂が、ポリエーテルイミド、ポリエーテルサルホン、ポリフェニルサルホンおよびポリフェニレンエーテルからなる群より選択される樹脂であることを特徴とする(6)に記載の絶縁ワイヤ。
(8)前記熱可塑性樹脂層(B)を構成する樹脂が、熱可塑性ポリイミド、ポリフェニレンスルフィド、ポリエーテルエーテルケトンおよび変性ポリエーテルエーテルケトンからなる群より選択される熱可塑性樹脂であることを特徴とする(1)~(7)のいずれか1項に記載の絶縁ワイヤ。
(9)前記熱硬化性樹脂層(A)を構成する樹脂が、ポリイミド、ポリアミドイミド、熱硬化性ポリエステルおよびH種ポリエステルからなる群より選択される熱硬化性樹脂であることを特徴とする(1)~(8)のいずれか1項に記載の絶縁ワイヤ。
(10)前記(1)~(9)のいずれか1項に記載の絶縁ワイヤが、巻線加工されたことを特徴とするコイル。
(11)前記(10)に記載のコイルを用いてなることを特徴とする電気・電子機器。
(12)断面が平角の導体上に、直接または絶縁層(D)を介して熱硬化性樹脂層(A)を有し、該熱硬化性樹脂層(A)の外周に、少なくとも熱可塑性樹脂層(B)を有する積層樹脂被覆絶縁電線からなる絶縁ワイヤであって、
 前記熱硬化性樹脂層(A)の断面形状が、2組の対向する2つの辺からなり、膜厚が極大となる凸部を少なくとも4つ有しており、該少なくとも4つの凸部を、4つの辺の各々に少なくとも1つの凸部を形成するか、または少なくとも対向する2辺の各々に少なくとも2つの凸部を形成し、
 前記凸部を有する各辺の各々において、最小膜厚をaμm、凸部の最大膜厚の平均をbμmとしたとき、a/bが0.60以上0.90以下を満たすように該凸部を形成することにより、前記絶縁ワイヤの導体からの前記熱可塑性樹脂層(B)の剥離の発生を防止したことを特徴とする皮膜剥離防止絶縁ワイヤの製造方法。
 本発明の絶縁ワイヤは、耐熱性の異なる異種の樹脂からなる、エナメル焼付け層と押出被覆樹脂層を有する少なくとも2層の積層構造の樹脂層で、導体が被覆されて絶縁皮膜が形成された絶縁ワイヤであって、形成された絶縁皮膜は、コイル等への曲げ加工(巻線加工)等に対する耐加工性に優れたものとなり、曲げ加工等の際に、少なくともエナメル焼付け層と押出被覆樹脂層の双方の膜の間に生じ得るエアギャップも解消される。
 従って、本発明により、上記のコイルへの加工時の皮膜剥離がなく、加工適性に優れ、しかも、部分放電発生電圧を上げるための絶縁層の厚膜化を、絶縁ワイヤの導体とエナメル焼付け層との接着強度を下げることなく実現できる耐インバータサージの絶縁ワイヤおよびその剥離発生が防止された皮膜剥離防止絶縁ワイヤの製造方法の提供が可能となった。また、このような絶縁ワイヤを用いた高性能のコイルおよびそれを用いた電気・電子機器の提供も可能となった。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、平角の導体上に、4つの辺のいずれの辺にも、辺の中央に1つの厚みの厚い凸部が設けられたエナメル焼付け層を有する本発明の積層樹脂被覆絶縁ワイヤの模式的な断面図である。 図2は、平角の導体上に、対向する2つの長辺が、各々の辺の両端近傍に厚みの厚い凸部が設けられたエナメル焼付け層を有する本発明の積層樹脂被覆絶縁ワイヤの模式的な断面図である。 図3は、平角の導体上に、対向する2つの長辺が、各々の辺の両端近傍に厚みの厚い凸部が設けられ、対向する2つの短辺が、各々の辺の短辺の中央に厚みの厚い凸部が設けられたエナメル焼付け層を有する本発明の積層樹脂被覆絶縁ワイヤの模式的な断面図である。 図4は、平角の導体上に、対向する2つの長辺が、各々の辺の中央に厚みの厚い凸部が設けられ、対向する2つの短辺が、各々の辺の両端近傍に厚みの厚い凸部が設けられたエナメル焼付け層を有する本発明の積層樹脂被覆絶縁ワイヤの模式的な断面図である。 図5は、平角の導体上に、4つの辺が、いずれも各々辺の両端近傍に厚みの厚い凸部が設けられたエナメル焼付け層を有する本発明の積層樹脂被覆絶縁ワイヤの模式的な断面図である。 図6は、平角の導体上に、従来の断面形状のエナメル焼付け層を有する積層樹脂被覆絶縁ワイヤの模式的な断面図である。 図7は、平角の導体上に、長辺の1辺のみに厚みの厚い凸部が設けられたエナメル焼付け層を有する積層樹脂被覆絶縁ワイヤの模式的な断面図である。 図8は、平角の導体上に、短辺の1辺のみに厚みの厚い凸部が設けられたエナメル焼付け層を有する積層樹脂被覆絶縁ワイヤの模式的な断面図である。 図9は、平角の導体上に、対向する2つの長辺が、各々の辺の中央に厚みの厚い凸部が設けられたエナメル焼付け層を有する積層樹脂被覆絶縁ワイヤの模式的な断面図である。
<<絶縁ワイヤ>>
 本発明の絶縁ワイヤは、断面における4つのコーナーが、後述の曲率半径rを有する平角の導体上に、直接または絶縁層(D)を介して熱硬化性樹脂層(A)(エナメル焼付け層とも称す)を有し、該熱硬化性樹脂層(A)の外周に、少なくとも熱可塑性樹脂層(B)(押出被覆樹脂層とも称す)を有する積層樹脂被覆絶縁電線からなる。
 本発明では、図1~5に示すように、積層樹脂被覆の断面形状において、熱硬化性樹脂層(A)の導体を取り囲む厚みが、図6に示すように、従来のような均一な厚みでなく、長辺や短辺に厚みの厚い凸部を設け、しかも凸部の最大厚みを特定の範囲とするものである。
 なお、図1~9は、導体1上に、熱硬化性樹脂層2(A)(エナメル焼付け層)を設け、その外周に熱可塑性樹脂層3(B)(押出被覆樹脂層)を設けた2層の積層樹脂被覆層として、模式的に示しているが、導体と熱硬化性樹脂層2(A)の間に、絶縁層(D)を設けてもよく、また、熱硬化性樹脂層2(A)と熱可塑性樹脂層3(B)との間に、中間層、例えば、接着層としての非結晶性樹脂からなる絶縁層(C)(以下、「非結晶性樹脂層(C)」とも称す。)を設けてもよい。
 なお、絶縁層(D)および中間層を有する場合、図1~5において、これらの層は省略されているものとする。また、図6~9においても同様である。
 また、これらの各層は、1層であっても2層以上の複数層からなっていてもよい。
 以下、導体から順に説明する。
<導体>
 本発明に用いる導体としては、通常絶縁ワイヤで用いられているものを使用することができ、銅線、アルミニウム線などの金属導体が挙げられる。好ましくは、銅線であり、より好ましくは、酸素含有量が30ppm以下の低酸素銅、さらに好ましくは20ppm以下の低酸素銅または無酸素銅の導体である。酸素含有量が30ppm以下であれば、導体を溶接するために熱で溶融させた場合、溶接部分に含有酸素に起因するボイドの発生がなく、溶接部分の電気抵抗が悪化することを防止するとともに溶接部分の強度を保持することができる。
 本発明で使用する導体は、断面形状が、平角形状である。平角形状の導体は円形のものと比較し、巻線時に、ステータースロットに対する占有率が高い。従って、このような用途に好ましい。
 平角形状の導体は、角部からの部分放電を抑制するという点において、図1~9に示すように4隅に面取り(曲率半径r)を設けた形状であることが好ましい。曲率半径rは、0.6mm以下が好ましく、0.2~0.4mmの範囲がより好ましい。
 導体の断面の大きさは、特に限定はないが、幅(長辺)は1~5mmが好ましく、1.4~4.0mmがより好ましく、厚み(短辺)は0.4~3.0mmが好ましく、0.5~2.5mmがより好ましい。幅(長辺)と厚み(短辺)の長さの割合は、1:1~4:1が好ましい。なお、本発明で使用する導体の断面は、幅と厚みが同じ長さ、すなわち、略正方形であってもよい。導体の断面が略正方形の場合、長辺は導体の断面の一つの対向する二つの辺の各々を意味し、短辺は別の対向する二つの辺の各々を意味する。
<熱硬化性樹脂層(A)>
 本発明では、エナメル焼付け層として、熱硬化性の樹脂からなる熱硬化性樹脂層(A)を少なくとも1層有する。
 なお、本発明において、1層とは、層を構成する樹脂および含有する添加物が全く同じ層を積層した場合は同一層とするものであり、同一樹脂で構成されていても添加物の種類や配合量が異なる等、層を構成する組成物が異なる場合を層の数としてカウントする。
 これは、エナメル焼付け層以外の他の層においても同様である。
 エナメル焼付け層は、樹脂ワニス(必要に応じ酸化防止剤、帯電防止剤、紫外線防止剤、光安定剤、蛍光増白剤、顔料、染料、相溶化剤、滑剤、強化剤、難燃剤、架橋剤、架橋助剤、可塑剤、増粘剤、減粘剤、およびエラストマーなどの各種添加剤などを含有してもよい)を導体上に複数回塗布、焼付けして形成したものである。樹脂ワニスを塗布する方法は常法でよく、例えば、導体形状の相似形としたワニス塗布用ダイスを用いる方法がある。これらの樹脂ワニスを塗布した導体はやはり常法にて焼付炉で焼付けされる。具体的な焼付け条件はその使用される炉の形状などに左右されるが、およそ5mの自然対流式の竪型炉であれば、400~500℃にて通過時間を10~90秒に設定することにより達成することができる。
 樹脂ワニスは、熱硬化性樹脂をワニス化させるために有機溶媒等を使用するが、有機溶媒としては、熱硬化性樹脂の反応を阻害しない限りは特に制限はなく、例えば、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)、ジメチルスルホキシド、N,N-ジメチルホルムアミド等のアミド系溶媒、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素等の尿素系溶媒、γ-ブチロラクトン、γ-カプロラクトン等のラクトン系溶媒、プロピレンカーボネート等のカーボネート系溶媒、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル系溶媒、ジグライム、トリグライム、テトラグライム等のグライム系溶媒、トルエン、キシレン、シクロヘキサン等の炭化水素系溶媒、スルホラン等のスルホン系溶媒などが挙げられる。
 これらの有機溶媒のうち、高溶解性、高反応促進性等の点でアミド系溶媒、尿素系溶媒が好ましく、加熱による架橋反応を阻害しやすい水素原子を有さないため、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素がより好ましく、N-メチル-2-ピロリドンが特に好ましい。
 なお、熱硬化性樹脂層(A)であるエナメル焼付け層は、導体の外周に直接設けてもよく、また絶縁層(D)を介して設けてもよい。
 熱硬化性樹脂ワニスの熱硬化性樹脂は、通常のエナメル線に用いられている材料を使用することができ、例えば、ポリアミドイミド(PAI)、ポリイミド(PI)、ポリエステルイミド、ポリエーテルイミド、ポリイミドヒダントイン変性ポリエステル、ポリアミド、ホルマール、ポリウレタン、熱硬化性ポリエステル(PEst)、H種ポリエステル(HPE)、ポリビニルホルマール、エポキシ樹脂、ポリヒダントインが挙げられる。
 好ましくは耐熱性において優れる、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエステルイミド、ポリエーテルイミド、ポリイミドヒダントイン変性ポリエステル等のポリイミド系樹脂である。紫外線硬化樹脂などを用いてもよい。
 また、これらの熱硬化性樹脂は、1種のみを単独で使用してもよく、また、2種以上を混合して使用してもよい。また、複数層の熱硬化性樹脂層(A)からなる積層エナメル焼付け層の場合、各層で互いに異なった熱硬化性樹脂を用いても、異なった混合比率の熱硬化性樹脂を使用してもよい。
 本発明では、熱硬化性樹脂として、ポリイミド(PI)、ポリアミドイミド(PAI)、熱硬化性ポリエステル(PEst)およびH種ポリエステル(HPE)からなる群より選択される熱硬化性樹脂が好ましく、なかでもポリイミド(PI)またはポリアミドイミド(PAI)が好ましく、ポリイミド(PI)が特に好ましい。
 ここで、H種ポリエステル(HPE)とは、芳香族ポリエステルのうちフェノール樹脂などを添加することによって樹脂を変性させたもので、耐熱クラスがH種であるものを言う。市販のH種ポリエステル(HPE)は、Isonel200(米スケネクタディインターナショナル社製 商品名)等を挙げることができる。
 ポリイミド(PI)は、特に制限はなく全芳香族ポリイミドおよび熱硬化性芳香族ポリイミドなど任意のポリイミド樹脂を用いることができる。例えば、市販品(ユニチカ社製、商品名:Uイミド、宇部興産社製、商品名:U-ワニス、東レ・デュポン社製、商品名:#3000など)を用いるか、常法により、芳香族テトラカルボン酸二無水物と芳香族ジアミン類を極性溶媒中で反応させて得られるポリアミド酸溶液を用い、被覆を形成する際の焼き付け時の加熱処理によってイミド化させることによって得られるものを用いることができる。
 ポリアミドイミド(PAI)は、市販品(例えば、日立化成(株)社製、商品名:HI406など)を用いるか、常法により、例えば極性溶媒中でトリカルボン酸無水物とジイソシアネート類を直接反応させて得たもの、あるいは、極性溶媒中でトリカルボン酸無水物にジアミン類を先に反応させて、まずイミド結合を導入し、次いでジイソシアネート類でアミド化して得たものを用いることができる。
 なお、ポリアミドイミド(PAI)は、他の樹脂に比べ熱伝導率が低く、絶縁破壊電圧が高く、焼付け硬化が可能であるという特性を有する。
 焼き付け炉を通す回数を減らし、導体とエナメル焼付け層との接着力が極端に低下すること防ぐため、エナメル焼付け層の厚さは、60μm以下が好ましく、50μm以下がさらに好ましい。また、絶縁ワイヤとしてのエナメル線に必要な特性である、耐電圧特性や、耐熱特性を損なわないためには、エナメル焼付け層がある程度の厚さである方が好ましい。エナメル焼付け層の下限の厚さはピンホールが生じない程度の厚さであれば特に制限するものではなく、好ましくは3μm以上、更に好ましくは6μm以上である。なお、ここでの厚さは、凸部を設けない場合の厚さであり、平均厚みであっても構わない。
 エナメル焼付け層は1層であっても複数層であってもよい。
 本発明では、熱硬化性樹脂層(A)であるエナメル焼付け層は、上記の厚みの熱硬化性樹脂層(A)に厚みが厚い部分を設け、断面形状において、厚みが極大となる凸部を有する。
 熱硬化性樹脂層(A)であるエナメル焼付け層の断面形状は、従来のエナメル焼付け層では、図6に示すように、2組の対向する2つの辺からなる。本発明においては、この4つの辺のいずれかに少なくとも4つの凸部を設けるものである。これにより、エナメル焼付け層の上層に設けられる層、特に押出被覆樹脂層もしくは、接着層のような中間層と接する界面の表面積(断面形状では界面の長さ)を増加させ、しかも、極大凸部の存在により、絶縁ワイヤの側面から加えられた力に対するせん断変形に対する抵抗が増し、接する界面での膜剥がれが起きにくくなる。この結果、導体からの熱可塑性樹脂層(B)である押出被覆樹脂層の皮膜剥離の発生が防止可能となる。
 本発明では、このような作用を、効果的に発現させるため、凸部の膜厚と少なくとも4つの凸部の辺の表面上の設置位置を特定する。
(凸部の形状と膜厚)
 本発明では、凸部を有する1つの辺において、凸部を設けない状態の平坦部の膜厚である最小膜厚をaμm、凸部の最大膜厚もしくは複数の凸部を有する場合は、凸部の最大膜厚の平均をbμmとしたとき、a/bの値が0.60以上0.90以下である。従って、複数の辺が凸部を有する場合は、各々の辺において、a/bの値が0.60以上0.90以下である。
 また、1つの辺に複数の凸部を有する場合、各々の凸部で、a/bの値が0.60以上0.90以下であることが特に好ましい。
 ここで、最小膜厚は、上記のように、凸部を設けない状態での膜厚であり、同一辺上で、凸部が形成されていない部分の膜厚である。
 なお、本発明においては、極大凸部(極大値を有する凸部)とは、凸部の形状が凸部の両側に膜厚が変極点を示すもののみに限定されるものでなく、例えば、辺の端部に凸部が設けられた場合のように、凸部が形成された辺の端部方向や短辺方向(厚み方向)に変極点を示さないものをも包含する。また、本発明における凸部は、凸部と各辺の端部あるいは凸部と平坦部が滑らかに接続するもので、平坦部から矩形状に突出するものでないことから、凸部と各辺端部の境界や凸部と平坦部の境界に応力集中することがない。ここで、凸部を辺の両端近傍に各々1つずつ有する場合に、凸部と辺の端部の接続は、凸部と辺の端部を、平坦部を介して接続しても、凸部と辺の端部を直接接続しても良い。凸部と辺の端部あるいは、凸部と平坦部が滑らかに結ばれていれば、上層に被覆する樹脂の回り込みもよい。
 上記a/bの値は、0.65以上0.85以下が好ましく、0.70以上0.80以下がより好ましい。
 a/bの値が0.60を下回るとエナメル焼付け層内で膜厚の差が大きくなり、焼付けを行うと、最小膜厚の部分と凸部の膜厚が厚い部分で焼付けのムラが生じるため、部分的に残留溶剤が溜まりやすくなるため、発泡が生じ外観不良が生じる。特に、膜厚が最大となる凸部の極大部分では焼付けが甘くなり、残留溶剤が多くなるため、発泡しやすくなる。
 a/bの値が0.90を上回るとエナメル焼付け層と押出被覆樹脂層の間に十分な接着面積が得られず、目的とする加工性が低下する。好ましくは0.80以下とすることが望ましい。
 一方、このうちの、最小膜厚aは、3μm以上60μm以下が好ましく、6μm以上50μm以下がより好ましく、10μm以上50μm以下がさらに好ましく、20μm以上50μm以下が特に好ましい。
 また、凸部の最大膜厚もしくは凸部の最大膜厚の平均bは、20μm以上60μm以下が好ましく、20μm以上55μm以下がより好ましく、25μm以上55μm以下がさらに好ましい。
 本発明における凸部の断面形状は、図1~5に示すように、順次厚みが増し、凸部の極大点を過ぎると逆に、順次厚みが減少する凸部が好ましく、いわゆる山形の形状の凸部が好ましい。すなわち、凸部の頂点(極大点に向かって、一時平坦になってもよいが、順次増大、言い換えると、減少を含まないで、順次増大し、極大点である頂点)を過ぎると、増大することなく、順次減少するカーブの凸部が好ましい。
 なお、凸部の底辺を占める割合は、辺全体を占めても、その一部であってよいが、少なくとも平坦部や最小膜厚が観測できる程度には、平坦部が存在していることが好ましい。
(4つの凸部の辺上の設置方法)
 本発明では、以下の1)または2)ように凸部を設ける。
1)4つの辺の各々に少なくとも1つの凸部を設ける。
2)少なくとも対向する2辺の各々に少なくとも2つの凸部を設ける。
 なお、本願明細書では、「辺」とは上記曲率半径rを持つ角部を含まない、いわゆる凸部を設ける前の直線部分のみを示す。
 上記1)の設置方法は、上記2)の設置方法より好ましい。
 上記2)の設置方法の場合、凸部を設ける対向する2辺は、短辺より長辺の方が好ましい。また、上記2)の設置方法で凸部を設け、さらに残りの対向する2つの辺のうち、いずれか一方に、さらに凸部を設けるのが好ましく、残りの2つの辺の各々に凸部を設けるのがさらに好ましい。この場合の残りの2つの辺に設ける凸部は1つの辺に1つの凸部を設けるより、2つの凸部を設ける方が好ましく、この場合、2つの辺ともに2つの凸部を設ける方がさらに好ましい。この場合、新たに設ける凸部を有する辺におけるa/bの値は0.60以上0.90以下が好ましい。
 本発明では、少なくとも4つの凸部を設けるものであるが、1つの辺に設ける凸部は2つが好ましく、従って、4つの辺の各々に2つ、合計8つの凸部を設ける場合が、最も効果的である。1つの辺に設ける凸部の数が多すぎると、個々の凸部の占める面積が小さくなり、得られる効果も2つと比較すると目減りする傾向がある。
 本発明では、対向する2つの辺のa/bの値を同じ値にしても、互いに異なった値にしても構わない。この場合、断面形状で、対向する2つの辺を、凸部の配置に関しては、対向する2つの辺の中心点または中心線に対して、点対称または線対称であることが好ましく、凸部の高さについては、それぞれの辺において、あるいはそれぞれの凸部において異なるものでもかまわないが、同一の辺に凸部が2つある場合は、それぞれの凸部の高さは、絶縁ワイヤの使用時を想定すると同一であることが望ましい。
 ここで、本発明では、1つの辺に凸部を1つ有する場合、辺の中央近傍に有するのが好ましい。
 一方、1つの辺に少なくとも2つの凸部を有する場合は、凸部を辺の両端近傍に各々1つ有するか、または1つの凸部を辺の端近傍に有し、他の1つの凸部を辺の中央から該辺の端までの中間点より凸部を有さない側の端までの間に有するか、または辺の中央から辺の端までの中間点から辺の両端までの間にそれぞれ1つ有することが好ましい。
 1つの辺に少なくとも2つの凸部を有する場合、なかでも、凸部を辺の両端近傍に各々1つ有するか、または辺の中央から辺の端までの中間点から辺の両端までの間に左右それぞれ1つ有することが好ましい。
 なお、辺の中央近傍とは、辺の長さをLとした場合、辺の中央から±L/10の範囲を意味する。本発明においては、凸部の極大点を辺の中央点に設けるのが最も好ましい。
 一方、辺の端近傍とは、辺の末端からL/10の範囲を意味する。本発明においては、凸部の極大点を辺の端近傍に設けるのが好ましい。
 熱硬化性樹脂層(A)であるエナメル焼付け層に厚みの厚い凸部を形成するには、層を形成する樹脂ワニスの粘度を低下させて線速を調整することにより、表面張力を利用してエナメル焼付け層の角部に凸部を形成させる方法およびダイス形状によりコントロールする方法がある。このうち、粘度低下による方法は、角部に凸部を設けることは可能であるが、任意の意図する位置に設けることが難しく、また凸部の厚さのコントロールが難しいため、ダイス形状で凸部の位置、厚みをコントロールすることが好ましい。
<熱可塑性樹脂層(B)>
 本発明では、熱硬化性樹脂層(A)であるエナメル焼付け層に接して、もしくは接着層などの中間層を介して、押出被覆樹脂層として、熱可塑性の樹脂からなる熱可塑性樹脂層(B)を少なくとも1層有する。
 押出被覆樹脂層を設けることにより、部分放電発生電圧の高い絶縁ワイヤを得ることができる。
 押出被覆法の利点は、製造工程で焼付け炉を通す必要がないため、導体の酸化皮膜層の厚さを成長させることなく絶縁層の厚さを厚くすることができるということである。
 押出被覆樹脂層に用いる樹脂は、熱可塑性の樹脂を使用し、なかでも耐熱性に優れた熱可塑樹脂を用いることが好ましい。
 このような熱可塑性樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、熱可塑性ポリアミド(PA)、熱可塑性ポリエステル(PE)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、熱可塑性ポリイミド(TPI)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、変性ポリエーテルエーテルケトン(変性PEEK)等が挙げられる。
 このうち、PEEKとしては、例えば、キータスパイアKT-820(ソルベイスペシャリティポリマーズ社製、商品名)、PEEK450G(ビクトレックスジャパン社製、商品名)、変性PEEKとしては、アバスパイアAV-650(ソルベイスペシャリティポリマーズ社製、商品名)、AV-651(ソルベイスペシャリティポリマーズ社製、商品名)、TPIとしては、オーラムPL450C(三井化学株式会社製、商品名)、PPSとしては、フォートロン0220A9(ポリプラスチックス社製、商品名)、PPS FZ-2100(DIC社製、商品名)、熱可塑性PAとしては、ナイロン6,6のFDK-1(ユニチカ株式会社製、商品名)、ナイロン4,6のF-5000(ユニチカ株式会社製、商品名)、ナイロン6,TのアーレンAE-420(三井石油化学株式会社製、商品名)、ナイロン9,TのジェネスタN1006D(クラレ株式会社製、商品名)等の市販品を挙げることができる。
 なお、変性PEEKとしては、PEEKに対してPPS・PES・PPSU・PEIをアロイ化したもの等があり、例えば、ソルベイスペシャリティポリマーズ社製のアバスパイアAV-621、AV-630、AV-651、AV-722、AV-848等も挙げられる。
 これらの熱可塑性樹脂のうち、変性PEEK、PEEK、PPS、TPIが好ましい。
 なかでも、押出被覆樹脂層に用いる樹脂は、部分放電発生電圧を低くし、かつ耐溶剤性を考慮すると結晶性樹脂を用いることがさらに好ましい。
 特に本発明では、コイル加工時に皮膜が損傷しにくいことが求められるため、結晶性で特に弾性率が高い変性PEEK、PEEK、PPSを用いることが好ましい。
 なお、使用する熱可塑性樹脂は、1種のみを単独で用いてもよく、2種以上を混合して使用してもよい。また、複数層の熱可塑性樹脂層(B)からなる積層押出被覆樹脂層の場合、各層で互いに異なった熱可塑性樹脂を用いても、異なった混合比率の熱可塑性樹脂を使用してもよい。
 2種の熱可塑性樹脂を混合して使用する場合は、例えば両者をポリマーアロイ化して相溶型の均一な混合物として使用するか、非相溶系のブレンドを、相溶化剤を用いて相溶状態を形成して使用することができる。
 押出被覆樹脂層の厚さ、すなわち、エナメル焼付け層に凸部を有さない状態での厚みであって、具体的にはエナメル焼付け層が凸部を有さない平坦部での厚みであり、このような意味での押出被覆樹脂層の厚さは、特に制限はないが、好ましくは30~300μmである。押出被覆樹脂層の厚さが小さすぎると、絶縁性が低下し部分放電劣化が生じやすくなりコイルとしての要求を満たせない。押出被覆樹脂層の厚さが大きすぎると、電線の剛性が高くなりすぎ曲げ加工が困難になるとともにコストアップの原因にも繋がる。
 本発明では、前記押出被覆樹脂層の厚さは、50~250μmがより好ましく、60~200μmがさらに好ましい。
 また、本発明では、積層樹脂被覆の断面形状において、熱可塑性樹脂層(B)の外表面が、2組の対向する2つの辺からなり、各々の辺において、導体までの積層樹脂被覆層の合計の厚みが、該辺のいずれの部分も、同じであることが特に好ましい。
 すなわち、図1~5に示すように、熱可塑性樹脂層(B)の断面形状における外表面が、導体の形状と相似形になることが好ましく、このような形状にすることで、絶縁ワイヤの側面から加わる力に対しても歪みにくく、絶縁ワイヤの強度が高い状態で維持される。
 このような断面形状の熱可塑性樹脂層(B)は、押出被覆樹脂層の断面の外形の形状が導体の形状と相似形になるように、押出ダイを用いて、押出機で、押出被覆することで形成できる。
 本発明においては、特性に影響を及ぼさない範囲で、押出被覆樹脂層を得る原料に、結晶化核剤、結晶化促進剤、気泡化核剤、酸化防止剤、帯電防止剤、紫外線防止剤、光安定剤、蛍光増白剤、顔料、染料、相溶化剤、滑剤、強化剤、難燃剤、架橋剤、架橋助剤、可塑剤、増粘剤、減粘剤、およびエラストマー等の各種添加剤を配合してもよい。また、得られる絶縁ワイヤに、これらの添加剤を含有する樹脂からなる層を積層してもよいし、これらの添加剤を含有する塗料をコーティングしてもよい。
<非結晶性樹脂層(C)>
 本発明では、熱硬化性樹脂層(A)と熱可塑性樹脂層(B)の間に、中間層としての絶縁層を設けることも好ましい。
 このような中間層としては、性質の異なる樹脂を使用する熱硬化性樹脂層(A)と熱可塑性樹脂層(B)の接着性を高める接着層が好ましい。
 接着層は非結晶性の樹脂からなる非結晶性樹脂層(C)が好ましい。
 なお、本発明において、「結晶性」とは結晶化に好都合な環境下で、高分子の鎖の少なくとも一部に規則正しく配列された結晶組織を持つことができる特性をいい、「非結晶性」とはほとんど結晶構造を持たない無定形状態を保つことをいい、硬化時に高分子の鎖がランダムな状態になる特性をいう。
 本発明で使用する非結晶性樹脂としては、ポリサルホン(PSU)、ポリエーテルサルホン(PES)、ポリエーテルイミド(PEI)、ポリフェニルサルホン(PPSU)、ポリフェニレンエーテル(PPE)が挙げられ、これらから選択される非結晶性樹脂を使用することが、接着性を高める接着層として好ましい。本発明においては、ポリエーテルサルホン(PES)、ポリエーテルイミド(PEI)、ポリフェニルサルホン(PPSU)、ポリフェニレンエーテル(PPE)がより好ましい。これにより、加工性がさらに向上し、また、導体からの熱可塑性樹脂層(B)である押出被覆樹脂層の剥離の発生抑止にも、エナメル焼付け層が有する凸部の作用を高めることにも有利に作用する。
 PSUとしては、例えば、ユーデルPSU(ソルベイアドバンストポリマーズ社製、商品名)等を使用することができる。
 PESとしては、例えば、スミカエクセル4800G(住友化学社製、商品名)、PES(三井化学社製、商品名)、ウルトラゾーンE(BASFジャパン社製、商品名)、レーデルA(ソルベイアドバンストポリマーズ社製、商品名)等を使用することができる。
 PEIとしては、例えば、ウルテム1010(サビックイノベーティブプラスチック社製、商品名)等を使用することができる。
 PPSUとしては、例えば、レーデルR5800(ソルベイアドバンストポリマー社製、商品名)等を使用することができる。
 PPEとしては、例えば、ザイロン(旭化成ケミカルズ社製、商品名)、ユピエース(三菱エンジニアリングプラスチックス社製、商品名)等を使用することができる。
 非結晶性樹脂層(C)の厚さは、0.5~20μmが好ましく、2~15μmがより好ましく、3~12μmがさらに好ましく、3~10μmが特に好ましい。
 なお、非結晶性樹脂層(C)の厚さは、エナメル焼付け層の凸形状および平坦部を含め、均一な厚みであることが好ましく、エナメル焼付け層の厚みに対して、厚みが薄いと、容易に均一な膜厚を形成できる。
 非結晶性樹脂層(C)は、N-メチル-2-ピロリドン(NMP)等の有機溶媒に非結晶性樹脂を溶解させた樹脂ワニスを導体の形状と相似形のダイスを使用して、エナメル焼付け層上にコーティングして焼付けることで形成できる。
 樹脂ワニスのための有機溶媒は、エナメル焼付け層の樹脂ワニスにおいて挙げた有機溶媒が好ましい。
 また、具体的な焼付け条件はその使用される炉の形状などに左右されるが、前述のエナメル焼付け層における条件で記載した条件が好ましい。
<絶縁層(D)>
 本発明においては、上記非結晶性樹脂層(C)以外に、導体と熱硬化性樹脂層(A)であるエナメル焼付け層の間に、絶縁層(D)を設けてもよい。
 絶縁層(D)としては熱硬化性樹脂層焼付時に外観不良を起こさず、導体と絶縁層(D)、および絶縁層(D)と熱硬化性樹脂層(A)の密着性が著しく低下する樹脂でなければどのような樹脂を用いても構わない。
 絶縁層(D)を介さないで、導体上に熱硬化性樹脂層(A)であるエナメル焼付層を設け、その外側に熱可塑性樹脂層(B)また非結晶性樹脂層(C)を設けることが好ましい。
<<絶縁ワイヤの製造方法>>
 本発明の絶縁ワイヤの製造方法は、個々の層で説明した通りである。
 以下、本発明の絶縁ワイヤの製造方法の一例を詳述する。
 前記エナメル焼付け層の外周に、ワニス化された樹脂を焼き付けて前記接着層を形成し、その後、押出被覆樹脂層を設ける際、好ましくは、接着層に用いる樹脂のガラス転移温度よりも高い温度で溶融状態となる、押出被覆樹脂層を形成する熱可塑性樹脂を接着層に押出して接触させ、該エナメル焼付け層に該接着層を介して該押出被覆樹脂を熱融着させて該押出被覆樹脂層を形成する。
 なお、本発明では、接着層は、押出加工で被覆するのでなく、ワニス化した樹脂(樹脂ワニス)を塗布して設けるものである。
<<皮膜剥離防止絶縁ワイヤの製造方法>>
 本発明の皮膜剥離防止絶縁ワイヤの製造方法は、絶縁ワイヤの導体からの熱可塑性樹脂層(B)である押出被覆樹脂層の剥離の発生を防止することができる。
 すなわち、断面が平角の導体上に、直接または絶縁層(D)を介して熱硬化性樹脂層(A)を有し、熱硬化性樹脂層(A)の外周に、少なくとも熱可塑性樹脂層(B)を有する積層樹脂被覆絶縁電線からなる絶縁ワイヤであって、積層樹脂被覆の断面形状において、熱硬化性絶縁層(A)が、2組の対向する2つの辺からなり、膜厚が極大となる凸部を少なくとも4つ有しており、少なくとも4つの凸部を、4つの辺の各々に少なくとも1つの凸部を形成するか、または少なくとも対向する2辺の各々に少なくとも2つの凸部を形成し、凸部を有する各辺の各々において、最小膜厚をaμm、凸部の最大膜厚の平均をbμmとしたとき、a/bが0.60以上0.90以下を満たすように該凸部を形成することにより、絶縁ワイヤの導体からの熱可塑性樹脂層(B)の剥離の発生を防止する皮膜剥離防止絶縁ワイヤの製造方法である。
 本発明の絶縁ワイヤおよびその製造方法は、前述の通りである。
 本発明の皮膜剥離防止は、前述のように、前記の少なくとも4つの凸部を有するものである。
 本発明の絶縁ワイヤは、前記特徴を有しているから、各種電気機器(電子機器ともいう。)等、耐電圧性や耐熱性を必要とする分野に利用可能である。例えば、本発明の絶縁ワイヤはコイル加工してモーターやトランスなどに用いられ、高性能の電気機器を構成できる。特にHV(ハイブリッドカー)やEV(電気自動車)の駆動モーター用の巻線として好適に用いられる。このように、本発明によれば、上記の絶縁ワイヤをコイル化して用いた、電気機器、特にHVおよびEVの駆動モーターを提供できる。なお、本発明の絶縁ワイヤがモーターコイルに用いられる場合にはモーターコイル用絶縁ワイヤとも称する。
 以下に、本発明を実施例に基づいて、さらに詳細に説明するが、これは本発明を制限するものではない。
実施例1
 導体には断面平角(長辺3.2mm×短辺2.4mmで、四隅の面取りの曲率半径r=0.3mm)の平角導体(酸素含有量15ppmの銅)を用いた。
 熱硬化性樹脂層(A)〔エナメル焼付け層〕の形成に際しては、導体上に形成される熱硬化性樹脂層(A)の形状と相似形のダイスを使用して、ポリイミド樹脂(PI)ワニス(ユニチカ社製、商品名:Uイミド)を導体へコーティングし、450℃に設定した炉長8mの焼付炉内を、焼き付け時間15秒となる速度で通過させ、これを数回繰り返すことで、熱硬化性樹脂層(A)を形成し、エナメル線を得た。
 形成された熱硬化性樹脂層(A)は、図1に示すように、4辺がいずれも、辺の中央に1つの極大凸部を有し、いずれの辺においても、極大凸部の最大膜厚は50μm、最小膜厚は35μmで、いずれの辺においても最小膜厚/極大凸部の最大膜厚の比は0.70であった。
 得られたエナメル線を心線とし、押出機のスクリューは、30mmフルフライト、L/D=20、圧縮比3を用いて、以下の様に押出被覆樹脂層を形成した。
 熱可塑性樹脂はポリエーテルエーテルケトン(PEEK)(ソルベイスペシャリティポリマーズ社製、商品名:キータスパイアKT-820、比誘電率3.1)を用い、押出被覆樹脂層の断面の外形の形状が導体の形状と相似形になるように、押出ダイを用いてPEEKの押出被覆を行い、熱硬化性樹脂層(A)の外側に、凸部を有さない平坦部での厚みが150μmの熱可塑性樹脂層(B)〔押出被覆樹脂層〕を形成し、PEEK押出被覆エナメル線からなる絶縁電線を得た。
実施例2
 実施例1において、熱硬化性樹脂層(A)の樹脂ワニスを、H種ポリエステル樹脂(HPE)ワニス(米スケネクタディインターナショナル社製、商品名:Isonel200)に置き換え、実施例1と同様にして、図1に示す形状の熱硬化性樹脂層(A)を形成し、エナメル線を得た。
 形成された熱硬化性樹脂層(A)は、図1に示すように、4辺がいずれも、辺の中央に1つの凸部を有し、いずれの辺においても、凸部の最大膜厚は42μm、最小膜厚は35μmで、いずれの辺においても最小膜厚/凸部の最大膜厚の比は約0.83であった。
 なお、この比は、小数点3桁目を四捨五入し、表に示した。以下、割り切れない場合は、同様にして表に示した。
 得られたエナメル線を心線とし、熱可塑性樹脂を、ポリフェニレンスルフィド樹脂(PPS)(DIC社製、商品名:FZ-2100、比誘電率3.4)に置き換え、実施例1と同様にして熱硬化性樹脂層(A)の外側に、熱硬化性樹脂層(A)が凸部を有さない平坦部での厚みが100μmとなるように図1に示すような熱可塑性樹脂層(B)を形成し、PPS押出被覆エナメル線からなる絶縁ワイヤを得た。
実施例3
 実施例1において、熱硬化性樹脂層(A)の樹脂ワニスを、ポリアミドイミド樹脂(PAI)ワニス(日立化成(株)製、商品名:HI406)置き換え、実施例1と同様にして、図5に示す形状の熱硬化性樹脂層(A)を形成し、エナメル線を得た。
 形成された熱硬化性樹脂層(A)は、図5に示すように、4辺がいずれも、辺の両端付近に2つの凸部を有し、いずれの辺においても、2つの凸部の最大膜厚の平均は42μm、最小膜厚は30μmで、いずれの辺においても最小膜厚/(凸部の最大膜厚の平均)の比は約0.71であった。
 次に、N-メチル-2-ピロリドン(NMP)にポリエーテルイミド樹脂(PEI)(サビックイノベーティブプラスチックス社製、商品名:ウルテム1010)を溶解させ、20質量%溶液とした樹脂ワニスを、導体の形状と相似形のダイスを使用して、前記エナメル線へコーティングし、450℃に設定した炉長8mの焼付炉内を、焼き付け時間15秒となる速度で通過させ、厚さ6μmの非結晶性樹脂層(C)〔接着層〕を形成し、接着層付きエナメル線を得た。
 なお、図5では、非結晶性樹脂層(C)〔接着層〕は省略しているが、熱硬化性樹脂層(A)上に均一な厚みの非結晶性樹脂層(C)〔接着層〕を有する。
 得られた接着層付きエナメル線を心線とし、熱可塑性樹脂は、実施例1と同じPEEKを使用し、実施例1と同様にして非結晶性樹脂層(C)〔接着層〕の外側に、熱硬化性樹脂層(A)が凸部を有さない平坦部での厚みが70μmとなるように図5に示すような熱可塑性樹脂層(B)を形成し、PEEK押出被覆エナメル線からなる絶縁ワイヤを得た。
実施例4および5
 実施例3において、熱硬化性樹脂層(A)の樹脂ワニスは、実施例1と同じPIを使用し、実施例3と同様にして、図5に示す形状で、下記表1に示す厚みの熱硬化性樹脂層(A)を形成し、エナメル線を得た。
 次に、N-メチル-2-ピロリドン(NMP)に、下記表1に示す非結晶性樹脂層〔接着層〕の樹脂を溶解させ、実施例3と同様にして、下記表1に示す厚みの非結晶性樹脂層(C)を形成し、接着層付きエナメル線を得た。
 得られた接着層付きエナメル線を心線とし、熱可塑性樹脂に、下記表1に示す樹脂を使用し、実施例3と同様にして非結晶性樹脂層(C)〔接着層〕の外側に、下記表1に示す厚みの熱可塑性樹脂層(B)を形成し、絶縁ワイヤを得た。
 ここで、非結晶性樹脂層(C)の樹脂は、実施例4では、ポリフェニルサルホン樹脂(PPSU)(ソルベイスペシャリティポリマーズ製、商品名:レーデルR5800、ガラス転移温度220℃)、実施例5では、ポリエーテルサルホン樹脂(PES)(住友化成(株)製、商品名:スミカエクセル4800G)、熱可塑性樹脂層(B)の樹脂は、実施例4では、熱可塑性ポリイミド(TPI)(三井化学社製、商品名:オーラムPL450C)、実施例5では、変性ポリエーテルエーテルケトン樹脂(変性PEEK)(ソルベイスペシャリティポリマーズ社製、商品名:アバスパイアAV-650、比誘電率3.1)を使用した。
実施例6
 実施例1において、熱硬化性樹脂層(A)の樹脂ワニスを、実施例1と同じPIを使用し、実施例1と同様にして、図1に示す形状で、下記表1に示す厚みの熱硬化性樹脂層(A)を形成し、エナメル線を得た。
 得られたエナメル線を心線とし、熱可塑性樹脂を、ポリエチレンテレフタレート(PET)(帝人社製、商品名:TR8550、ガラス転移温度70℃)に置き換え、実施例1と同様にして熱硬化性樹脂層(A)の外側に、下記表1に示す厚みの熱可塑性樹脂層(B)を形成し、PET押出被覆エナメル線からなる絶縁ワイヤを得た。
実施例7~10
 実施例3において、熱硬化性樹脂層(A)の樹脂ワニスを、下記表1に示す樹脂のワニスに置き換え、実施例3と同様にして、下記表1に示された図の形状で、下記表1に示す厚みの熱硬化性樹脂層(A)を形成し、エナメル線を得た。
 次に、実施例3と同じPEIを使用し、実施例3と同様に、下記表1に示す厚みの非結晶性樹脂層(C)を形成し、接着層付きエナメル線を得た。
 得られた接着層付きエナメル線を心線とし、熱可塑性樹脂は、実施例3と同じPEEKを使用し、実施例3と同様にして非結晶性樹脂層(C)〔接着層〕の外側に、下記表1に示す厚みの熱可塑性樹脂層(B)を形成し、絶縁ワイヤを得た。
 ここで、熱硬化性樹脂層(A)の樹脂は、実施例7、8および10では、実施例1と同じPIを使用し、実施例9では、実施例3と同じPAIを使用した。
実施例11~16
 実施例11、13および15は、実施例1および8と同様に、実施例12、14および16は、実施例3および9と同様に、下記表2に示す構成の絶縁ワイヤを作製した。
 ここで、実施例15および16では、下記表2に示すように、2つの長辺に有する凸部の厚みもしくは平均厚みを互いの辺で異なった厚みに、2つの短辺に有する凸部の厚みもしくは平均厚みを互いの辺で異なった厚みに変更した。
 ここで、熱硬化性樹脂層(A)の樹脂は、実施例11、13~15では、実施例1と同じPIを使用し、実施例12および16では、実施例3と同じPAIを使用した。非結晶性樹脂層(C)の樹脂は、実施例12および16では、実施例3と同じPEIを使用し、実施例14では、実施例5と同じPESを使用した。また、熱可塑性樹脂層(B)の樹脂は、実施例11~13、15および16では、実施例1と同じPEEKを使用し、実施例14では、実施例5と同じ変性PEEKを使用した。
比較例1~6
 比較例1は、実施例1と同様に、比較例2~6は、実施例3と同様に、下記表3に示す構成の絶縁ワイヤを作製した。
 ここで、熱硬化性樹脂層(A)の樹脂は、比較例1および3では、実施例3と同じPAIを使用し、比較例2、4~6では、実施例1と同じPIを使用した。非結晶性樹脂層(C)の樹脂は、比較例2では、実施例5と同じPESを使用し、比較例3~6では、実施例3と同じPEIを使用した。また、熱可塑性樹脂層(B)の樹脂は、比較例1では、実施例4と同じTPIを使用し、比較例2では、実施例2と同じPPSを使用し、比較例3~6では、実施例1と同じPEEKを使用した。
 上記のようにして作製した各絶縁ワイヤに対して、下記の評価を行った。
[加工性評価(皮膜の密着性)]
 加工性、特に絶縁ワイヤの層間にせん断応力を加えたときの皮膜の密着性を評価するために捻り試験を行った。JIS-C3216-3の5.4に規定されている「剥離試験」を参考にし、熱可塑性樹脂層(B)〔押出被覆樹脂層〕が熱硬化性樹脂層(A)〔エナメル焼付け層〕から剥離するまでの捻り回数を計測して、5回の平均値を求めた。以下、試験内容を説明する。
 まず、各絶縁ワイヤを50cmに切り取り、絶縁ワイヤの両端から1cmの熱可塑性樹脂層(B)〔押出被覆樹脂層〕を四方剥離し、非結晶性樹脂層(C)〔接着層〕を有する場合は、これも同時に四方剥離して、熱硬化性樹脂層(A)〔エナメル焼付け層〕が露出した状態にした。次にこの状態の絶縁ワイヤの一端を固定し、他端を一定加重(加重の大きさ:100N)で一方向に捻り、熱可塑性樹脂層(B)〔押出被覆樹脂層〕の皮膜剥離が観察されるまでの捻り回数を計測した。捻り回数が10回以上であれば合格であり、「C」~「A」で表示した。このうち、「C」は、捻り回数が10以上20未満であり、「B」は、20以上30未満であり、「A」は、30回以上である。また、捻り回数が10回未満のものが不合格であり「D」で示した。
[外観評価]
 各絶縁ワイヤを長さ10cmに切り取り、切り取った直後の熱可塑性樹脂層(B)〔押出被覆樹脂層〕を剥離して、熱可塑性樹脂層(B)の表面およびむき出しになった熱硬化性樹脂層(A)〔エナメル焼付け層〕の表面をマイクロスコープ(倍率50倍)で観察した。熱可塑性樹脂層(B)〔押出被覆樹脂層〕および熱硬化性樹脂層(A)〔エナメル焼付け層〕のいずれにも発泡および欠損のないものが合格であり、「A」で表示した。また、熱可塑性樹脂層(B)〔押出被覆樹脂層〕および熱硬化性樹脂層(A)〔エナメル焼付け層〕のいずれかに、発泡および欠損のいずれも観察されたものが不合格であり「C」で示した。
 得られた結果をまとめて、下記表1~3に示す。
 なお、表1~3に示す熱硬化性樹脂層(A)の最小膜厚、凸部最大膜厚の平均、熱可塑性樹脂層(B)、非結晶性樹脂層(C)の厚さの単位はμmである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記表1~3から明らかなように、熱硬化性樹脂層(A)〔エナメル焼付け層〕において、2つの長辺、2つの短辺のいずれにも凸部を有し、かついずれの辺においても、最小膜厚/(凸部の最大膜厚の平均)の比が0.60以上0.90以下であるか、または少なくとも1組の対向する2つの辺がともに2つの凸部を有し、凸部を有するいずれの辺においても最小膜厚/(凸部の最大膜厚の平均)の比が0.60以上0.90以下である実施例1~16は、いずれも、加工性評価において、皮膜の密着性に優れ、しかも熱可塑性樹脂層(B)〔押出被覆樹脂層〕の表面、およびむき出しにした熱硬化性樹脂層(A)〔エナメル焼付け層〕の表面のいずれにも発泡も欠損もなく、絶縁ワイヤの表面および熱硬化性樹脂層(A)〔エナメル焼付け層〕の外表面のいずれの外観評価にも優れていることがわかる。
 これに加えて、実施例11~14で示すように、長辺と短辺の凸部の厚みを互いに異なった厚みにしても、さらには、これに加えて、実施例15および16で示すように、2つの長辺と2つの短辺において、対向する辺に有する凸部の厚みを互いに異なった厚みにしても、本発明の規定を満たすことにより優れた効果を奏する。具体的には、2つの長辺、2つの短辺のいずれにも凸部を有し、かついずれの辺においても、最小膜厚/(凸部の最大膜厚の平均)の比が0.60以上0.90以下であるか、または少なくとも2つの長辺がともに両端に2つの凸部を有し、いずれの長辺においても最小膜厚/(凸部の最大膜厚の平均)の比が0.60以上0.90以下であることを満たせば、加工性と外観評価のいずれも優れることがわかる。
 また、実施例1~10の比較から、熱硬化性樹脂層(A)〔エナメル焼付け層〕において、4つの辺のいずれにも凸部を有するものは、2つの長辺のみのものと比較し、加工性に優れることがわかる。また、2つの長辺のいずれもが、両端に凸部を有し、かつ2つの短辺がともに少なくとも1つの凸部を有するとさらに優れることがわかる。ここで、実施例8と9の比較から、2つの短辺がともに、その両端に凸部を有するより、2つの長辺がともに、その両端に凸部を有する方が、加工性に優れることもわかる。
 これに対して、比較例5で示すように、従来のように、4辺とも凸部のない平坦な辺の場合、比較例3および4のように4つの辺の1辺のみに凸部を有する場合、さらには、比較例6のように、2つの長辺とも凸部を有するものの、いずれの辺も凸部が中央に1つのみであり、短辺に凸部を有さない場合でも、加工性に劣る。
 しかも、2つの長辺、2つの短辺のいずれにも1つの凸部を有したとしても、比較例1のように、最小膜厚/(凸部の最大膜厚の平均)の比が0.90より大きな値であると、外観の評価は満足するものの、加工性に劣る。逆に、比較例2のように、最小膜厚/(凸部の最大膜厚の平均)の比が0.60未満であると加工性は満足するものの、外観の評価に劣り、加工性と外観の評価をともに満足させるには、最小膜厚/(凸部の最大膜厚の平均)の比が0.60以上0.90以下であることが必要であることがわかる。
 ここで、比較例1では、熱可塑性樹脂層(B)〔押出被覆樹脂層〕と熱硬化性樹脂層(A)〔エナメル焼付け層〕の間に十分な接触面積が得られず、目的とする加工性が得られなかったものと考えられる。また、比較例2では、熱硬化性樹脂層(A)〔エナメル焼付け層〕の外表面に、残留溶剤起因の発泡が観察されたことから、熱硬化性樹脂層(A)〔エナメル焼付け層〕の凸部の最大膜厚部が十分に焼き付けられなかったものと考えられる。
 また、比較例3および4では、平角線の4辺中の長辺側もしくは短辺側の片方の辺に1個所しか凸部が存在しないため、凸部を形成した辺では剥離が発生しないが、凸部が存在しない辺で剥離が発生し、皮膜剥離が少ない捻り回数で生じた。また、比較例6では、2つの長辺の中央に凸部が形成されることによりその辺の剥離には強くなるが、凸部がない短辺では耐剥離の改善効果はないかもしくはあっても少ないため、加工性が目標レベルに達しなかったものと思われる。
 上記の結果から、本発明の絶縁ワイヤは、コイル、特にモーターコイルなどの電気・電子機器に好ましく適用できることがわかる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2013年12月26日に日本国で特許出願された特願2013-270576に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
 1 導体
 2 エナメル焼付け層(熱硬化性樹脂層)
 3 押出被覆樹脂層(熱可塑性樹脂層)

Claims (12)

  1.  断面が平角の導体上に、直接または絶縁層(D)を介して熱硬化性樹脂層(A)を有し、該熱硬化性樹脂層(A)の外周に、少なくとも熱可塑性樹脂層(B)を有する積層樹脂被覆絶縁電線からなり、
     前記熱硬化性樹脂層(A)の断面形状が、2組の対向する2つの辺からなり、膜厚が極大となる凸部を少なくとも4つ有しており、該少なくとも4つの凸部が、4つの辺の各々に少なくとも1つの凸部を有するか、または少なくとも対向する2辺の各々に少なくとも2つの凸部を有してなり、
     前記凸部を有する各辺の各々において、最小膜厚をaμm、凸部の最大膜厚の平均をbμmとしたとき、a/bが0.60以上0.90以下であることを特徴とする絶縁ワイヤ。
  2.  前記熱硬化性樹脂層(A)の断面形状が、少なくとも対向する2辺の各々に少なくとも2つ前記凸部を有し、残りの対向する2辺の各々に、さらに前記凸部を1つもしくは2つ以上有し、
     前記凸部を有する各辺の各々において、最小膜厚をaμm、凸部の最大膜厚の平均をbμmとしたとき、a/bが0.60以上0.90以下であることを特徴とする請求項1に記載の絶縁ワイヤ。
  3.  前記熱硬化性樹脂層(A)の断面形状が、4つの辺の各々に1つの前記凸部を有することを特徴とする請求項1に記載の絶縁ワイヤ。
  4.  前記熱硬化性樹脂層(A)の断面形状が、1つの辺に前記凸部を1つ有する場合、該辺の中央近傍に、または、1つの辺に少なくとも2つの前記凸部を有する場合は、該凸部を該辺の両端近傍に各々1つ有するか、または該辺の中央から該辺の端までの中間点から該辺の両端までの間にそれぞれ1つ有することを特徴とする請求項1~3のいずれか1項に記載の絶縁ワイヤ。
  5.  前記積層樹脂被覆の断面形状において、前記熱可塑性樹脂層(B)の断面の外形が、対向する2つの長辺と対向する2つの短辺からなり、各々の辺において、前記導体までの積層樹脂被覆層の合計の厚みが、該辺のいずれの部分も、同じであることを特徴とする請求項1~4のいずれか1項に記載の絶縁ワイヤ。
  6.  前記熱硬化性樹脂層(A)と前記熱可塑性樹脂層(B)の間に非結晶性樹脂からなる絶縁層(C)を有することを特徴とする請求項1~5のいずれか1項に記載の絶縁ワイヤ。
  7.  前記非結晶性樹脂が、ポリエーテルイミド、ポリエーテルサルホン、ポリフェニルサルホンおよびポリフェニレンエーテルからなる群より選択される樹脂であることを特徴とする請求項6に記載の絶縁ワイヤ。
  8.  前記熱可塑性樹脂層(B)を構成する樹脂が、熱可塑性ポリイミド、ポリフェニレンスルフィド、ポリエーテルエーテルケトンおよび変性ポリエーテルエーテルケトンからなる群より選択される熱可塑性樹脂であることを特徴とする請求項1~7のいずれか1項に記載の絶縁ワイヤ。
  9.  前記熱硬化性樹脂層(A)を構成する樹脂が、ポリイミド、ポリアミドイミド、熱硬化性ポリエステルおよびH種ポリエステルからなる群より選択される熱硬化性樹脂であることを特徴とする請求項1~8のいずれか1項に記載の絶縁ワイヤ。
  10.  請求項1~9のいずれか1項に記載の絶縁ワイヤが、巻線加工されたことを特徴とするコイル。
  11.  請求項10に記載のコイルを用いてなることを特徴とする電気・電子機器。
  12.  断面が平角の導体上に、直接または絶縁層(D)を介して熱硬化性樹脂層(A)を有し、該熱硬化性樹脂層(A)の外周に、少なくとも熱可塑性樹脂層(B)を有する積層樹脂被覆絶縁電線からなる絶縁ワイヤであって、
     前記熱硬化性樹脂層(A)の断面形状が、2組の対向する2つの辺からなり、膜厚が極大となる凸部を少なくとも4つ有しており、該少なくとも4つの凸部を、4つの辺の各々に少なくとも1つの凸部を形成するか、または少なくとも対向する2辺の各々に少なくとも2つの凸部を形成し、
     前記凸部を有する各辺の各々において、最小膜厚をaμm、凸部の最大膜厚の平均をbμmとしたとき、a/bが0.60以上0.90以下を満たすように該凸部を形成することにより、前記絶縁ワイヤの導体からの前記熱可塑性樹脂層(B)の剥離の発生を防止したことを特徴とする皮膜剥離防止絶縁ワイヤの製造方法。
PCT/JP2014/083364 2013-12-26 2014-12-17 絶縁ワイヤ、コイルおよび電気・電子機器ならびに皮膜剥離防止絶縁ワイヤの製造方法 WO2015098638A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MYPI2016702345A MY185769A (en) 2013-12-26 2014-12-17 Insulated wire, coil, and electric/electronic equipments as well as method of producing a film delamination-resistant insulated wire
CN201480070361.1A CN106062893B (zh) 2013-12-26 2014-12-17 绝缘电线、线圈和电气/电子设备以及抗皮膜剥离绝缘电线的制造方法
KR1020167019657A KR101988092B1 (ko) 2013-12-26 2014-12-17 절연 와이어, 코일 및 전기전자기기와 피막박리 방지 절연 와이어의 제조방법
EP14873847.9A EP3089168B1 (en) 2013-12-26 2014-12-17 Insulated wire, coil, electrical/electronic apparatus, and method for manufacturing insulated wire in which coating film separation is prevented
JP2015554775A JP6382224B2 (ja) 2013-12-26 2014-12-17 絶縁ワイヤ、コイルおよび電気・電子機器ならびに皮膜剥離防止絶縁ワイヤの製造方法
US15/192,195 US9536636B2 (en) 2013-12-26 2016-06-24 Insulated wire, coil, and electric/electronic equipments as well as method of producing a film delamination-resistant insulated wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013270576 2013-12-26
JP2013-270576 2013-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/192,195 Continuation US9536636B2 (en) 2013-12-26 2016-06-24 Insulated wire, coil, and electric/electronic equipments as well as method of producing a film delamination-resistant insulated wire

Publications (1)

Publication Number Publication Date
WO2015098638A1 true WO2015098638A1 (ja) 2015-07-02

Family

ID=53478502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083364 WO2015098638A1 (ja) 2013-12-26 2014-12-17 絶縁ワイヤ、コイルおよび電気・電子機器ならびに皮膜剥離防止絶縁ワイヤの製造方法

Country Status (8)

Country Link
US (1) US9536636B2 (ja)
EP (1) EP3089168B1 (ja)
JP (1) JP6382224B2 (ja)
KR (1) KR101988092B1 (ja)
CN (1) CN106062893B (ja)
MY (1) MY185769A (ja)
TW (1) TW201535427A (ja)
WO (1) WO2015098638A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073643A1 (ja) * 2015-10-28 2017-05-04 古河電気工業株式会社 絶縁電線、絶縁電線の製造方法、コイル、回転電機および電気・電子機器
JP2017157460A (ja) * 2016-03-03 2017-09-07 古河電気工業株式会社 絶縁電線、コイル及び電気・電子機器
WO2018051991A1 (ja) * 2016-09-13 2018-03-22 古河電気工業株式会社 絶縁電線、コイルおよび電気・電子機器
JP2019521026A (ja) * 2016-05-19 2019-07-25 ユージェット エス.エー. 車両用駆動ユニットを有するホイール、ホイールの取り付け方法、及びホイールの軸受装置をシールするためのシール装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614758B2 (ja) * 2014-03-14 2019-12-04 古河電気工業株式会社 絶縁電線、絶縁電線の製造方法、回転電機用ステータの製造方法および回転電機
DE102014011180B4 (de) * 2014-07-31 2020-09-03 Auto-Kabel Management Gmbh Elektrischer Flachleiter für Kraftfahrzeuge
JP5778331B1 (ja) * 2014-12-26 2015-09-16 古河電気工業株式会社 絶縁電線およびコイル
JP2018147582A (ja) * 2017-03-01 2018-09-20 三菱マテリアル株式会社 絶縁電線及びその製造方法並びにコイル
JP6907809B2 (ja) * 2017-08-22 2021-07-21 三菱マテリアル株式会社 高アスペクト比を有する絶縁平角導線、その製造方法及びコイル
JP2020535008A (ja) * 2017-09-28 2020-12-03 アーケマ・インコーポレイテッド ワイヤーを被覆するためのポリ(アリールエーテルケトン)系ワニス、および、溶液からワイヤーを被覆する方法
EP3754669A4 (en) * 2018-02-16 2021-10-13 Essex Furukawa Magnet Wire Japan Co., Ltd. INSULATED WIRE, COIL AND ELECTRICAL / ELECTRONIC INSTRUMENT
JP7031377B2 (ja) * 2018-03-05 2022-03-08 三菱マテリアル株式会社 コイル
EP3979264A4 (en) * 2019-05-31 2023-05-31 Furukawa Electric Co., Ltd. RESIN COATED SUPERCONDUCTIVE WIRE, SUPERCONDUCTIVE COIL AND SHIELDING COIL
US10872715B1 (en) * 2019-06-24 2020-12-22 Essex Furukawa Magnet Wire Usa Llc Magnet wire with insulation including an organometallic compound
JP7334558B2 (ja) * 2019-09-25 2023-08-29 株式会社村田製作所 インダクタ部品
US20210367483A1 (en) * 2020-05-19 2021-11-25 Ge Aviation Systems Llc Method and system for thermally insulating portions of a stator core
CN114334289B (zh) * 2021-02-24 2023-03-10 佳腾电业(赣州)有限公司 一种绝缘电线制备方法、绝缘电线和电子/电气设备
CN118412168B (zh) * 2024-06-28 2024-09-20 佳腾电业(赣州)股份有限公司 一种绝缘电线及其制备方法、线圈和电子/电气设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940409A (ja) 1982-08-31 1984-03-06 株式会社フジクラ 絶縁電線
JPS63195913A (ja) 1987-02-06 1988-08-15 松下電工株式会社 マグネツトワイヤおよびその製造方法
JP2012022838A (ja) * 2010-07-13 2012-02-02 Toyota Motor Corp 巻線とその製造方法
JP2012090441A (ja) 2010-10-20 2012-05-10 Toyota Motor Corp 絶縁性皮膜付導線及び回転電機
JP2013041700A (ja) * 2011-08-12 2013-02-28 Furukawa Electric Co Ltd:The 絶縁ワイヤ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131418A (ja) * 1997-05-12 1999-02-02 Sumitomo Electric Ind Ltd ケーブル
DE10260315A1 (de) * 2002-12-20 2004-07-08 Siemens Ag Extrudierte elastische Isolierung für Leiter von elektrischen Maschinen
US20040256139A1 (en) * 2003-06-19 2004-12-23 Clark William T. Electrical cable comprising geometrically optimized conductors
JP4367149B2 (ja) * 2004-01-30 2009-11-18 日立電線株式会社 フラットケーブル用導体及びその製造方法並びにフラットケーブル
JP5019594B2 (ja) * 2007-05-18 2012-09-05 古河電気工業株式会社 絶縁電線
JP5320639B2 (ja) * 2008-02-13 2013-10-23 日立電線株式会社 絶縁電線
JP5314908B2 (ja) 2008-03-24 2013-10-16 株式会社デンソー 回転電機の固定子および回転電機
JP5306742B2 (ja) * 2008-08-28 2013-10-02 古河電気工業株式会社 絶縁ワイヤ
JP5472723B2 (ja) * 2010-01-08 2014-04-16 日立金属株式会社 平角エナメル線用塗装ダイス及び平角エナメル線の製造方法
JP5397819B2 (ja) * 2010-03-30 2014-01-22 日立金属株式会社 絶縁塗料およびそれを用いた絶縁電線
WO2012138729A1 (en) * 2011-04-07 2012-10-11 3M Innovative Properties Company High speed transmission cable
US20130048338A1 (en) * 2011-08-29 2013-02-28 Hitachi Cable, Ltd. Coated wire and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940409A (ja) 1982-08-31 1984-03-06 株式会社フジクラ 絶縁電線
JPS63195913A (ja) 1987-02-06 1988-08-15 松下電工株式会社 マグネツトワイヤおよびその製造方法
JP2012022838A (ja) * 2010-07-13 2012-02-02 Toyota Motor Corp 巻線とその製造方法
JP2012090441A (ja) 2010-10-20 2012-05-10 Toyota Motor Corp 絶縁性皮膜付導線及び回転電機
JP2013041700A (ja) * 2011-08-12 2013-02-28 Furukawa Electric Co Ltd:The 絶縁ワイヤ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073643A1 (ja) * 2015-10-28 2017-05-04 古河電気工業株式会社 絶縁電線、絶縁電線の製造方法、コイル、回転電機および電気・電子機器
US11232885B2 (en) 2015-10-28 2022-01-25 Essex Furukawa Magnet Wire Japan Co., Ltd. Insulated wire, method of producing insulated wire, coil, rotating electrical machine, and electrical or electronic equipment
CN108028099A (zh) * 2015-10-28 2018-05-11 古河电气工业株式会社 绝缘电线、绝缘电线的制造方法、线圈、旋转电机和电气/电子设备
JPWO2017073643A1 (ja) * 2015-10-28 2018-08-16 古河電気工業株式会社 絶縁電線、絶縁電線の製造方法、コイル、回転電機および電気・電子機器
CN108028099B (zh) * 2015-10-28 2021-11-05 埃赛克斯古河电磁线日本有限公司 绝缘电线、绝缘电线的制造方法、线圈、旋转电机和电气/电子设备
JP2017157460A (ja) * 2016-03-03 2017-09-07 古河電気工業株式会社 絶縁電線、コイル及び電気・電子機器
WO2017150625A1 (ja) * 2016-03-03 2017-09-08 古河電気工業株式会社 絶縁電線、コイル及び電気・電子機器
CN108713231A (zh) * 2016-03-03 2018-10-26 古河电气工业株式会社 绝缘电线、线圈和电气/电子设备
US10498184B2 (en) 2016-03-03 2019-12-03 Furukawa Electric Co., Ltd. Insulated wire, coil, and electrical or electronic equipment
JP2019521026A (ja) * 2016-05-19 2019-07-25 ユージェット エス.エー. 車両用駆動ユニットを有するホイール、ホイールの取り付け方法、及びホイールの軸受装置をシールするためのシール装置
JPWO2018051991A1 (ja) * 2016-09-13 2019-06-24 古河電気工業株式会社 絶縁電線、コイルおよび電気・電子機器
US10529463B2 (en) 2016-09-13 2020-01-07 Furukawa Electric Co., Ltd. Insulated wire, coil, and electrical or electronic equipment
CN109716451B (zh) * 2016-09-13 2021-01-29 埃赛克斯古河电磁线日本有限公司 绝缘电线、线圈和电气/电子设备
CN109716451A (zh) * 2016-09-13 2019-05-03 古河电气工业株式会社 绝缘电线、线圈和电气/电子设备
WO2018051991A1 (ja) * 2016-09-13 2018-03-22 古河電気工業株式会社 絶縁電線、コイルおよび電気・電子機器

Also Published As

Publication number Publication date
CN106062893A (zh) 2016-10-26
EP3089168B1 (en) 2018-06-20
TW201535427A (zh) 2015-09-16
JP6382224B2 (ja) 2018-08-29
US20160307663A1 (en) 2016-10-20
JPWO2015098638A1 (ja) 2017-03-23
US9536636B2 (en) 2017-01-03
KR20160103038A (ko) 2016-08-31
EP3089168A1 (en) 2016-11-02
MY185769A (en) 2021-06-06
CN106062893B (zh) 2018-05-04
KR101988092B1 (ko) 2019-06-11
EP3089168A4 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6382224B2 (ja) 絶縁ワイヤ、コイルおよび電気・電子機器ならびに皮膜剥離防止絶縁ワイヤの製造方法
CN107004466B (zh) 绝缘电线、线圈和电气/电子设备以及绝缘电线的制造方法
WO2014122828A1 (ja) 耐インバータサージ絶縁ワイヤ
WO2016103804A1 (ja) 耐曲げ加工性に優れる絶縁電線、それを用いたコイルおよび電子・電気機器
JP7423509B2 (ja) 絶縁ワイヤ、コイル及び電気・電子機器
WO2015186730A1 (ja) 絶縁ワイヤおよびその製造方法
US10032540B2 (en) Multilayer insulated wire, coil, and electrical/electronic equipment
WO2015098640A1 (ja) 絶縁ワイヤ、コイルおよび電子・電気機器
WO2015098637A1 (ja) 絶縁ワイヤ、モーターコイル、電気・電子機器および絶縁ワイヤの製造方法
WO2016072425A1 (ja) 絶縁ワイヤおよび回転電機
JP6932642B2 (ja) 絶縁電線、絶縁電線の製造方法、コイル、回転電機および電気・電子機器
JP6490505B2 (ja) 絶縁電線、コイル及び電気・電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014873847

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554775

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014873847

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167019657

Country of ref document: KR

Kind code of ref document: A