WO2015098588A1 - 超電導マグネット装置 - Google Patents

超電導マグネット装置 Download PDF

Info

Publication number
WO2015098588A1
WO2015098588A1 PCT/JP2014/083081 JP2014083081W WO2015098588A1 WO 2015098588 A1 WO2015098588 A1 WO 2015098588A1 JP 2014083081 W JP2014083081 W JP 2014083081W WO 2015098588 A1 WO2015098588 A1 WO 2015098588A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnetic field
superconducting magnet
magnet device
imaging space
Prior art date
Application number
PCT/JP2014/083081
Other languages
English (en)
French (fr)
Inventor
修 尾崎
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2015098588A1 publication Critical patent/WO2015098588A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/421Screening of main or gradient magnetic field

Definitions

  • the present invention relates to a superconducting magnet device useful for MRI (Magnetic Resonance Imaging) and the like.
  • a superconducting magnet device suitable for MRI or the like a main coil that surrounds a predetermined imaging space and a shield coil disposed outside thereof are known, and each coil is made of a superconducting wire.
  • the coils are cooled to a superconducting state by liquid helium or a refrigerator, and a strong magnetic field is formed in the imaging space by energizing the coils in that state.
  • Patent Document 1 discloses that the main coil has a multilayer coil structure, that is, the main coil is arranged in the radial direction. Dividing into multiple layers of coils is disclosed. Specifically, in Patent Document 1, the axial length of the superconducting magnet device is set to be larger than the conventional general dimensions of 1300 mm to 1500 mm while forming a magnetic field of 1.5 T by multilayering the main coil. It is stated that it can be as low as 900 mm.
  • Patent Document 1 describes that the uniformity of the magnetic field is maintained at a high level by the optimization design of the superconducting magnet, but the uniformity is a level required in MRI (generally, No specific means for reliably increasing the concentration to less than 10 ppm) is shown.
  • an object of the present invention is to provide a superconducting magnet device having a superconducting coil, which can obtain a high magnetic field uniformity while having a small axial dimension.
  • the present inventors include a main coil for forming a magnetic field in the imaging space, and a first coil and a radial outside of the first coil.
  • the parameter ⁇ D / D1o was focused on.
  • D1o is the minimum value of the inner diameter D1 of the first coil
  • the inventors set 0.2 ⁇ ⁇ D / D1o ⁇ 0.7 when the minimum inner diameter D1o of the first coil is in the range of 400 mm to 950 mm.
  • the coil shape can suppress the magnetic field inhomogeneity in the imaging space to a low level (approximately 5 ppm or less). It was found that can be realized.
  • the present invention has been made from such a viewpoint, and is a superconducting magnet device for forming a magnetic field in a specific imaging space, and improves the uniformity of the magnetic field in the imaging space while having a small axial dimension.
  • the superconducting magnet device includes a main coil that is a superconducting coil for forming a magnetic field in the imaging space.
  • the main coil has a central axis that passes through the imaging space and is arranged in a cylindrical shape surrounding the imaging space, and has the same central axis as the central axis of the first coil.
  • a second coil disposed on the outer side in the radial direction of one coil.
  • the minimum value of the inner diameter of the first coil is D1o
  • the minimum value of the inner diameter of the second coil is D2o
  • ⁇ D D2o ⁇ D1o
  • the minimum inner diameter value D1o of the first coil is 400 mm or more and 950 mm or less.
  • the inhomogeneity of the magnetic field in the imaging space is minimized under the condition that the minimum inner diameters D1o and D2o of the first and second coils are 0.2 ⁇ ⁇ D / D1o ⁇ 0.7.
  • the shapes of the first and second coils are set.
  • FIG. 1 shows the coil arrangement of the superconducting magnet apparatus according to the first embodiment of the present invention.
  • the superconducting magnet device includes a main coil 10 disposed so as to surround the imaging space 2 surrounded by a broken line in FIG. 1 and a shield coil 20 disposed on the outer side in the radial direction.
  • the main coil 10 forms a magnetic field for MRI in the imaging space 2
  • the shield coil 20 forms a magnetic field for shielding a leakage magnetic field generated by energization of the main coil 10. is there.
  • the main coil 10 includes a first coil 11 and a second coil 12 disposed on the outer side in the radial direction. By dividing the main coil 10 in the radial direction in this way, the main coil 10 can have a small axial dimension. Specifically, the main coil 10 according to the first embodiment and the second and third embodiments described later has an axial dimension of 900 mm.
  • Each of the first and second coils 11 and 12 and the shield coil 20 includes a plurality of unit coils arranged in the axial direction, and these unit coils are arranged so as to have a common central axis Z passing through the imaging space 2. Is done.
  • Each of the coils 11, 12 and 20 is a superconducting coil, and has a common winding frame and a superconducting wire wound around the common winding frame to constitute the unit coil.
  • the superconducting wire is made of a superconducting material made of NbTi, but the present invention is not limited by the material.
  • the superconducting wire may be composed of Nb 3 Sn, MgB 2 , Bi-based oxide, RE-based oxide, or the like.
  • the superconducting coil thus configured is cooled to the superconducting state by being immersed in liquid helium contained in a container (not shown) or connected to a cryogenic refrigerator, and energized in that state. Thereby forming the magnetic field.
  • the first coil 11 includes seven unit coils, and these unit coils have inner diameters D1 that are substantially equal to each other and are arranged so as to be aligned in the axial direction.
  • the minimum value D1o of the inner diameter D1 is 950 mm corresponding to the upper limit of the minimum inner diameter defined in the present invention, and this inner diameter is a dimension sufficient to pass the entire body of the subject.
  • the first coil 11 can enclose a space having a radial dimension of 460 mm and an axial dimension of 300 mm as the imaging space 2.
  • the second coil 12 according to the first embodiment includes three unit coils, and these unit coils have an inner diameter D2 larger than the outer diameter of the unit coils constituting the first coil 11.
  • the shield coil 20 is arranged at a position further radially outward of the second coil 12.
  • the number of unit coils constituting the shield coil 20 according to the first embodiment is two.
  • the minimum inner diameters D1o and D2o of the first and second coils 11 and 12 are determined as described above, and the magnetic field formed in the imaging space 2 by all the coils 11, 12 and 20.
  • the shape of each coil 11, 12, 20, that is, the arrangement and shape of the unit coils that constitute each coil 11, 12, 20 are determined so that the non-uniformity is minimized.
  • the specifications of each unit coil of the superconducting magnet device according to the first embodiment are as shown in Table 1 below.
  • R1 is the inner radius of each unit coil
  • R2 is the outer radius of each unit coil
  • z1 and z2 are the positions of the left end and the right end of each unit coil with reference to the axial center of the main coil 10.
  • a negative sign is given to the position on the left side of the center.
  • the current density is obtained by dividing the current flowing through each unit coil by the cross-sectional area of the unit coil, and a positive or negative sign is given depending on the direction of the current.
  • the sum of the magnetic fields formed by the unit coils included in the first coil 11 is ⁇ 1.41T
  • the sum of the magnetic fields formed by the unit coils included in the second coil 12 is 3.81T
  • the sum of the magnetic fields formed by the unit coils included in the shield coil 20 is -0.94T. Accordingly, a 1.5 T magnetic field (main magnetic field) can be formed in the imaging space 2 as a whole.
  • FIG. 2 shows the coil arrangement of the superconducting magnet apparatus according to the second embodiment of the present invention.
  • This superconducting magnet device has a basic configuration similar to that of the device according to the first embodiment, and includes a main coil 10 having a first coil 11 and a second coil 12, and a shield disposed on the outer side in the radial direction.
  • the minimum value D1o of the inner diameter D1 of the unit coil constituting the first coil 11 is 400 mm corresponding to the lower limit of the minimum inner diameter defined in the present invention. This is the minimum size required to insert the subject's head inside the coil 11.
  • the minimum value D2o of the inner diameter D2 of the unit coil constituting the second coil 12 is 600 mm.
  • the number of unit coils constituting the first coil 11, the second coil 12, and the shield coil 20 is 13, 3, and 3, respectively.
  • the inner diameter minimum values D1o and D2o of the first and second coils 11 and 12 are determined as described above, and then all the coils 11, 12, and 20 are used.
  • the shape of each coil that is, the arrangement and shape of unit coils constituting each coil are determined so that the non-uniformity of the magnetic field formed in the imaging space 2 is minimized.
  • the specifications of each unit coil of the superconducting magnet apparatus according to the second embodiment are as shown in Table 2 below.
  • the imaging space 2 is energized by energization of each unit coil under the given conditions (minimum inner diameter D1o and ⁇ D / D1o) for the inner diameters of the coils 11 and 12.
  • the coil is designed to minimize the non-uniformity (ppm) of the magnetic field formed, and as a result, the homogeneity of the magnetic field can be maintained at a very high level of 6 ppm or less. This is largely due to the fact that the parameter ⁇ D / D1o is set to a value between 0.2 and 0.7 as a premise for designing the coil.
  • the reason will be described together with the design method of the arrangement of the unit coils.
  • a cylinder having a radius R (m) and a length L (m) is considered as a simulated body of the coil surrounding the imaging space 2, and the surface current density flowing in the circumferential direction on the cylinder surface is expressed as J (z) (A / M 2 ).
  • J (z) is described because the surface current density has a distribution in the Z-axis direction (the direction of the central axis Z shown in FIG. 1 and the like).
  • r represents the radius of the imaging space 2
  • Pn represents an nth-order Legendre function
  • the non-uniform component is represented by ⁇ B / Bo, where Bo is the absolute value of the magnetic flux density at the center of the imaging space, and ⁇ B is the maximum value of the absolute value of the difference between the magnetic flux density and Bo at other parts. .
  • Bo is the absolute value of the magnetic flux density at the center of the imaging space
  • ⁇ B is the maximum value of the absolute value of the difference between the magnetic flux density and Bo at other parts.
  • the order to be considered in the above equation is preferably set based on the bore diameter and the size of the imaging space. However, in the case of normal MRI, it is sufficient to consider up to the 12th order term.
  • FIG. 8 shows the relationship between ⁇ D / D1o and the magnetic field uniformity when the minimum inner diameter D1o of the first coil 11 is 950 mm corresponding to the first embodiment.
  • the relationship between (DELTA) D / D1o and magnetic field uniformity in case the inside diameter minimum value D1o is 400 mm corresponding to 2nd Embodiment is shown.
  • ⁇ D / D1o deviates from the range of 0.2 ⁇ ⁇ D / D1o ⁇ 0.7.
  • the parameter ⁇ D / D1o is 0.4 or more, it is possible to obtain higher magnetic field uniformity, and for example, the shape of the unit coil on both outer sides of the second coil 12 is shown in FIG. There is an advantage that it is not necessary to have an irregular and difficult-to-manufacture shape as shown in FIG. Further, if the parameter ⁇ D / D1o is 0.6 or less, there is an advantage that higher uniformity can be obtained while suppressing the maximum outer diameter of the entire main coil.
  • the presence or absence of the shield coil 20 is not limited. Since the influence of the shield coil 20 on the magnetic field formed in the imaging space 2 is very small, regardless of the presence or absence of the shield coil 20, the condition of 0.2 ⁇ ⁇ D / D1o ⁇ 0.7 is satisfied. Coil design to obtain high magnetic field uniformity is possible.
  • the present invention includes a case where at least one of the first and second coils 11 and 12 is a part of a unit coil constituting the coil divided in the radial direction.
  • An example thereof is shown in FIG. 7 and the following Table 7 as a third embodiment.
  • unit coils located on both outer sides in the axial direction of the second coil 12 according to the first embodiment are divided in the radial direction.
  • the distance between the coils divided in the radial direction is preferably 20% or less of the inner diameter minimum value D1o of the first coil 11.
  • the interval between the divided coils shown in FIG. 7 is 5 mm.
  • ⁇ D / D1o is about 0.42, and is in the range of 0.2 to 0.7 as in the first embodiment.
  • the third embodiment can also design a coil that obtains a high magnetic field uniformity.
  • a superconducting magnet device having a superconducting coil that can obtain high magnetic field uniformity while having a small axial dimension.
  • the superconducting magnet device includes a main coil that is a superconducting coil for forming a magnetic field in the imaging space.
  • the main coil has a central axis that passes through the imaging space and is arranged in a cylindrical shape surrounding the imaging space, and has the same central axis as the central axis of the first coil.
  • a second coil disposed on the outer side in the radial direction of one coil.
  • the minimum value of the inner diameter of the first coil is D1o
  • the minimum value of the inner diameter of the second coil is D2o
  • ⁇ D D2o ⁇ D1o
  • the minimum inner diameter value D1o of the first coil is 400 mm or more and 950 mm or less.
  • the inhomogeneity of the magnetic field in the imaging space is minimized under the condition that the minimum inner diameters D1o and D2o of the first and second coils are 0.2 ⁇ ⁇ D / D1o ⁇ 0.7.
  • the shapes of the first and second coils are set.
  • the parameter ⁇ D / D1o is 0.4 or more. As a result, it is possible to obtain a higher magnetic field uniformity and to easily realize the shape of the superconducting coil while keeping the ratio of the radial dimension to the axial dimension of the superconducting coil included in the second coil small. Is possible.
  • the parameter ⁇ D / D1o is more preferably 0.6 or less. This makes it possible to obtain a higher magnetic field uniformity while suppressing the maximum outer diameter of the main coil.
  • the superconducting magnet device according to the present invention is particularly useful as a superconducting magnet device for MRI.
  • the superconducting magnet device may further include a shield coil that is disposed outside the radial direction and can form a magnetic field that blocks a leakage magnetic field of the main coil. Is possible. Since the influence of the shield coil on the magnetic field formed in the imaging space is very small, it is high under the condition 0.2 ⁇ ⁇ D / D1o ⁇ 0.7 regardless of the presence or absence of the shield coil. A coil design capable of obtaining magnetic field uniformity is possible.
  • the direction of the magnetic field formed by the first coil is opposite to the direction of the main magnetic field that is a magnetic field formed in the imaging space by the entire main coil, and the second coil
  • the direction of the magnetic field to be formed is the same as the direction of the main magnetic field.
  • At least one part of the first coil and the second coil may be divided in the radial direction. Regardless of the division, it is possible to obtain high magnetic field uniformity by satisfying the above condition 0.2 ⁇ ⁇ D / D1o ⁇ 0.7.
  • the superconducting wire constituting the superconducting coil include NbTi, Nb3Sn, MgB2, Bi-based oxide, and RE-based oxide.

Abstract

 超電導コイルを備えた超電導マグネット装置であってその軸方向の寸法を抑えながら高い磁場均一度を得ることが可能なものが、提供される。この超電導マグネット装置は、メインコイル(10)を備え、このメインコイル(10)は、第1コイル(11)と、第1コイル(11)の中心軸と同一の中心軸を有して第1コイル(11)の径方向の外側に配置される第2コイル(12)と、を備える。第1コイル(11)の内径の最小値をD1o、第2コイル(12)の内径の最小値をD2o、ΔD=D2o-D1oとしたとき、400mm≦D1o≦950mmであって、かつ、0.2≦ΔD/D1o≦0.7という条件下で磁場の不均一度を最小にするように、第1及び第2コイル(11,12)の形状が設定されている。

Description

超電導マグネット装置
 本発明は、MRI(Magnetic Resonanse Imaging;磁気共鳴画像)等に有用な超電導マグネット装置に関する。
 従来、MRI等に好適な超電導マグネット装置として、所定の撮像空間を囲むメインコイル及びその外側に配置されたシールドコイルを備え、各コイルが超電導線材により構成されたものが知られている。当該各コイルは、液体ヘリウムまたは冷凍機によって超電導状態に至るまで冷却され、その状態で当該各コイルが通電されることにより前記撮像空間に強力な磁場が形成される。
 この種の超電導マグネット装置が前記MRIに用いられる場合、そのコイルの軸方向の寸法の縮小が重要な課題となる。当該軸方向の寸法の縮小は、前記撮像空間に入る被験者の閉塞感を緩和することができる。このような軸方向の寸法の縮小を可能にしながら十分な磁場の形成を確保する手段として、特許文献1は、前記メインコイルを、多層コイル構造にすること、すなわち、当該メインコイルを径方向に並ぶ複数層のコイルに分割すること、を開示する。具体的に、当該特許文献1では、前記メインコイルの多層化により、1.5Tの磁場を形成しながら超電導マグネット装置の軸方向長さを(従来の一般的な寸法である1300mm~1500mmよりも低い)900mmまで抑えられることが可能であることが、述べられている。
 前記MRIを実現するための超電導マグネット装置の重要な課題として、その軸方向の寸法の縮小に加え、前記撮像空間における磁場の均一度を高く維持することが挙げられる。しかしながら、前記のようにメインコイルを径方向に多層化することは、当該コイルの設計を複雑にし、高い磁場均一度を確保することを難しくする。この点について、前記特許文献1には、超電導マグネットの最適化の設計により磁場の均一度が高いレベルに保持されることが記載されているが、当該均一度をMRIにおいて要求されるレベル(一般には10ppm未満)に至るまで確実に高めるための具体的手段については何ら示されていない。
特表2009-505031号公報
 本発明は、このような事情に鑑み、超電導コイルを備えた超電導マグネット装置であって小さい軸方向の寸法を有しながら高い磁場均一度を得ることが可能なものを提供することを目的とする。
 本発明者らは、前記軸方向の寸法の縮小化を達成するための手段として、撮像空間に磁場を形成するためのメインコイルが、第1コイルと、この第1コイルの径方向の外側に配置される第2コイルと、を有して第1及び第2コイルがそれぞれ超電導コイルにより構成される構造を採用するのに加え、当該メインコイルが形成する磁場について高い均一度を得るための手段として、ΔD/D1oというパラメータに着目した。ここで、D1oは前記第1コイルの内径D1の最小値であり、ΔDは前記第2コイルの内径D2の最小値D2oと前記第1コイルの内径最小値D1oとの差(=D2o-D1o)である。具体的に、本発明者らは、後に詳述するように、前記第1コイルの内径最小値D1oが400mm以上950mm以下の範囲内にある場合に、0.2≦ΔD/D1o≦0.7という条件を満たすように前記第1及び第2コイルの内径最小値D1o,D2oを設定することにより、前記撮像空間での磁場の不均一度を低いレベル(おおよそ5ppm以下)に抑えるようなコイル形状を実現できることを見出した。
 本発明は、かかる観点からなされたものであり、特定の撮像空間に磁場を形成するための超電導マグネット装置であって、小さい軸方向の寸法を有しながら前記撮像空間における磁場の均一度を高めることが可能なものを、提供する。この超電導マグネット装置は、前記撮像空間に磁場を形成するための超電導コイルであるメインコイルを備える。このメインコイルは、前記撮像空間を通る中心軸を有して当該撮像空間を囲む筒状に配置される第1コイルと、当該第1コイルの中心軸と同一の中心軸を有して当該第1コイルの径方向の外側に配置される第2コイルと、を備える。さらに、前記第1コイルの内径の最小値をD1o、前記第2コイルの内径の最小値をD2o、ΔD=D2o-D1oとしたとき、前記第1コイルの内径最小値D1oが400mm以上950mm以下であって、かつ、前記第1及び第2コイルの内径最小値D1o,D2oが0.2≦ΔD/D1o≦0.7という条件下で前記撮像空間における磁場の不均一度を最小にするように第1及び第2コイルの形状が設定されている。
本発明の第1の実施形態に係る超電導マグネット装置のコイル配置を示す断面正面図である。 本発明の第2の実施形態に係る超電導マグネット装置のコイル配置を示す断面正面図である。 第1比較例に係る超電導マグネット装置のコイル配置を示す断面正面図である。 第2比較例に係る超電導マグネット装置のコイル配置を示す断面正面図である。 第3比較例に係る超電導マグネット装置のコイル配置を示す断面正面図である。 第4比較例に係る超電導マグネット装置のコイル配置を示す断面正面図である。 本発明の第3の実施形態に係る超電導マグネット装置のコイル配置を示す断面正面図である。 第1コイルの内径最小値D1oが950mmであるときのΔD/D1oと磁場均一度との関係を示すグラフである。 第1コイルの内径最小値D1oが400mmであるときのΔD/D1oと磁場均一度との関係を示すグラフである。
 本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下に示す各実施の形態では、発明の理解の促進のために各寸法について具体的な数値が例示されているが、本発明に係る超電導マグネット装置の各寸法が当該具体的数値に限定されないことは言うまでもない。
 図1は、本発明の第1の実施の形態に係る超電導マグネット装置のコイル配置を示したものである。この超電導マグネット装置は、図1において破線で囲まれる撮像空間2を囲むように配置されるメインコイル10と、その径方向の外側に配置されるシールドコイル20と、を備える。前記メインコイル10は、前記撮像空間2にMRIのための磁場を形成するものであり、前記シールドコイル20は当該メインコイル10の通電により発生する漏れ磁場を遮蔽するための磁場を形成するものである。
 前記メインコイル10は、第1コイル11と、その径方向の外側に配置される第2コイル12と、を有する。このようにメインコイル10が径方向に分割されることにより、当該メインコイル10が小さい軸方向の寸法を有することが可能である。具体的に、この第1の実施の形態及び後に述べる第2及び第3の実施の形態に係るメインコイル10は、900mmの軸方向の寸法を有する。
 前記第1及び第2コイル11,12及び前記シールドコイル20は、それぞれ軸方向に並ぶ複数の単位コイルを含み、これらの単位コイルは前記撮像空間2を通る共通の中心軸Zを有するように配置される。前記各コイル11,12及び20はいずれも超電導コイルであって、共通の巻枠と、その周囲に巻き付けられてそれぞれが前記単位コイルを構成する超電導線材と、を有する。この超電導線材は、NbTiからなる超電導材料により構成されるが、本発明はその材質によって限定されない。例えば、前記超電導線材は、NbSn、MgB、Bi系酸化物、RE系酸化物等によって構成されることも可能である。このように構成された超電導コイルは、図略の容器内に収容された液体ヘリウムに浸漬され、あるいは極低温冷凍機に接続されることにより、超電導状態に至るまで冷却され、その状態で通電されることにより前記磁場を形成する。
 この第1の実施の形態に係る第1コイル11は、7個の単位コイルを含み、これらの単位コイルは互いに略同等の内径D1を有するとともに、互いに軸方向に並ぶように配置される。当該内径D1の最小値D1oは、本発明において規定される内径最小値の上限に相当する950mmであり、この内径は、被験者の身体全体を通過させるのに十分な寸法である。具体的に、当該第1コイル11は、前記撮像空間2として、径方向の寸法が460mm、軸方向の寸法が300mmをもつ空間を囲むことが可能である。
 この第1の実施の形態に係る第2コイル12は、3個の単位コイルを含み、これらの単位コイルは前記第1コイル11を構成する単位コイルの外径よりも大きな内径D2を有する。これらの内径D2の最小値D2oは1350mmであり、従って、この実施の形態に係るΔD(=D2o-D1o)は400mm、ΔD/D1oは400/950≒0.42である。
 前記シールドコイル20は、前記第2コイル12のさらに径方向外側の位置に配置されている。この第1の実施の形態に係るシールドコイル20を構成する単位コイルの個数は2個である。
 この超電導マグネット装置では、前記のように第1及び第2コイル11,12の内径最小値D1o,D2oが定められた上で、全コイル11,12,20により撮像空間2内に形成される磁場の不均一度が最小となるように、各コイル11,12,20の形状、すなわち、当該各コイル11,12,20を構成する単位コイルの配置及び形状、が決定されている。具体的に、この第1の実施の形態に係る超電導マグネット装置の各単位コイルの諸元は次の表1に示す通りである。
Figure JPOXMLDOC01-appb-T000001
 この表1において、R1は各単位コイルの内側半径、R2は当該各単位コイルの外側半径、z1及びz2はメインコイル10の軸方向の中央を基準とした前記各単位コイルの左端及び右端の位置(当該中央よりも左側の位置に対して負の符号が与えられている。)をそれぞれ示す。電流密度は、各単位コイルに流れる電流を当該単位コイルの断面積で除したものであり、その電流の向きによって正負の符号が与えられている。また、計算の便宜上、軸方向中央に位置する単位コイルについては、その左側の要素(z1=負値、z2=0)と右側の要素(z1=0、z2=正値)とに分割されている。
 一方、図1に示される複数の矩形のうち、右上から左下に延びる斜線が付されたものは負の電流密度が与えられる単位コイルを示し、左上から右下に延びる斜線が付されたものは正の電流密度が与えられる単位コイルを示している。以上の表1及び図1に係る表記の規則は、他の表及び図においてもそのまま適用される。
 前記のコイル配置によれば、前記第1コイル11に含まれる単位コイルが形成する磁場の総和が-1.41T、前記第2コイル12に含まれる単位コイルが形成する磁場の総和が3.81T、前記シールドコイル20に含まれる単位コイルが形成する磁場の総和が-0.94Tである。従って、撮像空間2内には総じて1.5Tの磁場(主磁場)が形成されることが可能である。
 図2は、本発明の第2の実施の形態に係る超電導マグネット装置のコイル配置を示したものである。この超電導マグネット装置は、第1の実施の形態に係る装置と同様の基本構成を有し、第1コイル11及び第2コイル12を有するメインコイル10と、その径方向の外側に配置されるシールドコイル20と、を備えるが、前記第1コイル11を構成する単位コイルの内径D1の最小値D1oは、本発明において規定される内径最小値の下限に相当する400mmであり、この内径は第1コイル11の内側に被験者の頭部を挿入するのに最低必要とされる寸法である。第2コイル12を構成する単位コイルの内径D2の最小値D2oは600mmであり、従って、この第2の実施の形態に係るΔD(=D2o-D1o)は200mm、ΔD/D1oは200/400=0.50である。また、第1コイル11、第2コイル12及びシールドコイル20を構成する単位コイルの数はそれぞれ、13個、3個及び3個である。
 この第2の実施の形態に係る超電導マグネット装置においても、前記のように第1及び第2コイル11,12の内径最小値D1o,D2oが定められた上で、全コイル11,12,20により撮像空間2内に形成される磁場の不均一度が最小となるように、各コイルの形状、すなわち、各コイルを構成する単位コイルの配置及び形状、が決定されている。具体的に、この第2の実施の形態に係る超電導マグネット装置の各単位コイルの諸元は次の表2に示す通りである。
Figure JPOXMLDOC01-appb-T000002
 第1及び第2の実施の形態のいずれにおいても、各コイル11,12の内径について与えられた条件(内径最小値D1o及びΔD/D1o)の下で、各単位コイルの通電により撮像空間2に形成される磁場の不均一度(ppm)を最小にするようなコイルの設計がなされ、その結果、当該磁場の均一度を6ppm以下の非常に高いレベルに維持することが可能となっている。これは、当該コイルの設計の前提として前記のパラメータΔD/D1oが0.2以上0.7以下の値に設定されていることが大きな要因となっている。以下、その理由を前記各単位コイルの配置の設計手法と併せて説明する。
 いま、前記撮像空間2を囲むコイルの模擬体として、半径R(m)、長さL(m)の円筒を考え、その円筒表面において円周方向に流れる表面電流密度をJ(z)(A/m)とする。ここでJ(z)と表記しているのは表面電流密度がZ軸方向(図1等に示される中心軸Zの方向)について分布を有しているからである。円筒の全表面電流による撮像空間2での磁場不均一度を球面調和関数で展開したとき、その展開式におけるn次項の係数Cnは下記の(1)式によって与えられる。
Figure JPOXMLDOC01-appb-M000003
 ここで、rは撮像空間2の半径、Pnはn次のルジャンドル関数を表す。
 この式の第12次項までについて、磁場の不均一成分を0ppmにするような表面電流密度分布J(z)を数値計算により求めることが可能であり、この表面電流密度分布J(z)が得られるように設計されたのが図1及び図2に示される各単位コイルの配置である。このような設計がなされた結果、第14次項以下の要素によって生ずる磁場の不均一成分がその超電導マグネット装置により形成される磁場の不均一度に相当することになる。ここで、前記不均一成分はΔB/Boで表され、Boは撮像空間中心での磁束密度の絶対値、ΔBは他の部位での磁束密度とBoとの差の絶対値の最大値である。前記式において考慮すべき次数はボア径や撮像空間の大きさに基づいて設定されるのがよいが、通常のMRIの場合は第12次項まで考慮されれば十分である。
 本発明者らは、前記のように、ΔD/D1oというパラメータに着目し、このパラメータと得られる磁場の均一度との関係について精査した。その結果を図8及び図9に示す。図8は、第1コイル11の内径最小値D1oが第1の実施の形態に対応する950mmである場合のΔD/D1oと磁場均一度との関係を示し、図9は、第1コイル11の内径最小値D1oが第2の実施の形態に対応する400mmである場合のΔD/D1oと磁場均一度との関係を示している。
 これらの図8及び図9を参照して明らかなように、内径最小値D1oが950mm、400mmのいずれの場合であっても、ΔD/D1oが0.2以上0.7以下の範囲において優れた均一度(6ppm以下の均一度)を得ることが可能である。逆に、ΔD/D1oが0.2未満及び0.7よりも大きい範囲では、良好な均一度を得ることは困難である。例えば、(1)図3及び表3は比較例1としてD1o=950mm、D2o=1100mm、ΔD/D1o=150/950≒0.16である場合を示し、(2)図4及び表4は比較例2としてD1o=950mm、D2o=1800mm、ΔD/D1o=850/950≒0.89である場合を示し、(3)図5及び表5は比較例3としてD1o=400mm、D2o=470mm、ΔD/D1o=70/400≒0.18である場合を示し、(4)図6及び表6は比較例4としてD1o=400mm、D2o=750mm、ΔD/D1o=350/400≒0.88である場合を示しているが、これらの比較例1~4のいずれにおいてもΔD/D1oは0.2≦ΔD/D1o≦0.7の範囲から逸脱している。よって、その前提下において磁場の不均一度を最小にするようなコイル設計を行っても大きな不均一度が残存する。つまり、これらの比較例1~4では高い均一度を持つ磁場を形成することは困難である。特に、比較例4では、メインコイル10の外径の最大値が大きいので、メインコイル10の漏れ磁場が大きく、その分シールドコイル20を大きくせざるを得ない。その結果、シールドコイル20の局所磁場が大きくなり、超電導状態を保つことは難しくなる。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 一方、前記パラメータΔD/D1oがさらに0.4以上であれば、より高い磁場均一度を得ることが可能であるのに加え、例えば第2コイル12の両外側の単位コイルの形状を図5及び図6に示すような変則的で製造が困難な形状(軸方向の寸法に対する径方向の寸法が著しく大きい形状)にする必要がなく、その製作が容易になる利点がある。また、前記パラメータΔD/D1oが0.6以下であれば、メインコイル全体の最大外径を抑えながらより高い均一度が得られる利点がある。
 本発明では、前記シールドコイル20の有無について限定されない。当該シールドコイル20が撮像空間2に形成される磁場に与える影響は微小であるため、当該シールドコイル20の有無にかかわらず、前記の0.2≦ΔD/D1o≦0.7という条件の下で高い磁場均一度を得るためのコイル設計が可能である。
 さらに、本発明は、前記第1及び第2コイル11,12の少なくとも一方について、当該コイルを構成する単位コイルの一部が径方向に分割されたものも包含する。その例を第3の実施の形態として図7及び次の表7に示す。この第3の実施の形態は、前記第1の実施の形態に係る第2コイル12のうちその軸方向両外側に位置する単位コイルが径方向に分割されたものである。
Figure JPOXMLDOC01-appb-T000008
 ここで、径方向に分割されたコイル同士の間隔は、第1コイル11の内径最小値D1oの20%以下であることが好ましい。図7に示される分割コイル間の間隔は5mmである。
 この第3の実施の形態におけるΔD/D1oは、約0.42であり、第1の実施の形態と同様に0.2以上0.7以下の範囲内にあることから、当該第1の実施の形態と同様、第3の実施の形態でも高い磁場均一度を得るコイル設計を行うことが可能である。
 以上のように、本発明によれば、超電導コイルを備えた超電導マグネット装置であって小さい軸方向の寸法を有しながら高い磁場均一度を得ることが可能なものが、提供される。この超電導マグネット装置は、前記撮像空間に磁場を形成するための超電導コイルであるメインコイルを備える。このメインコイルは、前記撮像空間を通る中心軸を有して当該撮像空間を囲む筒状に配置される第1コイルと、当該第1コイルの中心軸と同一の中心軸を有して当該第1コイルの径方向の外側に配置される第2コイルと、を備える。さらに、前記第1コイルの内径の最小値をD1o、前記第2コイルの内径の最小値をD2o、ΔD=D2o-D1oとしたとき、前記第1コイルの内径最小値D1oが400mm以上950mm以下であって、かつ、前記第1及び第2コイルの内径最小値D1o,D2oが0.2≦ΔD/D1o≦0.7という条件下で前記撮像空間における磁場の不均一度を最小にするように第1及び第2コイルの形状が設定されている。
 この超電導マグネット装置では、前記のパラメータΔD/D1oが0.4以上であることが、より好ましい。これにより、さらに高い磁場均一度を得ることが可能になるとともに、第2コイルに含まれる超電導コイルの軸方向寸法に対する径方向寸法の比を小さく抑えて当該超電導コイルの形状を実現容易な形状とすることが可能である。
 一方、前記のパラメータΔD/D1oは0.6以下であることが、より好ましい。これにより、メインコイルの外径最大値を抑えながら、より高い磁場均一度を得ることが可能になる。
 前記のとおり、本発明に係る超電導マグネット装置は、特にMRI用超電導マグネット装置として有用である。
 本発明に係る超電導マグネット装置は、前記メインコイルに加え、その径方向の外側に配置されて当該メインコイルの漏れ磁場を遮断するような磁場を形成することが可能なシールドコイルをさらに備えることが、可能である。このシールドコイルが前記撮像空間に形成される磁場に与える影響は微小であるため、当該シールドコイルの存在の有無にかかわらず、前記の条件0.2≦ΔD/D1o≦0.7の下で高い磁場均一度を得ることが可能なコイル設計が可能である。
 前記メインコイルの好ましい構成としては、例えば、前記第1コイルが形成する磁場の向きが、前記メインコイル全体が撮像空間に形成する磁場である主磁場の向きと逆であり、前記第2コイルが形成する磁場の向きが前記主磁場の向きと同じであるものが、挙げられる。
 また、本発明では、前記第1コイル及び第2コイルの少なくとも一方の一部が径方向に分割されてもよい。当該分割にかかわらず、前記の条件0.2≦ΔD/D1o≦0.7を満たすことにより高い磁場均一度を得ることが可能である。
 前記超電導コイルを構成する超電導線材の具体的な材質としては、例えばNbTi、Nb3Sn、MgB2、Bi系酸化物、RE系酸化物等が挙げられる。

Claims (8)

  1.  特定の撮像空間に磁場を形成するための超電導マグネット装置であって、
     前記撮像空間に磁場を形成するための超電導コイルであるメインコイルを備え、
     このメインコイルは、前記撮像空間を通る中心軸を有して当該撮像空間を囲む筒状に配置される第1コイルと、当該第1コイルの中心軸と同一の中心軸を有して当該第1コイルの径方向の外側に配置される第2コイルと、を備え、
     前記第1コイルの内径の最小値をD1o、前記第2コイルの内径の最小値をD2o、ΔD=D2o-D1oとしたとき、前記第1コイルの内径最小値D1oが400mm以上950mm以下であって、かつ、前記第1及び第2コイルの内径最小値D1o,D2oが0.2≦ΔD/D1o≦0.7という条件下で前記撮像空間における磁場の不均一度を最小にするように第1及び第2コイルの形状が設定されている、超電導マグネット装置。
  2.  請求項1記載の超電導マグネット装置であって、前記ΔD/D1oが0.4以上である、超電導マグネット装置。
  3.  請求項1記載の超電導マグネット装置であって、前記ΔD/D1oが0.6以下である、超電導マグネット装置。
  4.  請求項1~3のいずれかに記載の超電導マグネット装置であって、前記メインコイルはMRI用の磁場を形成するものである、超電導マグネット装置。
  5.  請求項1~3のいずれかに記載の超電導マグネット装置であって、前記メインコイルの径方向の外側に配置されて当該メインコイルの漏れ磁場を遮断するような磁場を形成するシールドコイルをさらに備える、超電導マグネット装置。
  6.  請求項1~3のいずれかに記載の超電導マグネット装置であって、前記第1コイルが形成する磁場の向きが、前記メインコイル全体が撮像空間に形成する磁場である主磁場の向きと逆であり、前記第2コイルが形成する磁場の向きが前記主磁場の向きと同じである、超電導マグネット装置。
  7.  請求項1~3のいずれかに記載の超電導マグネット装置であって、前記第1コイル及び第2コイルの少なくとも一方の一部が径方向に分割されている、超電導マグネット装置。
  8.  請求項1~3のいずれかに記載の超電導マグネット装置であって、前記超電導コイルは、NbTi、NbSn、MgB、Bi系酸化物、RE系酸化物の中から選ばれる材料からなる超電導線材を含む、超電導マグネット装置。
     
     
PCT/JP2014/083081 2013-12-26 2014-12-15 超電導マグネット装置 WO2015098588A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013268255A JP2015123161A (ja) 2013-12-26 2013-12-26 超電導マグネット装置
JP2013-268255 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015098588A1 true WO2015098588A1 (ja) 2015-07-02

Family

ID=53478452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083081 WO2015098588A1 (ja) 2013-12-26 2014-12-15 超電導マグネット装置

Country Status (2)

Country Link
JP (1) JP2015123161A (ja)
WO (1) WO2015098588A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178411A1 (ja) * 2014-05-20 2015-11-26 株式会社 日立メディコ 極狭漏れ磁場磁石型mri装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504067A (ja) * 1989-03-11 1992-07-23 ブルーケル・アナリティク・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング 磁石装置
JPH0838456A (ja) * 1994-05-13 1996-02-13 Bruker Analytische Messtech Gmbh 均質化装置付き治療トモグラフィ装置
US5818319A (en) * 1995-12-21 1998-10-06 The University Of Queensland Magnets for magnetic resonance systems
US6064290A (en) * 1999-05-21 2000-05-16 The Board Of Trustees Of The Leland Stanford Junior University Short bore-length asymmetric electromagnets for magnetic resonance imaging
JP2004029004A (ja) * 2002-05-08 2004-01-29 Hitachi Ltd Nmr装置用超電導マグネットおよびnmr装置
JP2004325252A (ja) * 2003-04-24 2004-11-18 Hitachi Ltd 核磁気共鳴装置用マグネットおよびそれを用いた核磁気共鳴分析装置
JP2005033039A (ja) * 2003-07-07 2005-02-03 Kobe Steel Ltd 超電導磁石
JP2010016094A (ja) * 2008-07-02 2010-01-21 Kobe Steel Ltd 超電導コイル装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504067A (ja) * 1989-03-11 1992-07-23 ブルーケル・アナリティク・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング 磁石装置
JPH0838456A (ja) * 1994-05-13 1996-02-13 Bruker Analytische Messtech Gmbh 均質化装置付き治療トモグラフィ装置
US5818319A (en) * 1995-12-21 1998-10-06 The University Of Queensland Magnets for magnetic resonance systems
US6064290A (en) * 1999-05-21 2000-05-16 The Board Of Trustees Of The Leland Stanford Junior University Short bore-length asymmetric electromagnets for magnetic resonance imaging
JP2004029004A (ja) * 2002-05-08 2004-01-29 Hitachi Ltd Nmr装置用超電導マグネットおよびnmr装置
JP2004325252A (ja) * 2003-04-24 2004-11-18 Hitachi Ltd 核磁気共鳴装置用マグネットおよびそれを用いた核磁気共鳴分析装置
JP2005033039A (ja) * 2003-07-07 2005-02-03 Kobe Steel Ltd 超電導磁石
JP2010016094A (ja) * 2008-07-02 2010-01-21 Kobe Steel Ltd 超電導コイル装置

Also Published As

Publication number Publication date
JP2015123161A (ja) 2015-07-06

Similar Documents

Publication Publication Date Title
US8648678B2 (en) Compact superconducting magnet device
US9655291B2 (en) Multilayer magnetic shield
CN102967835B (zh) 用于磁共振成像设备的螺旋梯度线圈
US20140121114A1 (en) Self-shield open magnetic resonance imaging superconducting magnet
US20190353725A1 (en) Resistive electromagnet systems and methods
US20180315531A1 (en) Superconducting magnet device
US6064290A (en) Short bore-length asymmetric electromagnets for magnetic resonance imaging
US9784808B2 (en) Magnetic resonance imaging apparatus and magnet for magnetic resonance imaging apparatus
EP0460762A1 (en) Magnet system for magnetic resonance imaging
US7427908B1 (en) Magnetic shimming configuration with optimized turn geometry and electrical circuitry
JP2643384B2 (ja) 超電導マグネット
CN112908609B (zh) 一种磁共振成像用大孔径高磁场7.0t超导磁体
US4912445A (en) Electromagnet with a magnetic shield
JP4293341B2 (ja) 超電導マグネット装置
WO2015098588A1 (ja) 超電導マグネット装置
US7825663B2 (en) Gradient coil, magnetic resonance imaging apparatus and gradient coil manufacturing method
CN105070455A (zh) 一种径向开口的无矩螺线管磁场线圈
CN101556855B (zh) 倾斜磁场线圈、磁共振成像装置、以及倾斜磁场线圈的制造方法
CN113889313B (zh) 高场全身磁共振成像主动屏蔽超导磁体及设计方法
JP4610449B2 (ja) 磁石装置
JP2009141255A (ja) 超電導電磁石
JP2017176818A (ja) 超電導マグネット及びその製造方法
US6633215B2 (en) Superconducting magnetic resonance imaging magnet assembly and method with reverse wire channel orientation
JP2007319317A (ja) 磁石装置および磁気共鳴撮像装置
US6765381B2 (en) Extended maxwell pair gradient coils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874256

Country of ref document: EP

Kind code of ref document: A1