WO2015098513A1 - 弁開閉時期制御装置 - Google Patents

弁開閉時期制御装置 Download PDF

Info

Publication number
WO2015098513A1
WO2015098513A1 PCT/JP2014/082627 JP2014082627W WO2015098513A1 WO 2015098513 A1 WO2015098513 A1 WO 2015098513A1 JP 2014082627 W JP2014082627 W JP 2014082627W WO 2015098513 A1 WO2015098513 A1 WO 2015098513A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
supply
lock
internal combustion
chamber
Prior art date
Application number
PCT/JP2014/082627
Other languages
English (en)
French (fr)
Inventor
小林昌樹
増田勝平
上田一生
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013267655A external-priority patent/JP6112007B2/ja
Priority claimed from JP2013267654A external-priority patent/JP6112006B2/ja
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to US14/772,712 priority Critical patent/US9765654B2/en
Priority to CN201480012234.6A priority patent/CN105026699B/zh
Publication of WO2015098513A1 publication Critical patent/WO2015098513A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34459Locking in multiple positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34466Locking means between driving and driven members with multiple locking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34473Lock movement perpendicular to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34476Restrict range locking means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L2001/34486Location and number of the means for changing the angular relationship
    • F01L2001/34496Two phasers on different camshafts

Definitions

  • the present invention relates to a valve opening / closing timing control device that adjusts the opening / closing timing of intake valves and exhaust valves by changing the relative rotational phase of a crankshaft and a camshaft provided in an internal combustion engine.
  • the apparatus includes a supply / discharge unit that supplies and discharges the working fluid to and from the phase change mechanism, and a lock mechanism so that the internal combustion engine can be started quickly and the change control of the relative rotation phase can be started immediately after the start.
  • Supply and discharge means for supplying and discharging the working fluid.
  • the lock mechanism is A configuration is described in which the working fluid is supplied to release the locked state.
  • the working fluid can be supplied to the phase conversion mechanism while maintaining the relative rotation phase at a lock phase suitable for starting the internal combustion engine, and the flow rate of the working fluid can be increased to perform phase conversion in a short time.
  • the operation of filling the mechanism with the working fluid can be completed.
  • the release timing of the lock mechanism is advanced.
  • advance / retard angle control can be performed immediately, and a valve opening / closing timing control device excellent in startability and response can be obtained.
  • the filling control of the working fluid to the phase change mechanism is often performed simultaneously with the start of the internal combustion engine.
  • the control device for the internal combustion engine issues an instruction to start the filling control early.
  • many valve opening / closing timing control devices equipped with a lock mechanism control to set the lock phase when the internal combustion engine is stopped for example, in order to fix the relative rotation phase to the lock phase at the next start.
  • the internal combustion engine may stop without completing the lock phase control due to malfunction of the lock mechanism.
  • an object of the present invention is to provide a valve opening / closing timing control device that can start quickly and reliably even when the relative rotational phase is not in the locked phase when the internal combustion engine is started.
  • the characteristic configuration of the valve timing control device is: A drive side rotating body that rotates synchronously with the crankshaft of the internal combustion engine; A driven-side rotating body that is coaxially disposed so as to be relatively rotatable with respect to the driving-side rotating body, and rotates integrally with a camshaft for opening and closing the valve of the internal combustion engine; A phase detection mechanism for detecting a relative rotation phase of the driven side rotating body with respect to the driving side rotating body; A retarding chamber formed between the driving side rotating body and the driven side rotating body and moving the relative rotational phase in the retarding direction by expanding the volume, and the relative rotating phase in the advanced direction by expanding the volume.
  • An advance chamber to be moved A lock mechanism capable of constraining the relative rotational phase to a lock phase between a most advanced angle phase and a most retarded angle phase;
  • a supply / discharge mechanism for supplying and discharging a working fluid to and from the advance chamber, the retard chamber, and the lock mechanism;
  • a control unit for controlling the operation of the supply and discharge mechanism, When the internal combustion engine is started, when the relative rotation phase detected by the phase detection mechanism is not in the lock phase, the control unit sequentially applies the working fluid to the retard chamber and the advance chamber.
  • the supply / discharge mechanism is controlled so as to stop the supply.
  • the relative rotational phase between the driving side rotating body and the driven side rotating body can be fixed to the lock phase between the most advanced angle phase and the most retarded angle phase. If so, the relative rotational phase is often in the lock phase when the internal combustion engine is started.
  • the advance / retard chamber is often not filled with working fluid, so if it is in the lock phase, the supply / exhaust mechanism will alternately deliver the working fluid to the advance chamber or retard chamber sequentially. It is possible to supply and discharge the working fluid so that both chambers are filled with the working fluid and the subsequent phase change operation is possible.
  • the lock mechanism when operating the internal combustion engine, the lock mechanism may not operate correctly, and when the internal combustion engine is started, the relative rotation phase may not be fixed to the lock phase. Therefore, as in this configuration, when the controller is not in the lock phase, the control unit stops the sequential supply of the working fluid, so that the relative rotation phase is suddenly changed to the advance side or the retard side by the start of the sequential supply. It is possible to prevent the occurrence of inconvenience that the internal combustion engine cannot be started.
  • the valve opening / closing timing control device is configured to detect the internal combustion engine detected by a temperature sensor provided in the internal combustion engine when sequential supply of the working fluid to the retard chamber and the advance chamber is stopped.
  • the control unit is configured for an intake valve that performs retardation control of the supply / exhaust mechanism so that the working fluid is supplied to the retardation chamber.
  • valve timing control device for the intake valve when the temperature of the internal combustion engine is high, the self-ignitability of the fuel supplied to the combustion chamber increases, and the piston ignites until it reaches a position suitable for ignition near top dead center. The possibility to do increases.
  • the control unit mainly supplies the working fluid to the retard chamber and performs the relative rotation.
  • the phase is set to the retard side to stabilize the ignition of the internal combustion engine.
  • the valve opening / closing timing control device is configured to detect the internal combustion engine detected by a temperature sensor provided in the internal combustion engine when sequential supply of the working fluid to the retard chamber and the advance chamber is stopped.
  • the control unit may be for an intake valve that performs advance control of the supply / exhaust mechanism so that the working fluid is supplied to the advance chamber.
  • cam average torque acting on the driven side rotating body acts in the retarding direction, and is often located on the retarding side when the relative rotation phase is not fixed to the lock phase when the internal combustion engine is stopped, for example. This also causes starting difficulties.
  • control unit supplies the working fluid mainly to the advance chamber and performs relative processing. It is preferable to perform advance angle control for controlling the rotation phase back to the lock phase.
  • the control unit The intake valve may be used for controlling the supply / discharge mechanism so that the working fluid is supplied to the corner chamber and the advance chamber.
  • the advance chamber or the retard chamber is not always filled with the working fluid.
  • the relative rotation phase is fixed to the lock phase, a stable warm-up operation is possible regardless of the degree of filling of the working fluid into the advance / retard chamber.
  • the internal combustion engine is operated at a high load after the warm-up operation or before the warm-up operation is completed, it is necessary to prepare for such an operation so that phase control can be performed reliably. Therefore, when the relative rotation phase is fixed to the lock phase as in this configuration, the sequential supply once canceled by the control unit is restored. Thereby, it is possible to provide an internal combustion engine that can quickly respond to various operation requests after the start of operation.
  • the valve opening / closing timing control device is configured so that the control unit
  • the intake valve can be configured to control the supply / exhaust mechanism such that the relative rotational phase is maintained at a predetermined phase according to temperature.
  • the lock phase cannot be set even though the advance / retard angle control is started, the phase is maintained toward the most advanced angle phase or the most retarded angle phase beyond the lock phase. Since these controls are for phase conversion to either the advance side or the retard side, which is easy to start, even if the phase advances as it is, it does not become a particularly serious state. However, if the pressure of the working fluid increases somewhat after cranking and the relative rotation phase can be maintained at a predetermined position, it is better to maintain the relative rotation phase near the lock phase. It is preferable because stable operation can be realized. Therefore, when the relative rotational phase cannot be fixed to the lock phase as in this configuration, the control unit controls the supply / exhaust mechanism to maintain a preferable relative rotational phase according to the current temperature of the internal combustion engine. The startability of the internal combustion engine is further improved.
  • the control unit can be configured for an exhaust valve that performs advance angle control of the supply / exhaust mechanism such that is supplied to the advance angle chamber.
  • the exhaust valve is closed in a state where the piston is near top dead center in the intake process of the internal combustion engine, Combustion exhaust gas does not enter the cylinder, and the combustion state can be stabilized.
  • the overlap between the intake valve and the exhaust valve when the piston is in the vicinity of the top dead center is reduced, and the compression rate of the cylinder is increased to facilitate the start.
  • the control unit is configured so that the working fluid is the retarded fluid. It can comprise for the exhaust valve which performs the retardation control of the said supply / exhaust mechanism so that it may be supplied to a corner chamber.
  • the exhaust valve is preferably set to a slightly retarded phase for the purpose of promoting warm-up of the engine or reducing exhaust gas. Therefore, in this configuration, in a state where the relative rotation phase is not fixed to the lock phase when starting the internal combustion engine, the control unit once sets the relative rotation phase to the most advanced angle phase and starts the internal combustion engine. Thereafter, the retard control is performed in accordance with the increase in the hydraulic pressure of the working fluid. Thus, the relative rotational phase is set to the lock phase, and the internal combustion engine is started more stably.
  • the control unit when the relative rotation phase is fixed to the lock phase by the retardation control, the control unit supplies the working fluid to the retardation chamber and the advance chamber.
  • the control unit can be configured for an exhaust valve that controls the supply / discharge mechanism.
  • the retardation chamber is not always filled with the working fluid.
  • the relative rotation phase is fixed to the lock phase, a stable warm-up operation is possible regardless of the degree of filling of the working fluid into the advance / retard chamber.
  • the control unit restores the sequential supply once canceled.
  • the control unit detects the temperature of the internal combustion engine detected by a temperature sensor provided in the internal combustion engine. Accordingly, the exhaust valve can be configured to control the supply / discharge mechanism so that the relative rotation phase is maintained at a predetermined phase.
  • the lock phase cannot be set despite the start of the retard control, if the exhaust valve phase is displaced too far as it is, the exhaust at the position where the piston is near top dead center The overlap between the valve and the intake valve becomes large, and the compression ratio of the cylinder decreases. As a result, it becomes difficult to start the internal combustion engine. Therefore, in this configuration, even when the relative rotational phase cannot be fixed to the lock phase, the control unit controls the supply / exhaust mechanism to perform phase control so that the relative rotational phase can be fixed according to the temperature of the internal combustion engine at that time. Yes. Thereby, the startability of an internal combustion engine can further be improved.
  • the valve timing control device includes a motor that drives the crankshaft, and the control unit determines whether the relative rotational phase is in the lock phase or not when cranking the crankshaft. Can be configured to do.
  • Whether the relative rotation phase is in the lock phase or not is determined using, for example, an angle sensor provided on the camshaft or crankshaft. If the phase is to be determined when the operation of the internal combustion engine is stopped, then it becomes necessary to store the phase state until the next start, and the apparatus configuration becomes complicated.
  • the control by the control unit is control after the start of energization at the time of start-up, so there is no need to provide a special storage device, and the device configuration can be simplified.
  • valve opening / closing timing control device may be configured such that the control unit determines whether or not the relative rotation phase is in the lock phase when the internal combustion engine is stopped.
  • the control unit can immediately shift to the execution or stop of the supply at the next start-up. That is, the time until the internal combustion engine is started can be shortened as a result, and the internal combustion engine can be started early and stably.
  • FIG. 1 An apparatus configuration according to this embodiment is shown in FIG. 1
  • this apparatus is provided with intake valve side and exhaust valve side valve opening / closing timing control devices (hereinafter referred to as intake side VVT-1 and exhaust side VVT-2 (Variable Valve Timing), respectively).
  • intake side VVT-1 and VVT-2 Variable Valve Timing
  • a drive-side rotating body 4 that rotates synchronously with respect to a crankshaft 3 of an internal combustion engine (hereinafter simply referred to as “engine E”), and the drive-side rotation A driven-side rotating body 5 that is arranged coaxially so as to be rotatable relative to the body 4 and rotates integrally with the camshaft 20 is provided.
  • a retarding chamber 7 that moves the relative rotational phase in the retarding direction S2 by expanding the volume with respect to the rotating direction S of the driving side rotating body 4, Further, an advance chamber 6 for moving the relative rotational phase in the advance direction S1 by expanding the volume is formed.
  • the advancing chamber 6 and the retarding chamber 7 are supplied / discharged with a working fluid for changing the relative rotational phase by the supply / discharge mechanism described below, and the relative rotation between the driving side rotating body 4 and the driven side rotating body 5 The rotational phase is controlled.
  • a locking mechanism L is provided over both rotating bodies.
  • the lock mechanism L is provided with a lock member 8 that can be withdrawn / retracted in one of the driving side rotary body 4 and the driven side rotary body 5, and a lock groove 9 in which the lock member 8 can be engaged / disengaged is provided in the other rotary body. Is.
  • the working fluid is supplied / discharged from the supply / discharge mechanism to the lock groove 9 and the lock phase is released by pushing out the lock member 8 from the lock groove 9.
  • an OCV 12 Oil Control Valve
  • an OSV13 Oil Switching Valve
  • the solenoid provided with the flow passage is reciprocated by energizing the solenoid to switch the supply destination and the discharge destination of the working fluid.
  • the ECU includes an engine control unit 14 that controls an ignition system, a fuel system, and the like of the engine E, and a phase control unit 15 that controls the phase of the intake valve / exhaust valve VVT.
  • the ECU is connected to various external devices, that is, an ignition switch 16, an accelerator pedal sensor 17, a brake pedal sensor 18, a phase detection sensor 19, and the like.
  • the phase detection sensor 19 includes an angle sensor provided on the camshaft 20 or the crankshaft 3.
  • the ECU calculates the operation state required for the engine E from the state of each part, and controls the operation of the starter motor 21, the fuel control device 22, and the ignition control device 23 based on the calculation result, and the relative rotation phase of the VVT. Control appropriately.
  • FIG. 2 is a control flowchart when the engine E is started in the intake side VVT-1. Based on this flowchart, first, based on FIG. 3, that is, a control time chart in the case where the temperature of the engine E is low in the VVT control at the start of the engine E and the locking mechanism L functions soundly. .
  • FIG. 3 shows the engine speed, the VVT phase (relative rotational phase), the advance hydraulic pressure, the operating state of the OCV 12, and the operating state of the OSV 13 in order from the top. Focusing on the engine speed, the ignition switch 16 is turned on at point A, and the cranking state is from point B to point C. An example is shown in which ignition occurs at point C, the rotational speed slightly overshoots at point D, and then stabilizes at idle rotation at point E.
  • the ECU determines whether the VVT phase is in the lock phase (# 02).
  • the determination of whether or not it is in the lock phase (# 02) is performed by detecting signals from the cam angle sensor 19a provided near the camshaft 20 and the crankshaft sensor 19b provided near the crankshaft 3. Is performed by calculating the VVT phase of VVT based on the above.
  • the filling control (# 09) for sequentially supplying the working fluid to the advance / retard chambers 6 and 7 is executed immediately. Accordingly, the working fluid is filled in the advance / retard chambers 6 and 7 so that the VVT phase can be quickly changed in response to various operation requests following the start of the engine E.
  • the supply mode of the working fluid to the advance / retard chambers 6 and 7 in this filling control can be set as appropriate. That is, since the working fluid is supplied in a state of being fixed to the lock phase, the VVT phase does not change. Therefore, the OCV 12 may be appropriately operated so that the working fluid can be filled in the advance / retard chambers 6 and 7 earliest.
  • the VVT phase must be set to any other position and suitable for starting.
  • the startability of the engine E is affected by the engine temperature. Therefore, the ECU compares the temperature of engine E with a preset threshold value T (# 04).
  • the engine temperature is detected by a temperature sensor 24 provided in the coolant passage, for example. Using this temperature as a threshold value, it is determined whether the temperature is higher or lower.
  • the threshold value is set to 60 ° C., for example.
  • the threshold value may be varied depending on the compression ratio of the cylinder 25 of the engine E, the type of fuel, and the like. That is, if the compression rate or the like changes, the self-ignition rate at the time of compression also changes, and the threshold value may be appropriately set so that appropriate startability can be obtained according to each engine E.
  • FIG. 3 shows a mode in which the advance angle control is performed particularly when the engine temperature is lower than the threshold value T (# 06).
  • T threshold value
  • the cranking rotational speed at the time of start-up becomes low due to an increase in viscosity of the working fluid.
  • the VVT phase is on the retard side
  • the compression ratio inside the cylinder 25 also decreases.
  • the startability of the engine E decreases.
  • the cam average torque acting on the driven-side rotating body 5 acts on the retarded side.
  • the VVT phase is not fixed to the lock phase when the engine E is stopped
  • the cam average torque is also started on the retarded side.
  • the OSV 13 is turned on and operated by turning on the ignition so that the lock member 8 of the lock mechanism L can be engaged with the driven-side rotating body 5 (point F).
  • the supply of the working fluid to the lock groove 9 provided in the driven-side rotator 5 is stopped, and the lock member 8 can be engaged between the driven-side rotator 5 and the drive-side rotator 4. .
  • the OSV 13 is a position to supply the working fluid to the lock groove 9 in a state where the power is off, and unlocks.
  • the control mode may be appropriately set depending on the OSV 13 used.
  • the OCV 12 is also started along with the operation of the OSV 13. Due to the cranking, the driven-side rotator 5 reciprocates in the advance / retard direction for a short time (from point G to point H). At this time, the oil pump 26 is driven with the rotation of the crankshaft 3, and the OCV 12 is operated in the advance direction (from the I point to the J point). As the pressure of the working fluid in the advance direction (advance oil pressure) increases (point K to point L), the VVT phase moves to the advance side (point H to point M). As a result, the VVT phase is fixed to the lock phase (point M). After the lock phase is fixed, the advance angle control of the OCV 12 is temporarily turned off and returned to the retard angle control (point N). In FIG.
  • the VVT phase may be more advanced than the lock phase when the engine is started.
  • the driven-side rotating body 5 can be easily moved to the retarded side by the counter-torque from the camshaft 20 without intentionally controlling the retarded angle with the working fluid. There is no particular description of the retard angle control.
  • the ignition state of the engine E can be determined. Whether or not ignition has occurred is determined from the rotational speed of the crankshaft 3 or the like (# 07).
  • the advance / retarding chambers 6 and 7 This enables the advance / retarding chambers 6 and 7 to be filled with the working fluid when the warm-up operation is performed after the start-up, and the subsequent load fluctuation operation can be prepared.
  • the OCV 12 is alternately switched after the N point based on a mode set in advance to the retard side and the advance side.
  • the advance / retard chambers 6 and 7 are quickly filled with the working fluid, so that the VVT phase can be changed immediately when the warm-up operation is completed.
  • FIG. 4 differs from FIG. 3 in the VVT phase, the advance hydraulic pressure, and the operation mode of the OCV 12. That is, the VVT phase exceeds the lock phase (point A), and the OCV 12 is switched to the retard side (point B). As a result, the hydraulic pressure toward the advance side begins to drop (points C to D). Thereafter, the OCV 12 is repeatedly turned on and off (after the E point), and as a result, the VVT phase is held, for example, on the slightly advanced side of the lock phase (after the F point).
  • the lock phase when the lock phase cannot be set despite the advance / retard angle control based on the engine temperature, the phase is changed to the most advanced angle phase or the most retarded angle phase beyond the lock phase.
  • these controls are for phase conversion to either the advance side or the retard side, which is easy to start, even if the phase advances as it is, it does not become a particularly serious state.
  • the pressure of the working fluid increases somewhat after cranking and the VVT phase can be held at a predetermined position, it is more stable after starting to keep the VVT phase near the lock phase. Is preferable.
  • FIG. 5 holds the VVT phase at the most retarded angle phase.
  • the OCV 12 is held in the retard control.
  • the retarded hydraulic pressure reaches the maximum pressure (A point), and thereafter is kept constant (after the B point).
  • the VVT phase points C to D that was initially reciprocating in both directions of the advance / delay angle is stabilized on the most retarded angle side (after the D point), and thereafter the re-retard position is maintained.
  • the engine E can be kept rotating even at the most retarded angle phase.
  • attempting to return to the locked phase in response to an increase in the pressure of the working fluid is effective for performing a more stable warm-up operation. Therefore, although not shown in the figure, the OCV 12 is controlled to advance to return to the locked phase, and when it is recovered, the filling control to the advance / retard chambers 6 and 7 is restored. There may be.
  • FIG. 6 differs from FIG. 2 in that when the VVT phase is not in the lock phase, advance angle control is performed without looking at the engine temperature (# 14, # 15), and retard angle control is performed after engine ignition (# 17). ).
  • the feed / discharge mechanism F is advanced (# 14).
  • the exhaust valve 11 is closed when the piston 27 passes the vicinity of the top dead center, and the combustion exhaust gas is not mixed into the cylinder 25 so that the combustion state is stabilized. Because. Further, the control is performed so that the overlap between the intake valve 10 and the exhaust valve 11 when the piston 27 is in the vicinity of the top dead center is reduced, thereby increasing the compression rate of the cylinder 25 and facilitating starting.
  • FIG. 7 is a diagram illustrating a control mode when the lock mechanism L functions soundly
  • FIG. 8 is a diagram illustrating a control mode when the lock mechanism L does not function well. Both figures are common in that the VVT phase that was initially in the advanced state is switched to the retarded state.
  • FIG. 6 when the ignition switch 16 is turned on (# 11) and cranking is started, the ECU determines whether or not the VVT phase is in the lock phase (# 12). This is the same as in the case of the previous intake side VVT-1. Also, the filling control is executed when the VVT phase is at the lock phase during cranking (# 19), and the filling control is canceled (# 13) when the lock phase cannot be confirmed. .
  • the OCV 12 is configured to perform advance angle control in the power-off state, and the phase is held in the vicinity of the most advanced angle phase immediately after the start of cranking.
  • step # 14 in FIG. Thereafter, it is confirmed that the VVT phase is at the most advanced angle phase (# 15), and when ignition of the engine E is confirmed (# 16), the OCV 12 performs the retard control so as to shift to the retard control (# 17).
  • the advance hydraulic pressure starts to decrease (after the B point), the VVT phase is displaced to the lock phase side (after the C point), and is fixed to the lock phase (D point).
  • the control mode shown in FIG. 8 is performed. That is, corresponding to the steps # 16 to # 18 in FIG. 6, in FIG. 8, after the engine ignition is determined, the OCV 12 starts the retard control (after the point A). Along with this, the advance hydraulic pressure decreases (B to C points), and the VVT phase also changes to the retard side (D to E points). However, as a result of shifting to the retard side beyond the lock phase in the middle (point E), the determination of the lock phase in FIG. 6 becomes NO (# 18). Therefore, in order to carry out phase locking of # 20, the OCV 12 is again controlled to the advance side in FIG. 8 (after the F point) in FIG. 8, and the decrease in the advance hydraulic pressure is stopped (C point). It is held at a position slightly deviated from the intermediate lock phase toward the retard side (after the G point).
  • the present invention can be widely used for the intake side VVT or the exhaust side VVT among the VVTs incorporated in the automobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

内燃機関の始動に際して相対回転位相がロック位相にない状態であっても迅速確実に始動できる弁開閉時期制御装置を提供する。このような弁開閉時期制御装置は、クランクシャフトと同期回転する駆動側回転体と、カムシャフトと一体回転する従動側回転体と、駆動側回転体と従動側回転体との相対回転位相を検出する位相検出機構と、駆動側回転体と従動側回転体との間に形成される遅角室及び進角室と、相対回転位相を最進角位相と最遅角位相との間のロック位相に拘束可能なロック機構と、進角室・遅角室・ロック機構に対して作動流体の供給・排出を行う給排機構と、給排機構の作動を制御する制御部とを備え、内燃機関の始動時において、位相検出機構により検出された相対回転位相がロック位相にないとき、制御部は、遅角室および進角室に対して作動流体の順次供給を中止するように給排機構を制御する。

Description

弁開閉時期制御装置
 本発明は、内燃機関に備えられたクランクシャフトとカムシャフトとの相対回転位相を変更して、吸気弁や排気弁の開閉タイミングを調節する弁開閉時期制御装置に関する。
 従来、この種の弁開閉時期制御装置としては、例えば下記の特許文献1に記載されたものがあった。
 当該装置は、内燃機関の始動を迅速に行うことができ、且つ、始動後に直ちに相対回転位相の変更制御を開始できるよう、位相変更機構に作動流体を給排する給排手段と、ロック機構に作動流体を給排する給排手段とを備えている。この装置では、特に、前記相対回転位相がロック位相にあるときの始動に際して、まず相対回転位相を制御する位相変更機構に作動流体を供給し、相対位相が変更可能になったのちにロック機構に作動流体を供給してロック状態を解除する構成が記載されている。
 このように構成することで、相対回転位相を内燃機関の始動に適したロック位相に維持したまま位相変換機構に作動流体を供給することができ、作動流体の流量を増やして短時間に位相変換機構への作動流体の充填作業を終えることができる。この結果、ロック機構の解除タイミングが早くなる。さらにロック機構の解除が早まる結果、直ちに進・遅角制御を行うことができ、始動性・応答性に優れた弁開閉時期制御装置を得ることができる。
特開2007-198168号公報
 上記特許文献1の装置がそうであるように、位相変更機構への作動流体の充填制御は、内燃機関の始動と同時に行われることが多い。特に、内燃機関の温度が既に高温にある状態では、作動流体の粘性が運転に適した状態になっていることなどから、内燃機関の制御装置が上記充填制御の開始指示を早期に発することとなる。
 一方、ロック機構を備えた弁開閉時期制御装置では、次の始動時に相対回転位相をロック位相に固定しておくために例えば内燃機関の停止時にロック位相に設定するよう制御するものが多い。しかしながら、ロック機構の動作不良などに起因して、ロック位相制御が完了しないまま内燃機関が停止することもあり得る。
 そのような場合、内燃機関の始動直後に充填制御を実施すると、相対回転位相がロック位相から大きく外れてしまい、吸気弁および排気弁の過剰なオーバーラップ状態等が生じる結果、内燃機関が始動できない場合がある。
 そこで本発明は、内燃機関の始動に際して相対回転位相がロック位相にない状態であっても迅速確実に始動できる弁開閉時期制御装置を提供することを目的とする。
 本発明に係る弁開閉時期制御装置の特徴構成は、
 内燃機関のクランクシャフトに対して同期回転する駆動側回転体と、
 前記駆動側回転体に対して相対回転可能に同軸上に配置され、前記内燃機関の弁開閉用のカムシャフトに対して一体回転する従動側回転体と、
 前記駆動側回転体に対する前記従動側回転体の相対回転位相を検出する位相検出機構と、
 前記駆動側回転体と前記従動側回転体との間に形成され、容積拡大により前記相対回転位相を遅角方向に移動させる遅角室、及び、容積拡大により前記相対回転位相を進角方向に移動させる進角室と、
 前記相対回転位相を最進角位相と最遅角位相との間のロック位相に拘束可能なロック機構と、
 前記進角室・前記遅角室・前記ロック機構に対して作動流体の供給・排出を行う給排機構と、
 前記給排機構の作動を制御する制御部とを備え、
 前記内燃機関の始動時において、前記位相検出機構により検出された前記相対回転位相が前記ロック位相にないとき、前記制御部が、前記遅角室および前記進角室に対して前記作動流体の順次供給を中止するように前記給排機構を制御する点にある。
 本構成の如く、駆動側回転体と従動側回転体との相対回転位相が、最進角位相と最遅角位相との間のロック位相に固定できる弁開閉時期制御装置の場合、通常の運転であれば、内燃機関の始動時に相対回転位相はロック位相にあることが多い。内燃機関の始動時には、進・遅角室には作動流体が未だ充填されていない場合が多いから、ロック位相にあれば、給排機構が進角室あるいは遅角室に交互に作動流体を順次供給し、両室を作動流体で満たしてその後の位相変更動作を可能にする作動流体の給排制御を行うことができる。
 しかし、内燃機関の運転に際してはロック機構が正確に作動しない場合もあり、内燃機関の始動時に、相対回転位相がロック位相に固定されていない場合もある。そこで、本構成の如く、ロック位相にない場合に、制御部が上記作動流体の順次供給を中止することで、順次供給の開始によって相対回転位相が進角側あるいは遅角側に急激に変更されることを防止し、内燃機関が始動できなくなるといった不都合の発生を防止することができる。
 本発明に係る弁開閉時期制御装置は、前記遅角室および前記進角室への作動流体の順次供給が中止された場合に、前記内燃機関に設けた温度センサにより検出された前記内燃機関の温度が予め設定された温度以上のとき、前記制御部が前記遅角室に前記作動流体が供給されるように前記給排機構の遅角制御を行う吸気弁用に構成された点にある。
 吸気弁用の弁開閉時期制御装置では、内燃機関の温度が高い場合、燃焼室に供給された燃料の自己着火性が高まり、ピストンが上死点近傍の着火に適した位置に達するまでに着火する可能性が高まる。このような自己着火を防止するために、内燃機関が高温の場合には、例えばシリンダの圧縮比を下げるのが好ましい。圧縮比を下げても、作動流体が高温のため、クランキング回転数は高く維持され、内燃機関の始動は容易である。よって、本構成の如く内燃機関の温度が予め設定された温度以上であり、始動時に相対回転位相がロック位相にないときには、制御部は、主に遅角室に作動流体を供給して相対回転位相を遅角側に設定し、内燃機関の着火をより安定化させている。
 本発明に係る弁開閉時期制御装置は、前記遅角室および前記進角室への作動流体の順次供給が中止された場合に、前記内燃機関に設けた温度センサにより検出された前記内燃機関の温度が予め設定された温度よりも低いとき、前記制御部は、前記進角室に前記作動流体が供給されるように前記給排機構の進角制御を行う吸気弁用としてもよい。
 内燃機関の温度が低いときには、作動流体の粘性の高まり等に起因して、例えば始動時のクランキング回転数が低くなる。その場合、仮に、相対回転位相が遅角側にあると、シリンダ内部の圧縮比が下がることとなる。このような場合には、クランキングに際して適切に着火する機会が減少して内燃機関の始動性が低下する。
 また、従動側回転体に作用するカム平均トルクは遅角方向に作用し、例えば内燃機関の停止時に相対回転位相がロック位相に固定されない場合には遅角側に位置していることも多く、これも始動困難の原因となる。
 よって、本構成の如く、内燃機関の温度が予め設定された温度よりも低く、相対回転位相がロック位相にない場合には、前記制御部が主に進角室に作動流体を供給して相対回転位相をロック位相の側に戻し制御する進角制御を行うのが好ましい。
 本発明に係る弁開閉時期制御装置においては、前記給排機構の遅角制御あるいは前記給排機構の進角制御により前記相対回転位相がロック位相に固定されたとき、前記制御部は、前記遅角室および前記進角室に作動流体が供給されるように前記給排機構を制御する吸気弁用としてもよい。
 上記遅角制御あるいは進角制御の段階では、進角室あるいは遅角室に作動流体が十分に満されているとは限らない。しかし、相対回転位相がロック位相に固定されれば、進・遅角室への作動流体の充填程度に拘らず安定した暖気運転が可能となる。ただし、暖気運転終了後あるいは暖気運転が終了する前に内燃機関を高負荷運転する場合もあるため、そのような運転に備えて位相制御が確実に行える準備を整えておく必要がある。
 そこで、本構成の如く、相対回転位相がロック位相に固定された場合には、前記制御部が一旦キャンセルしていた順次供給を復活させることとしている。これにより、運転始動後の様々な運転要求に迅速に対応可能な内燃機関を提供することができる。
 本発明に係る弁開閉時期制御装置は、前記給排機構の遅角制御あるいは前記給排機構の進角制御により前記相対回転位相がロック位相に固定されないとき、前記制御部は、前記内燃機関の温度に応じて前記相対回転位相が所定位相に保持されるように前記給排機構を制御する吸気弁用として構成とすることができる。
 上記進・遅角制御を開始したにも拘らずロック位相に設定できないときは、ロック位相を超えて最進角位相あるいは最遅角位相に向けて位相が持続される。これら制御は進角側あるいは遅角側の何れか始動し易い側に位相変換するものであるから、そのまま位相が進んでも特段深刻な状態にはならない。しかし、クランキング後に作動流体の圧力が幾分でも高まり、相対回転位相を所定の位置で保持出来得る状態になっているのであれば、相対回転位相はロック位相近傍で維持する方が始動後の安定運転を実現できることとなって好ましい。よって、本構成の如く、相対回転位相をロック位相に固定できない場合には、前記制御部が給排機構を制御して、内燃機関のその時の温度に応じた好ましい相対回転位相に保持することとし、内燃機関の始動性をより高めることとしている。
 本発明に係る弁開閉時期制御装置は、前記相対回転位相が前記ロック位相になく前記遅角室および前記進角室への作動流体の供給が中止された時には、前記制御部は、前記作動流体が前記進角室に供給されるように前記給排機構の進角制御を行う排気弁用に構成することができる。
 本構成のごとく、相対回転位相がロック位相にないとき相対回転位相を進角側に制御することで、内燃機関の吸気工程においてピストンが上死点近傍にある状態で排気弁が閉じることとなり、燃焼排ガスがシリンダの内部に混入せず、燃焼状態を安定化することができる。また、ピストンが上死点近傍にあるときの吸気弁および排気弁のオーバーラップが少なくなり、シリンダの圧縮率が高まって始動が容易となる。
 本発明に係る弁開閉時期制御装置は、前記進角制御により前記相対回転位相が前記最進角位相に達し、且つ、前記内燃機関が始動したのち、前記制御部は、前記作動流体が前記遅角室に供給されるように前記給排機構の遅角制御を行う排気弁用に構成することができる。
 内燃機関が着火したのちの例えばアイドル運転時にあっては、エンジンの暖気促進や、排気ガスの低減などの目的から排気弁はやや遅角位相に設定するのが好ましい。そこで、本構成では、内燃機関の始動時に相対回転位相がロック位相に固定されていない状態では、制御部は、相対回転位相を、一旦、最進角位相に設定して内燃機関を始動させ、その後、作動流体の油圧の高まりに応じて遅角制御を行う。これにより、相対回転位相がロック位相に設定されるよう試み、内燃機関のより安定な始動が実現するよう構成している。
 本発明に係る弁開閉時期制御装置は、前記遅角制御により前記相対回転位相がロック位相に固定されたとき、前記制御部は、前記遅角室および前記進角室に作動流体が供給されるように前記給排機構を制御する排気弁用に構成することができる。
 上記遅角制御の段階では、遅角室に作動流体が十分に満されているとは限らない。しかし、相対回転位相がロック位相に固定されれば、進・遅角室への作動流体の充填程度に拘らず安定した暖気運転が可能となる。ただし、暖気運転終了後あるいは暖気運転が終了する前に内燃機関を高負荷運転する場合もあるため、そのような運転に備えて位相制御が確実に行える準備を整えておく必要がある。
 そこで、本構成の如く、相対回転位相がロック位相に固定された場合には、制御部は、一旦キャンセルしていた順次供給を復活させることとしている。これにより、運転始動後の様々な運転要求に迅速に対応可能な内燃機関を提供することができる。
 本発明に係る弁開閉時期制御装置は、前記遅角制御により前記相対回転位相がロック位相に固定されないとき、前記制御部は、前記内燃機関に設けた温度センサにより検出された前記内燃機関の温度に応じて前記相対回転位相が所定位相に保持されるように前記給排機構を制御する排気弁用に構成することができる。
 上記遅角制御を開始したにも拘らずロック位相に設定できないとき、仮に、そのまま排気弁の位相が遅角側に変位し過ぎた場合には、ピストンが上死点近傍にある位置での排気弁と吸気弁とのオーバーラップが大きくなってシリンダの圧縮率が低下してしまう。この結果、内燃機関の始動が困難となる。そこで、本構成では、相対回転位相がロック位相に固定できない場合でも、その時の内燃機関の温度に応じた相対回転位相に固定できるよう制御部が給排機構を制御して位相制御を行うこととしている。これにより、内燃機関の始動性をさらに高めることができる。
 本発明に係る弁開閉時期制御装置は、前記クランクシャフトを駆動するモータを備え、前記制御部が、前記相対回転位相が前記ロック位相にあるか否かの判定を、前記クランクシャフトのクランキング時に行うよう構成することができる。
 相対回転位相がロック位相にあるか否かは、例えば、カムシャフトやクランクシャフトに設けた角度センサを用いる。仮に、内燃機関の運転停止時に位相を判定するものであれば、その後、次回の始動時まで位相状態を記憶しておく必要等が生じ、装置構成が煩雑なものとなる。その点、本構成であれば、前記制御部による制御が、始動時の通電開始後の制御となるので特段の記憶装置を備える必要が無く、装置構成を簡略化することができる。
 本発明に係る弁開閉時期制御装置は、前記相対回転位相が前記ロック位相にあるか否かの判定を、前記制御部が、前記内燃機関が停止されるときに行うよう構成することもできる。
 本構成の場合、例えば、内燃機関を停止している期間中に相対回転位相を記憶しておく機能が必要になる。しかし、相対回転位相が既に判明していることで、次の始動時において制御部は直ちに順次供給の実行或いは中止に移行することができる。つまり、内燃機関の始動までの時間を結果的に短縮することができ、内燃機関を早期にかつ安定的に始動させることができる。
本発明に係る弁開閉時期制御装置の構成を示す説明図である。 吸気弁用制御装置の制御態様を示すフローチャートである。 ロック機構正常作動時における吸気弁側冷間始動制御のタイムチャートである。 ロック機構不作動時における吸気弁側冷間始動制御のタイムチャートである。 吸気弁側温間始動制御のタイムチャートである。 排気弁用制御装置の制御態様を示すフローチャートである。 ロック機構正常作動時における排気弁側始動制御のタイムチャートである。 ロック機構不作動時における排気弁側始動制御のタイムチャートである。
(全体構成)
 本発明の実施形態を図面に基づいて説明する。
 まず本実施形態に係る装置構成を図1に示す。
 即ち、本装置は、吸気弁側および排気弁側の弁開閉時期制御装置(以降において 夫々、吸気側VVT-1、排気側VVT-2(Variable Valve Timing)と称する)を備えている。夫々の側のVVT-1,2において、内燃機関(以下の実施形態中においては単に「エンジンE」と称する)のクランクシャフト3に対して同期回転する駆動側回転体4と、この駆動側回転体4に対して相対回転可能に同軸上に配置され、カムシャフト20と一体回転する従動側回転体5とを備えている。
 また、駆動側回転体4と従動側回転体5との間には、駆動側回転体4の回転方向Sに対して容積拡大により相対回転位相を遅角方向S2に移動させる遅角室7、及び、容積拡大により相対回転位相を進角方向S1に移動させる進角室6が形成されている。これら進角室6・遅角室7に対しては、以降に示す給排機構によって相対回転位相変更用の作動流体が供給・排出され、駆動側回転体4と従動側回転体5との相対回転位相が制御される。
 さらに、駆動側回転体4と従動側回転体5との相対回転位相を、最進角位相と最遅角位相との間のロック位相に拘束し、エンジンEの始動時などに安定運転を実現するロック機構Lが双方の回転体に亘って設けられている。このロック機構Lは、駆動側回転体4および従動側回転体5の一方に出退可能なロック部材8を設け、他方の回転体に前記ロック部材8が係脱可能なロック溝9を設けたものである。このロック溝9に対して給排機構から作動流体が給排され、ロック溝9からロック部材8を押し出すことでロック位相を解除するように構成してある。
 給排機構Fとしては、吸気弁10の側および排気弁11の側の夫々に相対回転位相を制御するOCV12(Oil Control Valve)と、ロック部材8の出退制御を行うOSV13(Oil Switching Valve)とを備えている。これらは何れもソレノイドに通電することによって流通路を備えたスプールを往復移動させ、作動流体の供給先および排出先を切り替えるものである。
 これらの各装置は制御部(ECU:Electronic Control Unit)によって制御される。ECUは、エンジンEの点火系統や燃料系統等を制御する機関制御部14と、吸気弁用・排気弁用のVVTの位相を制御する位相制御部15とを備えている。このECUには、外部の各種装置、即ち、イグニッションスイッチ16の他、アクセルペダルセンサ17、ブレーキペダルセンサ18、位相検出センサ19等が接続されている。その中で、位相検出センサ19は、カムシャフト20やクランクシャフト3に設けた角度センサを備えて構成されている。
 ECUは、各部の状態からエンジンEに要求される運転状態を演算し、その演算結果に基づき、スタータモータ21や燃料制御装置22、点火制御装置23の運転を制御しつつ、VVTの相対回転位相を適切に制御する。
(吸気側VVTの制御例)
 次に、吸気側VVT-1の詳細につき、図2乃至図5を用いて説明する。
 図2は、吸気側VVT-1におけるエンジンE始動時の制御フローチャートである。
 このフローチャートに基づき、まず図3、即ち、エンジンE始動時のVVT制御のうち、エンジンEの温度が低い場合であって、ロック機構Lが健全に機能する場合の制御タイムチャートに基づいて説明する。
 図2のフローチャートに示したように、まず、イグニッションスイッチ16がONされる(♯01)。これにより、クランクシャフト3に併設されたスタータモータ21が回転し、クランキングが開始される。
 図3には、上から順に、エンジン回転数、VVT位相(相対回転位相)、進角油圧、OCV12の作動状態、OSV13の作動状態を示してある。このうちエンジン回転数に着目すると、A点でイグニッションスイッチ16がオンされ、B点からC点までがクランキング状態である。C点で着火し、D点でやや回転数がオーバーシュートしたのち、E点でアイドル回転に安定した例が示されている。
 クランキングが開始されると、ECUは、VVT位相がロック位相にあるか否かを判定する(#02)。
 ロック位相にあるか否かの判定(♯02)は、具体的には、カムシャフト20近傍に設けたカム角センサ19a、及び、クランクシャフト3の近傍に設けたクランクシャフトセンサ19bからの検出信号に基づき、VVTのVVT位相を演算することで行う。
 通常、エンジンE始動時にはVVT位相はロック位相に固定されている。そのため、イグニッション・オン操作によって直ちにロック位相にあることが判明する。
 クランキング時にVVT位相がロック位相にあると判定されると、直ちに進・遅角室6,7に対する作動流体を順次供給する充填制御(♯09)が実行される。
 これにより、エンジンEの始動に続く各種運転要求に対してVVT位相を迅速に変更できるよう進・遅角室6,7に作動流体が充填される。
 尚、この充填制御における進・遅角室6,7への作動流体の供給態様は適宜設定可能である。つまり、ロック位相に固定された状態で作動流体が供給されるため、VVT位相は変化しない。よって進・遅角室6,7に作動流体を最も早く充填できるよう適宜OCV12を作動させるとよい。
 一方、クランキングの最中にロック位相への固定が確認できない場合には、充填制御がキャンセルされる(♯03)。
 ロック位相に固定されていないときに、進角室6及び進角室6に作動流体を充填する動作が行われると、VVT位相が急激に変化して、エンジンEの始動が困難になるからである。
 ロック位相にない場合、VVT位相はそれ以外の何れかの位置であって、始動に適した位置に設定される必要がある。エンジンEの始動性は、エンジン温度に影響される。よって、ECUは、エンジンEの温度を予め設定された閾値Tと比較する(♯04)。
 エンジン温度は、例えば冷却液の通路に設けた温度センサ24によって温度を検出する。この温度を閾値として、それ以上であるか、それよりも低いかを判断する。閾値の値は、例えば60℃に設定する。
 尚、この閾値は、そのエンジンEのシリンダ25の圧縮率や燃料の種類などによって変動させるとよい。つまり、圧縮率などが変われば圧縮時の自己着火率等も変化するからであり、個々のエンジンEに応じて適切な始動性が得られるように閾値は適宜設定するとよい。
 図3は、特に、エンジン温度が上記閾値Tよりも低い場合に、進角制御を行う態様を示している(#06)。
 VVT位相が始動時にロック位相にない場合、通常は最遅角側に位置していることが多い。これは、イグニッションスイッチ16の切り操作と同時にカムシャフト20は吸気弁10のスプリングによって遅角側への反トルクを受けるため、停止時にロック位相に固定する機構のないものでは、VVT位相は遅角側に移動していることが多いからである。
 エンジンEの温度が低いときには、作動流体の粘性の高まり等に起因して、例えば始動時のクランキング回転数が低くなる。その場合、仮に、VVT位相が遅角側にあると、シリンダ25内部の圧縮比も下がることとなる。このような場合には、エンジンEの始動性は低下する。また、従動側回転体5に作用するカム平均トルクは遅角側に作用し、例えばエンジンEの停止時にVVT位相がロック位相に固定されない場合には、遅角側に位置していることも始動困難の原因となる。よって、エンジンEの温度が低く、VVT位相がロック位相にない場合には、進角室6にのみ作動流体を供給する進角制御を行うのが好ましい。
 図3においては、まず、ロック機構Lのロック部材8を従動側回転体5に係合可能な状態とすべく、イグニッション・オンによりOSV13が入り操作される(F点)。これにより、従動側回転体5に設けられたロック溝9に対する作動流体の供給が停止され、ロック部材8が従動側回転体5と駆動側回転体4との間で係合可能な状態となる。
 ここでのOSV13は、電源オフの状態でロック溝9に作動流体を供給する位置となり、ロック解除するものである。ただし、この他にも、電源オフの状態で、ロック溝9に作動流体を供給しない位置となるものもあるため、用いるOSV13によって制御態様を適宜設定するとよい。
 上記OSV13の動作に伴いOCV12も始動する。クランキングにより、従動側回転体5が少しのあいだ進・遅角方向に往復移動する(G点からH点)。このとき、クランクシャフト3の回転に伴ってオイルポンプ26が駆動され、OCV12が進角方向に作動される(I点からJ点)。進角方向への作動流体の圧力(進角油圧)が高まるにつれて(K点からL点)、VVT位相は進角側に移動する(H点からM点)。これにより、VVT位相がロック位相に固定される(M点)。ロック位相に固定されたのちはOCV12の進角制御は一旦電源オフされ遅角制御に戻る(N点)。
 尚、図3では作動流体の圧力について進角油圧のみを示している。場合によっては、エンジン始動時にVVT位相がロック位相よりも進角側にあることもあり得る。しかし、その場合には、敢えて作動流体によって遅角制御するまでもなく、カムシャフト20からの反トルクによって従動側回転体5を遅角側に容易に移動させることができるため、冷間時であって遅角制御する態様は特に記載していない。
 この段階になると、エンジンEの着火状態が判定可能となる。着火したか否かはクランクシャフト3の回転数等から判定する(♯07)。
 エンジンEが継続的に回転し始めたのち、改めてVVT位相がロック位相にあるか否かを判定する(♯08)。
 この段階で、VVT位相がロック位相にあるか否かを改めて確認し、ロック位相に固定されていれば、改めて進・遅角室6,7に作動流体を供給する充填制御(♯09)を復活させる。
 これにより、始動後の暖気運転を行っている場合等に進・遅角室6,7に作動流体を充填しておき、その後の負荷変動運転に備えることができる。図3には示していないが、充填制御に際しては、N点以降においてOCV12が遅角側及び進角側に予め設定された態様に基づいて交互に切り替えられる。これにより、進・遅角室6,7に速やかに作動流体が充填され、暖気運転が終了した際などにVVTの位相変更が直ちに行えるよう備えておくことができる。
(ロック位相に固定できない場合)
 一方、VVT位相がロック位相にない場合には、OCV12を用いてVVT位相をその時の温度に応じた所定の回転位相の近くに保持するように制御する(♯10)。
 この場合の制御態様を図4に示した。
 即ち、図4において図3と異なる点は、VVT位相、進角油圧、OCV12の動作態様である。つまり、VVT位相がロック位相を行き過ぎてしまい(A点)、OCV12が遅角側に切り替わる(B点)。これにより、進角側への油圧が下がり始める(C~D点)。このあと、OCV12はオン・オフを繰り返し(E点以降)、その結果、VVT位相が例えばロック位相よりもやや進角側で保持される(F点以降)。
 このように、エンジン温度に基づいて進・遅角制御を開始したにも拘らずロック位相に設定できないときは、ロック位相を超えて最進角位相あるいは最遅角位相に位相が変更される場合が多い。これら制御は進角側あるいは遅角側の何れか始動し易い側に位相変換するものであるから、そのまま位相が進んでも特段深刻な状態にはならない。しかし、クランキング後に作動流体の圧力が幾分でも高まり、VVT位相を所定の位置で保持出来得る状態になっているのであれば、VVT位相はロック位相近傍で保持する方が始動後の安定運転を実現できることとなって好ましい。
(エンジン温度が高い場合)
 ここでは、図2における(#04)の判断でエンジン温度が高い場合の制御態様を示す。
 この場合の制御態様は図5のようになる。図5と図3との差異は、図5がVVT位相を最遅角位相に保持する点である。
 吸気側VVT-1では、エンジンEの温度が高い場合、ピストン27が上死点近傍の着火に適した位置に達するまでに着火してしまう可能性が高まる。このような自己着火を防止するために、エンジンEが高温の場合には、シリンダ25の圧縮比を下げるのが好ましい。圧縮比を下げても、作動流体が高温のため、クランキング回転数は高く維持される傾向にあり、エンジンEの始動は容易である。よって、エンジンEの温度が高く、始動時にVVT位相がロック位相にないときには、遅角室7にのみ作動流体を供給してVVT位相を遅角側に設定する。これにより、エンジンEの着火をより安定化させることができる。
 具体的には、図5に示すごとくOCV12を遅角制御に保持する。これにより、遅角油圧が最高圧に到達し(A点)、その後一定に保持される(B点以降)。これに伴って、当初は進遅角双方向に往復移動していたVVT位相(C~D点)が最遅角側で安定し(D点以降)、その後も再遅角位置を保持する。
 温間始動時には、このように最遅角位相であってもエンジンEが回転した状態を保持可能である。ただし、作動流体の圧力の高まりに応じてロック位相への再復帰を試みることは、より安定した暖気運転を行うなどのために有効である。そこで、図示は省略してあるが、このあとOCV12を進角制御してロック位相への復帰を試み、復帰できた際には進・遅角室6,7への充填制御を復帰するものであってもよい。
〔第2の実施形態〕
(排気側VVTの制御例)
 以下には、排気側VVT-2の制御態様につき、図6乃至図8に基づいて説明する。
基本的な機械構成は吸気側VVT-1と同じである。基本的に異なるのは、排気側VVT-2では、エンジン始動時のVVT位相は全て最進角側に設定することである。
 図6において図2と異なる点は、VVT位相がロック位相にないとき、エンジン温度をみることなく進角制御すること(#14、#15)と、エンジン着火後に遅角制御すること(#17)である。
 本実施形態では、VVT位相がロック位相になく充填制御を中止した場合に(#13)、給排機構Fを進角制御させる(#14)。これはつまり、エンジンEの吸気工程において、ピストン27が上死点近傍を過ぎる辺りで排気弁11を閉じる状態とし、燃焼排ガスがシリンダ25の内部に混入しないようにして、燃焼状態を安定化するためである。また、ピストン27が上死点近傍にあるときの吸気弁10と排気弁11とのオーバーラップが少なくなるように制御して、シリンダ25の圧縮率を高め、始動を容易にするためでもある。
(ロック位相に固定できる場合)
 図7は、ロック機構Lが健全に機能する場合の制御態様を示す図であり、図8は、ロック機構Lが上手く機能しない場合の制御態様を示す図である。何れの図も、当初は進角状態にあったVVT位相が遅角状態に切り替わる点で共通している。
 まず、図6および図7との関係を説明する。図6においてイグニッションスイッチ16がONされ(♯11)、クランキングが開始されると、VVT位相がロック位相にあるか否かをECUが判定する(#12)。この点は先の吸気側VVT-1の場合と同じである。また、クランキング時にVVT位相がロック位相にあるときには充填制御が実行され(♯19)、ロック位相での固定が確認できない場合には、充填制御がキャンセルされる(♯13)点も同じである。
 ただし、図7に示す如く、OCV12は電源オフ状態では進角制御するように構成してあり、クランキング開始直後は最進角位相近傍で位相保持される。これは図6における工程#14である。その後、VVT位相が最進角位相にあることが確認され(#15)、エンジンEの着火が確認されると(#16)、遅角制御(#17)に移行するようOCV12が遅角制御の側に切り替わる(図7のA点)。これに伴い、進角油圧が下がり始め(B点以降)、VVT位相がロック位相の側に変位して(C点以降)、ロック位相に固定される(D点)。
 このように、排気側VVT-2では、始動時にロック位相にない場合には、充填制御を中止すると共に、まず最進角位相でエンジンEの始動を試みる。その後、エンジン回転が継続したならばロック位相への復帰を試みる。
(ロック位相に固定できない場合)
 尚、上記のごとくロック機構Lが健全に作用しない場合には、図8に示した制御態様が実施される。つまり、図6の工程#16乃至#18に対応して、図8では、エンジン着火を判定した後OCV12が遅角制御を開始する(A点以降)。これに伴って、進角油圧が低下し(B~C点)、VVT位相も遅角側に変化する(D~E点)。ただし、この途中でロック位相を超えて遅角側に移行した結果(E点)、図6におけるロック位相の判定がNOとなる(#18)。よって位相制御は#20の位相固定を実施すべく、図8においてOCV12を再び進角側に制御し(F点以降)、進角油圧の低下が止められると共に(C点)、VVT位相が例えば中間ロック位相よりも僅かに遅角側に偏位した位置で保持される(G点以降)。
 このように、エンジン始動後に遅角制御を開始したにも拘らずロック位相に設定できないとき、仮に、そのまま排気弁11の位相が遅角側に変位し過ぎた場合には、ピストン27が上死点近傍にある位置での排気弁11と吸気弁10とのオーバーラップが大きくなってシリンダ25の圧縮率が低下してしまう。この結果、エンジンEの始動が困難となる。そこで、上記の如く、VVT位相がロック位相に固定できない場合でも、極力ロック位相近傍に保持できるよう位相制御を行うことで、エンジンEの始動性をさらに高めることができる。
 本発明は、自動車に組み込まれたVVTのうち吸気側VVTあるいは排気側VVTに対して広く用いることができる。
3 クランクシャフト
4 駆動側回転体
5 従動側回転体
6 進角室
7 遅角室
E エンジン
L ロック機構
S 給排機構

Claims (11)

  1.  内燃機関のクランクシャフトに対して同期回転する駆動側回転体と、
     前記駆動側回転体に対して相対回転可能に同軸上に配置され、前記内燃機関の弁開閉用のカムシャフトに対して一体回転する従動側回転体と、
     前記駆動側回転体に対する前記従動側回転体の相対回転位相を検出する位相検出機構と、
     前記駆動側回転体と前記従動側回転体との間に形成され、容積拡大により前記相対回転位相を遅角方向に移動させる遅角室、及び、容積拡大により前記相対回転位相を進角方向に移動させる進角室と、
     前記相対回転位相を最進角位相と最遅角位相との間のロック位相に拘束可能なロック機構と、
     前記進角室・前記遅角室・前記ロック機構に対して作動流体の供給・排出を行う給排機構と、
     前記給排機構の作動を制御する制御部とを備え、
     前記内燃機関の始動時において、前記位相検出機構により検出された前記相対回転位相が前記ロック位相にないとき、前記制御部は、前記遅角室および前記進角室に対して前記作動流体の順次供給を中止するように前記給排機構を制御する弁開閉時期制御装置。
  2.  前記遅角室および前記進角室への作動流体の順次供給が中止された場合に、前記内燃機関に設けた温度センサにより検出された前記内燃機関の温度が予め設定された温度以上のとき、前記制御部は前記遅角室に前記作動流体が供給されるように前記給排機構の遅角制御を行う吸気弁用の請求項1に記載の弁開閉時期制御装置。
  3.  前記遅角室および前記進角室への作動流体の順次供給が中止された場合に、前記内燃機関に設けた温度センサにより検出された前記内燃機関の温度が予め設定された温度よりも低いとき、前記制御部は、前記進角室に前記作動流体が供給されるように前記給排機構の進角制御を行う吸気弁用の請求項1に記載の弁開閉時期制御装置。
  4.  前記給排機構の遅角制御あるいは前記給排機構の進角制御により前記相対回転位相がロック位相に固定されたとき、前記制御部は、前記遅角室および前記進角室に作動流体が供給されるように前記給排機構を制御する吸気弁用の請求項2または3に記載の弁開閉時期制御装置。
  5.  前記給排機構の遅角制御あるいは前記給排機構の進角制御により前記相対回転位相がロック位相に固定されないとき、前記制御部は、前記内燃機関の温度に応じて前記相対回転位相が所定位相に保持されるように前記給排機構を制御する吸気弁用の請求項2または3に記載の弁開閉時期制御装置。
  6.  前記相対回転位相が前記ロック位相になく前記遅角室および前記進角室への作動流体の供給が中止された時には、前記制御部は、前記作動流体が前記進角室に供給されるように前記給排機構の進角制御を行う排気弁用の請求項1に記載の弁開閉時期制御装置。
  7.  前記進角制御により前記相対回転位相が前記最進角位相に達し、且つ、前記内燃機関が始動したのち、前記制御部は、前記作動流体が前記遅角室に供給されるように前記給排機構の遅角制御を行う排気弁用の請求項6に記載の弁開閉時期制御装置。
  8.  前記遅角制御により前記相対回転位相がロック位相に固定されたとき、前記制御部は、前記遅角室および前記進角室に作動流体が供給されるように前記給排機構を制御する排気弁用の請求項7に記載の弁開閉時期制御装置。
  9.  前記遅角制御により前記相対回転位相がロック位相に固定されないとき、前記制御部は、前記内燃機関に設けた温度センサにより検出された前記内燃機関の温度に応じて前記相対回転位相が所定位相に保持されるように前記給排機構を制御する排気弁用の請求項7に記載の弁開閉時期制御装置。
  10.  前記クランクシャフトを駆動するモータを備え、前記制御部は、前記相対回転位相が前記ロック位相にあるか否かの判定を、前記クランクシャフトのクランキング時に行う請求項1から9の何れか一項に記載の弁開閉時期制御装置。
  11.  前記相対回転位相が前記ロック位相にあるか否かの判定を、前記制御部が、前記内燃機関が停止されるときに行う請求項1から9の何れか一項に記載の弁開閉時期制御装置。
PCT/JP2014/082627 2013-12-25 2014-12-10 弁開閉時期制御装置 WO2015098513A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/772,712 US9765654B2 (en) 2013-12-25 2014-12-10 Valve opening/closing timing control device
CN201480012234.6A CN105026699B (zh) 2013-12-25 2014-12-10 阀开闭时期控制装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013267655A JP6112007B2 (ja) 2013-12-25 2013-12-25 吸気弁用の弁開閉時期制御装置
JP2013-267654 2013-12-25
JP2013267654A JP6112006B2 (ja) 2013-12-25 2013-12-25 排気弁用の弁開閉時期制御装置
JP2013-267655 2013-12-25

Publications (1)

Publication Number Publication Date
WO2015098513A1 true WO2015098513A1 (ja) 2015-07-02

Family

ID=53478377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082627 WO2015098513A1 (ja) 2013-12-25 2014-12-10 弁開閉時期制御装置

Country Status (3)

Country Link
US (1) US9765654B2 (ja)
CN (1) CN105026699B (ja)
WO (1) WO2015098513A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2560872B (en) 2016-12-23 2020-03-18 Ricardo Uk Ltd Split cycle engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122009A (ja) * 2000-08-09 2002-04-26 Mitsubishi Electric Corp バルブタイミング調整装置
JP2013053616A (ja) * 2011-08-08 2013-03-21 Nissan Motor Co Ltd エンジンのバルブタイミング制御装置
JP5273312B1 (ja) * 2011-11-10 2013-08-28 トヨタ自動車株式会社 内燃機関の制御装置
JP2013194552A (ja) * 2012-03-16 2013-09-30 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4166631B2 (ja) * 2003-06-05 2008-10-15 三菱電機株式会社 バルブタイミング調整装置
JP4531705B2 (ja) 2006-01-24 2010-08-25 アイシン精機株式会社 弁開閉時期制御装置
EP1840356B1 (en) * 2006-03-30 2011-05-11 Kubota Corporation Engine
JP2011038446A (ja) * 2009-08-07 2011-02-24 Denso Corp バルブタイミング調整装置
JP2011089463A (ja) 2009-10-22 2011-05-06 Toyota Motor Corp バルブタイミング可変装置の制御装置
JP5915343B2 (ja) 2012-04-11 2016-05-11 トヨタ自動車株式会社 内燃機関の制御装置
JP2013256929A (ja) * 2012-06-14 2013-12-26 Aisin Seiki Co Ltd 弁開閉時期制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122009A (ja) * 2000-08-09 2002-04-26 Mitsubishi Electric Corp バルブタイミング調整装置
JP2013053616A (ja) * 2011-08-08 2013-03-21 Nissan Motor Co Ltd エンジンのバルブタイミング制御装置
JP5273312B1 (ja) * 2011-11-10 2013-08-28 トヨタ自動車株式会社 内燃機関の制御装置
JP2013194552A (ja) * 2012-03-16 2013-09-30 Toyota Motor Corp 内燃機関の制御装置

Also Published As

Publication number Publication date
CN105026699B (zh) 2018-04-03
US20150377086A1 (en) 2015-12-31
US9765654B2 (en) 2017-09-19
CN105026699A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
JP4687964B2 (ja) 弁開閉時期制御装置
US8843294B2 (en) Apparatus for and method of controlling variable valve timing mechanism
JP6510878B2 (ja) 内燃機関の制御装置
JP5929300B2 (ja) エンジンのバルブタイミング制御装置
JP5321911B2 (ja) 弁開閉時期制御装置
RU2705713C9 (ru) Способ (варианты) и система для устройства изменения фаз кулачкового распределения
JP2006170085A (ja) 弁開閉時期制御装置及び最低トルクの設定方法
WO2013187284A1 (ja) 弁開閉時期制御装置
US9689283B2 (en) Valve opening/closing timing control device
KR100429721B1 (ko) 내연기관의 밸브타이밍 제어장치
JP2009270478A (ja) バルブタイミング制御システム
JP6112006B2 (ja) 排気弁用の弁開閉時期制御装置
WO2015098513A1 (ja) 弁開閉時期制御装置
US9874156B2 (en) Control device for internal combustion engine
JP6112007B2 (ja) 吸気弁用の弁開閉時期制御装置
JP7361221B2 (ja) 可変バルブタイミング装置の制御装置
JP2019019721A (ja) 内燃機関の制御装置
JP2017180122A (ja) 内燃機関の制御装置
WO2014112055A1 (ja) 内燃機関の制御装置
JP2014062486A (ja) 内燃機関の可変バルブタイミング制御装置
JP2008280933A (ja) 内燃機関制御装置及び内燃機関制御システム
JPH1130134A (ja) 内燃機関の制御装置
JP2013249749A (ja) 弁開閉時期制御装置及び内燃機関制御システム
JP2008286064A (ja) 内燃機関のバルブタイミング制御装置
JP2004301048A (ja) 燃料噴射ポンプの噴射時期制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480012234.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875818

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14772712

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875818

Country of ref document: EP

Kind code of ref document: A1