WO2015098379A1 - 半導体装置およびその設計方法 - Google Patents

半導体装置およびその設計方法 Download PDF

Info

Publication number
WO2015098379A1
WO2015098379A1 PCT/JP2014/080706 JP2014080706W WO2015098379A1 WO 2015098379 A1 WO2015098379 A1 WO 2015098379A1 JP 2014080706 W JP2014080706 W JP 2014080706W WO 2015098379 A1 WO2015098379 A1 WO 2015098379A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
length
heat source
semiconductor device
space
Prior art date
Application number
PCT/JP2014/080706
Other languages
English (en)
French (fr)
Inventor
光太郎 岩田
邦昌 田中
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to KR1020167016963A priority Critical patent/KR20160089497A/ko
Priority to EP14873664.8A priority patent/EP3089206B1/en
Priority to US15/107,989 priority patent/US20160329315A1/en
Priority to KR1020187004288A priority patent/KR20180018860A/ko
Priority to CN201480070363.0A priority patent/CN105849889B/zh
Publication of WO2015098379A1 publication Critical patent/WO2015098379A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • H01L27/0211Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique adapted for requirements of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0218Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of field effect structures
    • H01L27/0222Charge pumping, substrate bias generation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • H01L27/0285Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements bias arrangements for gate electrode of field effect transistors, e.g. RC networks, voltage partitioning circuits

Definitions

  • the present invention relates to a semiconductor device and a design method thereof, and particularly relates to a semiconductor device including a heat source element and a temperature sensitive element.
  • a heat source element generally corresponds to, for example, a bipolar type or MIS type power transistor in which several hundred mA to several A flows.
  • the temperature-sensitive element refers to a semiconductor element that detects the temperature of the semiconductor chip on which the power transistor is formed, particularly the junction temperature of the power transistor itself.
  • an active element such as a transistor or a passive element such as a diode or a resistor is used.
  • the heat source element and the temperature sensitive element are employed in, for example, a voltage regulator and a DC / DC converter.
  • a large current flows between the collector and the emitter of the transistor
  • a large current flows between the source and the drain. Consumes a lot of power. For example, when 200 mA flows between the source and drain of the MIS transistor and a voltage of 8 V is applied between both electrodes, the power consumption of the MIS transistor is 1.6 W.
  • a temperature sensitive element is arranged in the semiconductor chip, particularly in the vicinity of the power transistor, detects the temperature of the semiconductor chip, and when the temperature reaches a predetermined temperature, The operation of the semiconductor element or the entire semiconductor device is interrupted to prevent deterioration or destruction of the semiconductor device due to overheating.
  • Patent Document 1 discloses a method for manufacturing a semiconductor integrated circuit device and a semiconductor integrated circuit device.
  • a temperature detection circuit unit that detects the temperature during operation of the power MIS transistor and stops the operation of the power MIS transistor when the temperature is equal to or higher than a predetermined value.
  • a temperature detection circuit region is arranged in the center of the power MOSFET region. The temperature detection sensitivity can be improved by arranging the temperature detection circuit region in the center of the power MOSFET region where the temperature becomes highest during the operation of the power IC, and the protection operation of the power IC can be reliably performed at an appropriate time. I can do it.
  • Patent Document 2 discloses a temperature detection circuit and an overheat protection circuit.
  • a diode having temperature dependency is provided in the temperature detection circuit, and the output transistor is arranged so as to surround the diode.
  • the diode having temperature dependency is desired to be provided in the vicinity of the output transistor in terms of efficiency and accuracy, and the diode is arranged at the center of the output transistor (see Patent Document 2 and FIG. 5).
  • Patent Document 1 and Patent Document 2 are common in that they have a heat source element and a temperature sensitive element, and the temperature sensitive element is arranged in the vicinity of the heat source element.
  • the reason for arranging both elements adjacent to each other is also the same. That is, this is to improve the temperature detection sensitivity of the heat source element (power transistor).
  • the inventor accounts for the ratio of the heat source element to the semiconductor chip as compared with the past.
  • the optimum arrangement of the heat source element and the temperature sensitive element disclosed in Patent Document 1 and Patent Document 2 was examined. I tried to.
  • the present invention provides a semiconductor device capable of improving the temperature detection accuracy of the temperature sensing element and efficiently arranging the thermal protection circuit including the temperature sensing element on the semiconductor chip, and a design method thereof. is there.
  • the semiconductor device includes a heat source element and a temperature sensitive element.
  • the shape of the heat source element in plan view includes a first side (11) and a second side (12) extending in a direction away from the first side (11) by a first distance x3 on the same line as the first side (11).
  • the third side (13) has the second distance y1 and the same length as the first distance x3 in the substantially vertical direction of the first side (11) and the second side (12).
  • a fourth side (14) connecting one end of the first side (11) and one end of the third side (13), and a second side connecting the one end of the second side (12) and the other end of the third side (13).
  • the fifth side (15) and the 6th side shown by length y0 which is the same as the direction where the other end of the 1st side (11) is connected and the 4th side (14) extends, and is longer than that (16) is connected to the other end of the second side (12), and one end thereof is the same as the direction in which the fifth side (15) extends, and the seventh side indicated by a longer length y0 ( 17) and an eighth side (18) connecting the other ends of the sixth side (16) and the seventh side (17).
  • the eighth side (18) has a length x0, and the temperature sensitive element is disposed in the vicinity of the third side (13).
  • a semiconductor device includes a heat source element and a temperature sensitive element in a semiconductor chip, and the heat source element includes two opposing regions that sandwich the space portion and a connecting region that connects the two opposing regions.
  • the temperature sensing element is arranged in a space near the connection area.
  • a semiconductor device design method in which a concave heat source element having a space portion is divided into three regions, and the size and shape of the divided regions and space portions are determined.
  • a step, a second step of executing a heat distribution simulation of the heat source element and the space determined in the first step, a third step of analyzing a simulation result executed in the second step, and a simulation obtained in the third step And a fourth step of determining the size of the three regions and the space based on the result.
  • the concave heat source elements constituting the semiconductor device of the present invention are set to a predetermined shape size determined based on a heat distribution simulation.
  • a space portion having a predetermined shape and size is defined, the temperature sensitive element can be efficiently arranged in the space portion, and the temperature detection sensitivity and detection accuracy can be increased.
  • FIG. 1 is a schematic view of a semiconductor device according to the present invention.
  • FIG. 2 is a layout view of a heat source element and a temperature sensitive element shown in FIG. 1.
  • transformation figure of FIG. FIG. 3 is another modified view of FIG. 2.
  • the temperature gradient figure of the heat distribution simulation shown in FIG. The temperature gradient figure of the heat distribution simulation shown in FIG.
  • FIG. 1 is a schematic view of a semiconductor device according to the present invention.
  • a heat source element HSE and a temperature sensitive element TE are formed on a semiconductor chip SCH having a silicon substrate.
  • the heat source element HSE in the present invention includes output transistors used in voltage regulators, DC / DC converters, and the like, bipolar transistors serving as heat sources such as power transistors, MIS transistors, and the like.
  • the temperature sensitive element TE includes a semiconductor element having a function of a so-called temperature sensor provided for monitoring the temperature of the heat source element HSE, in particular, a transistor, a diode, a resistor, and the like.
  • the planar view shape of the heat source element HSE is formed in a concave shape.
  • the heat source element HSE is configured by opposing regions hse1 and hse2 having a relatively large area and a connecting region hse3 having a relatively small area.
  • the areas of the opposing region hse1 and the opposing region hse2 are substantially the same.
  • the area of the opposing region hse1 is represented by a product of a length x1 and a length y0 extending in the direction X and the direction Y, respectively.
  • the area of the opposing region hse2 is represented by a product of a length x2 and a length y0 extending in the direction X and the direction Y, respectively.
  • the areas of the opposing region hse1 and the opposing region hse2 are the same.
  • the area of both is set to be the same, but for the convenience of various semiconductor elements and bonding pads arranged around the heat source element HSE, wiring connecting the semiconductor elements, the areas of both are set. It is possible that the will be different.
  • connection region hse3 The area of the connection region hse3 is represented by a product of a length x3 and a length y2 extending in the direction X and the direction Y, respectively.
  • the connection region hse3 is located between the opposing region hse1 and the opposing region hse2, and connects the two opposing regions hse1 and hse2.
  • the thermal protection circuit TSD is disposed in a space SP formed by providing the connection region hse3 between the opposing region hse1 and the opposing region hse2.
  • the temperature sensitive element TE functioning as a temperature sensor is one of the thermal protection circuits TSD.
  • the distance y3 from the center portion Tc of the temperature sensing element TE to one side of the connection region hse3 is set to be shorter than the shortest distances x31a and x31b from the center portion Tc of the temperature sensing element TE to the opposing regions hse1 and hse2. This is because heat is conducted from the three directions of the opposing region hse1, the opposing region hse2, and the coupling region hse3 to the entire temperature sensing element TE, but there is no heat source element HSE on the opposite side of the coupling region hse3. This is because the heat conduction in the direction Y is weaker than the heat conduction in the direction X.
  • the distance between one side of the connection region hse3 and the center portion Tc of the temperature sensing element TE is shortened. More preferably, the distance from the center of the connection region hse3 to the center Tc of the temperature sensing element TE is shorter than the distance from the center of the opposing regions hse1 and hse2 to the center Tc of the temperature sensing element TE. It is to be.
  • connection region hse3 and the opposing regions hse1 and hse2 is the highest, and the distance from the center portion of the connection region hse3 to the center portion Tc of the temperature sensing element TE is shortened. This is because heat conduction from the region hse3 to the temperature sensing element TE is increased and performed quickly.
  • the length y0 in the direction Y of the heat source element HSE is constant, the area of the connection region hse3 and the space portion SP are in an inversely proportional relationship. That is, if the length y1 is increased, the length y2 is decreased. Conversely, if the length y2 is increased, the length y1 is decreased.
  • the length y1 related to the space part SP is determined in preference to the length y2 related to the connection region hse3. This is because the size of the space SP is sufficiently secured in order to arrange the thermal protection circuit TSD. If the length y1 is determined giving priority to the size of the space SP, the area size of the connection region hse3 is affected. However, on the other hand, the size of the connection region hse3 requires a function of conducting heat to the temperature sensing element TE, and therefore requires a predetermined area or more, so that there is a limit in giving priority to the length y1.
  • the size of the front end of the space SP that is, the size of the length x3, needs to be a predetermined size in order to arrange the thermal protection circuit TSD.
  • the depth of the space SP that is, the size of the length y1
  • the relationship between the length y0 and the length y1 is preferably 0.25 ⁇ y1 / y0 ⁇ 0.75.
  • the other circuit OC is built in the semiconductor chip SCH.
  • the other circuit OC includes a reference voltage source, a driver for driving an output transistor (heat source element HSE), various control circuits, and the like.
  • FIG. 2 shows the arrangement of the heat source element HSE and the temperature sensitive element TE shown in FIG. 1, and is an enlarged view of the positional relationship of the overheat protection circuit TSD including the heat source element HSE and the temperature sensitive element TE.
  • FIG. 2 will be described using reference numerals.
  • the heat source element HSE has a concave shape.
  • the heat source element HSE includes a first side 11, a second side 12, a third side 13, a fourth side 14, a fifth side 15, a sixth side 16, a seventh side 17, and It is composed of an eighth side 18.
  • the first side 11 and the second side 12 are arranged on the same line and separated by a length x3, and the length x1 and the length x2 are substantially the same.
  • the second side 12 extends in a direction away from the direction in which the first side 11 extends.
  • the third side 13 is separated from the first side 11 and the second side 12 in the substantially vertical direction by a length y1, and the length is substantially equal to the length x3.
  • the fourth side 14 extends from the end a to the end b, and its length is substantially equal to the length y1.
  • the fifth side 15 extends from the end c to the end d, and its length is substantially equal to y1.
  • the sixth side 16 is parallel to the fourth side 14, but the length is longer than that and extends from the end g to the end h, and the length is indicated by y0.
  • the seventh side 17 is parallel to the fifth side 15 but is longer than that and extends from the end e to the end f, and the length is indicated by y0.
  • the eighth side 18 is substantially parallel to the first side 11, the second side 12, and the third side 13 and extends from the end f to the end g, and the length thereof is indicated by x0. Length x0 is equal to the length plus x1, x2 and x3.
  • the heat source element HSE is divided into three regions, the opposing regions hse1 and hse2, and the connecting region hse3 for convenience of explanation and for convenience of heat distribution simulation described later.
  • the fourth side 14 and the fifth side 15 are extended and divided so that there are two opposing regions and one connecting region. You may make it extend in the direction X and divide
  • the heat source element HSE is formed by two opposing regions sandwiching the space SP and one connection region connecting the two opposing regions.
  • a point P1 indicating the central part of the opposing regions hse1 and hse2 is estimated to be the highest temperature portion in the heat source element HSE.
  • the central portion of the connection region hse3 is indicated by a point P2, but it can be assumed that this point P2 is also placed at a temperature equivalent to the point P1 if the connection region hse3 is larger than a predetermined size.
  • One side of the connection region hse3, that is, the center of the third side 13 is indicated by a point P3.
  • the point P3 is a place closest to the center portion Tc of the temperature sensitive element in the heat source element HSE.
  • the point P4 is the same as the center portion Tc of the temperature sensitive element TE.
  • Point P4 The temperature detection value at the point P4 is extremely important for estimating the temperature of the heat source element HSE.
  • Point P5 corresponds to the front of space part SP and is a place where the temperature can be estimated to be the lowest in space part SP. Therefore, detecting the temperature of the point P5 is extremely useful for grasping the heat distribution and the thermal gradient of the entire thermal protection circuit TSD.
  • the size and shape of the space part SP are defined by the opposing regions hse1, hse2 and the connecting region hse3.
  • the front of the space SP is indicated by a length x3, and the depth is indicated by a length y1.
  • a thermal protection circuit TSD is disposed in the space SP.
  • the shortest distance y3 between the central portion Tc of the temperature sensing element TE and the third side 13 is the shortest distance x31a between the central portion Tc (point P4) and the fourth side 14 and the shortest distance between the central portion Tc and the fifth side 15. It is set to be shorter than the distance x31b.
  • the distance between the point P2 that is the central part of the connection region hse3 and the central part Tc (point P4) is shorter than the distance between the point P1 that is the central part of the opposing region hse1 and the central part Tc (point P4).
  • the third side 13 is arranged on a line segment P1-P1 that connects the points P1 that are the central portions of the opposing region hse1 and the opposing region hse2, and the temperature sensing element TE is connected to the line segment P1.
  • FIG. 3 shows one variation of FIG. 3 is different from FIG. 2 in that the depth of the space SP, that is, the ratio of the length y1 to the length y0 is increased.
  • the ratio y1 / y0 is increased, the area of the space part SP is increased.
  • the area of the connection region hse3 is reduced.
  • the circuit scale of the thermal protection circuit TSD increases, the area of the space SP is increased.
  • the connection region hse3 becomes smaller, the amount of heat conducted from the connection region hse3 to the temperature sensing element TE becomes weaker.
  • the shortest distance y3 between the central portion Tc (point P4) of the temperature sensing element TE and the connection region hse3 is shorter than the shortest distances x31a and x31b between the central portion Tc and the opposing regions hse1 and hse2. To do. Further, the distance between the center portion Tc and the point P2 is made shorter than the distance between the center portion Tc and the point P1. Thereby, the relative heat conduction intensity between the connection region hse3 and the opposing regions hse1 and hse2 can be corrected.
  • FIG. 4 shows another variation of FIG. 4 differs from FIGS. 2 and 3 in that the depth of the space SP, that is, the ratio of the length y1 to the length y0 is reduced.
  • the ratio y1 / y0 is reduced, the area of the space part SP is reduced.
  • the area of the connection region hse3 increases.
  • the thermal protection circuit TSD becomes smaller, the area of the space part SP becomes smaller. However, if it is made smaller than necessary, the thermal protection circuit TSD cannot be sufficiently disposed in the space SP.
  • the shortest distance y3 between the central portion Tc (point P4) of the temperature sensing element TE and the connection region hse3 is the shortest distance x31a between the central portion Tc and the opposing regions hse1 and hse2, regardless of the size of the space SP. , X31b. Further, the distance between the center portion Tc and the point P2 is made shorter than the distance between the center portion Tc and the point P1. This suppresses a decrease in the strength of heat conduction relative to the opposing regions hse1 and hse2 of the connection region hse3.
  • FIG. 5 shows a heat distribution simulation result of the concave heat source element HSE and the space SP shown in FIGS.
  • the concave heat source element HSE was divided into three parts. As shown in FIGS. 1 and 2, there are three division directions, ie, an opposing region hse10, hse20 and a connecting region hse30, along the direction X.
  • the area Y may be divided into three areas, ie, two connected areas having a relatively small area and one opposing area having a relatively large area.
  • the heat distribution simulation of the present invention is characterized in that the concave shape is divided into two opposing regions and one connecting region.
  • CAE Computer Aided Engineering
  • the semiconductor chip SCH is made of silicon, and the size thereof is, for example, in the range of 1.0 mm ⁇ 1.0 to 1.4 mm ⁇ 1.4 mm.
  • the area of the heat source element HSE was 9% to 33% of the entire area of the semiconductor chip SCH.
  • the lengths x10 and x20 of the opposing regions hse10 and hse20 are, for example, 250 ⁇ m, and the length y0 is 350 ⁇ m.
  • the length x30 of the connection region hse30 is 110 ⁇ m, a distance of 15 ⁇ m in size (separation width) is taken between the connection region hse30 and the opposing regions hse10 and hse20, and the connection region hse30 and the connection region hse30.
  • the opposing region hse20 are separated from each other, and the opposing regions hse10 and hse20 are also separated from each other.
  • 5A to 5C are different in length y1 and length y2.
  • the length y0 obtained by adding the length y1 and the length y2 is constant.
  • the power consumption in the heat source element HSE was adjusted so that the maximum temperature of the semiconductor chip SCH was 250 ° C. Specifically, 30 W of power was applied to the heat source element HSE. Note that the maximum temperature of 250 ° C. is not allowed in this type of semiconductor device, but was performed as one of the simulations. Further, the power consumption of 30 W applied to the heat source element HSE also deviates from the normal use state. However, simulations performed under conditions greatly deviating from the normal use state are expected to predict an unexpected state and to be suitable for estimating a specific value of the actual heat distribution.
  • FIG. 5A schematically shows a case where the length y1 and the length y2 are set to the same length.
  • the area of the space part SP is substantially the same as that of the connection region hse30.
  • the temperatures of the point P1 that is the center of the opposing regions hse10 and hse20 and the point P2 that is the center of the connecting region hse30 are both 250 ° C., and there is no difference between them.
  • the temperature at a point P3 facing a temperature sensing element TE (not shown) in a part of the connection region hse30 is around 230 ° C.
  • the temperature at a point P4 that is the center of the temperature sensing element TE is around 200 ° C. It was.
  • the temperature at a point P5 corresponding to the end of the space SP the temperature was around 150 ° C. Therefore, the temperature difference between points P1, P2 and P5 having the highest temperature is about 100 ° C., and the temperature difference from end to end of the space SP is about 80 ° C. This means that when the thermal protection circuit TSD is disposed in the space SP, a temperature difference of approximately 80 ° C.
  • the temperature difference of 80 ° C. is the magnitude when the temperature of the points P1 and P2 reaches 250 ° C. For example, if the allowable temperature of the points P1 and P2 is 150 ° C., the temperature difference of 80 ° C. is 50 Presumed to be around ° C.
  • FIG. 5B schematically shows a case where the area of the space portion SP is made larger than that of FIG. 5A, and conversely, the area of the connection region hse30 is made smaller.
  • the length y1 is 2/3 (67%) of the length y0
  • the length y2 of the connection region hse30 is 1/3 (33%) of the length y0.
  • the temperature distribution at the points P3 and P4 is not significantly different from that in FIG. 5A because the heat conduction from the opposing regions hse10 and hse20 and the connecting region hse30 is entangled with each other at these points. This is presumed to be because the dominating power of the opposing regions hse10 and hse20 is stronger than that of the connected region hse30.
  • the temperature at the point P5 was around 140 ° C., and no significant difference was observed from that in FIG.
  • FIG. 5C schematically shows a case where the area of the space SP is further increased than that of FIG. 5B, and conversely, the area of the connection region hse30 is reduced.
  • the length y1 is 9/10 of the length y0
  • the length y2 of the connection region hse30 is 1/10 of the length y0.
  • the temperature of the central portion Tc of the thermosensitive element TE is different from the maximum temperature of 250 ° C. around 60 ° C., and it has been found that the temperature detection sensitivity is lower than that in FIGS. 5 (A) and 5 (B).
  • the reason why the temperature detection sensitivity is lowered is that the area (volume) of the connection region hse30 is reduced and the thermal conductivity to the temperature sensing element TE is weakened, and the point P1 that is the center of the opposing regions hse10 and hse20 is felt. It is presumed that the distance to the temperature element TE is increasing.
  • FIG. 6 shows the heat distribution simulation result of the concave heat source element HSE shown in FIGS. 1 to 4 as in FIG.
  • the power applied to the entire heat source element HSE was viewed as 30 W, similar to that in FIG.
  • the length x12 and the length x22 of the opposing regions hse12 and hse22 are both 330 ⁇ m, the length y0 is 350 ⁇ m, the length x32 of the connection region hse32 is 110 ⁇ m, and the connection region hse32 and A distance of 15 ⁇ m is provided between the opposing regions hse12 and hse22, the connecting region hse32 and the opposing region hse12 are separated from each other, the connecting region hse32 and the opposing region hse22 are separated from each other, and the opposing regions hse12 and hse22 are also separated from each other. It was configured as follows. Accordingly, in FIGS.
  • the lengths x12 and x22 of the opposing regions hse12 and hse22 are three times the length x32 of the connection region hse32. This triple size is different from the almost double size shown in FIG.
  • 6A to 6C have different lengths y1 and y2. 6A to 6C, as in FIG. 5, the length y0 obtained by adding the length y1 and the length y2 is constant.
  • FIG. 6A shows a case where the area of the space SP is relatively small.
  • the heat distribution simulation of the heat source element HSE and the space part SP was carried out under such a configuration, when the temperature at the point P1 was 250 ° C., the temperature at the point P2 was also 250 ° C. At this time, the point P3 was around 240 ° C., and the temperature of the point P4, which is the central portion Tc of the temperature sensitive element TE, was around 220 ° C. Further, the temperature of the point P5 is around 210 ° C., and there is a temperature difference of around 40 ° C. from the temperature of the point P1, and it has been found that there is a great difference from that of FIG.
  • FIG. 6 (B) shows a case where the area of the space part SP is made larger than that of FIG. 6 (A).
  • the temperature at the point P1 was 250 ° C.
  • the temperature at the point P2 was also 250 ° C.
  • the temperature at point P3 was around 240 ° C.
  • that at point P4 was around 230 ° C. Therefore, the temperature at the point P4, which is the central portion Tc of the temperature sensitive element TE, is about 20 ° C. lower than the temperature at the point P1.
  • the temperature of the point P5 was around 200 degreeC.
  • the area of the space SP and the area of the connection region hse32 are set to be approximately equal.
  • the distance from the point P1 to the point P4 that is, the distance from the center of the opposing regions hse12 and hse22 to the center of the temperature sensing element TE (point P4) is the shortest distance. This shortest distance is shorter than that shown in FIG. For this reason, since heat with the highest temperature is efficiently conducted to the temperature sensing element TE, it is estimated that a part of the space SP is kept at a high temperature.
  • FIG. 6 (C) shows a case where the area of the space part SP is made larger than that of FIG. 6 (B).
  • the temperature at the point P1 is 250 ° C.
  • the temperature at the point P2 is around 240 ° C.
  • the temperature of the point P3 and the point P4 was around 230 degreeC.
  • the temperature difference at the point P4 which is the center portion Tc of the temperature sensitive element TE, was about 20 ° C. from the maximum temperature. Therefore, compared with FIG. 6B, the temperature difference between the maximum temperature of the heat source element HSE and the temperature detected by the temperature sensitive element TE is substantially the same.
  • the structure of the heat source element HSE shown in FIG. 6 is obtained by dividing the concave shape into three parts, that is, two opposing regions and one connecting region, as shown in FIG.
  • the third side 13 shown in FIG. 2 is extended until it contacts the sixth side 16 and the seventh side 17, so that three regions, that is, two opposing regions
  • the simulation may be performed by dividing into one connected region. Even in such a configuration, the two opposing regions are arranged with the space SP interposed therebetween, and the connecting region is formed so as to connect these two opposing regions.
  • FIG. 7 is a temperature gradient diagram showing the thermal distribution simulation result shown in FIG. 5 from another viewpoint.
  • the horizontal axis in FIG. 7 indicates the points P1 to P5, and the vertical axis indicates the maximum temperature, that is, the temperature difference from the point P1.
  • the point P1 indicates the center of the opposing areas hse10 and hse20.
  • the point P1 was found to be around 250 ° C. regardless of the parameters.
  • the point P3 corresponds to a part of one side of the connection area hse30. That is, it is a place where it can be estimated that the temperature becomes the highest in the space portion SP near the end of the depth of the space portion SP.
  • the point P4 corresponds to the center portion Tc of the temperature sensing element TE.
  • the point P4 is 30 ⁇ m to 60 ⁇ m away from the point P3, but is about 20 ° C. lower than the temperature of the point P3.
  • the temperature difference at the point P4 was reduced compared to the point P3.
  • the point P5 is the so-called frontage of the space SP, and it can be estimated that the temperature is the lowest in the space.
  • y1 / y0 is in the range of 0.5 to 0.9 and the maximum temperature is around 110 ° C. There was a difference.
  • the temperature difference at point P5 was reduced as compared with point P2.
  • what can be said from the characteristics shown in FIG. 7 is that there was no significant difference in temperature at each point in the range of y1 / y0 in the range of 0.67 to 0.5.
  • FIG. 8 is a temperature gradient diagram showing the thermal distribution simulation result shown in FIG. 6 from another viewpoint.
  • the horizontal axis in FIG. 8 indicates points P1 to P5, and the vertical axis indicates the maximum temperature, that is, the temperature difference from the point P1.
  • the depth of the space portion SP that is, the ratio y1 / y0 is shown.
  • the point P1 indicates the center of the opposing areas hse12 and hse22.
  • Point P1 had a temperature of about 250 ° C. regardless of the parameters.
  • the characteristic shown in FIG. 8 has a smaller temperature difference than that shown in FIG. 7, and a favorable result was obtained.
  • FIG. 8 shows that the temperature difference at each point is reduced as compared with FIG. 7, and the absolute value thereof is reduced to almost 1 ⁇ 2.
  • the point P2 is the central part of the connection region hse32, but the temperature of the point P2 is almost the same regardless of the size of the ratio y1 / y0, and is almost the same as the maximum temperature of 250 ° C.
  • the point P3 corresponds to a part of one side of the connection area hse32. That is, it is a place where it can be estimated that the temperature becomes the highest in the space portion SP near the end of the depth of the space portion SP.
  • the temperature difference at the point P3 was almost the same regardless of the depth of the space SP, and was around 240 ° C.
  • the point P4 corresponds to the center portion Tc of the temperature sensing element TE.
  • the point P4 is 30 ⁇ m to 60 ⁇ m away from the point P3, but is about 10 ° C. lower than the temperature of the point P3.
  • Point P5 hits the front of space SP, and it can be estimated that the temperature is the lowest in the space, but in the simulation results, it is about 50 ° C. lower than the maximum temperature in the range of 0.25 ⁇ y1 / y0 ⁇ 0.75. It was. However, the temperature difference at the point P5 is almost 1 ⁇ 2 compared to FIG. 7, and the temperature difference from the point P1 is greatly reduced.
  • Fig. 8 The summary of Fig. 8 is as follows. That is, by making the area (volume) of the opposing regions hse12 and hse22 larger than that of the connection region hse32, the temperature gradient in the space SP is reduced, which is preferable for arranging the temperature sensitive element TE. It is.
  • FIG. 9 is a temperature gradient diagram in which the temperature difference at point P4 shown in FIGS. 7 to 8, particularly the maximum temperature of 250 ° C., is plotted.
  • the point P4 corresponds to the central portion Tc of the temperature sensing element TE and is a particularly important part for monitoring the temperature of the heat source element HSE. That is, the temperature detection sensitivity can be increased as the temperature at the point P4 is closer to the temperature at the point P1.
  • Fig. 9 is plotted with two parameters.
  • it is a comparison of the temperature detection sensitivity when the width of the opposing region is twice that of the connected region and three times that of the connected region.
  • FIG. 9 shows a case where the widths of the opposing regions hse10, hse20, hse12, and hse22 are twice or three times as large as the connected regions hse30 and hse32.
  • the same effect can be obtained even if the width of the opposing region and the width of the connecting region are the same, not only twice or three times.
  • the heat conduction to the space SP is far from the center (point P1) of the opposing regions hse10 and hse20. It is not enough because it is far away.
  • connection region hse30 increases as the area of the connection region hse30 increases and increases to some extent as shown in FIG.
  • Such a state means that the connection region hse30 is dominant in the heat conduction to the space SP when the view is changed.
  • the width of the connection region hse30 is 1 ⁇ 2 of the opposing regions hse10 and hse20. Accordingly, it can be understood that the same effect can be obtained even if the widths of the opposing regions hse10 and hse20 are the same as those of the connection region hse30.
  • the heat source element HSE when the heat source element HSE is formed in a concave shape and the space portion SP having a predetermined size is provided, the heat source element HSE is divided into two opposed regions and one connected region and is divided into three regions. To do. Thereafter, predetermined power consumption is applied to the heat source element HSE, and the maximum temperature is monitored and managed to simulate the heat distribution and the thermal gradient of the heat source element HSE and the space SP. The simulation results are then analyzed. The analysis examines the maximum temperature of the heat source element HSE, the temperature distribution of the temperature sensitive element TE, the heat distribution of the space SP and the thermal gradient.
  • the semiconductor device 10 suitable for exhibiting the area required for the heat source element HSE and the function of the thermal protection circuit TSD may be designed.
  • FIG. 10 is a simulation diagram showing the relationship between power consumption and temperature detection sensitivity in the heat source element HSE. That is, a heat distribution simulation result showing a temperature difference between the point P1 and the point P4, that is, the center portion Tc of the temperature sensitive element TE when the power consumption in the heat source element HSE is changed is shown.
  • the horizontal widths x10 and x20 of the opposing regions hse10 and hse20 are twice the horizontal width x30 of the connecting region 30, and the horizontal widths of the opposing regions hse12 and hse22 as shown in FIG.
  • FIGS. 5 to 9 described so far are cases where the power consumption of the heat source element HSE is 30 W.
  • FIG. FIG. 10 is a characteristic diagram obtained from the heat distribution simulation result when the power consumption is 30 W and the power consumption is 60 W.
  • the horizontal axis indicates the power consumption and the vertical axis indicates the temperature difference.
  • the heat distribution simulation result shown in FIG. 10 is extremely useful in designing and manufacturing this type of semiconductor device and semiconductor integrated circuit device. This is because the temperature detection sensitivity of the temperature sensing element TE for a wide range of power consumption consumed by the heat source element HSE can be analogized.
  • the temperature detection sensitivity of the temperature sensing element TE when the power consumption of the heat source element HSE is 5 W can be estimated. It can be seen that the temperature difference is about 8 ° C. when the width of the opposing region is twice that of the connected region, and is about 4 ° C. when the width ratio is three times. Therefore, it can be seen that when the power consumption of the heat source element HSE is 5 W, the detection sensitivity of the temperature sensitive element TE is 10 ° C. or less. Moreover, when power consumption is 10 W, it turns out that it is around 16 degreeC and around 8 degreeC, respectively.
  • the characteristic diagram shown in FIG. 10 shows the thermal conductivity [W / m ⁇ ° C.] and density [kg / m 3 ] of so-called constituent materials such as lead frames, die bonding materials, wires, and resins on which the semiconductor device 10 is mounted.
  • constituent materials such as lead frames, die bonding materials, wires, and resins on which the semiconductor device 10 is mounted.
  • J / kg ⁇ ° C.] etc. if several combinations are prepared in advance, the design period of the semiconductor device 10 can be shortened and the product quality can be improved.
  • FIG. 11 shows an area ratio between the area of the heat source element HSE and that of the space SP.
  • FIG. 3 is a diagram obtained by using the size of the frontage (length x3) and depth (length y1) and the widths (lengths x1 and x2) of the opposing areas hse1 and hse2 described in FIG. 2 as parameters.
  • FIG. 5A applies to this case.
  • FIG. 6B applies to this case.
  • the area of the space SP is 1/3 of the area of the heat source element HSE.
  • the area ratio is 33.3%.
  • the ratio of the area of the space SP to the heat source element HSE is often in the range of 3.7% to 33.3% shown in FIG. That is, assuming that the areas of the heat source element HSE and the space SP in the plan view are S1 and S2, respectively, S2 is approximately in the range of 0.037 ⁇ S1 to 0.333 ⁇ S1.
  • FIG. 12 shows an example of a specific circuit configuration of the thermal protection circuit TSD arranged in the space SP.
  • the thermal protection circuit TSD is well known in the past.
  • the thermal protection circuit TSD includes, for example, constant current sources CC1 and CC2, resistors R1 and R2, a transistor Q, a comparator COM, and an inverter INV in addition to the temperature sensing element TE.
  • the temperature sensing element TE for example, a diode-connected transistor is used.
  • the temperature sensing element TE is, for example, a diode
  • the forward voltage of the diode has a temperature coefficient of, for example, ⁇ 2 mV with respect to the temperature change.
  • the temperature of the heat source element HSE can be detected.
  • the thermal protection circuit TSD is turned on / off by the TSD on / off signal output from the comparator COM.
  • a semiconductor diffusion resistance, a polysilicon resistance, or the like can be used as the temperature sensing element TE.
  • the thermal protection circuit TSD shown in FIG. 12 is an example, and the circuit configuration may be further complicated and the degree of integration may be increased, or the circuit configuration may be further simplified.
  • the size of the opening and the depth of the space SP may be set according to the circuit configuration and the number of circuit elements.
  • the semiconductor device and the design method thereof according to the present invention can detect a temperature close to the temperature of the heat source element based on the heat distribution simulation with the temperature sensitive element, the semiconductor device using the power transistor, the thermal monitoring of the semiconductor integrated circuit device, Since it is extremely suitable for thermal management, its industrial applicability is very high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Automation & Control Theory (AREA)

Abstract

 半導体装置10は、半導体チッップSCHに熱源素子HSEと感温素子TEを有する。熱源素子HSEの平面視形状は凹型を成し、凹字状の空間部SPの奥行きy1を全体の長さのy0の0.75倍から0.25倍の大きさに設定し、感温素子TEの中心部Tcを連結領域hse3の一辺の近傍に設け、長さy3が長さx31a,長さx31bよりも短くなるように空間部SPに配置する。これにより、熱源素子の温度検出感度および半導体素子の効率的な配置が実現できる。

Description

半導体装置およびその設計方法
 本発明は、半導体装置およびその設計方法に関し、特に熱源素子と感温素子を備えたものに関する。
 半導体装置において、熱源素子は広くは数百mAから数Aが流れるたとえばバイポーラ型やMIS型のパワートランジスタが相当する。感温素子とはパワートランジスタが形成された半導体チップの温度、とりわけパワートランジスタ自体の接合温度を検知する半導体素子を指し、たとえばトランジスタなどの能動素子やダイオード、抵抗などの受動素子が用いられる。
 熱源素子、感温素子はたとえばボルテージレギュレータやDC/DCコンバータに採用されている。バイポーラ型の場合は、トランジスタのコレクタ・エミッタ間に、MIS型の場合にはソース・ドレイン間にそれぞれ大きな電流が流れ、さらに、これらの両電極間に大きな電圧が印加されると、これらパワートランジスタは多大な電力を消費する。たとえばMIS型トランジスタのソース・ドレイン間に200mAが流れ、両電極間に8Vの電圧が印加された場合にはMIS型トランジスタの電力消費量は1.6Wとなる。
 消費電力が大きくなるにつれパワートランジスタの接合温度は上昇し、さらにその周辺に作り込まれた各半導体素子の接合温度も上昇する。接合温度が異常に高くなると、半導体装置は劣化または破壊の危険に晒される。こうした不具合を解消するために感温素子が半導体チップ内に配置され、特にパワートランジスタの近傍に配置され、半導体チップの温度を検知し、所定の温度に至った場合には、パワートランジスタおよび各種の半導体素子、または半導体装置全体の動作を遮断させ、過熱による半導体装置の劣化または破壊を防止する。
 特許文献1は、半導体集積回路装置の製造方法および半導体集積回路装置を開示する。パワーMISトランジスタの動作時の温度を検出し、その温度が所定値以上の場合にはパワーMISトランジスタの動作を停止させる温度検出回路部を有する。パワーMOSFET領域の中央には温度検出回路領域を配置している。パワーICの動作時に温度が最も高くなるパワーMOSFET領域の中央に温度検出回路領域を配置することによって温度検出感度を向上させることができ、パワーICの保護動作を適正なときに確実に行うことができるとしている。
 特許文献2は、温度検知回路及び過熱保護回路を開示する。温度依存性を有するダイオードが温度検知回路に備えられ、出力トランジスタはダイオードを取り囲むように配置されている。温度依存性を有するダイオードは効率的にも精度的にも出力トランジスタの近傍に設けることが望まれるとしており、出力トランジスタの中央部にダイオードを配置している(特許文献2、図5参照)。
特開平11-177087号公報 特開2002-108465号公報
 特許文献1や特許文献2は、熱源素子と感温素子を有し、感温素子を熱源素子の近傍に配置する点で共通する。両素子を互いに隣接して配置させる理由も同じである。すなわち、熱源素子(パワートランジスタ)の温度検出感度を向上させるためである。
 本発明者は、昨今の半導体装置全体の微細化さらには熱源素子の微細化、小型化に伴い、発熱源の面積、体積が小さくなるにつれ、熱源素子が半導体チップに占める割合が従前に比べて小さくなり発熱密度が増加し、半導体チップの熱勾配がより顕著に生じやすくなってきていることに鑑み、特許文献1、特許文献2に開示された熱源素子と感温素子の最適な配置について吟味してみた。その結果、半導体素子同士を近くに配置しても特許文献1、特許文献2に示唆されるように両素子を互いに近接して配置するという対策では十分に熱保護が果たせないということを知見した。こうした知見に基づき本発明は、感温素子の温度検出精度を向上させるとともに、感温素子を含む熱保護回路を半導体チップに効率よく配置することができる半導体装置およびその設計方法を提供するものである。
 本発明にかかる一態様の半導体装置は、熱源素子と感温素子を備える。熱源素子の平面視形状は、第1辺(11)と、第1辺(11)と同一線上に第1の距離x3離れ第1辺(11)から遠ざかる方向に延びる第2辺(12)と、第1辺(11)および第2辺(12)のほぼ垂直方向に第2の距離y1離れ第1の距離x3と同じ長さを有する第3辺(13)を有する。また、第1辺(11)の一端と第3辺(13)の一端を結ぶ第4辺(14)と、第2辺(12)の一端と第3辺(13)の他端を結ぶ第5辺(15)と、第1辺(11)の他端にその一端が接続され第4辺(14)が延びる方向と同じであってかつそれよりも長い長さy0で示される第6辺(16)と、第2辺(12)の他端に接続されその一端が、第5辺(15)が延びる方向と同じであってかつそれよりも長い長さy0で示される第7辺(17)と、第6辺(16)および第7辺(17)の他端同士を結ぶ第8辺(18)を備える。第8辺(18)は長さx0を有しており、感温素子は第3辺(13)の近傍に配置されている。
 また本発明にかかる別の態様の半導体装置は、半導体チップ内に熱源素子と感温素子を有し、熱源素子は空間部を挟む2つの対向領域と、2つの対向領域をつなぐ連結領域を備えて凹字状を成し、感温素子は連結領域の近傍の空間部に配置されている。
 また本発明の別の発明の半導体装置の設計方法は、空間部を有する凹字状の熱源素子を3つの領域に分割すると共にそれら分割した領域および空間部の大きさ、形状を決定する第1ステップと、第1ステップで決定した熱源素子および空間部の熱分布シミュレーションを実行する第2ステップと、第2ステップで実行したシミュレーション結果を分析する第3ステップと、第3ステップで得られたシミュレーション結果に基づき前記3つの領域と前記空間部の大きさを決定する第4ステップとを有する。
 本発明の半導体装置を構成する凹字状の熱源素子は熱分布シミュレーションに基づき決定された所定の形状の大きさに設定される。併せて、所定形状と大きさを有する空間部を画定され、その空間部に感温素子を効率よく配置することができ、かつ温度の検知感度、検知精度を高めることができる。
本発明にかかる半導体装置の概略図。 図1に示した熱源素子および感温素子の配置図。 図2の変形図。 図2の別の変形図。 本発明にかかる半導体装置の熱分布シミュレーション図。 本発明にかかる半導体装置の別の熱分布シミュレーション図。 図5に示した熱分布シミュレーションの温度勾配図。 図6に示した熱分布シミュレーションの温度勾配図。 本発明にかかる感温素子TEの中心部Tcの温度をシミュレーションで求めた温度勾配図。 本発明にかかる熱源素子HSEでの消費電力と温度検知感度との関係を示すシミュレーション図。 本発明にかかる熱源素子HSEと空間部SPとの面積比率を示す図。 本発明にかかる空間部SPに配置される熱保護回路TSDの具体的な回路の一例図。
 図1は本発明にかかる半導体装置の概略図を示す。半導体装置10は基板がシリコンの半導体チップSCHに熱源素子HSE、感温素子TEが作り込まれている。本発明での熱源素子HSEの中にはボルテージレギュレータ、DC/DCコンバータなどに用いられる出力トランジスタ、パワートランジスタなど発熱の源となるバイポータトランジスタ、MISトランジスタなどが含まれる。また、感温素子TEの中には熱源素子HSEの温度を監視するために設けられるいわゆる温度センサーの機能を有する半導体素子、とりわけトランジスタ、ダイオード、抵抗などが含まれる。
 熱源素子HSEの平面視形状は凹字状に形成される。熱源素子HSEは比較的面積の大きな対向領域hse1,hse2と、比較的面積の小さな連結領域hse3で構成される。対向領域hse1と対向領域hse2の面積はほぼ同じである。対向領域hse1の面積は、方向Xおよび方向Yにそれぞれに延びる長さx1および長さy0の積で表される。対向領域hse2の面積は、方向Xおよび方向Yにそれぞれに延びる長さx2および長さy0の積で表される。長さx1と長さx2とを同じに大きさに設定すれば対向領域hse1と対向領域hse2の面積は同じになる。通常、両者の面積は同じになるように設定されるが、熱源素子HSEの周囲に配置される各種の半導体素子やボンディングパッドの位置、各半導体素子同士を結ぶ配線などの都合上、両者の面積が異なる場合も起こりうる。
 連結領域hse3の面積は、方向Xおよび方向Yにそれぞれに延びる長さx3および長さy2の積で表される。連結領域hse3は、対向領域hse1と対向領域hse2との中間に位置し、2つの対向領域hse1,hse2を連結する。連結領域hse3を対向領域hse1と対向領域hse2との間に設けてできる空間部SPに熱保護回路TSDが配置される。温度センサーとしての機能を有する感温素子TEは熱保護回路TSDの1つである。感温素子TEの中心部Tcから連結領域hse3の一辺までの距離y3は、感温素子TEの中心部Tcから対向領域hse1,hse2までの最短距離x31a,x31bよりも短くなるように設定する。なぜならば、感温素子TE全体へは、対向領域hse1と対向領域hse2と連結領域hse3の3方向から熱が伝導されるが、連結領域hse3の反対側には熱源素子HSEが存在していないため、方向Yでの熱伝導が、方向Xでの熱伝導に比べて弱くなるからである。このため、連結領域hse3の熱伝導を強くするために連結領域hse3の一辺と感温素子TEの中心部Tcとの距離を短くする。なお、さらに好ましいことは、連結領域hse3の中心部から感温素子TEの中心部Tcまでの距離は、対向領域hse1,hse2の中心部から感温素子TEの中心部Tcまでの距離よりも短くすることである。なぜならば、連結領域hse3および対向領域hse1,hse2の中心部が最も温度が高いと推測できるからであり、連結領域hse3の中心部から感温素子TEの中心部Tcまでの距離を短くして連結領域hse3から感温素子TEへの熱伝導を大きくしかつ迅速に行うためである。
 ここで熱源素子HSEの方向Yでの長さy0を一定とすると、連結領域hse3の面積と空間部SPのそれとは逆比例の関係に置かれる。すなわち、長さy1を大きくすれば長さy2は小さくなり、逆に長さy2を大きくすれば長さy1は小さくなる。本発明では空間部SPに関わる長さy1を連結領域hse3に関わる長さy2よりも優先して決定する。なぜならば、熱保護回路TSDを配置させるために空間部SPの大きさを十分に確保するためである。空間部SPの大きさを優先して長さy1を決定すると連結領域hse3の面積の大きさに影響を与える。しかし、一方では連結領域hse3の大きさには感温素子TEに熱を伝導する働きが要求されているため所定以上の面積が必要であるので長さy1を優先させるには限界が生じる。
 空間部SPの間口の大きさ、すなわち長さx3の大きさは熱保護回路TSDを配置するためにも所定の大きさが必要となる。これに加えて、空間部SPの奥行き、すなわち長さy1の大きさには熱保護回路TSDを配置するために十分な長さ、面積が確保できることに加え、連結領域hse3から感温素子TEに熱を十分に伝導させに十分な大きさが要求される。本発明で行った種々の熱分布シミュレーションによれば、長さy0と長さy1との関係は、0.25≦y1/y0≦0.75であることが好ましいことを知見した。したがって、y1/y0=0.25に設定したときには、y2/y0=0.75となり、y1/y0=0.75に設定したときには、y2/y0=0.25となる。こうした数値の出所の根拠については後述する。なお、長さy0,y1,y2の具体的な大きさは、たとえば、y0=350μm、y1=y2=175μmであり、これらの大きさは熱源素子HSEに許容される電流、電力などで決定される。
 熱源素子HSEおよび空間部SPの方向Xでの大きさ、長さx1,x2,x3の設定も基本的には長さy1,y2を決定したのとほぼ同じ理由で決定される。すなわち、長さx0,x1,x2は熱源素子HSEに許容される電流、電力などから決定される。たとえば、長さx1=x2=250μm、長さx3=140μmに設定される。なお、長さx1,x2の大きさを決定するにあたっては、熱保護回路TSDの収容スペースを確保するという観点ではなく、熱源素子HSEに要求される電流、電力の大きさから決定されることが多い。
 本発明で行った種々の熱分布シミュレーションによれば、長さx0,x1,x2およびx3の長さの関係は、x3≦x1=x2≦3×x3の関係であることが好ましいことを知見した。したがって、たとえば長さx3=140μmとすると、140μm≦x1=x2≦420μmとなる。
 半導体チップSCHの中には熱源素子HSE、熱保護回路TSDの他にその他回路OCが作り込まれている。その他回路OCは、たとえば、半導体装置10がLDO(Low Drop Out)レギュレータを有するのであれば、基準電圧源、出力トランジスタ(熱源素子HSE)を駆動するドライバおよび各種制御回路などを含むものとなる。
 図2は図1に示した熱源素子HSEおよび感温素子TEの配置を示し、特に熱源素子HSE、感温素子TEを含む過熱保護回路TSDの位置関係を拡大した図である。なお、これらの位置関係を詳しく説明するために、図1よりは参照符号を多く付している。以下参照符号を用いて図2について説明する。
 図2において熱源素子HSEは凹字状を成す。凹字状を形成するために、熱源素子HSEは、第1辺11、第2辺12、第3辺13、第4辺14、第5辺15、第6辺16、第7辺17、および第8辺18で構成される。第1辺11と第2辺12は同一線上に長さx3離れて配置され、それらの長さx1と長さx2はほぼ同じである。第2辺12は第1辺11の延びる方向から遠ざかる方向に延びる。第3辺13は、第1辺11および第2辺12のほぼ垂直方向に長さy1離れ、その長さはほぼ長さx3に等しい。第4辺14は端部aから端部bまで延び、その長さはほぼ長さy1に等しい。第5辺15は端部cから端部dまで延び、その長さはy1にほぼ等しい。第6辺16は第4辺14と並行させるがそれよりは長さは長く、端部gから端部hまで延びその長さはy0で示される。第7辺17は第5辺15と並行させるがそれよりは長さは長く、端部eから端部fまで延びその長さはy0で示される。第8辺18は、第1辺11、第2辺12、第3辺13とほぼ並行し、端部fから端部gまで延び、その長さはx0で示される。長さx0は長さx1,x2およびx3を加えた長さに等しい。
 熱源素子HSEは説明の便宜上および後述する熱分布シミュレーションの都合上、対向領域hse1,hse2および連結領域hse3の3つに分けている。なお、図2に示した一実施形態では対向領域が2つであり連結領域が1つになるように第4辺14および第5辺15を延長させて分割させたが、第3辺13を方向Xに延長させて分割するようにしてもかまわない。こうした構成下であっても熱源素子HSEは空間部SPを挟む2つの対向領域と、その2つの対向領域をつなぐ1つの連結領域で形成されることになる。
 図2において、対向領域hse1,hse2の中心部を示すポイントP1は熱源素子HSEの中でも最も温度が高い箇所であると推測される。連結領域hse3の中心部はポイントP2で示されるが、このポイントP2も連結領域hse3が所定以上の大きさであればポイントP1と同等の温度に置かれていると推測できる。連結領域hse3の一辺すなわち第3辺13の中心部はポイントP3で示される。ポイントP3は、熱源素子HSEの中で最も感温素子の中心部Tcに近い箇所である。ポイントP4は感温素子TEの中心部Tcと同じである。ポイントP4での温度検知値が熱源素子HSEの温度を推測する上で極めて重要となる。ポイントP5は、空間部SPの間口にあたり、空間部SPの中では最も温度が低いと推測できる箇所である。したがって、このポイントP5の温度を検知することは熱保護回路TSD全体の熱分布および熱勾配を把握する上で極めて有用である。
 空間部SPの大きさと形状は、対向領域hse1,hse2および連結領域hse3で画定される。空間部SPの間口は長さx3で、奥行きは長さy1でそれぞれ示される。空間部SPの中に熱保護回路TSDが配置される。特に感温素子TEの中心部Tcと第3辺13との最短距離y3は、中心部Tc(ポイントP4)と第4辺14との最短距離x31a、中心部Tcと第5辺15との最短距離x31bよりも短くなるように設定される。また、連結領域hse3の中心部であるポイントP2と中心部Tc(ポイントP4)との距離は、対向領域hse1の中心部であるポイントP1と中心部Tc(ポイントP4)との距離よりも短くなるように設定されている。すなわち、感温素子TEを挟む連結領域hse3の反対側には熱源となる半導体素子が存在していないため、方向Yにおける熱伝導が方向Xに比べて弱くなるが、上記の構成によってこうした不具合の程度を低減させることができる。
 図2には空間部SPと連結領域hse3とはほぼ同じ大きさのものを示した。すなわち、長さy0,y1,y2の間には、比率y1/y0=0.5、比率y2/y0=0.5とし、長さy1と長さy2を同じ長さとした。また、空間部SPの間口すなわち長さx3は長さx1,x2のほぼ1/2としたものである。こうした構成では連結領域hse3の面積が占める比率は、対向領域hse1,hse2の1/8(12.5%)となる。また、空間部SPの面積と熱源素子HSEの面積との比率はほぼ1/9(11.1%)となる。
 また図2に示した構成下では、対向領域hse1と対向領域hse2の中心部であるポイントP1同士を結ぶ線分P1-P1上に第3辺13を配置させ、感温素子TEを線分P1-P1上から少し離したものを示した。しかし、比率y1/y0=0.5をたとえば少し大きくしてたとえば0.55に設定し、感温素子TEを線分P1-P1上に配置するようにしてもよい。
 図3は図2の変形例の1つを示す。図3が図2と異なる箇所は、空間部SPの奥行き、すなわち長さy1の長さy0に占める比率を大きくしたものである。なお、図3は長さy0と長さy1との比率y1/y0=0.75に設定したものを模式的に示している。比率y1/y0を大きくすると空間部SPの面積は大きくなる。一方、連結領域hse3の面積は小さくなる。熱保護回路TSDの回路規模が大きくなってくるにつれ、空間部SPの面積を大きく取ることになる。しかし連結領域hse3が小さくなるにつれ連結領域hse3から感温素子TEに伝導される熱量が弱くなる。併せて対向領域hse1,hse2の中心部であるポイントP1と連結領域hse3の中心部であるポイントP2との温度差は拡がることが推測される。したがって、連結領域hse3の面積を小さくすることは、感温素子TEの温度検知感度を低下させることになり好ましいとは言いがたい。
 空間部SPの面積の大小に関わらず感温素子TEの中心部Tc(ポイントP4)と連結領域hse3との最短距離y3は中心部Tcと対向領域hse1,hse2の最短距離x31a,x31bよりも短くする。さらに中心部TcとポイントP2との距離は、中心部TcとポイントP1との距離よりも短くする。これによって、連結領域hse3と対向領域hse1,hse2との相対的な熱伝導の強度を補正することができる。
 長さy1と長さy0との比率y1/y0=0.75に設定したときには、空間部SPの奥行きは大きくなるが、連結領域hse3の長さy2と長さy0との比率y2/y0=0.25となり連結領域hse3の面積は減少する。
 図4は図2の変形例のもう1つを示す。図4が図2、図3と異なる箇所は、空間部SPの奥行き、すなわち長さy1の長さy0に占める比率を小さくしたことである。なお、図4は長さy0と長さy1との比率y1/y0=0.25に設定したものを模式的に示している。比率y1/y0を小さくすると空間部SPの面積は小さくなる。一方、連結領域hse3の面積は大きくなる。熱保護回路TSDの回路規模が小さくなってくるにつれ、空間部SPの面積は小さくて済むようになる。しかし必要以上に小さくすると熱保護回路TSDを十分に空間部SPの中に配置することができなくなる。一般的に連結領域hse3を大きくすることは熱伝導の観点では何ら支障が生じないものと推測できる。一方、連結領域hse3の中心部であるポイントP2から感温素子TEの中心部Tc(ポイントP4)までの距離は長くなるので、連結領域hse3からの熱伝導効率は低下することも推測することができる。
 図4においても、空間部SPの面積の大小に関わらず感温素子TEの中心部Tc(ポイントP4)と連結領域hse3との最短距離y3は中心部Tcと対向領域hse1,hse2の最短距離x31a,x31bよりも短くする。さらに中心部TcとポイントP2との距離は、中心部TcとポイントP1との距離よりも短くする。これによって、連結領域hse3の対向領域hse1,hse2との相対的な熱伝導の強度の低下を抑制する。
 長さy1と長さy0との比率y1/y0=0.25に設定したときには、空間部SPの奥行きは小さくなるが、連結領域hse3の長さy2と長さ/y0との比率y2/y0=0.75と成り連結領域hse3の面積は増加する。
 図5は、図1~図4に示した凹字状の熱源素子HSEおよび空間部SPの熱分布シミュレーション結果を示す。なお、シミュレーションにあたっては凹字状の熱源素子HSEを3つに分割して行った。分割方向は図1、図2に示したように方向Xに添い、対向領域hse10,hse20および連結領域hse30の3つとした。なお、こうした分割方向とは別に方向Yに添って、比較的面積が小さな連結領域が2つと、比較的面積の大きな対向領域が1つの、合わせて3つの領域に分割してもかまわない。いずれにしても本発明の熱分布シミュレーションは凹字状を2つの対向領域と1つの連結領域に分割することが特徴の1つである。
 熱分布解析のシミュレーションにはCAE(Computer Aided Engineering)を用いた。また、熱分布のシミュレーションにあたっては、半導体装置10の半導体チップSCHの大きさ、熱源素子HSEの大きさはもちろんのこと、半導体装置10が実装されるリードフレーム、ダイスボンディング材、ワイヤー、封止樹脂などのいわゆる構成材料の熱伝導率[W/m・℃]、密度[kg/m3]、比熱[J/kg・℃]の定数値を基にして求めた。
 本発明での熱分布シミュレーションでは半導体チップSCHはシリコンとし、その大きさは、たとえば1.0mm×1.0~1.4mm×1.4mmの範囲である。熱源素子HSEの面積は半導体チップSCH全体の面積の9%~33%とした。
 図5(A)~(C)において、対向領域hse10,hse20の長さx10,x20はたとえば250μmとし、長さy0はいずれも350μmとした。連結領域hse30の長さx30は110μmとし、連結領域hse30と対向領域hse10,hse20との間に大きさ15μmの距離(分離幅)を採り、連結領域hse30と対向領域hse10との間および連結領域hse30と対向領域hse20とを互いに分離させ、かつ対向領域hse10,hse20も互いに分離されるように構成した。
 図5(A)~(C)のそれぞれは、長さy1および長さy2が異なる。なお、図5(A)~(C)はいずれも長さy1と長さy2を加えた長さy0は一定とした。
 本発明にかかる熱分布シミュレーションを行うにあたっては、半導体チップSCHの最高温度が250℃になるように熱源素子HSEでの消費電力を調整した。具体的には熱源素子HSEに30Wの電力を印加した。なお、最高温度の250℃は、この種の半導体装置で許容されるものではないが、シミュレーションの1つとして行ったものである。また、熱源素子HSEに印加した30Wの消費電力も通常の使用状態からは逸脱することになる。しかし、こうした通常の使用状態から大きく外れた条件下で行うシミュレーションは予想外の状態を予見させ、また実際の熱分布の具体的な値を推測するにも好適であると思料する。
 図5(A)は、長さy1と長さy2を同じ長さに設定した場合を模式的に示す。長さy1と長さy2を同じ長さとした場合には、空間部SPの面積はほぼ連結領域hse30と同じになる。こうした構成下では、対向領域hse10,hse20の中心部であるポイントP1と連結領域hse30の中心部であるポイントP2の温度は共に250℃であり、両者の差はなかった。連結領域hse30の一部で感温素子TE(図示せず)と対向するポイントP3での温度は230℃前後であり、感温素子TEの中心部であるポイントP4の温度は200℃前後であった。空間部SPの端にあたるポイントP5では温度が150℃前後であった。したがって、最も温度が高いポイントP1,P2とポイントP5との温度差は100℃前後であること、また空間部SPの端から端までの温度差は80℃前後であった。このことは空間部SPに熱保護回路TSDを配置したとき、空間部SPのポイントP3とポイントP5に配置された素子同士にほぼ80℃の温度差が生じていることになる。なお、80℃という温度差はポイントP1,P2の温度が250℃に達したときの大きさであり、たとえばポイントP1,P2の許容温度が仮に150℃とすると、先の温度差80℃は50℃前後であると推測される。
 図5(B)は、図5(A)よりも空間部SPの面積を大きくし、逆に連結領域hse30の面積を小さくした場合を模式的に示す。具体的には長さy1を長さy0の2/3(67%)とし、連結領域hse30の長さy2を長さy0の1/3(33%)とした場合である。こうした構成下では、ポイントP1の温度が250℃であるとき、連結領域hse30の中心部であるポイントP2の温度はそれより少し低く240℃前後であった。またポイントP3の温度は220℃前後であり、ポイントP4の温度は210℃前後であった。ポイントP3,P4の温度分布は図5(A)のものと大きくは変わらなかった。
 図5(B)において、ポイントP3,P4の温度分布が図5(A)と大きく変わらなかった理由は、これらのポイントでは対向領域hse10,hse20、および連結領域hse30からの熱伝導が互いに絡み合うが、対向領域hse10,hse20の支配力が連結領域hse30に比べて強いからであると推測される。ポイントP5の温度は140℃前後であり、図5(A)のものとは大きな差は見られなかった。この理由は、ポイントP5の箇所では対向領域hse10,hse20の中心部であるポイントP1および連結領域hse30の中心部であるポイントP2から遠ざかっているため熱伝導の支配力が弱いからであると推測される。
 図5(C)は、図5(B)よりも空間部SPの面積をさらに大きくし、逆に連結領域hse30の面積を小さくした場合を模式的に示す。具体的には長さy1を長さy0の9/10とし、連結領域hse30の長さy2を長さy0の1/10とした場合である。こうした構成下では、ポイントP1,P2の温度が250℃であるとき、連結領域hse30の中心部であるポイントP2およびポイントP3の温度は200℃前後であった。またポイントP4すなわち感温素子TEの中心部Tcの温度は190℃前後であり、図5(B)よりも20℃程度低かった。いずれにしても感温素子TEの中心部Tcの温度は最高温度の250℃とは60℃前後異なり、温度検知感度が図5(A),(B)に比べて低下することが分かった。温度検知感度が低下する理由は、連結領域hse30の面積(体積)が小さくなり感温素子TEまでの熱伝導力が弱くなったこと、および対向領域hse10,hse20の中心部であるポイントP1から感温素子TEまでの距離が遠ざかっていることによるものと推測される。
 図6は図5と同様に図1~図4に示した凹字状の熱源素子HSEの熱分布シミュレーション結果を示す。熱源素子HSE全体に印加する電力は図5のものと同様に30Wとして見た。
 図6(A)~(C)において、対向領域hse12,hse22の長さx12および長さx22はいずれも330μm、長さy0は350μm、連結領域hse32の長さx32=110μmとし、連結領域hse32と対向領域hse12,hse22との間に15μmの距離を取り、連結領域hse32と対向領域hse12との間および連結領域hse32と対向領域hse22とを互いに分離させ、かつ対向領域hse12,hse22も互いに分離されるように構成した。したがって、図6(A)~(C)は、対向領域hse12,hse22の長さx12,x22を連結領域hse32の長さx32の3倍としたものである。この3倍の大きさは図5に示したほぼ2倍のものと相違する。
 図6(A)~(C)のそれぞれは、長さy1およびy2が異なる。なお、図6(A)~(C)は図5と同様に、いずれも長さy1と長さy2を加えた長さy0は一定とした。
 図6(A)は、空間部SPの面積を比較的小さく取った場合である。長さy1と長さy0との比率はy1/y0=0.25とし、長さy2と長さy0との比率はy2/y0=0.75とした。こうした構成下で熱源素子HSEおよび空間部SPの熱分布シミュレーションを実施して見ると、ポイントP1の温度が最も高い250℃であるとき,ポイントP2の温度も250℃であった。このとき、ポイントP3は240℃前後であり、感温素子TEの中心部TcであるポイントP4の温度は220℃前後であった。またポイントP5の温度は210℃前後であり、ポイントP1の温度とは40℃前後の温度差があり、図5のものとは大きな差が生じていることが分かった。
 図6(B)は、空間部SPの面積を図6(A)のものよりもさらに大きくした場合である。長さy1と長さy0との比率をy1/y0=0.5とし、長さy2と長さy0との比率y2/y0=0.5とした。こうした構成下で熱源素子HSEおよび空間部SPの熱分布をシミュレーションした結果、ポイントP1の温度が最も高い250℃であるとき,ポイントP2の温度も250℃であった。このとき、ポイントP3の温度は240℃前後であり、ポイントP4のそれは230℃前後であった。したがって、感温素子TEの中心部TcであるポイントP4の温度はポイントP1の温度よりも20℃前後低かった。また、ポイントP5の温度は200℃前後であった。
 図6(B)の構成下では空間部SPの面積と連結領域hse32の面積がほぼ等しく設定される。このときポイントP1からポイントP4までの距離すなわち対向領域hse12,hse22の中心部から感温素子TEの中心部(ポイントP4)までの距離が最短距離となる。この最短距離は図6(A)に示したそれよりも短い。このため最も温度の高い熱が感温素子TEまで効率よく伝導されるため、空間部SPの一部まで高い温度に保持されるものと推測される。
 図6(C)は、空間部SPの面積を図6(B)のものよりもさらに大きくした場合である。長さy1と長さy0との比率をy1/y0=0.75とし、長さy2と長さy0との比率はy2/y0=0.25とした。こうした構成下で熱源素子HSEおよび空間部SPの熱分布をシミュレーションした結果、ポイントP1の温度が最も高い250℃であるとき,ポイントP2の温度は240℃前後であった。このとき、ポイントP3およびポイントP4の温度は230℃前後であった。すなわち感温素子TEの中心部TcであるポイントP4の温度は最高温度とは20℃前後の温度差が見られた。したがって、図6(B)に比べると、熱源素子HSEの最高温度と感温素子TEが検知する温度の温度差はほぼ同じであった。
 図6に示した熱源素子HSEの構造は図5に示したものと同様に凹字状を2つの対向領域と1つの連結領域の3つの部分に分割したものである。なお、図6に示した分割構造とは異なるように、たとえば図2に示した第3辺13を、第6辺16および第7辺17に接するまで延長させて3つの領域すなわち2つの対向領域と1つの連結領域に分割してシミュレーションを行ってもよい。こうした構成下においても2つの対向領域は空間部SPを挟んで配置され、連結領域はこれら2つの対向領域を連結するように形成される。
 図7は、図5に示した熱分布シミュレーション結果を別の視点で表した温度勾配図である。図7の横軸にはポイントP1からポイントP5を示し、その縦軸は最高温度すなわちポイントP1との温度差を示す。熱分布のパラメータとしては空間部SPの奥行き、すなわち比率y1/y0を示し、y1/y0=0.90、y1/y0=0.67、y1/y0=0.50の3つを採っている。
 図7においてポイントP1は対向領域hse10,hse20の中心部を示す。ポイントP1は各パラメータに関わらず温度は250℃前後であることが分かった。
 ポイントP2は連結領域hse30の中心部にあたるが、ポイントP2の温度はポイントP1のそれとは少し異なり、最も温度差が小さかったのは比率y1/y0=0.5のときであり、そのときの温度差は0℃であり、ポイントP1と同じ温度であった。最も温度差が大きかったのは比率y1/y0=0.9のときであり、空間部SPの面積が今回のシミュレーションで最も大きく設定され、連結領域hse30が最も小さく設定されたときである。このときのポイントP2の温度はポイントP1よりも50℃前後低かった。
 ポイントP3は連結領域hse30の一辺の一部にあたる。すなわち、空間部SPの奥行きの端部にあたり空間部SPの中では最も温度が高くなると推測できる箇所である。ポイントP3での温度差はポイントP2と同様に比率y1/y0=0.5が最も小さく温度差は20℃前後であった。次に小さかったのは比率y1/y0=0.67であり、最も温度差が大きかったのは比率y1/y0=0.9のときであり、そのときの温度差は50℃前後であった。
 ポイントP4は感温素子TEの中心部Tcにあたる。ポイントP4はポイントP3から30μm~60μm離れているが、ポイントP3の温度よりも20℃前後低かった。しかし比率y1/y0=0.5と比率y1/y0=0.67との温度差に大きな差異は見られなかった。しかし、比率y1/y0=0.9ではそれらと20℃前後の差が生じていた。しかし、ポイントP4の温度差はポイントP3に比べると縮小されていた。
 ポイントP5は空間部SPのいわゆる間口にあたり空間部の中では最も温度が低い箇所であると推測できるが、シミュレーション結果ではy1/y0は0.5~0.9の範囲で最高温度と110℃前後の差が生じていた。しかし、ポイントP5の温度差はポイントP2に比べると縮小されていた。なお、図7に示した特性から言えることは、y1/y0は、0.67~0.5の範囲では各ポイントでの温度に大きな差は見られなかったことである。なお、比率y1/y0=0.5未満についてのシミュレーションは行っていないが、比率y1/y0=0.67とほぼ同じ特性になるものと推測される。
 図8は、図6に示した熱分布シミュレーション結果を別の視点で表した温度勾配図である。図8の横軸にはポイントP1からポイントP5を示し、その縦軸は最高温度すなわちポイントP1との温度差を示す。熱分布パラメータとしては空間部SPの奥行き、すなわち比率y1/y0を示す。比率y1/y0=0.75、y1/y0=0.50、y1/y0=0.25の3つを採っている。
 図8においてポイントP1は対向領域hse12,hse22の中心部を示す。ポイントP1は各パラメータに関わらず温度はほぼ250℃であった。図8に示す特性は、図7に示したものよりは温度差が小さくなり、好ましい結果が得られた。また、空間部SPの奥行きを変えたときの各ポイントの温度は図7のものとほぼ傾向を示すことが分かった。すなわち、比率y1/y0=0.5のときに最も温度差が小さく、それ以上であってもそれ以下であってもポイントP1と各ポイントの温度差は大きくなる傾向が見られた。しかし図8は図7に比べると各ポイントの温度差は縮小され、それらの絶対値はほぼ1/2まで縮小されることが分かった。
 ポイントP2は連結領域hse32の中心部であるが、ポイントP2の温度は比率y1/y0の大きさに関わらずほぼ同じであり、しかも最高温度の250℃とほぼ同じであった。
 ポイントP3は連結領域hse32の一辺の一部にあたる。すなわち、空間部SPの奥行きの端部にあたり空間部SPの中では最も温度が高くなると推測できる箇所である。ポイントP3での温度差は空間部SPの奥行きの大きさに関わらずほぼ同じであり、240℃前後であった。
 ポイントP4は感温素子TEの中心部Tcにあたる。ポイントP4はポイントP3から30μm~60μm離れているが、ポイントP3の温度よりも10℃前後低かった。y1/y0=0.5と、y1/y0=0.25、y1/y0=0.75との温度差は10℃前後であり、その差はポイントP3とほぼ同じであった。
 ポイントP5は空間部SPの間口にあたり空間部の中では最も温度が低い箇所であると推測できるがシミュレーション結果では、0.25≦y1/y0≦0.75の範囲で最高温度より50℃前後低かった。しかしポイントP5の温度は図7に比べると、その温度差はほぼ1/2となり、ポイントP1との温度差は大幅に縮小されていた。
 図8についてまとめると次のとおりである。すなわち、対向領域hse12,hse22の面積(体積)を連結領域hse32のそれよりも大きくすることによって、空間部SP内での温度勾配は小さくなり、感温素子TEを配置するには好ましくなるということである。
 図9は図7~図8に示したポイントP4の温度、とりわけ最高温度250℃との温度差をプロットした温度勾配図である。ポイントP4は言うまでもなく、感温素子TEの中心部Tcにあたり、熱源素子HSEの温度を監視するために特に重要な箇所である。すなわち、ポイントP4の温度がポイントP1の温度に近ければ近いほど温度検知感度を高めることができる。
 図9は2つのパラメータでプロットしている。1つは、図5に示した連結領域hse30の方向Xの長さx30と長さx10(x20)の比率すなわち、x10(x20)/x30=2とした場合である。もう1つは図6に示した方向Xの長さx32と長さx12(x22)との比率すなわちで、x12(x22)/x32=3とした場合である。簡約すれば、対向領域の幅を連結領域のそれの2倍にしたときと3倍にしたときの温度検知感度の比較である。
 図9から明らかになることは、対向領域の幅を連結領域のそれよりも大きくすると温度差は小さくなり温度検知感度が高くなるということである。こうした傾向は、空間部SPの奥行きを示す比率(y1/y0)に関わらず同じ傾向を示した。たとえば、比率y1/y0=0.5であるとき、幅が3倍のときの温度差は20℃前後であったが幅を2倍にしたときの温度差は40℃前後となり、両者にはほぼ2倍の温度差が見られた。
 また図9から明らかになることは、空間部SPの奥行きの比率を示す、y1/y0の大きさは比率y1/y0=0.5の近傍が良く、好ましい範囲はたとえば0.25~0.75であった。
 図9には、対向領域hse10,hse20,hse12,hse22の幅が連結領域hse30,hse32の2倍または3倍の比率である場合を示した。しかし、本発明では2倍、3倍だけではなく、1倍すなわち対向領域の幅と連結領域の幅が同じであっても同等の効果が奏されると類推される。ここで再度、図5(A)~(C)を参照するが、図5(C)から分かるように、空間部SPへの熱伝導は対向領域hse10,hse20の中心部(ポイントP1)から遠く離れているため十分ではない。しかし、連結領域hse30の面積が大きくなり、図5(A)に示すようにある程度大きくなると空間部SPの温度は上昇していることが分かる。こうした状態は、見方を変えると空間部SPへの熱伝導は連結領域hse30が支配的になっているということである。このときの連結領域hse30の幅は対向領域hse10,hse20の1/2である。してみれば、対向領域hse10,hse20の幅を連結領域hse30と同じにしても同等の効果が奏されると解することができる。
 本発明の半導体装置10は熱源素子HSEを凹字状に構成し、かつ所定の大きさの空間部SPを設けるにあたっては、2つの対向領域と1つの連結領域に分類して3つの領域に分割する。その後、熱源素子HSEに所定の消費電力を印加し、かつ最高温度を監視、管理して熱源素子HSEおよび空間部SPの熱分布や熱勾配のシミュレーションを行う。その後シミュレーション結果を分析する。分析は熱源素子HSEの最高温度、感温素子TEの温度分布、空間部SPの熱分布と熱勾配について吟味する。その後、分析結果に基づき、空間部SPに熱保護回路TSDを配置するに必要な面積を決め、最終的に熱源素子HSEと空間部SPの形状と大きさを決定する。こうした各ステップに基づき、熱源素子HSEに要求される面積と熱保護回路TSDの機能を発揮するに好適な半導体装置10を設計するとよい。
 図10は、熱源素子HSEでの消費電力と温度検知感度との関係を示すシミュレーション図である。すなわち、熱源素子HSEでの消費電力を変えたときのポイントP1とポイントP4すなわち感温素子TEの中心部Tcとの温度差を示した熱分布シミュレーション結果を示す。パラメータとしては図5に示したように、対向領域hse10,hse20の横幅x10,x20を連結領域30の横幅x30の2倍としたものと、図6に示したように対向領域hse12,hse22の横幅x12,x22を連結領域32の横幅x32の3倍とした2通りである。このとき両者とも、長さy1/y0およびy2/y0の大きさはそれぞれy1/y0=0.5、y2/y0=0.5とし、空間部SPと連結領域hse30(hse32)の大きさがほぼ同じ場合である。
 さて、これまで説明してきた図5~図9は熱源素子HSEでの消費電力が30Wの場合であった。図10はこの30Wの消費電力と、60Wの消費電力のときの熱分布シミュレーション結果から得られる特性図であり、横軸に消費電力を、縦軸に温度差をそれぞれ示す。
 温度差は、横幅が2倍の場合すなわちx10(x20)/x30=2に設定したときには、消費電力が30Wの場合、ポイントP1とポイントP4との温度差は44℃であった。同条件で、消費電力を60Wに増大すると、両者の温度差は88℃まで拡がった。
 また、温度差は、横幅が3倍の場合すなわちx12(x22)/x32=3に設定したときには、消費電力が30Wの場合は、ポイントP1とポイントP4とのは22℃であった。同条件で、消費電力を60Wに増大させると、両者の温度差は48℃まで拡がった。しかし、横幅を3倍にした場合には2倍のものに比べて、ポイントP1とポイントP4との温度差は大幅に縮小することが分かった。このことは感温素子TEの温度検知感度を示すバロメータとして、対向領域(x10,x20,x12,x22)の横幅と連結領域(hse30,hse32)の横幅との比率が大きく関わっていることを示唆している。
 図10に示した熱分布シミュレーション結果は、この種の半導体装置、半導体集積回路装置を設計、製造する上で極めて有用である。なぜならば、熱源素子HSEで消費する広範囲の消費電力に対する感温素子TEの温度検知感度を類推することができるからである。
 図10を参照すると、たとえば、熱源素子HSEの消費電力が5Wのときの感温素子TEの温度検知感度を推測することができる。対向領域の横幅が連結領域の2倍であるときの温度差は8℃前後であり、横幅の比率が3倍であるときには4℃前後であることがわかる。したがって、熱源素子HSEの消費電力が5Wの場合には感温素子TEの検知感度は10℃以下であることが分かる。また、消費電力が10Wであるときには、それぞれ16℃前後,8℃前後であることが分かる。
 図10に示した特性図は、半導体装置10が実装されるリードフレーム、ダイスボンディング材、ワイヤー、樹脂などのいわゆる構成材料の熱伝導率[W/m・℃]、密度[kg/m3]、比熱[J/kg・℃]等によって違ったものになるので幾つかの組み合わせをあらかじめ用意しておけば半導体装置10の設計期間の短縮、製品品質の向上化が図れる。
 図11は熱源素子HSEの面積と空間部SPのそれとの面積比率示す。図2で説明した空間部SPの間口(長さx3)と奥行き(長さy1)の大きさと、対向領域hse1,hse2の幅(長さx1,x2)をパラメータにして求めた図である。
 図11において、たとえば、x1(x2)/x3=2、y1/y0=0.50の場合には、空間部SPの面積は熱源素子HSEの面積の1/9(=0.11)となり、面積比率は11.1%となる。このケースに当てはまるのが図5(A)である。また、x1(x2)/x3=3、y1/y0=0.50の場合には空間部SPの面積は熱源素子の1/13となり、面積比率は7.7%となる。このケースに当てはまるのが図6(B)である。また、これまでの図には示していないが、x1(x2)/x3=1、y1/y0=0.75の場合には空間部SPの面積は熱源素子HSEの面積の1/3となり、面積比率は33.3%となる。本発明では空間部SPの面積の熱源素子HSEに占める面積比率は図11に示した3.7%~33.3%の範囲である場合が多くなる。すなわち、熱源素子HSEおよび空間部SPの平面視形状の面積をそれぞれS1,S2とすると、S2は、おおよそ、0.037×S1~0.333×S1の範囲になる。
 図12は、空間部SPに配置される熱保護回路TSDの具体的な回路構成の一例を示す。熱保護回路TSDは従前よく知られたものである。熱保護回路TSDは、感温素子TEの他にたとえば、定電流源CC1,CC2、抵抗R1,R2、トランジスタQ、コンパレータCOM、インバータINVを有する。感温素子TEはたとえばトランジスタをダイオード接続したものを用いる。感温素子TEがたとえばダイオードであるときダイオードの順方向電圧は温度変化に対してたとえば-2mVの温度係数を有しているので、感温素子TEに生じた電圧をコンパレータCOMで比較することで熱源素子HSEの温度を検知することができる。コンパレータCOMから出力されるTSDオンオフ信号によって熱保護回路TSDをオンオフさせる。感温素子TEとしては半導体の拡散抵抗、ポリシリコン抵抗などを用いることもできる。図12に示した熱保護回路TSDは一例であり、回路構成はさらに複雑になり集積度が増加し、あるいは回路構成はさらに簡素化される場合もある。回路構成、回路素子の数によって空間部SPの間口と奥行きの大きさを設定するとよい。
 本発明の半導体装置およびその設計方法は、熱分布シミュレーションに基づき熱源素子の温度に近い温度を感温素子で検知することができるので、パワートランジスタを用いる半導体装置、半導体集積回路装置の熱監視、熱管理に極めて好適であるのでその産業上の利用可能性は極めて高い。
 10 半導体装置
 11 第1辺
 12 第2辺
 13 第3辺
 14 第4辺
 15 第5辺
 16 第6辺
 17 第7辺
 18 第8辺
 CC1,CC2 定電流源
 COM コンパレータ
 HSE 熱源素子
 hse1,hse2,hse10,hse12,hse20,hse22 対向領域
 hse3,hse30,hse32 連結領域
 OC その他回路
 P1~P5 ポイント
 Q トランジスタ
 SCH 半導体チップ
 SP 空間部
 TE 感温素子
 TSD 熱保護回路

Claims (11)

  1.  熱源素子と感温素子を備えた半導体装置であって、前記熱源素子の平面視形状は、第1の距離x1を有する第1辺と、前記第1辺と同一線上に第2の距離x3離れ前記第1辺から遠ざかる方向に第3の距離x2延びる第2辺と、前記第1辺および前記第2辺の垂直方向に第4の距離y1離れ前記第2の距離x3と同じ長さを有する第3辺と、前記第1辺の一端と前記第3辺の一端を結ぶ第4辺と、前記第2辺の一端と前記第3辺の他端を結ぶ第5辺と、前記第1辺の他端にその一端が接続され前記第4辺が延びる方向と同じであってかつそれよりも長さが長く長さy0で示される第6辺と、前記第2辺の他端に接続されその一端が前記第5辺が延びる方向と同じであってかつそれよりも長い長さy0で示される第7辺と、前記第6辺および前記第7辺の他端同士を結ぶ第8辺を備えており、前記第8辺は長さx0を有しており、前記感温素子は前記第3辺の近傍に配置されていることを特徴する半導体装置。
  2.  前記感温素子の中心部は前記第4辺および第5辺よりも前記第3辺の近傍に配置されていることを特徴とする請求項1に記載の半導体装置。
  3.  前記第4の距離y1と前記長さy0との間は、0.25≦y1/y0≦0.75であることを特徴とする請求項1または2に記載の半導体装置。
  4.  前記第4の距離y1はほぼ、y1/y0=0.5であることを特徴とする請求項3に記載の半導体装置。
  5.  前記第1の距離x1と前記第3の距離x2はほぼ、x3≦x1=x2≦3×x3であることを特徴とする請求項3に記載の半導体装置。
  6.  前記熱源素子および前記感温素子は、前記第1辺,第2辺,第3辺,第4辺および前記第5辺で画定された空間部に配置され、前記熱源素子の平面視上の面積をS1とし、前記空間部の面積をS2としたときに、0.037×S1≦S2≦0.333×S1であることを特徴する請求項1~5のいずれか1項に記載の半導体装置。
  7.  前記感温素子は熱保護回路の一部を成し、前記熱保護回路は前記感温素子および基準電圧回路に定電流を供給する定電流源と前記基準電圧回路の基準電圧と前記感温素子に生じた電圧を比較するコンパレータを有し、前記熱保護回路は前記空間部に配置されていることを特徴とする請求項6に記載の半導体装置。
  8.  半導体チップ内に熱源素子と感温素子を有する半導体装置であって、前記熱源素子は空間部を挟む2つの対向領域と、前記2つの対向領域をつなぐ連結領域を備えて凹字状を成し、前記感温素子は前記連結領域の近傍の前記空間部に配置されていることを特徴とする半導体装置。
  9.  前記感温素子の中心部と前記連結領域の中心部との間の距離は、前記感温素子の中心部と前記対向領域の1つの領域の中心部との間の距離よりも短いことを特徴とする請求項8に記載の半導体装置。
  10.  請求項8~9のいずれか1項に記載の半導体装置を設計するにあたり、前記凹字状の熱源素子を3つの領域に分割すると共にそれら分割した領域および前記空間部の大きさ、形状を決定する第1ステップと、前記第1ステップで決定した前記熱源素子および前記空間部の熱分布シミュレーションを実行する第2ステップと、前記第2ステップで実行したシミュレーション結果を分析する第3ステップと、前記第3ステップで得られたシミュレーション結果に基づき前記3つの領域と前記空間部の大きさを決定する第4ステップを有することを特徴とする半導体装置の設計方法。
  11.  前記3つの領域の2つは前記対向領域であり、前記3つの領域の1つは前記連結領域であることを特徴とする請求項10に記載の半導体装置の設計方法。
PCT/JP2014/080706 2013-12-26 2014-11-20 半導体装置およびその設計方法 WO2015098379A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167016963A KR20160089497A (ko) 2013-12-26 2014-11-20 반도체 장치 및 그 설계 방법
EP14873664.8A EP3089206B1 (en) 2013-12-26 2014-11-20 Semiconductor device, and design method for same
US15/107,989 US20160329315A1 (en) 2013-12-26 2014-11-20 Semiconductor device and method for designing it
KR1020187004288A KR20180018860A (ko) 2013-12-26 2014-11-20 반도체 장치 및 그 설계 방법
CN201480070363.0A CN105849889B (zh) 2013-12-26 2014-11-20 半导体装置及其设计方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013269647A JP6345930B2 (ja) 2013-12-26 2013-12-26 半導体装置およびその設計方法
JP2013-269647 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015098379A1 true WO2015098379A1 (ja) 2015-07-02

Family

ID=53478252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080706 WO2015098379A1 (ja) 2013-12-26 2014-11-20 半導体装置およびその設計方法

Country Status (6)

Country Link
US (1) US20160329315A1 (ja)
EP (1) EP3089206B1 (ja)
JP (1) JP6345930B2 (ja)
KR (2) KR20160089497A (ja)
CN (1) CN105849889B (ja)
WO (1) WO2015098379A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102089881B1 (ko) * 2015-10-01 2020-03-16 로무 가부시키가이샤 반도체 장치

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229866A (ja) * 1985-11-29 1987-10-08 Nippon Denso Co Ltd 半導体装置
JPS63229757A (ja) * 1987-03-19 1988-09-26 Nippon Denso Co Ltd 半導体装置
JPS63229758A (ja) * 1987-03-19 1988-09-26 Nippon Denso Co Ltd 半導体装置
JPH01177087A (ja) 1987-12-29 1989-07-13 Yamaha Corp 自動伴奏装置
JPH08213441A (ja) * 1995-01-31 1996-08-20 Nec Corp ダイオードの順電圧を利用した温度検知方法
JP2001015655A (ja) * 1999-06-25 2001-01-19 Internatl Rectifier Corp パワーmosfetダイと、小型感知mosfetを備えた制御および保護回路ダイとを有するハイブリッドパッケージ
JP2002108465A (ja) 2000-09-27 2002-04-10 Ricoh Co Ltd 温度検知回路および加熱保護回路、ならびにこれらの回路を組み込んだ各種電子機器
JP2006332176A (ja) * 2005-05-24 2006-12-07 Nissan Motor Co Ltd 半導体装置
JP2006344721A (ja) * 2005-06-08 2006-12-21 Denso Corp 半導体装置
JP2008172132A (ja) * 2007-01-15 2008-07-24 Denso Corp 半導体装置
JP2011049272A (ja) * 2009-08-26 2011-03-10 Toyota Motor Corp 半導体装置
JP2011049273A (ja) * 2009-08-26 2011-03-10 Toyota Motor Corp 半導体装置と半導体装置の制御方法
JP2011108751A (ja) * 2009-11-13 2011-06-02 Toyota Motor Corp 半導体装置
JP2013004677A (ja) * 2011-06-15 2013-01-07 Toshiba Corp 半導体集積回路及び半導体集積回路の動作制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3746604B2 (ja) 1997-12-09 2006-02-15 株式会社ルネサステクノロジ 半導体装置およびその製造方法
JP3204226B2 (ja) * 1985-11-29 2001-09-04 株式会社デンソー 半導体装置
CN101221588B (zh) * 2007-01-09 2011-01-26 昆山杰得微电子有限公司 一种pcb设计中的散热设计方法
US8155916B2 (en) * 2008-07-07 2012-04-10 Infineon Technologies Ag Semiconductor component and method of determining temperature

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229866A (ja) * 1985-11-29 1987-10-08 Nippon Denso Co Ltd 半導体装置
JPS63229757A (ja) * 1987-03-19 1988-09-26 Nippon Denso Co Ltd 半導体装置
JPS63229758A (ja) * 1987-03-19 1988-09-26 Nippon Denso Co Ltd 半導体装置
JPH01177087A (ja) 1987-12-29 1989-07-13 Yamaha Corp 自動伴奏装置
JPH08213441A (ja) * 1995-01-31 1996-08-20 Nec Corp ダイオードの順電圧を利用した温度検知方法
JP2001015655A (ja) * 1999-06-25 2001-01-19 Internatl Rectifier Corp パワーmosfetダイと、小型感知mosfetを備えた制御および保護回路ダイとを有するハイブリッドパッケージ
JP2002108465A (ja) 2000-09-27 2002-04-10 Ricoh Co Ltd 温度検知回路および加熱保護回路、ならびにこれらの回路を組み込んだ各種電子機器
JP2006332176A (ja) * 2005-05-24 2006-12-07 Nissan Motor Co Ltd 半導体装置
JP2006344721A (ja) * 2005-06-08 2006-12-21 Denso Corp 半導体装置
JP2008172132A (ja) * 2007-01-15 2008-07-24 Denso Corp 半導体装置
JP2011049272A (ja) * 2009-08-26 2011-03-10 Toyota Motor Corp 半導体装置
JP2011049273A (ja) * 2009-08-26 2011-03-10 Toyota Motor Corp 半導体装置と半導体装置の制御方法
JP2011108751A (ja) * 2009-11-13 2011-06-02 Toyota Motor Corp 半導体装置
JP2013004677A (ja) * 2011-06-15 2013-01-07 Toshiba Corp 半導体集積回路及び半導体集積回路の動作制御方法

Also Published As

Publication number Publication date
CN105849889A (zh) 2016-08-10
KR20160089497A (ko) 2016-07-27
EP3089206A1 (en) 2016-11-02
KR20180018860A (ko) 2018-02-21
US20160329315A1 (en) 2016-11-10
EP3089206A4 (en) 2017-08-23
JP6345930B2 (ja) 2018-06-20
EP3089206B1 (en) 2019-04-17
CN105849889B (zh) 2019-03-01
JP2015126113A (ja) 2015-07-06

Similar Documents

Publication Publication Date Title
CN100504321C (zh) 用于热感测的系统和方法
JP5431994B2 (ja) 電流制限回路
JP2003125588A (ja) 電力変換装置
US20130257329A1 (en) Junction temperature measurement of a power mosfet
JP2011171478A (ja) 半導体装置
JP6345930B2 (ja) 半導体装置およびその設計方法
JP6609348B2 (ja) 半導体チップ
JP5104016B2 (ja) パワー半導体モジュール
JP6603411B2 (ja) Dc/dcコンバータおよび電子機器
CN101650381A (zh) 电源转换装置及其电流检测装置
JP2019017128A (ja) 逆接続保護装置の状態検出回路
CN108291843B (zh) 具有第一温度测量元件的半导体构件以及用于确定流过半导体构件的电流的方法
CN114070289A (zh) 具有负载电流感测模态的晶体管封装
JPH11340459A (ja) 温度検出回路
JP2011087401A (ja) 電子部品の温度検出装置及び車載電力素子の駆動制御装置
JP2010035399A (ja) 電力変換器およびその電流検出装置
JP6024210B2 (ja) スイッチング装置
JP2014204003A (ja) 電力供給モジュール
JP2017174885A (ja) 半導体装置
JP7479523B2 (ja) 半導体装置
JP2013205293A (ja) 温度検出装置及び温度検出方法
US20220384294A1 (en) Integrated Circuit Device
JP7395010B2 (ja) 半導体モジュール
WO2024043336A1 (ja) 温度センサモジュールおよびそれを用いた電子装置
US20220384293A1 (en) Integrated Circuit Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873664

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014873664

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873664

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167016963

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15107989

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE