WO2015098322A1 - 発光装置用基板、発光装置、および、発光装置用基板の製造方法 - Google Patents

発光装置用基板、発光装置、および、発光装置用基板の製造方法 Download PDF

Info

Publication number
WO2015098322A1
WO2015098322A1 PCT/JP2014/079848 JP2014079848W WO2015098322A1 WO 2015098322 A1 WO2015098322 A1 WO 2015098322A1 JP 2014079848 W JP2014079848 W JP 2014079848W WO 2015098322 A1 WO2015098322 A1 WO 2015098322A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
light emitting
insulating layer
ceramic
Prior art date
Application number
PCT/JP2014/079848
Other languages
English (en)
French (fr)
Inventor
正宏 小西
伊藤 晋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2015554660A priority Critical patent/JP6215357B2/ja
Priority to CN201480069824.2A priority patent/CN105830241B/zh
Priority to US15/104,649 priority patent/US10276765B2/en
Publication of WO2015098322A1 publication Critical patent/WO2015098322A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials

Definitions

  • the present invention provides a base made of a metal material, an electrode pattern for establishing electrical connection with a light emitting element, and an insulating layer formed by containing ceramics between the base and reflecting light from the light emitting element
  • the present invention relates to a method for manufacturing a substrate for a light emitting device.
  • a substrate used in a light emitting device As performances that are basically required as a substrate used in a light emitting device, there are high reflectivity, high heat dissipation, dielectric strength, and long-term reliability.
  • a substrate for a light-emitting device used for high-intensity illumination is required to have a high withstand voltage.
  • ceramic substrates or substrates having an organic resist layer as an insulating layer on a metal substrate are known as light emitting device substrates.
  • the structure of the substrate using the ceramic substrate and the metal substrate will be described.
  • the ceramic substrate is manufactured by forming an electrode pattern on a plate-shaped ceramic substrate.
  • the ceramic substrate has been sought to improve the brightness by arranging a large number of light emitting elements on the substrate. As a result, ceramic substrates have been getting larger year by year.
  • a general LED light-emitting device used at an input power of 30 W for example, by arranging blue LED elements of about 650 ⁇ m ⁇ 650 ⁇ m in size or before and after on a single substrate classified as a medium size , About 100 blue LED elements are required.
  • a ceramic substrate on which about 100 blue LED elements are arranged for example, there is one using a plane size of 20 mm ⁇ 20 mm or more and a thickness of about 1 mm.
  • ceramic materials are basically ceramics
  • the ceramic substrate is enlarged, not only the external dimensions of the ceramic substrate but also the dimensions of the electrode pattern formed on the ceramic substrate are likely to be distorted. As a result, the production yield of the ceramic substrate is lowered, and the ceramic substrate is reduced. There exists a subject that the manufacturing cost of a board
  • a metal substrate having high thermal conductivity may be used as a substrate used in a high-power light-emitting device.
  • an insulating layer in order to mount a light emitting element on a metal substrate, an insulating layer must be provided on the metal substrate in order to form an electrode pattern connected to the light emitting element.
  • the insulating layer in order to improve the light utilization efficiency in the high-power light-emitting device substrate, the insulating layer needs to have high light reflectivity.
  • An organic resist is a material conventionally used as an insulating layer in a substrate for a high-power light-emitting device. Further, the light reflection layer / insulation layer may be formed using a ceramic-based paint.
  • Patent Document 1 discloses a method for forming a light reflection layer / insulation layer in which a ceramic paint is applied to a substrate.
  • Patent Documents 2 to 4 disclose a light emitting device substrate in which a light reflection layer / insulating layer made of ceramics is formed on a metal substrate by coating or spraying.
  • Japanese Patent Publication “JP 59-149958 (published on August 28, 1984)” Japanese Patent Publication “JP 2012-102007 (May 31, 2012)” Japanese Patent Publication “JP 2012-69749 A (published on April 5, 2012)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2006-332382 (Released on Dec. 7, 2006)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2007-317701 (Released on Dec. 6, 2007)”
  • a dielectric breakdown voltage of 4 to 5 kV or more is required for the entire light emitting device, and an equivalent breakdown voltage is also required for the substrate for the light emitting device. Often.
  • the ceramic substrate has a thick insulating layer, it is easy to obtain withstand voltage suitable for the high-luminance type lighting device.
  • a light emitting device substrate in which a light reflecting layer / insulating layer is formed using a ceramic-based paint on the surface of a metal substrate, it is difficult to form the light reflecting layer / insulating layer. It is difficult to reproduce stably.
  • Ceramic paints used on low melting point metals such as aluminum include those using glass binders.
  • a vitreous film can be synthesized without going through a molten state at a temperature much lower than the melting temperature of the glass. That is, when fired at a low temperature of 200 ° C. to 500 ° C., a ceramic layer, in reality, a mixed layer of ceramics and glass can be formed in such a manner that the ceramic particles are covered with glass.
  • the vitreous that appears when the sol-like glass material is dried and gelled is a porous film. Although considerable pores disappear by sintering, the thin film cannot completely close the pores even after sintering, and the ceramic and glassy mixed layer may be inferior in dielectric strength.
  • the thickness of the light reflection layer / insulating layer is increased to stably secure the required high withstand voltage, there arises a problem that the thermal resistance is increased and the heat dissipation performance is lowered. Furthermore, if the thick film of the light reflecting layer / insulating layer is formed by the sol-gel method, the film is likely to be cracked, and the withstand voltage is also lowered.
  • a mixture of ceramic particles and low-melting glass particles may be used as a method for synthesizing a glass layer coated with a glassy material using a method other than the sol-gel method.
  • the low melting point glass particles are once melted and then cured to form a ceramic particle-containing glass layer.
  • a low-melting glass requires a temperature of about 800 ° C. to 900 ° C., so a general metal having a low melting point such as aluminum cannot withstand the above process.
  • Patent Document 5 discloses a light source substrate in which an insulating layer made of ceramics such as alumina is formed on a metal substrate by plasma spraying.
  • a light source substrate on which an alumina insulating layer is formed by plasma spraying realizes a light source substrate having excellent electrical withstand voltage.
  • the substrate for a light source in which an alumina insulating layer is formed by plasma spraying is excellent in electrical withstand voltage resistance, even if the best alumina film is obtained, the reflectivity is disclosed. Is about 82% to 85%. Therefore, there is a problem that the reflectance is low as a substrate for a light-emitting device that is used for high-luminance illumination that requires a reflectance of 90% or more, more preferably 95% or more.
  • FIG. 19 is a schematic sectional view of a conventional substrate 200.
  • a ceramic layer 201 is formed as an insulating layer on a base 210 by plasma spraying, and a light emitting element 206 is mounted on the ceramic layer 201.
  • the substrate 210 is a metal substrate
  • the ceramic layer 201 is laminated on the substrate 210 by spraying, it is necessary to roughen the surface of the substrate 210 by sandblasting or the like as a pretreatment in order to increase the adhesion of the ceramic layer 201. There is.
  • the unevenness at the boundary between the base body 210 and the ceramic layer 201 in FIG. 19 is an uneven surface generated for this reason. Further, when ceramics are laminated by thermal spraying, the surface of the ceramic layer 201 tends to be uneven. For this reason, the surface of the ceramic layer 201 becomes an uneven surface as shown in FIG. 19 together with the uneven surface resulting from the pretreatment at the boundary between the base 210 and the ceramic layer 201.
  • the light emitting element 206 is mounted on such an uneven surface, the light emitting element 206 and the insulating layer made of the ceramic layer 201 are in point contact, a thermal resistance region is generated at the boundary portion, and the temperature of the light emitting element 206 is rapidly increased. To do.
  • the substrate 200 shown in FIG. 19 is insufficient as a substrate for a light-emitting device for high-luminance illumination because a high thermal resistance region easily appears.
  • a substrate for a light emitting device using a conventional metal substrate a substrate having low thermal resistance, excellent heat dissipation, and excellent reflectivity and dielectric strength is at least suitable for mass production. There is a problem that it does not exist.
  • Another problem when using a metal substrate is a reduction in the lifetime of the light emitting device due to a difference in linear expansion coefficient between the light emitting device and the substrate.
  • a typical material for a substrate for forming a blue light emitting element sapphire or gallium nitride can be cited, but the linear expansion coefficient of these inorganic substances is smaller than that of a metal such as aluminum or copper, and the linear expansion of both of them is There are significant differences in the coefficients. For this reason, if the load of a temperature cycle is applied, the output of a light emitting element will fall, ie, the lifetime will arise.
  • the present invention has been made in view of the above-described conventional problems, and its purpose is to have long-term reliability including high reflectivity, high heat dissipation, high withstand voltage, heat resistance and light resistance.
  • Another object of the present invention is to provide a light emitting device substrate that is further excellent in mass productivity, a light emitting device using the light emitting device substrate, and a manufacturing method for manufacturing the light emitting device substrate.
  • a substrate for a light-emitting device is provided between a base formed of a metal material, an electrode pattern for electrical connection with a light-emitting element, and the base.
  • a first insulating layer formed by containing a first ceramic that reflects light from the light emitting element and a second ceramic formed by thermal spraying to reinforce a dielectric strength performance of the first insulating layer; And an insulating layer.
  • a light-emitting device substrate that has long-term reliability including high reflectivity, high heat dissipation, high withstand voltage, heat resistance and light resistance, and is excellent in mass productivity. There is an effect that it can be provided.
  • (A) is a plan view of a substrate according to Embodiment 1 of the present invention
  • (b) is a cross-sectional view taken along the line AA
  • (c) is a partially enlarged view of the cross section.
  • (A)-(d) is a schematic cross section explaining the manufacturing process of the board
  • (A) is schematic sectional drawing of the board
  • (b) is thermal conductivity (sigma) th (W / (m * degreeC)) with respect to each layer shown to (a), and layer thickness d (mm). ), Thermal resistance Rth (° C./W), and temperature rise ⁇ T (° C.).
  • (A) is schematic sectional drawing of the board
  • (b) is thermal conductivity (sigma) th (W / (m * degreeC)) with respect to each layer shown to (a), layer thickness d (mm), heat It is a figure which shows resistance Rth (degreeC / W) and temperature rise (DELTA) T (degreeC).
  • (A) is schematic sectional drawing of the board
  • (b) is thermal conductivity (sigma) th (W / (m * degreeC)) with respect to each layer shown to (a), layer thickness d (mm), heat It is a figure which shows resistance Rth (degreeC / W) and temperature rise (DELTA) T (degreeC).
  • (A) is a plan view of a substrate according to Embodiment 2 of the present invention
  • (b) is a sectional view taken along line BB
  • (c) is a partially enlarged view of the section.
  • (A)-(d) is a schematic diagram explaining the manufacturing process of the board
  • (A) is a plan view of a substrate according to Embodiment 3 of the present invention
  • (b) is a cross-sectional view taken along the line CC
  • (c) is a partially enlarged view of the cross section.
  • (A)-(d) is a schematic diagram explaining the manufacturing process of the board
  • (A) is an overhead view of the illuminating device to which the light-emitting device based on Embodiment 6 of this invention is applied
  • (b) is the sectional drawing. It is a schematic sectional drawing of the conventional board
  • FIG. 10 is a diagram for explaining a second modification of the substrate according to the third embodiment of the present invention, in which (a) is a plan view of the second modification of the substrate according to the third embodiment of the present invention, and (b) is an H- H line arrow sectional drawing, (c) is the elements on larger scale of the cross section.
  • Embodiment 1 will be described below with reference to FIGS. 1 and 2.
  • FIG. 1A is a plan view of a substrate 5A (light emitting device substrate) according to the present embodiment
  • FIG. 1B is a cross-sectional view taken along the line AA in FIG. is there.
  • (c) of FIG. 1 is the elements on larger scale of (b) of FIG.
  • the substrate 5A is used for the light emitting device 4 (see FIG. 16) in which the light emitting element 6 (see FIG. 16) is arranged.
  • An example of the light emitting device 4 is shown in FIG. As in any drawing, dimensions, shapes, numbers, and the like are not necessarily the same as those of an actual substrate, light emitting element, and light emitting device.
  • the light emitting device 4 using the substrate 5A will be described in Embodiment 6.
  • the intermediate layer 11 (second insulating layer), the reflective layer 12 (first insulating layer), and the electrode pattern 20 are arranged in this order on the surface of the aluminum base 10 (base). Is formed.
  • the intermediate layer 11 is formed so as to cover the surface of the aluminum substrate 10 (reference (c) in FIG. 1).
  • the reflective layer 12 is formed on the upper surface of the intermediate layer 11 on the surface of the aluminum substrate 10. In other words, the intermediate layer 11 is formed between the reflective layer 12 and the aluminum substrate 10.
  • a protective layer (aluminum anodic oxide film) 13 is formed on the lower end surface of the aluminum substrate 10 (reference to (c) in FIG. 1) and the side end surface of the aluminum substrate 10 (reference to (c) in FIG. 1). Yes. That is, the protective layer 13 is formed on the surface other than the surface on which the intermediate layer 11 is formed. In other words, the surface opposite to the surface on which the reflective layer 12 of the aluminum substrate 10 is formed (the surface facing the surface on which the reflective layer 12 is formed) and the side end surface of the aluminum substrate 10 are the protective layer. The surface other than the surface on which the protective layer 13 of the aluminum substrate 10 is formed is covered with the intermediate layer 11.
  • An electrode pattern 20 is formed on the reflective layer 12. As shown in FIGS. 1A and 1B, the electrode pattern 20 has a positive electrode pattern 20a and a negative electrode pattern 20b.
  • the electrode pattern 20 is composed of a base circuit pattern (not shown) made of a conductive layer and plating covering it.
  • the electrode pattern 20 is a wiring for establishing electrical connection with the light emitting element 6 (see FIG. 16) disposed on the substrate 5A. As shown in FIG. 16, the light emitting element 6 is connected to the electrode pattern 20 by a wire, for example.
  • the intermediate layer 11 that is a thermally conductive ceramic insulator and the reflective layer 12 that is a light-reflective ceramic insulator are formed as an insulating layer between the electrode pattern 20 and the aluminum substrate 10. It is characterized by. Further, the intermediate layer 11 is formed between the reflective layer 12 and the aluminum substrate 10. With the above configuration, the substrate 5A can stably ensure high withstand voltage performance. Each layer will be specifically described below.
  • Al substrate 10 As the aluminum substrate 10, for example, an aluminum plate having a length of 50 mm, a width of 50 mm, and a thickness of 3 mm can be used. Advantages of the aluminum material include light weight, excellent workability, and high thermal conductivity.
  • the aluminum substrate 10 may contain components other than aluminum that do not interfere with the anodizing treatment for forming the protective layer 13.
  • the substrate material is not limited to the above. Any metal material that is lightweight, excellent in workability, and high in thermal conductivity may be used.
  • a copper material can be used as a base material.
  • the protective layer 13 is an anodized aluminum film (alumite).
  • the protective layer 13 protects the aluminum base 10 from the plating solution during the plating process necessary for forming the electrode pattern 20, and at the same time, serves as a protective layer for preventing the deposition of excess plating. Function. After the completion of the substrate 5A, the protective layer 13 prevents corrosion of the aluminum base 10 due to oxidation.
  • the reflective layer 12 contains light-reflecting ceramics (first ceramics) that reflects light from the light-emitting element 6 (see FIG. 16), and has insulating properties. For this reason, the reflective layer 12 reflects the light from the light emitting element 6 (refer FIG. 16).
  • the reflective layer 12 is formed between the electrode pattern 20 and the intermediate layer 11, in other words, between the electrode pattern 20 and the aluminum substrate 10.
  • the reflective layer 12 is a substrate 5A serving as an insulating reflective layer containing ceramic particles by curing ceramic particles mixed with a glass-based binder or a resin binder having light resistance and heat resistance by drying or baking. The outermost layer is formed.
  • the reflective layer 12 is a mixed layer of light reflective ceramics and glass.
  • the reflective layer 12 contains zirconia as a light reflective ceramic and is formed by sintering or the like using a glass-based binder.
  • the glass-based binder is made of a sol-like substance that synthesizes glass particles by a sol-gel reaction.
  • the resin binder is composed of an epoxy resin, a silicone resin, or a fluororesin that has excellent heat resistance and light resistance and high transparency. Since the glass binder is superior in heat resistance and light resistance and has high thermal conductivity as compared with the resin binder, it is more preferable to use the glass binder.
  • the glass-based binder used in the sol-gel method has a relatively low firing temperature of 200 ° C. to 500 ° C.
  • a glass-based binder is used for the reflective layer 12
  • the aluminum substrate 10 and the intermediate substrate can be used in the manufacturing process.
  • the layer 11 is not damaged.
  • a resin binder is used for the reflective layer 12
  • the aluminum substrate 10 and the intermediate layer 11 are not damaged.
  • main light-reflecting ceramic materials used for the reflective layer 12 include titanium oxide particles, alumina particles, and aluminum nitride particles in addition to zirconia particles. Further, other highly reflective ceramic materials may be used.
  • the ceramic material referred to here is not limited to a metal oxide, and may be any insulating material that reflects light from the light emitting element 6 (see FIG. 16).
  • it includes ceramics in a broad sense including aluminum nitride, that is, inorganic solid materials in general.
  • any material can be used as the light-reflective ceramic material of the reflective layer 12 as long as it is a stable material excellent in heat resistance and thermal conductivity and excellent in light reflection and light scattering. You can use it.
  • a material that absorbs light is not suitable as a ceramic material for the reflective layer 12.
  • silicon nitride, silicon carbide, and the like are generally black and are not suitable as a ceramic material used for the reflective layer 12.
  • the thickness of the reflective layer 12 is preferably about 50 ⁇ m or more and 100 ⁇ m or less in consideration of the reflectance of the substrate 5A. Since the thermal conductivity of the reflective layer 12 is lower than that of the intermediate layer 11, it is desirable that the thickness of the reflective layer 12 be a minimum necessary thickness that can ensure a desired light reflection function. As a thickness for achieving this object, the thickness of the reflective layer 12 is suitably about 50 ⁇ m or more and 100 ⁇ m or less. However, when the surface of the intermediate layer 11 is uneven, the reflective layer 12 is formed thick in order to fill the unevenness of the surface of the intermediate layer 11 with the reflective layer 12 and smooth the surface on which the light emitting element 6 is mounted. May be.
  • the reflective layer 12 may be formed thick in consideration of filling the unevenness on the surface of the intermediate layer 11.
  • the thickness of the reflective layer 12 may be 110 ⁇ m or more and 160 ⁇ m or less, considering that the extra thickness of the unevenness is generally 60 ⁇ m or less.
  • the intermediate layer 11 is formed by laminating a ceramic layer (second ceramic) on the aluminum base 10 by thermal spraying, and has an insulating property.
  • the intermediate layer 11 contains ceramics formed by thermal spraying.
  • the reflective layer 12 since the reflective layer 12 has the minimum necessary thickness that can ensure the light reflecting function, there may be a case where the withstand voltage required for the substrate 5A is insufficient. Therefore, the intermediate layer 11 reinforces the dielectric strength that is insufficient with the reflective layer 12 alone.
  • the reflective layer 12 depends on a ceramic material mixed with glass or resin and its amount, but the reflectance is saturated if it has a thickness of about 10 ⁇ m to 100 ⁇ m. Therefore, although depending on the formation conditions of the intermediate layer 11, the thickness of the intermediate layer 11 is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the intermediate layer 11 is 100 ⁇ m, it is possible to ensure a dielectric breakdown voltage of 1.5 kV to 3 kV or more with the intermediate layer 11 alone. If the thickness of the intermediate layer 11 is 500 ⁇ m, a dielectric breakdown voltage of 7.5 kV to 15 kV can be secured at least with the intermediate layer 11 alone. Finally, the thickness of the intermediate layer 11 may be determined so that the total withstand voltage of the reflective layer 12 and the withstand voltage of the intermediate layer 11 becomes a desired withstand voltage. In the present embodiment, it is desirable to configure the reflective layer 12 and the intermediate layer 11 so that the total withstand voltage is about 4 kV to 5 kV.
  • the ceramic material used for the intermediate layer 11 is most preferably alumina (Al 2 O 3 ), which has good thermal conductivity and dielectric strength, and is suitable for forming an electrical insulating film by thermal spraying.
  • alumina is used as the ceramic material used for the intermediate layer 11.
  • the ceramic material used for the intermediate layer 11 in addition to alumina, aluminum nitride, silicon nitride, and the like are preferable because both thermal conductivity and withstand voltage are good.
  • silicon carbide has high thermal conductivity
  • zirconia and titanium oxide have high withstand voltage.
  • silicon carbide, zirconia, and titanium oxide may be properly used as the ceramic material used for the intermediate layer 11 according to the purpose and application.
  • the ceramic material referred to here is not limited to metal oxides, but includes broadly defined ceramics including aluminum nitride, silicon nitride, silicon carbide and the like, that is, all inorganic solid materials. Of these inorganic solid materials, any material can be used as the ceramic material used for the intermediate layer 11 as long as it is a stable material excellent in heat resistance and thermal conductivity and excellent in dielectric strength. Absent.
  • the ceramic material used for the intermediate layer 11 has a higher thermal conductivity than the ceramic material used for the reflective layer 12.
  • zirconia particles are used for the reflective layer 12 as a ceramic material.
  • the intermediate layer 11 uses alumina. Since the thermal conductivity of alumina is higher than that of zirconia, it is possible to increase the thermal conductivity of the intermediate layer 11 as compared with the reflective layer 12 while maintaining high withstand voltage.
  • the intermediate layer 11 is formed by laminating a ceramic layer on the aluminum substrate 10 by thermal spraying.
  • Aluminum is a low melting point metal having a melting point of 660 ° C., and ceramics are usually sintered at a temperature higher than this, so that a sintered body of ceramics cannot be directly sintered on the aluminum substrate 10.
  • the substrate temperature of the aluminum substrate 10 at the time of lamination is about 200 ° C. at the maximum by plasma spraying, and about 500 ° C. at the maximum even by high-speed flame spraying, and the ceramic layer is formed at a temperature sufficiently lower than the melting point 660 ° C. of aluminum. It can be laminated on the substrate 10.
  • the intermediate layer 11 made of only ceramics can be formed on the low melting point metal without using a binder that lowers the thermal conductivity such as a glass binder or a resin binder. Therefore, the intermediate layer 11 has the same withstand voltage as a layer formed using a glass-based binder or a resin binder without impairing the original high thermal conductivity of a ceramic material such as alumina.
  • the ceramic layer of the intermediate layer 11 is formed by thermal spraying, it is a dense ceramic layer having a low porosity (ratio of air holes in the formed film), which is an index of the denseness of the layer (film). It becomes. Therefore, the intermediate layer 11 can stably secure a high withstand voltage and simultaneously realize an insulating layer having a high thermal conductivity with a lower thermal resistance.
  • the thermal conductivity of the ceramic layer (intermediate layer 11) formed by thermal spraying is close to the thermal conductivity of a conventional ceramic substrate formed by sintering, for example, 10 to 30 W / (m ⁇ ° C) value.
  • the thermal conductivity of a layer formed by hardening ceramic particles using a binder of glass or resin is usually 1 to 3 W / (m ⁇ ° C.) because it is affected by glass or resin having low thermal conductivity.
  • the former ceramic layer formed by thermal spraying
  • Thermal conductivity is an order of magnitude greater. Therefore, the thermal resistance of the former is about one-tenth of the thermal resistance of the latter (layer formed by solidifying ceramic particles using a glass or resin binder), and the former and layer thickness of 500 ⁇ m. The latter is approximately the same thermal resistance as 50 ⁇ m. If the withstand voltage performance per thickness is the same, even if the former secures a withstand voltage 10 times that of the latter, the heat dissipation is the same.
  • Thermal spraying is a method in which molten particles obtained from a thermal spray material that is melted or heated to a state close thereto are caused to collide with a substrate surface at a high speed, and the molten particles are laminated on the substrate surface.
  • the thermal spray material is supplied to the thermal spray apparatus in the form of powder or wire.
  • Thermal spraying is classified into flame spraying, arc spraying, plasma spraying, high-speed flame spraying, etc., depending on the method of heating the sprayed material.
  • Cold spraying that forms a film by colliding with a base material in a solid state in supersonic flow with an inert gas without melting the material is also classified as a type of thermal spraying.
  • high-speed flame spraying, plasma spraying, and flame spraying are suitable.
  • high-speed flame spraying, plasma spraying, and flame spraying will be described.
  • High-speed flame spraying In high-speed flame spraying (HVOF), for example, when alumina is used as a thermal spray material, a dense alumina layer having high adhesion can be formed. Specifically, the porosity can be suppressed to 1% or less, and a stable high withstand voltage can be realized.
  • the thickness of the layer obtained by this method is currently limited to about 400 ⁇ m.
  • Plasma spraying In plasma spraying, a working gas such as argon is ionized by arc discharge to generate plasma. This plasma is used to heat and melt high-melting-point spray materials such as ceramic particles and place them on a plasma flow ejected from a nozzle to accelerate the molten particles and collide with the substrate at high speed to form a ceramic layer on the substrate To do.
  • argon a working gas
  • This plasma is used to heat and melt high-melting-point spray materials such as ceramic particles and place them on a plasma flow ejected from a nozzle to accelerate the molten particles and collide with the substrate at high speed to form a ceramic layer on the substrate To do.
  • the temperature rise of the substrate during the ceramic layer formation is about 200 ° C. at the maximum.
  • the porosity is about 1% to 5%, which is slightly higher than that of high-speed flame spraying, care must be taken not to form through-holes in the ceramic layer in order to maintain the dielectric strength.
  • the ceramic layer may be thickly stacked until the through hole is filled, or the thermal spraying conditions may be adjusted such that the deposition rate is reduced, and the ceramic layer may be stacked under the condition that the through hole is not easily generated.
  • a ceramic layer is formed on a substrate by using a combustion flame of oxygen and combustible gas, for example, by blowing ceramic particles on the substrate with compressed air and causing them to collide.
  • the temperature rise of the substrate during the ceramic layer formation is as low as about 100 ° C. at the maximum, but the porosity is as high as 5% to 10%. For this reason, in order to ensure the required dielectric strength, it is necessary to form a layer thicker than the ceramic layer formed by high-speed flame spraying or plasma spraying.
  • FIG. 2A to 2D are schematic cross-sectional views for explaining a manufacturing process of the substrate 5A according to the first embodiment of the present invention.
  • the intermediate layer 11 is formed on the surface of the aluminum substrate 10 (intermediate layer forming step).
  • the intermediate layer 11 is formed by laminating an alumina layer on the aluminum substrate 10 by thermal spraying.
  • the reflective layer 12 is formed on the upper surface of the intermediate layer 11 on the surface of the aluminum substrate 10 (reflective layer forming step).
  • the reflective layer 12 is obtained by curing ceramic particles mixed with a glass-based binder or a resin binder having light resistance and heat resistance, by drying or baking the binder to form an insulating reflective layer containing ceramic particles as the reflective layer 12. Form.
  • the firing temperature can be increased for forming the reflective layer 12 after the intermediate layer 11 forming step. Is possible.
  • a ceramic coating containing ceramic particles is applied onto the intermediate layer 11, and then the reflective layer 12 is formed by synthesizing glass by a sol-gel method.
  • the firing temperature of the glass-based binder used in the sol-gel method is usually 200 ° C. to 500 ° C.
  • the firing temperature is used to reduce the number of holes from the porous film generated in the vitreous gel state and increase the insulation. It is effective to carry out at 400 to 500 ° C.
  • a sol used for glassy synthesis by a sol-gel reaction is used as a binder for zirconia particles, and is applied onto the intermediate layer 11 by screen printing. Thereafter, the reflective binder 12 is formed by drying the glass-based binder at 200 ° C. to 300 ° C. and baking at 400 ° C. to 500 ° C.
  • a method for forming the reflective layer 12 there is a method for forming a vitreous layer by remelting particles obtained by curing low melting point glass particles with an organic binder, other than the sol-gel method.
  • a method for forming a vitreous layer by remelting particles obtained by curing low melting point glass particles with an organic binder other than the sol-gel method.
  • at least 800 ° C. to 900 ° C. is required.
  • a method for forming the reflective layer 12 that requires such a high-temperature process can also be used.
  • the melting point of aluminum used for the aluminum substrate 10 exceeds 660 ° C. Therefore, it is necessary to use an alloy material in which impurities are appropriately mixed with the aluminum substrate 10 to increase the melting point. Since the melting point of copper is 1085 ° C, which is higher than that of aluminum, low-melting glass can be baked when copper is used for the substrate. Naturally, it is used after the melting point of the substrate is appropriately increased by mixing impurities. May be.
  • Glass is most preferable as a material for forming the reflective layer 12 because it has excellent light resistance and heat resistance.
  • a resin excellent in heat resistance and light resistance such as a silicone resin, an epoxy resin, or a fluorine resin. May be used as a binder for ceramic particles.
  • the resin is inferior to glass in terms of heat resistance and light resistance, the curing temperature of the resin is lower than the glass synthesis by the sol-gel reaction of the glass raw material, and the formation process of the reflective layer 12 becomes easy. .
  • the protective layer 13 is formed so as to cover the lower end surface and the side end surface of the aluminum substrate 10 (protective layer forming step).
  • a sealing process is performed after the anodizing process to close the porous holes generated in the anodic oxide film of aluminum which is the protective layer 13.
  • the sealing process is performed after the alumite treatment, the anodized film of aluminum forming the protective layer 13 is stabilized. For this reason, the durability and corrosion resistance of the aluminum base body 10 are further ensured by the protective layer 13.
  • the protective layer 13 is formed by the alumite treatment after the reflective layer 12 is formed.
  • the firing temperature when the reflective layer 12 is formed by synthesizing glass by a sol-gel reaction as in this embodiment is 200 to 500 ° C. In particular, if the temperature is raised to 250 ° C. or higher, the protective layer 13 is cracked (cracked), and the function as a protective film of the light emitting device substrate is reduced.
  • the reflective layer 12 containing ceramic particles serves as a mask for the alumite treatment in the process of forming the protective layer 13.
  • the protective layer 13 is formed after the intermediate layer 11 is formed, only the exposed portion of the aluminum material excluding the intermediate layer 11 on the aluminum base 10 is covered with the protective layer 13.
  • the substrate 5A in which the aluminum base 10 is covered with the intermediate layer 11, the reflective layer 12, and the protective layer 13 is manufactured through the above intermediate layer forming step, reflective layer forming step, and protective layer forming step.
  • the electrode pattern 20 is formed on the reflective layer 12 as follows.
  • a circuit pattern is drawn on the upper surface of the reflective layer 12 by using a metal paste made of a resin containing metal particles as a base for the electrode pattern 20, and is dried. Then, the base circuit pattern 22 is formed (base circuit pattern forming step). Then, as shown in FIG. 2D, an electrode metal is deposited on the base circuit pattern by plating to form the electrode pattern 20 (electrode pattern forming step).
  • the aluminum substrate 10 is already covered with a reflective layer 12 having a high reflectance containing ceramics, an intermediate layer 11, and a protective layer 13 of an anodized film. Therefore, it is possible to efficiently deposit the electrode metal from the plating solution only on the base circuit pattern 22 without the aluminum substrate 10 being eroded by the plating solution used in the plating process in the electrode pattern forming step. .
  • the substrate 5A, the substrate 100A having a metal base as Comparative Example 1, and the substrate 100B having a metal base as Comparative Example 2 are estimated and compared based on specific numerical values.
  • Substrate 5A, substrate 100A, and substrate 100B differ only in the structure of the insulating layer disposed between light emitting element 6 and aluminum base 10. The above comparison will be described with reference to FIGS. 3A shows a schematic cross-sectional view of an example of the substrate 5A, and FIG. 3B shows the thermal conductivity ⁇ th (W / (m ⁇ ° C.)) for each layer shown in FIG.
  • FIG. 4A shows a schematic cross-sectional view of the substrate 100A of Comparative Example 1
  • FIG. 4B shows the thermal conductivity ⁇ th (W / (m ⁇ ° C.) for each layer shown in FIG. 4A. ), Layer thickness d (mm), thermal resistance Rth (° C./W), and temperature rise ⁇ T (° C.).
  • 5A shows a schematic cross-sectional view of the substrate 100B of Comparative Example 2
  • FIG. 5B shows the thermal conductivity ⁇ th (W / (m ⁇ ° C.) for each layer shown in FIG. 5A. ), Layer thickness d (mm), thermal resistance Rth (° C./W), and temperature rise ⁇ T (° C.).
  • the substrate 5A has an aluminum base 10, an intermediate layer 11, a reflective layer 12, and a protective layer 13, as shown in FIG.
  • the intermediate layer 11 and the reflective layer 12 have insulating properties, and the substrate 5A obtains a desired withstand voltage by an insulating layer composed of two layers, the intermediate layer 11 and the reflective layer 12.
  • the aluminum substrate 10 is made of aluminum having a thickness of 3 mm, and an intermediate layer 11 is formed on the surface of the aluminum substrate 10.
  • the thickness of the intermediate layer 11 is 150 ⁇ m, and is an alumina layer (ceramic layer) formed by high-speed flame spraying.
  • a reflective layer 12 is formed on the upper surface of the intermediate layer 11.
  • the reflective layer 12 has a thickness of 50 ⁇ m and is a zirconia-containing glass-based insulating layer.
  • the reflective layer 12 is a glass-based insulator formed by firing a ceramic paint containing a ceramic fired at high temperature and a glass raw material at a temperature of 200 ° C. to 500 ° C.
  • the ceramic contains zirconia particles.
  • the intermediate layer 11 has a majority of the above-mentioned withstand voltage in the withstand voltage of the substrate 5A.
  • An alumite layer having a thickness of 10 ⁇ m is formed as a protective layer 13 on the lower end surface of the aluminum substrate 10.
  • the protective layer 13 may be further thermally connected to the heat sink (heat dissipating material) 2 (see FIG. 17) with a heat dissipating grease 34 interposed therebetween.
  • the thickness of the heat dissipating grease 34 may be 50 ⁇ m.
  • silicone oil is selected as the base material for the heat dissipating grease 34 used in lighting devices using semiconductor devices or LEDs, and thermal conductivity is improved by blending powder with high thermal conductivity such as alumina or silver. There are many cases.
  • the thermal conductivity of the base material of the thermal grease 34 is about 0.2 W / (m ⁇ ° C.), but as a result of the improvement in the thermal conductivity, the thermal conductivity of the thermal grease 34 is 1 to 3 W / (m ⁇ ° C.). °C) grade. If the protective layer 13 and the heat sink 2 are merely mechanically contacted, an air layer interposed therebetween serves as a heat insulating layer. Therefore, the heat dissipating grease 34 is interposed for the purpose of eliminating the air layer and thermally connecting the two. In the substrate 5A used for high-intensity illumination as in the present invention, a heat radiation path is often taken at the shortest distance from the surface of the substrate 5A toward the back surface of the substrate 5A.
  • the heat sink 2 is closely attached to the heat sink 2 with the heat radiation grease 34.
  • the heat dissipating grease 34 is the same as that of the substrate 5A in the substrate 100A and the substrate 100B, which will be described later, and will not be described.
  • the substrate 100A has an aluminum base 10, a reflective layer 30, and a protective layer 13 as shown in FIG.
  • the reflective layer 30 has an insulating property, and the substrate 100 ⁇ / b> A obtains a desired withstand voltage by a glass-based insulating layer that is a single layer of the reflective layer 30.
  • the aluminum substrate 10 is made of aluminum having a thickness of 3 mm.
  • a glass-based insulating layer having a thickness of 200 ⁇ m having a light reflecting function and a withstand voltage function is formed as the reflecting layer 30.
  • the reflective layer 30 is a glass-based insulator formed by firing a ceramic paint containing a ceramic fired at a high temperature and a glass raw material at a temperature of 200 ° C. to 500 ° C.
  • the ceramic is zirconia. Contains particles.
  • An alumite layer having a thickness of 10 ⁇ m is formed as a protective layer 13 on the lower end surface of the aluminum substrate 10.
  • the substrate 100B has an aluminum base 10, a reflective layer 30, a heat conductive layer 31, and a protective layer 13, as shown in FIG.
  • the reflective layer 30 and the heat conductive layer 31 are insulative, and the substrate 100B obtains a desired withstand voltage by a glass-based insulating layer composed of the heat conductive layer 31 and the reflective layer 30.
  • the aluminum substrate 10 is made of aluminum having a thickness of 3 mm, and an alumina-containing glass-based insulating layer having a thickness of 150 ⁇ m is formed as the heat conductive layer 31 on the upper end surface of the aluminum substrate 10.
  • a 50 ⁇ m zirconia-containing glass-based insulating layer is formed as the reflective layer 30.
  • the heat conductive layer 31 is formed by firing a ceramic paint made of a glass raw material containing alumina fired at high temperatures as particles at a temperature of 200 ° C. to 500 ° C.
  • An alumite layer having a thickness of 10 ⁇ m is formed as a protective layer 13 on the lower end surface of the aluminum substrate 10.
  • the light emitting element 6 is disposed on each of the substrate 5A, the substrate 100A, and the substrate 100B, and the light emitting element 6 and the substrate 5A, the substrate 100A, and the substrate 100B are connected by a die bond paste 32 having a thickness of 5 ⁇ m.
  • the planar size of the light-emitting element 6 is 650 ⁇ m in length and 650 ⁇ m in width, the thickness from the die bond paste 32 to the active layer 33 of the light-emitting element 6 is 100 ⁇ m, and the light-emitting element substrate is made of sapphire. An element substrate is used.
  • the thermal resistance is estimated according to the following procedure.
  • the values of the thermal resistances of the substrate 5A, the substrate 100A, and the substrate 100B depend on the position and dimensions of the light emitting element 6, but in the result of the thermal resistance Rth (° C./W) shown in FIG. Assuming that the active layer 33 of the element 6 is the only heat source, the thermal resistance Rth (° C./W) of each layer is calculated. Further, in FIG. 3B, not only the thermal resistance Rth (° C./W) of each layer but also the temperature rise ⁇ T (° C.) of each layer is obtained. This temperature rise ⁇ T (° C.) This is a value when the calorific value is assumed to be 0.15 W.
  • the spread of heat in the lateral direction is taken into consideration. Specifically, as shown by the broken line in FIG. 3A, the heat is uniformly distributed in the direction of 45 ° to the left and right with respect to the vertical direction of the substrate 5A.
  • thermal resistance Rth (° C./W) and temperature rise ⁇ T (° C.) of each layer shown in (b) of FIG. 3 are calculated by the above calculation method. 4 (b) and FIG. 5 (b) are also calculated by the same calculation method.
  • the estimated results of the thermal resistance of the substrate 5A, the substrate 100A and the substrate 100B are about 114 ° C./W, The substrate 100A is about 288 ° C./W, and the substrate 100B is about 139 ° C./W. Therefore, among the substrate 5A, the substrate 100A, and the substrate 100B, the thermal resistance of the substrate 5A is the lowest. Therefore, it can be said that the heat dissipation of the substrate 5A is the best among the substrate 5A, the substrate 100A, and the substrate 100B.
  • the substrate 5A, the substrate 100A, and the substrate 100B each have a total thickness of 200 ⁇ m of the insulating layer.
  • the insulating layer having a thickness of 200 ⁇ m is the reflective layer 30.
  • the reflective layer 30 is a zirconia-containing glass-based insulating layer formed by sintering sol-gel glass containing zirconia as a ceramic material, and the thermal conductivity ⁇ 1 of the reflective layer 30 is 1 W / (m ⁇ ° C.). is there.
  • the insulating layer of the substrate 100B has a laminated structure of the reflective layer 30 and the heat conductive layer 31.
  • the reflective layer 30 placed on the surface layer of the two layers has a thickness of 50 ⁇ m and is a zirconia-containing glass-based insulating layer.
  • the heat conductive layer 31 is an alumina-containing glass-based insulating layer having a thickness of 150 ⁇ m and a higher thermal conductivity than the reflective layer 30.
  • the heat conductive layer 31 is formed by sintering sol-gel glass in a state containing alumina particles.
  • the thermal conductivity ⁇ 2 of the thermal conductive layer 31 is 5 W / (m ⁇ ° C.).
  • the insulating layer of the substrate 5 ⁇ / b> A has a laminated structure of the reflective layer 12 and the intermediate layer 11.
  • the reflective layer 12 is the same zirconia-containing glass-based insulating layer as the reflective layer 30 of the substrate 100B.
  • the intermediate layer 11 is an alumina layer (ceramic layer) formed by high-speed flame spraying (HVOF).
  • the thermal conductivity ⁇ 3 of the intermediate layer 11 is 15 W / (m ⁇ ° C.).
  • the thermal conductivity of the reflective layer 12 is the same as the thermal conductivity of the reflective layer 30, and the thermal conductivity ⁇ 1 is 1 W / (m ⁇ ° C.).
  • the intermediate layer 11 of the substrate 5A and the heat conductive layer 31 of the substrate 100A both contain alumina as a material.
  • the heat conductive layer 31 uses glass as a binder, it is affected by glass having low heat conductivity. Therefore, it is considered that the thermal conductivity ⁇ 2 of the thermal conductive layer 31 is a low value of 5 W / (m ⁇ ° C.).
  • the substrate 5A forms the intermediate layer 11 by thermal spraying.
  • the intermediate layer 11 is deposited in a state close to alumina as a ceramic in order to heat alumina in a molten state or a state close thereto and strike the aluminum substrate 10 at high speed. Therefore, it is considered that the thermal conductivity ⁇ 3 of the intermediate layer 11 is as high as 15 W / (m ⁇ ° C.).
  • the thermal resistance of the substrate 5A, the substrate 100A, and the substrate 100B is estimated to be about 114 ° C./W, the substrate 100A is about 288 ° C./W, and the substrate 100B is about 139 ° C./W. is there.
  • the thermal resistance of each layer of the substrate 5A, the substrate 100A, and the substrate 100B shown in FIGS. 3B, 4B, and 5B the thermal resistance of the substrate 5A, the substrate 100A, and the substrate 100B. It can be seen that the main part that determines this is an insulating layer disposed between the light emitting element 6 and the aluminum substrate 10. The contribution from the aluminum substrate 10 and the alumite layer (protective layer 13) is less than 2% at the maximum.
  • FIG. 6 is a graph showing the insulating layer thickness dependence of the thermal resistance in the substrate 5A, the substrate 100A, and the substrate 100B.
  • the horizontal axis in FIG. 6 represents the insulating layer thickness (mm), and the vertical axis represents the thermal resistance (° C./W) of the substrate.
  • FIG. 7 is a graph showing the insulating layer thickness dependence of the temperature rise in the substrate 5A, the substrate 100A, and the substrate 100B.
  • the horizontal axis represents the insulating layer thickness (mm)
  • the vertical axis represents the temperature rise (° C.) of the substrate.
  • the thermal resistance of the substrate 5A, the substrate 100A, and the substrate 100B when the thickness of the insulating layer is 200 ⁇ m in total was calculated and compared.
  • the graph shown in FIG. 6 shows how the thermal resistance of the substrate 5A, the substrate 100A, and the substrate 100B increases with respect to the total change in the thickness of the insulating layer.
  • the thermal resistance of the substrate was calculated by changing the thickness of the insulating layer by the following method.
  • the thickness of the reflective layer 12 ( ⁇ 1: 1 W / (m ⁇ ° C.)) is fixed at 50 ⁇ m, and the thickness of the intermediate layer 11 ( ⁇ 3: 15 W / (m ⁇ ° C.)) is changed.
  • the thickness of the reflective layer 30 ( ⁇ 1: 1 W / (m ⁇ ° C.)) is changed from 50 ⁇ m to 1000 ⁇ m.
  • the thickness of the reflective layer 30 ( ⁇ 1: 1 W / (m ⁇ ° C.)) is fixed at 50 ⁇ m, and the thickness of the heat conductive layer 31 ( ⁇ 2: 5 W / (m ⁇ ° C.)) is changed.
  • FIG. 7 is a graph showing a result of trial calculation of temperature rise by changing the thickness of the insulating layer by the same method as described above. Further, the above temperature rise is estimated by assuming that the power loss in the light emitting element 6 is 50%, that is, the heat generation is 0.15 W with respect to the input power of 0.30 W to the light emitting element 6.
  • the thermal resistance of the substrate 5A and the temperature rise of the substrate 5A slightly increase.
  • the thermal resistance of the substrate 100A and the temperature rise of the substrate 100A increase rapidly.
  • the thermal resistance of the substrate 100B and the temperature rise of the substrate 100B gradually increase. That is, in the substrate 100A and the substrate 100B, the rate of increase in thermal resistance and temperature increase is larger than that of the substrate 5A with respect to the increase in the thickness of the insulating layer. From this, it can be said that the substrate 5A can increase the thickness of the intermediate layer 11 while keeping the thermal resistance low as compared with the substrate 100A and the substrate 100B. Therefore, the substrate 5A can obtain a desired withstand voltage with a low thermal resistance.
  • the relationship between the dielectric strength and the thermal resistance of the substrate will be described below.
  • the withstand voltage is almost proportional to the thickness of the insulating layer.
  • the thermal resistance of the substrate 100A is high in order to ensure sufficient withstand voltage.
  • the intermediate layer 11 when the intermediate layer 11 is formed by spraying alumina on a metal substrate by high-speed flame spraying as in the case of the substrate 5A, the intermediate layer 11 is a dense alumina layer.
  • the withstand voltage performance is approximately 15 kV / mm to 30 kV / mm.
  • the withstand voltage performance of the intermediate layer 11 is 15 kV / mm, which is the lowest, the withstand voltage of at least 4.5 kV can be ensured when the thickness of the intermediate layer 11 is 0.3 mm.
  • an insulating layer having a total thickness of 0.35 mm is obtained.
  • the thermal resistance and temperature rise value of the substrate 5A corresponding to the 0.35 mm insulating layer are read from FIGS. 6 and 7, the thermal resistance of the substrate 5A is 120 ° C./W, and the temperature rise of the substrate 5A is 18 ° C.
  • the thermal resistance of the substrate 100A is 391 ° C./W, and the temperature rise of the substrate 100A is 59 ° C.
  • the thermal resistance of 100B is 159 ° C./W, and the temperature rise of the substrate 100B is 24 ° C.
  • the thermal resistance of the reference substrate is 102 ° C./W
  • the temperature rise of the reference substrate is 15.3 ° C. Comparing the reference substrate with the substrate 5A, the substrate 100A, and the substrate 100B, the substrate 5A is 18%, the substrate 100A is 283%, the substrate 100B is 56%, and the thermal resistance and temperature increase are higher than those of the reference substrate.
  • the withstand voltage performance of the reflective layer 30 and the heat conductive layer 31 is often inferior to the withstand voltage performance of the intermediate layer 11, and the withstand voltage performance of the reflective layer 30 and the heat conductive layer 31 is the same as that of the intermediate layer 11. Only 7.5 kV / mm to 15 kV / mm can be stably realized.
  • the glass-based insulating layer is formed by using, for example, a sol-gel method
  • a glass material is synthesized by applying or printing a coating material in which ceramic particles are mixed with a sol-like glass raw material on a substrate, followed by drying and sintering. Ceramic particles are hardened with the vitreous material synthesized here, and a ceramic-containing glass-based insulating layer (alumina-containing glass-based insulating layer or zirconia-containing glass-based insulating layer, that is, the reflective layer 30 or the heat conductive layer 31 is formed on the aluminum substrate 10.
  • the glassy material of such a production method is porous before sintering, and the pores cannot be completely closed even after sintering. Therefore, the withstand voltage performance of the ceramic-containing glass-based insulating layer is inferior to the withstand voltage performance of the ceramic layer (intermediate layer 11) formed by thermal spraying.
  • the withstand voltage performance of the intermediate layer 11 in the substrate 5A is 15 kV / mm
  • the withstand voltage performance of the heat conductive layer 31 in the substrate 100B is only 7.5 kV / mm, which is half of the withstand voltage performance of the intermediate layer 11.
  • a double 600 ⁇ m is required to realize the same dielectric strength of 4.5 kV with respect to the 300 ⁇ m intermediate layer 11 of the substrate 5A.
  • the thermal resistance of the substrate 100A is 503 ° C./W, and the temperature rise of the substrate 100A is 76.
  • the thermal resistance of the substrate 100B is 181 ° C./W, and the temperature rise of the substrate 100B is 27 ° C.
  • the substrate 100A has increased by 40%
  • the substrate 100B has increased by 81%
  • the thermal resistance and the temperature increase have increased, respectively.
  • the ceramic-containing glass-based insulating layer particularly the zirconia-containing glass-based insulating layer (reflective layer 12), which is inferior to the thermally sprayed alumina layer in terms of thermal conductivity and dielectric strength performance, but excellent in light reflectivity, is required.
  • the thickness of 10 ⁇ m to 100 ⁇ m on the intermediate layer 11 the increase in the thermal resistance of the substrate 5 A can be suppressed to the minimum necessary.
  • the present invention is an ideal light-emitting device that simultaneously satisfies the three requirements of high light reflectance, low thermal resistance (high heat dissipation), and high electrical withstand voltage required as a substrate for a high-luminance illumination light-emitting device. For the first time to realize the substrate.
  • the surface when the alumina layer is laminated by thermal spraying, the surface may be roughened if the layer thickness is increased.
  • the intermediate layer 11 when the intermediate layer 11 is laminated by spraying after the surface of the aluminum substrate 10 is roughened by blasting for the purpose of improving the adhesion between the intermediate layer 11 and the aluminum substrate 10, the surface of the intermediate layer 11 after lamination The effect of the uneven shape of the aluminum substrate 10 remains.
  • the reflective layer 12 when the reflective layer 12 is formed on the upper surface of the intermediate layer 11, the reflective layer 12, that is, the mounting surface of the light emitting element 6 on the substrate 5A may be uneven.
  • a thick reflective layer 12 is formed on the intermediate layer 11, as shown in FIG. May be.
  • the reflective layer 12 may be formed on the intermediate layer 11 so as to have a thickness of 60 ⁇ m to 150 ⁇ m, for example.
  • the substrate 5A is provided with the intermediate layer 11 made of a ceramic layer formed by thermal spraying between the aluminum base 10 and the reflective layer 12, and the intermediate layer 11 and the reflective layer 12 An electrode pattern 20 is formed on the insulating layer made of.
  • a light-emitting device substrate suitable for high-luminance illumination, which has high reflectivity, high heat dissipation, high withstand voltage, and long-term reliability including heat resistance and light resistance.
  • substrate for light-emitting devices can be provided in the form excellent in mass-productivity.
  • FIG. 20 is a diagram for explaining a modification of the substrate 5A according to the present embodiment.
  • FIG. 20A is a plan view of the modification of the substrate 5A
  • FIG. 20B is a diagram of FIG.
  • FIG. 20C is a partial enlarged view of FIG. 20B.
  • a buffer layer 250 is formed between the aluminum substrate 10 (substrate) and the intermediate layer 11 (second insulating layer) as shown in FIG.
  • an intermediate layer 11 second insulating layer
  • the intermediate layer 11 second insulating layer
  • the intermediate layer 11 (second insulating layer) formed on the aluminum substrate 10 is subjected to a mechanical load due to a difference in coefficient of linear expansion between the intermediate layer 11 and the aluminum substrate 10, and the peeling or dielectric strength is reduced.
  • the buffer layer 250 is formed between the aluminum substrate 10 (substrate) and the intermediate layer 11 (second insulating layer) as shown in FIG.
  • the buffer layer 250 is a film formed on one surface (hereinafter referred to as a surface) of the aluminum substrate 10 by thermal spraying or an aerosol deposition method (AD method), and is made of a material having a linear expansion coefficient smaller than that of the aluminum substrate 10. Become. Furthermore, it is preferable that the linear expansion coefficient of the buffer layer 250 is larger than the linear expansion coefficient of the intermediate layer 11 (second insulating layer).
  • the thickness of the buffer layer 250 is 10 ⁇ m or more and 100 ⁇ m or less, and preferably between 20 ⁇ m and 30 ⁇ m.
  • a buffer layer 250 having a linear expansion coefficient smaller than that of the aluminum base 10 and close to the intermediate layer 11 (second insulating layer) By interposing a buffer layer 250 having a linear expansion coefficient smaller than that of the aluminum base 10 and close to the intermediate layer 11 (second insulating layer), a mechanical load due to thermal expansion and contraction of the aluminum base 10 is reduced. Therefore, the life of the light emitting element 6 and thus the light emitting device 4 can be extended, and the reliability of the product can be improved.
  • the buffer layer 250 is preferably a metal or alloy layer, and the metal or alloy layer material used for the buffer layer 250 may be a linear expansion coefficient such as Ni, Ti, Co, Fe, Nb, Mo, Ta, or W. It is preferable that at least any one of these small metals is included.
  • the base body is not particularly limited as long as the base body is made of a material having high thermal conductivity.
  • a substrate made of a metal containing aluminum, copper, stainless steel, or iron as a material can be used.
  • the buffer layer 250 includes at least one of Ni, Ti, and Co as a material, and particularly preferably, the buffer layer 250 includes Ni. It is desirable to include as a material.
  • the buffer layer 250 is preferably an alloy of Ni (nickel) and aluminum.
  • the ratio of Ni is set to bring the linear expansion coefficient close to an approximately intermediate value between the aluminum substrate 10 and the intermediate layer 11 (second insulating layer). It is desirable to increase as much as possible, and it is desirable that the ratio of nickel in the buffer layer 250 is 90% or more by weight.
  • the linear expansion coefficient of nickel is 13.4 ⁇ 10 ⁇ 6 / ° C., which is an intermediate value between the linear expansion coefficients of aluminum and alumina which is a typical ceramic material, 15 ⁇ 10 ⁇ 6 / This is due to the fact that it almost coincides with °C.
  • the linear expansion coefficient of the buffer layer 250 is close to 15 ⁇ 10 ⁇ 6 / ° C. This is because it becomes possible to keep the temperature between 10 ⁇ 6 / ° C.
  • the melting point of Ni is a low class among these metals, it is actually as high as 1455 ° C.
  • the alloy is an alloy of aluminum and Ni, the melting point can be lowered, and the temperature required to prepare a molten state or a semi-molten state can be lowered.
  • a buffer layer made of an alloy of aluminum and Ni by thermal spraying It is convenient to form 250 (nickel layer).
  • the linear expansion coefficient of Ni is approximately between aluminum and alumina. Suitable as layer 250.
  • Glass has a coefficient of linear expansion that varies greatly depending on the composition, but is generally between 3 and 9 ⁇ 10 ⁇ 6 / ° C., which is relatively close to that of alumina.
  • the buffer layer 250 is formed by thermal spraying or aerosol deposition method (AD method).
  • the forming method by thermal spraying is the method as described above.
  • the AD method is a technique for forming a coating film by mixing fine particles and ultrafine particle raw materials prepared in advance by another method with a gas to form an aerosol, and spraying it onto a substrate through a nozzle.
  • the surface of the aluminum substrate 10 may be roughened by blasting or the like prior to the formation of the buffer layer 250.
  • Embodiment 2 The following describes Embodiment 2 of the present invention with reference to FIGS.
  • the intermediate layer 11, the reflective layer 12, and the protective layer 13 are formed on the aluminum base 10.
  • the intermediate layer 11 is formed by thermal spraying between the aluminum base 10 and the reflective layer 12, and has a high thermal conductivity.
  • the reflective layer 12, the protective layer 13, and the protective layer 14 are formed on the aluminum base 10.
  • the reflective layer 12 is formed on the surface of the aluminum substrate 10 (reference (c) in FIG. 8).
  • the protective layer 14 has the same material as the intermediate layer 11 described in the first embodiment, and is formed by thermal spraying on the back surface (lower end surface) of the aluminum base 10 (reference (c) in FIG. 8).
  • the protective layer 13 is an aluminum anodic oxide film (alumite), and is formed on the side end face of the aluminum substrate 10 (reference to (c) in FIG. 8).
  • the protective layer 14 can be made sufficiently thicker than the intermediate layer 11, and thus the intermediate layer 11 cannot be increased in thickness in the substrate 5 ⁇ / b> A according to the first embodiment, and a desired withstand voltage cannot be ensured. Even in this case, a desired withstand voltage can be ensured.
  • FIG. 8A is a plan view of the substrate 5B (light emitting device substrate) according to the present embodiment
  • FIG. 8B is a cross-sectional view taken along the line BB in FIG. 8A. is there.
  • FIG. 8C is a partially enlarged view of FIG. 8B.
  • the reflective layer 12 is formed on the surface of the aluminum base 10.
  • An electrode pattern 20 is formed on the upper surface of the reflective layer 12.
  • the protective layer 14 (second insulating layer) is formed on the back surface of the aluminum base 10.
  • the protective layer 14 is formed on the aluminum base 10 by the same material and the same method as the intermediate layer 11 described in the first embodiment. That is, the protective layer 14 contains ceramics formed by thermal spraying.
  • the protective layer 13 is an anodized film (anodized) formed on the side end surface of the aluminum substrate 10 by anodizing. Note that the intermediate layer 11 described in the first embodiment is not formed on the substrate 5B. In the present embodiment, the protective layer 14 plays the role of the intermediate layer 11.
  • the thermal resistance of the reflective layer 12 and the intermediate layer 11 is the substrate 5A. This greatly affects the overall thermal resistance. If it is necessary to make the thickness of the intermediate layer 11 thicker than expected in order to obtain a desired withstand voltage, the thermal resistance may increase more than expected. In order to avoid this, the protective layer 14 may be formed on the lower end surface of the aluminum substrate 10 apart from the light emitting element 6 (see FIG. 16) as a heat source instead of the intermediate layer 11.
  • the protective layer 14 having a lower thermal conductivity than the aluminum substrate 10 is formed on the back surface of the aluminum substrate 10 away from the light emitting element 6 (see FIG. 16), so that the protective layer 14 has the same thermal conductivity as the intermediate layer 11. Even if it exists, the thermal resistance of the protective layer 14 can be reduced rather than the intermediate
  • the contribution ratio of the thermal resistance generated in the protective layer 14 to the thermal resistance of the entire substrate 5B can be made much smaller than the contribution ratio of the thermal resistance generated in the intermediate layer 11 of the first embodiment.
  • the withstand voltage can be improved by making the thickness of the protective layer 14 sufficiently thicker than when the protective layer 14 is used as the intermediate layer 11.
  • the influence of the thermal resistance of the protective layer 14 on the thermal resistance of the entire substrate 5B is slight. Therefore, even when the thickness of the protective layer 14 needs to be increased, the substrate 5B can ensure the necessary dielectric strength while keeping the thermal resistance low.
  • the main withstand voltage is secured by the intermediate layer 11 formed on the surface of the aluminum substrate 10 as in the first embodiment, or by the protective layer 14 formed on the back surface of the aluminum substrate 10 as in the present embodiment. Since it depends on what kind of lighting device is used, it cannot be determined only by thermal resistance and ease of manufacturing method. In both the first embodiment and the present embodiment, the structure of the light emitting device substrate according to the present invention can be selected. Even when a copper substrate is used instead of the aluminum substrate 10, the present embodiment is similarly established.
  • FIGS. 9A to 9D are schematic views for explaining the manufacturing process of the substrate 5B according to the second embodiment of the present invention.
  • the reflective layer 12 is formed on the surface of the aluminum substrate 10 (reflective layer forming step).
  • the method for forming the reflective layer 12 is the same as the method for forming the reflective layer 12 of the first embodiment.
  • a protective layer 14 is formed on the back surface of the aluminum substrate 10 (protective layer forming step).
  • the method for forming the protective layer 14 is the same as the method for forming the intermediate layer 11 of the first embodiment. At this time, since the protective layer 14 is formed at a position away from the light emitting element 6 (see FIG. 16), even if the protective layer 14 is formed thicker than the intermediate layer 11, the thermal resistance is lowered. Can be suppressed.
  • the reflective layer 12 is formed as shown in FIG. A base circuit pattern 22 is formed on the top surface (base circuit pattern forming step).
  • an electrode pattern 20 is formed (electrode pattern forming step).
  • the intermediate layer 11 described in the first embodiment is not formed. Therefore, in this embodiment, the intermediate layer forming step can be omitted.
  • FIG. 21 is a diagram for explaining a modified example of the substrate 5B according to the present embodiment.
  • FIG. 21A is a plan view of the modified example of the substrate 5B
  • FIG. 21B is a plan view of FIG.
  • FIG. 21C is a partially enlarged view of FIG.
  • Embodiment 2 The difference from Embodiment 2 is that a buffer layer 250 is formed between the aluminum substrate 10 (substrate) and the reflective layer 12 as shown in FIG.
  • a buffer layer 250 is formed between the aluminum substrate 10 (substrate) and the reflective layer 12 as shown in FIG.
  • a reflective layer 12 is formed on an aluminum base 10 made of metal to form a substrate for a light-emitting device, particularly when this is used as a substrate for a light-emitting device with a high output, it is formed on the substrate 5B. Under the influence of heat generated in the light emitting element 6 placed, the aluminum substrate 10 made of the metal repeatedly expands and contracts.
  • the reflective layer 12 formed on the aluminum base 10 is subjected to a mechanical load due to a difference in coefficient of linear expansion coefficient between the reflective layer 12 and the aluminum base 10, and there is a possibility that the peeling or withstand voltage will be reduced.
  • the light emitting element 6 itself placed on the substrate 5B is also affected by the thermal history due to the difference in coefficient of linear expansion between the light emitting element 6 and the aluminum base 10, and the life may be reduced. Therefore, in the modification of the second embodiment, the buffer layer 250 is formed between the aluminum substrate 10 (substrate) and the reflective layer 12 as shown in FIG.
  • the buffer layer 250 is the same as the buffer layer 250 described in the modification of the first embodiment, and is omitted here because it has been described in the modification of the first embodiment.
  • the base body is not particularly limited as long as the base body is made of a material having high thermal conductivity.
  • a substrate made of a metal containing aluminum, copper, stainless steel, or iron as a material can be used.
  • the intermediate layer 11, the reflective layer 12, and the protective layer 13 are formed on the aluminum base 10.
  • the intermediate layer 11 is formed by thermal spraying between the aluminum base 10 and the reflective layer 12, and has a high thermal conductivity.
  • the insulating reflection layer 15 and the protective layer 13 are formed on the aluminum substrate 10.
  • the insulating reflective layer 15 is formed on the surface (upper end surface) of the aluminum base 10 (reference (c) in FIG. 10).
  • the insulating reflective layer 15 is a layer in which the reflectance of the intermediate layer 11 of Embodiment 1 is increased.
  • FIG. 10A is a plan view of the substrate 5C (light emitting device substrate) according to the present embodiment
  • FIG. 10B is a cross-sectional view taken along the line CC of FIG. 10A. is there.
  • (c) of FIG. 10 is the elements on larger scale of (b) of FIG.
  • an insulating reflection layer 15 (insulating layer) is formed on the surface of the aluminum base 10.
  • An electrode pattern 20 is formed on the upper surface of the insulating reflective layer 15.
  • ceramic having high thermal conductivity for example, alumina
  • the intermediate layer 11 is used as the intermediate layer 11 and is formed between the aluminum base 10 and the reflective layer 12.
  • the reflective layer 12 is formed. Even if there is no, it can provide the board
  • the reflectance of a layer formed by thermal spraying using alumina alone as a thermal spray material is 85% at the maximum, and although the light reflectance is good, it has a reflectance exceeding 90% to 95% used for high-intensity illumination. I can't get it.
  • the additive examples include titanium oxide, magnesium oxide, zinc oxide, barium sulfate, zinc sulfate, magnesium carbonate, calcium carbonate and wollastonite, which are inorganic white materials.
  • alumina as a thermal spray material and sprayed onto the aluminum substrate 10
  • it has a reflectivity exceeding 90% to 95% which cannot be achieved with a layer formed with the thermal spray material alone.
  • a layer can be formed.
  • high-speed flame spraying HVOF
  • plasma spraying can be partially supported, high-speed flame spraying that can form a dense and homogeneous layer is more desirable.
  • a dense and homogeneous mixed ceramic layer can be formed by high-speed flame spraying.
  • FIGS. 11A to 11D are schematic views for explaining a manufacturing process of the substrate 5C according to the third embodiment of the present invention.
  • an insulating reflective layer 15 is formed on the surface of the aluminum substrate 10 (insulating reflective layer forming step).
  • the method for forming the insulating reflective layer 15 is substantially the same as the method for forming the intermediate layer 11 of the first embodiment, but the spraying material sprayed on the aluminum base 10 is different.
  • alumina alone is sprayed as a thermal spray material, but in this embodiment, a mixture obtained by appropriately mixing alumina with an additive for increasing whiteness is used as a thermal spray material for thermal spraying. Further, as described above, it is desirable to use high-speed flame spraying for the thermal spraying method of the present embodiment.
  • the insulating reflective layer 15 has a high reflectance, even if the reflective layer 12 is not provided, the insulating reflective layer 15 alone can provide a substrate for a light emitting device suitable for high luminance illumination. Therefore, the reflective layer forming step can be omitted.
  • a protective layer 13 is formed so as to cover the back surface and side end surfaces of the aluminum substrate 10 (protective layer forming step).
  • the method for forming the protective layer 13 is the same as in the first embodiment.
  • a base circuit pattern 22 is formed on the upper surface of the insulating reflective layer 15 (base circuit pattern forming step).
  • an electrode pattern 20 is formed (electrode pattern forming step).
  • the formation method of the base circuit pattern 22 and the electrode pattern 20 is the same as that of the first embodiment.
  • FIG. 12A and 12B are diagrams for explaining a modification of the substrate 5C according to the present embodiment.
  • FIG. 12A is a plan view of the modification of the substrate 5C
  • FIG. 12B is a diagram of FIG. ) Is a cross-sectional view taken along line EE
  • FIG. 12 (c) is a partially enlarged view of FIG. 12 (b).
  • the insulating reflection layer 15 formed by thermally spraying the aluminum base 10 with the sprayed material obtained by appropriately mixing alumina with an additive for increasing the whiteness is suitable for high-luminance illumination. High reflectivity is achieved.
  • the surface may be roughened when the layer thickness is increased.
  • the surface of the aluminum base 10 is made uneven by blasting for the purpose of improving the adhesion between the insulating reflective layer 15 and the aluminum base 10, the insulating reflective layer 15 is laminated on the aluminum base 10 by thermal spraying. The influence of the uneven shape of the aluminum substrate 10 remains on the surface of the subsequent insulating reflective layer 15.
  • the base circuit pattern 22 When the base circuit pattern 22 is formed on the surface having such an uneven shape, the base circuit pattern 22 is disconnected. In addition, there is a possibility that the light emitting element 6 (see FIG. 16) and the insulating reflection layer 15 on which the light emitting element 6 is mounted cannot be sufficiently contacted, resulting in high resistance.
  • the method for forming the reflective layer 12 described in Embodiment 1 may be applied as it is. That is, the reflective layer 12 having a minimum thickness that satisfies the purpose of smoothly filling the unevenness generated on the surface of the insulating reflective layer 15 may be formed on the upper surface of the insulating reflective layer 15. Specifically, if the unevenness difference is 20 ⁇ m, the reflective layer 12 may be formed with a thickness slightly exceeding 20 ⁇ m from the bottom of the recess, and if it is 50 ⁇ m, a thickness slightly exceeding 50 ⁇ m from the bottom of the recess.
  • the insulating reflective layer 15 realizes a high reflectance, it is not required to obtain a high reflectance by the reflective layer 12 in the substrate 5C. Therefore, the reflective layer 12 can have a minimum thickness that satisfies the purpose of smoothly filling the irregularities on the surface of the insulating reflective layer 15.
  • the transparent smoothing layer 17 may be formed on the insulating reflection layer 15 as shown in FIG.
  • the reflectance of the insulating reflective layer 15 is not disturbed as much as possible, and ceramic particles having high thermal conductivity and low light absorption are mixed in a glass binder or resin binder. It is good also as above and it is good also as the transparent smoothing layer 17.
  • the surface of the insulating reflective layer 15 having the uneven shape may be smoothed by mechanical polishing.
  • the smoothing layer 17 or the surface smoothed by mechanical polishing since the light emitting element 6 is mounted on the smoothing layer 17 or the surface smoothed by mechanical polishing, the smoothing layer 17 or the insulating reflection layer 15 and the light emitting element 6 are in surface contact. Thereby, peeling of the light emitting element 6 can be prevented and the thermal resistance of the substrate 5C can be lowered, and the reliability of the light emitting device 4 (see FIG. 16) can be ensured.
  • the electrode pattern 20 is formed on the surface of the transparent smoothing layer 17 or the surface of the insulating reflection layer 15 smoothed by mechanical polishing, the electrode pattern can be prevented from peeling off.
  • the reflective layer 12 or the transparent smoothing layer described above is used.
  • a method of smoothly filling the unevenness on the surface of the insulating reflective layer 15 with 17 is preferable.
  • FIG. 22 is a diagram for explaining a second modification of the substrate 5C according to the present embodiment.
  • FIG. 22 (a) is a plan view of the second modification of the substrate 5C
  • FIG. 22 (b) is a diagram of FIG.
  • FIG. 22A is a sectional view taken along line HH in FIG. 22A
  • FIG. 22C is a partially enlarged view of FIG.
  • Embodiment 3 The difference from Embodiment 3 is that a buffer layer 250 is formed between the aluminum substrate 10 (substrate) and the insulating reflective layer 15 as shown in FIG.
  • the insulating reflective layer 15 is formed on the aluminum base 10 made of metal to form a light emitting device substrate, particularly when this is used as a high power light emitting device substrate, Under the influence of heat generated in the light emitting element 6 placed on the aluminum substrate 10, the aluminum base 10 made of the metal repeatedly expands and contracts. For this reason, the insulating reflective layer 15 formed on the aluminum substrate 10 is subjected to a mechanical load due to a difference in coefficient of linear expansion between the insulating reflective layer 15 and the aluminum substrate 10, and there is a possibility that peeling or insulation withstand voltage may be reduced. .
  • a buffer layer 250 is formed between the aluminum base 10 (base) and the insulating reflective layer 15 as shown in FIG.
  • the buffer layer 250 is the same as the buffer layer described in the modification of the first embodiment, and is omitted here because it has been described in the modification of the first embodiment.
  • the base body is not particularly limited as long as the base body is made of a material having high thermal conductivity.
  • a substrate made of a metal containing aluminum, copper, stainless steel, or iron as a material can be used.
  • FIG. 23 is a diagram for explaining another example of Modification 2 of the substrate 5C according to the present embodiment.
  • FIG. 23A is a plan view of another example of Modification 2 of the substrate 5C
  • FIG. 23B is a cross-sectional view taken along the line II of FIG. 23A
  • FIG. 23C is a partially enlarged view of FIG.
  • the linear expansion coefficient of sapphire is 7 ⁇ 10 ⁇ 6 / ° C.
  • the alumina wire Since the expansion rate is substantially the same and the thermal expansion and contraction occur synchronously, the mechanical load on the light emitting element 6 due to the thermal expansion and contraction of the insulating reflection layer 15 itself can be almost ignored. Further, the mechanical load due to the thermal expansion and contraction of the aluminum base 10 having a linear expansion coefficient of 23 ⁇ 10 ⁇ 6 / ° C. is reduced to the insulating reflective layer 15 through the buffer layer 250 having a smaller linear expansion coefficient than that of the aluminum base 10. Therefore, the mechanical load on the light emitting element 6 is remarkably reduced.
  • the intermediate layer 11 may be formed on the aluminum base 10 by thermal spraying without processing the surface of the aluminum base 10.
  • the intermediate layer 11 is formed on the aluminum base 10 by thermal spraying.
  • FIG. 13 is a diagram for explaining an improvement in the adhesion between the aluminum substrate 10 and the intermediate layer 11.
  • the substrate 100 ⁇ / b> C has an intermediate layer 11 formed on the surface of the aluminum base 10.
  • a light emitting element 6 is provided on the upper surface of the intermediate layer 11.
  • the substrate 100C is roughened by, for example, blasting the surface of the aluminum base 10 before forming the intermediate layer 11 on the aluminum base 10 by alumina spraying. Face.
  • the blasting process is performed, for example, by ejecting fine particles accelerated by a carrier gas such as compressed air from a nozzle and colliding with the aluminum substrate 10 at high speed and high density.
  • alumina is most commonly used as fine particles.
  • the intermediate layer 11 is formed by spraying alumina on the surface of the roughened aluminum substrate 10. As a result, the adhesion between the aluminum substrate 10 and the intermediate layer 11 can be improved.
  • the surface of the aluminum substrate 10 when the surface of the aluminum substrate 10 is roughened by blasting, the surface of the aluminum substrate 10 has an uneven shape. Under the influence of the uneven shape, the surface of the intermediate layer 11 formed on the surface of the aluminum substrate 10 also has an uneven shape.
  • the intermediate layer 11 and the light emitting element 6 are in point contact. As a result, there is a problem that the heat dissipation of the substrate 100C is deteriorated and the substrate 100C has a high thermal resistance. In addition, there is a problem that the light emitting element 6 is peeled off in a temperature cycle test or the like.
  • FIG. 14 is a schematic cross-sectional view of the substrate 5A according to the present embodiment.
  • the reflective layer 12 may be formed thick in order to fill and smooth the uneven shape of the intermediate layer 11.
  • the reflective layer 12 and the light emitting element 6 are in surface contact.
  • the light-emitting element 6 can be prevented from peeling off in a temperature cycle test or the like.
  • the thermal resistance of the substrate 5A can be lowered, and the reliability of the light emitting device 4 (see FIG. 16) can be ensured.
  • the electrode pattern 20 is formed on the smoothed surface of the reflective layer 12, peeling of the electrode pattern 20 can be prevented.
  • the reflective layer 12 is a mixed layer of vitreous and light reflective ceramics, or a mixed layer of resin and light reflective ceramics, so that the raw material before curing is liquid and fluid, Alternatively, the glass layer (sol-gel coating material) or the resin layer (thermosetting resin or thermoplastic resin) having at least plasticity is used. Therefore, the reflective layer 12 can easily fill the uneven shape of the intermediate layer 11 and smooth the surface on which the light emitting element 6 is mounted.
  • the thickness of the reflective layer 12 is a minimum necessary thickness that can realize a desired reflectance, and a minimum necessary thickness that can smooth the surface on which the light emitting element 6 is mounted by filling the uneven shape of the surface of the intermediate layer 11. That's fine.
  • FIG. 15 is a schematic cross-sectional view showing another example of the substrate 5A according to the present embodiment.
  • the smoothing layer 16 desirably has a higher thermal conductivity than the reflective layer 12.
  • the smoothing layer 16 is a mixed layer of glass and ceramics, or a mixed layer of resin and ceramics.
  • the ceramic particles contained in the smoothing layer 16 are preferably selected to have higher thermal conductivity than the ceramic particles contained in the reflective layer 12.
  • As ceramic particles used for the smoothing layer 16 alumina, aluminum nitride, silicon nitride, silicon carbide, and the like are desirable.
  • the uneven shape formed on the surface of the intermediate layer 11 is related to the size of the diameter of the ceramic particles to be sprayed, in addition to the roughening of the surface of the aluminum base 10 by blasting.
  • the intermediate layer 11 (alumina layer) is laminated by plasma spraying using alumina particles having a particle size of 50 ⁇ m or less on the surface of the aluminum substrate 10 roughened by blasting, the unevenness of the surface of the intermediate layer 11
  • the difference between the maximum height and the minimum height of the shape is 40 ⁇ m to 60 ⁇ m.
  • the intermediate layer 11 (alumina layer) is laminated by plasma spraying using alumina particles having a particle size of 20 ⁇ m or less on the surface of the aluminum base 10 roughened by blasting
  • the difference between the maximum height and the minimum height of the uneven shape is 15 ⁇ m to 30 ⁇ m.
  • the present invention is not limited, and should be applied as a technique for smoothing irregularities generated on the surface of the intermediate layer 11 widely.
  • the method of the fourth embodiment described with reference to FIGS. 13 to 15 may be applied to smooth the ceramic layer formed by spraying without blasting.
  • FIGS. 24 is a schematic cross-sectional view of a modification of the substrate 5A according to FIG. 14 of the present embodiment
  • FIG. 25 is a schematic cross-section of another modification of the other example of the substrate 5A according to FIG. 15 of the present embodiment.
  • FIG. 24 is a schematic cross-sectional view of a modification of the substrate 5A according to FIG. 14 of the present embodiment
  • FIG. 25 is a schematic cross-section of another modification of the other example of the substrate 5A according to FIG. 15 of the present embodiment.
  • a buffer layer 250 is formed between the aluminum substrate 10 (substrate) and the intermediate layer 11 as shown in FIGS. 14 and 15 of the fourth embodiment, when an intermediate layer 11 is formed on an aluminum base 10 made of metal to form a light emitting device substrate, in particular, when this is used as a high output light emitting device substrate.
  • the intermediate layer 11 formed on the aluminum base body 10 is subjected to a mechanical load due to a difference in coefficient of linear expansion between the intermediate layer 11 and the aluminum base body 10, and there is a possibility that peeling or dielectric strength will be reduced.
  • the buffer layer 250 is formed between the aluminum base 10 (base) and the intermediate layer 11 as shown in FIGS.
  • the buffer layer 250 is the same as the buffer layer described in the modification of the first embodiment, and is omitted here because it has been described in the modification of the first embodiment.
  • the base body is not particularly limited as long as it is a substrate made of a material having high thermal conductivity.
  • a substrate made of a metal containing aluminum, copper, stainless steel, or iron as a material can be used.
  • the buffer layer 250 used for the light emitting device substrate described in Embodiments 1 to 4 is not limited to a metal or an alloy. Instead, the buffer layer 250 is formed using a resin processed into a sheet or a paste-like resin. It is good.
  • additives may be appropriately added.
  • the additive include ceramic particles, glass fibers, metal particles, and the like.
  • the resin constituting the buffer layer 250 may be made of an epoxy resin, a silicone resin, a polyimide resin, or a fluorine resin having excellent heat resistance. More specifically, a commercially available insulating sheet for heat dissipation substrate may be used as the buffer layer 250.
  • the linear expansion coefficient of the commercially available insulating sheet for a heat radiating substrate is 10 ⁇ 10 ⁇ 6 to 15 ⁇ 10 ⁇ 6 / ° C. by using an epoxy resin as a binder for the ceramic particles, and the linear expansion coefficient of aluminum is 23
  • the insulation withstand voltage at a thermal conductivity of 5 W / (m ⁇ K) and a thickness of 100 ⁇ m exhibits excellent thermal conductivity and withstand voltage of 5 kV or more.
  • the drying and baking temperature is set to 300 ° C. or lower, preferably 250 ° C. or lower, and the heat received by the resin layer including the buffer layer 250 It is necessary to reduce the damage caused by.
  • FIG. 16A shows a plan view of the light emitting device 4 according to the present embodiment
  • FIG. 16B shows a cross-sectional view taken along the line DD in FIG.
  • the number of light emitting elements 6 is greatly omitted for the sake of simplicity.
  • the light emitting device 4 is a COB (chip on board) type light emitting device in which a plurality of light emitting elements 6 such as LED elements or EL elements are mounted on a substrate 5A.
  • COB chip on board
  • a frame body 8 is provided on the periphery of the sealing resin 7 and surrounds the plurality of light emitting elements 6.
  • the light emitting element 6 is sealed by filling the inside of the frame 8 with the sealing resin 7.
  • the sealing resin 7 includes a phosphor that excites the phosphor with the light emitted from the light emitting element 6 and converts it into light of different wavelengths. With this configuration, the light emitting element 6 emits light on the surface of the sealing resin 7.
  • the number of the light emitting elements 6 is about 300 to 400. It is necessary to accumulate a large number. Since the heat generation of the light emitting device 4 is increased by integrating a large number, the heat sink 2 having a very large volume as compared with the light emitting device 4 as shown in FIG.
  • FIG. 17 is an overhead view of the light emitting device 4 mounted on a heat sink.
  • the light emitting element 6 for example, a blue LED, a purple LED, an ultraviolet LED, or the like can be used.
  • the phosphor filled in the sealing resin 7 for example, a phosphor that emits one color of blue, green, yellow, orange, and red, or a combination of arbitrary plural phosphors can be used. As a result, it is possible to emit emitted light of a desired color from the light emitting device 4.
  • the phosphor of the sealing resin 7 may be omitted, and the light emitting elements 6 of three colors of blue, green and red having different emission wavelengths may be arranged on the substrate 5A, or any combination of two colors may be used. Alternatively, it may be a single color.
  • the light emitting element 6 is connected to the positive electrode pattern 20a and the negative electrode pattern 20b.
  • the positive electrode pattern 20a is connected to a positive electrode connector 21a for connecting the light emitting element 6 to an external wiring or an external device via the positive electrode pattern 20a.
  • the negative electrode pattern 20b is connected to a negative electrode connector 21b for connecting the light emitting element 6 to an external wiring or an external device via the negative electrode pattern 20b.
  • the positive electrode connector 21a and the negative electrode connector 21b may be composed of lands, and the positive electrode pattern 20a and the negative electrode pattern 20b may be connected to an external wiring or an external device by soldering.
  • a land is provided in each of the positive electrode pattern 20a and the negative electrode pattern 20b.
  • the positive electrode pattern 20a and the positive electrode connector 21a, and the negative electrode pattern 20b and the negative electrode connector 21b may be connected via a land.
  • the light emitting device 4 can be applied to a lighting device 1 as shown in FIG. 18, for example.
  • 18A is an overhead view of the lighting device 1 to which the light-emitting device 4 according to Embodiment 6 is applied
  • FIG. 18B is a cross-sectional view of FIG.
  • the lighting device 1 includes a light emitting device 4, a heat sink 2 for radiating heat generated from the light emitting device 4, and a reflector 3 that reflects light emitted from the light emitting device 4.
  • the light-emitting element 6 when the light-emitting element 6 is formed of a sapphire substrate, a high-quality and dense ceramic layer formed by thermal spraying, for example, an alumina layer is interposed between the light-emitting element 6 and the aluminum substrate 10.
  • the ceramic layer having a linear expansion coefficient close to that of the light emitting element 6 functions as a buffer layer. Therefore, the lifetime of the light emitting element 6 is not reduced due to the expansion and contraction of the aluminum base 10. Therefore, even if a temperature cycle load is applied, the output of the light emitting element 6 is not reduced, that is, the life is not reduced.
  • a substrate for a light emitting device (substrates 5A and 5B) according to an aspect 1 of the present invention has an electrode pattern (20) for electrical connection between a base made of a metal material (aluminum base 10) and a light emitting element (6).
  • a first insulating layer (reflective layer 12) formed by containing a first ceramic that reflects light from the light emitting element, and a second ceramic formed by thermal spraying,
  • a second insulating layer intermediate layer 11 and protective layer 14 that reinforces the dielectric strength performance of the first insulating layer is provided.
  • the light emitting device substrate includes the first insulating layer containing the first ceramic that reflects light from the light emitting element. For this reason, it has high reflectance, heat resistance, and light resistance.
  • the second insulating layer contains the second ceramic and is formed by thermal spraying. For this reason, since the second insulating layer can form a dense ceramic layer, high withstand voltage characteristics and high thermal conductivity can be stably secured. Furthermore, the thickness of the second insulating layer can be increased while keeping the thermal resistance low. Therefore, it is possible to reinforce the withstand voltage performance of the first insulating layer while keeping the thermal resistance low. As a result, it is possible to provide a substrate for a light-emitting device that has long-term reliability including high reflectivity, high heat dissipation, high withstand voltage, heat resistance and light resistance, and excellent in mass productivity.
  • the light emitting device substrate (substrates 5A and 5B) according to aspect 2 of the present invention is the above aspect 1, wherein the first insulating layer (reflective layer 12) is a mixed layer of the first ceramic and vitreous, or It is a mixed layer of the first ceramic and resin, and the thermal conductivity of the second insulating layer (intermediate layer 11 and protective layer 14) may be higher than the thermal conductivity of the first insulating layer.
  • the first insulating layer is a mixed layer of the first ceramic and glass or a mixed layer of the first ceramic and the resin
  • the first insulating layer is subjected to a sol-gel reaction or a curing reaction. Can be formed.
  • the thermal conductivity of the second insulating layer is higher than that of the first insulating layer
  • the thermal conductivity of the second insulating layer is higher than that of the first insulating layer while maintaining high withstand voltage. It is possible to raise.
  • the base body (aluminum base body 10) may include an aluminum material or a copper material.
  • the substrate can include an aluminum material or a copper material. Therefore, a material that is lightweight, excellent in workability, and high in thermal conductivity can be used as the base material.
  • the light emitting device substrate (substrate 5A) according to aspect 4 of the present invention is the light emitting device substrate according to aspect 1, in which the base (aluminum base 10) includes an aluminum material, and the second insulating layer (intermediate layer 11) is the base. May be further provided with an alumite layer (protective layer 13) that covers a part of the substrate and covers the remaining part or all of the substrate.
  • the substrate can be covered with the second insulating layer and the alumite layer. Therefore, in the substrate manufacturing process, the substrate is protected from the plating solution during the plating process necessary for forming the electrode pattern, and at the same time, it functions as a protective layer for preventing the deposition of excess plating. Moreover, after completion of the substrate, corrosion due to oxidation can be prevented.
  • the light emitting device substrate (substrate 5A) according to aspect 5 of the present invention is the above aspect 1, wherein the second insulating layer (intermediate layer 11) includes the first insulating layer (reflective layer 12) and the base (aluminum base). 10).
  • the second insulating layer is formed between the first insulating layer and the substrate. Therefore, the withstand voltage performance of the first insulating layer can be reinforced by the second insulating layer formed between the first insulating layer and the substrate.
  • the substrate for a light emitting device (substrate 5A) according to aspect 6 of the present invention is the above-described aspect 5, wherein the thickness of the second insulating layer (intermediate layer 11) is 50 ⁇ m or more and 500 ⁇ m or less, and the first insulating layer (reflection)
  • the thickness of the layer 12) may be from 10 ⁇ m to 100 ⁇ m.
  • the second insulating layer can suitably reinforce the dielectric strength performance of the first insulating layer, and the first insulating layer can suitably reflect light from the light emitting element.
  • the substrate for a light emitting device is the above-described aspect 1, wherein the second insulating layer (protective layer 14) is the first insulating layer (reflective layer) of the base (aluminum base 10). 12) It may be formed on the surface opposite to the surface on the side.
  • the second insulating layer having a lower thermal conductivity than the base is disposed at a position far from the light emitting element 6. Therefore, heat can be diffused in a horizontal direction parallel to the surface of the light emitting device substrate before passing through the second insulating layer. As a result, even if the second insulating layer has the same thickness and the same thermal conductivity as those of the second insulating layer, the thermal resistance of the second insulating layer can be reduced.
  • the light emitting device substrate (substrate 5B) according to aspect 8 of the present invention is the above aspect 7, wherein the second insulating layer (protective layer 14) has a thickness of 50 ⁇ m or more, and the first insulating layer (reflective layer 12). ) May be 10 ⁇ m or more and 100 ⁇ m or less.
  • the second insulating layer can suitably reinforce the dielectric strength performance of the first insulating layer, and the first insulating layer can suitably reflect light from the light emitting element.
  • the substrate for a light emitting device is the above-described aspect 1, wherein the second insulating layer (intermediate layer 11 and protective layer 14) includes an alumina layer, and the first insulating layer
  • the (reflective layer 12) may be formed by covering any of zirconia particles, titanium oxide particles, alumina particles, or aluminum nitride particles with glass.
  • the second insulating layer includes the alumina layer. Therefore, the second insulating layer has high thermal conductivity and dielectric strength performance.
  • the first insulating layer is formed by covering any of zirconia particles, titanium oxide particles, alumina particles, or aluminum nitride particles with glass. Therefore, the first insulating layer has a high reflectivity, a high withstand voltage performance, and a high thermal conductivity. Further, since the first insulating layer has a glassy material, it has excellent heat resistance and light resistance, and has high withstand voltage.
  • the substrate for light emitting device is the above-described aspect 1, wherein the second insulating layer (intermediate layer 11 and protective layer 14) includes an alumina layer, and the first insulating layer.
  • the (reflective layer 12) includes a resin containing any of zirconia particles, titanium oxide particles, alumina particles, or aluminum nitride particles, and the resin may be a silicone resin, a fluororesin, or an epoxy resin.
  • the second insulating layer includes the alumina layer. Therefore, the second insulating layer has high thermal conductivity and dielectric strength performance.
  • the first insulating layer includes a silicone resin, a fluororesin, or an epoxy resin containing any of zirconia particles, titanium oxide particles, alumina particles, or aluminum nitride particles. Therefore, the first insulating layer has a high reflectance and a high withstand voltage performance.
  • the resin since the resin has a low curing temperature, when the resin is used as the binder for forming the first insulating layer, the formation becomes easier as compared with the case where the glass is formed by using the sol-gel reaction.
  • a light-emitting device (4) according to Aspect 11 of the present invention includes a substrate for a light-emitting device (substrates 5A and 5B) described in Aspect 1, the light-emitting element (6), and the light-emitting element (6) as the electrode.
  • a light emitting device that exhibits the same effect as the light emitting device substrate according to aspect 1 can be provided.
  • a method for manufacturing a substrate for a light emitting device according to aspect 12 of the present invention is a method for manufacturing a substrate for a light emitting device according to aspect 5, in which the second insulating layer (intermediate layer 11) is sprayed on the base. And forming the first insulating layer (reflective layer 12) on the second insulating layer, and forming the electrode pattern (20) on the first insulating layer.
  • the second insulating layer includes an alumina layer, and the alumina layer is formed by spraying alumina. May be.
  • the second insulating layer includes the alumina layer. Therefore, the second insulating layer has high thermal conductivity and dielectric strength performance.
  • the second insulating layer is formed by thermal spraying. For this reason, since a dense alumina layer can be formed in the second insulating layer, high withstand voltage characteristics and high thermal conductivity can be stably secured.
  • the first insulating layer (reflective layer 12) is a mixed layer of the first ceramics and vitreous,
  • the glassy material may be formed by a sol-gel reaction.
  • the first insulating layer is a mixed layer of the first ceramic and vitreous. Therefore, since the 1st insulating layer has the 1st ceramics, it has a high reflectance, has a high withstand voltage performance, and has a high thermal conductivity. Further, since the first insulating layer has a glassy material, it has excellent heat resistance and light resistance, and has a high withstand voltage.
  • the second insulating layer includes an alumina layer
  • the first insulating layer includes: It may be a mixed layer of the first ceramic and glassy, the alumina layer may be formed by spraying alumina, and the glassy may be formed by a sol-gel reaction of a glass raw material.
  • the second insulating layer includes the alumina layer. Therefore, the second insulating layer has high thermal conductivity and dielectric strength performance.
  • the second insulating layer is formed by thermal spraying. For this reason, since a dense alumina layer can be formed in the second insulating layer, high withstand voltage characteristics and high thermal conductivity can be stably secured.
  • the first insulating layer is a mixed layer of the first ceramic and the vitreous. Therefore, since the 1st insulating layer has the 1st ceramics, it has a high reflectance, has a high withstand voltage performance, and has a high thermal conductivity. Further, since the first insulating layer has a glassy material, it has excellent heat resistance and light resistance, and has a high withstand voltage.
  • the second insulating layer includes an alumina layer
  • the first insulating layer includes: It is a mixed layer of the first ceramic and glassy, and the alumina layer may be formed by spraying alumina, and the glassy may be formed by melting and hardening glass particles.
  • the second insulating layer includes the alumina layer. Therefore, the second insulating layer has high thermal conductivity and dielectric strength performance.
  • the second insulating layer is formed by thermal spraying. For this reason, since a dense alumina layer can be formed in the second insulating layer, high withstand voltage characteristics and high thermal conductivity can be stably secured.
  • the first insulating layer is a mixed layer of the first ceramic and the vitreous. Therefore, since the 1st insulating layer has the 1st ceramics, it has a high reflectance, has a high withstand voltage performance, and has a high thermal conductivity. Further, since the first insulating layer has a glassy material, it has excellent heat resistance and light resistance, and has high withstand voltage.
  • a method for manufacturing a light-emitting device substrate according to Aspect 17 of the present invention is a method for manufacturing a light-emitting device substrate (substrate 5B) according to Aspect 7, wherein the first insulating layer (aluminum substrate 10) is formed on the base (aluminum base 10). A reflective layer 12) is formed, the second insulating layer (protective layer 14) is formed on the surface of the substrate opposite to the surface on the first insulating layer side, and the electrode pattern is formed on the first insulating layer. May be formed.
  • a substrate for a light emitting device includes a base (aluminum base 10) made of a metal material, ceramics formed by thermal spraying, and a white inorganic material for improving the whiteness of the ceramics. And an insulating layer (insulating reflective layer 15) formed between the electrode pattern (20) and the base body for electrical connection with the light emitting element (6).
  • the substrate for the light emitting device includes the insulating layer containing ceramics formed by thermal spraying. For this reason, since the insulating layer can form a dense ceramic layer, high dielectric strength characteristics and high thermal conductivity can be stably secured.
  • the substrate for a light emitting device contains a white inorganic material for improving the whiteness of the ceramic. For this reason, the light from a light emitting element can be reflected, and it has high reflectance, heat resistance, and light resistance. Furthermore, the insulating substrate can enhance the withstand voltage performance of the light emitting device substrate while keeping the thermal resistance low. As a result, it is possible to provide a substrate for a light-emitting device that has long-term reliability including high reflectivity, high heat dissipation, high withstand voltage, heat resistance and light resistance, and excellent in mass productivity.
  • the substrate for a light emitting device (substrate 5A) according to Aspect 19 of the present invention is the same as that in Aspect 1, except that the wire between the base (aluminum base 10) and the second insulating layer (intermediate layer 11) is more wire than the base.
  • a buffer layer (250) made of a material having a small expansion coefficient may be formed.
  • the buffer layer having a smaller linear expansion coefficient than the base is formed between the base and the second insulating layer. For this reason, since it is possible to remarkably reduce transmission of a mechanical load due to thermal expansion and contraction of the substrate to the light emitting element, the life of the light emitting element and thus the light emitting device can be extended, and the reliability can be improved.
  • a buffer layer 250 made of a material having a linear expansion coefficient smaller than that of the substrate and larger than that of the second insulating layer (intermediate layer 11) may be formed.
  • the substrate for a light emitting device according to the present invention can be used as a substrate for various light emitting devices.
  • the light-emitting device according to the present invention can be used particularly as a high-luminance LED light-emitting device.
  • the method for manufacturing a substrate for a light emitting device according to the present invention can manufacture a substrate for a light emitting device excellent in withstand voltage and heat dissipation by a method excellent in mass productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Led Device Packages (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 基板(5A)は、アルミニウム基体(10)と、発光素子(6)との電気的接続をとるための電極パターン(20)とアルミニウム基体(10)との間に、発光素子(6)からの光を反射する第1セラミックスを含有して形成された反射層(12)と、溶射により形成した第2セラミックスを含有して反射層(12)の絶縁耐圧性能を補強する中間層(11)と、を備える。

Description

発光装置用基板、発光装置、および、発光装置用基板の製造方法
 本発明は、金属材料からなる基体と、発光素子との電気的接続を取るための電極パターンと前記基体との間にセラミックスを含有して形成され、前記発光素子からの光を反射する絶縁層と、を備えた発光装置用基板、これを用いた発光装置、および、発光装置用基板の製造方法に関し、特に、発光装置に好適に設けられる発光装置用基板、これを用いた発光装置、および、発光装置用基板の製造方法に関する。
 発光装置に使用される基板として基本的に備える必要がある性能としては、高反射率と、高放熱性と、絶縁耐圧性と、長期信頼性とを挙げることができる。特に、高輝度照明に用いられる発光装置用基板には、高い絶縁耐圧性が必要とされる。
 従来、発光装置用基板として、セラミックス基板、または金属基体上に絶縁層として有機レジスト層を備えた基板などが知られている。以下、セラミックス基板および金属基体を用いた基板の構成を説明する。
 (セラミックス基板)
 例えば、セラミックス基板は、板状のセラミックス基体に電極パターンを形成して作製される。発光装置の高出力化傾向に伴って、発光素子を基板上に多数並べて、明るさを向上させることが追及された結果、年々、セラミックス基板は大型化の一途をたどってきた。
 具体的には、投入電力30Wで使用される一般的なLED発光装置を、例えば、寸法650μm×650μm程度あるいはその前後の青色LED素子を、中型サイズに分類される一つの基板に並べて実現する場合、100個程度の青色LED素子が必要である。この100個程度の数の青色LED素子を並べるセラミックス基板としては、例えば、平面サイズで20mm×20mm以上、厚み1mm程度を用いたものがある。
 また、投入電力100W以上の更に明るいLED発光装置を実現しようとした場合、このようなセラミックス基板の大型化を基本とした技術開発の帰結として、400個以上の青色LED素子を一挙に搭載することが可能である、少なくとも平面サイズで40mm×40mm以上のより大型のセラミックス基板が必要とされる。
 しかしながら、上述したようなセラミックス基板の大型化の要求にしたがって、セラミックス基板を大型化して商業ベースで実現しようとしても、セラミックス基板の強度と製造精度と製造コストとの3つの課題のため、商業ベースでの実現が困難であった。
 詳しくは、セラミックス材料は、基本的に焼き物であるため、大型化するとセラミックス基板の強度に課題が生じる。この課題を克服するためにセラミックス基板を厚くすると、熱抵抗が高くなる(放熱性が悪くなる)と同時に、セラミックス基板の材料コストも上昇してしまうという新たな課題が生じてしまう。また、セラミックス基板を大型化すると、セラミックス基板の外形寸法ばかりでなく、セラミックス基板上に形成される電極パターンの寸法も狂いやすくなり、その結果として、セラミックス基板の製造歩留が低下して、セラミックス基板の製造コストが上昇し易いという課題がある。
 (金属基体を用いた基板)
 また例えば、セラミックス基板での上記課題を克服する目的で、高出力発光装置に使用する基板として、熱伝導性の高い金属基体を使用する場合がある。ここで、金属基体上に発光素子を搭載するためには、発光素子と接続する電極パターンを形成するために金属基体上に絶縁層を設けなくてはならない。また、高出力発光装置用基板において光利用効率を向上させるためには、上記絶縁層は、高光反射性を有している必要がある。
 高出力発光装置用基板において、従来絶縁層として使用されている材料としては有機レジストがあげられる。また、セラミックス系塗料を用いて光反射層兼絶縁層を形成しても良い。
 高出力発光装置用基板において従来から絶縁層として使用されている有機レジストを用いる場合、十分な熱伝導性、耐熱性および耐光性が得られず、また、高出力発光装置用基板として必要な絶縁耐圧性が得られない。また、光の利用効率を向上させるためには、絶縁層を介して金属基体側に漏れる光を反射させる必要があるが、従来の有機レジストを絶縁層として用いた構成では十分な光反射性が得られない。
 それに対して、高出力発光装置用基板において金属基体にセラミックス系塗料を用いて光反射層兼絶縁層を形成した場合、反射率、耐熱性および耐光性の良好な発光装置用基板を実現できる。特許文献1には、セラミック系塗料を基体に塗布する光反射層兼絶縁層の形成方法が開示されている。
 また、塗料によらず、例えば、特許文献2~4には、セラミックスからなる光反射層兼絶縁層が、塗布または吹付けにより金属基体に形成される発光装置用基板について開示されている。
日本国公開特許公報「特開昭59-149958号(1984年8月28日公開)」 日本国公開特許公報「特開2012-102007号(2012年5月31日公開)」 日本国公開特許公報「特開2012-69749号(2012年4月5日公開)」 日本国公開特許公報「特開2006-332382号(2006年12月7日公開)」 日本国公開特許公報「特開2007-317701号(2007年12月6日公開)」
 しかしながら、溶媒にセラミックス粒子を分散させた塗料を塗布および吹付けにより、セラミックスからなる光反射層兼絶縁層として金属基体に形成した発光装置用基板の場合には、反射率、耐熱性および耐光性に優れるものの、絶縁耐圧性が低いという問題がある。例えば、当該発光装置用基板で投入電力100W以上の明るいLED照明用発光装置を実現しようとした場合、セラミックス基板とは違い、高輝度照明用途の発光装置用基板に必要とされる高い絶縁耐圧性が確保できない。これは以下の事情による。
 明るさを必要とする高輝度タイプの発光装置においては、発光素子を直列接続し、高い電圧で発光させるのが一般的である。短絡防止および安全性の観点から、このような発光装置では、例えば4~5kV以上の絶縁耐圧が発光装置全体として必要とされ、発光装置用基板に対しても同等の絶縁耐圧性が必要とされることが多い。
 セラミックス基板では絶縁層が厚いので、上記高輝度タイプの照明装置に見合った絶縁耐圧性が容易に得られる。これに対して、金属基体表面にセラミックス系塗料を用いて光反射層兼絶縁層を形成した発光装置用基板の場合には、前記光反射層兼絶縁層の形成が難しいため、絶縁耐圧性を安定して再現することが困難である。
 アルミニウムのように低融点の金属上でも用いられるセラミックス系塗料としては、ガラスバインダーを用いたものが挙げられる。
 このときゾル・ゲル法を用いることでガラスの溶融温度よりもずっと低い温度で溶融状態を経ることなくガラス質の膜を合成できる。すなわち200℃~500℃といった低温で焼成するとガラス質にセラミックス粒子が覆われる形でセラミックス層、実際にはセラミックスとガラス質の混合層を形成することが出来る。ところが、ゾル状のガラス原料を乾燥しゲル化した状態で現れるガラス質は多孔性の膜である。焼結することでかなりの孔は消失するが、薄い膜では焼結後も孔を完全にはふさぎきることが出来ず、前記セラミックスとガラス質の混合層では絶縁耐圧性に劣る場合がある。
 そこで、光反射層兼絶縁層の厚みを厚くして必要とされる高い絶縁耐圧性を安定して確保しようとすると、今度は熱抵抗が高くなり、放熱性が低下するという問題が生じる。更に、ゾル・ゲル法で前記光反射層兼絶縁層の厚膜を形成しようとすると膜にクラックが入り易くなり、やはり絶縁耐圧性を低下させてしまう。
 ゾル・ゲル法以外の方法を用い、ガラス質で被覆されたセラミックス層を合成する方法としては、セラミックス粒子と低融点ガラス粒子との混合物を使用する場合がある。低融点ガラス粒子を一旦溶融後硬化させてセラミックス粒子含有ガラス層を形成する。しかし、低融点ガラスといえども、800℃~900℃程度の温度が必要なため、アルミニウムなどのように低融点で一般的な金属では前記プロセスに耐えられない。
 特許文献5には、アルミナなどセラミックスからなる絶縁層が、金属基体上にプラズマ溶射により形成される光源用基板について開示されている。プラズマ溶射によりアルミナの絶縁層を形成した光源用基板は、電気的な絶縁耐圧性に優れた光源用基板を実現する。
 しかしながら、特許文献5に開示されている、プラズマ溶射でアルミナの絶縁層を形成した光源用基板は、電気的な絶縁耐圧性に優れるものの、最も良好なアルミナ膜が得られたとしても、反射率は82%~85%程度である。したがって、反射率が90%以上、更には95%以上必要である高輝度照明に用いられる発光装置用基板としては、反射率が低いという問題がある。
 またプラズマ溶射によって積層されたアルミナなどのセラミックス層表面には、図19に示すように、凹凸が形成され易い。図19は、従来の基板200の概略断面図である。基板200は、基体210上に絶縁層としてセラミックス層201がプラズマ溶射により形成され、さらにセラミックス層201上に発光素子206が搭載されている。基体210が金属基体である場合、基体210上に溶射でセラミックス層201を積層する際、セラミックス層201の密着性を上げるために、前処理として基体210の表面をサンドブラストなどによって粗面化する必要がある。図19の基体210とセラミックス層201との境界にある凹凸はこのため生じた凹凸面である。また、溶射によりセラミックスを積層すると、セラミックス層201の表面が凹凸になりやすくなる。このため、基体210とセラミックス層201の境界に、前記前処理に起因する凹凸面があることと併せて、セラミックス層201の表面が図19のように凹凸面となる。このような凹凸面に発光素子206が搭載された場合、発光素子206とセラミックス層201からなる絶縁層とは点接触となり、境界部分に熱抵抗領域が生じ、発光素子206の温度は急激に上昇する。また、このような凹凸面に通常の方法、例えば、ダイボンドペーストを用いて発光素子206を貼り付けるような場合、充分な接着強度が得られず、実使用条件の熱履歴により容易に剥がれてしまうため、更に熱抵抗は上昇する。このように、図19に示す基板200は、高熱抵抗領域が容易に現れるため、高輝度照明の発光装置用基板としては不充分であった。
 以上のように、従来の金属基体を用いた発光装置用基板においては、熱抵抗が低く放熱性に優れ、且つ、反射率と絶縁耐圧性にも優れた基板は、少なくとも量産に適した形では存在しないという問題がある。
 また、金属基体を用いた場合の別の課題としては、発光素子と基体との線膨張係数の違いによる発光素子の寿命低下が挙げられる。例えば、青色発光素子形成用の基板の代表的な材質としては、サファイアまたは窒化ガリウムなどが挙げられるが、これら無機物質の線膨張係数はアルミニウムまたは銅のような金属よりも小さく、両者の線膨張係数には大きな差がある。このため、温度サイクルの負荷がかかると発光素子の出力低下、すなわち、寿命の低下が生じる。
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、高反射率と、高放熱性と、高絶縁耐圧性と、耐熱・耐光性とを含む長期信頼性を兼ね備え、さらに量産性にも優れた発光装置用基板と、その発光装置用基板を用いた発光装置と、その発光装置用基板を製造する製造方法を提供することにある。
 上記の課題を解決するために、本発明の一態様に係る発光装置用基板は、金属材料からなる基体と、発光素子との電気的接続をとるための電極パターンと前記基体との間に、前記発光素子からの光を反射する第1セラミックスを含有して形成された第1絶縁層と、溶射により形成した第2セラミックスを含有して前記第1絶縁層の絶縁耐圧性能を補強する第2絶縁層と、を備えたことを特徴とする。
 本発明の一態様によれば、高反射率と、高放熱性と、高絶縁耐圧性と、耐熱・耐光性とを含む長期信頼性を兼ね備え、さらに量産性にも優れた発光装置用基板を提供することができるという効果を奏する。
(a)は、本発明の実施形態1に係る基板の平面図、(b)は、そのA-A線矢視断面図、(c)は、その断面の部分拡大図である。 (a)~(d)は、本発明の実施形態1に係る基板の製造工程を説明する模式断面図である。 (a)は本発明の実施形態1に係る基板の概略断面図、(b)は(a)に示した各層に対する熱伝導率σth(W/(m・℃))と、層厚d(mm)と、熱抵抗Rth(℃/W)と、温度上昇ΔT(℃)と、を示す図である。 (a)は比較例1の基板の概略断面図、(b)は(a)に示した各層に対する熱伝導率σth(W/(m・℃))と、層厚d(mm)と、熱抵抗Rth(℃/W)と、温度上昇ΔT(℃)と、を示す図である。 (a)は比較例2の基板の概略断面図、(b)は(a)に示した各層に対する熱伝導率σth(W/(m・℃))と、層厚d(mm)と、熱抵抗Rth(℃/W)と、温度上昇ΔT(℃)と、を示す図である。 基板の熱抵抗の絶縁層厚み依存性を示すグラフである。 基板の温度上昇の絶縁層厚み依存性を示すグラフである。 (a)は、本発明の実施形態2に係る基板の平面図、(b)は、そのB-B線矢視断面図、(c)は、その断面の部分拡大図である。 (a)~(d)は、本発明の実施形態2に係る基板の製造工程を説明する模式図である。 (a)は、本発明の実施形態3に係る基板の平面図、(b)は、そのC-C線矢視断面図、(c)は、その断面の部分拡大図である。 (a)~(d)は、本発明の実施形態3に係る基板の製造工程を説明する模式図である。 本発明の実施形態3に係る基板の変形例1を説明する図であり、(a)は、本発明の実施形態3に係る基板の変形例1の平面図、(b)は、そのE-E線矢視断面図、(c)は、その断面の部分拡大図である。 基体と溶射により基体に形成されたセラミックス層との密着性の改善を説明するための図である。 本発明の実施形態4に係る基板の概略断面図である。 本発明の実施形態4に係る基板の他の例を示す概略断面図である。 (a)は、本発明の実施形態6に係る発光装置の平面図、(b)は、そのD-D線矢視断面図である。 ヒートシンクに装着された本発明の実施形態6に係る発光装置の俯瞰図である。 (a)は、本発明の実施形態6に係る発光装置を適用した照明装置の俯瞰図であり、(b)は、その断面図である。 従来の基板の概略断面図である。 本発明の実施形態1に係る基板の変形例を説明する図であり、(a)は、本発明の実施形態1の基板の変形例の平面図、(b)は、そのF-F線矢視断面図、(c)は、その断面の部分拡大図である。 本発明の実施形態2に係る基板の変形例を説明する図であり、(a)は、本発明の実施形態2の基板の変形例の平面図、(b)は、そのG-G線矢視断面図、(c)は、その断面の部分拡大図である。 本発明の実施形態3に係る基板の変形例2を説明する図であり、(a)は、本発明の実施形態3に係る基板の変形例2の平面図、(b)は、そのH-H線矢視断面図、(c)は、その断面の部分拡大図である。 本発明の実施形態3に係る基板の変形例2の他の例を説明する図であり、(a)は、本発明の実施形態3に係る基板の変形例2の他の例の平面図、(b)は、そのI-I線矢視断面図、(c)は、その断面の部分拡大図である。 本発明の実施形態4に係る基板の変形例の概略断面図である。 本発明の実施形態4に係る基板の変形例の他の例を示す概略断面図である。
 以下、本発明の実施形態について、詳細に説明する。
 〔実施形態1〕
 実施形態1について、図1および図2に基づいて説明すれば、以下のとおりである。
 (基板5Aの構造)
 実施形態1に係る基板5Aの構造を、図1を参照して説明する。図1の(a)は、本実施形態に係る基板5A(発光装置用基板)の平面図であり、図1の(b)は図1の(a)のA-A線矢視断面図である。また、図1の(c)は、図1の(b)の部分拡大図である。
 基板5Aはその上に発光素子6(図16参照)を配置させた発光装置4(図16参照)に用いられるものである。発光装置4の一例を図16に示す。どの図面もそうであるが、寸法、形状、個数などは、必ずしも、実際の基板、発光素子、発光装置とは同一ではない。基板5Aを用いた発光装置4については実施形態6にて説明する。
 図1の(c)に示すように、アルミニウム基体10(基体)の表面上に、中間層11(第2絶縁層)、反射層12(第1絶縁層)、および電極パターン20がこの順番に形成されている。
 中間層11は、アルミニウム基体10の表面(図1の(c)基準)を覆うように形成されている。反射層12は、アルミニウム基体10の表面における中間層11の上面に形成されている。言い換えると、中間層11は、反射層12とアルミニウム基体10との間に形成されている。
 また、アルミニウム基体10の下端面(図1の(c)基準)およびアルミニウム基体10の側端面(図1の(c)基準)には、保護層(アルミニウムの陽極酸化皮膜)13が形成されている。すなわち、中間層11が形成された面以外の面は、保護層13が形成されている。言い換えると、アルミニウム基体10の反射層12が形成されている面とは反対側の面(反射層12が形成されている側の面に対向する面)とアルミニウム基体10の側端面とは保護層13に覆われ、アルミニウム基体10の保護層13が形成されている面以外の面は、中間層11に覆われている。
 反射層12上には、電極パターン20が形成されている。電極パターン20は図1の(a)・(b)に示すように、正極電極パターン20aおよび負極電極パターン20bを有する。電極パターン20は、導電層からなる下地の回路パターン(非図示)とそれを覆うメッキから成る。電極パターン20は、基板5A上に配置する発光素子6(図16参照)との電気的接続を取るための配線である。発光素子6は、図16に示すように、例えばワイヤにより電極パターン20に接続される。
 本実施形態は、熱伝導性のセラミックス絶縁体である中間層11および光反射性のセラミックス絶縁体である反射層12が、電極パターン20とアルミニウム基体10との間に絶縁層として形成されることを特徴とする。さらに、中間層11は、反射層12とアルミニウム基体10との間に形成される。上記構成により、基板5Aは、高い絶縁耐圧性能を安定的に確保できる。下記に各層について具体的に説明する。
 (アルミニウム基体10)
 アルミニウム基体10としては、例えば、縦50mm、横50mmおよび厚み3mmtのアルミニウム板を用いることができる。アルミニウム材料の長所として、軽量で加工性に優れ、熱伝導率が高いことが挙げられる。アルミニウム基体10には保護層13の形成のための陽極酸化処理を妨げない程度のアルミニウム以外の成分が含まれていてもよい。
 なお、基体の材料としては上記に限らない。軽量で加工性に優れ、熱伝導率が高い金属材料であればよく、例えば、銅材料を基体の材料として使用することができる。
 (保護層13)
 保護層13はアルミニウムの陽極酸化皮膜(アルマイト)である。
 保護層13は、基板5Aの製造工程においては、電極パターン20を形成するのに必要なメッキ処理の際にメッキ液からアルミニウム基体10を保護すると同時に、余分なメッキの析出を防ぐ保護層としても機能する。基板5A完成後は、保護層13は、アルミニウム基体10の酸化による腐食を防止する。
 (反射層12)
 反射層12は、発光素子6(図16参照)からの光を反射する光反射性セラミックス(第1セラミックス)を含有し、絶縁性を有している。このため、反射層12は、発光素子6(図16参照)からの光を反射させる。反射層12は、電極パターン20と中間層11との間、言い換えると、電極パターン20とアルミニウム基体10との間に形成される。反射層12は、ガラス系バインダー、または、耐光・耐熱性を備えた樹脂バインダーに混ぜたセラミックス粒子を、乾燥または焼成などにより当該バインダーを硬化させて、セラミックス粒子を含む絶縁性反射層として基板5Aの最外層に形成される。本実施形態では、反射層12は、光反射性セラミックスとガラス質との混合層である。反射層12は、光反射性セラミックスとしてジルコニアを含有し、ガラス系バインダーを用いて焼結などにより形成されている。
 ガラス系バインダーは、ゾル・ゲル反応でガラス粒子を合成するゾル状物質からなる。樹脂バインダーは、耐熱性・耐光性に優れ透明性も高い、エポキシ樹脂、シリコーン樹脂、あるいはフッ素樹脂により構成される。ガラス系バインダーは、樹脂バインダーと比較して、耐熱性・耐光性に優れ熱伝導率も高いため、ガラス系バインダーを使用する方がより好ましい。
 ゾル・ゲル法に用いるガラス系バインダーは焼成温度が200℃~500℃と比較的低く、反射層12にガラス系バインダーを用いる場合、適切な温度を選択すれば、製造工程でアルミニウム基体10および中間層11にダメージを与えることはない。また、反射層12に樹脂バインダーを用いる場合も、同様にアルミニウム基体10および中間層11にダメージを与えることはない。
 反射層12に用いる光反射性セラミックス材料の主要なものとしては、ジルコニア粒子以外に酸化チタン粒子、アルミナ粒子および窒化アルミニウム粒子などが挙げられる。また、その他高反射のセラミックス材料であっても良い。
 ここで言うセラミックス材料は、金属酸化物に限定されるものではなく、発光素子6(図16参照)からの光を反射させる絶縁性の材料であればよい。例えば、窒化アルミニウムなども含む広義のセラミックス、すなわち、無機固形体材料全般を含む。これら無機固形体材料のうち、耐熱性、熱伝導性に優れた安定な物質であり、光反射、光散乱に優れた物質であれば任意の物質を、反射層12の光反射性セラミックス材料に使用して構わない。このため、光吸収が生じる材料は、反射層12のセラミックス材料として適当ではない。例えば、窒化ケイ素、炭化ケイ素などは一般に黒色であり、反射層12に使用するセラミックス材料としては適当ではない。
 また、反射層12の厚さは、基板5Aの反射率を考慮して、例えば、50μm以上100μm以下程度とするのが望ましい。中間層11に比べ反射層12の熱伝導率は低い為、反射層12の厚さは所望の光反射機能を確保できる必要最小限の厚さとすることが望ましい。この目的を達成する厚さとしては、反射層12の厚さは50μm以上100μm以下程度が適当である。ただし、中間層11の表面に凹凸がある場合には、反射層12により中間層11の表面の凹凸を埋めて発光素子6を搭載面する面を平滑化するために、反射層12を厚く形成してもよい。具体的には、中間層11の表面の凹凸を埋める分を考慮して、反射層12を厚く形成してもよい。その際、前記凹凸の余分な厚みはおおむね60μm以下であることを考慮して、反射層12の厚さは110μm以上160μm以下としてもよい。
 (中間層11)
 中間層11は、溶射によりアルミニウム基体10にセラミックス層(第2セラミックス)を積層することで形成され、絶縁性を有している。言い換えると、中間層11は、溶射により形成したセラミックスを含有する。また、上述したように、反射層12は光反射機能を確保できる必要最低限の厚みとするため、基板5Aとして必要な絶縁耐圧性が不足する場合が考えられる。そこで、中間層11は、その反射層12だけでは不足する絶縁耐圧性を補強する。
 具体的には、反射層12は、ガラス質または樹脂に混合させるセラミックス材料とその量にも依存するが、おおむね10μm以上100μm以下の厚みを有すれば反射率は飽和する。そのため、中間層11の形成条件にもよるが、中間層11の厚みが50μm以上500μm以下であることが好ましい。
 例えば、中間層11の厚さが100μmであれば、中間層11だけで最低でも1.5kV~3kV以上の絶縁耐圧を確保することができる。中間層11の厚さが500μmであれば、中間層11だけで最低でも7.5kV~15kVの絶縁耐圧を確保することができる。最終的には、反射層12の絶縁耐圧と、中間層11の絶縁耐圧とを合計した絶縁耐圧が所望の絶縁耐圧になるように中間層11の厚みを決定すればよい。本実施形態では、この合計の絶縁耐圧が4kV~5kV程度になるように反射層12および中間層11を構成することが望ましい。
 また、中間層11に使用するセラミックス材料としては、熱伝導率と絶縁耐圧性がともに良好であり、溶射により電気的絶縁膜を形成することに適したアルミナ(Al)が最も好しく、本実施形態では中間層11に用いるセラミックス材料として、アルミナを使用している。
 中間層11に用いるセラミックス材料としては、アルミナの他にも窒化アルミニウム、窒化ケイ素などが、熱伝導率と絶縁耐圧性とがともに良好であることから好ましい。例えば、炭化ケイ素は熱伝導率が高く、ジルコニア、酸化チタンは絶縁耐圧性が高い。このため、炭化ケイ素、ジルコニア、酸化チタンを、中間層11に用いるセラミックス材料として、目的および用途に応じて使い分ければよい。
 ここで言うセラミックス材料は、金属酸化物に限定されるものではなく、窒化アルミニウム、窒化ケイ素、炭化ケイ素なども含む広義のセラミックス、すなわち、無機固形体材料全般を含む。これら無機固形体材料のうち、耐熱性、熱伝導性に優れた安定な物質であり、絶縁耐圧性に優れた物質であれば任意の物質を、中間層11に用いるセラミックス材料として使用して構わない。
 なお、中間層11に用いるセラミックス材料は、反射層12に用いるセラミックス材料よりも熱伝導率が高いことが望ましい。上述したように、本実施形態では反射層12にセラミックス材料としてジルコニア粒子を用いている。反射層12のジルコニア粒子に対し、中間層11ではアルミナを使用している。アルミナの熱伝導率は、ジルコニアの熱伝導率よりも高いため、高い絶縁耐圧性を維持したまま、中間層11の熱伝導率を、反射層12に比べて上げることが可能となる。
 また、上述したように、中間層11は、溶射によりアルミニウム基体10にセラミックス層を積層することで形成される。アルミニウムは、融点660℃と低融点金属であり、通常これよりも高温でセラミックスの焼結が行われるため、セラミックスの焼結体をアルミニウム基体10上に直接焼結することはできない。
 しかし、例えば、後述する高速フレーム溶射またはプラズマ溶射といった溶射の手法を用いることで、セラミックスの焼結体をアルミニウム基体10上に直接焼結することなく、セラミックスだけからなる層を容易に形成(積層)することが出来る。しかも、積層時のアルミニウム基体10の基体温度は、プラズマ溶射で最大200℃程度、高速フレーム溶射であっても最大500℃程度であり、アルミニウムの融点660℃よりも十分低い温度でセラミックス層をアルミニウム基体10上に積層できる。すなわち、ガラス系バインダーまたは樹脂バインダーのような熱伝導率を下げるバインダーを使用せずに、セラミックスだけからなる中間層11を低融点金属上に形成できる。そのため、中間層11は、アルミナなどのセラミックス材料が持つ本来の熱伝導率の高さを損なうことなく、ガラス系バインダーまたは樹脂バインダーを用いて形成される層と同じ絶縁耐圧性を有する。
 また、中間層11のセラミックス層は、溶射により形成されるので、層(膜)の緻密さの指標とされる気孔率(形成された膜に占める空気孔の割合)が小さい、緻密なセラミックス層となる。そのため、中間層11は、高い絶縁耐圧性を安定的に確保すると同時に、高い熱伝導率を有する絶縁層を、より低い熱抵抗で実現できる。
 具体的には、溶射を用いて形成されるセラミックス層(中間層11)の熱伝導率は、焼結により形成された従来のセラミックス基板の熱伝導率に近く、例えば、10~30W/(m・℃)の値である。それに対し、ガラスまたは樹脂のバインダーを用いてセラミックス粒子を固めることで形成される層の熱伝導率は、熱伝導率が低いガラスまたは樹脂の影響を受けるため、通常1~3W/(m・℃)程度である。
 溶射を用いて形成されるセラミックス層と、ガラスまたは樹脂のバインダーを用いてセラミックス粒子を固めることで形成される層とを比較すると、上述したように、前者(溶射を用いて形成されるセラミックス層)の熱伝導率の方が一桁大きい。このため、前者の熱抵抗は、後者(ガラスまたは樹脂のバインダーを用いてセラミックス粒子を固めることで形成される層)の熱抵抗の約10分の1であり、層厚500μmの前者と層厚50μmの後者とが、概算で同じ熱抵抗となる。厚み当たりの絶縁耐圧性能が同じであれば、前者が後者に対して10倍の絶縁耐圧を確保しても、放熱性は同じということになる。
 (溶射)
 溶射(Thermal Spraying)とは、溶融あるいはそれに近い状態に加熱した溶射材料から得られる溶融粒子を、基体面に高速で衝突させ、上記溶融粒子を基体面に積層させる方法である。溶射材料は、粉末あるいは線材の形態で溶射装置に供給される。
 溶射は、溶射の溶射材料を加熱する方法により、フレーム溶射、アーク溶射、プラズマ溶射、高速フレーム溶射などに分類される。材料を溶融させること無く不活性ガスと共に超音速流で固相状態のまま基材に衝突させて皮膜を形成するコールドスプレーも溶射の一種に分類される。セラミックス層を金属基体上に形成する目的では、高速フレーム溶射、プラズマ溶射、およびフレーム溶射が適当である。以下に、高速フレーム溶射、プラズマ溶射、およびフレーム溶射について説明する。
 (高速フレーム溶射)
 高速フレーム溶射(HVOF:High Velocity Oxygen Fuel)では、例えば、溶射材料にアルミナを用いる場合、高い密着力を有する緻密なアルミナ層を形成できる。具体的には、気孔率は1%以下に抑えることができ、安定して高い絶縁耐圧性が実現できる。この方法で得られる層の膜厚は400μm程度が、現在のところ限界である。
 高速フレーム溶射では、酸素と可燃ガスとを高圧の燃焼室で燃焼させる。この燃焼炎をノズルで絞り、大気中に出るときに急激に膨張させる。燃焼炎が大気中に出るときの急激なガスの膨張で発生させた高速の気流に溶けた溶射材料、例えばアルミナなどのセラミック粒子、を乗せ、高速の気流と共に溶射材料を基体に高速入射することで、基体に溶射材料の層を形成する。この結果、例えば緻密なアルミナ層が形成できる。
 (プラズマ溶射)
 プラズマ溶射では、アーク放電によりアルゴンなどの作動ガスを電離しプラズマを発生させる。このプラズマを用いて例えばセラミックス粒子などの高融点の溶射材料を加熱・溶融させ、ノズルから噴き出るプラズマ流に載せて溶融粒子を加速、基体に高速で衝突させることで、基体にセラミックス層を形成する。
 セラミックス層形成時の基体の温度上昇は最大でも200℃程度である。また、気孔率は1%~5%程度で高速フレーム溶射よりは若干高くなるので、絶縁耐圧性を保つために、セラミックス層に貫通孔が出来ないように注意する必要がある。例えば、貫通孔が埋まるまでセラミックス層を厚く積層するか、あるいは、堆積速度を下げるなど溶射条件を調整し、貫通孔が生じにくい条件で積層してもよい。
 (フレーム溶射)
 フレーム溶射では、酸素と可燃ガスとの燃焼炎を用いて、例えばセラミックス粒子を溶融させたものを圧縮空気で基体に吹付け、衝突させることで、基体にセラミックス層を形成する。セラミックス層形成時の基体の温度上昇は最大でも100℃程度と低いが、気孔率は5%~10%と高くなる。このため必要な絶縁耐圧性を確保するためには、高速フレーム溶射またはプラズマ溶射により形成したセラミックス層よりも層を厚く形成する必要がある。
 以上により、上述した3つの溶射手法の中では、絶縁耐圧性の高い緻密なセラミックス層を形成するために、高速フレーム溶射またはプラズマ溶射でセラミックス層を形成することがより望ましいと言える。
 (実施形態1に係る基板5Aの製造方法)
 次に、実施形態1に係る基板5Aの製造方法を、図2を参照して説明する。図2の(a)~(d)は、本発明の実施形態1に係る基板5Aの製造工程を説明する模式断面図である。
 まず、図2の(a)に示すように、アルミニウム基体10の表面に、中間層11を形成する(中間層形成工程)。中間層11は、溶射によりアルミナ層をアルミニウム基体10に積層することで形成する。ここで、アルミニウム基体10と中間層11の密着性を高めるために、アルミニウム基体10の表面をブラスト処理で、あらかじめ凹凸化したのち、溶射によりアルミナ層を積層することが望ましい。
 その後、図2の(a)に示すように、アルミニウム基体10の表面における中間層11の上面に、反射層12を形成する(反射層形成工程)。反射層12は、ガラス系バインダーまたは耐光・耐熱性を備えた樹脂バインダーに混ぜたセラミックス粒子を、乾燥または焼成などによりバインダーを硬化させて、反射層12として、セラミックス粒子を含む絶縁性反射層を形成する。
 また、本実施形態では、アルミニウム基体10にアルミニウム、中間層11のセラミックス層にアルミナを用いているため、中間層11の形成工程の後、反射層12の形成のために焼成温度を上げることが可能である。
 反射層形成工程では、セラミックス粒子を含むセラミックス塗料を中間層11上に塗布した後、ゾル・ゲル法によりガラスを合成して反射層12を形成する。ゾル・ゲル法に用いるガラス系バインダーの焼成温度は、通常200℃~500℃として行われるが、ガラス質のゲル状態で生じる多孔性の膜から穴を減らし、絶縁性を高めるためには焼成温度を400℃~500℃として行うことが有効である。
 このため、本実施形態では、ゾル・ゲル反応によりガラス質の合成に用いるゾルをジルコニア粒子のバインダーとして用いて、中間層11上にスクリーン印刷により塗布する。その後、上記ガラス系バインダーを200℃~300℃で乾燥、400℃~500℃で焼成することにより、反射層12を形成する。
 反射層12の形成方法において、ゾル・ゲル法以外では、低融点ガラスの粒子を有機バインダーで硬化したものを、再溶融することでガラス質層を形成する方法がある。低融点ガラスの粒子を有機バインダーで硬化したものを再溶融するには、最低でも800℃~900℃が必要である。本実施形態では、中間層11にアルミナに代表されるセラミックス層を用いているため、このような高温の工程が必要となる反射層12の形成方法を用いることもできる。
 ただし、この温度では、アルミニウム基体10に用いるアルミニウムの融点660℃を超えてしまう。そのため、アルミニウム基体10に適宜不純物を混ぜ高融点化した合金材料を使用する必要がある。銅の融点は1085℃とアルミニウムよりも高いため、基体に銅を使用する場合には、低融点ガラスの焼成が可能であるが、当然、適宜不純物を混ぜて基体の融点を上げたうえで使用してもよい。
 ガラスは耐光性、耐熱性が優れているため、反射層12を形成する材料として最も好ましいが、ガラスの代替として、耐熱性、耐光性に優れた樹脂、例えばシリコーン樹脂、エポキシ樹脂、またはフッ素樹脂、をセラミックス粒子に対するバインダーとして用いてもよい。上記樹脂は、耐熱性、耐光性の点ではガラスに劣るものの、ガラス原料のゾル・ゲル反応によるガラス合成よりも、上記樹脂の硬化温度の方が低く、反射層12の形成工程は容易となる。
 次に、図2の(b)に示すように、アルミニウム基体10の下端面および側端面を覆うように保護層13を形成する(保護層形成工程)。
 実際の製造では、アルマイト処理の後に封孔処理を行って、保護層13であるアルミニウムの陽極酸化皮膜に生じた多孔質の孔を塞ぐ。このようにアルマイト処理後、封孔処理まで行えば、保護層13を形成するアルミニウムの陽極酸化皮膜は安定化する。このため、保護層13によりアルミニウム基体10の耐久性、耐食性がより確実なものとなる。
 また、アルマイト処理による保護層13の形成は、反射層12の形成の後に行うことが、より望ましい。本実施形態のようにゾル・ゲル反応によりガラス質を合成して反射層12を形成するときの焼成温度は、200~500℃である。特に250℃以上に温度を上げて焼成すると、保護層13に亀裂(ひび割れ)が生じ、発光装置用基板の保護膜としての機能が低下するからである。また、反射層12の形成を先に行うことで、セラミックス粒子を含む反射層12が、保護層13の形成工程におけるアルマイト処理に対して、マスクの役割を果たす。また、これにより、中間層11が形成された後に保護層13が形成されるので、アルミニウム基体10上の中間層11を除くアルミニウム材料が露出した部分のみが、保護層13で覆われる。
 以上の中間層形成工程、反射層形成工程、および保護層形成工程により、アルミニウム基体10が中間層11と反射層12と保護層13とで覆われた基板5Aが製造される。次に、反射層12の上に電極パターン20を以下のように形成する。
 まず、図2の(c)に示すように、反射層12の上面に、電極パターン20の下地として、金属粒子を含有した樹脂からなる金属ペーストを用い、印刷などにより回路パターンを描き、乾燥させて下地回路パターン22を形成する(下地回路パターン形成工程)。そして、図2の(d)に示すように、メッキ処理により下地回路パターン上に電極用金属を析出させ、電極パターン20を形成する(電極パターン形成工程)。
 アルミニウム基体10は、既に、セラミックスを含有する高反射率の反射層12と、中間層11と、陽極酸化皮膜の保護層13とにより被覆されている。そのため、電極パターン形成工程におけるメッキ処理で用いるメッキ液により、アルミニウム基体10が侵食されることなく、下地回路パターン22上にのみ、メッキ液から効率的に電極用金属を析出させることが可能となる。
 (絶縁層の熱抵抗試算)
 ここで、本実施形態に係る基板5Aが、他の金属基体を有する基板と比べて、熱抵抗が低くなり、絶縁耐圧性も良くなる理由について、図3~図7に基づいて以下に説明する。
 (絶縁層の厚さが200μmの場合)
 次の3つの基板、基板5A、比較例1として金属基体を有する基板100A、および、比較例2として金属基体を有する基板100Bについて、それぞれの熱抵抗を具体的数値に基づき試算し比較する。基板5A、基板100Aおよび基板100Bは、発光素子6とアルミニウム基体10との間に配置される絶縁層の構造のみが異なる。上記比較を図3~図5を用いて説明する。図3の(a)は基板5Aの一例の概略断面図を示し、図3の(b)は図3の(a)に示した各層に対する熱伝導率σth(W/(m・℃))と、層厚d(mm)と、熱抵抗Rth(℃/W)と、温度上昇ΔT(℃)と、を示している。図4の(a)は比較例1の基板100Aの概略断面図を示し、図4の(b)は図4の(a)に示した各層に対する熱伝導率σth(W/(m・℃))と、層厚d(mm)と、熱抵抗Rth(℃/W)と、温度上昇ΔT(℃)と、を示している。図5の(a)は比較例2の基板100Bの概略断面図を示し、図5の(b)は図5の(a)に示した各層に対する熱伝導率σth(W/(m・℃))と、層厚d(mm)と、熱抵抗Rth(℃/W)と、温度上昇ΔT(℃)と、を示している。
 基板5Aは、図3の(a)に示すように、アルミニウム基体10、中間層11、反射層12および保護層13を有する。中間層11および反射層12は絶縁性を有し、基板5Aは中間層11および反射層12の2層からなる絶縁層により所望の絶縁耐圧性を得る。アルミニウム基体10は、厚さ3mmのアルミニウムからなり、アルミニウム基体10の表面には、中間層11が形成されている。中間層11の厚さは150μmであり、高速フレーム溶射で形成したアルミナ層(セラミックス層)である。中間層11の上面には反射層12が形成されている。反射層12の厚さは50μmであり、ジルコニア含有ガラス系絶縁層である。反射層12は高温焼成されたセラミックスとガラス原料とを含むセラミックス塗料を200℃~500℃の温度で焼成して形成されるガラス系絶縁体で、セラミックスとしてはジルコニア粒子を含有している。ここで、基板5Aの絶縁耐圧の中で過半の上記絶縁耐圧を中間層11が有する。また、アルミニウム基体10の下端面には、保護層13として厚さ10μmのアルマイト層が形成されている。
 ここで、保護層13はさらに放熱グリース34を介在してヒートシンク(放熱材)2(図17参照)に熱的に接続されてもよい。放熱グリース34の厚さは50μmで形成されていてもよい。上記構成によれば、最終的に発光素子6で発生した熱の大半がヒートシンク2から、空冷方式であれば大気中に放出される。半導体デバイスまたはLEDなどを用いた照明装置に用いられる放熱グリース34の基材には、例えばシリコーンオイルが選択され、アルミナまたは銀などの熱伝導性の高い粉末を配合することで熱伝導性を改善している場合が多い。放熱グリース34の基材の熱伝導率はおおむね0.2W/(m・℃)前後であるが、前記熱伝導性の改善の結果、放熱グリース34の熱伝導率は1~3W/(m・℃)程度になる。保護層13とヒートシンク2とを機械的に接しただけでは間に介在する空気層が断熱層として働く。そのため、前記空気層を排して両者を熱的に接続する目的で放熱グリース34を介在させる。本発明のように高輝度照明に用いられる基板5Aでは、基板5A表面から基板5A裏面側に向かって最短距離で放熱経路をとる場合が多く、放熱性を高めるためにはこのように基板5A裏面をヒートシンク2に放熱グリース34で密着させることが望ましい。なお、放熱グリース34に関しては、後述する基板100Aおよび基板100Bにおいても基板5Aと同様であり、説明を省略する。
 基板100Aは、図4の(a)に示すように、アルミニウム基体10、反射層30および保護層13を有する。反射層30は絶縁性を有し、基板100Aは反射層30の1層からなるガラス系絶縁層により所望の絶縁耐圧性を得る。アルミニウム基体10は、3mm厚のアルミニウムからなり、アルミニウム基体10の表面には、反射層30として光反射機能と絶縁耐圧機能とを有する厚さ200μmのガラス系絶縁層が形成されている。反射層30は、反射層12と同様に、高温焼成されたセラミックスとガラス原料とを含むセラミックス塗料を200℃~500℃の温度で焼成して形成されるガラス系絶縁体で、セラミックスとしてはジルコニア粒子を含有している。また、アルミニウム基体10の下端面には、保護層13として厚さ10μmのアルマイト層が形成されている。
 基板100Bは、図5の(a)に示すように、アルミニウム基体10、反射層30、熱伝導層31および保護層13を有する。反射層30および熱伝導層31は絶縁性を有し、基板100Bは熱伝導層31および反射層30の2層からなるガラス系絶縁層により所望の絶縁耐圧性を得る。アルミニウム基体10は、3mm厚のアルミニウムからなり、アルミニウム基体10の上端面には、熱伝導層31として150μmのアルミナ含有ガラス系絶縁層が形成されている。熱伝導層31の上面には、反射層30として50μmのジルコニア含有ガラス系絶縁層が形成されている。熱伝導層31は、高温焼成されたアルミナを粒子として含むガラス原料からなるセラミックス塗料を200℃~500℃の温度で焼成して形成される。また、アルミニウム基体10の下端面には、保護層13として厚さ10μmのアルマイト層が形成されている。
 また、基板5A、基板100Aおよび基板100Bの各々の上には、発光素子6が配置されており、発光素子6と基板5A、基板100Aおよび基板100Bとは、厚さ5μmのダイボンドペースト32で接続されている。なお、発光素子6の平面サイズは、縦幅650μmおよび横幅650μmであり、ダイボンドペースト32から発光素子6の活性層33までの厚さを100μmとし、発光素子基板としては、材質がサファイアである発光素子基板を用いている。
 熱抵抗の試算は以下の手順により行う。
 基板5A、基板100Aおよび基板100Bの熱抵抗の値は、発光素子6の位置および寸法などに依存するが、図3の(b)に示す熱抵抗Rth(℃/W)の結果においては、発光素子6の活性層33を唯一の熱源と仮定して、各層の熱抵抗Rth(℃/W)を計算している。さらに、図3の(b)においては、各層の熱抵抗Rth(℃/W)だけでなく、各層の温度上昇ΔT(℃)も求めているが、この温度上昇ΔT(℃)は、熱源の発熱量を0.15Wと仮定した場合の値である。
 なお、各層での熱抵抗Rth(℃/W)の計算では、横方向への熱の拡がりを考慮している。具体的には、図3の(a)において破線で示したように、基板5Aの垂直方向に対して左右45°方向に熱が均一に拡散することを仮定して求めた。
 このような仮定に基づいて、熱抵抗Rth(℃/W)、温度上昇ΔT(℃)を求めると、熱伝導率σth(W/(m・℃))、層厚d(m)の基板5Aに、一辺のサイズa(m)の正方形の熱源を載せた場合、この層での熱抵抗は、Rth(℃/W)=d/(σth・a・(a+2d))で近似され、この層での温度上昇は、ΔT(℃)=Rth・Qとなる。ただし、Q(W)は熱源での発熱量である。
 図3の(b)に示した、各層の熱抵抗Rth(℃/W)および温度上昇ΔT(℃)は、上記計算方法で試算したものである。図4の(b)および図5の(b)においても、同様の計算方法で試算している。
 基板5A、基板100Aおよび基板100Bの熱抵抗の試算結果は、図3の(b)、図4の(b)および図5の(b)に示すように、基板5Aは約114℃/W、基板100Aは約288℃/W、基板100Bは約139℃/Wである。したがって、基板5A、基板100Aおよび基板100Bの中で、基板5Aの熱抵抗が一番低い。そのため、基板5A、基板100Aおよび基板100Bの中で、基板5Aの放熱性が一番良いといえる。
 次に、基板5A、基板100Aおよび基板100Bの絶縁層の熱伝導率の違いおよび層厚の違いについて説明する。
 基板5A、基板100Aおよび基板100Bは、絶縁層の厚みの合計がいずれも200μmである。
 基板100Aは、厚さ200μmの絶縁層が全て反射層30となる。反射層30は、セラミックス材料としてジルコニアを含有したゾル・ゲルガラスを焼結して形成したジルコニア含有のガラス系絶縁層であり、反射層30の熱伝導率σ1は、1W/(m・℃)である。
 基板100Bの絶縁層は、反射層30と熱伝導層31との積層構造を有する。上記2層のうち表層に置かれている反射層30は、厚さ50μmであり、ジルコニア含有のガラス系絶縁層である。熱伝導層31は、厚さ150μmであり、反射層30よりも熱伝導率の高いアルミナ含有のガラス系絶縁層である。熱伝導層31は、アルミナ粒子を含有した状態でゾル・ゲルガラスを焼結することで形成される。熱伝導層31の熱伝導率σ2は、5W/(m・℃)である。
 基板5Aの絶縁層は、反射層12と中間層11との積層構造を有する。反射層12は基板100Bの反射層30と同じジルコニア含有のガラス系絶縁層である。中間層11は、高速フレーム溶射(HVOF)により形成されるアルミナ層(セラミックス層)である。中間層11の熱伝導率σ3は、15W/(m・℃)である。反射層12の熱伝導率は、反射層30の熱伝導率と同じであり、熱伝導率σ1は、1W/(m・℃)である。
 基板5Aの中間層11および基板100Aの熱伝導層31は、共に材料としてアルミナを含むが、熱伝導層31はバインダーとしてガラスを用いるため、熱伝導率の低いガラスの影響を受ける。そのため、熱伝導層31の熱伝導率σ2が5W/(m・℃)と低い値になると考えられる。
 これに対し、基板5Aは、溶射により中間層11を形成している。アルミナを溶融状態あるいは、それに近い状態に加熱して、アルミニウム基体10に高速で打ち付け形成するために、中間層11はセラミックスとしてのアルミナに近い状態で堆積している。そのため、中間層11の熱伝導率σ3が15W/(m・℃)と高い値になると考えられる。
 また、基板5A、基板100Aおよび基板100Bの熱抵抗の試算結果は、上述したように、基板5Aは約114℃/W、基板100Aは約288℃/W、基板100Bは約139℃/Wである。図3の(b)、図4の(b)および図5の(b)に示す基板5A、基板100Aおよび基板100Bの各層の熱抵抗によれば、基板5A、基板100Aおよび基板100Bの熱抵抗を決定する主な部分は、発光素子6とアルミニウム基体10との間に配置された絶縁層であることが分かる。アルミニウム基体10およびアルマイト層(保護層13)からの寄与は最大でも2%に満たない。
 (絶縁層の厚み依存性)
 次に基板5A、基板100Aおよび基板100Bにおける熱抵抗および温度上昇の絶縁層厚み依存性を、図6および図7を用いて説明する。図6は、基板5A、基板100Aおよび基板100Bにおける熱抵抗の絶縁層厚み依存性を示すグラフである。図6の横軸は絶縁層厚(mm)を示し、縦軸は基板の熱抵抗(℃/W)を示す。図7は、基板5A、基板100Aおよび基板100Bにおける温度上昇の絶縁層厚み依存性を示すグラフである。図7の横軸は絶縁層厚(mm)を示し、縦軸は基板の温度上昇(℃)を示す。
 上述した絶縁層の熱抵抗試算では、絶縁層の厚みが合計200μmの場合の基板5A、基板100Aおよび基板100Bの熱抵抗を試算し比較した。
 これに対し、図6で示すグラフは、絶縁層の厚みの合計の変化に対し、基板5A、基板100Aおよび基板100Bの熱抵抗がどのように増加するか示す。
 具体的には、下記の方法で絶縁層の厚みを変化させ基板の熱抵抗を計算した。
(1)基板5Aでは、反射層12(σ1:1W/(m・℃))の厚さを50μmで固定し、中間層11(σ3:15W/(m・℃))の厚さを変化させる。(2)基板100Aでは、反射層30(σ1:1W/(m・℃))の厚さを50μm以上1000μm以下に変化させる。(3)基板100Bでは、反射層30(σ1:1W/(m・℃))の厚さを50μmで固定し、熱伝導層31(σ2:5W/(m・℃))の厚さを変化させる。
 上記方法と同じ方法で、絶縁層の厚みを変化させ温度上昇を試算した結果が図7のグラフである。さらに、上記温度上昇は、発光素子6への投入電力0.30Wに対して、発光素子6での電力損失が50%、すなわち発熱が0.15Wとして試算している。
 図6および図7が示すように、中間層11を有する基板5Aの場合、絶縁層の厚みが増加すると、基板5Aの熱抵抗および基板5Aの温度上昇は、微増する。これに対し、基板100Aの場合、絶縁層の厚みが増加すると、基板100Aの熱抵抗および基板100Aの温度上昇は急増する。基板100Bの場合、絶縁層の厚みが増加すると、基板100Bの熱抵抗および基板100Bの温度上昇は漸増する。つまり、基板100Aおよび基板100Bは、絶縁層の厚みの増加に対し、増加する熱抵抗および温度上昇の割合が、基板5Aと比較して大きい。このことから、基板5Aは、基板100Aおよび基板100Bと比較し、熱抵抗を低く抑えたまま、中間層11の厚さを厚くすることができるといえる。したがって、基板5Aは、低い熱抵抗で、所望の絶縁耐圧性を得ることができる。
 ここで、絶縁耐圧性と基板の熱抵抗の関連性を下記に説明する。金属基体上に絶縁層を形成して高い絶縁耐圧性を実現するためには、絶縁層の層厚を厚くする必要がある。絶縁耐圧は絶縁層の厚みにほぼ比例するためである。このため、例えば比較例1の基板100Aでは、絶縁層の厚さが厚くなると熱抵抗が高くなる。したがって、十分な絶縁耐圧性を確保するために、基板100Aの熱抵抗が高くなっていた。
 それに対し、例えば、基板5Aのように反射層12および中間層11を有し、中間層11を高速フレーム溶射により金属基体にアルミナを溶射することで形成した場合、中間層11は緻密なアルミナ層となり、その絶縁耐圧性能はおよそ15kV/mm~30kV/mmとなる。ここで中間層11の絶縁耐圧性能が最も低い15kV/mmであったとしても、中間層11の厚さが0.3mmであると、少なくとも4.5kVの絶縁耐圧が確保できる。厚さが0.3mmの中間層11と、厚さが0.05mm(50μm)の反射層12とを合わせると、合計の厚さが0.35mmの絶縁層となる。0.35mmの絶縁層に対応する、基板5Aの熱抵抗と温度上昇の値とを図6、図7から読み取ると、それぞれ、基板5Aの熱抵抗は120℃/W、基板5Aの温度上昇は18℃である。
 これに対し、厚さが0.35mmの反射層30が絶縁層となる基板100Aの場合は、基板100Aの熱抵抗が391℃/W、基板100Aの温度上昇が59℃である。
 厚さが0.3mmの熱伝導層31と、厚さが0.05mm(50μm)の反射層30とを合わせ、合計の厚さが0.35mmの絶縁層となる基板100Bの場合は、基板100Bの熱抵抗が159℃/W、基板100Bの温度上昇が24℃である。
 ここで、絶縁層が、反射層0.05mm(50μm)の単層を基準基板と想定すると、基準基板の熱抵抗は102℃/W、基準基板の温度上昇は15.3℃である。基準基板と基板5A、基板100Aおよび基板100Bとを比較すると、基板5Aは18%、基板100Aは283%、基板100Bは56%、基準基板よりも熱抵抗および温度上昇がそれぞれ増加している。
 また、反射層30および熱伝導層31の絶縁耐圧性能は、中間層11の絶縁耐圧性能に劣る場合が多く、反射層30および熱伝導層31の絶縁耐圧性能は、中間層11の絶縁耐圧性能の半分の7.5kV/mm~15kV/mmしか安定して実現できない。
 これは以下の事情による。ガラス系絶縁層を例えばゾル・ゲル法を用いて形成する場合、ゾル状のガラス原料にセラミックス粒子を混ぜた塗料を基体に塗布あるいは印刷し、乾燥・焼結によりガラス質を合成する。ここで合成したガラス質でセラミックス粒子を固め、アルミニウム基体10上にセラミックス含有ガラス系絶縁層(アルミナ含有のガラス系絶縁層またはジルコニア含有のガラス系絶縁層、すなわち、反射層30または熱伝導層31)を形成するが、このような作製方法のガラス質は焼結前には多孔性であり、焼結後も孔を完全にはふさぎきることができない。そのため、溶射で形成されたセラミックス層(中間層11)の絶縁耐圧性能より、セラミックス含有ガラス系絶縁層の絶縁耐圧性能が劣る。
 例えば、基板5Aにおける中間層11の絶縁耐圧性能が15kV/mmであるのに対し、基板100Bにおける熱伝導層31の絶縁耐圧性能が中間層11の絶縁耐圧性能の半分の7.5kV/mmしか無い場合、基板5Aの300μmの中間層11に対して、同じ絶縁耐圧4.5kVを実現するには倍の600μmが必要になる。絶縁層600μmに相当する基板100Aおよび基板100Bの熱抵抗と温度上昇とを図6、図7より読み取ると、基板100Aでは、基板100Aの熱抵抗が503℃/W、基板100Aの温度上昇が76℃、基板100Bでは、基板100Bの熱抵抗が181℃/W、基板100Bの温度上昇が27℃となる。
 先の場合と同じように基準基板と基板100Aおよび基板100Bとを比較すると、基板100Aは403%、基板100Bは81%、基準基板よりも熱抵抗および温度上昇がそれぞれ増加している。
 同じ絶縁耐圧4.5kVを300μmの中間層11で得た場合の、基準基板と比較した、基板5Aの熱抵抗と温度との上昇は、上述の通り、たった18%であったことから、溶射によるアルミナ層を有する中間層11を使用することで、充分な絶縁耐圧性の確保と基板5Aの熱抵抗の低減との両方が確保できることが明確になった。
 また、熱伝導率と絶縁耐圧性能では溶射アルミナ層には劣るが、光反射率では優れているセラミックス含有ガラス系絶縁層、とりわけジルコニア含有ガラス系絶縁層(反射層12)を、必要最低限の厚み10μm~100μmだけ、中間層11上に形成することで、基板5Aの熱抵抗の上昇を必要最低限に抑えることができる。
 上記構成により、本発明は、高輝度照明発光装置用基板として必要な、高い光反射率、低い熱抵抗(高い放熱性)、高い電気的絶縁耐圧性の3つを同時に満たす理想的な発光装置用基板を実現することに初めて成功した。
 なお、溶射でアルミナ層を積層した場合、層厚を厚くすると表面が荒れる場合がある。また、中間層11とアルミニウム基体10との密着性を上げる目的でアルミニウム基体10の表面をブラスト処理で凹凸にした後、溶射により中間層11を積層する場合には、積層後の中間層11表面にはアルミニウム基体10の凹凸形状の影響が残る。このような場合、中間層11の上面に反射層12を形成すると、反射層12、すなわち基板5Aの発光素子6の搭載面が凹凸となることが考えられる。そのため、基板5Aの発光素子6の搭載面の凹凸を平滑にする目的で、後述する本発明の実施形態4で説明する図14に示すように、中間層11上に反射層12を厚く形成してもよい。具体的には、中間層11上に例えば60μm~150μmとなるように反射層12を形成してもよい。
 以上から分かるように、本実施形態によれば、基板5Aは、溶射により形成したセラミックス層からなる中間層11をアルミニウム基体10と反射層12との間に設け、中間層11と反射層12とからなる絶縁層上に電極パターン20を形成する。その結果、高反射率と、高放熱性と、高絶縁耐圧性と、耐熱・耐光性を含む長期信頼性とを兼ね備えた、高輝度照明に好適な発光装置用基板を得ることができる。そして、本実施形態によれば、このような発光装置用基板を、量産性に優れた形で提供することができる。
 〔実施形態1の変形例〕
 本発明の実施形態1の変形例について、図20に基づいて説明すれば、以下のとおりである。図20は本実施形態に係る基板5Aの変形例を説明する図であり、図20の(a)は、基板5Aの変形例の平面図、図20の(b)は、図20の(a)のF-F線矢視断面図、図20の(c)は、図20の(b)の部分拡大図である。
 実施形態1と異なる点は、図20の(c)に示すようにアルミニウム基体10(基体)と中間層11(第2絶縁層)との間に緩衝層250が形成されている点である。実施形態1では、金属からなるアルミニウム基体10に、中間層11(第2絶縁層)を形成して発光装置用基板とした場合、特に、これを大出力の発光装置用基板として用いた場合には、基板5A上に戴置された発光素子6で発生する熱の影響を受け、前記金属からなるアルミニウム基体10は繰り返し膨張収縮を起こす。このため、アルミニウム基体10に形成した中間層11(第2絶縁層)は、中間層11とアルミニウム基体10との線膨張率係数差等により機械的負荷を受け、剥離または絶縁耐圧性が低下する可能性がある。また、基板5A上に戴置された発光素子6自身も、アルミニウム基体10との線膨張率係数差等により熱履歴の影響を受け、寿命が低下する可能性がある。そこで、実施形態1の変形例では、図20に示すようにアルミニウム基体10(基体)と中間層11(第2絶縁層)との間に緩衝層250を形成した。
 緩衝層250は、アルミニウム基体10の一方の面(以下、表面と称する)に溶射あるいはエアロゾルデポジション法(AD法)によって形成された膜であり、アルミニウム基体10よりも線膨張率の小さい物質からなる。さらに、緩衝層250の線膨張率が中間層11(第2絶縁層)の線膨張率よりも大きいことが好ましい。また、緩衝層250の厚みが10μm以上100μm以下であり、さらに20μmと30μmとの間であることが好ましい。
 線膨張率がアルミニウム基体10よりも小さく、中間層11(第2絶縁層)に近い線膨脹率の緩衝層250を介在させることで、アルミニウム基体10の熱膨張収縮による機械的負荷を発光素子6に伝えるのを著しく低減できるので、発光素子6、ひいては発光装置4の寿命を長寿命化でき、製品の信頼性を向上することができる。
 また、緩衝層250が金属あるいは合金層であることが望ましく、緩衝層250に用いられる金属あるいは合金層の材料としては、Ni、Ti、Co、FeあるいはNb、Mo、Ta、Wといった線膨張率の小さな金属のうち、少なくともいずれか1つを含むことが好ましい。
 本実施形態1の変形例では、基体の材料として、アルミニウムを用いているが、基体は、熱伝導性が高い材質からなる基体であれば特に限定されるものではない。例えば、アルミニウム、銅、ステンレスあるいは鉄を材料として含む金属からなる基板を用いることができる。
 特に、アルミニウム基体10(基体の材料がアルミニウム)である場合には、緩衝層250がNi、TiおよびCoのうち、少なくともいずれか1つを材料として含み、特に好ましくは、緩衝層250がNiを材料として含むことが望ましい。
 さらに、アルミニウム基体10との接合性を高めるためには、緩衝層250がNi(ニッケル)とアルミニウムの合金である事が好ましい。緩衝層250がNi(ニッケル)とアルミニウムとの合金の場合には、線膨張率をアルミニウム基体10と中間層11(第2絶縁層)とのほぼ中間の値に近づけるために、Niの割合をなるべく高めることが望ましく、緩衝層250におけるニッケルの割合が重量比率で90%以上であることが望ましい。これは後述する通り、ニッケルの線膨脹率が13.4×10-6/℃であり、アルミニウムおよび代表的なセラミックス材料であるアルミナの両者の線膨脹率の中間の値15×10-6/℃とほぼ一致していることに起因する。ニッケルとアルミニウムとの合金からなる緩衝層250のニッケルの割合を重量比率で90%以上とすることで、緩衝層250の線膨脹係数を前記15×10-6/℃に近い、13~16×10-6/℃の間に収めることが可能となるためである。
 また、Niの融点は、これらの金属の中では低い部類であるものの、実際には1455℃と高い。合金をアルミニウムとNiとの合金とすると融点を下げることができ、溶融状態、あるいは半溶融状態を準備するのに必要な温度が下げられ、たとえば、溶射でアルミニウムとNiとの合金からなる緩衝層250(ニッケル層)を形成するには好都合である。
 さらに、アルミニウム基体10(基体の材料がアルミニウム)であり、中間層11(第2絶縁層)の材料がアルミナである場合、Niの線膨張係数はアルミニウムとアルミナのほぼ中間であることから、緩衝層250として適している。
 上述した金属の線膨張率を常温で比較すると、アルミニウムが23×10-6/℃であるのに対し、Ni(ニッケル)、Ti(チタン)、およびCo(コバルト)は、これよりも小さく、それぞれ、13.4×10-6/℃、8.6×10-6/℃、および13.0×10-6/℃となる。これに対して代表的なセラミックス材料であるアルミナの線膨張率は6~8×10-6/℃、おおむね7×10-6/℃であることから、アルミニウムおよびアルミナ(セラミックス)に対して、Ni(ニッケル)およびCo(コバルト)は、ほぼ中間の線膨張率であり、緩衝層250に用いる金属としてより好適である。
 なお、ガラスは組成によって線膨張率は大きく異なるがおおむね3~9×10-6/℃の間であり、アルミナに比較的近い線膨張率である。
 緩衝層250は溶射あるいはエアロゾルデポジション法(AD法)によって形成する。
 溶射による形成方法は前述のとおりの方法である。AD法とは、あらかじめ他の手法で準備された微粒子、超微粒子原料をガスと混合してエアロゾル化し、ノズルを通して基体に噴射して被膜を形成する技術である。
 なお、アルミニウム基体10と緩衝層250との密着性をさらに向上させるために、緩衝層250の形成に先行し、アルミニウム基体10の表面をブラスト処理等により粗面化してもよい。
 〔実施形態2〕
 本発明の実施形態2について、図8~図9に基づいて説明すれば、以下のとおりである。
 なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 実施形態1では、アルミニウム基体10に、中間層11、反射層12および保護層13が形成される。中間層11は、アルミニウム基体10と反射層12との間に溶射により形成され、高い熱伝導率を有する。
 これに対し、実施形態2では、アルミニウム基体10に、反射層12、保護層13および保護層14が形成される。反射層12はアルミニウム基体10の表面(図8の(c)基準)に形成される。保護層14は、実施形態1で説明した中間層11と同じ材質を有し、アルミニウム基体10の裏面(下端面)(図8の(c)基準)に溶射により形成される。保護層13は、アルミニウムの陽極酸化皮膜(アルマイト)であり、アルミニウム基体10の側端面(図8の(c)基準)に形成される。上記構成により、保護層14の層厚を中間層11よりも充分厚く取ることできるので、実施形態1に係る基板5Aにおいて、中間層11の厚さを厚くできず所望の絶縁耐圧性が確保できない場合でも、所望の絶縁耐圧性を確保することができる。
 (基板5Bの構造)
 実施形態2に係る基板5Bの構造を、図8を参照して説明する。図8の(a)は、本実施形態に係る基板5B(発光装置用基板)の平面図であり、図8の(b)は図8の(a)のB-B線矢視断面図である。また、図8の(c)は、図8の(b)の部分拡大図である。
 基板5Bでは、図8の(c)に示すように、アルミニウム基体10の表面に、反射層12が形成されている。反射層12の上面には電極パターン20が形成されている。
 保護層14(第2絶縁層)は、アルミニウム基体10の裏面に形成される。保護層14は、実施形態1で説明した中間層11と同じ材質、同じ方法でアルミニウム基体10に形成される。すなわち、保護層14は溶射により形成したセラミックスを含有する。保護層13は、アルミニウム基体10の側端面に陽極酸化処理で形成される陽極酸化皮膜(アルマイト)である。なお、基板5Bには、実施形態1で説明した中間層11は形成されない。本実施形態では、中間層11の役割を保護層14が担う。
 実施形態1で示した基板5Aのように、発光素子6(図16参照)の直下に反射層12および中間層11が配置される構造では、反射層12および中間層11の熱抵抗が基板5A全体の熱抵抗に大きく影響を与える。もし、所望の絶縁耐圧性を得るために中間層11の層厚を想定より厚くする必要が生じた場合、熱抵抗が想定以上に上昇してしまう場合が考えられる。これを回避するために、中間層11の換わりに保護層14を熱源である発光素子6(図16参照)から離れたアルミニウム基体10の下端面に形成してもよい。
 アルミニウム基体10に比べると熱伝導率の低い保護層14を発光素子6(図16参照)から遠ざけてアルミニウム基体10の裏面に形成することで、保護層14が中間層11と同じ熱伝導率であっても、中間層11よりも保護層14の熱抵抗を低下させることができる。保護層14を通過するまでに、熱が基板5Bの表面に平行な水平方向に拡散するためである。
 このように、基板5B全体の熱抵抗に対する保護層14で生じる熱抵抗の寄与率を、実施形態1の中間層11で生じる熱抵抗の寄与率と比べて非常に小さくすることができる。このため、保護層14の厚みを、中間層11として使用するときよりも充分厚く取って絶縁耐圧性を高めることができる。このとき、保護層14の厚みを増大させても、保護層14の熱抵抗の基板5B全体の熱抵抗への影響は僅かである。そのため、基板5Bは、保護層14の厚みの増大が必要な場合でも、熱抵抗を低く抑えつつ、必要な絶縁耐圧性を確保できる。
 具体的には、実施形態1における中間層11の厚みが、例えば500μmを超えるような場合には、発光装置4(図16参照)の発光素子6(図16参照)当たりの熱抵抗が高くなるので、本実施形態を採用することが特に望ましい。中間層11の厚みが500μm以下であっても、放熱性を最優先とする必要がある場合には、中間層11ではなく保護層14で基板5Bの絶縁耐圧性を確保することが望ましい。
 主たる絶縁耐圧を、実施形態1のようにアルミニウム基体10の表面に形成される中間層11で確保するか、もしくは本実施形態のようにアルミニウム基体10の裏面に形成される保護層14で確保するかは、照明装置をどのようなものにするかにも依存するので、熱抵抗および製造方法の容易さだけでは決定できない。実施形態1および本実施形態の場合どちらにおいても、本発明からなる発光装置用基板の構造として選択することができる。なお、アルミニウム基体10の換わりに銅基体を用いる場合でも、本実施形態は同様に成り立つ。
 (実施形態2に係る基板5Bの製造方法)
 実施形態2に係る基板5Bの製造方法を、図9を参照して説明する。図9の(a)~(d)は、本発明の実施形態2に係る基板5Bの製造工程を説明する模式図である。
 まず、図9の(a)に示すように、アルミニウム基体10の表面に、反射層12を形成する(反射層形成工程)。反射層12の形成方法は実施形態1の反射層12の形成方法と同じである。
 その後、図9の(b)に示すように、アルミニウム基体10の裏面に保護層14を形成する(保護層形成工程)。保護層14の形成方法は、実施形態1の中間層11の形成方法と同じである。このとき、保護層14は、発光素子6(図16参照)から離れた位置に形成されるので、保護層14の厚さを中間層11の厚さよりも厚く形成しても、熱抵抗を低く抑えることができる。
 次に、図9の(c)に示すようにアルミニウム基体10の側端面に保護層13を形成した後、図9の(c)に示すように、実施形態1と同様に、反射層12の上面に下地回路パターン22を形成する(下地回路パターン形成工程)。その後、図9の(d)に示すように、電極パターン20を形成する(電極パターン形成工程)。
 なお、上述したように、本実施形態では、実施形態1で説明した中間層11は形成されない。したがって、本実施形態では、中間層形成工程を省略することができる。
 〔実施形態2の変形例〕
 本発明の実施形態2の変形例について、図21に基づいて説明すれば、以下のとおりである。図21は本実施形態に係る基板5Bの変形例を説明する図であり、図21の(a)は、基板5Bの変形例の平面図、図21の(b)は、図21の(a)のG-G線矢視断面図、図21の(c)は、図21の(b)の部分拡大図である。
 実施形態2と異なる点は、図21の(c)に示すようにアルミニウム基体10(基体)と反射層12との間に緩衝層250が形成されている点である。実施形態2では、金属からなるアルミニウム基体10に、反射層12を形成して発光装置用基板とした場合、特に、これを大出力の発光装置用基板として用いた場合には、基板5B上に戴置された発光素子6で発生する熱の影響を受け、前記金属からなるアルミニウム基体10は繰り返し膨張収縮を起こす。このため、アルミニウム基体10に形成した反射層12は、反射層12とアルミニウム基体10との線膨張率係数差等により機械的負荷を受け、剥離または絶縁耐圧性が低下する可能性がある。また、基板5B上に戴置された発光素子6自身も、発光素子6とアルミニウム基体10との線膨張率係数差等により熱履歴の影響を受け、寿命が低下する可能性がある。そこで、実施形態2の変形例では、図21に示すようにアルミニウム基体10(基体)と反射層12との間に緩衝層250を形成した。
 緩衝層250は実施形態1の変形例で説明した緩衝層250と同様であり、実施形態1の変形例で説明したのでここでは省略する。
 なお、アルミニウム基体10と保護層14との間に、緩衝層250と同様の緩衝層を形成したほうがより好ましい。
 本実施形態2の変形例では、基体の材料として、アルミニウムを用いているが、基体は、熱伝導性が高い材質からなる基体であれば特に限定されるものではない。例えば、アルミニウム、銅、ステンレスあるいは鉄を材料として含む金属からなる基板を用いることができる。
 〔実施形態3〕
 本発明の実施形態3について、図10~図11に基づいて説明すれば、以下のとおりである。
 なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 実施形態1では、アルミニウム基体10に、中間層11、反射層12および保護層13が形成される。中間層11は、アルミニウム基体10と反射層12との間に溶射により形成され、高い熱伝導率を有する。
 これに対し、実施形態3では、アルミニウム基体10に、絶縁反射層15および保護層13が形成される。絶縁反射層15はアルミニウム基体10の表面(上端面)(図10の(c)基準)に形成される。絶縁反射層15は、実施形態1の中間層11の反射率を高めたものである。
 上記構成により、絶縁反射層15だけで高輝度照明に適した発光装置用基板を提供することができる。
 (基板5Cの構造)
 実施形態3に係る基板5Cの構造を、図10を参照して説明する。図10の(a)は、本実施形態に係る基板5C(発光装置用基板)の平面図であり、図10の(b)は図10の(a)のC-C線矢視断面図である。また、図10の(c)は、図10の(b)の部分拡大図である。
 基板5Cでは、図10の(c)に示すように、アルミニウム基体10の表面に、絶縁反射層15(絶縁層)が形成されている。絶縁反射層15の上面には電極パターン20が形成されている。
 実施形態1では、熱伝導率の高いセラミックス、例えばアルミナを中間層11として、アルミニウム基体10と反射層12との間に形成しているが、中間層11の反射率が高ければ、反射層12がなくても、中間層11だけで高輝度照明に適した発光装置用基板を提供することができる。
 しかし、アルミナ単独を溶射材料として溶射により形成した層の反射率は最大でも85%であり、光反射率は良好であるものの、高輝度照明に使用される90%~95%を超える反射率を得ることが出来ない。このような高反射率を有する層を形成するには、母体となるアルミナに対して白色度を向上させるための無機材料の添加材を加える必要がある。
 上記添加材としては、例えば、無機白色材料である酸化チタン、酸化マグネシウム、酸化亜鉛、硫酸バリウム、硫酸亜鉛、炭酸マグネシウム、炭酸カルシウム、珪灰石などがある。上記添加材を適宜選択してアルミナに混ぜたものを溶射材料とし、アルミニウム基体10に溶射することで、溶射材料をアルミナ単独として形成した層では達成できない90%~95%を超える反射率を有する層を形成することができる。このとき、溶射材料の物質ごとに溶融温度が異なることから、本実施形態の溶射方法としては、高融点物質にも対応できる高速フレーム溶射(HVOF)が望ましい。プラズマ溶射でも一部対応できるが、緻密で均質な層を形成可能な高速フレーム溶射の方がより望ましい。高速フレーム溶射により緻密で組成の均質な混合セラミックス層を形成することができる。
 (実施形態3に係る基板5Cの製造方法)
 実施形態3に係る基板5Bの製造方法を、図11を参照して説明する。図11の(a)~(d)は、本発明の実施形態3に係る基板5Cの製造工程を説明する模式図である。
 まず、図11の(a)に示すように、アルミニウム基体10の表面に、絶縁反射層15を形成する(絶縁反射層形成工程)。絶縁反射層15の形成方法は、実施形態1の中間層11の形成方法とほぼ同じであるが、アルミニウム基体10に溶射する溶射材料が異なる。実施形態1は、アルミナ単独を溶射材料として溶射しているが、本実施形態では、アルミナに白色度を上げる添加材を適宜混ぜたものを溶射材料とし、溶射する。また、上述したように、本実施形態の溶射方法は高速フレーム溶射を用いることが望ましい。
 このとき、絶縁反射層15は、高反射率を有するので、反射層12がなくても、絶縁反射層15だけで高輝度照明に適した発光装置用基板を提供することができる。したがって、反射層形成工程を省略できる。
 その後、図11の(b)に示すように、アルミニウム基体10の裏面および側端面を覆うように保護層13を形成する(保護層形成工程)。保護層13の形成方法は実施形態1と同じである。
 次に、図11の(c)に示すように、絶縁反射層15の上面に下地回路パターン22を形成する(下地回路パターン形成工程)。その後、図11の(d)に示すように、電極パターン20を形成する(電極パターン形成工程)。下地回路パターン22および電極パターン20の形成方法は、実施形態1と同じである。
 〔実施形態3の変形例1〕
 本発明の実施形態3の変形例について、図12に基づいて説明すれば、以下のとおりである。図12は本実施形態に係る基板5Cの変形例を説明する図であり、図12の(a)は、基板5Cの変形例の平面図、図12の(b)は、図12の(a)のE-E線矢視断面図、図12の(c)は、図12の(b)の部分拡大図である。
 上述した基板5Cにおいて、アルミナに白色度を上げる添加材を適宜混ぜたものを溶射材料とし、この溶射材料をアルミニウム基体10に溶射することにより形成された絶縁反射層15は高輝度照明に適した高反射率を実現する。しかしながら、すでに実施形態1でも言及している通り、溶射でアルミナ層を積層した場合、層厚を厚くすると表面が荒れる場合がある。また、絶縁反射層15とアルミニウム基体10との密着性を上げる目的でアルミニウム基体10の表面をブラスト処理で凹凸にした後、溶射により絶縁反射層15をアルミニウム基体10に積層する場合には、積層後の絶縁反射層15の表面にはアルミニウム基体10の凹凸形状の影響が残る。
 このような凹凸形状を有する面に下地回路パターン22を形成すると、下地回路パターン22に断線が生じる。また、発光素子6(図16参照)と発光素子6を搭載する絶縁反射層15との接触が充分取れず高抵抗になる等のおそれがある。
 このような場合には、実施形態1に記載した反射層12の形成方法をそのまま適用すればよい。すなわち、絶縁反射層15の表面に生じた凹凸を平滑に埋める目的を満たす最低限の厚みの反射層12を絶縁反射層15の上面に形成すればよい。具体的には、凹凸差が20μmであれば、凹部底より20μmをやや超える厚み、50μmであれば、凹部底より50μmをやや超える厚みの反射層12を形成すればよい。
 絶縁反射層15が高反射率を実現しているので、基板5Cでは反射層12により高反射率を得ることは要求されない。したがって、反射層12は絶縁反射層15の表面の凹凸を平滑に埋める目的を満たす最低限の厚みとすることができる。
 また、上述した絶縁反射層15の表面の凹凸を平滑に埋める目的を達成するために、セラミックス粒子を混ぜず、ガラス系バインダー、または、耐光・耐熱性を備えた樹脂バインダーだけを乾燥、焼成などにより硬化させ、図12の(c)に示すように、透明な平滑化層17を絶縁反射層15上に形成してもよい。放熱性を重視する場合は、絶縁反射層15の反射率を可能な限り阻害しないようにし、熱伝導率が高く光吸収が可能な限り低いセラミックス粒子をガラス系バインダー、または、樹脂バインダーに混合したうえで硬化させ、透明な平滑化層17としてもよい。また、凹凸形状が形成された絶縁反射層15の表面を機械的な研磨により平滑化を行ってもよい。
 上記構成により、平滑化層17、または機械的な研磨により平滑化した面に発光素子6を搭載するので、平滑化層17または絶縁反射層15と、発光素子6とが面接触となる。これにより、発光素子6の剥がれを防止すると共に基板5Cの熱抵抗を下げることができ、発光装置4(図16参照)の信頼性が確保できる。
 同様に透明な平滑化層17の表面、または機械的な研磨により平滑化した絶縁反射層15の表面に電極パターン20を形成するので、電極パターンが剥がれを防止することができる。
 なお、機械的な研磨で生じる絶縁反射層15表面の砥粒での汚染または、絶縁反射層15での損傷などが問題となる場合には、先に述べた反射層12または透明な平滑化層17で絶縁反射層15の表面の凹凸を平滑に埋める方法が好ましい。
 〔実施形態3の変形例2〕
 本発明の実施形態3の変形例2について、図22に基づいて説明すれば、以下のとおりである。図22は本実施形態に係る基板5Cの変形例2を説明する図であり、図22の(a)は、基板5Cの変形例2の平面図、図22の(b)は、図22の(a)のH-H線矢視断面図、図22の(c)は、図22の(b)の部分拡大図である。
 実施形態3と異なる点は、図22の(c)に示すようにアルミニウム基体10(基体)と絶縁反射層15との間に緩衝層250が形成されている点である。実施形態3では、金属からなるアルミニウム基体10に、絶縁反射層15を形成して発光装置用基板とした場合、特に、これを大出力の発光装置用基板として用いた場合には、基板5C上に戴置された発光素子6で発生する熱の影響を受け、前記金属からなるアルミニウム基体10は繰り返し膨張収縮を起こす。このため、アルミニウム基体10に形成した絶縁反射層15は、絶縁反射層15とアルミニウム基体10との線膨張率係数差等により機械的負荷を受け、剥離または絶縁耐圧性が低下する可能性がある。また、基板5C上に戴置された発光素子6自身も、発光素子6とアルミニウム基体10との線膨張率係数差等により熱履歴の影響を受け、寿命が低下する可能性がある。そこで、実施形態3の変形例2では、図22に示すようにアルミニウム基体10(基体)と絶縁反射層15との間に緩衝層250を形成した。
 緩衝層250は実施形態1の変形例で説明した緩衝層と同様であり、実施形態1の変形例で説明したのでここでは省略する。
 本実施形態3の変形例2では、基体の材料として、アルミニウムを用いているが、基体は、熱伝導性が高い材質からなる基体であれば特に限定されるものではない。例えば、アルミニウム、銅、ステンレスあるいは鉄を材料として含む金属からなる基板を用いることができる。
 また、図23で示すように、本実施形態3の変形例1で示した構造においても、アルミニウム基体10(基体)と絶縁反射層15との間に緩衝層250を形成したほうが好ましい。図23は本実施形態に係る基板5Cの変形例2の他の例を説明する図であり、図23の(a)は、基板5Cの変形例2の他の例の平面図、図23の(b)は、図23の(a)のI-I線矢視断面図、図23の(c)は、図23の(b)の部分拡大図である。
 具体的に、発光素子6にサファイア基板を用いたLEDを用い、絶縁反射層15にアルミナを用いた場合について検討すると、サファイアの線膨脹率は7×10-6/℃であり、アルミナの線膨脹率とほぼ同じであり熱膨張収縮は同期して生じるため、絶縁反射層15自体の熱膨張収縮による発光素子6へ機械的負荷はほぼ無視できる。また、線膨脹率23×10-6/℃のアルミニウム基体10の熱膨張収縮による機械的負荷は、アルミニウム基体10よりも線膨張率の小さい緩衝層250を介して、絶縁反射層15に低減されて伝わり、発光素子6へは、絶縁反射層15を介してさらに一段と低減して伝わるため、発光素子6への機械的負荷は著しく低減されている。
 〔実施形態4〕
 本実施形態では、アルミニウム基体10と溶射により形成されたセラミックス層(中間層11)の密着性を改善について、図13~図15に基づいて説明する。
 実施形態1に係る基板5Aでは、アルミニウム基体10の表面を処理せずに、そのままアルミニウム基体10に中間層11が溶射により形成される場合がある。
 これに対し、実施形態4では、アルミニウム基体10の表面をブラスト処理してから、アルミニウム基体10に中間層11が溶射により形成される。上記構成により、アルミニウム基体10と、中間層11との密着性を改善することができる。
 まず、アルミニウム基体10と、中間層11との密着性の改善について、図13を用いて説明する。図13は、アルミニウム基体10と中間層11との密着性の改善を説明するための図である。
 基板100Cは、図13に示すように、アルミニウム基体10の表面に、中間層11が形成されている。中間層11の上面には発光素子6が設置されている。基板100Cは、アルミニウム基体10と、中間層11との密着性の改善するために、例えば、アルミニウム基体10に中間層11をアルミナ溶射により形成する前に、アルミニウム基体10の表面をブラスト処理で粗面化する。ブラスト処理は、例えば、圧縮空気等のキャリヤーガスにより加速された微細な粒子をノズルから噴出させ、アルミニウム基体10に高速かつ高密度に衝突させることにより行う。金属に対してブラスト処理する場合、微細な粒子としてアルミナが最も一般的に使用されている。次に、粗面化したアルミニウム基体10の表面にアルミナを溶射して中間層11を形成する。その結果、アルミニウム基体10と中間層11との密着性を改善させることができる。
 一方、アルミニウム基体10の表面をブラスト処理で粗面化した場合、アルミニウム基体10の表面は凹凸形状を有する。その凹凸形状の影響を受け、アルミニウム基体10の表面に形成される中間層11の表面も凹凸形状を有する。この凹凸形状が形成された中間層11の表面に発光素子6を搭載すると、中間層11と発光素子6とが点接触となる。その結果、基板100Cの放熱性が悪くなり、基板100Cが高熱抵抗となるという問題がある。また、温度サイクル試験などでの発光素子6の剥がれの原因となるという問題がある。
 そこで、上記問題を解決するために、本実施形態では、図14に示すように、反射層12によりアルミナ溶射により形成された中間層11の凹凸形状を埋めて平滑化を行っている。図14は、本実施形態に係る基板5Aの概略断面図である。このとき、中間層11の凹凸形状を埋めて平滑化するために反射層12を厚く形成してもよい。
 上記構成により、平滑化した反射層12の表面に発光素子6を搭載するので、反射層12と発光素子6とが面接触となる。その結果、温度サイクル試験などでの発光素子6の剥がれを防止できる。また、基板5Aの熱抵抗を下げることができ、発光装置4(図16参照)の信頼性が確保できる。同様に平滑化した反射層12の表面に電極パターン20(図1参照)を形成するので、電極パターン20の剥がれを防止することができる。
 反射層12は、上述したように、ガラス質と光反射性セラミックスとの混合層、あるいは樹脂と光反射性セラミックスとの混合層であるため、硬化前の原料は液状で流動性があるか、あるいは少なくとも可塑性がある、ガラス層(ゾルゲル用塗料)または樹脂層(熱硬化性樹脂もしくは熱可塑性樹脂)にて形成されている。そのため、反射層12は、容易に中間層11の凹凸形状を埋めて、発光素子6を搭載する面を平滑化できる。反射層12の厚さは、所望の反射率を実現できる必要最小限の厚さ、かつ中間層11の表面の凹凸形状を埋めて発光素子6を搭載する面を平滑化できる必要最小限の厚さであればよい。
 また、実施形態1に係る基板5Aにおいて、アルミニウム基体10の表面をブラスト処理し、アルミニウム基体10と中間層11との密着性を改善する場合、図15に示すように、反射層12と中間層11との間に平滑化層16を設けて、発光素子6の搭載面を平滑化してもよい。図15は、本実施形態に係る基板5Aの他の例を示す概略断面図である。このとき、平滑化層16は、反射層12よりも熱伝導率が高いことが望ましい。反射層12より熱伝導率が高い平滑化層16を設けることにより、さらに基板5Aの熱抵抗を下げることができる。
 平滑化層16は、ガラス質とセラミックスとの混合層、または樹脂とセラミックスとの混合層である。平滑化層16に含まれるセラミックス粒子は、反射層12に含まれるセラミックス粒子よりも熱伝導率が高いものを選択することが望ましい。平滑化層16に用いるセラミックス粒子としては、アルミナ、窒化アルミニウム、窒化ケイ素、および炭化ケイ素などが望ましい。
 ここで、中間層11の表面に形成される凹凸形状は、アルミニウム基体10の表面をブラスト処理で粗面化することによる以外に、溶射するセラミックス粒子の径の大きさも関係する。
 例えば、ブラスト処理で粗面化したアルミニウム基体10の表面に、粒径が50μm以下のアルミナ粒子を用いてプラズマ溶射により中間層11(アルミナ層)を200μm積層した場合、中間層11の表面の凹凸形状の最大高さと最小高さとの差が40μm~60μmとなる。
 それに対し、ブラスト処理で粗面化したアルミニウム基体10の表面に、粒径が20μm以下のアルミナ粒子を用いてプラズマ溶射により中間層11(アルミナ層)を200μm積層した場合、中間層11の表面の凹凸形状の最大高さと最小高さとの差が15μm~30μmとなる。このように、溶射に用いるセラミックス粒子の粒径を小さくすることで、中間層11の表面の凹凸形状の最大高さと最小高さとの差を抑制することができる。
 ここでは、ブラスト処理に起因して生じた、中間層11表面に生じた凹凸を平滑化する方法を示したが、当該平滑化の手法が適用される凹凸面は、ブラスト処理に起因するものに限定されるものではなく、広く中間層11表面に生じた凹凸を平滑化する手法として適用されるべきものである。例えば、ブラスト処理をせずに、溶射を用いて形成されたセラミックス層を平滑化するために、図13~図15に基づき説明した本実施形態4の手法を適用しても良い。
 〔実施形態4の変形例〕
 本発明の実施形態4の変形例について、図24および図25に基づいて説明すれば、以下のとおりである。図24は本実施形態の図14に係る基板5Aの変形例の概略断面図であり、図25は本実施形態の図15に係る基板5Aの他の例の変形例の他の例の概略断面図である。
 実施形態4と異なる点は、図24および図25に示すようにアルミニウム基体10(基体)と中間層11との間に緩衝層250が形成されている点である。実施形態4の図14および図15では、金属からなるアルミニウム基体10に、中間層11を形成して発光装置用基板とした場合、特に、これを大出力の発光装置用基板として用いた場合には、基板5A上に戴置された発光素子6で発生する熱の影響を受け、前記金属からなるアルミニウム基体10は繰り返し膨張収縮を起こす。このため、アルミニウム基体10に形成した中間層11は、中間層11とアルミニウム基体10との線膨張率係数差等により機械的負荷を受け、剥離または絶縁耐圧性が低下する可能性がある。また、基板5A上に戴置された発光素子6自身も、発光素子6とアルミニウム基体10との線膨張率係数差等により熱履歴の影響を受け、寿命が低下する可能性がある。そこで、実施形態4の変形例では、図24および図25に示すようにアルミニウム基体10(基体)と中間層11との間に緩衝層250を形成した。
 緩衝層250は実施形態1の変形例で説明した緩衝層と同様であり、実施形態1の変形例で説明したのでここでは省略する。
 本実施形態4の変形例では、基体の材料として、アルミニウムを用いているが、基体は、熱伝導性が高い材質からなる基板であれば特に限定されるものではない。例えば、アルミニウム、銅、ステンレスあるいは鉄を材料として含む金属からなる基板を用いることができる。
 〔実施形態5〕
 実施形態1から4に示した発光装置用基板に用いられる緩衝層250は金属あるいは合金に限定されるものではなく、代わりにシート状に加工した樹脂またはペースト状の樹脂などを用いて緩衝層250としてもよい。
 この場合、緩衝層250の熱伝導率、線膨脹率等の物理特性を調整するために、適宜、添加剤を加えてよく、添加剤としては、セラミックス粒子、ガラス繊維、金属粒子などがあげられる。
 緩衝層250を構成する樹脂は、耐熱性に優れたエポキシ樹脂、シリコーン樹脂、ボリイミド樹脂あるいはフッ素樹脂により構成されればよい。より具体的には、緩衝層250としては、市販の放熱基板用絶縁シートを用いてもよい。
 前記市販の放熱基板用絶縁シートの線膨張率は、セラミックス粒子にエポキシ系樹脂をバインダーとして用いることで、10×10-6~15×10-6/℃であって、アルミニウムの線膨脹率23×10-6/℃および代表的なセラミックス材料であるアルミナの線膨脹率7×10-6/℃の中間の線膨脹率を示す。また、熱伝導率5W/(m・K)、100μmの厚みにおける絶縁耐圧性は5kV以上の優れた熱伝導性、絶縁耐圧性を示している。
 このように、緩衝層250に樹脂層を用いた場合、樹脂バインダーを用いたセラミックス粒子を含む反射層12を用いることが望ましい。緩衝層250に樹脂層を用いた場合において、反射層12にガラス系バインダーを用いるためには、乾燥および焼成温度を300℃以下望ましくは250℃以下として、緩衝層250を含む樹脂層が受ける熱による損傷を低減する必要がある。
 〔実施形態6〕
 本実施形態では、実施形態1にて説明した基板5Aを用いて作成した発光装置4を説明する。本実施形態は、実施形態1~5に係る、基板5A、基板5B、および基板5Cに適応可能である。図16の(a)は、本実施形態に係る発光装置4の平面図を示し、図16の(b)は、図16の(a)のD-D線矢視断面図を示している。なお、図面では、簡略化のために便宜上発光素子6の数を大幅に省略して描いている。
 発光装置4は、基板5A上に複数のLED素子またはEL素子などの発光素子6を実装したCOB(chip on board)タイプの発光装置である。
 基板5A上には封止樹脂7の周縁に設けられて複数の発光素子6の周囲を囲む枠体8が設けられている。枠体8の内部に封止樹脂7を充填して発光素子6が封止される。封止樹脂7は、発光素子6の出射光で蛍光体を励起して異なる波長の光に変換する蛍光体を含む。この構成により、発光素子6は封止樹脂7の表面にて面発光する。
 多数の発光素子6の集積により発光装置4への投入電力としては10W、50W、100Wあるいは100W以上などが用いられ、高輝度の出射光が得られる。例えば、基板5A上に500μm×800μm程度の中型サイズの発光素子6を集積して投入電力が100W程度の大出力の発光装置4を実現するには、発光素子6を300個から400個程度と多数集積する必要がある。多数集積することにより発光装置4の発熱が大きくなるため、図17に示すような、発光装置4に比して非常に体積の大きいヒートシンク2により高い放熱性を確保してもよい。図17は、ヒートシンクに装着された上記発光装置4の俯瞰図である。
 発光素子6としては、例えば、青色LED、紫色LED、紫外線LEDなどを用いることができる。封止樹脂7に充填される蛍光体としては、例えば、青色、緑色、黄色、橙色、赤色のいずれか一色を発光する蛍光体あるいは任意の複数の蛍光体の組み合わせを用いることができる。これらにより、発光装置4から所望の色の出射光を出射することができる。なお、封止樹脂7の蛍光体を省き、発光波長の異なる青色、緑色および赤色の3色の発光素子6を基板5A上に配列してもよいし、任意の2色の組み合せであっても、あるいは、単色であってもよい。
 発光素子6は、正極電極パターン20aおよび負極電極パターン20bに接続されている。正極電極パターン20aは、発光素子6を、正極電極パターン20aを介して外部配線または外部装置に接続するための正極コネクタ21aに接続されている。負極電極パターン20bは、発光素子6を、負極電極パターン20bを介して外部配線または外部装置に接続するための負極コネクタ21bに接続されている。正極コネクタ21aおよび負極コネクタ21bは、ランドにより構成し、半田付けにより、正極電極パターン20aおよび負極電極パターン20bを外部配線または外部装置に接続してもよい。
 なお、正極コネクタ21aおよび負極コネクタ21bにより、正極電極パターン20aおよび負極電極パターン20bを外部配線または外部装置に接続する場合は、正極電極パターン20aおよび負極電極パターン20bにそれぞれランドを設けて、それらのランドを介して正極電極パターン20aと正極コネクタ21aと、および負極電極パターン20bと負極コネクタ21bとを接続してもよい。
 また、発光装置4は、例えば、図18に示すような照明装置1に適用することができる。図18の(a)は実施形態6に係る発光装置4を適用した照明装置1の俯瞰図であり、図18の(b)は、図18の(a)の断面図である。照明装置1は、発光装置4と、発光装置4から発生する熱を放熱するためのヒートシンク2と、発光装置4から出射する光を反射するリフレクタ3とを備えている。
 〔付記事項〕
 実施形態1から6において、発光素子6がサファイア基板で形成されている場合、発光素子6とアルミニウム基体10の間に、溶射で形成した高品位で緻密なセラミックス層、例えばアルミナ層、を介在させることにより、発光素子6と線膨張係数の近いセラミックス層が緩衝層として働く。そのため、アルミニウム基体10の膨張収縮に起因する発光素子6の寿命低下は起こらない。したがって、温度サイクルの負荷がかかったとしても発光素子6の出力低下、すなわち、寿命の低下が生じない。
 〔まとめ〕
 本発明の態様1に係る発光装置用基板(基板5A・5B)は、金属材料からなる基体(アルミニウム基体10)と、発光素子(6)との電気的接続をとるための電極パターン(20)と前記基体との間に、前記発光素子からの光を反射する第1セラミックスを含有して形成された第1絶縁層(反射層12)と、溶射により形成した第2セラミックスを含有して前記第1絶縁層の絶縁耐圧性能を補強する第2絶縁層(中間層11・保護層14)とを備えている。
 上記構成によれば、発光装置用基板は、発光素子からの光を反射する第1セラミックスを含有する第1絶縁層を備えている。このため、高反射率、耐熱性および耐光性を有する。また、第2絶縁層は第2セラミックスを含有し溶射により形成される。このため、第2絶縁層は緻密なセラミックス層を形成できるので、高い絶縁耐圧特性と高い熱伝導率を安定的に確保できる。さらに、第2絶縁層は、熱抵抗を低く抑えたまま厚みを厚くできる。そのため、熱抵抗を低く抑えたまま第1絶縁層の絶縁耐圧性能を補強できる。その結果、高反射率と、高放熱性と、高絶縁耐圧性と、耐熱・耐光性とを含む長期信頼性を兼ね備え、さらに量産性にも優れた発光装置用基板を提供することができる。
 本発明の態様2に係る発光装置用基板(基板5A・5B)は、上記態様1において、前記第1絶縁層(反射層12)は、前記第1セラミックスとガラス質との混合層、または、前記第1セラミックスと樹脂との混合層であり、前記第2絶縁層(中間層11・保護層14)の熱伝導率が、前記第1絶縁層の熱伝導率よりも高くてもよい。
 上記構成によれば、第1絶縁層が第1セラミックスとガラス質との混合層、または、前記第1セラミックスと樹脂との混合層なので、第1絶縁層をゾル・ゲル反応、または、硬化反応により形成することができる。また、第2絶縁層の熱伝導率が第1絶縁層の熱伝導率よりも高いので、高い絶縁耐圧性を維持したまま、第2絶縁層の熱伝導率を、第1絶縁層に比べて上げることが可能となる。
 本発明の態様3に係る発光装置用基板(基板5A・5B)は、上記態様1において、前記基体(アルミニウム基体10)は、アルミニウム材料または銅材料を含んでもよい。
 上記構成によれば、基体はアルミニウム材料または銅材料と含むことができる。そのため、軽量で加工性に優れ、熱伝導率が高い材料を基体の材料として使用することができる。
 本発明の態様4に係る発光装置用基板(基板5A)は、上記態様1において、前記基体(アルミニウム基体10)は、アルミニウム材料を含み、前記第2絶縁層(中間層11)が、前記基体の一部を被覆し、前記基体の残りの一部または全部を被覆するアルマイト層(保護層13)をさらに備えていてもよい。
 上記構成によれば、第2絶縁層およびアルマイト層により、基体を覆うことができる。そのため、基板の製造工程においては、電極パターンを形成するのに必要なメッキ処理の際にメッキ液から基体を保護すると同時に、余分なメッキの析出を防ぐ保護層としても機能する。また、基板完成後は酸化による腐食を防止することができる。
 本発明の態様5に係る発光装置用基板(基板5A)は、上記態様1において、前記第2絶縁層(中間層11)は、前記第1絶縁層(反射層12)と前記基体(アルミニウム基体10)との間に形成されていてもよい。
 上記構成によれば、第2絶縁層は、第1絶縁層と基体との間に形成されている。そのため、第1絶縁層と基体との間に形成された第2絶縁層により、第1絶縁層の絶縁耐圧性能を補強することができる。
 本発明の態様6に係る発光装置用基板(基板5A)は、上記態様5において、前記第2絶縁層(中間層11)の厚みは、50μm以上500μm以下であり、前記第1絶縁層(反射層12)の厚みは、10μm以上100μm以下であってもよい。
 上記構成によれば、第2絶縁層は第1絶縁層の絶縁耐圧性能を好適に補強することができ、第1絶縁層は発光素子からの光を好適に反射することができる。
 本発明の態様7に係る発光装置用基板(基板5B)は、上記態様1において、前記第2絶縁層(保護層14)は、前記基体(アルミニウム基体10)の前記第1絶縁層(反射層12)側の面と反対側の面に形成されていてもよい。
 上記構成によれば、発光装置用基板は、基体に比べると熱伝導率の低い第2絶縁層を発光素子6から遠い位置に配置している。そのため、第2絶縁層を通過するまでに、熱を発光装置用基板の表面に平行な水平方向に拡散できる。その結果、上記態様5における第2絶縁層と、同じ厚み、同じ熱伝導率であっても第2絶縁層の熱抵抗を低下させることができる。
 本発明の態様8に係る発光装置用基板(基板5B)は、上記態様7において、前記第2絶縁層(保護層14)の厚みは、50μm以上であり、前記第1絶縁層(反射層12)の厚みは、10μm以上100μm以下であってもよい。
 上記構成によれば、第2絶縁層は第1絶縁層の絶縁耐圧性能を好適に補強することができ、第1絶縁層は発光素子からの光を好適に反射することができる。
 本発明の態様9に係る発光装置用基板(基板5A・5B)は、上記態様1において、前記第2絶縁層(中間層11・保護層14)は、アルミナ層を含み、前記第1絶縁層(反射層12)は、ジルコニア粒子、酸化チタン粒子、アルミナ粒子、あるいは窒化アルミニウム粒子のいずれかをガラス質により覆って形成してもよい。
 上記構成によれば、第2絶縁層はアルミナ層を含む。そのため、第2絶縁層は、高い熱伝導率性と絶縁耐圧性能を有する。また、第1絶縁層は、ジルコニア粒子、酸化チタン粒子、アルミナ粒子、あるいは窒化アルミニウム粒子のいずれかをガラス質により覆って形成する。そのため、第1絶縁層は、高反射率を有し、高い絶縁耐圧性能および高い熱伝導率を有する。また、第1絶縁層はガラス質を有するので、耐熱性・耐光性に優れ、絶縁耐圧性も高くなる。
 本発明の態様10に係る発光装置用基板(基板5A・5B)は、上記態様1において、前記第2絶縁層(中間層11・保護層14)は、アルミナ層を含み、前記第1絶縁層(反射層12)は、ジルコニア粒子、酸化チタン粒子、アルミナ粒子、あるいは窒化アルミニウム粒子のいずれかを含有する樹脂を含み、前記樹脂は、シリコーン樹脂、フッ素樹脂または、エポキシ樹脂であってもよい。
 上記構成によれば、第2絶縁層はアルミナ層を含む。そのため、第2絶縁層は、高い熱伝導率性と絶縁耐圧性能を有する。また、第1絶縁層は、ジルコニア粒子、酸化チタン粒子、アルミナ粒子、あるいは窒化アルミニウム粒子のいずれかを含有するシリコーン樹脂、フッ素樹脂または、エポキシ樹脂を含む。そのため、第1絶縁層は、高反射率を有し、高い絶縁耐圧性能を有する。また、樹脂は硬化温度が低いため、前記樹脂をバインダーとして第1絶縁層の形成に用いる場合、ゾル・ゲル反応を用いてガラス質を形成する場合と比較して、形成が容易となる。
 本発明の態様11に係る発光装置(4)は、上記態様1に記載の発光装置用基板(基板5A・5B)と、前記発光素子(6)と、前記発光素子(6)を、前記電極パターン(20)を介して外部配線または外部装置に接続するためのランドまたはコネクタ(正極コネクタ21a・負極コネクタ21b)と、前記発光素子を囲むように形成された枠体(8)と、前記枠体により囲まれた発光素子を封止する封止樹脂(7)とを備えていてもよい。
 上記構成によれば、上記態様1に係る発光装置用基板と同様の効果を奏する発光装置が提供できる。
 本発明の態様12に係る発光装置用基板の製造方法は、上記態様5に係る発光装置用基板の製造方法であって、前記基体の上に前記第2絶縁層(中間層11)を溶射により形成し、前記第2絶縁層の上に前記第1絶縁層(反射層12)を形成し、前記第1絶縁層の上に前記電極パターン(20)を形成してもよい。
 上記構成によれば、上記態様5に係る発光装置用基板の効果と同様の効果を奏する。
 本発明の態様13に係る発光装置用基板の製造方法は、上記態様12において、前記第2絶縁層(中間層11)は、アルミナ層を含み、アルミナを溶射することにより前記アルミナ層を形成してもよい。
 上記構成によれば、第2絶縁層はアルミナ層を含む。そのため、第2絶縁層は、高い熱伝導率性と絶縁耐圧性能を有する。また、第2絶縁層は溶射により形成される。このため、第2絶縁層は緻密なアルミナ層を形成できるので、高い絶縁耐圧特性と高い熱伝導率を安定的に確保できる。
 本発明の態様14に係る発光装置用基板の製造方法は、上記態様12において、前記第1絶縁層(反射層12)は、前記第1セラミックスとガラス質との混合層であり、ガラス原料のゾル・ゲル反応によって前記ガラス質を形成してもよい。
 上記構成によれば、第1絶縁層は、第1セラミックスとガラス質との混合層である。そのため、第1絶縁層は、第1セラミックスを有するので高反射率を有し、高い絶縁耐圧性能、および高い熱伝導率を有する。また、第1絶縁層は、ガラス質を有するので耐熱性・耐光性に優れ、絶縁耐圧も高くなる。
 本発明の態様15に係る発光装置用基板の製造方法は、上記態様12において、前記第2絶縁層(中間層11)は、アルミナ層を含み、前記第1絶縁層(反射層12)は、前記第1セラミックスとガラス質との混合層であり、アルミナを溶射することにより前記アルミナ層を形成し、ガラス原料のゾル・ゲル反応によって前記ガラス質を形成してもよい。
 上記構成によれば、第2絶縁層はアルミナ層を含む。そのため、第2絶縁層は、高い熱伝導率性と絶縁耐圧性能を有する。また、第2絶縁層は溶射により形成される。このため、第2絶縁層は緻密なアルミナ層を形成できるので、高い絶縁耐圧特性と高い熱伝導率を安定的に確保できる。さらに、第1絶縁層は、第1セラミックスとガラス質との混合層である。そのため、第1絶縁層は、第1セラミックスを有するので高反射率を有し、高い絶縁耐圧性能、および高い熱伝導率を有する。また、第1絶縁層は、ガラス質を有するので耐熱性・耐光性に優れ、絶縁耐圧も高くなる。
 本発明の態様16に係る発光装置用基板の製造方法は、上記態様12において、前記第2絶縁層(中間層11)は、アルミナ層を含み、前記第1絶縁層(反射層12)は、前記第1セラミックスとガラス質との混合層であり、アルミナを溶射することにより前記アルミナ層を形成し、ガラス粒子の溶融と硬化により前記ガラス質を形成してもよい。
 上記構成によれば、第2絶縁層はアルミナ層を含む。そのため、第2絶縁層は、高い熱伝導率性と絶縁耐圧性能を有する。また、第2絶縁層は溶射により形成される。このため、第2絶縁層は緻密なアルミナ層を形成できるので、高い絶縁耐圧特性と高い熱伝導率を安定的に確保できる。さらに、第1絶縁層は、第1セラミックスとガラス質との混合層である。そのため、第1絶縁層は、第1セラミックスを有するので高反射率を有し、高い絶縁耐圧性能、および高い熱伝導率を有する。また、第1絶縁層は、ガラス質を有するので耐熱性・耐光性に優れ、絶縁耐圧性も高くなる。
 本発明の態様17に係る発光装置用基板の製造方法は、上記態様7に係る発光装置用基板(基板5B)の製造方法であって、前記基体(アルミニウム基体10)に前記第1絶縁層(反射層12)を形成し、前記基体の前記第1絶縁層側の面と反対側の面に前記第2絶縁層(保護層14)を形成し、前記第1絶縁層の上に前記電極パターンを形成してもよい。
 上記構成によれば、上記態様7に係る発光装置用基板の効果と同様の効果を奏する。
 本発明の態様18に係る発光装置用基板(基板5C)は、金属材料からなる基体(アルミニウム基体10)と、溶射により形成したセラミックスと、前記セラミックスの白色度を向上させるための白色の無機材料とを含有して、発光素子(6)との電気的接続をとるために電極パターン(20)と前記基体との間に形成された絶縁層(絶縁反射層15)と、を備えている。
 上記構成によれば、発光装置用基板は、溶射により形成したセラミックスを含有する絶縁層を備えている。このため、絶縁層は緻密なセラミックス層を形成できるので、高い絶縁耐圧特性と高い熱伝導率を安定的に確保できる。また、発光装置用基板は、前記セラミックスの白色度を向上させるための白色の無機材料を含有する。このため、発光素子からの光を反射することができ、高反射率、耐熱性および耐光性を有する。さらに、発光装置用基板は、絶縁層により、熱抵抗を低く抑えたまま絶縁耐圧性能を強化できる。その結果、高反射率と、高放熱性と、高絶縁耐圧性と、耐熱・耐光性とを含む長期信頼性を兼ね備え、さらに量産性にも優れた発光装置用基板を提供することができる。
 本発明の態様19に係る発光装置用基板(基板5A)は、上記態様1において、前記基体(アルミニウム基体10)と前記第2絶縁層(中間層11)との間に、前記基体よりも線膨張率の小さい物質からなる緩衝層(250)が形成されていてもよい。
 上記構成によれば、発光装置用基板は、基体と第2絶縁層との間に基体より線膨張率の小さい緩衝層が形成されている。このため、基体の熱膨張収縮による機械的負荷を発光素子に伝えることを著しく低減できるので、発光素子、ひいては発光装置の寿命を長寿命化でき、信頼性を向上することができる。
 さらに、前記基体よりも線膨脹率の小さく、前記第2絶縁層(中間層11)よりも線膨脹率の大きい物質からなる緩衝層250が形成されていてもよい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明に係る発光装置用基板は、各種発光装置用の基板として利用可能である。本発明に係る発光装置は、特に、高輝度LED発光装置として利用することができる。本発明に係る発光装置用基板の製造方法は、絶縁耐圧性、放熱性に優れた発光装置用基板を量産性に優れた方法で製造することが可能である。
 1  照明装置
 2  ヒートシンク
 4  発光装置
 5A・5B・5C  基板(発光装置用基板)
 6  発光素子
 7  封止樹脂
 8  枠体
 10 アルミニウム基体(基体)
 11 中間層(第2絶縁層)
 12 反射層(第1絶縁層)
 13 保護層(アルマイト層)
 14 保護層(第2絶縁層)
 15 絶縁反射層(絶縁層)
 20 電極パターン
 21a 正極コネクタ(コネクタ)
 21b 負極コネクタ(コネクタ)
 250 緩衝層

Claims (6)

  1.  金属材料からなる基体と、
     発光素子との電気的接続をとるための電極パターンと前記基体との間に、前記発光素子からの光を反射する第1セラミックスを含有して形成された第1絶縁層と、
     溶射により形成した第2セラミックスを含有して前記第1絶縁層の絶縁耐圧性能を補強する第2絶縁層と、を備えたことを特徴とする発光装置用基板。
  2.  前記基体と前記第2絶縁層との間に、前記基体よりも線膨張率の小さい物質からなる緩衝層が形成されている請求項1に記載の発光装置用基板。
  3.  前記第1絶縁層は、前記第1セラミックスとガラス質との混合層、または、前記第1セラミックスと樹脂との混合層であり、
     前記第2絶縁層の熱伝導率が、前記第1絶縁層の熱伝導率よりも高い請求項1または2に記載の発光装置用基板。
  4.  前記第2絶縁層は、前記第1絶縁層と前記基体との間に形成されている請求項1または2に記載の発光装置用基板。
  5.  請求項1または2に記載の発光装置用基板と、
     前記発光素子と、
     前記発光素子を、前記電極パターンを介して外部配線または外部装置に接続するためのランドまたはコネクタと、
     前記発光素子を囲むように形成された枠体と、
     前記枠体により囲まれた発光素子を封止する封止樹脂とを備えたことを特徴とする発光装置。
  6.  請求項4に記載の発光装置用基板の製造方法であって、
     前記基体の上に前記第2絶縁層を溶射により形成し、
     前記第2絶縁層の上に前記第1絶縁層を形成し、
     前記第1絶縁層の上に前記電極パターンを形成することを特徴とする発光装置用基板の製造方法。
PCT/JP2014/079848 2013-12-27 2014-11-11 発光装置用基板、発光装置、および、発光装置用基板の製造方法 WO2015098322A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015554660A JP6215357B2 (ja) 2013-12-27 2014-11-11 発光装置用基板、発光装置、および、発光装置用基板の製造方法
CN201480069824.2A CN105830241B (zh) 2013-12-27 2014-11-11 发光装置用基板、发光装置及发光装置用基板的制造方法
US15/104,649 US10276765B2 (en) 2013-12-27 2014-11-11 Substrate for light emitting devices, light emitting device, and method for producing substrate for light emitting devices

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013273287 2013-12-27
JP2013-273287 2013-12-27
JP2014-089620 2014-04-23
JP2014089620 2014-04-23

Publications (1)

Publication Number Publication Date
WO2015098322A1 true WO2015098322A1 (ja) 2015-07-02

Family

ID=53478200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079848 WO2015098322A1 (ja) 2013-12-27 2014-11-11 発光装置用基板、発光装置、および、発光装置用基板の製造方法

Country Status (4)

Country Link
US (1) US10276765B2 (ja)
JP (1) JP6215357B2 (ja)
CN (1) CN105830241B (ja)
WO (1) WO2015098322A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126714A (ja) * 2016-01-15 2017-07-20 東芝ライテック株式会社 発光装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170033266A1 (en) * 2013-12-18 2017-02-02 Sharp Kabushiki Kaisha Substrate for light emitting device, light emitting device, and method for manufacturing substrate for light emitting device
JP2017147364A (ja) * 2016-02-18 2017-08-24 株式会社東芝 半導体モジュール
JP2019021711A (ja) * 2017-07-13 2019-02-07 豊田合成株式会社 発光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174350A (ja) * 1998-12-10 2000-06-23 Toshiba Corp 光半導体モジュール
JP2007317701A (ja) * 2006-05-23 2007-12-06 Koha Co Ltd 光源用基板及びこれを用いた照明装置
JP2012191047A (ja) * 2011-03-11 2012-10-04 Panasonic Corp 照明器具用の熱伝導基材及びその製造方法
JP2012243846A (ja) * 2011-05-17 2012-12-10 Sumitomo Chemical Co Ltd 金属ベース回路基板および発光素子
JP2013153068A (ja) * 2012-01-25 2013-08-08 Shinko Electric Ind Co Ltd 配線基板、発光装置及び配線基板の製造方法
WO2013183693A1 (ja) * 2012-06-07 2013-12-12 株式会社Steq Led照明モジュールおよびled照明装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149958A (ja) 1983-02-01 1984-08-28 Toshiba Corp 絶縁被覆形成方法
JP2006147999A (ja) * 2004-11-24 2006-06-08 Kyocera Corp 発光素子用配線基板並びに発光装置
JP4389840B2 (ja) 2005-05-26 2009-12-24 パナソニック電工株式会社 半導体素子実装用回路基板の製造方法
JP5220373B2 (ja) 2007-09-25 2013-06-26 三洋電機株式会社 発光モジュール
US20100072511A1 (en) * 2008-03-25 2010-03-25 Lin Charles W C Semiconductor chip assembly with copper/aluminum post/base heat spreader
JP5216858B2 (ja) * 2008-08-21 2013-06-19 パナソニック株式会社 照明用光源
JP5146356B2 (ja) * 2009-02-24 2013-02-20 豊田合成株式会社 発光装置及びその製造方法
JP2010263037A (ja) * 2009-05-01 2010-11-18 Fujifilm Corp 金属複合基板およびその製造方法
KR101003591B1 (ko) * 2009-05-28 2010-12-22 삼성전기주식회사 메탈 적층판 및 이를 이용한 발광 다이오드 패키지의 제조 방법
JP4980455B2 (ja) * 2010-02-08 2012-07-18 富士フイルム株式会社 絶縁層付金属基板の製造方法、半導体装置の製造方法、太陽電池の製造方法、電子回路の製造方法、および発光素子の製造方法
JP5312368B2 (ja) * 2010-02-16 2013-10-09 富士フイルム株式会社 金属複合基板およびその製造方法
JP5526876B2 (ja) * 2010-03-09 2014-06-18 東京エレクトロン株式会社 加熱装置及びアニール装置
KR20110111243A (ko) * 2010-04-02 2011-10-10 아사히 가라스 가부시키가이샤 발광 소자 탑재 기판 및 이 기판을 사용한 발광 장치
JP5279782B2 (ja) * 2010-09-16 2013-09-04 株式会社東芝 半導体装置の製造方法
JP5851680B2 (ja) 2010-09-24 2016-02-03 株式会社小糸製作所 発光モジュール
US20120113650A1 (en) 2010-11-10 2012-05-10 E.I. Du Pont De Nemours And Company Insulating white glass paste for forming insulating reflective layer
CN103828076B (zh) * 2011-08-01 2017-07-07 四国计测工业株式会社 半导体装置及其制造方法
CN103367618B (zh) * 2013-07-19 2016-04-13 深圳大道半导体有限公司 带光反射层的半导体发光芯片
US20150311043A1 (en) * 2014-04-25 2015-10-29 Applied Materials, Inc. Chamber component with fluorinated thin film coating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174350A (ja) * 1998-12-10 2000-06-23 Toshiba Corp 光半導体モジュール
JP2007317701A (ja) * 2006-05-23 2007-12-06 Koha Co Ltd 光源用基板及びこれを用いた照明装置
JP2012191047A (ja) * 2011-03-11 2012-10-04 Panasonic Corp 照明器具用の熱伝導基材及びその製造方法
JP2012243846A (ja) * 2011-05-17 2012-12-10 Sumitomo Chemical Co Ltd 金属ベース回路基板および発光素子
JP2013153068A (ja) * 2012-01-25 2013-08-08 Shinko Electric Ind Co Ltd 配線基板、発光装置及び配線基板の製造方法
WO2013183693A1 (ja) * 2012-06-07 2013-12-12 株式会社Steq Led照明モジュールおよびled照明装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126714A (ja) * 2016-01-15 2017-07-20 東芝ライテック株式会社 発光装置

Also Published As

Publication number Publication date
US10276765B2 (en) 2019-04-30
CN105830241A (zh) 2016-08-03
JP6215357B2 (ja) 2017-10-18
CN105830241B (zh) 2019-10-18
JPWO2015098322A1 (ja) 2017-03-23
US20160315235A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
JP6461991B2 (ja) 基板、発光装置および照明装置
JP6215360B2 (ja) 発光装置用基板、発光装置および発光装置用基板の製造方法
JP6203942B2 (ja) 発光装置用基板の製造方法、発光装置の製造方法、及び照明装置の製造方法
WO2016092956A1 (ja) 発光装置用基板及び発光装置用基板の製造方法
JP6290380B2 (ja) 発光装置用基板、発光装置、及び、発光装置用基板の製造方法
KR100881384B1 (ko) 발광 소자 탑재용 서브 마운트, 발광 소자 탑재용 서브 마운트의 제조 방법 및 복합 발광 소자
US9287475B2 (en) Solid state lighting component package with reflective polymer matrix layer
JP6215357B2 (ja) 発光装置用基板、発光装置、および、発光装置用基板の製造方法
JPWO2010150830A1 (ja) 発光装置
JP2006041230A (ja) 発光素子用配線基板ならびに発光装置
WO2010007781A1 (ja) 発光装置とそれを用いたバックライト、液晶表示装置および照明装置
CN109681846B (zh) 波长转换装置及其制备方法
JP6030244B2 (ja) 発光装置用基板、発光装置、および発光装置用基板の製造方法
JP2010245258A (ja) 配線基板および発光装置
JP2006066409A (ja) 発光素子用配線基板および発光装置ならびに発光素子用配線基板の製造方法
JP2011071554A (ja) 発光素子用配線基板ならびに発光装置
WO2015079913A1 (ja) 発光装置用基板、発光装置および発光装置用基板の製造方法
WO2014122971A1 (ja) 発光装置、および、発光装置の製造方法
JP6235045B2 (ja) 発光装置用基板、及び、発光装置
JP2005243740A (ja) 発光素子収納用パッケージおよびその製造方法および発光装置および照明装置
JP2008085036A (ja) 表面実装型発光素子用配線基板ならびに発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874402

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15104649

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015554660

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874402

Country of ref document: EP

Kind code of ref document: A1