WO2015098132A1 - 寿命予測方法、寿命予測プログラム及び寿命予測装置 - Google Patents

寿命予測方法、寿命予測プログラム及び寿命予測装置 Download PDF

Info

Publication number
WO2015098132A1
WO2015098132A1 PCT/JP2014/050736 JP2014050736W WO2015098132A1 WO 2015098132 A1 WO2015098132 A1 WO 2015098132A1 JP 2014050736 W JP2014050736 W JP 2014050736W WO 2015098132 A1 WO2015098132 A1 WO 2015098132A1
Authority
WO
WIPO (PCT)
Prior art keywords
characteristic value
temperature
measurement
time
measured
Prior art date
Application number
PCT/JP2014/050736
Other languages
English (en)
French (fr)
Inventor
良和 坂井
Original Assignee
Eizo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eizo株式会社 filed Critical Eizo株式会社
Priority to AU2014371874A priority Critical patent/AU2014371874B2/en
Priority to CN201480071009.XA priority patent/CN105849798B/zh
Priority to RU2016125158A priority patent/RU2643471C2/ru
Priority to EP14874813.0A priority patent/EP3089152B1/en
Priority to US15/107,195 priority patent/US10026364B2/en
Publication of WO2015098132A1 publication Critical patent/WO2015098132A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/048Preventing or counteracting the effects of ageing using evaluation of the usage time

Definitions

  • the present invention relates to a life prediction method, a life prediction program, and a life prediction device that predict the life of a display device by predicting a change in a characteristic value related to display on the display device.
  • the light amount of the backlight decreases as the use continues. For this reason, when the liquid crystal display device is continuously used for a long period of time, the backlight cannot emit light with recommended luminance. In such a state, it is necessary to replace the backlight or the display device itself. Since these exchanges involve a considerable amount of cost and are related to asset management for the display device user, it has been required to predict the lifetime of the display device.
  • the maximum light quantity of the backlight that emits light through the liquid crystal panel that is, the maximum luminance does not reach a predetermined limit luminance
  • the measurement result of the luminance of the display device and the Laman formula Based on the above, a life prediction system that calculates the time until the maximum brightness reaches the limit brightness has been proposed.
  • the life prediction system described in Patent Document 1 is configured to predict the life based on the Lahmann equation, but there are display devices and usage environments where life prediction by this method is not applicable, and accurate life prediction can be performed. There were cases where it was not possible. This was largely affected by the ambient temperature when measuring the luminance of the display device. For example, an optical sensor is used for measurement of luminance, but the measurement result of the optical sensor is considered to have high temperature dependence. Further, for example, it is considered that the display unevenness of the display device varies depending on the temperature. Furthermore, the life prediction system described in Patent Document 1 only needs to measure the luminance at at least two points in time, and is a simple prediction method systematically, but it is not considered at all for an environment that changes every moment. Absent. For example, when the measurement is performed when the environmental temperature changes suddenly, the life prediction tendency depends on an exceptional measurement result, and there is a possibility that the accuracy of the prediction is impaired.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a lifetime in which lifetime prediction can be performed in consideration of a temperature difference during measurement of a characteristic value related to display on a display device.
  • An object is to provide a prediction method, a life prediction program, and a life prediction apparatus.
  • the life prediction method is a life prediction method for predicting the life of the display device based on a characteristic value related to display on the display device, and the characteristic value measurement is performed by repeatedly measuring the characteristic value of the display device.
  • a temperature measuring step for measuring the temperature of the display device at the time of measurement by the characteristic value measuring step, and the temperature at the time of measuring the characteristic value is a specific temperature based on the plurality of measured characteristic values and temperatures.
  • the life prediction method according to the present invention is based on a plurality of measured characteristic values, an approximation step for deriving an approximate straight line or an approximate curve related to the correspondence between the characteristic value and the measurement time of the characteristic value, and the approximation step.
  • a characteristic value change tendency is predicted based on an approximate line or an approximate curve.
  • the life prediction method includes a characteristic value error calculating step for calculating an error between the approximate straight line or the approximate curve derived in the approximating step and each characteristic value measured in the characteristic value measuring step, Temperature difference calculating step for calculating each difference between the temperature measured at the temperature measuring step and the temperature measured at the temperature measuring step, and a maximum temperature difference extracting step for extracting the maximum temperature difference from the plurality of differences calculated at the temperature difference calculating step.
  • a maximum temperature difference time specifying step for specifying a time when the measurement temperature corresponding to the maximum temperature difference extracted in the maximum temperature difference extraction step is measured, and a measurement time specified in the maximum temperature difference time specifying step
  • a characteristic value error extracting step for extracting the characteristic value error calculated in the characteristic value error calculating step, and the maximum temperature difference
  • a correction step for correcting a plurality of characteristic values measured in the characteristic value measurement step based on the maximum temperature difference extracted in the extraction step and the characteristic value error extracted in the characteristic value error extraction step,
  • the approximate straight line or the approximate curve is re-derived based on the characteristic value corrected in the correction step.
  • the life prediction method according to the present invention is characterized in that the re-approximation step repeatedly derives an approximate line or an approximate curve until the error calculated in the characteristic value error calculation step satisfies a predetermined condition.
  • the life prediction method according to the present invention is characterized in that the specific temperature is an average temperature of a plurality of temperatures measured in the temperature measurement step.
  • the characteristic value measuring step measures a characteristic value of the display device using a sensor and acquires a calibration time of the sensor, and acquires the calibration time.
  • the display device is a display device that displays a color image, and has conversion information for performing color conversion from an input image to an output image.
  • An adjustment time acquisition step for acquiring a time when information adjustment processing has been performed, and a classification step for dividing a plurality of measured characteristic values and temperatures into a plurality based on the adjustment time acquired by the adjustment time acquisition step,
  • prediction step prediction is performed for each of the classifications in the classification step.
  • the life prediction method according to the present invention is characterized in that the prediction step includes an integration step of integrating the prediction results performed for each of the sections.
  • the life prediction program according to the present invention is a life prediction program for causing a computer to predict the life of the display device based on a characteristic value related to display on the display device, and causing the computer to display a characteristic value of the display device. And a measurement value obtained by repeatedly measuring the temperature of the display device at the time of the measurement is acquired, and the temperature at the time of the characteristic value measurement is a specific temperature based on the plurality of acquired characteristic values and temperatures. It is characterized in that the change tendency of the characteristic value is predicted.
  • the life prediction apparatus is a life prediction apparatus that predicts the life of the display device based on a characteristic value related to display on the display device, and repeatedly performs measurement of the characteristic value of the display screen.
  • a characteristic value acquisition means for acquiring a measurement value a temperature acquisition means for acquiring a measurement value obtained by measuring the temperature of the display device at the time of measurement of the characteristic value, and a characteristic value based on the acquired plural characteristic values and temperatures
  • a predicting means for predicting a change tendency of the characteristic value when the temperature at the time of measurement is a specific temperature.
  • the characteristic value related to the display of the display device is measured, and the temperature of the display device is measured in advance.
  • the characteristic value to be measured is, for example, display intensity such as luminance or chromaticity that can be measured on the display surface of the display device, luminance that can be measured near the backlight, or control amount of the backlight that can estimate luminance or chromaticity, or the like.
  • display intensity such as luminance or chromaticity that can be measured on the display surface of the display device, luminance that can be measured near the backlight, or control amount of the backlight that can estimate luminance or chromaticity, or the like.
  • it can be set as the various value which can estimate the lifetime of a display apparatus. Based on multiple characteristic values and temperatures obtained by repeating measurement, predict the trend of change in characteristic value assuming that the temperature at the time of measurement was a specific temperature, and according to the predicted trend of change Predict the life of the display device.
  • display intensity such as luminance or chromaticity of the display device is measured, a change tendency of the display intensity of the display device is predicted based on the measured display intensity and temperature, and the display intensity is set to a predetermined intensity based on the predicted change tendency. It is possible to calculate a time when it is not satisfied, and to set this time as the lifetime of the display device. As a result, the temperature dependence of the measurement result of the characteristic value due to the temperature change of the display device can be reduced and the lifetime of the display device can be predicted.
  • the characteristic value and temperature are measured, information on the measured time is stored, and an approximate straight line or approximate curve regarding the correspondence between a plurality of characteristic values-measurement time obtained by repeating the measurement. Is derived. Further, the approximate straight line or the approximate curve is re-derived based on the derived approximate straight line or approximate curve and the measured characteristic value and temperature. Thereby, the precision of an approximate straight line or an approximate curve can be improved.
  • an error between the derived approximate line and each measured characteristic value is calculated. Further, a difference between a specific temperature (for example, average temperature) and the measured temperature is calculated, and the maximum difference is extracted from the calculated plurality of differences. The time when the temperature corresponding to the maximum temperature difference is measured is specified, and the error about the characteristic value measured at this measurement time is extracted. Each characteristic value is corrected based on the extracted error and the maximum temperature difference, and an approximate straight line or an approximate curve is re-derived based on the corrected characteristic value. Thereby, each characteristic value can be corrected in consideration of the error of the characteristic value measured at the time when the temperature difference is the largest, and the lifetime of the display device can be predicted based on the temperature-corrected characteristic value. .
  • the approximate line or the approximate curve is repeatedly derived using the corrected characteristic value. This repetition is performed until the calculated error satisfies a predetermined condition. Thereby, the derivation of the approximate straight line or the approximate curve can be repeatedly performed, the influence of the exceptional characteristic value can be eliminated, and the accuracy of the lifetime prediction of the display device can be improved.
  • the characteristic value of the display device is measured using a sensor that detects the characteristic value.
  • the sensor When the sensor is calibrated, there is a possibility that the characteristic value measured by the sensor may change, so the sensor calibration time is acquired, and the characteristic value measurement results are divided into multiple parts at the calibration time. Predict changes in characteristic values for each category.
  • a display device that displays a color image has a table used when color conversion of pixel values from an input image to an output image is performed. Since there may be a change in the measured characteristic value even when this table adjustment process, so-called calibration, is performed, the time when the adjustment process was performed is acquired, and the characteristic value is measured at this adjustment time. Divide the result into multiple categories and predict changes in characteristic values for each category. In this way, prediction is performed for a plurality of sections, and the prediction results for each section are integrated to predict the lifetime of the display device. As a result, it is possible to prevent a decrease in prediction accuracy due to the effects of sensor calibration or color conversion table adjustment processing.
  • the characteristic value and temperature of the display device are repeatedly measured, and the tendency of the change of the characteristic value when the temperature at the time of measurement is a specific temperature is predicted based on the measured characteristic value and temperature.
  • the lifetime of the display device can be predicted by reducing the temperature dependence of the characteristic value due to the temperature change. Can be predicted well.
  • FIG. 1 is a block diagram showing a configuration of a monitor of the life prediction system according to the present embodiment.
  • the lifetime prediction system according to the present embodiment has a configuration in which a monitor 1 and a terminal device 3 are connected via an image signal cable, a communication cable, and the like.
  • the monitor 1 measures the luminance (characteristic value) and temperature of the display screen, and the terminal device 3 acquires the measurement results and performs the life prediction of the monitor 1.
  • the monitor 1 is a so-called liquid crystal monitor that displays an image using the liquid crystal panel 11.
  • the monitor 1 includes a control unit 10, a liquid crystal panel 11, a panel drive unit 12, a backlight 13, a light drive unit 14, an image signal input unit 15, a communication unit 16, an operation unit 17, a storage unit 18, an optical sensor 19, and a temperature sensor. 20 etc. are comprised.
  • the control unit 10 is configured using an arithmetic processing device such as a CPU (Central Processing Unit).
  • the control unit 10 reads and executes a control program stored in the storage unit 18 or a ROM (Read Only Memory) (not shown), thereby driving and controlling the brightness of the liquid crystal panel 11 based on the input image signal.
  • the drive control of the backlight 13 according to setting etc. is performed. Further, the control unit 10 performs processing such as measurement of display screen luminance by the optical sensor 19, measurement of temperature by the temperature sensor 20, and transmission of these measurement results to the terminal device 3.
  • the liquid crystal panel 11 is a display device that displays an image by arranging a plurality of pixels in a matrix and changing the transmittance of each pixel in accordance with a drive signal from the panel drive unit 12.
  • the panel drive unit 12 generates and outputs a drive signal for driving each pixel constituting the liquid crystal panel 11 in accordance with the input image given from the control unit 10.
  • the backlight 13 is configured using a light source such as an LED (Light Emitting Diode) or a CCFL (Cold Cathode Fluorescent Lamp), and irradiates light from the back side of the liquid crystal panel 11.
  • the backlight 13 emits light by a driving voltage or a driving current given from the light driving unit 14.
  • the light driving unit 14 generates a driving voltage or a driving current according to a control signal from the control unit 10 and outputs the driving voltage or driving current to the backlight 13.
  • the control unit 10 determines the driving amount of the backlight 13 according to the brightness setting received by the operation unit 17 and outputs a control signal corresponding to the determined driving amount to the light driving unit 14.
  • a control signal from the control unit 10 to the light driving unit 14 for example, a PWM (Pulse Width Modulation) type signal can be used.
  • the image signal input unit 15 has a connection terminal for connecting an external device, and the terminal device 3 is connected via an image signal cable.
  • the terminal device 3 outputs an analog or digital image signal to the monitor 1 via the image signal cable.
  • the image signal input from the terminal device 3 to the image signal input unit 15 is given to the control unit 10 of the monitor 1, and various control processes are performed by the control unit 10 and given to the panel drive unit 12. Thereby, an image based on the image signal input from the terminal device is displayed on the liquid crystal panel 11.
  • the communication unit 16 has a connection terminal for connecting an external device, and the terminal device 3 is connected via a communication cable.
  • the communication unit 16 performs communication with the terminal device 3 according to a standard such as USB (Universal Serial Bus). Thereby, the monitor 1 can transmit various information to the terminal device 3. Further, the terminal device 3 can control the operation of the monitor 1 by transmitting control information and the like to the monitor 1.
  • the operation unit 17 includes one or a plurality of switches disposed on the front peripheral edge or the side surface of the housing of the monitor 1.
  • the operation unit 17 receives a user operation using these switches, and transmits the received operation content to the control unit 10. Notice.
  • the user can perform an operation of changing the brightness setting or the color balance setting related to image display on the operation unit 17.
  • the control unit 10 stores the setting content (setting value) received by the operation unit 17 in the storage unit 18 and controls the operation of each unit in the monitor 1 according to the setting value.
  • the control unit 10 determines the driving amount of the backlight 13 according to the brightness setting by the user.
  • the storage unit 18 is configured using a non-volatile memory element such as an EEPROM (Electrically Erasable Programmable ROM) or a flash memory.
  • the control unit 10 can read and write various information with respect to the storage unit 18.
  • the storage unit 18 stores various setting values received by the operation unit 17 and information such as measurement results obtained by the optical sensor 19 and the temperature sensor 20.
  • the optical sensor 19 measures the luminance when an image is displayed on the liquid crystal panel 11 and gives the measurement result to the control unit 10.
  • the optical sensor 19 is provided in a frame-like part surrounding the liquid crystal panel 11 of the housing of the monitor 1.
  • the optical sensor 19 is configured to move in and out of the display surface of the liquid crystal panel 11 from the inside of the housing according to the operation of an actuator or a motor, and the optical sensor 19 is displayed when the control unit 10 performs luminance measurement. It can be set as the structure which moves on a surface and performs a measurement.
  • the optical sensor 19 is configured to be detachably connected to the monitor 1 via a signal line or the like, and the user mounts the optical sensor 19 on the display surface of the liquid crystal panel 11 when performing luminance measurement, and the signal line Or the like may be connected to the monitor 1.
  • the optical sensor 19 is configured to measure luminance as the characteristic value of the monitor 1, but is not limited to this, and is configured to measure other characteristic values such as chromaticity. Good.
  • the optical sensor 19 is ideally provided on the display surface of the liquid crystal panel 11, but the optical sensor 19 is provided in the vicinity of the liquid crystal panel 11 other than the display surface or in the vicinity of the backlight 13, etc.
  • the luminance on the display surface of the liquid crystal panel 11 may be estimated from the 19 measured luminances. Further, the luminance on the display surface of the liquid crystal panel 11 may be estimated from the drive amount of the backlight 13 (or the drive amount in the case of a self-luminous display panel).
  • the estimation method according to Japanese Patent No. 3974630 by the present inventor can be adopted. When the luminance is obtained by these estimations, the estimated luminance may be stored, or the measurement value used for estimation is stored, and the stored measurement value is read out as necessary. May be estimated.
  • the temperature sensor 20 is provided, for example, around the liquid crystal panel 11. In the present embodiment, the temperature sensor 20 is preferably arranged in the vicinity of the optical sensor 19. The temperature sensor 20 measures the temperature and gives a detection result to the control unit 10. The control unit 10 stores the luminance value measured by the optical sensor 19 and the temperature measured by the temperature sensor 20 when the luminance measurement is performed in the storage unit 18 in association with each other.
  • the temperature sensor 20 may be installed at a location away from the optical sensor 19, and the temperature in the vicinity of the optical sensor 19 may be estimated from the measured temperature.
  • the temperature sensor 20 may be provided on the casing of the monitor 1 or the terminal device 3 connected to the monitor 1.
  • the technology of Japanese Patent No. 4673377 by the applicant of the present application may be adopted to estimate the temperature from the driving amount of the backlight 13.
  • the estimated temperature may be stored, or the measured value used for the estimation is stored, and the stored measured value is read as necessary. May be estimated.
  • the control unit 10 of the monitor 1 has a built-in timer that counts the operating time of the monitor 1, for example, and performs luminance measurement by the optical sensor 19 every time the operating time reaches a predetermined time such as 100 hours. Do. At this time, the control unit 10 displays a predetermined image (for example, a white image) on part or all of the liquid crystal panel 11, and measures the luminance when the predetermined image is displayed by the optical sensor 19. The display of the predetermined image may be only the luminance measurement range by the optical sensor 19.
  • a predetermined image for example, a white image
  • the control unit 10 performs the temperature measurement by the temperature sensor 20, and stores the luminance value and temperature obtained by the measurement in association with the storage unit 18. Further, the control unit 10 stores in the storage unit 18 the time information when the measurement is performed and the brightness setting value when the measurement is performed in association with the measured luminance value and temperature.
  • the control unit 10 reads the information from the storage unit 18 and transmits the information to the terminal device 3.
  • the control unit 10 replaces the brightness setting value at the time of measurement with the drive amount of the backlight 13 corresponding to the brightness setting value (for example, a PWM control signal given from the control unit 10 to the light driving unit 14). May be stored and transmitted.
  • the optical sensor 19 outputs RGB values as measurement results, and the control unit 10 converts the RGB values into XYZ values, and the converted Y value is used as the measurement luminance.
  • the control unit 10 uses conversion information such as a conversion table, a conversion matrix, or a conversion formula, and this conversion information is stored in the storage unit 18.
  • the monitor 1 can calibrate the optical sensor 19, and when calibration is performed, the content of the conversion information in the storage unit 18 is corrected.
  • the conversion information stored in the storage unit 18 is transmitted together.
  • the terminal device 3 can determine whether or not the optical sensor 19 has been calibrated by comparing the conversion information transmitted last time with the current conversion information.
  • the monitor 1 may store time information when the optical sensor 19 is calibrated and transmit the information to the terminal device 3.
  • the time when the correlation value (correction coefficient or the like) used for the estimation calculation is readjusted can be set as the configuration time.
  • the control unit 10 performs various image processing on the image signal input from the terminal device 3 to the image signal input unit 15 to generate a display image.
  • the processing includes input image color conversion processing, and conversion information such as a conversion table, a conversion matrix, or a conversion formula used in this processing is stored in the storage unit 18.
  • the monitor 1 can perform this conversion information adjustment process, so-called calibration. When calibration is performed, the content of the conversion information is corrected.
  • the conversion information for color conversion stored in the storage unit 18 is transmitted together.
  • the terminal device 3 can determine whether the monitor 1 has been calibrated by comparing the conversion information transmitted last time with the current conversion information.
  • the monitor 1 may be configured to store time information when calibration is performed and transmit the information to the terminal device 3.
  • the backlight 13 of the monitor 1 can be replaced.
  • the monitor 1 stores information on the time when the backlight 13 is replaced in the storage unit 18.
  • the monitor 1 can be configured to store time information in the storage unit 18 when the removal of the backlight 13 is detected.
  • a worker who has replaced the backlight 13 may input replacement time information using the operation unit 17.
  • the replacement time information of the backlight 13 stored in the storage unit 18 is transmitted together.
  • FIG. 2 is a block diagram showing the configuration of the terminal device 3.
  • the terminal device 3 includes a processing unit 30, a memory 31, a hard disk 32, an operation unit 33, an image output unit 34, a communication unit 35, a disk drive 36, and the like.
  • the terminal device 3 can be realized using a general-purpose computer such as a PC (Personal Computer).
  • the processing unit 30 of the terminal device 3 is configured using an arithmetic processing device such as a CPU, and performs various arithmetic processes by reading and executing a program stored in the hard disk 32.
  • the processing unit 30 reads out and executes the life prediction program 90 stored in the hard disk 32, so that the brightness of the monitor 1 is calculated based on information such as the measured brightness and the measured temperature acquired from the monitor 1. A process for predicting the change and predicting the life of the monitor 1 is performed.
  • the memory 31 is configured by a memory element such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory), and temporarily stores various data generated in accordance with the arithmetic processing of the processing unit 30.
  • the hard disk 32 is configured using a magnetic disk device or the like, and stores various programs executed by the processing unit 30 and various data necessary for the execution. In the present embodiment, the hard disk 32 stores a life prediction program 90.
  • the operation unit 33 is configured using a device such as a mouse and a keyboard, and accepts a user operation and notifies the processing unit 30 of the operation content.
  • the image output unit 34 converts the display image generated by the processing unit 30 into an analog or digital image signal suitable for the monitor 1, and outputs the converted image signal to the monitor 1.
  • the communication unit 35 communicates with the monitor 1 via, for example, a USB standard communication cable.
  • the disc drive 36 is loaded with an optical disc 9 such as a CD (Compact Disc) or a DVD (Digital Versatile Disc), and reads a program and data recorded on the optical disc 9.
  • the terminal device 3 reads the life prediction program 90 recorded on the optical disk 9 by the disk drive 36 and installs it on the hard disk 32.
  • the processing unit 30 of the terminal device 3 performs a process of acquiring a measurement result from the monitor 1 when, for example, luminance measurement by the optical sensor 19 and temperature measurement by the temperature sensor 20 are performed on the monitor 1. .
  • the processing unit 30 performs communication with the monitor 1 at a predetermined timing such as when the terminal device 3 is activated, and performs measurement when luminance measurement and temperature measurement are performed and the measurement result is not acquired. It can be set as the structure which acquires a result. Further, for example, after the monitor 1 performs the luminance measurement and the temperature measurement, the terminal device 3 is notified of the completion of measurement, and the processing unit 30 of the terminal device 3 acquires the measurement result in response thereto.
  • the monitor 1 may not perform voluntary luminance measurement and temperature measurement, but may perform luminance measurement in response to an instruction from the terminal device 3, and in this case, the processing unit 30 of the terminal device 3 performs a predetermined measurement.
  • a measurement instruction may be given to the monitor 1 at timing, and a measurement result may be acquired as a response.
  • the processing unit 30 acquires the measurement results of the brightness measurement and the temperature measurement and various information associated therewith from the monitor 1 and stores them in the hard disk 32.
  • Information acquired by the terminal device 3 from the monitor 1 includes, for example, the following information. -Information acquisition date-Operating time of monitor 1-Measurement brightness value-Measurement temperature-Measurement time-Backlight 13 replacement time-Maximum brightness calculation information-Brightness setting value (or drive amount of backlight 13) -Conversion information of the optical sensor 19 (or calibration time of the optical sensor 19) -Color conversion information (or calibration time)
  • information such as date, time, or time is measured by a timer function or a clock function provided in the monitor 1.
  • the control unit 10 of the monitor 1 measures the time when the monitor 1 is in the power-on state or the time when the image is displayed (the backlight 13 is lit), and this total time is set as the operation time of the monitor 1.
  • the measurement timing of the luminance measurement and the temperature measurement is expressed as a relative time with respect to the operation time. The same applies to the replacement time of the backlight 13, the calibration time and the calibration time of the optical sensor 19.
  • the processing unit 30 of the terminal device 3 acquires information from the monitor 1 at an appropriate timing, and accumulates the acquired information in the hard disk 32. However, when the backlight 13 is replaced on the monitor 1, the processing unit 30 may delete information acquired from the monitor 1 before the replacement from the hard disk 32.
  • the processing unit 30 of the terminal device 3 performs a process of calculating the maximum luminance value of the monitor 1 based on the measured luminance value acquired from the monitor 1, the maximum luminance calculation information, and the brightness setting value.
  • the maximum luminance can be calculated based on the following equation (1).
  • the coefficients a and b are coefficients for calculating the maximum brightness from the measured brightness, and are the above-described maximum brightness calculation information.
  • the coefficients a and b are different values for each monitor 1.
  • the coefficients a and b are calculated in advance by measuring a luminance change characteristic with respect to the brightness setting, and the storage unit 18 of each monitor 1. Is remembered.
  • the processing unit 30 of the terminal device 3 may convert the measured luminance value to the maximum luminance based on the equation (1) and store the maximum luminance value in the hard disk 32. In this case, the measurement luminance value and the maximum luminance are calculated. Information and brightness settings may not be stored in the hard disk 32.
  • the processing unit 30 of the terminal device 3 may be configured to store the measured luminance value, the maximum luminance calculation information, and the brightness setting in the hard disk 32 and calculate the maximum luminance when performing life prediction described later. Good. Furthermore, the control unit 10 of the monitor 1 may calculate the maximum luminance from the measured luminance value and store it in the storage unit 18 so that the terminal device 3 acquires the maximum luminance from the monitor 1. Note that the method for acquiring the maximum luminance is not limited to the above method, and the maximum luminance may be acquired by another method, for example, by performing luminance measurement by changing the brightness setting to the maximum.
  • the processing unit 30 of the terminal device 3 performs the following life prediction process when an instruction to predict the life of the monitor 1 is given, for example, by a user operation on the operation unit 33 or the like. First, the processing unit 30 reads information stored in the hard disk 32. At this time, the processing unit 30 only needs to check the replacement time of the backlight 13 and read out only the information related to the measurement results after this replacement time.
  • the processing unit 30 examines the conversion information of the optical sensor 19 included in the read information, and determines whether or not the optical sensor 19 has been calibrated according to whether or not the conversion information has changed. When it is determined that the calibration is performed, the processing unit 30 specifies the time when the calibration is performed. When information on the calibration time of the optical sensor 19 is obtained from the monitor 1, the processing unit 30 does not need to perform processing for specifying the calibration time.
  • the processing unit 30 examines the color conversion information included in the read information, and determines whether calibration has been performed according to whether there is a change in the color conversion information. When it is determined that the calibration is performed, the processing unit 30 specifies the time when the calibration is performed. When the calibration time information is obtained from the monitor 1, the processing unit 30 does not need to perform a process for specifying the calibration time.
  • the processing unit 30 performs processing for classifying information such as the maximum luminance value and the measured temperature of the monitor 1 into a plurality of groups based on the specified calibration time and calibration time.
  • FIG. 3 is a schematic diagram for explaining the sorting process by the terminal device 3. This figure is a timing chart in which the horizontal axis is the operating time of the monitor 1, and the calibration time and the calibration time of the optical sensor 19 are indicated by arrows. In the example shown in the figure, the backlight 13 is not replaced, and two calibrations and one calibration of the optical sensor 19 are performed in this order from the start of the operation of the monitor 1.
  • the processing unit 30 of the terminal device 3 sets the first division from the start of operation of the monitor 1 to the first calibration as the first division and the second division from the first calibration to the second calibration as the second calibration. From the first calibration to the first calibration of the optical sensor 19 is the third category, and after the calibration of the first optical sensor 19 is the fourth category. In other words, the processing unit 30 performs classification at the timing when either calibration or calibration of the optical sensor 19 is performed.
  • FIG. 4 is a schematic diagram for explaining the temperature correction processing by the terminal device 3.
  • the correspondence between the operation time and the measured temperature is shown by a graph, and the average of the measured temperature is shown by a horizontal solid line in the graph.
  • the processing unit 30 calculates the average of the temperatures measured by the monitor 1 and calculates the difference between each measured temperature and the average temperature.
  • the processing unit 30 compares the plurality of calculated difference values to extract the maximum difference value (indicated by ⁇ Tmp (T ′) in the figure) and measures the measurement time T ′ at which the temperature corresponding to the maximum difference value is measured. Is identified.
  • the processing unit 30 derives a linear approximation line based on a plurality of sets of maximum luminance-measurement times stored in the hard disk 32.
  • the derived linear approximate straight line is indicated by a solid line.
  • the processing unit 30 determines the maximum luminance value corresponding to the luminance value measured at the measurement time T ′ based on the measurement time T ′ corresponding to the maximum difference value specified based on the measurement temperature, and the derived linearity.
  • An error from the approximate straight line (indicated by ⁇ G (T ′) in the figure) is calculated.
  • the processing unit 30 performs temperature correction of the maximum luminance value using the temperature correction coefficient F and the following equation (2).
  • G (T) is the maximum luminance at the measurement time T
  • ⁇ Tmp (T) is the difference between the measurement temperature and the average temperature at the measurement time T
  • G ′ (T) is the measurement time T This is a value obtained by temperature-correcting the maximum luminance at.
  • the processing unit 30 derives a linear approximation line based on a plurality of corrected maximum brightness-measurement timing sets obtained by performing temperature correction using the equation (2).
  • the processing unit 30 calculates an error from the derived linear approximation line for each of the corrected maximum luminances.
  • the processing unit 30 calculates and stores the root mean square for the calculated plurality of errors. Note that the processing unit 30 may end the temperature correction process when it can be determined that the error of the maximum luminance value is sufficiently small, for example, the calculated root mean square is less than the threshold value.
  • the processing unit 30 changes the value of the temperature correction coefficient F, and repeatedly performs temperature correction for maximum luminance, derivation of a linear approximation line, calculation of error, and calculation of root mean square. At this time, the processing unit 30 changes the temperature correction coefficient F, for example, by increasing or decreasing a value of about ⁇ 1% with respect to the temperature correction coefficient F. The processing unit 30 changes the value of the temperature correction coefficient F so that the calculated root mean square becomes small.
  • the processing unit 30 compares the root mean square value calculated by repeating the above processing, and when the current root mean square value is larger than the previous root mean square value, the current maximum brightness temperature correction is Without adopting, the previous temperature correction result of the maximum brightness is adopted as the final correction result, and the temperature correction process is terminated.
  • FIG. 5 is a schematic diagram for explaining the integration process by the terminal device 3.
  • FIG. 5A shows an example of a plurality of linear approximation lines obtained as a result of performing temperature correction of maximum brightness for each section.
  • the temperature correction of the maximum luminance value is performed by dividing into the first division of the measurement timings T1 to T2, the second division of the measurement timings T2 to T3, and the third division of the measurement timings T3 to T4.
  • the processing unit 30 performs integration processing using the following formulas (3) and (4).
  • the expression (3) indicates that the first measurement time of the i-th section is Ti, the first measurement time of the j-th section is Tj, and the maximum corresponding to Ti
  • This is an arithmetic expression for calculating the coefficient C, where the luminance value is G (Ti) and the maximum luminance value corresponding to Tj is G (Tj).
  • the calculated coefficient C is changed after changing the slope of the i-th linear approximation line to connect the i-th linear approximation line to the j-th linear approximation line. It is a value representing the slope of.
  • the equation (4) shows that the maximum luminance value G (T) of the maximum luminance-measurement time group (G (T), T) of the i-th section is adapted to adapt to the change in the slope of the linear approximation line of the i-th section. ).
  • the maximum luminance value after conversion is G ′ (T).
  • the processing unit 30 calculates the maximum luminance G (T2) corresponding to the first measurement time T2 based on the linear approximation line of the second section, and similarly, the first measurement time T3 based on the linear approximation line of the third section.
  • the maximum luminance G (T3) corresponding to is calculated, and the coefficient C is calculated based on the equation (3).
  • the processing unit 30 performs processing for converting the maximum luminance value of the second section based on the calculated coefficient C and the equation (4).
  • FIG. 5B the second segment linear approximation line and the third segment linear approximation line are connected.
  • the processing unit 30 performs similar integration processing for a plurality of sections, and assumes that the linear approximate straight lines of all sections are connected. However, since a plurality of linear approximation lines are connected in a polygonal line in this state, the processing unit 30 derives one linear approximation line based on the maximum luminance value of all the sections and the measurement time. One linear approximate straight line derived in this way becomes a final prediction result in which the change tendency of the maximum luminance value of the monitor 1 is predicted in consideration of the temperature difference at the time of measurement.
  • the processing unit 30 of the terminal device 3 When integrating a plurality of sections, the processing unit 30 of the terminal device 3 according to the present embodiment first integrates the sections classified according to the calibration time and derives a linear approximation line. Next, the processing unit 30 integrates the ones classified by the calibration time of the optical sensor 19 and derives one final linear approximation straight line.
  • the processing unit 30 that has derived one linear approximation line by the integration process calculates a time (limit operating time) when the maximum luminance of the monitor 1 does not reach a predetermined limit luminance based on the linear approximation line. By subtracting the current operating time from the calculated limit operating time, the processing unit 30 can calculate the remaining operating time of the monitor 1, that is, the lifetime. Further, the processing unit 30 may calculate the date when the limit operating time is predicted to be reached based on the average daily operating time of the monitor 1 or the like.
  • FIG. 6 is a schematic diagram illustrating a display example of a prediction result by the terminal device 3.
  • the processing unit 30 of the terminal device 3 displays an image displaying a straight line indicating a predicted change tendency of the maximum luminance on a graph in which the vertical axis indicates the luminance (maximum luminance) of the monitor 1 and the horizontal axis indicates the operating time of the monitor 1.
  • the result of prediction is displayed on the monitor 1.
  • the straight line displayed in this graph is one final linear approximation straight line obtained by the integration process.
  • the processing unit 30 displays a horizontal line indicating the limit luminance (a one-dot chain line in the drawing), and sets the operating time corresponding to the intersection of the horizontal line and the straight line indicating the change tendency of the maximum luminance to the time when the monitor 1 reaches the lifetime.
  • the processing unit 30 displays a mark such as an arrow indicating the current time and information such as the current date and operating time on the time axis of the graph.
  • the processing unit 30 displays a character string or the like of a predicted life and information such as an operation time and a predicted arrival date for the time to reach the life of the monitor 1.
  • the limit luminance value may be a value set in advance for the monitor 1 or may be a value arbitrarily set by the user of the monitor 1.
  • the change tendency of the maximum luminance of the monitor 1 is displayed as a straight line, but may be displayed as a band in consideration of a prediction error.
  • a method of displaying about ⁇ 20% as an error range with respect to the predicted linear approximation straight line can be considered.
  • the error range may not be constant, and the width may be determined based on the actual measurement value variation and the like.
  • the maximum error value between the linear approximation line and the maximum luminance may be set as the error range.
  • FIG. 7 is a flowchart showing the procedure of the measurement process performed by the monitor 1.
  • the control unit 10 of the monitor 1 measures the elapsed time from the previous luminance measurement with a timer or the like, and determines whether or not a predetermined time has elapsed since the previous luminance measurement (step S1).
  • the control unit 10 performs measurement preparation such as displaying a predetermined image and performs luminance measurement by the optical sensor 19 (step S2). .
  • the control part 10 performs temperature measurement with the temperature sensor 20 (step S3).
  • the control unit 10 stores the luminance value and temperature as measurement results in the storage unit 18 (step S4), and proceeds to step S6.
  • step S ⁇ b> 4 the control unit 10 stores information such as the brightness setting at the time of measurement and the time at which the measurement is performed, in the storage unit 18, along with the luminance value and temperature that are the measurement results.
  • step S5 determines whether or not an untransmitted measurement result is stored in the storage unit 18 (step S5). When an untransmitted measurement result is not stored (S5: NO), the control unit 10 returns the process to step S1. When an untransmitted measurement result is stored (S5: YES), the control unit 10 advances the process to step S6.
  • control unit 10 determines whether the communication unit 16 can communicate with the terminal device 3 (step S6).
  • the control unit 10 returns the process to step S1.
  • the control unit 10 sends the measurement result stored in the storage unit 18 to the communication unit 16 together with information such as the brightness setting and date / time at the time of measurement. Is transmitted to the terminal device 3 (step S7), and the process returns to step S1.
  • FIG. 8 is a flowchart showing the procedure of the life prediction process performed by the terminal device 3.
  • the processing unit 30 of the terminal device 3 determines whether or not the luminance and temperature measurement results have been received from the monitor 1 by the communication unit 35 (step S21).
  • the processing unit 30 receives the received measurement luminance, the maximum luminance calculation information (coefficients a and b) transmitted from the monitor 1 together with the measurement result, the equation (1), Based on the above, a maximum luminance value corresponding to each measured luminance is calculated (step S22).
  • the processing unit 30 stores the received measurement result and the calculated maximum brightness in the hard disk 32 (step S23), and returns the process to step S21.
  • the processing unit 30 determines whether or not the operation unit 33 has received an instruction for predicting the life of the monitor 1 (step S24). When the life prediction instruction has not been received (S24: NO), the processing unit 30 returns the process to step S21.
  • the processing unit 30 When receiving an instruction for predicting the lifetime of the monitor 1 (S24: YES), the processing unit 30 acquires the calibration time and the calibration time of the optical sensor 19 of the monitor 1 from the information stored in the hard disk 32 (step S25). ), Processing for classifying the measurement results according to the acquired time (step S26). Next, the processing unit 30 sets the value of the variable i to 1 (step S27). Note that the variable i is realized by a register, a memory, or the like in the processing unit 30 and stores a value for determining a classification to be processed by the temperature correction process.
  • the processing unit 30 reads information such as the maximum brightness, measurement temperature, and measurement timing of the i-th section from the information stored in the hard disk 32 (step S28). Based on the read information, the processing unit 30 performs a temperature correction process for the i-th section (step S29). After the temperature correction process is completed, the processing unit 30 determines whether the process has been completed for all the sections (step S30). When the process has not been completed for all the sections (S30: NO), the processing unit 30 adds 1 to the variable i (step S31), returns the process to step S28, and performs the temperature correction process for the next section. .
  • the processing unit 30 When the temperature correction process is completed for all the sections (S30: YES), the processing unit 30 performs an integration process for integrating the change tendency of the maximum luminance value of each section (step S32). After completion of the integration process, the processing unit 30 performs a process of predicting the lifetime of the monitor 1 based on the linear approximation line obtained by the integration process and the set limit luminance (step S33), and the prediction result is obtained. The information is displayed on the monitor 1 (step S34), and the process ends.
  • FIGS. 9 and 10 are flowcharts showing the procedure of the temperature correction process by the terminal device 3, which is the process performed in step S29 of the flowchart of FIG.
  • the processing unit 30 of the terminal device 3 acquires information about the measurement temperature and the measurement time for the processing target category (step S41).
  • the processing unit 30 calculates an average temperature based on the acquired information (step S42), and calculates a difference between the calculated average temperature and each measured temperature (step S43).
  • the processing unit 30 specifies the maximum difference that has the maximum value from the plurality of calculated differences (step S44) and specifies the measurement time T ′ corresponding to the maximum difference (step S45).
  • the processing unit 30 acquires information on the maximum luminance value and the measurement time for the processing target category (step S46). Based on the acquired information, the processing unit 30 derives a linear approximation line for the correspondence relationship between the maximum luminance value and the measurement time (step S47), and calculates an error between the derived linear approximation line and each maximum luminance value (Ste S48). Next, the processing unit 30 acquires an error corresponding to the measurement time T ′ specified in step S45 from the calculated plurality of errors (step S49).
  • the processing unit 30 corrects the maximum luminance value based on the calculated correction coefficient F and the above equation (2) (step S51).
  • the processing unit 30 derives a linear approximation line for the correspondence relationship between the corrected maximum luminance value and the measurement time (step S52), and calculates an error between the derived linear approximation line and each corrected maximum luminance value (step S52).
  • S53 The processing unit 30 calculates a root mean square for the plurality of calculated errors (step S54), and stores the calculated root mean square in a memory or the like.
  • the processing unit 30 determines whether or not the previous root mean square is stored (step S55), and when it is stored (S55: YES), the previous root mean square is greater than the current root mean square. It is further determined whether or not it is smaller (step S56). When the previous root mean square is not stored (S55: NO), or when the previous root mean square is greater than the current root mean square (S56: NO), the processing unit 30 uses the temperature correction coefficient F. Is appropriately changed (step S57), the process is returned to step S51, and the correction of the maximum luminance value is repeatedly performed.
  • the processing unit 30 adopts the previous correction result of the maximum luminance value as the final correction result (step S58), and temperature correction. The process ends.
  • the lifetime prediction system measures the luminance (characteristic value) of the display screen of the monitor 1 with the optical sensor 19 and measures the temperature around the display screen with the temperature sensor 20.
  • the terminal device 3 stores the measured luminance and temperature in the hard disk 32 in association with each other. Based on a plurality of brightnesses and temperatures obtained by repeatedly performing the measurement by the monitor 1, the terminal device 3 predicts and predicts a tendency of a change in brightness when the temperature at the time of measurement is assumed to be substantially constant.
  • the life of the monitor 1 is predicted according to the change tendency.
  • the terminal device 3 can calculate a time when the luminance of the monitor 1 is less than the limit luminance based on the predicted change tendency of the luminance, and can set this time as the life reaching time of the monitor 1. As a result, the terminal device 3 can reduce the temperature dependence of the luminance measurement result due to the ambient temperature and perform the life prediction of the monitor 1, and therefore can accurately predict the life of the monitor 1.
  • an average temperature is determined based on a plurality of measurement temperatures obtained by repeated measurement, a difference between the average temperature and each measurement temperature is calculated, and a maximum difference is calculated from the plurality of differences.
  • a predetermined temperature for example, 30 ° C.
  • processing may be performed using a difference between the predetermined temperature and the measured temperature.
  • you may process using the ratio of the measured temperature with respect to average temperature instead of using a difference.
  • the terminal device 3 stores the measurement time when this measurement is performed together with the luminance and temperature measurement results of the monitor 1.
  • the terminal device 3 derives a linear approximation line related to the correspondence between a plurality of luminance-measurement times obtained by repeated measurement, and calculates an error between the derived linear approximation line and the measurement result of each luminance.
  • the terminal device 3 identifies the time when the measurement temperature corresponding to the maximum difference between the measurement temperature and the average temperature is measured, extracts the luminance error corresponding to this measurement time, and determines the maximum temperature difference and the luminance error. Based on this, a temperature correction coefficient F is calculated, and brightness temperature correction is performed based on the temperature correction coefficient F and the equation (2).
  • the terminal device 3 predicts a change tendency of the luminance of the monitor 1 based on the luminance after temperature correction. As a result, the measurement result can be corrected in consideration of the error in luminance measured at the measurement time with the largest temperature difference, and the lifetime of the monitor 1 can be predicted based on the temperature-corrected luminance.
  • the terminal device 3 repeatedly performs derivation of a linear approximation line, calculation of an error, and correction of luminance with respect to the luminance after temperature correction. This repetition is performed until the calculated error satisfies a predetermined condition.
  • the predetermined condition employs a condition that the root mean square is calculated for a plurality of calculated errors, and the iteration is terminated when the root mean square calculated this time is larger than the root mean square previously calculated in the iteration process. be able to.
  • a condition for ending the repetition may be employed, or other conditions may be employed.
  • the linear approximate straight line is derived.
  • the present invention is not limited to this.
  • a curve such as a Lahmann equation is adopted, and a linear approximated curve is derived instead of the linear approximate straight line to determine the lifetime. It is good also as a structure which performs prediction.
  • the terminal device 3 acquires the calibration time and the calibration time of the optical sensor 19 of the monitor 1, and divides the brightness and temperature measurement results into a plurality of times with these times as a boundary, and performs a temperature correction process for the brightness for each category. Do.
  • the terminal device 3 integrates the brightness that has been subjected to temperature correction for each section, and predicts the life of the monitor 1 based on the integrated trend of change in brightness. Thereby, it is possible to prevent a decrease in prediction accuracy due to the influence of calibration or calibration of the optical sensor 19.
  • the terminal device obtains the brightness measured by the monitor 1, the brightness setting of the monitor 1 when the measurement is performed, and information for calculating the maximum brightness from the measured brightness from the monitor 1, and the measured brightness is obtained. Convert to maximum brightness to predict the change trend. Thereby, the terminal device 3 can predict the change tendency of the maximum luminance without performing the measurement at the maximum luminance on the monitor 1.
  • the monitor 1 is a liquid crystal display device that performs display using the liquid crystal panel 11.
  • the monitor 1 is a display device that performs display using a PDP (plasma display panel) or the like. It's okay.
  • the monitor 1 and the terminal device 3 are separate devices, the present invention is not limited to this, and a configuration in which the monitor and the terminal device are integrated, such as a notebook personal computer or a tablet terminal, may be used.
  • the monitor 1 is configured to include the optical sensor 19 for measuring the luminance, the present invention is not limited to this.
  • the terminal device 3 may be configured to include the optical sensor 19.
  • the terminal device 3 It is good also as a structure which is equipped with the sensor 19 and the terminal device 3 acquires a measurement result from this apparatus. Further, the brightness setting value when the optical sensor 19 performs the luminance measurement is transmitted from the monitor 1 to the terminal device 3, but when the measurement by the optical sensor 19 is performed with the maximum luminance setting, the terminal device 3 It is not necessary to transmit the brightness setting to the, and it is not necessary to perform the calculation of the maximum luminance by the equation (1).
  • the light sensor 19 that outputs RGB values of the RGB color system is used and the luminance is calculated from the output value of the light sensor 10, but the present invention is not limited to this.
  • the configuration may be such that the luminance is directly acquired using an optical sensor that outputs a luminance (light quantity) value.
  • a sensor that outputs a display intensity such as an XYZ color system tristimulus value may be used, and the luminance may be derived from the output value of the sensor.
  • the lifetime is predicted based on the luminance change tendency as the characteristic value of the monitor 1, but the present invention is not limited to this.
  • life prediction based on a change tendency of RGB values output from the optical sensor 19 may be performed.
  • Life prediction based on this may be performed.
  • the tendency of the change in these characteristic values can be predicted in a similar manner by replacing the luminance value in the above description and the arithmetic expression with the RGB value or chromaticity.
  • life prediction based on the changing tendency of other characteristic values may be performed.
  • the characteristic value may be either a value detected by a sensor or the like or a value calculated from this value.
  • the life prediction program 90 is recorded on the optical disk 9 and the life prediction program 90 read from the optical disk 9 by the disk drive 36 is installed in the hard disk 32 of the terminal device 3. It is not limited to.
  • the terminal device 3 may download the life prediction program 90 from a server device or the like via a network such as the Internet and install it in the hard disk 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Liquid Crystal (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

表示装置の輝度の測定時の温度差を考慮して寿命予測を行うことができる寿命予測方法及び寿命予測装置を提供する。モニタ(1)の表示画面の輝度を光センサ(19)にて測定すると共に、表示画面周辺の温度を温度センサ(20)にて測定し、測定した輝度及び温度を対応づけて端末装置(3)が記憶しておく。モニタ(1)による測定を繰り返し行って得られた複数の輝度及び温度に基づき、端末装置(3)は、測定の際の温度が略一定であったと仮定した場合の輝度の変化の傾向を予測し、予測した変化の傾向に応じてモニタ(1)の寿命を予測する。端末装置(3)は、予測した輝度の変化傾向に基づいて、モニタ(1)の輝度が限界輝度に満たなくなる時期を算出し、この時期をモニタ(1)の寿命到達時期とすることができる。

Description

寿命予測方法、寿命予測プログラム及び寿命予測装置
 本発明は、表示装置の表示に係る特性値の変化を予測することによって、表示装置の寿命を予測する寿命予測方法、寿命予測プログラム及び寿命予測装置に関する。
 例えば液晶パネル及びバックライトを用いて画像表示を行う液晶表示装置では、使用を継続することによってバックライトの光量が低下していく。このため長期間に亘って液晶表示装置を使用し続けた場合、推奨される輝度でバックライトが発光することができない状態となる。このような状態となった場合、バックライトの交換又は表示装置自体の交換等を行う必要が生じる。これらの交換には少なからず費用が発生し、表示装置のユーザにとっての資産運用に関わるため、表示装置の寿命を予測することが求められていた。
 特許文献1においては、液晶パネルを介して発光するバックライトの最大光量、即ち最大輝度が予め定められた限界輝度に達しなくなることを寿命判断の基準とし、表示装置の輝度の測定結果及びレーマン式等に基づいて最大輝度が限界輝度となるまでの時間を算出する寿命予測システムが提案されている。
特許第4372733号公報
 特許文献1に記載の寿命予測システムはレーマン式に基づいて寿命を予測する構成であるが、この方法での寿命予測が当てはまらない表示装置及び使用環境等があり、正確な寿命予測を行うことができない場合があった。これは、表示装置の輝度の測定を行う際の周辺温度の影響が大きかった。例えば輝度の測定には光センサが用いられるが、光センサの測定結果は温度依存性が高いということがその要因として考えられる。また例えば表示装置の表示ムラが温度によって変動することがその要因として考えられる。更に、特許文献1に記載の寿命予測システムは、少なくとも2つの時点の輝度を測定するだけでよく、システム的に簡易な予測手法であるが、刻々と変化する環境に対してはなんら考慮されていない。例えば突発的に環境温度が変化した場合などに測定を行うと、寿命予測の傾向が例外的な測定結果に依存してしまい、予測の正確性が損なわれる虞があった。
 本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、表示装置の表示に係る特性値の測定時の温度差を考慮して寿命予測を行うことができる寿命予測方法、寿命予測プログラム及び寿命予測装置を提供することにある。
 本発明に係る寿命予測方法は、表示装置の表示に係る特性値に基づいて前記表示装置の寿命を予測する寿命予測方法であって、前記表示装置の特性値の測定を繰り返して行う特性値測定ステップと、該特性値測定ステップによる測定の際の前記表示装置の温度を測定する温度測定ステップと、測定した複数の特性値及び温度に基づき、特性値測定の際の温度が特定の温度であった場合の前記特性値の変化傾向を予測する予測ステップとを含むことを特徴とする。
 また、本発明に係る寿命予測方法は、測定した複数の特性値に基づき、特性値及び該特性値の測定時期の対応に関する近似直線又は近似曲線を導出する近似ステップと、該近似ステップにて導出した近似直線又は近似曲線、並びに、測定した複数の特性値及び温度に基づき、前記近似直線又は近似曲線を再導出する再近似ステップとを含み、前記予測ステップでは、前記再近似ステップにて導出した近似直線又は近似曲線に基づき特性値の変化傾向の予測を行うことを特徴とする。
 また、本発明に係る寿命予測方法は、前記近似ステップにて導出した近似直線又は近似曲線と前記特性値測定ステップにて測定した各特性値との誤差を算出する特性値誤差算出ステップと、特定の温度と前記温度測定ステップにて複数測定した温度との各差分を算出する温度差分算出ステップと、該温度差分算出ステップにて算出した複数の差分から最大温度差分を抽出する最大温度差分抽出ステップと、前記最大温度差分抽出ステップにて抽出した最大温度差分に対応する測定温度を測定した時期を特定する最大温度差分時期特定ステップと、該最大温度差分時期特定ステップにて特定した測定時期に対応する特性値について前記特性値誤差算出ステップにて算出した特性値誤差を抽出する特性値誤差抽出ステップと、前記最大温度差分抽出ステップにて抽出した最大温度差分及び前記特性値誤差抽出ステップにて抽出した特性値誤差に基づいて、前記特性値測定ステップにて測定した複数の特性値を補正する補正ステップとを含み、前記再近似ステップでは、前記補正ステップにて補正した特性値に基づき前記近似直線又は近似曲線の再導出を行うことを特徴とする。
 また、本発明に係る寿命予測方法は、前記再近似ステップが、前記特性値誤差算出ステップにより算出した誤差が所定条件を満たすまで近似直線又は近似曲線の導出を繰り返し行うことを特徴とする。
 また、本発明に係る寿命予測方法は、前記特定の温度が、前記温度測定ステップにて測定した複数の温度の平均温度であることを特徴とする。
 また、本発明に係る寿命予測方法は、前記特性値測定ステップが、センサを用いて前記表示装置の特性値を測定し、前記センサの校正時期を取得する校正時期取得ステップと、該校正時期取得ステップが取得した校正時期に基づき、測定した複数の特性値及び温度を複数に区分する区分ステップとを含み、前記予測ステップでは、前記区分ステップによる区分毎に予測を行うことを特徴とする。
 また、本発明に係る寿命予測方法は、前記表示装置が、カラーの画像を表示する表示装置であり、入力画像から出力画像への色変換を行うための変換用情報を有し、前記変換用情報の調整処理を行った時期を取得する調整時期取得ステップと、該調整時期取得ステップが取得した調整時期に基づき、測定した複数の特性値及び温度を複数に区分する区分ステップとを含み、前記予測ステップでは、前記区分ステップによる区分毎に予測を行うことを特徴とする。
 また、本発明に係る寿命予測方法は、前記予測ステップが前記区分毎に行った予測結果を統合する統合ステップを含むことを特徴とする。
 また、本発明に係る寿命予測プログラムは、コンピュータに、表示装置の表示に係る特性値に基づいて前記表示装置の寿命を予測させる寿命予測プログラムであって、前記コンピュータに、前記表示装置の特性値の測定、及び、該測定の際の前記表示装置の温度の測定を繰り返して行った測定値を取得させ、取得した複数の特性値及び温度に基づき、特性値測定の際の温度が特定の温度であった場合の前記特性値の変化傾向を予測させることを特徴とする。
 また、本発明に係る寿命予測装置は、表示装置の表示に係る特性値に基づいて前記表示装置の寿命を予測する寿命予測装置であって、前記表示画面の特性値の測定を繰り返して行った測定値を取得する特性値取得手段と、前記特性値の測定の際の前記表示装置の温度を測定した測定値を取得する温度取得手段と、取得した複数の特性値及び温度に基づき、特性値測定の際の温度が特定の温度であった場合の前記特性値の変化傾向を予測する予測手段とを備えることを特徴とする。
 本発明においては、表示装置の表示に係る特性値を測定すると共に、表示装置の温度を測定しておく。測定する特性値は、例えば表示装置の表示面で測定できる輝度若しくは色度等の表示強度、バックライト付近で測定できる輝度、又は、輝度若しくは色度等を推定し得るバックライトの制御量等のように、表示装置の寿命を予測し得る種々の値とすることができる。測定を繰り返して得られた複数の特性値及び温度に基づき、測定の際の温度が特定の温度であったと仮定した場合の特性値の変化の傾向を予測し、予測した変化の傾向に応じて表示装置の寿命を予測する。
 例えば表示装置の輝度又は色度等の表示強度を測定し、測定した表示強度及び温度に基づいて表示装置の表示強度の変化傾向を予測し、予測した変化傾向に基づいて表示強度が所定強度に満たなくなる時期を算出し、この時期を表示装置の寿命とすることができる。
 これにより表示装置の温度変化による特性値の測定結果の温度依存性を低減して表示装置の寿命予測を行うことが可能となる。
 また、本発明においては、特性値及び温度を測定すると共に、測定した時期に関する情報を記憶しておき、測定を繰り返すことにより得られた複数の特性値-測定時期の対応に関する近似直線又は近似曲線を導出する。更に、導出した近似直線又は近似曲線と、測定した特性値及び温度とに基づいて近似直線又は近似曲線の再導出を行う。これにより、近似直線又は近似曲線の精度を向上することができる。
 また、本発明においては、導出した近似線と測定した各特性値との誤差を算出する。また特定の温度(例えば平均温度など)と測定した温度との差分を算出し、算出した複数の差分から最大の差分を抽出する。最大温度差分に対応する温度を測定した時期を特定し、この測定時期に測定した特性値についての誤差を抽出する。抽出した誤差及び最大温度差分に基づいて、各特性値を補正し、補正した特性値に基づいて近似直線又は近似曲線の再導出を行う。これにより、最も温度差が大きい時期に測定した特性値の誤差を考慮して各特性値を補正することができ、温度補正がなされた特性値に基づいて表示装置の寿命予測を行うことができる。
 また、本発明においては、補正後の特性値を用いて、近似直線又は近似曲線の再導出を繰り返し行う。この繰り返しは、算出した誤差が所定条件を満たすまで行う。これにより近似直線又は近似曲線の導出を繰り返し行うことができ、更に例外的な特性値の影響を排除でき、表示装置の寿命予測の精度を高めることができる。
 また、本発明においては、特性値を検知するセンサを用いて、表示装置の特性値の測定を行う。センサの校正を行った場合、センサにより測定される特性値に変化が生じる可能性があるため、センサの校正時期を取得し、この校正時期を境として特性値の測定結果を複数に区分し、区分毎に特性値の変化を予測する。
 またカラー画像を表示する表示装置は、入力画像から出力画像へ画素値の色変換を行う際に用いるテーブルを有している。このテーブルの調整処理、いわゆるキャリブレーションを行った場合にも測定される特性値に変化が生じる可能性があるため、調整処理を行った時期を取得し、この調整時期を境として特性値の測定結果を複数に区分し、区分毎に特性値の変化を予測する。
 このようにして複数の区分について予測をそれぞれ行い、区分毎の予測結果を統合して表示装置の寿命を予測する。これによりセンサの校正又は色変換テーブルの調整処理等の影響による予測精度の低下を防止できる。
 本発明による場合は、表示装置の特性値及び温度を繰り返し測定し、測定した特性値及び温度に基づいて測定の際の温度が特定の温度であった場合の特性値の変化の傾向を予測し、予測した変化の傾向に応じて表示装置の寿命を予測することにより、温度変化による特性値の温度依存性を低減して表示装置の寿命予測を行うことができるため、表示装置の寿命を精度よく予測することができる。
本実施の形態に係る寿命予測システムのモニタの構成を示すブロック図である。 端末装置の構成を示すブロック図である。 端末装置による区分処理を説明するための模式図である。 端末装置による温度補正処理を説明するための模式図である。 端末装置による統合処理を説明するための模式図である。 端末装置による予測結果の表示例を示す模式図である。 モニタが行う測定処理の手順を示すフローチャートである。 端末装置が行う寿命予測処理の手順を示すフローチャートである。 端末装置による温度補正処理の手順を示すフローチャートである。 端末装置による温度補正処理の手順を示すフローチャートである。
 以下、本発明をその実施の形態を示す図面に基づき具体的に説明する。図1は、本実施の形態に係る寿命予測システムのモニタの構成を示すブロック図である。本実施の形態に係る寿命予測システムは、モニタ1及び端末装置3が画像信号用ケーブル及び通信ケーブル等を介して接続された構成である。本実施の形態に係る寿命予測システムでは、モニタ1が表示画面の輝度(特性値)及び温度の測定を行い、この測定結果を端末装置3が取得してモニタ1の寿命予測を行う。
 本実施の形態に係るモニタ1は、液晶パネル11を用いて画像表示を行ういわゆる液晶モニタである。モニタ1は、制御部10、液晶パネル11、パネル駆動部12、バックライト13、ライト駆動部14、画像信号入力部15、通信部16、操作部17、記憶部18、光センサ19及び温度センサ20等を備えて構成されている。
 制御部10は、CPU(Central Processing Unit)などの演算処理装置を用いて構成されている。制御部10は、記憶部18又は図示しないROM(Read Only Memory)等に記憶された制御プログラムを読み出して実行することにより、入力された画像信号に基づく液晶パネル11の駆動制御、及び、明るさ設定などに応じたバックライト13の駆動制御等を行う。また制御部10は、光センサ19による表示画面の輝度測定、温度センサ20による温度の測定、及び、これら測定結果の端末装置3への送信等の処理を行う。
 液晶パネル11は、複数の画素がマトリクス状に配され、各画素の透過率をパネル駆動部12からの駆動信号に応じて変化させることにより画像を表示する表示デバイスである。パネル駆動部12は、制御部10から与えられた入力画像に応じて、液晶パネル11を構成する各画素を駆動するための駆動信号を生成して出力する。
 バックライト13は、例えばLED(Light Emitting Diode)又はCCFL(Cold Cathode Fluorescent Lamp)等の光源を用いて構成され、液晶パネル11の背面側から光を照射する。バックライト13は、ライト駆動部14から与えられる駆動電圧又は駆動電流により発光する。ライト駆動部14は、制御部10からの制御信号に応じて駆動電圧又は駆動電流を生成し、バックライト13へ出力する。制御部10は、例えば操作部17にて受け付けた明るさ設定などに応じてバックライト13の駆動量を決定し、決定した駆動量に応じた制御信号をライト駆動部14へ出力する。制御部10からライト駆動部14への制御信号は、例えばPWM(Pulse Width Modulation)方式の信号を用いることができる。
 画像信号入力部15は、外部機器を接続するための接続端子を有し、端末装置3が画像信号用ケーブルを介して接続される。端末装置3は画像信号用ケーブルを介してアナログ又はデジタルの画像信号をモニタ1へ出力する。端末装置3から画像信号入力部15へ入力された画像信号は、モニタ1の制御部10へ与えられ、制御部10にて種々の画像処理を施してパネル駆動部12へ与える。これにより、端末装置から入力された画像信号に基づく画像が液晶パネル11に表示される。
 通信部16は、外部機器を接続するための接続端子を有し、端末装置3が通信ケーブルを介して接続される。通信部16は、例えばUSB(Universal Serial Bus)などの規格による通信を端末装置3との間で行う。これによりモニタ1は、端末装置3に対する種々の情報送信を行うことができる。また端末装置3は、モニタ1に対して制御情報などを送信することにより、モニタ1の動作制御などを行うことが可能となる。
 操作部17は、モニタ1の筐体の正面周縁部又は側面等に配された一又は複数のスイッチなどを有し、これらのスイッチによってユーザの操作を受け付け、受け付けた操作内容を制御部10へ通知する。例えばユーザは画像表示に係る明るさ設定又はカラーバランス設定の変更操作を操作部17にて行うことができる。制御部10は、操作部17にて受け付けた設定内容(設定値)を記憶部18に記憶すると共に、この設定値に応じてモニタ1内の各部の動作を制御する。例えば制御部10は、ユーザによる明るさ設定に応じてバックライト13の駆動量を決定する。
 記憶部18は、例えばEEPROM(Electrically Erasable Programmable ROM)又はフラッシュメモリ等の不揮発性のメモリ素子を用いて構成されている。制御部10は、記憶部18に対して種々の情報の読み出し及び書き込みを行うことができる。本実施の形態において記憶部18は、操作部17にて受け付けた種々の設定値、並びに、光センサ19及び温度センサ20による測定結果等の情報を記憶している。
 光センサ19は、液晶パネル11に画像が表示されている際の輝度を測定し、測定結果を制御部10へ与える。光センサ19は、モニタ1の筐体の液晶パネル11を囲む枠状部分などに設けられる。例えば光センサ19は、アクチュエータ又はモータ等の動作に応じて、筐体内から液晶パネル11の表示面上へ出入動作するように構成し、制御部10が輝度測定を行う際に光センサ19を表示面上に移動させて測定を行う構成とすることができる。また例えば光センサ19は、信号線などを介してモニタ1に取り外し可能に接続される構成とし、輝度測定を行う際にユーザが光センサ19を液晶パネル11の表示面上に装着し、信号線などをモニタ1に接続する構成であってもよい。なお本実施の形態において光センサ19は、モニタ1の特性値として輝度の測定を行う構成とするが、これに限るものではなく、例えば色度などのその他の特性値を測定する構成であってよい。
 なお、光センサ19は液晶パネル11の表示面上に設けることが理想的であるが、表示面以外の液晶パネル11の近傍、又は、バックライト13の近傍等に光センサ19を設け、光センサ19の測定輝度から液晶パネル11の表示面での輝度を推定してもよい。また液晶パネル11の表示面での輝度を、バックライト13の駆動量(自発光型の表示パネルであれば、その駆動量)から推定してもよい。例えば、本願発明者による特許3974630による推定方法を採用することができる。これら推定により輝度を取得する構成とした場合、推定した輝度を記憶しておいてもよく、又は、推定に用いられる測定値を記憶しておき、記憶した測定値を必要に応じて読み出して輝度を推定してもよい。
 温度センサ20は、例えば液晶パネル11の周辺に設けられる。なお本実施の形態において温度センサ20は、光センサ19の近傍に配されることが好ましい。温度センサ20は、温度を測定して検知結果を制御部10へ与える。制御部10は、光センサ19にて測定した輝度値と、輝度測定を行った際に温度センサ20が測定した温度とを対応づけて記憶部18に記憶する。
 なお、温度センサ20は、光センサ19から離れた場所に設置し、その測定温度から光センサ19近傍の温度を推定してもよい。例えば温度センサ20は、モニタ1の筐体上又はモニタ1に接続する端末装置3等に設けてもよい。又は、本願出願人による特許4673772の技術を採用し、バックライト13の駆動量から温度を推定してもよい。これら推定により温度を取得する構成とした場合、推定した温度を記憶しておいてもよく、又は、推定に用いられる測定値を記憶しておき、記憶した測定値を必要に応じて読み出して温度を推定してもよい。
 本実施の形態においてモニタ1の制御部10は、例えばモニタ1の稼働時間をカウントするタイマを内蔵しており、稼働時間が100時間などの所定時間に達する毎に、光センサ19による輝度測定を行う。このとき制御部10は、液晶パネル11の一部又は全部に所定画像(例えば白色画像など)を表示し、所定画像が表示された状態での輝度を光センサ19により測定する。所定画像の表示は、光センサ19による輝度の測定範囲のみであってよい。
 また制御部10は、光センサ19にて輝度測定を行う際に、温度センサ20による温度測定を行い、測定により得られた輝度値及び温度を記憶部18に対応付けて記憶しておく。更に制御部10は、測定した輝度値及び温度に対応付けて、測定を行った時期情報及び測定を行った際の明るさ設定値を記憶部18に記憶しておく。制御部10は、通信部16にて端末装置3との通信が可能となった際に、これらの情報を記憶部18から読み出して端末装置3へ送信する。なお制御部10は、測定を行った際の明るさ設定値に代えて、この明るさ設定値に対応するバックライト13の駆動量(例えば制御部10からライト駆動部14へ与えるPWMの制御信号のデューティ比など)を記憶及び送信してもよい。
 また本実施の形態においては、光センサ19は測定結果としてRGBの値を出力し、このRGBの値を制御部10がXYZの値に変換し、変換したY値を測定輝度とする。この変換を行うために制御部10は変換テーブル、変換行列又は変換式等の変換用情報を用いるが、この変換用情報は記憶部18に記憶されている。モニタ1では光センサ19の校正を行うことができ、校正が行われた場合には記憶部18の変換用情報の内容が修正される。本実施の形態においては、測定した輝度値及び温度等を端末装置3へ送信する際に、記憶部18に記憶された変換用情報を共に送信する。端末装置3は、前回に送信された変換用情報と今回の変換用情報とを比較することにより、光センサ19の校正が行われたか否かを判断することができる。ただしモニタ1が光センサ19の校正を行った時期情報を記憶し、これを端末装置3へ送信する構成としてもよい。なお、前述のように輝度を推定により取得する構成とした場合には、推定演算に用いられる相関値(補正係数など)を再調整した時点を構成時期とすることができる。
 また本実施の形態においては、画像信号入力部15に端末装置3から入力された画像信号に対して制御部10が種々の画像処理を行って表示画像を生成するが、制御部10が行う画像処理には入力画像の色変換処理が含まれ、この処理に用いられる変換テーブル、変換行列又は変換式等の変換用情報が記憶部18に記憶されている。モニタ1ではこの変換用情報の調整処理、いわゆるキャリブレーションを行うことができ、キャリブレーションが行われた場合には変換用情報の内容が修正される。本実施の形態においては、測定した輝度値及び温度等を端末装置3へ送信する際に、記憶部18に記憶された色変換のための変換用情報を共に送信する。端末装置3は、前回に送信された変換用情報と今回の変換用情報とを比較することにより、モニタ1のキャリブレーションが行われたか否かを判断することができる。ただしモニタ1がキャリブレーションを行った時期情報を記憶し、これを端末装置3へ送信する構成としてもよい。
 また本実施の形態においては、モニタ1のバックライト13は交換することができる。モニタ1はバックライト13を交換した時期情報を記憶部18に記憶している。例えばモニタ1はバックライト13の取り外しを検知した場合に時期情報を記憶部18に記憶する構成とすることができる。また例えばバックライト13の交換を行った作業者が、操作部17にて交換時期情報を入力する構成としてもよい。本実施の形態においては、測定した輝度値及び温度等を端末装置3へ送信する際に、記憶部18に記憶されたバックライト13の交換時期情報を共に送信する。
 図2は、端末装置3の構成を示すブロック図である。端末装置3は、処理部30、メモリ31、ハードディスク32、操作部33、画像出力部34、通信部35及びディスクドライブ36等を備えて構成されている。端末装置3は、PC(Personal Computer)などの汎用のコンピュータを用いて実現され得るものである。端末装置3の処理部30は、CPUなどの演算処理装置を用いて構成され、ハードディスク32に記憶されたプログラムを読み出して実行することにより、種々の演算処理を行う。本実施の形態において処理部30は、ハードディスク32に記憶された寿命予測プログラム90を読み出して実行することにより、モニタ1から取得した測定輝度及び測定温度等の情報に基づいて、モニタ1の輝度の変化を予測し、モニタ1の寿命を予測する処理を行う。
 メモリ31は、SRAM(Static Random Access Memory)又はDRAM(Dynamic Random Access Memory)等のメモリ素子で構成され、処理部30の演算処理に伴って生成された種々のデータを一時的に記憶する。ハードディスク32は、磁気ディスク装置などを用いて構成され、処理部30が実行する種々のプログラム及びこの実行に必要な種々のデータを記憶している。本実施の形態においては、ハードディスク32には寿命予測プログラム90が記憶されている。操作部33は、マウス及びキーボード等の装置を用いて構成されるものであり、ユーザの操作を受け付けて処理部30へ操作内容を通知する。画像出力部34は、処理部30が生成した表示用の画像を、モニタ1に適したアナログ又はデジタルの画像信号に変換し、変換した画像信号をモニタ1へ出力する。通信部35は、例えばUSBの規格の通信ケーブルを介してモニタ1との通信を行う。ディスクドライブ36は、CD(Compact Disc)又はDVD(Digital Versatile Disc)等の光ディスク9が装着され、光ディスク9に記録されたプログラム及びデータを読み出す。本実施の形態において端末装置3は、光ディスク9に記録された寿命予測プログラム90をディスクドライブ36にて読み出し、ハードディスク32にインストールする。
 本実施の形態において端末装置3の処理部30は、例えばモニタ1にて光センサ19による輝度測定及び温度センサ20による温度測定が行われた場合に、モニタ1から測定結果を取得する処理を行う。例えば処理部30は、端末装置3の起動時などの所定タイミングにてモニタ1との通信を行い、輝度測定及び温度測定が行われており、且つ、その測定結果を未取得である場合に測定結果の取得を行う構成とすることができる。また例えばモニタ1が輝度測定及び温度測定を行った後に端末装置3へ測定完了の通知を与え、これに応じて端末装置3の処理部30が測定結果の取得を行う構成とすることができる。また例えばモニタ1が自発的に輝度測定及び温度測定を行うのではなく、端末装置3からの指示に応じて輝度測定を行う構成としてもよく、この場合には端末装置3の処理部30が所定タイミングで測定指示をモニタ1に与え、その応答として測定結果を取得してもよい。処理部30は、輝度測定及び温度測定の測定結果と、これに付随する種々の情報とをモニタ1から取得し、ハードディスク32に記憶する。
 端末装置3がモニタ1から取得する情報には、例えば以下のような情報が含まれる。
 ・情報取得日時
 ・モニタ1の稼働時間
 ・測定輝度値
 ・測定温度
 ・測定時期
 ・バックライト13の交換時期
 ・最大輝度算出用情報
 ・明るさ設定値(又は、バックライト13の駆動量)
 ・光センサ19の変換用情報(又は、光センサ19の校正時期)
 ・色変換用情報(又は、キャリブレーション時期)
 なお日時、時期又は時間等の情報は、モニタ1に備えられたタイマ機能又は時計機能等により計時されるものである。モニタ1の制御部10は、モニタ1が電源オン状態の時間又は画像表示を行っている(バックライト13が点灯している)時間を計時し、この通算時間をモニタ1の稼働時間とする。輝度測定及び温度測定の測定時期は、この稼働時間に対する相対的な時間として表される。バックライト13の交換時期、光センサ19の校正時期及びキャリブレーション時期等も同様である。
 端末装置3の処理部30は、適宜のタイミングでモニタ1から情報を取得し、取得した情報をハードディスク32に蓄積していく。ただし処理部30は、モニタ1にてバックライト13の交換が行われた場合、交換以前にモニタ1から取得した情報をハードディスク32から削除してもよい。
 なおモニタ1の光センサ19による輝度測定は、ユーザが設定した明るさ設定に基づいてバックライト13が駆動されている状態で行われる。このため端末装置3の処理部30は、モニタ1から取得した測定輝度値と、最大輝度算出用情報と、明るさ設定値とに基づいて、モニタ1の最大輝度値を算出する処理を行う。最大輝度は、以下の(1)式に基づいて算出することができる。
Figure JPOXMLDOC01-appb-M000001
 なお(1)式において係数a及びbは、測定輝度から最大輝度を算出するための係数であり、上記の最大輝度算出用情報である。この係数a及びbは、モニタ1毎に異なる値が用いられ、例えばモニタ1の製造工程などにおいて、明るさ設定に対する輝度の変化特性を測定することにより予め算出され、各モニタ1の記憶部18に記憶される。端末装置3の処理部30は、(1)式に基づいて測定輝度値を最大輝度に変換し、最大輝度値をハードディスク32に記憶してよく、この場合には測定輝度値、最大輝度算出用情報及び明るさ設定はハードディスク32に記憶しなくてもよい。又は、端末装置3の処理部30は、測定輝度値、最大輝度算出用情報及び明るさ設定をハードディスク32に記憶しておき、後述の寿命予測を行う際に最大輝度の算出を行う構成としてもよい。更には、モニタ1の制御部10が測定輝度値から最大輝度を算出して記憶部18に記憶しておき、端末装置3がモニタ1から最大輝度を取得する構成としてもよい。なお、最大輝度の取得方法は上記のものに限定されず、例えば明るさ設定を最大に変更して輝度測定を行うなど、その他の方法で最大輝度を取得してもよい。
 端末装置3の処理部30は、例えば操作部33に対するユーザの操作などによりモニタ1の寿命予測を行う指示が与えられた場合に、以下の寿命予測処理を行う。まず処理部30は、ハードディスク32に記憶された情報の読み出しを行う。このときに処理部30は、バックライト13の交換時期を調べ、この交換時期以降の測定結果に関する情報のみを読み出せばよい。
 次いで処理部30は、読み出した情報に含まれる光センサ19の変換用情報を調べ、変換用情報の変化の有無に応じて光センサ19の校正が行われたか否かを判定する。校正が行われていると判定した場合、処理部30はその校正が行われた時期を特定する。なおモニタ1から光センサ19の校正時期の情報が得られる場合、処理部30は校正時期を特定する処理を行う必要はない。
 同様に処理部30は、読み出した情報に含まれる色変換用情報を調べ、色変換用情報の変化の有無に応じてキャリブレーションが行われたか否かを判定する。キャリブレーションが行われていると判定した場合、処理部30はそのキャリブレーションが行われた時期を特定する。なおモニタ1からキャリブレーション時期の情報が得られる場合、処理部30はキャリブレーション時期を特定する処理を行う必要はない。
 処理部30は、特定した校正時期及びキャリブレーション時期に基づき、モニタ1の最大輝度値及び測定温度等の情報を複数のグループに区分する処理を行う。図3は、端末装置3による区分処理を説明するための模式図である。本図は横軸をモニタ1の稼働時間としたタイミングチャートであり、キャリブレーション時期及び光センサ19の校正時期を矢印で示してある。図示の例では、バックライト13の交換は行われておらず、モニタ1の稼働開始から2回のキャリブレーションと1回の光センサ19の校正とがこの順で行われている。
 端末装置3の処理部30は、例えばモニタ1の稼働開始から1回目のキャリブレーションまでを第1区分とし、1回目のキャリブレーションから2回目のキャリブレーションまでを第2区分とし、2回目のキャリブレーションから1回目の光センサ19の校正までを第3区分とし、1回目の光センサ19の校正以降を第4区分としている。即ち処理部30は、キャリブレーション又は光センサ19の校正のいずれかが行われたタイミングで区分を行っている。
 次いで処理部30は、上記の区分毎にモニタ1の最大輝度の温度補正処理を行う。以下、1つの区分における温度補正処理を説明する。図4は、端末装置3による温度補正処理を説明するための模式図である。図4の上段には、稼働時間と測定温度との対応をグラフで示してあり、グラフ中には測定温度の平均を横実線で示してある。処理部30は、モニタ1にて測定された温度の平均を算出し、各測定温度と平均温度との差分をそれぞれ算出する。処理部30は、算出した複数の差分値を比較して最大差分値(図中にΔTmp(T’)で示す)を抽出すると共に、この最大差分値に対応する温度を測定した測定時期T’を特定する。
 また図4の下段には、稼働時間と測定輝度から算出した最大輝度との対応をグラフで示してある。処理部30は、ハードディスク32に記憶された複数組の最大輝度-測定時期に基づいて線形近似直線を導出する。図4下段には、導出した線形近似直線を実線で示してある。次いで処理部30は、上記の測定温度に基づいて特定した最大差分値に対応する測定時期T’に基づき、この測定時期T’に測定された輝度値に対応する最大輝度値と、導出した線形近似直線との誤差(図中にΔG(T’)で示す)を算出する。
 処理部30は、最大差分値ΔTmp(T’)と、対応する最大輝度値の誤差ΔG(T’)とに基づき、温度補正係数F=ΔG(T’)/ΔTmp(T’)を算出して記憶する。処理部30は、この温度補正係数F及び下記の(2)式を用いて、最大輝度値の温度補正を行う。なお(2)式において、G(T)は測定時期Tにおける最大輝度であり、ΔTmp(T)は測定時期Tにおける測定温度と平均温度との差分であり、G’(T)は測定時期Tにおける最大輝度を温度補正した値である。
Figure JPOXMLDOC01-appb-M000002
 処理部30は、(2)式を用いた温度補正を行うことによって得られた補正後の最大輝度-測定時期の複数組に基づいて線形近似直線を導出する。処理部30は、補正後の複数の最大輝度について、導出した線形近似直線との誤差をそれぞれ算出する。処理部30は、算出した複数の誤差について、二乗平均平方根を算出して記憶しておく。なお処理部30は、算出した二乗平均平方根が閾値未満であるなど、最大輝度値の誤差が十分に小さいと判断できる場合には、温度補正処理を終了してよい。
 処理部30は、温度補正係数Fの値を変更し、最大輝度の温度補正、線形近似直線の導出、誤差の算出及び二乗平均平方根の算出を繰り返し行う。このとき処理部30は、例えば温度補正係数Fに対して±1%程度の値を増減することにより、温度補正係数Fの変更を行う。処理部30は、算出される二乗平均平方根が小さくなるように温度補正係数Fの値を変更する。
 処理部30は、上記の処理の繰り返しにより算出される二乗平均平方根の値を比較し、前回の二乗平均平方根の値より今回の二乗平均平方根の値が大きい場合、今回の最大輝度の温度補正は採用せず、前回の最大輝度の温度補正の結果を最終的な補正結果として採用し、温度補正処理を終了する。
 このようにして各区分について最大輝度値の温度補正を行った後、処理部30は、区分毎の温度補正結果を統合する処理を行う。図5は、端末装置3による統合処理を説明するための模式図である。図5Aには、区分毎に最大輝度の温度補正を行った結果として得られる複数の線形近似直線の一例を図示してある。本例では測定時期T1~T2の第1区分、測定時期T2~T3の第2区分、測定時期T3~T4の第3区分に分けて最大輝度値の温度補正を行っている。
 処理部30は、下記の(3)式及び(4)式を用いて統合処理を行う。なお(3)式は、第i区分と第j区分とを統合する場合に、第i区分の最初の測定時期をTiとし、第j区分の最初の測定時期をTjとし、Tiに対応する最大輝度値をG(Ti)とし、Tjに対応する最大輝度値をG(Tj)として係数Cを算出するための演算式である。算出される係数Cは、図5Bに示すように、第i区分の線形近似直線を第j区分の線形近似直線に接続すべく、第i区分の線形近似直線の傾きを変更した場合の変更後の傾きを表す値である。また(4)式は、第i区分の最大輝度-測定時間の組(G(T)、T)を、第i区分の線形近似直線の傾き変更に適合させるべく、その最大輝度値G(T)を変換するための演算式である。変換後の最大輝度値をG’(T)としてある。
Figure JPOXMLDOC01-appb-M000003
 図5に示す例において、第2区分及び第3区分を統合する場合について説明する。処理部30は、第2区分の線形近似直線に基づいて最初の測定時期T2に対応する最大輝度G(T2)を算出し、同様に第3区分の線形近似直線に基づいて最初の測定時期T3に対応する最大輝度G(T3)を算出し、(3)式に基づいて係数Cを算出する。次いで処理部30は、算出した係数C及び(4)式に基づき、第2区分の最大輝度値を変換する処理を行う。これにより、図5Bに示すように、第2区分の線形近似直線と第3区分の線形近似直線とが接続された状態となる。
 処理部30は、複数の区分について同様の統合処理を行い、全ての区分の線形近似直線が接続された状態とする。ただしこの状態では複数の線形近似直線が折れ線状に接続されているため、処理部30は、全区分の最大輝度値-測定時期に基づいて1つの線形近似直線を導出する。これにより導出された1つの線形近似直線が、モニタ1の最大輝度値の変化傾向を、測定時の温度差を考慮して予測した最終的な予想結果となる。
 なお、上記のような区分を設ける要因には、光センサ19の校正時期及びキャリブレーションの実施時期の2つの要因がある。本実施の形態に係る端末装置3の処理部30は、複数の区分の統合を行う際に、まずキャリブレーション時期によって区分されたものを優先して統合し線形近似直線の導出を行う。次いで処理部30は、光センサ19の校正時期によって区分されたものを統合し、最終的な1つの線形近似直線を導出する。
 統合処理により1つの線形近似直線を導出した処理部30は、この線形近似直線に基づいて、モニタ1の最大輝度が所定の限界輝度に満たなくなる時期(限界稼働時間)を算出する。算出した限界稼働時間から現時点の稼働時間を引くことによって、処理部30は、モニタ1の残りの稼働時間、即ち寿命を算出することができる。また処理部30は、モニタ1の1日の平均稼働時間などに基づいて、限界稼働時間に達することが予測される年月日を算出してもよい。
 また処理部30は、モニタ1について予測した限界輝度の変化傾向及び寿命等の情報を、モニタ1に表示する。図6は、端末装置3による予測結果の表示例を示す模式図である。端末装置3の処理部30は、縦軸をモニタ1の輝度(最大輝度)とし、横軸をモニタ1の稼働時間としたグラフに、予測した最大輝度の変化傾向を示す直線を表示した画像を、予測結果としてモニタ1に表示する。このグラフに表示される直線は、上記の統合処理によって得られた最終的な1つの線形近似直線である。また処理部30は、限界輝度を示す水平線(図中の一点鎖線)を表示し、この水平線と最大輝度の変化傾向を示す直線との交点に対応する稼働時間を、モニタ1の寿命に達する時間とする。処理部30は、グラフの時間軸に対して、現時点を示す矢印などのマークと、現時点の日付及び稼働時間等の情報とを表示する。また処理部30は、モニタ1の寿命に到達する時間に対して、予測寿命の文字列などと、その稼働時間及び予測される到達日等の情報とを表示する。
 なお限界輝度値は、モニタ1に対して予め設定された値であってもよいが、モニタ1のユーザが任意に設定した値であってもよい。また図示の例では、モニタ1の最大輝度の変化傾向を直線で表示しているが、予測の誤差を考慮した帯として表示してもよい。この場合、例えば予測した線形近似直線に対して±20%程度を誤差範囲として帯状に表示するなどの方法が考え得る。また誤差範囲は一定でなくてよく、実際の測定値のバラツキなどを算出し、これに基づいて幅を決定してよい。例えば、線形近似直線と最大輝度との誤差の最大値を誤差範囲に設定してもよい。
 図7は、モニタ1が行う測定処理の手順を示すフローチャートである。モニタ1の制御部10は、前回の輝度測定からの経過時間をタイマなどにて計時しており、前回の輝度測定から所定時間が経過したか否かを判定する(ステップS1)。前回の輝度測定から所定時間が経過している場合(S1:YES)、制御部10は、所定の画像を表示するなどの測定準備を行って、光センサ19による輝度測定を行う(ステップS2)。また制御部10は、温度センサ20にて温度測定を行う(ステップS3)。制御部10は、測定結果である輝度値及び温度を記憶部18に記憶して(ステップS4)、ステップS6へ処理を進める。なおステップS4において制御部10は、測定結果である輝度値及び温度と共に、測定を行った際の明るさ設定、及び、測定を行った時期等の情報を記憶部18に記憶する。
 また前回の輝度測定から所定時間が経過していない場合(S1:NO)、制御部10は、記憶部18に未送信の測定結果が記憶されているか否かを判定する(ステップS5)。未送信の測定結果が記憶されていない場合(S5:NO)、制御部10は、ステップS1へ処理を戻す。未送信の測定結果が記憶されている場合(S5:YES)、制御部10は、ステップS6へ処理を進める。
 次いで制御部10は、通信部16にて端末装置3との通信が可能であるか否かを判定する(ステップS6)。端末装置3との通信が不可能である場合(S6:NO)、制御部10は、ステップS1へ処理を戻す。端末装置3との通信が可能である場合(S6:YES)、制御部10は、記憶部18に記憶した測定結果を、測定の際の明るさ設定及び日時等の情報と共に、通信部16にて端末装置3へ送信し(ステップS7)、ステップS1へ処理を戻す。
 図8は、端末装置3が行う寿命予測処理の手順を示すフローチャートである。端末装置3の処理部30は、通信部35にてモニタ1から輝度及び温度の測定結果を受信したか否かを判定する(ステップS21)。測定結果を受信した場合(S21:YES)、処理部30は、受信した測定輝度と、測定結果と共にモニタ1から送信される最大輝度算出用情報(係数a及びb)と、(1)式とに基づいて、各測定輝度に対応する最大輝度値を算出する(ステップS22)。処理部30は、受信した測定結果及び算出した最大輝度をハードディスク32に記憶し(ステップS23)、ステップS21へ処理を戻す。また測定結果を受信していない場合(S21:NO)、処理部30は、モニタ1の寿命予測を行う指示を操作部33にて受け付けたか否かを判定する(ステップS24)。寿命予測の指示を受け付けていない場合(S24:NO)、処理部30は、ステップS21へ処理を戻す。
 モニタ1の寿命予測を行う指示を受け付けた場合(S24:YES)、処理部30は、ハードディスク32に記憶した情報から、モニタ1の光センサ19の校正時期及びキャリブレーション時期を取得し(ステップS25)、取得した時期に応じて測定結果を区分する処理を行う(ステップS26)。次いで処理部30は、変数iの値を1に設定する(ステップS27)。なお変数iは、処理部30内のレジスタ又はメモリ等により実現されるものであり、温度補正処理の処理対象とする区分を判別するための値が格納される。
 処理部30は、ハードディスク32に記憶した情報から、第i区分の最大輝度、測定温度及び測定時期等の情報を読み出す(ステップS28)。処理部30は、読み出した情報に基づき、第i区分に関する温度補正処理を行う(ステップS29)。温度補正処理の終了後、処理部30は、全区分について処理を終了したか否かを判定する(ステップS30)。全区分について処理を終了していない場合(S30:NO)、処理部30は、変数iに1を加算し(ステップS31)、ステップS28へ処理を戻して、次の区分について温度補正処理を行う。
 全区分について温度補正処理を終了した場合(S30:YES)、処理部30は、各区分の最大輝度値の変化傾向を統合する統合処理を行う(ステップS32)。統合処理の終了後、処理部30は、統合処理により得られた線形近似直線と、設定された限界輝度とに基づいて、モニタ1の寿命を予測する処理を行い(ステップS33)、予測結果をモニタ1に表示して(ステップS34)、処理を終了する。
 図9及び図10は、端末装置3による温度補正処理の手順を示すフローチャートであり、図8のフローチャートのステップS29にて行う処理である。端末装置3の処理部30は、処理対象の区分について測定温度及び測定時期の情報を取得する(ステップS41)。処理部30は、取得した情報に基づいて平均温度を算出し(ステップS42)、算出した平均温度と各測定温度との差分を算出する(ステップS43)。処理部30は、算出した複数の差分からその値が最大となる最大差分を特定すると共に(ステップS44)、最大差分に対応する測定時期T’を特定する(ステップS45)。
 また処理部30は、処理対象の区分について最大輝度値及び測定時期の情報を取得する(ステップS46)。処理部30は、取得した情報に基づいて、最大輝度値及び測定時期の対応関係について線形近似直線を導出し(ステップS47)、導出した線形近似直線と各最大輝度値との誤差を算出する(ステップS48)。次いで処理部30は、算出した複数の誤差の中から、ステップS45にて特定した測定時期T’に対応する誤差を取得する(ステップS49)。処理部30は、ステップS44にて特定した温度の最大差分ΔTmp(T’)と、ステップS49にて取得した誤差ΔG(T’)とに基づいて、補正係数F=ΔG(T’)/ΔTmp(T’)を算出する(ステップS50)。
 次いで処理部30は、算出した補正係数Fと、上述の(2)式とに基づいて、最大輝度値の補正を行う(ステップS51)。処理部30は、補正後の最大輝度値-測定時期の対応関係について線形近似直線を導出し(ステップS52)、導出した線形近似直線と補正後の各最大輝度値との誤差を算出する(ステップS53)。処理部30は、算出した複数の誤差について二乗平均平方根を算出し(ステップS54)、算出した二乗平均平方根はメモリなどに記憶しておく。
 処理部30は、前回の二乗平均平方根が記憶されているか否かを判定し(ステップS55)、記憶されている場合には(S55:YES)、前回の二乗平均平方根が今回の二乗平均平方根より小さいか否かを更に判定する(ステップS56)。前回の二乗平均平方根が記憶されていない場合には(S55:NO)、又は、前回の二乗平均平方根が今回の二乗平均平方根より大きい場合(S56:NO)、処理部30は、温度補正係数Fの値を適宜に変更して(ステップS57)、ステップS51へ処理を戻し、最大輝度値の補正を繰り返し行う。
 前回の二乗平均平方根が今回の二乗平均平方根より小さい場合(S56:YES)、処理部30は、前回の最大輝度値の補正結果を、最終的な補正結果として採用し(ステップS58)、温度補正処理を終了する。
 以上の構成の本実施の形態に係る寿命予測システムは、モニタ1の表示画面の輝度(特性値)を光センサ19にて測定すると共に、表示画面周辺の温度を温度センサ20にて測定し、測定した輝度及び温度を対応づけて端末装置3がハードディスク32に記憶しておく。モニタ1による測定を繰り返し行って得られた複数の輝度及び温度に基づき、端末装置3は、測定の際の温度が略一定であったと仮定した場合の輝度の変化の傾向を予測し、予測した変化の傾向に応じてモニタ1の寿命を予測する。端末装置3は、予測した輝度の変化傾向に基づいて、モニタ1の輝度が限界輝度に満たなくなる時期を算出し、この時期をモニタ1の寿命到達時期とすることができる。これらにより端末装置3は、周辺温度による輝度の測定結果の温度依存性を低減してモニタ1の寿命予測を行うことができるため、モニタ1の寿命を精度よく予測することができる。
 また、繰り返しの測定により得られた複数の測定温度に基づいて平均温度を決定し、平均温度と各測定温度との差分を算出し、複数の差分から最大差分を算出する。モニタ1の輝度の変化傾向の予測を温度の最大差分に基づいて行うことにより、最も温度差が大きいときの測定結果を考慮してモニタ1の寿命予測を行うことができる。なお、平均温度ではなく、所定の温度(例えば30℃など)を予め定めておき、この所定温度と測定温度との差分を用いて処理を行ってもよい。また、差分を用いるのではなく、平均温度に対する測定温度の比率などを用いて処理を行ってもよい。
 また端末装置3は、モニタ1の輝度及び温度の測定結果と共にこの測定を行った測定時期を記憶しておく。端末装置3は、繰り返しの測定により得られた複数の輝度-測定時期の対応に関する線形近似直線を導出し、導出した線形近似直線と各輝度の測定結果との誤差を算出する。端末装置3は、測定温度と平均温度との最大差分に対応する測定温度を測定した時期を特定し、この測定時期に対応する輝度の誤差を抽出して、温度の最大差分及び輝度の誤差に基づいて温度補正係数Fを算出し、温度補正係数F及び(2)式に基づいて輝度の温度補正を行う。端末装置3は、温度補正後の輝度に基づいてモニタ1の輝度の変化傾向を予測する。これにより、最も温度差が大きい測定時期に測定した輝度の誤差を考慮して測定結果を補正することができ、温度補正された輝度に基づいてモニタ1の寿命予測を行うことができる。
 また端末装置3は、温度補正後の輝度に対して、線形近似直線の導出、誤差の算出及び輝度の補正を繰り返して行う。この繰り返しは、算出した誤差が所定条件を満たすまで行う。所定条件は、例えば算出した複数の誤差について二乗平均平方根を算出し、繰り返しの処理において前回に算出した二乗平均平方根より今回に算出した二乗平均平方根が大きい場合に繰り返しを終了するという条件を採用することができる。また例えば算出した二乗平均平方根が閾値未満の場合に繰り返しを終了する条件を採用してもよく、その他の条件を採用してもよい。温度補正を繰り返し行うことによって、モニタ1の寿命予測の精度を高めることができる。複数の測定情報に対して線形近似直線のような統計的解析を繰り返し行うことによって、突発的な環境温度の変化により寿命予測の精度が低下するという問題が発生することを抑制できる。なお本実施の形態においては線形近似直線を導出する構成としたが、これに限るものではなく、例えばレーマン式のような曲線を採用し、線形近似直線に代えて線形近似曲線を導出して寿命予測を行う構成としてもよい。
 また端末装置3は、モニタ1の光センサ19の校正時期及びキャリブレーション時期を取得し、これらの時期を境として輝度及び温度の測定結果を複数に区分し、区分毎に輝度の温度補正処理を行う。端末装置3は、区分毎に温度補正を行った輝度を統合し、統合された輝度の変化の傾向に基づいてモニタ1の寿命を予測する。これにより、光センサ19の校正又はキャリブレーション等の影響による予測精度の低下を防止できる。
 また端末装置は、モニタ1にて測定した輝度と、測定を行った際のモニタ1の明るさ設定と、測定輝度から最大輝度を算出するための情報とをモニタ1から取得し、測定輝度を最大輝度に変換して変化傾向を予測する。これにより、モニタ1にて最大輝度での測定を行うことなく、端末装置3が最大輝度の変化傾向を予測することができる。
 なお本実施の形態においては、モニタ1は液晶パネル11を用いて表示を行う液晶表示装置としたが、これに限るものではなく、例えばPDP(Plasma Display Panel)などで表示を行う表示装置であってよい。またモニタ1及び端末装置3を別体の装置としたが、これに限るものではなく、例えばノートパソコン又はタブレット端末等のように、モニタ及び端末装置が一体となった構成であってもよい。またモニタ1が輝度を測定するための光センサ19を備える構成としたが、これに限るものではなく、例えば端末装置3が光センサ19を備える構成であってよく、また例えばその他の装置が光センサ19を備えて端末装置3がこの装置から測定結果を取得する構成としてもよい。また光センサ19が輝度測定を行った際の明るさ設定値をモニタ1から端末装置3へ送信する構成としたが、光センサ19による測定を最大輝度設定で行う構成とした場合、端末装置3へ明るさ設定を送信する必要はなく、(1)式による最大輝度算出の演算を行う必要はない。
 また、本実施の形態においては、RGB表色系のRGB値を出力する光センサ19を用い、光センサ10の出力値から輝度を算出する構成としたが、これに限るものではない。例えば輝度(光量)値を出力する光センサを用いて、直接的に輝度を取得する構成としてもよい。また例えばXYZ表色系の三刺激値のような表示強度を出力するセンサを用い、センサの出力値から輝度を導出する構成としてもよい。
 また、本実施の形態においては、モニタ1の特性値として輝度の変化傾向に基づく寿命予測を行う構成としたが、これに限るものではない。例えば光センサ19が出力するRGB値の変化傾向に基づく寿命予測を行ってもよい。また例えば光センサ19が出力するRGB値から色度(x=0.6R-0.28G-0.32B、y=0.2R-0.52G+0.31B)を算出し、色度の変化傾向に基づく寿命予測を行ってもよい。いずれの場合であっても、上述の説明及び演算式等において輝度とした箇所を、RGB値又は色度等に置き換えることによって、これらの特性値の変化傾向を同様の方法で予測することができる。更に他の特性値の変化傾向に基づく寿命予測を行ってもよい。特性値は、センサなどで検知される値又はこの値から算出される値のいずれであってもよい。
 また、本実施の形態においては、寿命予測プログラム90が光ディスク9に記録され、ディスクドライブ36にて光ディスク9から読み出した寿命予測プログラム90を端末装置3のハードディスク32にインストールする構成としたが、これに限るものではない。例えばインターネットなどのネットワークを介して端末装置3が寿命予測プログラム90をサーバ装置などからダウンロードしてハードディスク32にインストールする構成としてもよい。
 1 モニタ
 3 端末装置
 10 制御部
 11 液晶パネル
 12 パネル駆動部
 13 バックライト
 14 ライト駆動部
 15 画像信号入力部
 16 通信部
 17 操作部
 18 記憶部
 19 光センサ
 20 温度センサ
 30 処理部
 31 メモリ
 32 ハードディスク
 33 操作部
 34 画像出力部
 35 通信部

Claims (10)

  1.  表示装置の表示に係る特性値に基づいて前記表示装置の寿命を予測する寿命予測方法であって、
     前記表示装置の特性値の測定を繰り返して行う特性値測定ステップと、
     該特性値測定ステップによる測定の際の前記表示装置の温度を測定する温度測定ステップと、
     測定した複数の特性値及び温度に基づき、特性値測定の際の温度が特定の温度であった場合の前記特性値の変化傾向を予測する予測ステップと
     を含むことを特徴とする寿命予測方法。
  2.  測定した複数の特性値に基づき、特性値及び該特性値の測定時期の対応に関する近似直線又は近似曲線を導出する近似ステップと、
     該近似ステップにて導出した近似直線又は近似曲線、並びに、測定した複数の特性値及び温度に基づき、前記近似直線又は近似曲線を再導出する再近似ステップと
     を含み、
     前記予測ステップでは、前記再近似ステップにて導出した近似直線又は近似曲線に基づき特性値の変化傾向の予測を行うこと
     を特徴とする請求項1に記載の寿命予測方法。
  3.  前記近似ステップにて導出した近似直線又は近似曲線と前記特性値測定ステップにて測定した各特性値との誤差を算出する特性値誤差算出ステップと、
     特定の温度と前記温度測定ステップにて複数測定した温度との各差分を算出する温度差分算出ステップと、
     該温度差分算出ステップにて算出した複数の差分から最大温度差分を抽出する最大温度差分抽出ステップと、
     前記最大温度差分抽出ステップにて抽出した最大温度差分に対応する測定温度を測定した時期を特定する最大温度差分時期特定ステップと、
     該最大温度差分時期特定ステップにて特定した測定時期に対応する特性値について前記特性値誤差算出ステップにて算出した特性値誤差を抽出する特性値誤差抽出ステップと、
     前記最大温度差分抽出ステップにて抽出した最大温度差分及び前記特性値誤差抽出ステップにて抽出した特性値誤差に基づいて、前記特性値測定ステップにて測定した複数の特性値を補正する補正ステップと
     を含み、
     前記再近似ステップでは、前記補正ステップにて補正した特性値に基づき前記近似直線又は近似曲線の再導出を行うこと
     を特徴とする請求項2に記載の寿命予測方法。
  4.  前記再近似ステップは、前記特性値誤差算出ステップにより算出した誤差が所定条件を満たすまで近似直線又は近似曲線の導出を繰り返し行うこと
     を特徴とする請求項3に記載の寿命予測方法。
  5.  前記特定の温度は、前記温度測定ステップにて測定した複数の温度の平均温度であること
     を特徴とする請求項1乃至請求項4までのいずれか1つに記載の寿命予測方法。
  6.  前記特性値測定ステップは、センサを用いて前記表示装置の特性値を測定し、
     前記センサの校正時期を取得する校正時期取得ステップと、
     該校正時期取得ステップが取得した校正時期に基づき、測定した複数の特性値及び温度を複数に区分する区分ステップと
     を含み、
     前記予測ステップでは、前記区分ステップによる区分毎に予測を行うこと
     を特徴とする請求項1乃至請求項5のいずれか1つに記載の寿命予測方法。
  7.  前記表示装置は、カラーの画像を表示する表示装置であり、入力画像から出力画像への色変換を行うための変換用情報を有し、
     前記変換用情報の調整処理を行った時期を取得する調整時期取得ステップと、
     該調整時期取得ステップが取得した調整時期に基づき、測定した複数の特性値及び温度を複数に区分する区分ステップと
     を含み、
     前記予測ステップでは、前記区分ステップによる区分毎に予測を行うこと
     を特徴とする請求項1乃至請求項6のいずれか1つに記載の寿命予測方法。
  8.  前記予測ステップが前記区分毎に行った予測結果を統合する統合ステップを含むこと
     を特徴とする請求項6又は請求項7に記載の寿命予測方法。
  9.  コンピュータに、表示装置の表示に係る特性値に基づいて前記表示装置の寿命を予測させる寿命予測プログラムであって、
     前記コンピュータに、
     前記表示装置の特性値の測定、及び、該測定の際の前記表示装置の温度の測定を繰り返して行った測定値を取得させ、
     取得した複数の特性値及び温度に基づき、特性値測定の際の温度が特定の温度であった場合の前記特性値の変化傾向を予測させること
     を特徴とする寿命予測プログラム。
  10.  表示装置の表示に係る特性値に基づいて前記表示装置の寿命を予測する寿命予測装置であって、
     前記表示画面の特性値の測定を繰り返して行った測定値を取得する特性値取得手段と、
     前記特性値の測定の際の前記表示装置の温度を測定した測定値を取得する温度取得手段と、
     取得した複数の特性値及び温度に基づき、特性値測定の際の温度が特定の温度であった場合の前記特性値の変化傾向を予測する予測手段と
     を備えることを特徴とする寿命予測装置。
PCT/JP2014/050736 2013-12-25 2014-01-17 寿命予測方法、寿命予測プログラム及び寿命予測装置 WO2015098132A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2014371874A AU2014371874B2 (en) 2013-12-25 2014-01-17 Life prediction method, life prediction program, and life prediction device
CN201480071009.XA CN105849798B (zh) 2013-12-25 2014-01-17 寿命预测方法、寿命预测程序以及寿命预测装置
RU2016125158A RU2643471C2 (ru) 2013-12-25 2014-01-17 Способ прогнозирования срока службы, машиночитаемый носитель данных, включающий программу прогнозирования срока службы, и устройство для прогнозирования срока службы
EP14874813.0A EP3089152B1 (en) 2013-12-25 2014-01-17 Life prediction method and life prediction device
US15/107,195 US10026364B2 (en) 2013-12-25 2014-01-17 Life prediction method, computer readable media including life prediction program, and life prediction device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-267810 2013-12-25
JP2013267810A JP6308777B2 (ja) 2013-12-25 2013-12-25 寿命予測方法、寿命予測プログラム及び寿命予測装置

Publications (1)

Publication Number Publication Date
WO2015098132A1 true WO2015098132A1 (ja) 2015-07-02

Family

ID=53478026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050736 WO2015098132A1 (ja) 2013-12-25 2014-01-17 寿命予測方法、寿命予測プログラム及び寿命予測装置

Country Status (7)

Country Link
US (1) US10026364B2 (ja)
EP (1) EP3089152B1 (ja)
JP (1) JP6308777B2 (ja)
CN (1) CN105849798B (ja)
AU (1) AU2014371874B2 (ja)
RU (1) RU2643471C2 (ja)
WO (1) WO2015098132A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017134848A1 (ja) * 2016-02-02 2017-08-10 三菱電機株式会社 表示装置、表示方法およびプログラム
JP2020024294A (ja) * 2018-08-07 2020-02-13 株式会社デンソー 表示装置
CN111933068A (zh) * 2020-07-10 2020-11-13 惠州市德赛西威汽车电子股份有限公司 一种显示屏的驱动方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308777B2 (ja) * 2013-12-25 2018-04-11 Eizo株式会社 寿命予測方法、寿命予測プログラム及び寿命予測装置
JP2015232689A (ja) * 2014-05-12 2015-12-24 キヤノン株式会社 画像表示装置及びその制御方法
TWI623764B (zh) * 2017-03-27 2018-05-11 友達光電股份有限公司 具偵測功能的電子裝置及顯示裝置
US10789550B2 (en) * 2017-04-13 2020-09-29 Battelle Memorial Institute System and method for generating test vectors
CN107197563A (zh) * 2017-06-26 2017-09-22 上海光联照明有限公司 基于dmx512协议的led灯具系统及寿命监测方法
CN107318191A (zh) * 2017-06-26 2017-11-03 上海光联照明有限公司 基于dmx512协议的led灯具系统及寿命监测方法
CN107318190A (zh) * 2017-06-26 2017-11-03 上海光联照明有限公司 基于dmx512协议的led灯具系统及寿命监测方法
CN107135583A (zh) * 2017-07-06 2017-09-05 上海光联照明有限公司 基于dmx512协议的led灯具系统及寿命监测方法
WO2019077679A1 (ja) * 2017-10-17 2019-04-25 三菱電機株式会社 データ処理装置、データ処理システム、データ処理方法、データ処理プログラムおよび記憶媒体
CN107918704A (zh) * 2017-11-08 2018-04-17 中国电子产品可靠性与环境试验研究所 电荷放大器贮存寿命预测方法、装置、存储介质和计算机设备
US20210225405A1 (en) * 2018-01-31 2021-07-22 Hewlett-Packard Development Company, L.P. Hard disk drive lifetime forecasting
US10929776B2 (en) * 2018-11-09 2021-02-23 Oracle International Corporation Thermally-compensated prognostic-surveillance technique for critical assets in outdoor environments
CN109828198B (zh) * 2019-01-15 2021-04-20 哈尔滨工业大学 一种交流接触器寿命预测模块
CN111477175A (zh) * 2020-04-24 2020-07-31 深圳市华星光电半导体显示技术有限公司 显示器件寿命改善方法、相关装置及存储介质
KR20220065125A (ko) * 2020-11-12 2022-05-20 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
CN114161020B (zh) * 2021-12-27 2023-08-04 中电科蓝天科技股份有限公司 一种太阳电池电阻焊焊接质量监测方法及系统
CN114925753A (zh) * 2022-04-28 2022-08-19 南通东升灯饰有限公司 一种led地灯的使用异常报警系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3974630B2 (ja) 2003-11-19 2007-09-12 株式会社ナナオ 輝度調整方法、液晶表示装置、およびコンピュータプログラム
JP2007240801A (ja) * 2006-03-08 2007-09-20 Sony Corp 自発光表示装置、輝度半減寿命制御装置及びプログラム
JP2008309895A (ja) * 2007-06-12 2008-12-25 Toshiba Corp 表示装置および表示パネル
JP4372733B2 (ja) 2005-07-02 2009-11-25 株式会社ナナオ 液晶表示装置
JP4673772B2 (ja) 2006-03-06 2011-04-20 株式会社ナナオ 表示装置及び補正方法
JP2011209480A (ja) * 2010-03-30 2011-10-20 Sony Corp 信号処理装置、表示装置、電子機器、信号処理方法およびプログラム
WO2013157104A1 (ja) * 2012-04-18 2013-10-24 Necディスプレイソリューションズ株式会社 表示装置、及び表示補正方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081553B2 (ja) * 1987-04-06 1996-01-10 キヤノン株式会社 画像データの圧縮方式
US5644654A (en) 1987-04-06 1997-07-01 Canon Kabushiki Kaisha Image processing apparatus capable of efficient coding of complex shape information
JPH04372733A (ja) 1991-06-21 1992-12-25 Olympus Optical Co Ltd 光ピックアップ
JP2000163380A (ja) * 1998-11-30 2000-06-16 Casio Comput Co Ltd 計算装置及び記憶媒体
JP2003208992A (ja) * 2002-01-15 2003-07-25 Mitsubishi Electric Corp 蛍光ランプ余寿命診断装置
JP2004037258A (ja) * 2002-07-03 2004-02-05 Toshiba Corp フィルムコンデンサの劣化診断装置
US20050280766A1 (en) 2002-09-16 2005-12-22 Koninkiljke Phillips Electronics Nv Display device
US20050134525A1 (en) * 2003-12-23 2005-06-23 Gino Tanghe Control system for a tiled large-screen emissive display
US20060077136A1 (en) * 2004-10-08 2006-04-13 Eastman Kodak Company System for controlling an OLED display
US10013907B2 (en) * 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
WO2006137235A1 (ja) * 2005-06-24 2006-12-28 Komatsu Ltd. 液晶表示装置
US20080062115A1 (en) * 2006-09-13 2008-03-13 Houston Brown System and method for predicting a failure of a backlight for an LCD display
KR20110011592A (ko) * 2008-05-28 2011-02-08 파나소닉 주식회사 표시 장치, 표시 장치의 제조 방법 및 제어 방법
JP2010203919A (ja) * 2009-03-03 2010-09-16 Ihi Corp 構造解析装置及び構造解析方法
JP2010224092A (ja) * 2009-03-23 2010-10-07 Hitachi Displays Ltd 画像表示装置およびその寿命予測方法
JP2011076025A (ja) * 2009-10-02 2011-04-14 Sony Corp 表示装置、表示装置の駆動方法および電子機器
EP2328138B1 (en) * 2009-11-27 2015-10-28 Yazaki Corporation Display device for vehicle
US9082334B2 (en) * 2010-06-14 2015-07-14 Barco N.V. Luminance boost method and system
JP2012073400A (ja) * 2010-09-28 2012-04-12 Sanyo Electric Co Ltd 表示装置
JP5284457B2 (ja) * 2011-02-15 2013-09-11 キヤノン株式会社 画像表示装置及びその制御方法、プログラム、記憶媒体
US8664970B2 (en) * 2011-03-14 2014-03-04 Universal Display Corporation Method for accelerated lifetesting of large area OLED lighting panels
TWI494909B (zh) * 2011-11-16 2015-08-01 Joled Inc A signal processing device, a signal processing method, a program and an electronic device
JP6193101B2 (ja) * 2013-11-28 2017-09-06 Eizo株式会社 予測システム、予測方法及びコンピュータプログラム
JP5870233B2 (ja) * 2013-11-29 2016-02-24 次世代化学材料評価技術研究組合 有機el素子の寿命推定方法、寿命推定装置及び製造方法、並びに発光装置
JP6308777B2 (ja) * 2013-12-25 2018-04-11 Eizo株式会社 寿命予測方法、寿命予測プログラム及び寿命予測装置
KR102162499B1 (ko) * 2014-02-26 2020-10-08 삼성디스플레이 주식회사 유기 전계 발광 표시 장치 및 이의 구동 방법
US9985209B2 (en) * 2014-03-17 2018-05-29 Joled Inc. Method for testing lifetime characteristics of display panel, and method for manufacturing display panel
KR102406206B1 (ko) * 2015-01-20 2022-06-09 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그의 구동 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3974630B2 (ja) 2003-11-19 2007-09-12 株式会社ナナオ 輝度調整方法、液晶表示装置、およびコンピュータプログラム
JP4372733B2 (ja) 2005-07-02 2009-11-25 株式会社ナナオ 液晶表示装置
JP4673772B2 (ja) 2006-03-06 2011-04-20 株式会社ナナオ 表示装置及び補正方法
JP2007240801A (ja) * 2006-03-08 2007-09-20 Sony Corp 自発光表示装置、輝度半減寿命制御装置及びプログラム
JP2008309895A (ja) * 2007-06-12 2008-12-25 Toshiba Corp 表示装置および表示パネル
JP2011209480A (ja) * 2010-03-30 2011-10-20 Sony Corp 信号処理装置、表示装置、電子機器、信号処理方法およびプログラム
WO2013157104A1 (ja) * 2012-04-18 2013-10-24 Necディスプレイソリューションズ株式会社 表示装置、及び表示補正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3089152A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017134848A1 (ja) * 2016-02-02 2017-08-10 三菱電機株式会社 表示装置、表示方法およびプログラム
JPWO2017134848A1 (ja) * 2016-02-02 2018-08-30 三菱電機株式会社 表示装置および表示方法
CN108604621A (zh) * 2016-02-02 2018-09-28 三菱电机株式会社 显示装置、显示方法及程序
US10699629B2 (en) 2016-02-02 2020-06-30 Mitsubishi Electric Corporation Display device and display method
JP2020024294A (ja) * 2018-08-07 2020-02-13 株式会社デンソー 表示装置
JP7059862B2 (ja) 2018-08-07 2022-04-26 株式会社デンソー 表示装置
CN111933068A (zh) * 2020-07-10 2020-11-13 惠州市德赛西威汽车电子股份有限公司 一种显示屏的驱动方法

Also Published As

Publication number Publication date
AU2014371874B2 (en) 2018-05-17
RU2016125158A (ru) 2018-01-30
AU2014371874A1 (en) 2016-07-14
US10026364B2 (en) 2018-07-17
CN105849798A (zh) 2016-08-10
CN105849798B (zh) 2018-12-21
EP3089152B1 (en) 2018-02-28
JP6308777B2 (ja) 2018-04-11
US20170032745A1 (en) 2017-02-02
EP3089152A1 (en) 2016-11-02
EP3089152A4 (en) 2016-12-28
JP2015125009A (ja) 2015-07-06
RU2643471C2 (ru) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6308777B2 (ja) 寿命予測方法、寿命予測プログラム及び寿命予測装置
US9972078B2 (en) Image processing apparatus
US20160335965A1 (en) Display diode relative age tracking
US20160267834A1 (en) Display diode relative age
US9082354B2 (en) Display device and control method therefor
CN107665480B (zh) 图像处理装置、其控制方法、显示装置及存储介质
US20110063341A1 (en) Method and system for correction, measurement and display of images
JP2015031874A (ja) 表示装置、表示装置の制御方法、及び、プログラム
WO2017037997A1 (en) Display apparatus, method for controlling the same, program, and storage medium
TW201905888A (zh) 應用於顯示面板之光學補償裝置及其運作方法
JP5227539B2 (ja) 出力値設定方法、出力値設定装置及び表示装置
JP4372733B2 (ja) 液晶表示装置
US10186210B2 (en) Image display device and control methods for image display device
KR20190050212A (ko) 휘도 균일도 보정 장치 및 그 제어방법
US11763777B2 (en) Image display device, image display system, image display method, and computer program for providing a low-luminance grayscale standard display function (GSDF) display
JP5354699B2 (ja) 色度補正回路、表示装置、及び色度補正方法
JP2017032890A (ja) Led表示装置
US20170061899A1 (en) Image display apparatus, image-processing apparatus, method of controlling image display apparatus, and method of controlling image-processing apparatus
US20160206192A1 (en) Arithmetic processor and control method thereof
JP4812795B2 (ja) 液晶表示装置のガンマ値取得方法及びガンマ値取得システム並びにそのシステムに使用される液晶表示装置及びガンマ値取得コンピュータ並びにそのプログラム
JP2015121507A (ja) 測定装置、キャリブレーション装置、及び表示装置
WO2024044957A1 (zh) 显示装置及其亮度调节方法
KR20230064719A (ko) 디스플레이 구동장치, 디스플레이 장치 및 디스플레이 장치의 구동 방법
JP2014232651A (ja) 光源制御装置及びその制御方法
JP2013098867A (ja) 画像表示装置のキャリブレーション装置、その制御方法、画像表示装置、及び画像表示システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15107195

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014874813

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874813

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014371874

Country of ref document: AU

Date of ref document: 20140117

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016125158

Country of ref document: RU

Kind code of ref document: A