WO2015097841A1 - 有機発光材料、有機発光素子およびそれを用いた光源 - Google Patents

有機発光材料、有機発光素子およびそれを用いた光源 Download PDF

Info

Publication number
WO2015097841A1
WO2015097841A1 PCT/JP2013/085035 JP2013085035W WO2015097841A1 WO 2015097841 A1 WO2015097841 A1 WO 2015097841A1 JP 2013085035 W JP2013085035 W JP 2013085035W WO 2015097841 A1 WO2015097841 A1 WO 2015097841A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
organic light
host material
group
layer
Prior art date
Application number
PCT/JP2013/085035
Other languages
English (en)
French (fr)
Inventor
広貴 佐久間
荒谷 介和
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/085035 priority Critical patent/WO2015097841A1/ja
Publication of WO2015097841A1 publication Critical patent/WO2015097841A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic light emitting material, an organic light emitting element using the organic light emitting material, and a light source device using the organic light emitting element.
  • Organic light emitting devices are being studied and developed for displays and light sources.
  • many studies have been made on organic light-emitting devices having a host-guest light-emitting layer using a phosphorescent light-emitting dopant because of high luminous efficiency.
  • the characteristics of the host material are important in order to fully exhibit its characteristics.
  • the triplet excitation (T1) energy of the host material needs to be higher than that of the luminescent dopant.
  • T1 energy multi-emitting dopant of the host material is lower than that of the host material, excitation energy is transferred from the luminescent dopant to the host material, and light emission from the luminescent dopant cannot be obtained.
  • the host material is also responsible for carrier transport in the light emitting layer, the stability of the material is important, and various materials have been disclosed so far.
  • Patent Document 1 discloses a host material in which a site containing silicon (Si) is added to a carbazole skeleton.
  • Patent Document 2 discloses a host material in which quinoline, carbazole, or the like is added to a carbazole skeleton.
  • An object of the present invention is to provide an organic light emitting device with high luminous efficiency by satisfying conditions such as T1 energy and stability.
  • X1 to X5 each represent a carbon atom or a nitrogen atom
  • R1 and R2 each represent an alkyl group, a phenyl group or a cyano group
  • R3 represents a substituted or unsubstituted phenyl group, an alkyl group or an alkoxy group. And represents either a phenoxy group or a heteroaryl group, and 1 ⁇ m ⁇ 5.
  • the plurality of R3 may be the same or different
  • an organic light emitting layer material an organic light emitting layer forming coating solution using the organic light emitting layer material, an organic light emitting device using the organic light emitting layer forming coating solution, and a light source device using the organic light emitting device can be provided.
  • novel carbazole host material represented by the general formula (1) used in the present invention will be described in detail below. Since many carbazole derivatives have high T1 energy, this structure is used as the main skeleton.
  • R1 and R2 in the general formula (1) have a role of protecting the 3 and 6 positions which are relatively highly reactive at the carbazole moiety.
  • R1 and R2 In order to maintain high T1 energy, R1 and R2 must have a structure that does not expand the conjugated system, and examples thereof include an alkyl group and a phenyl group. Of these, a methyl group is preferred.
  • R1 and R2 may have different structures, but R1 and R2 are preferably the same for ease of synthesis and the like.
  • R3 is added to adjust T1 energy, solubility in solvents, and film formation.
  • R3 a structure that does not widen the conjugated system is necessary.
  • examples thereof include a phenyl group, a linear or branched, cyclic alkyl group, a linear or branched, cyclic alkoxy group, a phenoxy group, and a heteroaryl group (such as a pyridyl group). These may be substituted or unsubstituted.
  • the substituent include a linear or branched alkyl group, a linear or branched alkyl halide group, a linear or branched alkoxy group, an amino group, and a cyano group.
  • the T1 energy of the host material needs to be higher than the T1 energy of the blue light-emitting dopant.
  • the T1 energy of the host is preferably 2.7 eV or more.
  • the magnitude of bond debonding energy between the atoms constituting the molecule is important.
  • the minimum bond separation energy in the molecule is 90 kcal / mol or more.
  • the bond desorption energy can be calculated by calculation.
  • the host material in the present invention satisfies both of the above conditions, and specific examples include the compounds shown below.
  • FIG. 1 is a cross-sectional view of an organic light emitting device according to an embodiment of the present invention.
  • This organic light emitting element has an upper electrode 12 as a first electrode, a lower electrode 11 as a second electrode, and an organic layer 13.
  • the substrate 10, the lower electrode 11, the organic layer 13, and the upper electrode 12 are arranged in this order from the lower side of FIG. 1, and the organic light emitting device of FIG. 1 is a bottom emission type that takes out light emitted from the light emitting layer 3 from the lower electrode 11 side. is there.
  • the lower electrode 11 is a transparent electrode serving as an anode
  • the upper electrode 12 is a reflective electrode serving as a cathode.
  • the upper electrode 12 is a cathode and the lower electrode 11 is an anode
  • a top emission type element structure in which the upper electrode 12 is a transparent electrode may be used.
  • the substrate 10 and the lower electrode 11, the lower electrode 11 and the organic layer 13, the organic layer 13 and the upper electrode 12 may be in contact with each other, or other layers may be interposed between the layers.
  • other layers include an inorganic buffer layer and an injection layer.
  • the buffer layer include vanadium oxide, molybdenum oxide, and tungsten oxide.
  • the organic layer 13 may have a single layer structure including only the light emitting layer 3 or a multilayer structure including any one or more of the electron injection layer 9, the electron transport layer 8, the hole transport layer 2 and the hole injection layer 1.
  • the electron injection layer 9 and the electron transport layer 8, the electron transport layer 8 and the light emitting layer 3, the light emitting layer 3 and the hole transport layer 2, the hole transport layer 2 and the hole injection layer 1 may be in contact with each other.
  • Other layers described above may be interposed between the two layers.
  • the organic light-emitting element in FIG. 1 is provided with a drive circuit, a housing, and the like to provide a light source device.
  • FIG. 2 is a cross-sectional view of an embodiment of a light source device according to the present invention.
  • FIG. 2 shows a top emission type organic light emitting device that extracts light emission from the side where the upper electrode 12 exists.
  • the lower electrode 11, the first bank 104, the second bank 105, the organic layer 13, the upper electrode 12, the resin layer 106, the sealing substrate 107, and the light extraction layer 108 are arranged on the substrate 10 in the above order. Has been placed.
  • the light extraction layer 108 is disposed on the side where the organic layer 13 does not exist with respect to the substrate 10.
  • the first bank 104 has a forward taper and serves as a cover for the edge of the patterned lower electrode 11.
  • the second bank 105 has a reverse taper and serves to separate the organic layer 13 and the upper electrode 12 of adjacent elements.
  • various resins such as a polyimide resin, an acrylic resin novolac resin, and a phenol resin can be used.
  • development exposure is performed using a predetermined photomask.
  • the surface of the first bank 104 and the second bank 105 is subjected to water repellency treatment.
  • the surface of the first bank 104 and the second bank 105 is subjected to plasma treatment with a fluorine-based gas, and the surface of the first bank 104 and the second bank 105 is fluorinated to perform the water repellency treatment.
  • the resin layer 106 and the sealing substrate 107 have a role of preventing intrusion of gas and moisture that cause deterioration of the organic light emitting element.
  • the light extraction layer 108 By using the light extraction layer 108, the light emitted from the light emitting layer 3 can be extracted efficiently.
  • the light emitting layer 3 includes one or more kinds of hosts and one or more kinds of light emitting dopants.
  • the light emitting layer 3 emits light by recombination of electrons and holes injected from the upper electrode 12, the lower electrode 11, the electron transport layer 8 or the hole transport layer 2.
  • the portion that emits light may be within the layer of the light emitting layer, or may be the interface between the light emitting layer and a layer adjacent to the light emitting layer.
  • a fluorescent compound or a phosphorescent compound can be used as the luminescent dopant.
  • a luminescent dopant is called a red dopant, a green dopant, and a blue dopant by luminescent color.
  • the emission color of the red dopant, the emission color of the green dopant, and the emission color of the blue dopant are different. “Different emission colors” means that the wavelengths indicating the maximum intensities in the PL spectra of the respective dopants are different.
  • the host material constituting the light emitting layer may be one type, but two or more types may be mixed. When mixing, an electron transporting host and a hole transporting host are mixed for carrier balance adjustment. Since the carbazole-based host material in the present invention functions as a hole transporting host material, it is preferable to mix an electron transporting host material.
  • the electron transporting host may be a commonly used host, and examples thereof include OXD-7 and TPBi.
  • the blue dopant has a maximum PL spectrum intensity between 400 nm and 500 nm at room temperature (25 ° C.).
  • Blue dopants are known in the art including, for example, iridium complexes (Bis (3,5-difluoro-2- (2-pyrylyl) phenyl- (2-carbopyrylyl) iridium (III)): FIrpic, etc.) You can choose from what you have and what will be developed in the future.
  • the green dopant has a maximum PL spectrum intensity at room temperature between 500 nm and 590 nm.
  • Examples of the main skeleton of the green dopant 6 include those known in the industry including, for example, an iridium complex (Tris (2-phenylpyridine) iridium (III): hereinafter Ir (ppy) 3, etc.) and the like. You can choose from
  • the red dopant has the maximum intensity of the PL spectrum at room temperature between 590 nm and 780 nm.
  • Examples of the main skeleton of the red dopant 5 include those known in the art including iridium complexes (such as Bis (1-phenylisoquinoline) (acetylacetonate) iridium (III)), osmium complexes, and europium complexes. You can choose from what will be done.
  • the light emitting layer may contain a plurality of light emitting dopants.
  • a light emitting layer containing red, green and blue dopants is preferable.
  • the hole injection layer 1 is used for the purpose of improving luminous efficiency and lifetime. Moreover, although it is not essential, it is used for the purpose of relaxing the unevenness of the anode.
  • the hole injection layer 1 may be provided as a single layer or a plurality of layers.
  • the hole injection layer 1 is preferably a conductive polymer such as PEDOT (poly (3,4-ethylenedioxythiophene)): PSS (polystyrene sulfonate).
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS polystyrene sulfonate
  • polypyrrole-based or triphenylamine-based polymer materials can be used.
  • the hole transport layer 2 is made of a material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer 2 may be provided as a single layer or a plurality of layers.
  • carbazole derivatives, starburst amine compounds, stilbene derivatives, hydrazone derivatives, thiophene derivatives, and the like can be used.
  • the electron transport layer 8 is a layer that supplies electrons to the light emitting layer 3.
  • the electron injection layer 9 and the hole blocking layer are also included in the electron transport layer 8.
  • the electron transport layer 8 may be provided as a single layer or a plurality of layers. Examples of the material for the electron transport layer 8 include bis (2-methyl-8-quinolinolato) -4- (phenylphenolato) aluminum (hereinafter referred to as BAlq) and tris (8-quinolinolato) aluminum (hereinafter referred to as Alq3).
  • the electron injection layer 9 improves the efficiency of electron injection from the cathode to the electron transport layer 8. Specifically, lithium fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, magnesium oxide, and aluminum oxide are desirable.
  • the material is not limited to these materials, and two or more of these materials may be used in combination.
  • the substrate 10 include a glass substrate, a metal substrate, a plastic substrate on which an inorganic material such as SiO 2, SiN x, and Al 2 O 3 is formed.
  • the metal substrate material include alloys such as stainless steel and 42 alloy.
  • the plastic substrate material include polyethylene terephthalate, polyethylene naphthalate, polymethyl methacrylate, polysulfone, polycarbonate, and polyimide.
  • the anode material any material having transparency and a high work function can be used.
  • conductive oxides such as ITO and IZO and metals having a large work function such as thin Ag can be used.
  • the electrode pattern can be formed on a substrate such as glass by using photolithography.
  • the cathode material is a reflective electrode for reflecting light from the light emitting layer 3.
  • a laminate of LiF and Al, an Mg: Ag alloy, or the like is preferably used.
  • it is not limited to these materials For example, a Cs compound, Ba compound, Ca compound etc. can be used instead of LiF.
  • ⁇ Film formation method> The organic light emitting device according to the present invention can be produced using a normal production method.
  • a dry method such as a vacuum evaporation method, a sputtering method, or an electron beam evaporation method
  • a wet method such as a spin coating method, an inkjet method, or a slit coating method
  • the carbazole-based host material shown in the present invention can be synthesized using a known method.
  • FIG. 3 shows a method for synthesizing the compound of (Formula 10) as an example.
  • ⁇ Preparation of organic light emitting device A> an organic light emitting device A having a structure shown in FIG. 1 was produced.
  • the compound of (Formula 2) was used as the host, and FIrpic was used as the blue light emitting dopant.
  • the ratio of dopant to host material was 10%.
  • organic light emitting device B As an example of the present invention, an organic light emitting device B having a structure shown in FIG. 1 was produced.
  • the structure of the light emitting layer was a compound of (Formula 10) as a host, OXD-7 as an electron transporting host, and FIrpic as a blue light emitting dopant.
  • the ratio of dopant to host material was 10%.
  • the organic light emitting device B is an example including two types of host materials, a hole transporting host material and an electron transporting host material.
  • ⁇ Preparation of organic light emitting device C> As an example of the present invention, an organic light emitting device C having a structure shown in FIG. 1 was produced.
  • the structure of the light emitting layer was a compound of (Formula 3) as a host, FIrpic as a blue light emitting dopant, Ir (ppy) 3 as a green light emitting dopant, and Ir (piq) 2acac as a red light emitting dopant.
  • the ratio of the light-emitting dopant to the host material was 10% blue, 1% green, and 1% red.
  • the light emission efficiency can be improved by using the host material of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 T1エネルギーや安定性などの条件を満たすことで、発光効率の高い有機発光素子を提供することである。 上部電極と、下部電極と、前記上部電極と前記下部電極との間に配置された発光層とを有する有機発光素子であって、前記発光層は1種類以上のホスト材料および1種類以上のドーパントを含み、前記ホスト材料のうち第1のホスト材料は一般式(1)で表される化合物である有機発光素子。(式中X1~X5は炭素、窒素原子のいずれかを表し、R1及びR2はアルキル基、フェニル基、シアノ基のいずれかを表し、R3は置換または無置換のフェニル基、アルキル基、アルコキシ基、フェノキシ基、ヘテロアリール基のいずれかを表し、1≦m≦5である。複数R3が存在する場合、複数のR3が互いに同一でも異なっても良い)

Description

有機発光材料、有機発光素子およびそれを用いた光源
 本発明は、有機発光材料及び有機発光材料を用いた有機発光素子及び有機発光素子を用いた光源装置に関する。
 有機発光素子はディスプレイや光源用として検討・開発がされている。特に燐光系発光ドーパントを用いたホスト―ゲスト系発光層を有する有機発光素子においては高い発光効率を有することから多くの検討がなされている。このような有機発光素子においてその特徴を十分に発揮するためにはホスト材料の特性が重要となってくる。ホスト―ゲスト系発光層において発光ドーパントが良好に発光するためには、ホスト材料の3重項励起(T1)エネルギーが発光ドーパントのそれよりも高い必要がある。もし、ホスト材料のT1エネルギー多発光ドーパントのそれよりも低い場合には、発光ドーパントからホスト材料に励起エネルギーが移動し、発光ドーパントからの発光が得られない。またホスト材料は発光層内のキャリア輸送等も担うことから材料の安定性が重要であり、これまでにさまざまな材料が開示されている。
 特許文献1ではカルバゾール骨格にケイ素(Si)を含む部位を付加したホスト材料を開示している。また、特許文献2においてはカルバゾール骨格にキノリン、カルバゾール等を付加したホスト材料が開示されている。
特表2012-505860号公報 特開2004-363103号公報
 しかしながら、上記開示された材料は、いずれもOLED用ホスト材料に必要とされる、高いT1エネルギーや安定性等といった条件を必ずしも満たしていない。
 本発明の目的は、T1エネルギーや安定性などの条件を満たすことで、発光効率の高い有機発光素子を提供することである。
 上部電極と、
 下部電極と、
 前記上部電極と前記下部電極との間に配置された発光層とを有する有機発光素子であって、
 前記発光層は1種類以上のホスト材料および1種類以上のドーパントを含み、
 前記ホスト材料のうち第1のホスト材料は一般式(1)で表される化合物である有機発光素子。
Figure JPOXMLDOC01-appb-C000002
 (式中X1~X5は炭素、窒素原子のいずれかを表し、R1及びR2はアルキル基、フェニル基、シアノ基のいずれかを表し、R3は置換または無置換のフェニル基、アルキル基、アルコキシ基、フェノキシ基、ヘテロアリール基のいずれかを表し、1≦m≦5である。複数R3が存在する場合、複数のR3が互いに同一でも異なっても良い)
 本発明により、有機発光層材料、有機発光層材料を用いた有機発光層形成用塗布液、有機発光層形成用塗布液を用いた有機発光素子、有機発光素子を用いた光源装置を提供できる。
 上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
本発明における有機発光素子の一実施の形態における断面図である。 本発明における光源装置の一実施の形態における断面図である。 カルバゾール系ホスト材料の合成方法の説明図である。
 以下、図面等により本発明を詳細に説明する。以下の記載は本願発明の内容の具体例を示すものであり、本願発明がこれらの記載に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。
 本発明で用いた一般式(1)で示される新規カルバゾール系ホスト材料について以下に詳述する。カルバゾール誘導体は高いT1エネルギーを有する化合物が多いことから、この構造を主骨格とした。
Figure JPOXMLDOC01-appb-C000003
 一般に、高いT1エネルギーを有する化合太を実現するには、共役系を広げすぎないことが必要である。
 一般式(1)におけるR1、R2はカルバゾール部位において比較的反応性の高い3位と6位を保護する役割を有する。高いT1エネルギーを維持するために、R1、R2には共役系を広げない構造が必要であり、たとえば、アルキル基、フェニル基が挙げられる。中でも好ましくはメチル基である。R1とR2は異なる構造でも良いが、合成の容易さなどからR1,R2は同一であることが好ましい。
 R3はT1エネルギーの調整、溶媒への溶解性の調整、成膜性の調整のために付加する。R3についても共役系を広げすぎない構造が必要である。たとえば、フェニル基、直鎖状あるいは分岐状、環状のアルキル基、直鎖状あるいは分岐状、環状のアルコキシ基、フェノキシ基、ヘテロアリール基(ピリジル基など)が挙げられる。これらは置換されていても、また無置換でも良い。置換基としては、直鎖状あるいは分岐状のアルキル基、直鎖状あるいは分岐状のハロゲン化アルキル基、直鎖状または分岐状のアルコキシ基、アミノ基、シアノ基などが挙げられる。
 さらに、カルバゾール部位と六員環部位のなす角(二面角)を大きくすることで共役系の広がりを抑制することが可能であり、T1エネルギーを高くすることができる。そのために、立体障害となる置換基(たとえば、アルキル基など)をR3として導入してもよい。
 高効率な発光をさせるためにはホスト材料のT1エネルギーが青色発光ドーパントのT1エネルギーよりも高い必要がある。具体的にはホストのT1エネルギーが2.7eV以上であることが好ましい。また、材料の安定性においては、分子を構成する各原子間の結合かい離エネルギーの大きさが重要である。検討の結果、分子内の最小の結合かい離エネルギーが90kcal/mol以上あることが好ましい。なお、結合かい離エネルギーは計算によって算出することができる。本発明におけるホスト材料は上記の条件をともに満たしており、具体的には下記に示す化合物などがあげられる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 図1は、本発明の一実施形態に係る有機発光素子の断面図である。この有機発光素子は、第一の電極としての上部電極12と、第二の電極としての下部電極11と、有機層13とを有する。図1の下側から基板10、下部電極11、有機層13、上部電極12の順に配置されており、図1の有機発光素子は下部電極11側から発光層3の発光を取り出すボトムエミッション型である。下部電極11は陽極となる透明電極、上部電極12は陰極となる反射電極である。なお、上部電極12が陰極、下部電極11が陽極であれば、上部電極12を透明電極としたトップエミッション型の素子構造でも構わない。基板10および下部電極11、下部電極11および有機層13、有機層13および上部電極12はそれぞれ接していても構わず、各層の間に他の層を介在させてもよい。他の層としては、無機のバッファ層や注入層などが挙げられる。バッファ層としては、酸化バナジウム、酸化モリブデン、酸化タングステン等が挙げられる。
 有機層13は発光層3のみの単層構造、あるいは電子注入層9、電子輸送層8、正孔輸送層2及び正孔注入層1のいずれか一層以上を含む多層構造でも構わない。電子注入層9および電子輸送層8、電子輸送層8および発光層3、発光層3および正孔輸送層2、正孔輸送層2および正孔注入層1はそれぞれ接していても構わず、各層の間に上述の他の層を介在させてもよい。図1における有機発光素子に駆動回路および筐体などが備えられることで光源装置となる。
 図2は本発明における光源装置の一実施の形態における断面図である。図2は上部電極12が存在する側から発光を取り出すトップエミッション型の有機発光素子である。図2では、基板10上に下部電極11、第一のバンク104、第二のバンク105、有機層13、上部電極12、樹脂層106、封止基板107、光取り出し層108が上記の順で配置されている。ボトムエミッション型の有機発光素子の場合、基板10に対して有機層13が存在しない側に光取り出し層108が配置される。
 第一のバンク104は順テーパーとなっており、パターンニングされた下部電極11のエッジのカバーの役割を果たす。第二のバンク105は逆テーパーとなっており、隣接する素子の有機層13および上部電極12を分離する役割を持つ。第一のバンク104および第二のバンク105はポリイミド樹脂、アクリル樹脂ノボラック樹脂、フェノール樹脂など各種樹脂を用いることができる。第一のバンク104および第二のバンク105の形成は有機層13を塗布で形成した後、所定のフォトマスクを用いて、現像露光する。第一のバンク104および第二のバンク105の表面には撥水性処理を施す。例えば、第一のバンク104および第二のバンク105の表面にフッ素系ガスのプラズマ処理を行い、第一のバンク104および第二のバンク105の表面をフッ素化することで撥水性処理を行う。
 樹脂層106および封止基板107は有機発光素子の劣化の要因となるガスや水分の浸入を防ぐ役割を持つ。光取り出し層108を用いることで、発光層3で発光した光を効率よく取り出せるようになる。
 発光層3は一種類以上のホスト及び一種類以上の発光ドーパントを含む。発光層3とは、上部電極12、下部電極11、電子輸送層8または正孔輸送層2から注入されてくる電子及び正孔が再結合して発光するものである。発光する部分は発光層の層内であってもよいし、発光層と発光層に隣接する層との界面であってもよい。発光ドーパントとして、蛍光性化合物、リン光性化合物を用いることができる。発光ドーパントは発光色により、赤色ドーパント、緑色ドーパント及び青色ドーパントと呼ぶ。赤色ドーパントの発光色、緑色ドーパントの発光色及び青色ドーパントの発光色は異なる。「発光色が異なる」とは、各ドーパントのPLスペクトルにおいて最大強度を示す波長が異なることを言う。
<ホスト>
 発光層を構成するホスト材料は1種類でもかまわないが、2種類以上混合してもよい。混合する場合、キャリアバランス調整のため、電子輸送性ホストと正孔輸送性ホストを混合する。本発明におけるカルバゾール系ホスト材料は正孔輸送性ホスト材料をして機能するため、電子輸送性ホスト材料を混合することが好ましい。電子輸送性ホストとしては一般に用いられているものでもよく、たとえば、OXD-7、TPBiなどが挙げられる。
<ドーパント>
 青色ドーパントは400nmから500nmの間に室温(25℃)におけるPLスペクトルの最大強度が存在する。青色ドーパントとしては、例えばイリジウム錯体(Bis(3、5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium(III)):FIrpicなど)などを含めて当業界で知られているものおよび、今後開発されるものから選択することができる。
 緑色ドーパントは500nmから590nmの間に室温におけるPLスペクトルの最大強度が存在する。緑色ドーパント6の主骨格としては、例えばイリジウム錯体(Tris(2-phenylpyridine)iridium(III):以下Ir(ppy)3、など)などを含めて当業界で知られているものおよび、今後開発されるものから選択することができる。
 赤色ドーパントは590nmから780nmの間に室温におけるPLスペクトルの最大強度が存在する。赤色ドーパント5の主骨格としては、例えばイリジウム錯体(Bis(1-phenylisoquinoline)(acetylacetonate)iridium(III)など)、オスミウム錯体、ユーロピウム錯体などを含めて当業界で知られているものおよび、今後開発されるものから選択することができる。
 発光層には発光ドーパントが複数種含まれていてもよい。特に、白色発光させる場合には赤色、緑色および青色ドーパントを含む発光層とすることが好ましい。
 <正孔注入層>
 正孔注入層1とは発光効率や寿命を改善する目的で使用される。また、特に必須ではないが、陽極の凹凸を緩和する目的で使用される。正孔注入層1を単層もしくは複数層設けてもよい。正孔注入層1としては、PEDOT(ポリ(3、4-エチレンジオキシチオフェン)):PSS(ポリスチレンスルホネート)等の導電性高分子が好ましい。その他にも、ポリピロール系やトリフェニルアミン系のポリマー材料を用いることができる。また、低分子(重量平均分子量10000以下)材料系と組合せてよく用いられる、フタロシアニン類化合物やスターバーストアミン系化合物も適用可能である。
<正孔輸送層>
 正孔輸送層2とは正孔を輸送する機能を有する材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層2を単層もしくは複数層設けてもよい。正孔輸送層2としては、カルバゾール誘導体、スターバーストアミン系化合物やスチルベン誘導体、ヒドラゾン誘導体、チオフェン誘導体などを用いることができる。また、これらの材料に限られるものではなく、これらの材料を2種以上併用しても差し支えない。
<電子輸送層>
 電子輸送層8は発光層3に電子を供給する層である。広い意味で電子注入層9、正孔阻止層も電子輸送層8に含まれる。電子輸送層8を単層もしくは複数層設けてもよい。この電子輸送層8の材料としては、例えば、ビス(2-メチル-8-キノリノラト)-4-(フェニルフェノラト)アルミニウム(以下、BAlq)や、トリス(8-キノリノラト)アルミニウム(以下、Alq3)、Tris(2、4、6-trimethyl-3-(pyridin-3-yl)phenyl)borane(以下、3TPYMB)、1、4-Bis(triphenylsilyl)benzene(以下、UGH2)、オキサジアゾール誘導体、トリアゾール誘導体、フラーレン誘導体、フェナントロリン誘導体、キノリン誘導体などを用いることができる。
<電子注入層>
 電子注入層9は陰極から電子輸送層8への電子注入効率を向上させる。具体的には、弗化リチウム、弗化マグネシウム、弗化カルシウム、弗化ストロンチウム、弗化バリウム、酸化マグネシウム、酸化アルミニウムが望ましい。また、もちろんこれらの材料に限られるわけではなく、また、これらの材料を2種以上併用しても差し支えない。
<基板>
 基板10として、ガラス基板、金属基板、SiO2、SiNx、Al2O3等の無機材料を形成したプラスチック基板等が挙げられる。金属基板材料としては、ステンレス、42アロイなどの合金が挙げられる。プラスチック基板材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリメチルメタクリレート、ポリサルフォン、ポリカーボネート、ポリイミド等が挙げられる。
<陽極>
 陽極材料としては、透明性と高い仕事関数を有する材料であれば用いることができる。具体的には、ITO、IZOなどの導電性酸化物や、薄いAgなどの仕事関数の大きい金属が挙げられる。電極のパターン形成は、一般的にはガラス等の基板上にホトリソグラフィーなどを用いて行うことができる。
<陰極>
 陰極材料は、発光層3からの光を反射するための反射電極である。具体的には、LiFとAlの積層体やMg:Ag合金などが好適に用いられる。また、これらの材料に限定されるものではなく、例えばLiFの代わりとして、Cs化合物、Ba化合物、Ca化合物などを用いることができる。
<成膜法>
 本発明にかかる有機発光素子は、通常の製造方法を用いて作製することができる。すなわち、真空蒸着法、スパッタ法、電子ビーム蒸着法などの乾式法やスピンコート法、インクジェット法、スリットコート法などの湿式法を用いることができる。
 以下に具体的な実施例を示して、本願発明の内容をさらに詳細に説明する。
<カルバゾール系ホストの合成>
 本発明で示したカルバゾール系ホスト材料は公知の方法を用いて合成できる。
 図3に一例として(式10)の化合物の合成方法を示す。
<有機発光素子Aの作製>
 本発明の実施例として図1に示す構造の有機発光素子Aを作製した。発光層の構成は、ホストとして(式2)の化合物、青色発光ドーパントとしてFIrpicを用いた。ホスト材料に対するドーパントの比率は10%とした。
 作製した有機発光素子に電圧を印加すると、良好な青色発光が得られた。
<有機発光素子Bの作製>
 本発明の実施例として図1に示す構造の有機発光素子Bを作製した。発光層の構成は、ホストとして(式10)の化合物、電子輸送性ホストとしてOXD-7、青色発光ドーパントとしてFIrpicを用いた。ホスト材料に対するドーパントの比率は10%とした。
 作製した有機発光素子に電圧を印加すると、良好な青色発光が得られた。
 有機発光素子Bは、正孔輸送性ホスト材料と電子輸送性ホスト材料の2種類のホスト材料を含む例である。
<有機発光素子Cの作製>
 本発明の実施例として図1に示す構造の有機発光素子Cを作製した。発光層の構成は、ホストとして(式3)の化合物、青色発光ドーパントとしてFIrpic、緑色発光ドーパントとしてIr(ppy)3、赤色発光ドーパントとしてIr(piq)2acacを用いた。ホスト材料に対する発光ドーパントの比率は青色10%、緑色1%、赤色1%とした。
 作製した有機発光素子に電圧を印加すると、良好な青色発光が得られた。
 このように、青色発光ドーパントだけでなく、赤色発光ドーパントや緑色発光ドーパントを含む場合でも、本発明のホスト材料を用いることで発光効率を向上することができる。
1…正孔注入層
2…正孔輸送層
3…発光層
8…電子輸送層
9…電子注入層
10…基板
11…下部電極
12…上部電極
13…有機層
104…第一のバンク
105…第二のバンク
106…樹脂層
107…封止基板
108…光取り出し層

Claims (9)

  1.  上部電極と、
     下部電極と、
     前記上部電極と前記下部電極との間に配置された発光層とを有する有機発光素子であって、
     前記発光層は1種類以上のホスト材料および1種類以上のドーパントを含み、
     前記ホスト材料のうち第1のホスト材料は一般式(1)で表される化合物である有機発光素子。
    Figure JPOXMLDOC01-appb-C000001
     (式中X1~X5は炭素、窒素原子のいずれかを表し、R1及びR2はアルキル基、フェニル基、シアノ基のいずれかを表し、R3は置換または無置換のフェニル基、アルキル基、アルコキシ基、フェノキシ基、ヘテロアリール基のいずれかを表し、1≦m≦5である。複数R3が存在する場合、複数のR3が互いに同一でも異なっても良い)
  2.  請求項1において、
     R1及びR2はアルキル基である有機発光素子。
  3.  請求項1において、
     R1及びR2はメチル基である有機発光素子。
  4.  請求項1において、
     前記1種類以上のドーパントに青色発光ドーパントを含み、
     前記第1のホスト材料のT1エネルギーは、前記青色発光ドーパントのT1エネルギーよりも高い有機発光素子。
  5.  請求項1において、
     前記第1のホスト材料のT1エネルギーは、2.7eV以上である有機発光素子。
  6.  請求項1において、
     前記第1のホスト材料の分子内の最小の結合かい離エネルギーが90kcal/mol以上である有機発光素子。
  7.  請求項1において、
     前記発光層には第2のホスト材料が含まれ、
     前記第1のホスト材料は正孔輸送性ホスト材料であり、前記第2のホスト材料は電子輸送性ホスト材料である有機発光素子。
  8.  請求項1乃至8のいずれかに記載の有機発光素子に用いられるホスト材料であって、
     一般式(1)で表されるホスト材料。
  9.  請求項1乃至8のいずれかに記載の有機発光素子を備える光源装置。
PCT/JP2013/085035 2013-12-27 2013-12-27 有機発光材料、有機発光素子およびそれを用いた光源 WO2015097841A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/085035 WO2015097841A1 (ja) 2013-12-27 2013-12-27 有機発光材料、有機発光素子およびそれを用いた光源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/085035 WO2015097841A1 (ja) 2013-12-27 2013-12-27 有機発光材料、有機発光素子およびそれを用いた光源

Publications (1)

Publication Number Publication Date
WO2015097841A1 true WO2015097841A1 (ja) 2015-07-02

Family

ID=53477776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085035 WO2015097841A1 (ja) 2013-12-27 2013-12-27 有機発光材料、有機発光素子およびそれを用いた光源

Country Status (1)

Country Link
WO (1) WO2015097841A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071380A (ja) * 2002-08-07 2004-03-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
JP4060802B2 (ja) * 2002-03-15 2008-03-12 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2008090912A1 (ja) * 2007-01-23 2008-07-31 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子の製造方法、該製造方法により得られた有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009088538A (ja) * 2002-03-22 2009-04-23 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2011204673A (ja) * 2010-03-02 2011-10-13 Semiconductor Energy Lab Co Ltd 発光素子および照明装置
US20120038264A1 (en) * 2010-08-16 2012-02-16 Hsiao Chan Liu Novel Carbazole Derivatives and Organic Light-Emitting Diode Device Using the Same
JP2012505860A (ja) * 2008-10-16 2012-03-08 ソルヴェイ(ソシエテ アノニム) 発光ダイオード用のn−フェニルカルバゾール系ホスト材料
WO2013175789A1 (ja) * 2012-05-24 2013-11-28 出光興産株式会社 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4060802B2 (ja) * 2002-03-15 2008-03-12 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2009088538A (ja) * 2002-03-22 2009-04-23 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2004071380A (ja) * 2002-08-07 2004-03-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
WO2008090912A1 (ja) * 2007-01-23 2008-07-31 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子の製造方法、該製造方法により得られた有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2012505860A (ja) * 2008-10-16 2012-03-08 ソルヴェイ(ソシエテ アノニム) 発光ダイオード用のn−フェニルカルバゾール系ホスト材料
JP2011204673A (ja) * 2010-03-02 2011-10-13 Semiconductor Energy Lab Co Ltd 発光素子および照明装置
US20120038264A1 (en) * 2010-08-16 2012-02-16 Hsiao Chan Liu Novel Carbazole Derivatives and Organic Light-Emitting Diode Device Using the Same
WO2013175789A1 (ja) * 2012-05-24 2013-11-28 出光興産株式会社 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子

Similar Documents

Publication Publication Date Title
JP5163837B2 (ja) 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
KR102590728B1 (ko) 유기 전계발광 물질 및 디바이스
US20140284580A1 (en) Electron transporting compounds and organic electroluminescent devices using the same
WO2014128945A1 (ja) 有機発光材料及び有機発光素子
JP6114806B2 (ja) 遅延蛍光化合物、これを含む有機発光ダイオード素子及び表示装置
WO2016029137A1 (en) Organic light-emitting diodes with fluorescent and phosphorescent emitters
CN109791997B (zh) 有机电场发光元件及其制造方法
KR102454041B1 (ko) 지연 형광 화합물, 이를 포함하는 유기발광다이오드소자 및 표시장치
JP5011401B2 (ja) 有機発光層材料,有機発光層材料を用いた有機発光層形成用塗布液,有機発光層形成用塗布液を用いた有機発光素子および有機発光素子を用いた光源装置
KR20130131230A (ko) 카르바졸-이미다졸-카르벤 리간드를 함유하는 헤테로렙틱 이리듐 착물 및 발광 디바이스에서의 이의 적용
JP2013509728A (ja) 有機発光ダイオード照明器具
JP2013509715A (ja) 有機発光ダイオード照明器具
JP2013509724A (ja) 有機発光ダイオード照明器具
JP2011151096A (ja) 有機発光層材料,有機発光層材料を用いた有機発光層形成用塗布液,有機発光層形成用塗布液を用いた有機発光素子および有機発光素子を用いた光源装置
JP5931193B2 (ja) 有機発光層材料、有機発光層材料を用いた有機発光層形成用塗液、有機発光層形成用塗液を用いた有機発光素子、有機発光素子を用いた光源装置、およびそれらの製造方法
JP5624953B2 (ja) 有機発光層材料,有機発光層材料を用いた有機発光層形成用塗液,有機発光層形成用塗液を用いた有機発光素子,有機発光素子を用いた光源装置およびそれらの製造方法
JP5337896B2 (ja) 有機発光層形成用材料,有機発光層形成用材料を用いた有機発光層形成用塗布液,有機発光層形成用塗布液を用いた有機発光素子および有機発光素子を用いた光源装置
JP5668071B2 (ja) 有機発光素子および有機発光素子の製造方法
JP2017054870A (ja) 有機発光素子及び光源装置
JP2013509722A (ja) 有機発光ダイオード照明器具
WO2015097841A1 (ja) 有機発光材料、有機発光素子およびそれを用いた光源
JP6083642B2 (ja) フェニルカルバゾール基置換ジフェニルケトン化合物及びそれを用いた有機エレクトロルミネッセンス素子
Lee et al. Fabrication and Electroluminescence Properties of White Organic Light-Emitting Diode with a New Yellow Fluorescent Dopant
JP5703350B2 (ja) 有機発光層材料,有機発光層材料を用いた有機発光層形成用塗布液,有機発光層形成用塗布液を用いた有機発光素子および有機発光素子を用いた光源装置
JP5998235B2 (ja) 有機発光素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP