WO2015093542A1 - 気化性防錆剤組成物 - Google Patents

気化性防錆剤組成物 Download PDF

Info

Publication number
WO2015093542A1
WO2015093542A1 PCT/JP2014/083456 JP2014083456W WO2015093542A1 WO 2015093542 A1 WO2015093542 A1 WO 2015093542A1 JP 2014083456 W JP2014083456 W JP 2014083456W WO 2015093542 A1 WO2015093542 A1 WO 2015093542A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
vaporizable
rust
rust preventive
composition
Prior art date
Application number
PCT/JP2014/083456
Other languages
English (en)
French (fr)
Inventor
厚 小森
Original Assignee
ニッソーファイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッソーファイン株式会社 filed Critical ニッソーファイン株式会社
Priority to JP2015553588A priority Critical patent/JP6479682B2/ja
Publication of WO2015093542A1 publication Critical patent/WO2015093542A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/02Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in air or gases by adding vapour phase inhibitors

Definitions

  • the present invention relates to a vaporizable rust preventive composition. More specifically, the present invention relates to a practical vaporizable rust inhibitor composition that has high rust prevention performance for metal products, particularly iron and iron alloys, and can prevent rust over a long period of time.
  • Rust may occur when metal products are stored for several months, such as when automobiles and their parts are transported overseas.
  • measures such as applying rust preventive oil, hermetically wrapping and enclosing a desiccant, enclosing a vaporizable rust inhibitor are taken. These measures are implemented alone or in combination, but have the following drawbacks.
  • rust preventive oil When rust preventive oil is applied, it is necessary to wash and remove the rust preventive oil at the time of use, which causes problems such as environmental pollution, and rust is generated in the insufficiently applied portion.
  • a desiccant alone requires a large amount of desiccant to maintain the antirust effect for a long period of time, and if the packaging is insufficient, rust occurs in a short time.
  • Vaporizable rust preventives do not require cleaning and removal during use, and the amount added to the packaging is small compared to the desiccant, but rust preventives with a fast evaporation rate have a gas concentration in a short period of time.
  • the rust preventive effect is not maintained because of lowering of the rust resistance, and the rust preventive having a slow evaporation rate has the disadvantages that the gas concentration is low and the sufficient rust preventive effect cannot be obtained.
  • Patent Document 1 discloses a rust preventive agent containing deliquescent salts, a substance that can eliminate the effects of the deliquescent properties, and ammonium benzoate that is a vaporizable ammonium salt.
  • deliquescent salts include magnesium chloride, calcium chloride, lithium chloride, and phosphorus pentoxide.
  • substances that eliminate the effects of deliquescence include inorganic porous substances such as sepiolite, magnesium oxide, water-soluble polymers, and thickeners.
  • rust preventives those composed of a combination of ammonium benzoate, magnesium chloride, and magnesium oxide are described.
  • Patent Document 2 discloses a rust inhibitor containing a non-self-decomposable ammonium salt and a non-deliquescent alkali metal salt and / or alkaline earth metal salt.
  • Non-self-degradable ammonium salts include ammonium sulfate, ammonium hydrogen sulfate, ammonium sulfite, ammonium amidosulfate, diammonium hydrogen phosphate, ammonium nitrate, ammonium borate, diammonium citrate, ammonium hydrogen citrate, ammonium adipate, ammonium acetate, benzoic acid Examples are ammonium oxalate, ammonium tartrate, ammonium hydrogen tartrate, ammonium succinate, ammonium formate, ammonium lactate, ammonium oxalate, ammonium salicylate, and diammonium ethylenediaminetetraacetate.
  • alkali metal salt and / or alkaline earth metal salt calcium hydroxide, magnesium oxide, magnesium hydroxide, sodium carbonate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium tripolyphosphate, sodium borate, Sodium metaborate is illustrated.
  • Specific examples of the rust preventive include those composed of a combination of diammonium hydrogen phosphate, magnesium oxide and sodium carbonate, and those composed of a combination of ammonium benzoate, magnesium oxide and sodium carbonate.
  • Patent Document 3 discloses a desiccant composition, cyclohexylammonium-N-cyclohexylcarbamate, and dicyclohexyl containing calcium or magnesium chloride as a hygroscopic main agent in a space where rust preventive substances are present and substantially blocked from the outside air.
  • a rust prevention method characterized by the presence of ammonium nitrite or diisopropylammonium nitrite is proposed.
  • the object of the present invention is to prevent rust over a long period of time, with high safety at the time of storage before use and at the initial stage of use, and high antirust performance for metal products, particularly iron and iron alloys, under the background art as described above. It is to provide a practical vaporizable rust inhibitor composition and a vaporizable rust inhibitor that can be used.
  • Component (A) at least one selected from the group consisting of non-vaporizable amine salts that are solid at normal temperature (excluding amine nitrite) and non-vaporizable ammonium salts that are solid at normal temperature;
  • Component (B) an alkaline substance that is solid at room temperature;
  • Component (C) A vaporizable rust preventive composition containing a desiccant component that is solid at room temperature.
  • Breathable non-permeable bag and component (A1) non-vaporizable solid salt at room temperature (excluding amine nitrite) and non-vaporizable solid ammonium salt at room temperature
  • component (B1) an alkaline substance that is solid at room temperature
  • component (C1) a desiccant that is solid at room temperature of 0 to 20 parts by weight relative to 1 part by weight of component (A1). It consists of a vaporizable rust preventive composition (I) containing the components, A vaporizable rust inhibitor comprising the bag body containing the vaporizable rust inhibitor composition (I).
  • Component (A1) at least one selected from the group consisting of non-vaporizable, solid amine salts at room temperature (excluding amine nitrite) and non-vaporizable, solid ammonium salt at room temperature
  • component (B1) A vaporizable rust preventive composition comprising an alkaline substance that is solid at room temperature
  • component (C1) a desiccant component that is solid at room temperature of 0 to 20 parts by weight with respect to 1 part by weight of component (A1).
  • Component (A1) at least one selected from the group consisting of non-vaporizable, solid amine salts at room temperature (excluding amine nitrite) and non-vaporizable, solid ammonium salt at room temperature
  • component (B1) A vaporizable rust preventive composition comprising an alkaline substance that is solid at room temperature
  • component (C1) a desiccant component that is solid at room temperature of 0 to 20 parts by weight with respect to 1 part by weight of component (A1).
  • Component (A1) at least one selected from the group consisting of non-vaporizable, solid amine salts at room temperature (excluding amine nitrite) and non-vaporizable, solid ammonium salt at room temperature
  • component (B1) A vaporizable rust preventive composition comprising an alkaline substance that is solid at room temperature
  • component (C1) a desiccant component that is solid at room temperature of 0 to 20 parts by weight with respect to 1 part by weight of component (A1).
  • Rust preventive composition (II) comprises component (A2): non-vaporizable, solid amine salt at room temperature (excluding amine nitrite), and non-vaporizable solid ammonium salt at room temperature. At least one selected from the group, and component (B2): further containing a solid alkaline substance at room temperature, and the amount of component (C2) is 3 parts by mass or more and 500 parts by mass or less with respect to 1 part by mass of component (A2) The vaporizable rust preventive according to any one of [7] to [9]. [11] The vaporizable rust preventive according to [10], wherein the component (B2) is at least one selected from the group consisting of magnesium oxide, calcium hydroxide and magnesium hydroxide.
  • the component (C1) is at least one selected from the group consisting of calcium chloride and magnesium chloride
  • the component (C2) is at least one selected from the group consisting of calcium chloride and magnesium chloride [7] to [ 11].
  • the vaporizable rust preventive according to any one of [11]. [13] Any one of [7] to [12], wherein the mass ratio of vaporizable rust preventive composition (I) / rust preventive composition (II) is 0.5 / 99.5 to 70/30 The vaporizable rust preventive agent described in 1.
  • the vaporizable rust preventive according to any one of [6] to [13], wherein the component (B1) is at least one selected from the group consisting of magnesium oxide, calcium hydroxide and magnesium hydroxide.
  • the air-permeable and water-impermeable bag is formed of a film having a moisture permeability of 1000 to 20000 g ⁇ m ⁇ 2 24 Hr ⁇ 1 at a temperature of 40 ° C. and a relative humidity of 90%.
  • the vaporizable rust preventive according to one.
  • the vaporizable rust preventive composition and vaporizable rust preventive of the present invention generate amine gas and / or ammonia gas stably over a long period from the initial use, and when the package is stored in a high temperature and high humidity state. Even when a metal wire product that is extremely susceptible to rusting at low humidity is stored, the antirust effect can be stably maintained.
  • the component (A) and the component (B) react with moisture in the air, and an amine gas and / or ammonia gas ( Hereinafter, it may be referred to as a rust preventive gas).
  • a rust preventive gas an amine gas and / or ammonia gas
  • the component (C) coexisting in the mixed or separate bag absorbs water, so that rust preventive gas is generated wastefully during storage before use. Suppress it.
  • the component (C) lowers the humidity in the space at the beginning of use, the reaction between the component (A) and the component (B) is suppressed, the generation of rust preventive gas is small, and the moisture absorption capacity of the component (C).
  • the humidity increases as the temperature decreases, the reaction between the component (A) and the component (B) proceeds and the amount of rust preventive gas generated increases.
  • rust can be prevented over a long period of time by utilizing the rust preventive effect due to a decrease in humidity and the rust preventive effect due to the rust preventive gas.
  • the vaporizable rust preventive composition according to an embodiment of the present invention contains a component (A), a component (B), and a component (C).
  • the component (A) used in the present invention is at least one selected from the group consisting of non-vaporizable and solid amine salts at room temperature (excluding amine nitrite) and non-vaporizable and solid ammonium salts at normal temperature. is there.
  • Component (A) is not limited by its form or size.
  • powders, granules, flakes and the like can be used. From the viewpoints of productivity, miscibility with other components, and the like, it is preferable to use a powder having a particle size of 0.5 mm or less and granules or flakes having a particle size of more than 0.5 mm and 5 mm or less in a desired ratio.
  • “normal temperature” means a standard temperature of the atmosphere, generally 5 to 35 ° C. (JIS Z 8703).
  • non-vaporizable refers to the property that the rust-proof gas concentration measured by the following method is 30 ppm or less, preferably 10 ppm or less.
  • Nylon film coated with polyvinylidene chloride (15 ⁇ m thickness, moisture permeability: 6 g / m 2 d (JIS K7129), oxygen permeability: 60 ml / m 2 dMPa (JIS K7126)), polyethylene film (15 ⁇ m thickness) and low density polyethylene
  • a bag (180 mm ⁇ 270 mm) was made of a non-breathable film obtained by laminating a film (60 ⁇ m).
  • amine salt or ammonium salt was put, and the bag mouth was heat-sealed and sealed in a state where the air was removed.
  • 500 ml of air was injected with a syringe, and the injection hole was closed with tape. It was stored at 25 ⁇ 1 ° C. for 24 hours.
  • a 1 mm thick soft rubber plate (20 mm ⁇ 20 mm) coated with an adhesive was applied to the bag so that an injection needle could be inserted into the rubber plate.
  • the concentration of rust-proof gas in the bag was measured with a gas detector tube with a syringe needle attached to the tip.
  • the rust-proof gas concentration was measured for amine salts using an amine gas detector tube, and for ammonium salts, it was measured using an ammonia gas detector tube.
  • Non-vaporizable, solid amine salts (except amine nitrite) at room temperature, amine hydrochloride, amine sulfate, amine nitrate; amine organic acid salts such as amine succinate, amine sulfosuccinate, amine adipate Is mentioned.
  • non-vaporizable amine salts that are solid at room temperature include dimethylamine hydrochloride, trimethylamine hydrochloride, monoethylamine hydrochloride, diethylamine hydrochloride, triethylamine hydrochloride, n-propylamine hydrochloride, dipropylamine hydrochloride , Tri-n-propylamine hydrochloride, isopropylamine hydrochloride, diisopropylamine hydrochloride, n-butylamine hydrochloride, di-n-butylamine hydrochloride, cyclohexylamine hydrochloride; dimethylamine adipate, monoethylamine sulfate, monoethylamine Examples include adipate, isopropylamine succinate, diisopropylamine succinate, cyclohexylamine adipate, cyclohexylamine succinate, cyclohexylamine hydrochloride, die
  • amine salts can be used alone or in combination of two or more.
  • amine nitrite diisopropylamine nitrite, dicyclohexyl nitrite and the like are known. Amine nitrite has been used as an excellent anti-rust active ingredient, but in recent years it has been found to produce carcinogenic substances and its use is being limited.
  • Non-vaporizable ammonium salts that are solid at room temperature include ammonium chloride, ammonium sulfate, diammonium succinate, triammonium citrate, diammonium tartrate, diammonium phthalate, diammonium adipate, diammonium hydrogen phosphate, etc. . These ammonium salts can be used alone or in combination of two or more.
  • a non-ferrous rust inhibitor component (hereinafter sometimes referred to as component (D)) may be used in combination with component (A).
  • the anti-rust component for non-ferrous include 1,2,3-benzotriazole.
  • the molar ratio of component (D) / component (A) is preferably 0/100 to 100/100, more preferably 0/100 to 50/100.
  • the concentration of the anticorrosive gas described later can be adjusted by selecting the type, amount, form and size of the component (A).
  • the component (B) used in the present invention is an alkaline substance that is solid at room temperature.
  • the alkaline substance is other than amine salts and ammonium salts.
  • the alkaline substance is a base capable of generating ammonia gas or amine gas from component (A). Specifically, it is obtained by adding an alkaline substance in an amount corresponding to 0.003 mol of a chemical group that dissolves in a hydroxyl group or water to generate a hydroxide ion in 100 ml of 0.01 mol / L ammonium chloride aqueous solution. It is a substance having a pH of 9 or more.
  • the number of moles of chemical groups that dissolve in water to generate hydroxide ions is the value obtained by dividing the molecular weight of the salt by the number of chemical groups derived from the strong base in the strong base and weak acid salts.
  • a basic salt it is a value obtained by dividing the molecular weight of the salt by the number of excess basic groups.
  • alkaline substance examples include a strong base and a salt composed of a strong base and a weak acid.
  • alkali metal carbonates such as sodium carbonate; alkali metal phosphates such as trisodium phosphate and sodium pyrophosphate; alkali metal silicates such as sodium silicate; alkali metal organic acid salts
  • An alkaline earth metal oxide such as magnesium oxide or calcium oxide; an alkaline earth metal hydroxide such as magnesium hydroxide or calcium hydroxide; Among these, those not having deliquescence are preferable, and calcium hydroxide, magnesium hydroxide, and magnesium oxide are more preferable.
  • These alkaline substances can be used alone or in combination of two or more.
  • the component (B) is not limited by its form and size. For example, powders, granules, flakes and the like can be used.
  • a powder having a particle size of 0.5 mm or less and granules or flakes having a particle size of more than 0.5 mm and 3 mm or less in a desired ratio it is preferable to mix and use a powder having a particle size of 0.5 mm or less and granules or flakes having a particle size of more than 0.5 mm and 3 mm or less in a desired ratio.
  • the amount of component (B) contained in the vaporizable rust preventive composition of the present invention is not particularly limited as long as ammonia gas or amine gas can be sufficiently generated from component (A). Specifically, the amount of the component (B) is obtained by multiplying the number of moles of alkaline ions (for example, magnesium ion, calcium ion, sodium ion, etc.) derived from the component (B) by the valence of the alkaline ion. Amount that is preferably 0.5 to 10, more preferably 1 to 5, and even more preferably 1.2 to 3 with respect to the number of moles of alkaline ions (eg, ammonium ions, alkylammonium ions, etc.) derived from A). It is. In addition, the density
  • alkaline ions for example, magnesium ion, calcium ion, sodium ion, etc
  • the component (C) used in the present invention is a desiccant component that is solid at room temperature.
  • a desiccant component that is solid at room temperature is a substance that can absorb water in the air and reduce humidity. Absorption form does not ask
  • a known desiccant component can be used.
  • examples include calcium chloride, calcium oxide, active anhydrous calcium sulfate, magnesium sulfate (anhydrous), phosphorus pentoxide, sodium sulfate, zinc chloride, magnesium chloride, anhydrous copper sulfate, sepiolite, zeolite, silica gel, and the like. Of these, at least one selected from the group consisting of calcium chloride and magnesium chloride is more preferable.
  • Calcium chloride and magnesium chloride include anhydrides and hydrates. In the present invention, calcium chloride anhydride or magnesium chloride anhydride is more preferably used.
  • Component (C) is not limited by its form or size. For example, powders, granules, flakes and the like can be used.
  • a powder having a particle size of 0.5 mm or less and granules or flakes having a particle size of more than 0.5 mm and 5 mm or less in a desired ratio it is preferable to use a powder having a particle size of 0.5 mm or less and granules or flakes having a particle size of more than 0.5 mm and 5 mm or less in a desired ratio.
  • the vaporizable rust preventive composition of the present invention preferably contains magnesium chloride and calcium chloride as components (C).
  • the mass ratio of magnesium chloride / calcium chloride is preferably 5/95 to 50/50.
  • the component (C) can be contained in an amount of preferably 500 parts by mass or less with respect to 1 part by mass of the component (A).
  • component (B) a component that can be a desiccant component such as magnesium oxide or calcium oxide
  • another desiccant component such as magnesium chloride or calcium chloride
  • a water-soluble polymer or an inorganic porous material can be contained.
  • a water-soluble polymer or an inorganic porous material is contained, liquefaction due to deliquescence of calcium chloride or magnesium chloride can be suppressed.
  • the water-soluble polymer include acrylic acid-based condensates, methyl cellulose, methyl cellulose, hydroxyalkyl cellulose, polyvinyl alcohol, vinyl acetate, carboxymethyl cellulose sodium salt, sodium alginate and the like.
  • the inorganic porous material include sepiolite, zeolite, silica gel and the like.
  • the amount of component (C) can be adjusted according to the required rust prevention effect.
  • the vaporizable rust inhibitor composition (I) having a high rust prevention effect in the initial stage is preferably 0 parts by mass or more and 20 parts by mass with respect to 1 part by mass of the component (C). Or less, more preferably 0.01 parts by mass or more and 20 parts by mass or less, further preferably 0.01 parts by mass or more and 10 parts by mass or less, still more preferably 0.05 parts by mass or more and 5 parts by mass or less, and most preferably 0.8 parts by mass. 1 part by mass or more and 2 parts by mass or less.
  • the rust inhibitor composition (II) having a high durability of the rust preventive effect is preferably 3 parts by mass or more and 500 parts by mass or less with respect to 1 part by mass of the component (C). More preferably, it is 5 to 100 parts by mass, and more preferably 10 to 50 parts by mass.
  • concentration of the rust preventive gas mentioned later can be adjusted with selection of the kind, quantity, form, and magnitude
  • the vaporizable rust preventive composition of the present invention is not particularly limited by its production method.
  • the vaporizable rust preventive composition of the present invention for example, by mixing the component (A), the component (B) and the optional component (C) together; the component (A) and the component (B) First mix and granulate, then add component (C) to this as needed and mix; component (B) and optional component (C) are first mixed and granulated, then By adding component (A) and mixing; or by first mixing and granulating component (A) and optional component (C) and then adding and mixing component (B) ,Obtainable.
  • the vaporizable rust preventive agent includes a breathable non-permeable bag, component (A1): non-vaporizable amine salt (excluding amine nitrite), and non-vaporized at room temperature.
  • the amount of component (B1) is not particularly limited as long as ammonia gas or amine gas can be sufficiently generated from component (A1). Specifically, the amount of the component (B1) is obtained by multiplying the number of moles of alkaline ions (for example, magnesium ion, calcium ion, sodium ion, etc.) derived from the component (B1) by the valence of the alkaline ion. An amount that is preferably 0.5 to 10, more preferably 1 to 5, and still more preferably 1.2 to 3 with respect to the number of moles of alkaline ions (eg, ammonium ions, alkylammonium ions, etc.) derived from A1). It is.
  • alkaline ions for example, magnesium ion, calcium ion, sodium ion, etc.
  • the amount of component (C1) is preferably 0 to 20 parts by mass, more preferably 0.01 to 20 parts by mass, and still more preferably 0.01 parts by mass with respect to 1 part by mass of component (A1). It is not less than 10 parts by mass and more preferably not less than 0.05 parts by mass and not more than 5 parts by mass, and most preferably not less than 0.1 parts by mass and not more than 2 parts by mass.
  • component (A2) non-vaporizable, solid amine salt at room temperature (excluding amine nitrite), and non-vaporizable, solid ammonium at room temperature, if necessary
  • At least one selected from the group consisting of salts and component (B2): an alkaline substance that is solid at room temperature may be contained.
  • the amount of component (B2) is not particularly limited as long as ammonia gas or amine gas can be sufficiently generated from component (A2). Specifically, the amount of the component (B2) is obtained by multiplying the number of moles of alkaline ions (for example, magnesium ion, calcium ion, sodium ion, etc.) derived from the component (B2) by the valence of the alkaline ion. An amount that is preferably 0.5 to 10, more preferably 1 to 5, and still more preferably 1.2 to 3 with respect to the number of moles of alkaline ions derived from A2) (for example, ammonium ions, alkylammonium ions, etc.) It is.
  • alkaline ions for example, magnesium ion, calcium ion, sodium ion, etc.
  • the amount of component (C2) is preferably 3 parts by weight or more and 500 parts by weight or less, more preferably 5 parts by weight or more and 100 parts by weight or less, and still more preferably 10 parts by weight or more and 50 parts by weight with respect to 1 part by weight of component (A2). It is below mass parts.
  • the vaporizable rust preventive composition (I) and / or the rust preventive composition (II) used in the vaporizable rust preventive of the present invention contains a water-soluble polymer or inorganic porous material as an optional component. Can do.
  • the water-soluble polymer and the inorganic porous material are as described above.
  • the method for producing the vaporizable rust inhibitor composition (I) and the rust inhibitor composition (II) used in the vaporizable rust inhibitor of the present invention is not particularly limited.
  • the vaporizable rust preventive composition (I) and the rust preventive composition (II) can be obtained, for example, in the same manner as the method for producing the vaporizable rust preventive composition of the present invention.
  • the gas-permeable impermeable bag used in the present invention allows water vapor, amine gas, and ammonia gas to pass therethrough, but is not particularly limited as long as it does not allow water to pass through.
  • Magnesium chloride and calcium chloride are deliquescent materials. Since the liquid generated by deliquescence of magnesium chloride or calcium chloride promotes rust generation of the metal product, it is preferable that the liquid does not leak out from the bag.
  • Examples of such a bag include a bag made of a microporous film.
  • the film constituting the bag is preferably a microporous film made of polyolefin such as polyethylene or polypropylene.
  • the moisture permeability of the film is preferably 1000 to 20000 g ⁇ m ⁇ 2 24 Hr ⁇ 1 , more preferably 3000 to 10000 g ⁇ m ⁇ 2 24 Hr ⁇ 1 at a temperature of 40 ° C. and a relative humidity of 90%.
  • the moisture permeability is measured by a method according to JIS-Z-0208.
  • the film constituting the bag body various commercially available microporous films can be used. Specifically, there is a film in which fine calcium carbonate powder is kneaded into polyethylene or polypropylene, formed into a film, and then stretched to form fine pores in the film. Furthermore, in order to improve the strength of the bag, a nonwoven fabric can be bonded to one or both sides of the film.
  • the vaporizable rust preventive agent composition (I) and the rust preventive agent composition (II) are accommodated in a breathable water-impermeable bag.
  • a breathable water-impermeable bag As a form of storage, The vaporizable rust preventive composition (I) and the rust preventive composition (II) are separated and stored in one air-permeable and water-impermeable bag as shown in FIG.
  • the one formed by storing the vaporizable rust preventive composition (I) in one breathable water-impermeable bag can be used alone or in combination with another desiccant as the vaporizable rust preventive, In order to supplement the function of the anticorrosive agent for a set of two bags or the anticorrosive agent for a single bag, it can be used in combination with them.
  • the storage mass ratio of the vaporizable rust preventive composition (I) / rust preventive composition (II) can be set appropriately according to the purpose, but the balance between immediate rust preventive effect and sustained rust preventive effect From this viewpoint, the ratio is preferably 0.5 / 99.5 to 70/30, more preferably 1/99 to 50/50, and still more preferably 5/95 to 20/80.
  • Ingredients (C1) and (C2) function as hygroscopic or desiccant. Since the vaporizable rust preventive composition (I) has a relatively low content of the component (C1), only the bag containing the vaporizable rust preventive composition (I) is placed in the atmosphere or in a packaging container. If left unattended, moisture in the atmosphere promotes the reaction between the component (A1) and the component (B1), and a rust preventive gas (amine gas or ammonium gas) is immediately generated.
  • a rust preventive gas amine gas or ammonium gas
  • a bag containing the vaporizable rust preventive composition (I) and a bag containing the rust preventive composition (II) Installing in the same packaging container reduces the moisture that promotes the reaction between the component (A1) and the component (B1), thereby suppressing the generation of rust preventive gas from the vaporizable rust preventive composition (I). .
  • the suppression of the occurrence is more effective as the distance between the bag containing the vaporizable rust preventive composition (I) and the bag containing the rust preventive composition (II) is shorter.
  • the rust preventive agent for one bag is always a bag containing the vaporizable rust preventive composition (I) and a bag containing the rust preventive composition (II).
  • a rust preventive agent for two bags There are few inconveniences such as a rust preventive agent for two bags.
  • the rust preventive containing the vaporizable rust preventive composition (I) and the rust preventive composition (II) unevenly distributed without partitioning has the same convenience as the rust preventive for one bag. If the vaporizable rust preventive composition (I) and the rust preventive composition (II) are mixed during transportation, the reaction between the component (A1) and the component (B1) is suppressed too much. In addition, the immediate effect of rust prevention may be reduced.
  • a substance to be rusted and the vaporizable rust preventive composition of the present invention or the vaporizable rust preventive of the present invention are present together in a space substantially blocked from outside air. It is included.
  • the space that is substantially shielded from the outside air is a space where moisture containing air hardly enters from outside, and is surrounded by a shielding material that is moisture-proof and does not allow amine gas or ammonia gas to pass through.
  • Space can be formed by packing the rust-proof substance with a film having the shielding property as described above.
  • Examples of the shielding material that has moisture resistance and does not allow the passage of amine gas or ammonia gas include gas barrier films such as a polyethylene film having a thickness of 50 ⁇ m or more, preferably 70 to 150 ⁇ m, or a laminated film of polyethylene terephthalate and polyethylene. Can be mentioned.
  • the chemicals and the like used in this example are as follows.
  • CaCl 2 granular anhydrous calcium chloride for industrial use, particle size of 1 to 3 mm
  • MgCl 2 anhydrous magnesium chloride for industrial use, flake and powder mixture, particle size 0.1-3mm
  • Ca (OH) 2 Powdered calcium hydroxide for industrial use
  • Mg (OH) 2 Magnesium hydroxide for industrial use, mixture of granules and powder, particle size 0.1 to 3 mm
  • MgO Magnesium oxide for industrial use, granule and powder mixture, particle size 0.1-3mm
  • Ammonium succinate Anhydrous Reagent Ammonium citrate: Anhydride Reagent Ammonium phthalate: Anhydrous Reagent Ammonium adipate: Anhydrous Reagent Ammonium chloride: Anhydride Reagent Ammonium sulfate: Anhydride Food additive Powder Diammonium hydrogen phosphate: Anhydride Reagent Ammonium benzoate: Anhydride Reagent
  • Water-soluble polymer industrial, powder Inorganic water-absorbing agent: industrial, porous powder
  • Vaporizable rust preventive composition (A) A vaporizable rust preventive composition (A) was prepared by mixing 0.77 g of MgCl 2 , 0.10 g of a water-soluble polymer, 0.13 g of an inorganic water absorbing agent, 0.06 g of Mg (OH) 2 , and 0.05 g of ammonium sulfate. Obtained.
  • composition (B) A composition (B) was obtained by mixing 0.77 g of MgCl 2 , 0.10 g of a water-soluble polymer and 0.13 g of an inorganic water-absorbing agent.
  • composition (C) A composition (C) was obtained by mixing 0.50 g of MgCl 2 and 0.50 g of MgO.
  • composition (D) A composition (D) was obtained by mixing 0.28 g of cyclohexylammonium-N-cyclohexylcarbamate (CHC) and 0.518 g of dicyclohexylamine nitrite.
  • compositions (A) to (D) are summarized in Table 1.
  • a vaporizable rust preventive composition (1) was obtained by mixing 0.249 g of dieramine hydrochloride, 0.09 g of Mg (OH) 2 , 0.03 g of Ca (OH) 2 and 0.03 g of CaCl 2 .
  • Vaporizable rust preventive composition (2) A vaporizable rust preventive composition (2) was obtained in the same manner as the preparation method of the vaporizable rust preventive composition (1) except that 0.249 g of dieramine hydrochloride was changed to 0.219 g of n-propylamine hydrochloride. It was.
  • a vaporizable rust preventive composition (3) was obtained in the same manner as the preparation method of the vaporizable rust preventive composition (1) except that 0.249 g of dieramine hydrochloride was changed to 0.312 g of diisopropylamine hydrochloride.
  • vaporizable rust preventive composition (4) A vaporizable rust preventive composition (4) was obtained in the same manner as the preparation of the vaporizable rust preventive composition (1) except that 0.249 g of dieramine hydrochloride was changed to 0.306 g of cyclohexylamine hydrochloride.
  • vaporizable rust inhibitor composition (5) was obtained in the same manner as the preparation method of the vaporizable rust inhibitor composition (1) except that 0.249 g of dieramine hydrochloride was changed to 0.498 g of diisopropylamine succinate. .
  • vaporizable rust preventive composition (6) A vaporizable rust preventive composition (6) was obtained in the same manner as the preparation method of the vaporizable rust preventive composition (1) except that 0.249 g of diethylamine hydrochloride was changed to 0.15 g of ammonium sulfate.
  • vaporizable rust preventive composition (7) A vaporizable rust preventive composition (7) was obtained in the same manner as the preparation method of the vaporizable rust preventive composition (1) except that the amount of the dieramine hydrochloride was changed to 0.083 g.
  • Vaporizable rust preventive composition (8) Vaporizable by the same method as the preparation of vaporizable rust preventive composition (1) except that 0.09 g of Mg (OH) 2 and 0.03 g of Ca (OH) 2 were changed to 0.12 g of Mg (OH) 2 A rust preventive composition (8) was obtained.
  • Vaporizable rust preventive composition (9) A vaporizable rust preventive composition (9) was obtained in the same manner as the preparation method of the vaporizable rust preventive composition (1) except that the amount of CaCl 2 was changed to 0.3 g.
  • Vaporizable rust preventive composition (10) A vaporizable rust inhibitor composition (10) was obtained in the same manner as the preparation method of the vaporizable rust inhibitor composition (1) except that 0.03 g of CaCl 2 was changed to 0.03 g of MgCl 2 .
  • Table 2 summarizes the component ratios of the vaporizable rust preventive compositions (1) to (10).
  • the antirust property was evaluated by the following method.
  • a bag (180 mm ⁇ 270 mm) was made of a non-breathable film obtained by laminating a nylon film coated with polyvinylidene chloride and a polyethylene film. One vaporizable rust preventive was put into this bag, and the bag mouth was heat-sealed and sealed in a state where the air was removed. 500 ml of air was injected into the sealed bag with a syringe, and the injection hole was closed with tape. It was stored at 40 ° C. for 5 days. A 1 mm thick soft rubber plate (20 mm ⁇ 20 mm) coated with an adhesive was applied to the bag so that an injection needle could be inserted into the rubber plate.
  • the concentration of rust-proof gas in the bag was measured with a gas detector tube with a syringe needle attached to the tip.
  • the rust-proof gas concentration is measured using a gas detector tube for amine for vaporizable rust preventives that generate only amine gas, and the gas detector tube for ammonia for vaporizable rust preventives that generate only ammonia gas.
  • the vaporizable rust inhibitor that generates both ammonia gas and amine gas was measured using an ammonia gas detector tube.
  • Test piece a The surface of a rectangular parallelepiped gray cast iron (FC-200) measuring 50 mm long ⁇ 4 mm wide ⁇ 50 mm high was washed with methanol. Methanol was wiped off with a JK wiper. Washed again with methanol. And it was naturally dried. This was designated as test piece a. Test piece a was immersed in a methanol solution containing 300 ppm of sodium chloride. It was lifted and drained with a JK wiper. And it was naturally dried. This was designated as test piece b.
  • test pieces a and b were placed upright at the corners in a flat bottom plastic container (length 340 mm x width 270 mm x height 180 mm) (the top surface was open and the side surfaces 4 were cut into rectangles leaving a peripheral width of 20 mm). .
  • a vaporizable rust inhibitor was installed at the corner in the container farthest from the test pieces a and b. These were all stored in a 100 ⁇ m thick polyethylene film bag (500 mm ⁇ 750 mm), and the bag mouth was sealed with a rubber band. The bag was affixed with a small amount of gummed tape so that the film surface of the bag was almost in close contact with the wall of the plastic container.
  • a test rubber was obtained by attaching a 1 mm thick soft rubber plate (20 mm ⁇ 20 mm) coated with an adhesive to the films closest to the test pieces a and b, and allowing the injection needle to pierce the rubber plate.
  • This test body was placed in a thermo-hygrostat which repeats the following temperature and relative humidity environment in a 24-hour cycle. (1) Maintain a temperature of 40 ° C. and a relative humidity of 90% for 11 hours. (2) Change the temperature to 20 ° C. and 90% relative humidity over 1 hour, and maintain this state for 11 hours. (3) Next, change to the state of (1) over 1 hour.
  • the specimen When 10 hours have passed while maintaining a temperature of 20 ° C and a relative humidity of 90%, the specimen is taken out of the thermo-hygrostat, and the concentration of rust-proof gas in the bag is detected by a gas detector tube with a syringe needle attached to the tip.
  • the rust-proof gas concentration is measured using a gas detector tube for amine for vaporizable rust preventives that generate only amine gas, and the gas detector tube for ammonia for vaporizable rust preventives that generate only ammonia gas.
  • the vaporizable rust inhibitor that generates both ammonia gas and amine gas was measured using an ammonia gas detector tube.
  • a resin material was obtained by blending fine calcium carbonate with polypropylene. This resin material was molded to obtain a raw film. The raw film was biaxially stretched to obtain a microporous film. A nonwoven fabric made of fibers obtained by coating polyethylene terephthalate fibers with polyethylene was prepared. The nonwoven fabric was thermally laminated on both sides of the microporous film to obtain a bag film having a moisture permeability of 5000 g ⁇ m ⁇ 2 24 Hr ⁇ 1 at a temperature of 40 ° C. and a relative humidity of 90%. The bag film was heat-sealed to produce a single-piece bag a of 50 mm ⁇ 80 mm.
  • the bag film was heat-sealed to produce a bite bag b of 50 mm ⁇ 20 mm.
  • the bag film was heat-sealed to produce a single-chip bag c of 50 mm ⁇ 60 mm.
  • the bag film was heat-sealed to produce two-necked bags A of 50 mm ⁇ 20 mm and 50 mm ⁇ 60 mm (50 mm ⁇ 80 mm in total).
  • the bag film was heat-sealed to produce two-necked bags B of 50 mm ⁇ 30 mm and 50 mm ⁇ 50 mm (50 mm ⁇ 80 mm in total).
  • the bag film was heat sealed to produce two-necked bags C of 50 mm ⁇ 30 mm and 50 mm ⁇ 80 mm (50 mm ⁇ 110 mm in total).
  • composition (D) 0.798 g is enclosed in the 50 mm ⁇ 30 mm side of the two-port bag B, and 1.00 g of composition (C) is enclosed in the 50 mm ⁇ 60 mm side of the two-port bag B to obtain a rust inhibitor (c). It was. Table 3 shows the evaluation results of rust prevention properties.
  • Vaporizable rust inhibitor (2) Vaporizable rust inhibitor composition (1) 0.399 g was sealed in a sack bag b, 1.11 g of vaporizable rust inhibitor composition (A) was sealed in a sack bag c, A vaporizable rust inhibitor (2) was obtained. Table 3 shows the evaluation results of rust prevention properties.
  • Vaporizable rust preventive composition (1) 0.399 g is put in a sack a, and 1.11 g of vaporizable rust preventive composition (A) is added to the vaporizable rust preventive composition (1) as shown in FIG.
  • the vaporized rust preventive agent (3) was obtained by stacking in a bite bag a in a stacked manner and sealing. Table 3 shows the evaluation results of rust prevention properties.
  • Vaporizable rust preventive (4) Vaporizable rust preventive composition (1) 0.399 g is sealed on the 50 mm ⁇ 20 mm side of the two-port bag A, and 1.11 g of vaporizable rust preventive composition (A) is sealed on the 50 mm ⁇ 60 mm side of the two-port bag A As a result, a vaporizable rust inhibitor (4) was obtained. Table 3 shows the evaluation results of rust prevention properties.
  • Vaporizable rust inhibitor (5) Vaporizable anticorrosive composition (1) 0.399g was changed to vaporizable anticorrosive composition (2) 0.369g, but the vaporizable anticorrosive agent (4) was prepared in the same manner as the preparation method of vaporizable anticorrosive agent (4). Rust agent (5) was obtained. Table 4 shows the evaluation results of rust prevention properties.
  • Vaporizable rust preventive composition (1) 0.399g was changed to vaporizable rust preventive composition (3) 0.462g except that vaporizable rust preventive composition (4) was prepared in the same way as the preparation method. Rust agent (6) was obtained. Table 4 shows the evaluation results of rust prevention properties.
  • Vaporizable rust preventive composition (1) 0.399 g was changed to vaporizable rust preventive composition (4) 0.456 g, except that vaporizable rust preventive composition (4) was prepared in the same manner as the vaporizable rust preventive composition (4).
  • a rusting agent (7) was obtained.
  • Table 4 shows the evaluation results of rust prevention properties.
  • Vaporizable rust preventive composition (1) 0.399g was changed to vaporizable rust preventive composition (5) 0.648g except that vaporizable rust preventive composition (4) was prepared in the same way as the preparation method. Rust agent (8) was obtained. Table 4 shows the evaluation results of rust prevention properties.
  • Vaporizable rust inhibitor (9) Vaporizable rust preventive composition (1) 0.399g was changed to vaporizable rust preventive composition (6) 0.300g except that vaporizable rust preventive composition (4) was prepared in the same way as the preparation method. A rusting agent (9) was obtained. Table 4 shows the evaluation results of rust prevention properties.
  • Vaporizable rust inhibitor (10) Vaporizable rust preventive composition (1) 0.399 g was changed to vaporizable rust preventive composition (7) 0.233 g. Rust agent (10) was obtained. Table 4 shows the evaluation results of rust prevention properties.
  • Vaporizable rust preventive composition (1) 0.399g was changed to vaporizable rust preventive composition (8) 0.669g except that vaporizable rust preventive composition (4) was prepared in the same way as the preparation method. Rust agent (11) was obtained. Table 4 shows the evaluation results of rust prevention properties.
  • Vaporizable rust preventive composition (1) 0.399 g was changed to vaporizable rust preventive composition (9) 0.399 g, except that the vaporizable rust preventive composition (4) was prepared in the same manner as the vaporizable rust preventive composition (4).
  • Rust agent (12) was obtained. Table 4 shows the evaluation results of rust prevention properties.
  • Vaporizable rust preventive composition (1) 0.399g was changed to vaporizable rust preventive composition (10) 0.339g except that vaporizable rust preventive composition (4) was prepared in the same way as the preparation method. Rust agent (13) was obtained. Table 4 shows the evaluation results of rust prevention properties.
  • Vaporizable rust inhibitor (14) Vaporizable rust preventive composition
  • A Vaporizable rust preventive agent (14) in the same manner as the preparation of vaporizable rust preventive agent (4) except that 1.11 g of composition (B) was changed to 1.00 g of composition (B) Got.
  • Table 4 shows the evaluation results of rust prevention properties.
  • the specimen When 6 hours have passed with the temperature maintained at 25 ° C and relative humidity 90%, the specimen is removed from the thermo-hygrostat, and the concentration of rust-proof gas in the bag is detected with a gas detector tube with an injection needle attached to the tip. Was measured.
  • the rust-proof gas concentration is measured using a gas detector tube for amine for vaporizable rust preventives that generate only amine gas, and the gas detector tube for ammonia for vaporizable rust preventives that generate only ammonia gas.
  • the vaporizable rust inhibitor that generates both ammonia gas and amine gas was measured using an ammonia gas detector tube.
  • the range of 40 mm x 40 mm in the center of the gray cast iron is 4 mm.
  • the rust generation rate was calculated by dividing 100 ⁇ 4 mm squares into 100 equal parts and counting the number of rusted squares on both sides. The results are shown in Table 5. After calculating the rust occurrence rate, the specimen was returned to its original state.
  • the rust preventive composition of the present invention obtained by mixing calcium chloride, a non-vaporizable ammonium salt, and an alkaline substance has a low concentration of rust preventive gas at the time of storage.
  • Ammonia gas can be continuously diffused for a long time from time to time, and the metal product can be effectively prevented from being rusted.
  • the rust preventive composition (E) corresponding to that described in Patent Document 2 has a high ammonia gas concentration during storage and generates a high concentration gas at the beginning, but a low concentration after 14 days.
  • the anticorrosive composition (F) corresponding to that described in Patent Document 1 has a high ammonia gas concentration during storage and has a safety problem, and the generation amount of ammonia gas at the initial stage of use is small, so rust. The effect of preventing the occurrence of this was insufficient.
  • a test piece was obtained by attaching a soft rubber plate (20 mm ⁇ 20 mm) having a thickness of 1 mm to which an adhesive was applied to the nearest film of gray cast iron and allowing the injection needle to be inserted into the rubber plate.
  • This test body was placed in a thermo-hygrostat which repeats the following temperature and relative humidity environment in a 24-hour cycle. (1) Maintain a temperature of 50 ° C. and a relative humidity of 90% for 11 hours. (2) The temperature is changed to 10 ° C. and relative humidity 90% over 1 hour, and this state is maintained for 11 hours. (3) Next, change to the state of (1) over 1 hour.
  • the test specimen is taken out of the thermo-hygrostat and the concentration of rust-proof gas in the bag is detected by a gas detector tube with a syringe needle attached to the tip.
  • the rust-proof gas concentration is measured using a gas detector tube for amine for vaporizable rust preventives that generate only amine gas, and the gas detector tube for ammonia for vaporizable rust preventives that generate only ammonia gas.
  • the vaporizable rust inhibitor that generates both ammonia gas and amine gas was measured using an ammonia gas detector tube.
  • the range of 40 mm x 40 mm in the center of the gray cast iron is 4 mm.
  • the rust generation rate was calculated by dividing 100 ⁇ 4 mm squares into 100 equal parts and counting the number of rusted squares on both sides. The results are shown in Table 6 and Table 7. After calculating the rust occurrence rate, the specimen was returned to its original state.
  • Test III is a condition in which rust is more likely to occur than in Test II, but rust can be sufficiently prevented by using the rust inhibitor composition according to the present invention.
  • Vaporizable rust preventive composition (37) 0.399 g was sealed on the 50 mm ⁇ 30 mm side of the two-seal bag B, and 0.7 g of calcium chloride was sealed on the 50 mm ⁇ 50 mm side of the two-sacked bag B. 15) was obtained. Rust prevention test I was conducted. The results are shown in Table 10.
  • Vaporizable rust inhibitor (16) Vaporizable rust preventive composition (42) 0.399 g was sealed on the 50 mm ⁇ 30 mm side of the two-port bag B, and 0.7 g of magnesium chloride was sealed on the 50 mm ⁇ 50 mm side of the two-port bag B (vaporizable rust preventive agent ( 16) was obtained. Rust prevention test I was conducted. The results are shown in Table 10.
  • the bag was filled with the prepared vaporizable rust inhibitor composition (52) to (55) and the composition (I), the bag mouth was heat sealed, and the vaporizable rust inhibitor composition (52) to ( 55) and a rust preventive agent containing the composition (I) were obtained.
  • a frame was enclosed in an inner bag having an inner space of 105 cm in length, 105 cm in width, and 105 cm in height, surrounding the lower surface, side surface, and upper surface with a polyethylene film having a thickness of 50 ⁇ m.
  • a 300mm x 200mm dust cloth made by stacking four towels on the middle of the uppermost four sides of the inner bag is attached to the outer side of the inner bag with adhesive tape at the 200mm side of the towel and hangs down. It was. Further, a soft rubber plate (20 mm ⁇ 20 mm) having a thickness of 1 mm was attached to the side surface of the inner bag with an adhesive.
  • the inner bag was enclosed in an outer bag having an inner space of 120 cm in length, 120 cm in width, and 120 cm in height, surrounding the lower surface, side surface, and upper surface with a polyethylene film having a thickness of 100 ⁇ m.
  • test specimen was placed indoors where it was not exposed to direct sunlight or rain, but was kept at the same temperature as the outside temperature with good ventilation.
  • a cut was made in the outer bag at a position corresponding to the position where the rag was suspended, water was soaked into the rag, and the cut was then sealed with an adhesive tape. Water soaking into the rag was performed once a week. In the space between the inner bag and the outer bag, the relative humidity was maintained at 95% or more.
  • the maximum temperature, minimum temperature, maximum humidity, and minimum humidity in the inner bag were recorded with a thermohygrometer.
  • a cut was made in the outer bag at a position corresponding to the position of the soft rubber plate, the injection needle was inserted into the rubber plate, the gas in the inner bag was taken out, and then the cut was closed with an adhesive tape.
  • the rust-proof gas concentration of the extracted gas was measured with a gas detector tube.
  • the rust-proof gas concentration is measured using a gas detector tube for amine for vaporizable rust preventives that generate only amine gas, and the gas detector tube for ammonia for vaporizable rust preventives that generate only ammonia gas.
  • the vaporizable rust inhibitor that generates both ammonia gas and amine gas was measured using an ammonia gas detector tube.
  • the gray cast iron is temporarily removed from the test body, and in accordance with JISK1994, the range of the 40mm ⁇ 40mm center of the gray cast iron is equally divided into 100 squares of 4mm ⁇ 4mm, and rust The number of generated squares was counted on both sides, and the incidence of rust was calculated. The results are shown in Table 11.
  • (Vaporizable rust preventive composition (56)) Granule-shaped diethylamine hydrochloride (particle size range: 1 mm-5 mm) 0.238 g, diethylamine hydrochloride ground product (particle size range: 0.1 mm or less) 0.080 g, calcium hydroxide (particle size range: 0.1 mm or less) 0.004 g , Magnesium oxide (particle size range: 3 mm or less) 0.160 g, calcium chloride powder (particle size range: 0.1 mm or less) 0.040 g, water-soluble polymer 0.030 g, and inorganic water-absorbing agent 0.006 g are vaporized. Rust preventive composition (56) was obtained.
  • a rust inhibitor composition (K) was obtained by mixing 3.00 g of magnesium chloride, 0.80 g of a water-soluble polymer, 0.15 g of an inorganic water absorbing agent, 0.10 g of magnesium hydroxide and 0.04 g of calcium hydroxide.
  • the rust inhibitor composition (K) was filled into the one-sack bag a, and the mouth of the bag was heat-sealed to obtain a rust inhibitor containing the rust inhibitor composition (K).
  • Vaporizable rust preventive composition (Vaporizable rust inhibitor (17)) Vaporizable rust preventive composition (56) 0.56 g was sealed on the 50 mm ⁇ 30 mm side of the two-port bag C, and 4.1 g of rust preventive composition (K) was sealed on the two-port bag C on the 50 mm ⁇ 80 mm side. A vaporizable rust inhibitor (17) was obtained. Table 13 shows the evaluation results of rust prevention properties.
  • Vaporizable rust preventive (18) Vaporizable rust preventive composition (56) 0.56g was changed to vaporizable rust preventive composition (57) 0.64g except that vaporizable rust preventive composition (17) was prepared in the same manner Rust agent (18) was obtained. Table 13 shows the evaluation results of rust prevention properties.
  • Vaporizable rust inhibitor (19) Vaporizable rust preventive composition (56) 0.56 g was changed to vaporizable rust preventive composition (58) 1.72 g, except that vaporizable rust preventive composition (17) was prepared in the same manner as the vaporizable rust preventive composition (17). Rust agent (19) was obtained. Table 13 shows the evaluation results of rust prevention properties.
  • Vaporizable rust inhibitor (20) Vaporizable rust preventive composition (56) 0.56 g was changed to vaporizable rust preventive composition (59) 4.52 g, except that vaporizable rust preventive composition (17) was prepared in the same manner as the vaporizable rust preventive composition (17). A rusting agent (20) was obtained. Table 13 shows the evaluation results of rust prevention properties.
  • Vaporizable rust inhibitor (21) Vaporizable rust preventive composition (56) 0.56 g was changed to vaporizable rust preventive composition (60) 0.56 g except that vaporizable rust preventive composition (17) was prepared in the same manner as the vaporizable rust preventive composition (17). Rust agent (21) was obtained. Table 13 shows the evaluation results of rust prevention properties.
  • Vaporizable rust inhibitor (22) Vaporizable rust preventive composition (56) 0.56g was changed to vaporizable rust preventive composition (61) 0.64g, except that vaporizable rust preventive composition (17) was prepared in the same manner as the vaporizable rust preventive composition (17). Rust agent (22) was obtained. Table 13 shows the evaluation results of rust prevention properties.
  • Vaporizable rust inhibitor (23) Vaporizable rust preventive composition (56) 0.56 g was changed to vaporizable rust preventive composition (62) 0.64 g, except that vaporizable rust preventive composition (17) was prepared in the same manner as the vaporizable rust preventive composition (17). Rust agent (23) was obtained. Table 13 shows the evaluation results of rust prevention properties.
  • Vaporizable rust inhibitor (24) Vaporizable rust preventive composition (56) 0.56 g was changed to vaporizable rust preventive composition (63) 0.64 g, except that vaporizable rust preventive composition (17) was prepared in the same manner as the vaporizable rust preventive composition (17). Rust agent (24) was obtained. Table 13 shows the evaluation results of rust prevention properties.
  • Vaporizable rust inhibitor (25) Vaporizable rust preventive composition (56) 0.56 g was changed to vaporizable rust preventive composition (J) 0.52 g, except that vaporizable rust preventive composition (17) was prepared in the same manner as the vaporizable rust preventive composition (17). Rust agent (25) was obtained. Table 13 shows the evaluation results of rust prevention properties.
  • the specimen When 10 hours have passed while maintaining a temperature of 20 ° C and a relative humidity of 90%, the specimen is taken out of the thermo-hygrostat, and the concentration of rust-proof gas in the bag is detected by a gas detector tube with a syringe needle attached to the tip.
  • the rust-proof gas concentration is measured using a gas detector tube for amine for vaporizable rust preventives that generate only amine gas, and the gas detector tube for ammonia for vaporizable rust preventives that generate only ammonia gas.
  • the vaporizable rust inhibitor that generates both ammonia gas and amine gas was measured using an ammonia gas detector tube.
  • the bag mouth was opened and the test piece was taken out, in accordance with JIS K 1994.
  • the range of 40 mm ⁇ 40 mm in the center of gray cast iron was equally divided into 100 ⁇ 4 mm ⁇ 4 mm squares, and the number of squares with rust was counted on both sides to calculate the rust generation rate.
  • the results are shown in Table 13. After calculating the rust occurrence rate, the specimen was returned to its original state.
  • a rust preventive composition (65) was obtained by mixing 6.00 g of magnesium sulfate, 0.20 g of ammonium sulfate, 0.40 g of magnesium hydroxide and 0.04 g of calcium hydroxide.
  • Vaporizable rust preventive composition (56) 0.56 g was sealed on the 50 mm ⁇ 30 mm side of the two-port bag C, and 4.6 g of rust preventive composition (64) was sealed on the two-port bag C on the 50 mm ⁇ 80 mm side. A vaporizable rust inhibitor (26) was obtained. Table 14 shows the results of evaluation of rust prevention.
  • Vaporizable rust preventive composition (56) 0.56 g was sealed on the 50 mm ⁇ 30 mm side of the two-port bag C, and 6.6 g of rust preventive composition (65) was sealed on the 50 mm ⁇ 80 mm side of the two-port bag C. A vaporizable rust inhibitor (27) was obtained. Table 14 shows the results of evaluation of rust prevention.
  • Vaporizable rust preventive composition 56) 0.56 g was sealed on the 50 mm ⁇ 30 mm side of the two-port bag C, and 12.0 g of rust preventive composition (66) was sealed on the 50 mm ⁇ 80 mm side of the two-port bag C. A vaporizable rust inhibitor (28) was obtained. Table 14 shows the results of evaluation of rust prevention.
  • Vaporizable rust inhibitor (29) Vaporizable rust preventive composition (56) 0.56 g is enclosed in the 50 mm ⁇ 30 mm side of the two-port bag C, and 12.0 g of calcium oxide granules are enclosed in the 50 mm ⁇ 80 mm side of the two-port bag C. (29) was obtained. Table 14 shows the results of evaluation of rust prevention.
  • Rust inhibitor (k) Rust preventive composition (K) 4.1g was enclosed in the bite bag a, and the anticorrosive agent (k) was obtained.
  • Table 14 shows the results of evaluation of rust prevention.
  • (Vaporizable rust preventive composition (67)) Granule-shaped diethylamine hydrochloride (particle size range: 1 mm-5 mm) 0.238 g, diethylamine hydrochloride ground product (particle size range: 0.1 mm or less) 0.080 g, calcium hydroxide (particle size range: 0.1 mm or less) 0.004 g , Magnesium oxide (particle size range: 3 mm or less) 0.160 g, calcium chloride granules (particle size range: 0.1 mm-5 mm) 4.000 g, granular water-soluble polymer 0.030 g, and inorganic water-absorbing agent 0.006 g As a result, a vaporizable rust preventive composition (67) was obtained.
  • Table 15 shows the evaluation results of the rust preventive property of the rust preventive agent (p) obtained by filling 4.51 g of the vaporizable rust preventive agent composition (67) into the one-sack bag a and heat-sealing the bag mouth.
  • Table 15 shows the evaluation results of the rust prevention properties.
  • magnesium chloride, magnesium sulfate, calcium oxide, calcium chloride, or silica gel as the desiccant component also maintains the antirust effect for a long period of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

 成分(A1):非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつと、 成分(B1):常温において固体のアルカリ性物質と、 成分(C1):成分(A1)1質量部に対して0質量部以上20質量部以下の常温において固体の乾燥剤成分とを含有する気化性防錆剤組成物(I)、および 成分(C2):常温において固体の乾燥剤成分を含有する防錆剤組成物(II)を得る。透湿度1000~20000g・m-224Hr-1の通気非透水性袋体ひとつに気化性防錆剤組成物(I)と防錆剤組成物(II)とを仕切りで分けて収納して気化性防錆剤を得る。該気化性防錆剤を金属製品の収納された袋体の中に入れることによって高温高湿環境に保管した袋体中の金属製品に錆が発生するのを防ぐ。

Description

気化性防錆剤組成物
 本発明は、気化性防錆剤組成物に関する。より詳細に、本発明は、金属製品、特に鉄および鉄合金に対する防錆性能が高く、長期間にわたって錆を防ぐことができる実用的な気化性防錆剤組成物に関する。 
 自動車やその部品を船で海外に運搬するなどのように、数カ月に亘って金属製品を保管していると錆が発生することがある。このような錆を防ぐためには防錆油を塗布する、密封包装し乾燥剤を同封する、気化性防錆剤を同封する等の対策がとられている。
 これらの対策は単独または組み合わせて実施されるが以下の欠点を有している。防錆油を塗布した場合は使用時に防錆油を洗浄、除去する必要があり環境汚染等の問題を発生し、塗布不足部分に錆が発生する。乾燥剤単独では長期間防錆効果を維持するには多量の乾燥剤が必要であり、包装が不十分であると短期間に錆が発生する。気化性防錆剤は使用時の洗浄、除去作業が必要なく、梱包内への添加量も乾燥剤に比べると小さい等の利点があるが、蒸発速度の速い防錆剤は短期間でガス濃度が低下するため防錆効果が持続せず、蒸発速度が遅い防錆剤ではガス濃度が低いため充分な防錆効果が得られない等の欠点を有している。また防錆剤として長年広く使用されているアミン亜硝酸塩は発がん性物質を生成することが明らかとなり使用が制限されるようになってきている。
 これらの欠点を補うために乾燥剤と既知の気化性防錆剤を混合または梱包内に共存させて使用する防錆剤やアンモニウム塩とアルカリ性物質を含有しアンモニアガスを放散する防錆剤が提案されている。 
 例えば、特許文献1には、潮解性塩類と、該潮解性による影響を解消しうる物質と、気化性アンモニウム塩である安息香酸アンモニウムとを含む防錆剤が開示されている。潮解性塩類として、塩化マグネシウム、塩化カルシウム、塩化リチウム、五酸化リンなどが例示されている。潮解性による影響を解消する物質として、セピオライトのような無機多孔質物質、酸化マグネシウム、水溶性高分子あるいは増粘剤が例示されている。具体的な防錆剤としては、安息香酸アンモニウム、塩化マグネシウム、および酸化マグネシウムの組み合わせからなるものが記載されている。 
 特許文献2には、非自己分解性のアンモニウム塩と非潮解性のアルカリ金属塩および/またはアルカリ土類金属塩とを含有する防錆剤が開示されている。非自己分解性アンモニウム塩として、硫酸アンモニウム、硫酸水素アンモニウム、亜硫酸アンモニウム、アミド硫酸アンモニウム、リン酸水素二アンモニウム、硝酸アンモニウム、ホウ酸アンモニウム、クエン酸二アンモニウム、クエン酸水素アンモニウム、アジピン酸アンモニウム、酢酸アンモニウム、安息香酸アンモニウム、酒石酸アンモニウム、酒石酸水素アンモニウム、コハク酸アンモニウム、蟻酸アンモニウム、乳酸アンモニウム、シュウ酸アンモニウム、サリチル酸アンモニウム、エチレンジアミン四酢酸二アンモニウムが例示されている。アルカリ金属塩および/またはアルカリ土類金属塩として、水酸化カルシウム、酸化マグネシウム、水酸化マグネシウム、炭酸ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、トリポリリン酸ナトリウム、ホウ酸ナトリウム、メタホウ酸ナトリウムが例示されている。具体的な防錆剤としては、リン酸水素二アンモニウム、酸化マグネシウムおよび炭酸ナトリウムの組み合わせからなるものや、安息香酸アンモニウム、酸化マグネシウムおよび炭酸ナトリウムの組み合わせからなるものが記載されている。
 特許文献3は、被防錆物質が存在する実質的に外気と遮断された空間内に、カルシウムまたはマグネシウムの塩化物を吸湿主剤とする乾燥剤組成物、シクロヘキシルアンモニウム-N-シクロヘキシルカーバメート、およびジシクロヘキシルアンモニウムナイトライト又はジイソプロピルアンモニウムナイトライトを存在させることを特徴とする防錆方法を提案している。
特開平10-140378号公報 特開2011-47028号公報 特開平9-256172号公報
 しかしながらこれらの防錆剤は保管時や使用初期に高濃度の防錆ガスを発生し安全上問題があるとともに短期間しか防錆効果を持続できない欠点を有している。
 本発明の課題は、前記のような背景技術の下、使用前保管時や使用初期の安全性が高く、かつ金属製品、特に鉄および鉄合金に対する防錆性能が高く、長期間にわたって錆を防ぐことができる実用的な気化性防錆剤組成物および気化性防錆剤を提供することである。 
 上記課題を解決すべく鋭意検討を行ったところ、以下の形態を包含する本発明を完成するに到った。
〔1〕 成分(A):非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつと、
 成分(B):常温において固体のアルカリ性物質と、
 成分(C):常温において固体の乾燥剤成分と
を含有する気化性防錆剤組成物。
〔2〕 成分(C)が塩化カルシウムおよび塩化マグネシウムからなる群から選ばれる少なくともひとつである〔1〕に記載の気化性防錆剤組成物。
〔3〕成分(C)の量が成分(A)1質量部に対して0.01質量部以上20質量部以下である〔1〕または〔2〕に記載の気化性防錆剤組成物。
〔4〕成分(C)の量が成分(A)1質量部に対して3質量部以上500質量部以下である〔1〕または〔2〕に記載の気化性防錆剤組成物。
〔5〕成分(B)が、酸化マグネシウム、水酸化カルシウムおよび水酸化マグネシウムからなる群から選ばれる少なくともひとつである〔1〕~〔4〕のいずれかひとつに記載の気化性防錆剤組成物。
〔6〕 通気性非透水性袋体、および
 成分(A1):非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつと、 成分(B1):常温において固体のアルカリ性物質と、 成分(C1):成分(A1)1質量部に対して0質量部以上20質量部以下の常温において固体の乾燥剤成分とを含有する気化性防錆剤組成物(I)からなり、
 前記袋体1つに気化性防錆剤組成物(I)を収納して成る気化性防錆剤。
〔7〕通気性非透水性袋体、
 成分(A1):非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつと、 成分(B1):常温において固体のアルカリ性物質と、 成分(C1):成分(A1)1質量部に対して0質量部以上20質量部以下の常温において固体の乾燥剤成分とを含有する気化性防錆剤組成物(I)、および
 成分(C2):常温において固体の乾燥剤成分を含有する防錆剤組成物(II)からなり、
 前記袋体1つに気化性防錆剤組成物(I)と防錆剤組成物(II)とを仕切りで分けて収納して成る気化性防錆剤。
〔8〕通気性非透水性袋体、
 成分(A1):非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつと、 成分(B1):常温において固体のアルカリ性物質と、 成分(C1):成分(A1)1質量部に対して0質量部以上20質量部以下の常温において固体の乾燥剤成分とを含有する気化性防錆剤組成物(I)、および
 成分(C2):常温において固体の乾燥剤成分を含有する防錆剤組成物(II)からなり、
 前記袋体2つに気化性防錆剤組成物(I)と防錆剤組成物(II)とを分けて収納して成る気化性防錆剤。
〔9〕通気性非透水性袋体、
 成分(A1):非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつと、 成分(B1):常温において固体のアルカリ性物質と、 成分(C1):成分(A1)1質量部に対して0質量部以上20質量部以下の常温において固体の乾燥剤成分とを含有する気化性防錆剤組成物(I)、および
 成分(C2):常温において固体の乾燥剤成分を含有する防錆剤組成物(II)からなり、
 前記袋体1つに気化性防錆剤組成物(I)と防錆剤組成物(II)とを偏在させて収納して成る気化性防錆剤。
〔10〕 防錆剤組成物(II)は、成分(A2):非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつ、および成分(B2):常温において固体のアルカリ性物質をさらに含有し、且つ
 成分(C2)の量が成分(A2)1質量部に対して3質量部以上500質量部以下である〔7〕~〔9〕のいずれかひとつに記載の気化性防錆剤。
〔11〕 成分(B2)が酸化マグネシウム、水酸化カルシウムおよび水酸化マグネシウムからなる群から選ばれる少なくともひとつである〔10〕に記載の気化性防錆剤。
〔12〕 成分(C1)が塩化カルシウムおよび塩化マグネシウムからなる群から選ばれる少なくともひとつであり、且つ
 成分(C2)が塩化カルシウムおよび塩化マグネシウムからなる群から選ばれる少なくともひとつである〔7〕~〔11〕のいずれかひとつに記載の気化性防錆剤。
〔13〕気化性防錆剤組成物(I)/防錆剤組成物(II)の質量比が0.5/99.5~70/30である〔7〕~〔12〕のいずれかひとつに記載の気化性防錆剤。
〔14〕 成分(B1)が、酸化マグネシウム、水酸化カルシウムおよび水酸化マグネシウムからなる群から選ばれる少なくともひとつである〔6〕~〔13〕のいずれかひとつに記載の気化性防錆剤。
〔15〕 通気非透水性袋体は、温度40℃、相対湿度90%における透湿度が1000~20000g・m-224Hr-1のフィルムで構成される、〔6〕~〔14〕のいずれかひとつに記載の気化性防錆剤。
〔16〕実質的に外気と遮断されたひとつの空間内に、被防錆物質と、〔1〕~〔5〕のいずれかひとつに記載の気化性防錆剤組成物とを存在させることを含む被防錆物質の防錆方法。 
〔17〕実質的に外気と遮断されたひとつの空間内に、被防錆物質と、〔6〕~〔15〕のいずれかひとつに記載の気化性防錆剤とを存在させることを含む被防錆物質の防錆方法。
〔18〕実質的に外気と遮断された空間が、樹脂フィルムで密封された空間である〔16〕または〔17〕に記載の防錆方法。
〔19〕樹脂フィルムがアンモニアガスまたはアミンガスを透過しないものである〔18〕に記載の防錆方法。
 本発明の気化性防錆剤組成物および気化性防錆剤は、使用初期から長期間に亘り安定にアミンガスおよび/またはアンモニアガスを発生し、梱包体が高温高湿状態で保管された場合や低湿度でも極めて錆び易い金属線品を保管した場合でも防錆効果を安定的に持続させることができる。
 本発明の気化性防錆剤組成物および気化性防錆剤においては、成分(A)と成分(B)とが気中の水分によって反応し、防錆効果を有するアミンガスおよび/またはアンモニアガス(以下、防錆性ガスということがある。)を発生させる。本発明の気化性防錆剤組成物および気化性防錆剤においては、混合または別袋にて共存する成分(C)が水を吸収するので使用前の保管時に無駄に防錆性ガスが発生するのを抑止する。また、使用初期においては成分(C)が該空間内の湿度を下げるので成分(A)と成分(B)との反応が抑制され防錆性ガスの発生が少なく、成分(C)の吸湿能力低下にしたがって湿度が上がってきた場合は成分(A)と成分(B)との反応が進むようになり防錆性ガスの発生量が多くなる。このように、湿度低下による防錆効果と、防錆性ガスによる防錆性効果とを利用して、長期間に亘って錆を防ぐことができる。
本発明に係る気化性防錆剤の一実施形態を示す図である。 本発明に係る気化性防錆剤の別の一実施形態を示す図である。
 本発明の一実施形態に係る気化性防錆剤組成物は、成分(A)と、成分(B)と、成分(C)とを含有するものである。
 本発明に用いられる成分(A)は、非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつである。成分(A)は、その形態や大きさによって制限されない。例えば、粉末、顆粒、フレーク等の形態のものが使用できる。生産性、他の成分との混合性などの観点から、粒度0.5mm以下の粉末と、粒度0.5mm超5mm以下の顆粒またはフレークとを、所望の比率で混ぜて用いることが好ましい。
 本発明において「常温」は、大気の標準的な温度である、一般的に5~35℃を意味する(JIS Z 8703)。
 本発明において「非気化性」とは、以下の方法で測定される防錆性ガス濃度が30ppm以下、好ましくは10ppm以下となる性質をいう。
 ポリ塩化ビニリデンをコートしたナイロンフィルム(15μm厚、透湿度:6g/m2d(JIS K7129)、酸素透過度:60ml/m2dMPa(JIS K7126))とポリエチレンフィルム(15μm厚)と低密度ポリエチレンフィルム(60μm)とをラミネートしてなる非通気性フィルムで袋(180mm×270mm)を作成した。この袋にアミン塩またはアンモニウム塩0.5gを入れ、空気を抜いた状態で袋の口をヒートシールし密封した。密封された袋内に空気500mlを注射器で注入し、注射孔をテープで閉じた。それを25±1℃で24時間保管した。袋に粘着剤を塗布した厚さ1mmの軟質ゴム板(20mm×20mm)を貼り、ゴム板に注射針を刺せるようにした。注射針を先端に取り付けたガス検知管で袋の中の防錆性ガス濃度を測定した。なお、防錆性ガス濃度は、アミン塩についてはアミン用ガス検知管を用いて測定し、アンモニウム塩についてはアンモニア用ガス検知管を用いて測定した。
 非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)として、アミン塩酸塩、アミン硫酸塩、アミン硝酸塩;アミンコハク酸塩、アミンスルホコハク酸塩、アミンアジピン酸塩などのアミン有機酸塩が挙げられる。非気化性で常温において固体のアミン塩の具体例としては、ジメチルアミン塩酸塩、トリメチルアミン塩酸塩、モノエチルアミン塩酸塩、ジエチルアミン塩酸塩、トリエチルアミン塩酸塩、n-プロピルアミン塩酸塩、ジプロピルアミン塩酸塩、トリn-プロピルアミン塩酸塩、イソプロピルアミン塩酸塩、ジイソプロピルアミン塩酸塩、n-ブチルアミン塩酸塩、ジn-ブチルアミン塩酸塩、シクロヘキシルアミン塩酸塩;ジメチルアミンアジピン酸塩、モノエチルアミン硫酸塩、モノエチルアミンアジピン酸塩、イソプロピルアミンコハク酸塩、ジイソプロピルアミンコハク酸塩、シクロヘキシルアミンアジピン酸塩、シクロヘキシルアミンコハク酸塩、シクロヘキシルアミン塩酸塩、ジエチルアミン硝酸塩などが挙げられる。これらアミン塩は1種単独でまたは2種以上を組み合わせて用いることができる。
 アミン亜硝酸塩としては、ジイソプロピルアミン亜硝酸塩、ジシクロヘキシル亜硝酸塩などが知られている。アミン亜硝酸塩は優れた防錆活性成分として使用されてきたが、近年、発ガン性物質を生成することが判明し、その使用が制限されつつある。
 非気化性で常温において固体のアンモニウム塩として、塩化アンモニウム、硫酸アンモニウム、コハク酸ジアンモニウム、クエン酸トリアンモニウム、酒石酸ジアンモニウム、フタル酸ジアンモニウム、アジピン酸ジアンモニウム、リン酸水素ジアンモニウムなどが挙げられる。これらアンモニウム塩は1種単独でまたは2種以上を組み合わせて用いることができる。
 本発明においては、非鉄用の防錆剤成分(以下、成分(D)ということがある。)を、成分(A)と併用してもよい。非鉄用の防錆剤成分としては、1,2,3-ベンゾトリアゾールなどが挙げられる。成分(D)/成分(A)のモル比は、好ましくは0/100~100/100、より好ましくは0/100~50/100である。
 なお、成分(A)の種類、量および形態や大きさの選択によって、後述する防錆性ガスの濃度を調整することができる。
 本発明に用いられる成分(B)は、常温において固体のアルカリ性物質である。該アルカリ性物質はアミン塩およびアンモニウム塩以外のものである。前記アルカリ性物質は、成分(A)からアンモニアガスまたはアミンガスを発生させることができる塩基である。具体的には、0.01モル/Lの塩化アンモニウム水溶液100mlに、水酸基または水に溶解して水酸イオンを生成する化学基0.003モルに相当する量のアルカリ性物質を添加して得られる液のpHが9以上となる物質である。水に溶解して水酸イオンを生成する化学基のモル数は、強塩基と弱酸の塩においては強塩基由来の化学基の数で塩の分子量を割った値であり、強塩基と強酸の塩基性塩においては塩の分子量を過剰な塩基性基の数で割った値である。
 該アルカリ性物質としては、強塩基、強塩基と弱酸とからなる塩が挙げられる。具体的には、炭酸ナトリウムなどのアルカリ金属の炭酸塩;リン酸三ナトリウム、ピロリン酸ナトリウムなどのアルカリ金属のリン酸塩;ケイ酸ナトリウムなどのアルカリ金属のケイ酸塩;アルカリ金属の有機酸塩;酸化マグネシウム、酸化カルシウムなどのアルカリ土類金属の酸化物;水酸化マグネシウム、水酸化カルシウムなどのアルカリ土類金属の水酸化物などが挙げられる。これらのうち、潮解性を有しないものが好ましく、水酸化カルシウム、水酸化マグネシウム、酸化マグネシウムがより好ましい。これらアルカリ性物質は1種単独でまたは2種以上を組み合わせて用いることができる。
 水酸化マグネシウム、酸化マグネシウムなどの水に対する溶解度が低いアルカリ性物質と、水酸化カルシウムなどの水に対する溶解度が比較的高いアルカリ性物質とを併用することが、アンモニアガスまたはアミンガスの発生時期を調節し、かつ防錆効果の長期持続性を実現することができ、錆が発生しやすい環境下における錆発生を効果的に防止することができるので好ましい。また、成分(B)は、その形態や大きさによって制限されない。例えば、粉末、顆粒、フレーク等の形態のものが使用できる。生産性、他の成分との混合性などの観点から、粒度0.5mm以下の粉末と、粒度0.5mm超3mm以下の顆粒またはフレークとを、所望の比率で混ぜて用いることが好ましい。
 本発明の気化性防錆剤組成物に含有される成分(B)の量は、成分(A)からアンモニアガスまたはアミンガスを十分に発生させうる量であれば特に限定されない。具体的に成分(B)の量は、成分(B)由来のアルカリ性イオン(例えば、マグネシウムイオン、カルシウムイオン、ナトリウムイオンなど)のモル数に当該アルカリ性イオンの価数を乗じた値が、成分(A)由来のアルカリ性イオン(例えば、アンモニウムイオン、アルキルアンモニウムイオンなど)のモル数に対して、好ましくは0.5~10、より好ましくは1~5、さらに好ましくは1.2~3となる量である。
 なお、成分(B)の種類、量および形態や大きさの選択によって、後述する防錆性ガスの濃度を調整することができる。
 本発明に用いられる成分(C)は常温において固体の乾燥剤成分である。常温において固体の乾燥剤成分は、気中の水を吸収し、湿度を低下させることができる物質である。吸収形態は問わない。吸収形態としては、例えば、化学反応、物理吸着、結晶水などが挙げられる。
 成分(C)として公知の乾燥剤成分を用いることができる。例えば、塩化カルシウム、酸化カルシウム、活性無水硫酸カルシウム、硫酸マグネシウム(無水)、五酸化リン、硫酸ナトリウム、塩化亜鉛、塩化マグネシウム、硫酸銅無水塩、セピオライト、ゼオライト、シリカゲルなどが挙げられる。これらのうち、塩化カルシウムおよび塩化マグネシウムからなる群から選ばれる少なくともひとつがより好ましい。塩化カルシウムおよび塩化マグネシウムには無水物と水和物とがある。本発明においては塩化カルシウム無水物または塩化マグネシウム無水物がより好ましく用いられる。
 塩化カルシウムおよび塩化マグネシウムは他の乾燥剤成分よりも単位質量当たり吸湿量が多く、単独使用でも防錆効果が優れているとともに、アミン塩および/またはアンモニウム塩と共存した場合には、アミンおよび/またはアンモニアガスの発生抑制効果が強く、使用前保管時の安定性、使用初期段階のガス発生抑制効果が優れている。
 成分(C)はその形態や大きさによって制限されない。例えば、粉末、顆粒、フレーク等の形態のものが使用できる。生産性、他の成分との混合性などの観点から、粒度0.5mm以下の粉末と、粒度0.5mm超5mm以下の顆粒またはフレークとを、所望の比率で混ぜて用いることが好ましい。
 本発明の気化性防錆剤組成物は、成分(C)として塩化マグネシウムと塩化カルシウムとを併せて含有することが好ましい。塩化マグネシウムと塩化カルシウムとを併せて含有することによって、アミンガスまたはアンモニアガスの発生量が、初期において適度に抑制され、長期間に亘って安定させることができる。塩化マグネシウム/塩化カルシウムの質量比は、好ましくは5/95~50/50である。成分(C)は、成分(A)1質量部に対して好ましくは500質量部以下で含有させることができる。
 成分(B)として、乾燥剤成分と成り得る物質、例えば、酸化マグネシウム、酸化カルシウムなどを用いた場合は、成分(C)として別の乾燥剤成分(例えば、塩化マグネシウム、塩化カルシウムなど)を用いることが好ましい。
 本発明の気化性防錆剤組成物においては、成分(C)として塩化カルシウムおよび塩化マグネシウムからなる群から選ばれる少なくともひとつを用いた場合、水溶性高分子や無機多孔質を含有させることができる。水溶性高分子や無機多孔質を含有させると塩化カルシウムまたは塩化マグネシウムの潮解による液状化を抑制することができる。水溶性高分子としては、アクリル酸系縮合物、メチルセルロース、メチルセルロース、ヒドロキシアルキルセルロース、ポリビニルアルコール、酢酸ビニル、カルボキシメチルセルロースナトリウム塩、アルギン酸ナトリウムなどが挙げられる。無機多孔質としてはセピオライト、ゼオライト、シリカゲルなどが挙げられる。
 成分(C)の量は、求められる防錆効果に応じて調整することができる。例えば、初期段階における防錆効果が高い気化性防錆剤組成物(I)は、成分(C)の量を、成分(A)1質量部に対して、好ましくは0質量部以上20質量部以下、より好ましくは0.01質量部以上20質量部以下、さらに好ましくは0.01質量部以上10質量部以下、よりさらに好ましくは0.05質量部以上5質量部以下、最も好ましくは0.1質量部以上2質量部以下にする。逆に、防錆効果の持続性が高い防錆剤組成物(II)は、成分(C)の量を、成分(A)1質量部に対して、好ましくは3質量部以上500質量部以下に、より好ましくは5質量部以上100質量部以下、さらに好ましくは10質量部以上50質量部以下にする。
 なお、成分(C)の種類、量および形態や大きさの選択によって、後述する防錆性ガスの濃度を調整することができる。
 本発明の気化性防錆剤組成物は、その製法によって特に制限されない。本発明の気化性防錆剤組成物は、例えば、成分(A)と成分(B)と任意成分(C)とを一括して混ぜ合わせることによって; 成分(A)と成分(B)とを先ず混ぜ合わせ造粒し、次いでこれに成分(C)を必要に応じて添加して混ぜ合わせることによって;成分(B)と任意成分(C)とを先ず混ぜ合わせ造粒して、次いでこれに成分(A)を添加して混ぜ合わせることによって; または、成分(A)と任意成分(C)とを先ず混ぜ合わせ造粒して、次いでこれに成分(B)を添加して混ぜ合わせることによって、得ることができる。
 本発明の一実施形態に係る気化性防錆剤は、通気性非透水性袋体、成分(A1):非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつと、 成分(B1):常温において固体のアルカリ性物質と、 成分(C1):常温において固体の乾燥剤成分とを含有する気化性防錆剤組成物(I)、および 成分(C2):常温において固体の乾燥剤成分を含有する防錆剤組成物(II)の組み合わせからなるものである。
 成分(B1)の量は、成分(A1)からアンモニアガスまたはアミンガスを十分に発生させうる量であれば特に限定されない。具体的に成分(B1)の量は、成分(B1)由来のアルカリ性イオン(例えば、マグネシウムイオン、カルシウムイオン、ナトリウムイオンなど)のモル数に当該アルカリ性イオンの価数を乗じた値が、成分(A1)由来のアルカリ性イオン(例えば、アンモニウムイオン、アルキルアンモニウムイオンなど)のモル数に対して、好ましくは0.5~10、より好ましくは1~5、さらに好ましくは1.2~3となる量である。
 成分(C1)の量は、成分(A1)1質量部に対して、好ましくは0質量部以上20質量部以下、より好ましくは0.01質量部以上20質量部以下、さらに好ましくは0.01質量部以上10質量部以下、よりさらに好ましくは0.05質量部以上5質量部以下、最も好ましくは0.1質量部以上2質量部以下である。
 防錆剤組成物(II)には、必要に応じて、成分(A2):非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつと、 成分(B2):常温において固体のアルカリ性物質とを含有させてもよい。
 成分(B2)の量は、成分(A2)からアンモニアガスまたはアミンガスを十分に発生させうる量であれば特に限定されない。具体的に成分(B2)の量は、成分(B2)由来のアルカリ性イオン(例えば、マグネシウムイオン、カルシウムイオン、ナトリウムイオンなど)のモル数に当該アルカリ性イオンの価数を乗じた値が、成分(A2)由来のアルカリ性イオン(例えば、アンモニウムイオン、アルキルアンモニウムイオンなど)のモル数に対して、好ましくは0.5~10、より好ましくは1~5、さらに好ましくは1.2~3となる量である。
 成分(C2)の量は、成分(A2)1質量部に対して、好ましくは3質量部以上500質量部以下、より好ましくは5質量部以上100質量部以下、さらに好ましくは10質量部以上50質量部以下である。
 本発明の気化性防錆剤に用いられる気化性防錆剤組成物(I)および/または防錆剤組成物(II)には、任意成分として水溶性高分子や無機多孔質を含有させることができる。水溶性高分子および無機多孔質は既に述べたとおりのものである。
 本発明の気化性防錆剤に用いられる気化性防錆剤組成物(I)および防錆剤組成物(II)の製法は、特に制限されない。気化性防錆剤組成物(I)および防錆剤組成物(II)は、例えば、本発明の気化性防錆剤組成物の製法と同様にして得ることができる。
 本発明に用いられる通気非透水性袋体は、水蒸気、アミンガスおよびアンモニアガスを通過させるが、水を通過させないものであれば特に制限されない。塩化マグネシウムおよび塩化カルシウムは潮解性物質である。塩化マグネシウムまたは塩化カルシウムの潮解によって生成する液体は、金属製品の錆発生を促進するため、袋体は、当該液体が漏れ出ないことが好ましい。そのようなものとしてマイクロポーラスフィルムからなる袋体が挙げられる。
 袋体を構成するフィルムとして、好ましくは、ポリエチレン、ポリプロピレンなどのポリオレフィン製のマイクロポーラスフィルムが挙げられる。フィルムの透湿度は温度40℃、相対湿度90%において、好ましくは1000~20000g・m-224Hr-1、より好ましくは3000~10000g・m-224Hr-1である。透湿度はJIS-Z-0208に準拠した方法で測定する。
 袋体を構成するフィルムとしては、市販の各種マイクロポーラスフィルムが使用可能である。具体的には微細な炭酸カルシウム粉末をポリエチレンやポリプロピレンに練り込み、それをフィルムに成形し、次いでそれを延伸してフィルムに微細孔を形成させたフィルムが挙げられる。さらに、袋体の強度を向上させるために、フィルムの片面または両面に不織布を貼り合せることができる。
 本発明に係る気化性防錆剤では、気化性防錆剤組成物(I)および防錆剤組成物(II)が通気非透水性袋体に収納されている。収納の形態としては、
 図1に示すようなひとつの通気非透水性袋体に気化性防錆剤組成物(I)と防錆剤組成物(II)とを仕切りで分けて収納(1袋分包の防錆剤)、
 ひとつの通気非透水性袋体に気化性防錆剤組成物(I)を収納し、別のひとつの通気非透水性袋体に防錆剤組成物(II)を収納(2袋一組分包の防錆剤)、および
 図2に示すようなひとつの通気非透水性袋体に気化性防錆剤組成物(I)と防錆剤組成物(II)とを仕切りなしで偏在させて収納が挙げられる。これらのうち、2袋一組分包の防錆剤または1袋分包の防錆剤が好ましく、1袋分包の防錆剤がより好ましい。
 なお、ひとつの通気非透水性袋体に気化性防錆剤組成物(I)を収納してなるものは気化性防錆剤として単独で若しくは他の乾燥剤と組み合わせて用いることができ、また2袋一組分包の防錆剤若しくは1袋分包の防錆剤の機能を補足するためにそれらと組み合わせて用いることができる。
 気化性防錆剤組成物(I)/防錆剤組成物(II)の収納質量比は、目的に応じて適宜設定できるが、即効的な防錆効果と持続的な防錆効果とのバランスの観点から、好ましくは0.5/99.5~70/30、より好ましくは1/99~50/50、さらに好ましくは5/95~20/80である。
 成分(C1)および(C2)は吸湿剤または乾燥剤として機能する。気化性防錆剤組成物(I)は、成分(C1)の含有量が相対的に少ないので、気化性防錆剤組成物(I)の収納された袋だけを大気中または梱包容器中に放置すると、大気中の水分が成分(A1)と成分(B1)との反応を促進させ、防錆性ガス(アミンガスまたはアンモニウムガス)がすぐに発生する。
 防錆剤組成物(II)は成分(C2)による乾燥機能が高いので、気化性防錆剤組成物(I)の収納された袋と防錆剤組成物(II)の収納された袋とを同じ梱包容器に設置すると、成分(A1)と成分(B1)との反応を促進させる水分を減らすので、気化性防錆剤組成物(I)からの防錆性ガスの発生が抑制される。この発生抑制は、気化性防錆剤組成物(I)の収納された袋と防錆剤組成物(II)の収納された袋との距離が短いほど、その効果が大きい。2袋一組分包の防錆剤では、気化性防錆剤組成物(I)の収納された袋と防錆剤組成物(II)の収納された袋とを別々の場所に保管してしまうと、気化性防錆剤組成物(I)から防錆性ガスが使用前に放出しきってしまうことがある。気化性防錆剤組成物(I)の収納された袋を単独で保管する場合には密封梱包を行い乾燥剤を同封することが必要である。また、気化性防錆剤組成物(I)の収納された袋と防錆剤組成物(II)の収納された袋とを組みにして設置することを怠ると所望の防錆効果が発揮されないことがある。一方、1袋分包の防錆剤は、気化性防錆剤組成物(I)の収納された袋と防錆剤組成物(II)の収納された袋とが常に一緒になっているので、2袋一組分包の防錆剤のような不便が少ない。仕切りなしで気化性防錆剤組成物(I)と防錆剤組成物(II)とを偏在させて収納した防錆剤は、1袋分包の防錆剤と同様の利便性があるが、運搬などのときに気化性防錆剤組成物(I)と防錆剤組成物(II)とが混ざり合ってしまうと、成分(A1)と成分(B1)との反応が抑制されすぎて、防錆の即効性が低下することがある。
 本発明の防錆方法は、実質的に外気と遮断された空間内に、被防錆物質と、本発明の気化性防錆剤組成物または本発明の気化性防錆剤とを一緒に存在させることを含むものである。ここで、実質的に外気と遮断された空間とは、外部から湿気を含んだ空気がほとんど侵入してこない空間をいい、防湿性を有しかつアミンガスまたはアンモニアガスを通過させない遮蔽材で囲まれた空間である。例えば、上記のような遮蔽性を有するフィルムなどで被防錆物質を梱包することによって当該空間を形成することができる。
 防湿性を有しかつアミンガスまたはアンモニアガスを通過させない遮蔽材としては、例えば、厚さ50μm以上、好ましくは70~150μmのポリエチレン製フィルムや、ポリエチレンテレフタレートとポリエチレンとの積層フィルムなどのガスバリア性フィルムが挙げられる。 
 次に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 本実施例において使用した薬剤等は以下のとおりである。
 CaCl2  : 粒状無水塩化カルシウム 工業用、粒子径1~3mm
 MgCl2 : 無水塩化マグネシウム 工業用、フレークと粉末の混合品、粒子径0.1~3mm
 Ca(OH)2 : 粉末水酸化カルシウム 工業用
 Mg(OH)2 : 水酸化マグネシウム 工業用、顆粒と粉末の混合品、粒子径0.1~3mm
 MgO    : 酸化マグネシウム 工業用、顆粒と粉末の混合品、粒子径 0.1~3mm
 コハク酸アンモニウム: 無水物 試薬
 クエン酸アンモニウム: 無水物 試薬
 フタル酸アンモニウム: 無水物 試薬
 アジピン酸アンモニウム: 無水物 試薬
 塩化アンモニウム: 無水物 試薬
 硫酸アンモニウム: 無水物 食品添加物 粉末
 リン酸水素二アンモニウム: 無水物 試薬
 安息香酸アンモニウム: 無水物 試薬
 ジエルアミン塩酸塩: 粉砕フレーク、試薬
 n-プロピルアミン塩酸塩: 粉末、試薬
 ジイソプロピルアミン塩酸塩: 粉末、試薬
 シクロヘキシルアミン塩酸塩: 粉砕フレーク、試薬
 ジイソプロピルアミンコハク酸塩: 粉末、試薬
 シクロヘキシルアンモニウム-N-シクロヘキシルカーバメイト: 粉末、工業用
 ジシクロヘキシルアミン亜硝酸塩: 粉末、工業用
 水溶性高分子: 工業用、粉末
 無機吸水剤: 工業用 多孔質粉末
(気化性防錆剤組成物(A))
 MgCl20.77g、水溶性高分子0.10g、無機吸水剤0.13g、Mg(OH)20.06g、および硫酸アンモニウム0.05gを混合して気化性防錆剤組成物(A)を得た。
(組成物(B))
 MgCl20.77g、水溶性高分子0.10gおよび無機吸水剤0.13gを混合して組成物(B)を得た。
(組成物(C))
 MgCl20.50g、およびMgO0.50gを混合して組成物(C)を得た。
(組成物(D))
 シクロヘキシルアンモニウム-N-シクロヘキシルカーバメイト(CHC)0.28gおよびジシクロヘキシルアミン亜硝酸塩0.518gを混合して組成物(D)を得た。
 組成物(A)~(D)の成分比を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 
(気化性防錆剤組成物(1))
 ジエルアミン塩酸塩0.249g、Mg(OH)20.09g、Ca(OH)20.03g、およびCaCl20.03gを混合して気化性防錆剤組成物(1)を得た。
(気化性防錆剤組成物(2))
 ジエルアミン塩酸塩0.249gをn-プロピルアミン塩酸塩0.219gに変えた以外は気化性防錆剤組成物(1)の調製法と同じ方法で気化性防錆剤組成物(2)を得た。
(気化性防錆剤組成物(3))
 ジエルアミン塩酸塩0.249gをジイソプロピルアミン塩酸塩0.312gに変えた以外は気化性防錆剤組成物(1)の調製法と同じ方法で気化性防錆剤組成物(3)を得た。
(気化性防錆剤組成物(4))
 ジエルアミン塩酸塩0.249gをシクロヘキシルアミン塩酸塩0.306gに変えた以外は気化性防錆剤組成物(1)の調製法と同じ方法で気化性防錆剤組成物(4)を得た。
(気化性防錆剤組成物(5))
 ジエルアミン塩酸塩0.249gをジイソプロピルアミンコハク酸塩0.498gに変えた以外は気化性防錆剤組成物(1)の調製法と同じ方法で気化性防錆剤組成物(5)を得た。
(気化性防錆剤組成物(6))
 ジエルアミン塩酸塩0.249gを硫酸アンモニウム0.15gに変えた以外は気化性防錆剤組成物(1)の調製法と同じ方法で気化性防錆剤組成物(6)を得た。
(気化性防錆剤組成物(7))
 ジエルアミン塩酸塩の量を0.083gに変えた以外は気化性防錆剤組成物(1)の調製法と同じ方法で気化性防錆剤組成物(7)を得た。
(気化性防錆剤組成物(8))
 Mg(OH)20.09gおよびCa(OH)20.03gをMg(OH)20.12gに変えた以外は気化性防錆剤組成物(1)の調製法と同じ方法で気化性防錆剤組成物(8)を得た。
(気化性防錆剤組成物(9))
 CaCl2の量を0.3gに変えた以外は気化性防錆剤組成物(1)の調製法と同じ方法で気化性防錆剤組成物(9)を得た。
(気化性防錆剤組成物(10))
 CaCl20.03gをMgCl20.03gに変えた以外は気化性防錆剤組成物(1)の調製法と同じ方法で気化性防錆剤組成物(10)を得た。
 気化性防錆剤組成物(1)~(10)の成分比を表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 本実施例では防錆性の評価を以下の方法で行った。
〔保存時防錆性ガス濃度の測定〕
 ポリ塩化ビニリデンをコートしたナイロンフィルムとポリエチレンフィルムをラミネートしてなる非通気性フィルムで袋(180mm×270mm)を作成した。この袋に気化性防錆剤1個を入れ、空気を抜いた状態で袋の口をヒートシールし密封した。
 密封した袋内に空気500mlを注射器で注入し、注射孔をテープで閉じた。それを40℃で5日間保管した。
 袋に粘着剤を塗布した厚さ1mmの軟質ゴム板(20mm×20mm)を貼り、ゴム板に注射針を刺せるようにした。注射針を先端に取り付けたガス検知管で袋の中の防錆性ガス濃度を測定した。
 なお、防錆性ガス濃度は、アミンガスのみが発生する気化性防錆剤についてはアミン用ガス検知管を用いて測定し、アンモニアガスのみが発生する気化性防錆剤についてはアンモニア用ガス検知管を用いて測定し、アンモニアガスとアミンガスの両方が発生する気化性防錆剤についてはアンモニア用ガス検知管を用いて測定した。
〔防錆試験I〕
 縦50mm×横4mm×高さ50mmの直方体形のねずみ鋳鉄(FC-200)の表面をメタノールで洗浄した。JKワイパーでメタノールを拭き取った。メタノールで再度洗浄した。そして自然乾燥させた。これをテストピースaとした。
 テストピースaを、塩化ナトリウム300ppmを含有するメタノール溶液に漬けた。それを、引き上げて、JKワイパーで液きりした。そして、自然乾燥させた。これをテストピースbとした。
 縦340mm×横270mm×高さ180mmの平底のプラスチック製容器(天面は開放、側面4面は周辺幅20mmを残し長方形にカット)内の角部に前記テストピースaおよびbを立てて設置した。テストピースaおよびbから最も離れた容器内の角部に気化性防錆剤を設置した。これら全体を100μm厚のポリエチレンフィルム製の袋(500mm×750mm)に収納し、袋の口をゴムバンドで密閉した。
 袋のフィルム面がプラスチック容器の壁面にほぼ密着するように少量のガムテープで袋を貼り固めて形状を整えた。テストピースaおよびbの直近のフィルムに粘着剤を塗布した厚さ1mmの軟質ゴム板(20mm×20mm)を貼り、ゴム板に注射針を刺せるようにして、試験体を得た。この試験体を、つぎのような温度および相対湿度の環境を24時間サイクルで繰り返す恒温恒湿器内に入れた。
(1)温度40℃・相対湿度90%の状態を11時間保持する。
(2)1時間かけて温度20℃・相対湿度90%に変化させ、その状態を11時間保持する。
(3)次いで1時間かけて(1)の状態に変化させる。
 温度20℃・相対湿度90%の状態の保持で10時間経過した時に、恒温恒湿器から試験体を取り出して、注射針を先端に取り付けたガス検知管で袋の中の防錆性ガス濃度を測定した。
 なお、防錆性ガス濃度は、アミンガスのみが発生する気化性防錆剤についてはアミン用ガス検知管を用いて測定し、アンモニアガスのみが発生する気化性防錆剤についてはアンモニア用ガス検知管を用いて測定し、アンモニアガスとアミンガスの両方が発生する気化性防錆剤についてはアンモニア用ガス検知管を用いて測定した。
 5日、7日、14日、21日および29日経過した日に、防錆性ガス濃度を測定した後に、袋の口を開いてテストピースaおよびbを取り出し、JIS K 1994に準拠し、ねずみ鋳鉄中央の40mm×40mmの範囲を、4mm×4mmのマス目に100等分し、錆の発生したマス目の数を両面について数えて錆の発生率を算出した。結果を表1および表2に示す。錆発生率を算出した後、試験体を元の状態に戻した。
(袋の作製)
 ポリプロピレンに微細炭酸カルシウムを配合して樹脂材料を得た。この樹脂材料を成形して原反フィルムを得た。当該原反フィルムを2軸延伸してマイクロポーラスフィルムを得た。ポリエチレンテレフタレート繊維をポリエチレンで被覆してなる繊維からなる不織布を用意した。前記のマイクロポーラスフィルムの両面に前記の不織布を熱ラミネートして、温度40℃、相対湿度90%における透湿度5000g・m-224Hr-1の袋用フィルムを得た。
 袋用フィルムをヒートシールして50mm×80mmの一口袋aを製造した。
 袋用フィルムをヒートシールして50mm×20mmの一口袋bを製造した。
 袋用フィルムをヒートシールして50mm×60mmの一口袋cを製造した。
 袋用フィルムをヒートシールして50mm×20mmと50mm×60mm(全体で50mm×80mm)の二口袋Aを製造した。
 袋用フィルムをヒートシールして50mm×30mmと50mm×50mm(全体で50mm×80mm)の二口袋Bを製造した。
 袋用フィルムをヒートシールして50mm×30mmと50mm×80mm(全体で50mm×110mm)の二口袋Cを製造した。
〔防錆剤(a)〕
 組成物(D)0.798g、および組成物(C)1.00gを均一に混合し、該混合物を一口袋cに封入して防錆剤(a)を得た。防錆性の評価結果を表3に示す。
〔防錆剤(b)〕
 安息香酸アンモニウム0.315g、および組成物(C)1.00gを均一に混合し、該混合物を一口袋cに封入して防錆剤(b)を得た。防錆性の評価結果を表3に示す。
〔防錆剤(c)〕
 組成物(D)0.798gを二口袋Bの50mm×30mm側に封入し、組成物(C)1.00gを二口袋Bの50mm×60mm側に封入して防錆剤(c)を得た。防錆性の評価結果を表3に示す。
〔防錆剤(d)〕
 組成物(B)を一口袋cに封入して防錆剤(d)を得た。防錆性の評価結果を表3に示す。
〔気化性防錆剤(1)〕
 気化性防錆剤組成物(A)を一口袋cに封入して気化性防錆剤(1)を得た。防錆性の評価結果を表3に示す。
〔気化性防錆剤(2)〕
 気化性防錆剤組成物(1)0.399gを一口袋bに封入し、気化性防錆剤組成物(A)1.11gを一口袋cに封入して、二袋一組分包の気化性防錆剤(2)を得た。防錆性の評価結果を表3に示す。
〔気化性防錆剤(3)〕
 気化性防錆剤組成物(1)0.399gを一口袋aに入れ、気化性防錆剤組成物(A)1.11gを気化性防錆剤組成物(1)に図1のように積み重ねるようにして一口袋aに入れて封をして気化性防錆剤(3)を得た。防錆性の評価結果を表3に示す。
〔気化性防錆剤(4)〕
 気化性防錆剤組成物(1)0.399gを二口袋Aの50mm×20mm側に封入し、気化性防錆剤組成物(A)1.11gを二口袋Aの50mm×60mm側に封入して気化性防錆剤(4)を得た。防錆性の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
〔気化性防錆剤(5)〕
 気化性防錆剤組成物(1)0.399gを気化性防錆剤組成物(2)0.369gに変えた以外は気化性防錆剤(4)の調製法と同じ方法で気化性防錆剤(5)を得た。防錆性の評価結果を表4に示す。
〔気化性防錆剤(6)〕
 気化性防錆剤組成物(1)0.399gを気化性防錆剤組成物(3)0.462gに変えた以外は気化性防錆剤(4)の調製法と同じ方法で気化性防錆剤(6)を得た。防錆性の評価結果を表4に示す。
〔気化性防錆剤(7)〕
 気化性防錆剤組成物(1)0.399gを気化性防錆剤組成物(4)0.456gに変えた以外は気化性防錆剤(4)の調製法と同じ方法で気化性防錆剤(7)を得た。防錆性の評価結果を表4に示す。
〔気化性防錆剤(8)〕
 気化性防錆剤組成物(1)0.399gを気化性防錆剤組成物(5)0.648gに変えた以外は気化性防錆剤(4)の調製法と同じ方法で気化性防錆剤(8)を得た。防錆性の評価結果を表4に示す。
〔気化性防錆剤(9)〕
 気化性防錆剤組成物(1)0.399gを気化性防錆剤組成物(6)0.300gに変えた以外は気化性防錆剤(4)の調製法と同じ方法で気化性防錆剤(9)を得た。防錆性の評価結果を表4に示す。
〔気化性防錆剤(10)〕
 気化性防錆剤組成物(1)0.399gを気化性防錆剤組成物(7)0.233gに変えた以外は気化性防錆剤(4)の調製法と同じ方法で気化性防錆剤(10)を得た。防錆性の評価結果を表4に示す。
〔気化性防錆剤(11)〕
 気化性防錆剤組成物(1)0.399gを気化性防錆剤組成物(8)0.669gに変えた以外は気化性防錆剤(4)の調製法と同じ方法で気化性防錆剤(11)を得た。防錆性の評価結果を表4に示す。
〔気化性防錆剤(12)〕
 気化性防錆剤組成物(1)0.399gを気化性防錆剤組成物(9)0.399gに変えた以外は気化性防錆剤(4)の調製法と同じ方法で気化性防錆剤(12)を得た。防錆性の評価結果を表4に示す。
〔気化性防錆剤(13)〕
 気化性防錆剤組成物(1)0.399gを気化性防錆剤組成物(10)0.339gに変えた以外は気化性防錆剤(4)の調製法と同じ方法で気化性防錆剤(13)を得た。防錆性の評価結果を表4に示す。
〔気化性防錆剤(14)〕
 気化性防錆剤組成物(A)1.11gを組成物(B)1.00gに変えた以外は気化性防錆剤(4)の調製法と同じ方法で気化性防錆剤(14)を得た。防錆性の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
〔気化性防錆剤組成物(11)~(17)および組成物(E)~(F)〕
 表5に示す処方に従って、各成分を計量混合して気化性防錆剤組成物(11)~(17)および組成物(E)~(F)を調製した。
 調製した気化性防錆剤組成物(11)~(17)および組成物(E)~(F)を一口袋aにそれぞれ充填し、袋の口をヒートシールして、気化性防錆剤組成物(11)~(17)および組成物(E)~(F)のそれぞれを収納して成る防錆剤を得た。
〔防錆試験II〕
 縦50mm×横4mm×高さ50mmの直方体形のねずみ鋳鉄(FC-200)の表面をメタノールで洗浄した。JKワイパーでメタノールを拭き取った。メタノールで再度洗浄した。窒素ガスを吹き付けて乾燥させた。
 縦340mm×横270mm×高さ180mmの平底のプラスチック製容器(天面は開放、側面4面は周辺幅20mmを残し長方形にカット)内の角部に前記ねずみ鋳鉄を立てて設置した。ねずみ鋳鉄から最も離れた容器内の角部に防錆剤を設置した。これら全体を100μm厚のポリエチレンフィルム製の袋(500mm×750mm)に収納し、袋の口をゴムバンドで密閉した。
 袋のフィルム面がプラスチック容器の壁面にほぼ密着するように少量のガムテープで袋を貼り固めて形状を整えた。ねずみ鋳鉄の直近のフィルムに粘着剤を塗布した厚さ1mmの軟質ゴム板(20mm×20mm)を貼り、ゴム板に注射針を刺せるようにして、試験体を得た。この試験体を、つぎのような温度および相対湿度の環境を24時間サイクルで繰り返す恒温恒湿器内に入れた。
(1)温度50℃・相対湿度90%の状態を7時間保持する。
(2)1時間かけて温度10℃・相対湿度90%に変化させ、その状態を7時間保持する。
(3)1時間かけて温度25℃・相対湿度90%に変化させ、その状態を7時間保持する。
(4)次いで1時間かけて(1)の状態に変化させる。
 温度25℃・相対湿度90%の状態の保持で6時間経過した時に、恒温恒湿器から試験体を取り出して、注射針を先端に取り付けたガス検知管で袋の中の防錆性ガス濃度を測定した。なお、防錆性ガス濃度は、アミンガスのみが発生する気化性防錆剤についてはアミン用ガス検知管を用いて測定し、アンモニアガスのみが発生する気化性防錆剤についてはアンモニア用ガス検知管を用いて測定し、アンモニアガスとアミンガスの両方が発生する気化性防錆剤についてはアンモニア用ガス検知管を用いて測定した。
 7日、14日および21日経過時には防錆性ガス濃度を測定した後に、袋の口を開いてねずみ鋳鉄を取り出し、JIS K 1994に準拠し、ねずみ鋳鉄中央の40mm×40mmの範囲を、4mm×4mmのマス目に100等分し、錆の発生したマス目の数を両面について数えて錆の発生率を算出した。結果を表5に示す。錆発生率を算出した後、試験体を元の状態に戻した。
Figure JPOXMLDOC01-appb-T000005
 表5に示すとおり、塩化カルシウムと、非気化性のアンモニウム塩と、アルカリ性物質とを混合してなる本発明の防錆剤組成物は、保存時の防錆性ガスの濃度が低く、使用開始時から長期間持続的にアンモニアガスを放散させることができ、金属製品が錆びるのを効果的に防ぐことができる。特に、非昇華性アンモニウム塩を用いると、保存時におけるアンモニア臭が少ない上に、21日経過後における錆の発生も非常に少ない。
 これに対して、特許文献2に記載のものに相当する防錆剤組成物(E)は保存時のアンモニアガス濃度が高く、かつ初期に高濃度のガスを発生するが14日以降は低濃度となり錆が発生することがわかる。
 また、特許文献1に記載のものに相当する防錆剤組成物(F)は、保存時におけるアンモニアガス濃度が高く安全性に問題があるとともに、使用初期のアンモニアガスの発生量が少ないため錆の発生防止効果が不十分となった。
〔気化性防錆剤組成物(18)~(30)および組成物(G)~(H)〕
 表6および表7に示す処方に従って、各成分を計量混合して気化性防錆剤組成物(18)~(30)および組成物(G)~(H)を調製した。
 調製した気化性防錆剤組成物(18)~(30)および組成物(G)~(H)を一口袋aにそれぞれ充填し、袋の口をヒートシールして、気化性防錆剤組成物(18)~(30)および組成物(G)~(H)のそれぞれを収納して成る防錆剤を得た。
〔防錆試験III〕
 縦50mm×横4mm×高さ50mmの直方体形のねずみ鋳鉄(FC-200)の表面をメタノールで洗浄した。JKワイパーでメタノールを拭き取った。メタノールで再度洗浄した。窒素ガスを吹き付けて乾燥させた。
 縦340mm×横270mm×高さ180mmの平底のプラスチック製容器(天面は開放、側面4面は周辺幅20mmを残し長方形にカット)内の角部に前記ねずみ鋳鉄を立てて設置した。ねずみ鋳鉄から最も離れた容器内の角部に防錆剤を設置した。これら全体を100μm厚のポリエチレンフィルム製の袋(500mm×750mm)に収納し、袋の口をゴムバンドで密閉した。
 袋のフィルム面がプラスチック容器の壁面にほぼ密着するように少量のガムテープで袋を貼り固めて形状を整えた。ねずみ鋳鉄の直近のフィルムに粘着剤を塗布した厚さ1mmの軟質ゴム板(20mm×20mm)を貼り、ゴム板に注射針を刺せるようにして、試験体を得た。この試験体を、つぎのような温度および相対湿度の環境を24時間サイクルで繰り返す恒温恒湿器内に入れた。
(1)温度50℃・相対湿度90%の状態を11時間保持する。
(2)1時間かけて温度10℃・相対湿度90%に変化させ、その状態を11時間保持する。
(3)次いで1時間かけて(1)の状態に変化させる。
 温度10℃・相対湿度90%の状態の保持で10時間経過した時に、恒温恒湿器から試験体を取り出して、注射針を先端に取り付けたガス検知管で袋の中の防錆性ガス濃度を測定した。なお、防錆性ガス濃度は、アミンガスのみが発生する気化性防錆剤についてはアミン用ガス検知管を用いて測定し、アンモニアガスのみが発生する気化性防錆剤についてはアンモニア用ガス検知管を用いて測定し、アンモニアガスとアミンガスの両方が発生する気化性防錆剤についてはアンモニア用ガス検知管を用いて測定した。
 7日、14日および21日経過時には防錆性ガス濃度を測定した後に、袋の口を開いてねずみ鋳鉄を取り出し、JIS K 1994に準拠し、ねずみ鋳鉄中央の40mm×40mmの範囲を、4mm×4mmのマス目に100等分し、錆の発生したマス目の数を両面について数えて錆の発生率を算出した。結果を表6および表7に示す。錆発生率を算出した後、試験体を元の状態に戻した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表6および表7に示すとおり、本願発明に従って、塩化マグネシウムをさらに含有させると、使用初期に発生するアンモニアガスが減り、使用後期に発生するアンモニアガスが増え、長期間持続的な防錆効果を示す。試験IIIは試験IIよりも錆が発生しやすい条件であるが、本発明に係る防錆剤組成物を用いると、錆を十分に防止できる。
〔気化性防錆剤組成物(31)~(51)〕
 表8および表9に示す処方に従って、各成分を計量混合して気化性防錆剤組成物(31)~(51)を調製した。
 調製した気化性防錆剤組成物(31)~(51)を一口袋bにそれぞれ充填し、袋の口をヒートシールして、気化性防錆剤組成物(31)~(51)のそれぞれを収納して成る防錆剤を得た。防錆試験Iを行った。その結果は表8および9に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
〔気化性防錆剤(15)〕
 気化性防錆剤組成物(37)0.399gを二口袋Bの50mm×30mm側に封入し、塩化カルシウム0.7gを二口袋Bの50mm×50mm側に封入して気化性防錆剤(15)を得た。防錆試験Iを行った。結果を表10に示す。
〔気化性防錆剤(16)〕
 気化性防錆剤組成物(42)0.399gを二口袋Bの50mm×30mm側に封入し、塩化マグネシウム0.7gを二口袋Bの50mm×50mm側に封入して気化性防錆剤(16)を得た。防錆試験Iを行った。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
〔気化性防錆剤組成物(52)~(55)および組成物(I)〕
 表11に示す処方に従って、各成分を計量混合して気化性防錆剤組成物(52)~(55)および組成物(I)を調製した。
 温度40℃、相対湿度90%における透湿度5000g・m-224Hr-1の袋用フィルムをヒートシールして155mm×213mmの袋を製造した。この袋に調製した気化性防錆剤組成物(52)~(55)および組成物(I)を充填し、袋の口をヒートシールして、気化性防錆剤組成物(52)~(55)および組成物(I)のそれぞれを収納して成る防錆剤を得た。
〔防錆試験IV〕
 縦50mm×横4mm×高さ50mmの直方体形のねずみ鋳鉄(FC-200)の表面をメタノールで洗浄した。JKワイパーでメタノールを拭き取った。メタノールで再洗浄した。窒素ガスを吹き付けて乾燥させた。
 塗装された金属製パイプと継手で長さ100cm×幅100cm×高さ100cmの立方体状枠を作製した。50μm厚のフィルムを高さ20cm毎に枠の内側に水平に4枚張り渡し、棚を形成させた。最上段棚の角の一部を木製板で補強し、その板の上に防錆剤を置いた。防錆剤に対して対角の最下段棚の角に乾燥させたねずみ鋳鉄を立てて置いた。ねずみ鋳鉄の近くに温湿度計を設置した。
 50μm厚のポリエチレンフィルムで、下面、側面および上面を囲み、縦105cm×横105cm×高さ105cmの内空間を有する中袋の中に、枠を封入した。中袋の最上部の4辺のほぼ中央に、タオル地を4枚重ねして作られた300mm×200mmの雑巾を、雑巾の200mm辺で中袋の外側に粘着テープを用いて貼り付けて垂れ下げた。また、中袋の側面に粘着剤で厚さ1mmの軟質ゴム板(20mm×20mm)を貼った。
 次いで、100μm厚のポリエチレンフィルムで、下面、側面および上面を囲み、縦120cm×横120cm×高さ120cmの内空間を有する外袋の中に、中袋を封入した。
 該試験体を直射日光や雨が当たらないが風通しの良い外気温とほぼ同じ温度に保たれた屋内に置いた。
 雑巾の垂れ下げられている位置に対応する位置の外袋に切り込みを入れ、そこから水を雑巾に浸み込ませ、その後、該切り込みを粘着テープで塞いだ。雑巾への水の浸み込みは週1回の頻度で行った。中袋と外袋との間の空間は、相対湿度が95%以上に保たれていた。
 温湿度計で中袋内の最高温度、最低温度、最高湿度および最低湿度を記録した。軟質ゴム板の位置に対応する位置の外袋に切り込みを入れ、ゴム板に注射針を刺して、中袋内のガスを抜きだし、その後、該切り込みを粘着テープで塞いだ。抜き出したガスの防錆性ガス濃度をガス検知管で測定した。なお、防錆性ガス濃度は、アミンガスのみが発生する気化性防錆剤についてはアミン用ガス検知管を用いて測定し、アンモニアガスのみが発生する気化性防錆剤についてはアンモニア用ガス検知管を用いて測定し、アンモニアガスとアミンガスの両方が発生する気化性防錆剤についてはアンモニア用ガス検知管を用いて測定した。
 試験開始から154日目と201日目にねずみ鋳鉄を試験体から一時的に取り出し、JISK1994に準拠し、ねずみ鋳鉄中央40mm×40mmの範囲を4mm×4mmのマス目に100等分し、錆の発生したマス目の数を両面について数えて、錆の発生率を算出した。それらの結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
〔気化性防錆剤組成物(56)〕
 顆粒状ジエチルアミン塩酸塩(粒度レンジ:1mm-5mm)0.238g、ジエチルアミン塩酸塩粉砕品(粒度レンジ:0.1mm以下)0.080g、水酸化カルシウム(粒度レンジ:0.1mm以下)0.004g、酸化マグネシウム(粒度レンジ:3mm以下)0.160g、塩化カルシウム粉末(粒度レンジ:0.1mm以下)0.040g、水溶性高分子0.030g、および無機吸水剤0.006gを混合して気化性防錆剤組成物(56)を得た。
〔気化性防錆剤組成物(57)~(63)および組成物(J)〕
 表12に示す処方に従って、各成分を計量混合して気化性防錆剤組成物(57)~(63)および組成物(J)を調製した。なお、塩化マグネシウム粉末、酸化カルシウム粉末およびシリカゲル粉末は粒度レンジが0.1mm以下のものである。
Figure JPOXMLDOC01-appb-T000012
〔防錆剤組成物(K)〕
 塩化マグネシウム3.00g、水溶性高分子0.80g、無機吸水剤0.15g、水酸化マグネシウム0.10gおよび水酸化カルシウム0.04gを混合して防錆剤組成物(K)を得た。防錆剤組成物(K)を一口袋aに充填し、袋の口をヒートシールして、防錆剤組成物(K)を収納して成る防錆剤を得た。
〔気化性防錆剤(17)〕
 気化性防錆剤組成物(56)0.56gを二口袋Cの50mm×30mm側に封入し、防錆剤組成物(K)4.1gを二口袋Cの50mm×80mm側に封入して気化性防錆剤(17)を得た。防錆性の評価結果を表13に示す。
〔気化性防錆剤(18)〕
 気化性防錆剤組成物(56)0.56gを気化性防錆剤組成物(57)0.64gに変えた以外は気化性防錆剤(17)の調製法と同じ方法で気化性防錆剤(18)を得た。防錆性の評価結果を表13に示す。
〔気化性防錆剤(19)〕
 気化性防錆剤組成物(56)0.56gを気化性防錆剤組成物(58)1.72gに変えた以外は気化性防錆剤(17)の調製法と同じ方法で気化性防錆剤(19)を得た。防錆性の評価結果を表13に示す。
〔気化性防錆剤(20)〕
 気化性防錆剤組成物(56)0.56gを気化性防錆剤組成物(59)4.52gに変えた以外は気化性防錆剤(17)の調製法と同じ方法で気化性防錆剤(20)を得た。防錆性の評価結果を表13に示す。
〔気化性防錆剤(21)〕
 気化性防錆剤組成物(56)0.56gを気化性防錆剤組成物(60)0.56gに変えた以外は気化性防錆剤(17)の調製法と同じ方法で気化性防錆剤(21)を得た。防錆性の評価結果を表13に示す。
〔気化性防錆剤(22)〕
 気化性防錆剤組成物(56)0.56gを気化性防錆剤組成物(61)0.64gに変えた以外は気化性防錆剤(17)の調製法と同じ方法で気化性防錆剤(22)を得た。防錆性の評価結果を表13に示す。
〔気化性防錆剤(23)〕
 気化性防錆剤組成物(56)0.56gを気化性防錆剤組成物(62)0.64gに変えた以外は気化性防錆剤(17)の調製法と同じ方法で気化性防錆剤(23)を得た。防錆性の評価結果を表13に示す。
〔気化性防錆剤(24)〕
 気化性防錆剤組成物(56)0.56gを気化性防錆剤組成物(63)0.64gに変えた以外は気化性防錆剤(17)の調製法と同じ方法で気化性防錆剤(24)を得た。防錆性の評価結果を表13に示す。
〔気化性防錆剤(25)〕
 気化性防錆剤組成物(56)0.56gを気化性防錆剤組成物(J)0.52gに変えた以外は気化性防錆剤(17)の調製法と同じ方法で気化性防錆剤(25)を得た。防錆性の評価結果を表13に示す。
〔防錆試験V〕
 縦50mm×横4mm×高さ50mmの直方体形のねずみ鋳鉄(FC-200)の表面をメタノールで洗浄した。JKワイパーでメタノールを拭き取った。メタノールで再度洗浄した。窒素ガスを吹き付けて乾燥させて、テストピースとした。
 縦340mm×横270mm×高さ180mmの平底のプラスチック製容器(天面は開放、側面4面は周辺幅20mmを残し長方形にカット)内の角部に前記ねずみ鋳鉄を立てて設置した。ねずみ鋳鉄から最も離れた容器内の角部に防錆剤を設置した。これら全体を100μm厚のポリエチレンフィルム製の袋(500mm×750mm)に収納し、袋の口をゴムバンドで密閉した。
 袋のフィルム面がプラスチック容器の壁面にほぼ密着するように少量のガムテープで袋を貼り固めて形状を整えた。テストピースの直近のフィルムに粘着剤を塗布した厚さ1mmの軟質ゴム板(20mm×20mm)を貼り、ゴム板に注射針を刺せるようにして、試験体を得た。この試験体を、つぎのような温度および相対湿度の環境を24時間サイクルで繰り返す恒温恒湿器内に入れた。
(1)温度50℃・相対湿度90%の状態を11時間保持する。
(2)1時間かけて温度20℃・相対湿度90%に変化させ、その状態を11時間保持する。
(3)次いで1時間かけて(1)の状態に変化させる。
 温度20℃・相対湿度90%の状態の保持で10時間経過した時に、恒温恒湿器から試験体を取り出して、注射針を先端に取り付けたガス検知管で袋の中の防錆性ガス濃度を測定した。
 なお、防錆性ガス濃度は、アミンガスのみが発生する気化性防錆剤についてはアミン用ガス検知管を用いて測定し、アンモニアガスのみが発生する気化性防錆剤についてはアンモニア用ガス検知管を用いて測定し、アンモニアガスとアミンガスの両方が発生する気化性防錆剤についてはアンモニア用ガス検知管を用いて測定した。
 4日、8日、11日、15日、17日および21日経過した日に、防錆性ガス濃度を測定した後に、袋の口を開いてテストピースを取り出し、JIS K 1994に準拠し、ねずみ鋳鉄中央の40mm×40mmの範囲を、4mm×4mmのマス目に100等分し、錆の発生したマス目の数を両面について数えて錆の発生率を算出した。結果を表13に示す。錆発生率を算出した後、試験体を元の状態に戻した。
Figure JPOXMLDOC01-appb-T000013
〔防錆剤組成物(64)〕
 塩化マグネシウム3.00g、水溶性高分子0.80g、無機吸水剤0.15g、硫酸アンモニウム0.20g、水酸化マグネシウム0.40gおよび水酸化カルシウム0.04gを混合して防錆剤組成物(64)を得た。
〔防錆剤組成物(65)〕
 硫酸マグネシウム6.00g、硫酸アンモニウム0.20g、水酸化マグネシウム0.40gおよび水酸化カルシウム0.04gを混合して防錆剤組成物(65)を得た。
〔防錆剤組成物(66)〕
 シリカゲル顆粒12.00g、硫酸アンモニウム0.20g、水酸化マグネシウム0.40gおよび水酸化カルシウム0.04gを混合して防錆剤組成物(66)を得た。
〔気化性防錆剤(26)〕
 気化性防錆剤組成物(56)0.56gを二口袋Cの50mm×30mm側に封入し、防錆剤組成物(64)4.6gを二口袋Cの50mm×80mm側に封入して気化性防錆剤(26)を得た。防錆性の評価結果を表14に示す。
〔気化性防錆剤(27)〕
 気化性防錆剤組成物(56)0.56gを二口袋Cの50mm×30mm側に封入し、防錆剤組成物(65)6.6gを二口袋Cの50mm×80mm側に封入して気化性防錆剤(27)を得た。防錆性の評価結果を表14に示す。
〔気化性防錆剤(28)〕
 気化性防錆剤組成物(56)0.56gを二口袋Cの50mm×30mm側に封入し、防錆剤組成物(66)12.0gを二口袋Cの50mm×80mm側に封入して気化性防錆剤(28)を得た。防錆性の評価結果を表14に示す。
〔気化性防錆剤(29)〕
 気化性防錆剤組成物(56)0.56gを二口袋Cの50mm×30mm側に封入し、酸化カルシウム顆粒12.0gを二口袋Cの50mm×80mm側に封入して気化性防錆剤(29)を得た。防錆性の評価結果を表14に示す。
〔気化性防錆剤(30)〕
 気化性防錆剤組成物(56)0.56gを一口袋bに封入し、防錆剤組成物(K)4.1gを一口袋cに封入して、二袋一組分包の気化性防錆剤(30)を得た。防錆性の評価結果を表14に示す。
〔防錆剤(k)〕
 防錆剤組成物(K)4.1gを一口袋aに封入して、防錆剤(k)を得た。防錆性の評価結果を表14に示す。
〔防錆剤(l)〕
 防錆剤組成物(65)6.6gを一口袋aに封入して、防錆剤(l)を得た。防錆性の評価結果を表14に示す。
〔防錆剤(m)〕
 硫酸マグネシウム6gを一口袋aに封入して、防錆剤(m)を得た。防錆性の評価結果を表14に示す。
〔防錆剤(n)〕
 シリカゲル顆粒12gを一口袋aに封入して、防錆剤(n)を得た。防錆性の評価結果を表14に示す。
〔防錆剤(o)〕
 酸化カルシウム顆粒12gを一口袋aに封入して、防錆剤(o) を得た。防錆性の評価結果を表14に示す。
Figure JPOXMLDOC01-appb-T000014
〔気化性防錆剤組成物(67)〕
 顆粒状ジエチルアミン塩酸塩(粒度レンジ:1mm-5mm)0.238g、ジエチルアミン塩酸塩粉砕品(粒度レンジ:0.1mm以下)0.080g、水酸化カルシウム(粒度レンジ:0.1mm以下)0.004g、酸化マグネシウム(粒度レンジ:3mm以下)0.160g、塩化カルシウム顆粒(粒度レンジ:0.1mm-5mm)4.000g、顆粒状水溶性高分子0.030g、および無機吸水剤0.006gを混合して気化性防錆剤組成物(67)を得た。気化性防錆剤組成物(67)4.52gを一口袋aに充填し、袋の口をヒートシールしてなる防錆剤(p)の防錆性の評価結果を表15に示す。
 比較のために、塩化カルシウム顆粒4.00gを一口袋aに封入して、防錆剤(q)を得た。その防錆性の評価結果を表15に示す。
Figure JPOXMLDOC01-appb-T000015
 表13、14および15に示すとおり、本願発明に従って、乾燥剤成分として、塩化マグネシウム、硫酸マグネシウム、酸化カルシウム、塩化カルシウム、またはシリカゲルを用いることによっても、防錆性効果が長期間持続する。
 1:気化性防錆剤組成物(I)   2:防錆剤組成物(II)
 3:仕切り   4:気化性防錆剤組成物(I)と防錆剤組成物(II)との境

Claims (19)

  1.  成分(A):非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつと、
     成分(B):常温において固体のアルカリ性物質と、
     成分(C):常温において固体の乾燥剤成分と
    を含有する気化性防錆剤組成物。
  2.  成分(C)が塩化カルシウムおよび塩化マグネシウムからなる群から選ばれる少なくともひとつである請求項1に記載の気化性防錆剤組成物。
  3.  成分(C)の量が成分(A)1質量部に対して0.01質量部以上20質量部以下である請求項1または2に記載の気化性防錆剤組成物。
  4.  成分(C)の量が成分(A)1質量部に対して3質量部以上500質量部以下である請求項1または2に記載の気化性防錆剤組成物。
  5.  成分(B)が、酸化マグネシウム、水酸化カルシウムおよび水酸化マグネシウムからなる群から選ばれる少なくともひとつである請求項1~4のいずれかひとつに記載の気化性防錆剤組成物。
  6.  通気性非透水性袋体、および
     成分(A1):非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつと、 成分(B1):常温において固体のアルカリ性物質と、 成分(C1):成分(A1)1質量部に対して0質量部以上20質量部以下の常温において固体の乾燥剤成分とを含有する気化性防錆剤組成物(I)からなり、
     前記袋体1つに気化性防錆剤組成物(I)を収納して成る気化性防錆剤。
  7.  通気性非透水性袋体、
     成分(A1):非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつと、 成分(B1):常温において固体のアルカリ性物質と、 成分(C1):成分(A1)1質量部に対して0質量部以上20質量部以下の常温において固体の乾燥剤成分とを含有する気化性防錆剤組成物(I)、および
     成分(C2):常温において固体の乾燥剤成分を含有する防錆剤組成物(II)からなり、
     前記袋体1つに気化性防錆剤組成物(I)と防錆剤組成物(II)とを仕切りで分けて収納して成る気化性防錆剤。
  8.  通気性非透水性袋体、
     成分(A1):非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつと、 成分(B1):常温において固体のアルカリ性物質と、 成分(C1):成分(A1)1質量部に対して0質量部以上20質量部以下の常温において固体の乾燥剤成分とを含有する気化性防錆剤組成物(I)、および
     成分(C2):常温において固体の乾燥剤成分を含有する防錆剤組成物(II)からなり、
     前記袋体2つに気化性防錆剤組成物(I)と防錆剤組成物(II)とを分けて収納して成る気化性防錆剤。
  9.  通気性非透水性袋体、
     成分(A1):非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつと、 成分(B1):常温において固体のアルカリ性物質と、 成分(C1):成分(A1)1質量部に対して0質量部以上20質量部以下の常温において固体の乾燥剤成分とを含有する気化性防錆剤組成物(I)、および
     成分(C2):常温において固体の乾燥剤成分を含有する防錆剤組成物(II)からなり、
     前記袋体1つに気化性防錆剤組成物(I)と防錆剤組成物(II)とを偏在させて収納して成る気化性防錆剤。
  10.  防錆剤組成物(II)は、成分(A2):非気化性で常温において固体のアミン塩(アミン亜硝酸塩を除く。)、および非気化性で常温において固体のアンモニウム塩からなる群から選ばれる少なくともひとつ、および成分(B2):常温において固体のアルカリ性物質をさらに含有し、且つ
     成分(C2)の量が成分(A2)1質量部に対して3質量部以上500質量部以下である請求項7~9のいずれかひとつに記載の気化性防錆剤。
  11.  成分(B2)が、酸化マグネシウム、水酸化カルシウムおよび水酸化マグネシウムからなる群から選ばれる少なくともひとつである請求項10に記載の気化性防錆剤。
  12.  成分(C1)が塩化カルシウムおよび塩化マグネシウムからなる群から選ばれる少なくともひとつであり、且つ
     成分(C2)が塩化カルシウムおよび塩化マグネシウムからなる群から選ばれる少なくともひとつである請求項7~11のいずれかひとつに記載の気化性防錆剤。
  13.  気化性防錆剤組成物(I)/防錆剤組成物(II)の質量比が0.5/99.5~70/30である請求項7~12のいずれかひとつに記載の気化性防錆剤。
  14.  成分(B1)が、酸化マグネシウム、水酸化カルシウムおよび水酸化マグネシウムからなる群から選ばれる少なくともひとつである請求項6~13のいずれかひとつに記載の気化性防錆剤。
  15.  通気非透水性袋体は、温度40℃、相対湿度90%における透湿度が1000~20000g・m-224Hr-1のフィルムで構成される、請求項6~14のいずれかひとつに記載の気化性防錆剤。
  16.  実質的に外気と遮断されたひとつの空間内に、
     被防錆物質と、
     請求項1~5のいずれかひとつに記載の気化性防錆剤組成物と
    を存在させることを含む被防錆物質の防錆方法。 
  17.  実質的に外気と遮断されたひとつの空間内に、
     被防錆物質と、
     請求項6~15のいずれかひとつに記載の気化性防錆剤と
    を存在させることを含む被防錆物質の防錆方法。
  18.  実質的に外気と遮断された空間が、プラスチック樹脂フィルムで密封された空間である請求項16または17に記載の防錆方法。
  19.  プラスチック樹脂フィルムがアンモニアガスまたはアミンガス非透過性フィルムである請求項18に記載の防錆方法。
PCT/JP2014/083456 2013-12-17 2014-12-17 気化性防錆剤組成物 WO2015093542A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015553588A JP6479682B2 (ja) 2013-12-17 2014-12-17 気化性防錆剤組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013259875 2013-12-17
JP2013-259875 2013-12-17

Publications (1)

Publication Number Publication Date
WO2015093542A1 true WO2015093542A1 (ja) 2015-06-25

Family

ID=53402886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083456 WO2015093542A1 (ja) 2013-12-17 2014-12-17 気化性防錆剤組成物

Country Status (3)

Country Link
JP (1) JP6479682B2 (ja)
TW (1) TWI570274B (ja)
WO (1) WO2015093542A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190260A (ja) * 2016-04-14 2017-10-19 旭化成株式会社 ハロゲン化合物粉体混合物
WO2023220666A1 (en) * 2022-05-12 2023-11-16 Northern Technologies International Corporation Polyacrylamides as volatile corrosion inhibitors and desiccants, methods of using, and methods of making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114061U (ja) * 1986-01-07 1987-07-20
JPH1192976A (ja) * 1997-09-17 1999-04-06 Nippon Soda Co Ltd 防錆製剤及び防錆方法
JP2006169627A (ja) * 2004-11-17 2006-06-29 Mitsubishi Gas Chem Co Inc 防錆剤
JP2011047028A (ja) * 2009-08-28 2011-03-10 Chubu Kiresuto Kk 気化性防錆剤組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8305933D0 (en) * 1983-03-03 1983-04-07 Ciba Geigy Ag Process of inhibiting corrosion of metal surfaces
JPH10140378A (ja) * 1996-09-10 1998-05-26 Nippon Soda Co Ltd 防錆剤及び防錆方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114061U (ja) * 1986-01-07 1987-07-20
JPH1192976A (ja) * 1997-09-17 1999-04-06 Nippon Soda Co Ltd 防錆製剤及び防錆方法
JP2006169627A (ja) * 2004-11-17 2006-06-29 Mitsubishi Gas Chem Co Inc 防錆剤
JP2011047028A (ja) * 2009-08-28 2011-03-10 Chubu Kiresuto Kk 気化性防錆剤組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190260A (ja) * 2016-04-14 2017-10-19 旭化成株式会社 ハロゲン化合物粉体混合物
WO2023220666A1 (en) * 2022-05-12 2023-11-16 Northern Technologies International Corporation Polyacrylamides as volatile corrosion inhibitors and desiccants, methods of using, and methods of making the same

Also Published As

Publication number Publication date
TW201527597A (zh) 2015-07-16
JPWO2015093542A1 (ja) 2017-03-23
TWI570274B (zh) 2017-02-11
JP6479682B2 (ja) 2019-03-06

Similar Documents

Publication Publication Date Title
TWI604882B (zh) 乾燥劑組成物
US8029842B2 (en) Low water activity oxygen scavenger and methods of using
JP6479682B2 (ja) 気化性防錆剤組成物
JPS6028531B2 (ja) 除湿剤
WO2013180013A1 (ja) 酸素発生・炭酸ガス吸収剤組成物、及び、酸素発生・炭酸ガス吸収剤包装体、並びに活魚介類の輸送方法
JP6516202B2 (ja) 二酸化塩素発生剤を有する包装体
JP5886398B1 (ja) 防錆組成物及びそれを用いた錆止め材
JP2010254350A (ja) 防錆包装材
JP6108971B2 (ja) 防錆剤組成物
JP5668256B2 (ja) 気化性防錆剤組成物
JP2003144112A (ja) 脱酸素組成物
JP2003213462A (ja) 気化性固形防錆剤
JP4347458B2 (ja) 気化性防錆剤
JPS6218217B2 (ja)
EP1506719A1 (en) Oxygen absorber composition, oxygen absorber packaging and oxygen absorption method
JP2000229668A (ja) 糖アルコールの固結防止方法とその容器
JP7326840B2 (ja) 脱酸素剤
JP7263989B2 (ja) 脱酸素剤、脱酸素剤包装体及び食品包装体
JPH10140378A (ja) 防錆剤及び防錆方法
JPH03133368A (ja) 鮮度保持剤
JPH05115741A (ja) 硫酸マグネシウム充填小袋型乾燥材及び防錆乾燥材
JP2001145817A (ja) 乾燥剤
US20190022900A1 (en) Method for making oxygen remediating melt-incorporated additives in plastics for packages
JPS626775B2 (ja)
JP2006045068A (ja) 2,2’−ビス(ヒドロキシメチル)アルカン酸の粉体およびその保存方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201604044

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14872631

Country of ref document: EP

Kind code of ref document: A1